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Abstract: All fluorochemicals including elemental fluorine, nucleophilic, electrophilic, and 

radical fluorinating reagents are prepared from hydrogen fluoride (HF). This highly toxic and 

corrosive gas is produced by reaction of acid grade fluorspar (> 97% CaF2) with sulfuric acid under 

harsh conditions. The use of fluorspar to produce fluorochemicals via a process that bypasses HF 

is highly desirable but remains an unsolved problem due to the prohibitive insolubility of CaF2.  

Inspired by calcium phosphate biomineralization, we herein disclose a protocol of treating acid 

grade fluorspar with K2HPO4 under mechanochemical conditions. The process affords a solid 

composed of crystalline K3(HPO4)F and K2-xCay(PO3F)a(PO4)b, found suitable for forging S–F and 

C–F bonds.  

 

 

One-Sentence Summary: A versatile inorganic fluorinating reagent is prepared by 

mechanochemical activation of fluorspar with a phosphate salt.   
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Fluorochemicals have a wide range of applications in the metallurgical industry, Li-ion 

batteries, electronics, fluoropolymers, refrigerants, agrochemicals and pharmaceuticals (1, 2). All 

fluorine atoms incorporated into fluorochemicals including nucleophilic, electrophilic, and radical 

fluorinating reagents, originate from naturally occurring fluorspar (calcium fluoride, CaF2). For 

the production of fluorochemicals, this mineral must be converted into hydrogen fluoride (HF) (3, 

4), a process first reported by C. W. Scheele in 1771 (5) (Fig. 1A). Today, current practice in 

industry still relies on this energy-intensive process, entailing reaction of acid grade fluorspar 

(acidspar, > 97% CaF2) with sulfuric acid at elevated temperatures to generate HF, which is stored 

as liquefied gas, or used as an aqueous solution (6). Safety is a primary concern because HF is 

highly toxic and must therefore be handled with extreme caution.  Despite stringent safety 

guidelines, HF spills have occurred, some with fatal accidents and detrimental impact on the 

environment (7). Our research ambition is to rejuvenate fluorine chemistry with current global 

challenges in mind, through the invention of safe and sustainable fluorination methods of 

non-persistent fluorochemicals. A paradigm shift for academia and industry would be to access 

essential fluorochemicals directly from fluorspar avoiding the production of HF, thus decreasing 

energy requirements, and streamlining the current high-maintenance supply chains. The challenge 

is considerable because CaF2 chemistry is viewed as inaccessible due to its high lattice energy 

(ΔUL 2640 kJ mol-1), and prohibitive insolubility in organic solvents (8). Herein, we disclose a 

solution to this long-standing challenge, and report that the activation of acid grade fluorspar with 

a potassium phosphate salt under mechanochemical conditions affords a fluorinating reagent for 

direct S–F and C(sp3/sp2)–F bond construction (Fig. 1B). 
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Fig. 1. Synthesis of fluorochemicals from fluorspar (CaF2). (A) Current industrial route to 

fluorochemicals via hydrogen fluoride. (B) Synthesis of a inorganic fluorinating reagent upon treatment of 

acid grade fluorspar with a phosphate salt under mechanochemical conditions, and applications to 

monofluorinated chemicals (this work). DAST, diethylaminosulfur trifluoride.  

 

CaF2 (m.p. ~ 1420 °C) is a white solid which is poorly soluble in water (0.016 g L-1 at 

20 oC) and insoluble in organic solvents (9). Limited chemistry is known to date for the production 

of fluorochemicals using CaF2. Rare examples report its use in the synthesis of LiPF6, PF5, POF3 

or Ca(SO3F)2 under extremely harsh conditions (10–12). Synthetic porous CaF2 obtained from 

soda lime and HF was reported for the conversion of α-chloro ethers to α-fluoro ethers at 200 °C 

(13). Soluble calcium fluoride complexes have also been prepared and characterized, but there is 

no report on their use for organic fluorination reactions (14, 15). As part of our studies on alkali 

metal fluorides for asymmetric fluorinations (16, 17), we expanded our interest to CaF2 with the 

ultimate aim to use acid grade fluorspar (> 97% CaF2) as a fluoride source for the preparation of 

fluorochemicals. For direct fluorination with CaF2, we considered the formation of a calcium 

by-product of lattice energy higher than 2640 kJ mol-1, as a thermodynamic driving force (8, 18). 

Calcium phosphate (bio)mineralization is essential to the formation of bones and teeth, and other 

pathological calcifications (19), and served as inspiration for initial investigation. Specifically, we 

conceived a study probing the reactivity of CaF2 in the presence of inorganic phosphate salts. In 

this scenario, one possible calcium by-product formed upon displacing fluoride from CaF2 with 

phosphate ions is Ca3(PO4)2 (ΔUL 3534 kJ mol-1 per Ca). Exploratory experiments combining CaF2 
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with phosphate salts and various substrates under a range of conditions gave trace amounts of 

product (table S1). Attempted optimization revealed that solution-phase chemistry had poor 

prognosis for improvement, prompting a changeover to solid-state chemistry. Mechanochemical 

ball milling was attractive as a promising technology enabling transformations independent of 

reactant solubility and aiding solid-state diffusion kinetics (20–24). The knowledge that doping 

fluorite-type compounds with monovalent cations can improve (even if marginally) fluoride 

mobility in solid electrolytes for fluoride ion batteries encouraged us to explore K+  phosphate salts 

to activate CaF2 in the solid-state (25). Ion metathesis would then release KF (or a derivative 

thereof), a commonly used nucleophilic fluorinating reagent.  

Initial experimentation focused on S‒F bond formation. Sulfur(VI) fluoride exchange 

(SuFEx) is a powerful click reaction with applications in chemical biology and materials science 

(26). Moreover, sulfonyl fluorides are commonly employed as fluorinating reagents (27), and are 

more stable than common precursor sulfonyl chlorides, thereby offering a modest contribution to 

compensate for the energetic penalty incurred upon CaF2 dissociation. For reference, the homolytic 

bond dissociation energy of the S‒F bond in SO2F2 (379 ± 18 kJ mol-1) is larger than S‒Cl in 

SO2Cl2 (192 ± 17 kJ mol-1) (26). Exploratory experiments were conducted in a stainless-steel 

milling jar (15 mL) at 30 Hz using one stainless-steel ball (1 x 4 g).  The reaction of 

4-toluenesulfonyl chloride (TsCl) with CaF2 (5 equiv) for 1 h did not afford 4-toluenesulfonyl 

fluoride (TsF, 1); a control experiment replacing CaF2 with KF (1.1 equiv) gave full conversion 

(> 95%) (table S2).  Gratifyingly, the use of CaF2 (5 equiv) in the presence of K3PO4 (2 equiv) or 

K2HPO4 (2 equiv) led to the formation of TsF (1) in 7% and 17% yield (as measured by 
19F NMR spectroscopy), respectively. However, KH2PO4 was ineffective (table S3). Milling CaF2 

(4 equiv) and K2HPO4 (2 equiv) for 3 h prior to addition of TsCl, and further milling of this mixture 

for 3 hours, gave 66% of 1 with no recovery of starting material (table S6). The finding that partial 

degradation of both TsCl and TsF took place under these conditions led to a refined protocol 

involving milling CaF2 (4 equiv) with K2HPO4 (4 equiv), and using the resulting powder for the 

fluorination of TsCl in solution (tBuOH, 0.25 M) at 100 oC (tables S7 to S12).   

 



 

6 

 

 

Fig. 2. Scope of S−F bond and C−F bond formation. Scope of S−F bond formation (top) and C−F bond 

formation (bottom). All yields are for isolated products (0.5 mmol scale unless otherwise stated). 
*anhydrous K2HPO4 added to acid grade fluorspar in three stages during ball milling (see fig. S6); †EtCN 

as solvent; ‡using 1.2 equiv of Fluoromix; §0.25 mmol scale; ¶using 2.2 equiv of Fluoromix; # 19F NMR 

yields using 4-fluoroanisole as internal standard; **1,2-DCB as solvent; ††yield over 2 steps, prepared via 

addition of trans, trans-farnesyl mercaptan (S7) to ESF (19); ‡‡isolated as a diastereomeric mixture (1:2 

α:β);  §§from R−I; ¶¶using 2.5 equiv of Fluoromix; ##using 4.0 equiv of Fluoromix. DCB, dichlorobenzene. 
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This method afforded 1 in 81% (19F NMR yield). Gratifyingly, replacement of synthetic reagent 

grade CaF2 with acid grade fluorspar was equally effective (table S13). The sequential milling of 

acid grade fluorspar (1 equiv) with three portions of K2HPO4 (overall 2.5 equiv) at 35 Hz gave a 

fluorinating reagent (Fluoromix) of improved reactivity in the presence of H2O (2 equiv), affording 

1 isolated in 86% yield using one instead of four equivalents of CaF2 (figs. S1 to S4). 

This optimized protocol afforded various sulfonyl fluorides of importance in medicinal chemistry, 

chemical biology, and materials science with yields up to 98% (Fig. 2). The scope includes the 

multi-purpose fluorochemical ethenesulfonyl fluoride (ESF, 19), antibiotic pharmacophore NBSF 

(10), enzyme inhibitors (20−25) (28), and deoxyfluorination reagents PyFluor (17) and 

SulfoxFluor (18) (29, 30). We also examined the possibility of C(sp3)−F bond formation using 

Fluoromix.  These reactions were best performed in the presence of 18-crown-6. A range of 

benzylic and alkyl fluorides, -fluoroketones, -esters and -amides were prepared in yields up to 

91% (26−45). As a case study for C(sp2)−F bond formation, we selected (hetero)aryl chlorides 

which underwent fluorination in DMSO in modest yields (46−51), affording (hetero)aryl fluorides 

which are valuable building blocks for pharmaceuticals and agrochemicals (1). 

Mechanistic studies gave insight on the composition of Fluoromix, and how it serves as a 

fluorinating reagent. For the identification of the water-soluble species, a sample of Fluoromix was 

stirred in D2O. Centrifugation followed by 19F NMR analysis of the supernatant showed a signal 

at -121.9 ppm assigned to fluoride (fig. S9). A second 19F peak was observed and assigned as 

FPO3
2- ( = -73.8 ppm, and 1JP-F = 864 Hz). A signal at  = 2.7 ppm identified as HPO4

2-, and the 

doublet diagnostic of FPO3
2- at  = 1.1 ppm (1JP-F = 864 Hz) were observed by 31P NMR. The matter 

derived from ball milling CaF2 with K2HPO4 (Fluoromix) is stable (fig. S12), and amenable to ex-

situ analysis by x-ray powder diffraction (PXRD) to determine the composition of the bulk 

crystalline phase (Fig. 3). Analysis revealed new crystalline phases identified as K3(HPO4)F and 

K2-xCay(PO3F)a(PO4)b along with residual crystalline CaF2. No crystalline fluorapatite 

(Ca5(PO4)3F) was detected. In considering the structures of these new inorganic salts, we 

hypothesized that ion metathesis between CaF2 and K2HPO4 might occur to afford calcium 

hydrogen phosphate (CaHPO4) and potassium fluoride (KF), or derivatives thereof. With this in 

mind, mechanistic experiments were carried out, which demonstrated that a new crystalline phase 

X(K) is formed upon ball milling of KF with K2HPO4 (Fig. 3A). X(K) is present in Fluoromix, and 

is shown to be K3(HPO4)F (Figs. 3B and 3C), which is isostructural to K3(PO3F)F and K3(SO4)F 

(31, 32). The reactivity of independently prepared X(K) was investigated using TsCl under 

optimized solution-phase conditions. X(K) proved to be a highly effective fluorinating reagent 

comparable to Fluoromix itself (Fig. 3D). Further ball milling of X(K) (K3(HPO4)F) with CaHPO4 

afforded a new material Y(KCa), which is also present in Fluoromix (Figs. 3A and 3B). Y(KCa) 

contains both crystalline and amorphous phases. The crystalline phase of Y(KCa) has the proposed 

composition K2-xCay(PO3F)a(PO4)b featuring both K+ and Ca2+ (Fig. 3C), and is topologically 

closely related to the reported structure of K3CaH(PO4)2 (33). K2-xCay(PO3F)a(PO4)b was 

independently generated by ball milling CaHPO4 sequentially with KF and then K2HPO4. We noted 

that the solid matter generated by milling CaHPO4 with KF is amorphous, and afforded the 

crystalline phase of Y(KCa) upon milling with K2HPO4 (figs. S19 and S21). The 19F NMR spectrum 
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of Y(KCa) in D2O displays a resonance of FPO3
2- ( = -73.9 ppm, and 1JP-F = 865 Hz), along with a 

signal attributed to fluoride ( = -122.2 ppm) (fig. S18). As a fluorinating reagent, Y(KCa) shows a 

level of performance markedly lower than Fluoromix (Fig. 3D). Collectively, these data shed light 

on the composition and reactivity of Fluoromix, and indicate that component X(K) is a superior 

fluorinating reagent to Y(KCa).  
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Fig. 3. Mechanistic investigation. (A) Preparation of X(K) and Y(KCa). (B) X-ray powder diffraction 

patterns of the species observed in Fluoromix. (C) Proposed structures of X(K) as K3(HPO4)F and Y(KCa) as 

K2-xCay(PO3F)a(PO4)b (crystalline phases). (D) Fluorination of TsCl using KF, Fluoromix, X(K) and Y(KCa) 

(0.125 mmol scale, yield measured by 19F NMR and 1H NMR spectroscopy, further details in fig. S23).  
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This study presents a direct pathway to fluorochemicals from acid grade fluorspar applying 

an operationally simple process consisting of activating CaF2 with K2HPO4 under 

mechanochemical conditions. Mechanistic studies enabled the identification of K3(HPO4)F and 

K2-xCay(PO3F)a(PO4)b as crystalline constituents serving as fluorinating reagents for the synthesis 

of sulfonyl fluorides, alpha-fluoroketones, -esters and -amides, benzylic fluorides, alkyl fluorides, 

and (hetero)aryl fluorides. In the future, the development of methods to convert Fluoromix into a 

broader range of fluorochemicals including routinely used fluorinating reagents can be envisaged. 

CaF2 may therefore become a direct source of fluoride for the production of fluorochemicals with 

a process bypassing the production of HF.  
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