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Abstract
Can an interpretable logistic regression model perform comparably to a deep learn-

ing model in the task of earthquake detection? In spite of the recent focus in academic

seismological research on deep learning, we find there is hope that it can. Using data

from the Groningen Gas Field in the Netherlands, relating to low-magnitude induced

seismicity, we build on a recently presented four-input logistic regression model by

adding to it four further statistically derived features. We evaluate the performance

of our feature-enhanced model relative to both the original logistic regression model

(shallow machine learning model) and a deep learning model proposed by the same

research group. We discover that at the signal-to-noise ratio of this earlier work, our

enhanced logistic regression model in fact overall outperforms the deep learning model

and displays no false negative errors. At the lower signal-to-noise ratios also considered

here, while the number of false positive errors made by the logistic regression model

increases, the number of undetected earthquakes remains zero. Though the number of

false positives is for the highest imbalance ratios currently prohibitive, the benefit of our

four additional features, which increases as the signal-to-noise ratio decreases, suggests

that an interpretable model might be made to perform comparably to a more complex

deep learning model at real-world class imbalance ratios if further useful inputs could

be identified.
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INTRODUCTION

Machine learning algorithms are being increasingly adopted
in a wide range of fields (Shinde & Shah, 2018). Newly avail-
able, relatively inexpensive computing power has made it
possible to analyse datasets at a scale previously out of reach.
The geosciences, too, have been transformed in recent years
by a significant growth in the quantity and quality of avail-
able data (Bergen et al., 2019), which has spurred interest in
machine learning methods for performing seismological tasks

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
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with minimal human intervention (Münchmeyer et al., 2022).
In addition, the use of machine learning methods able to detect
smaller magnitude seismic events than can easily be detected
by classical algorithms itself generates yet more labelled data
for analysis; this is both a boon and a challenge, as noted in
Beroza et al. (2021).

Among available machine learning models, deep neural
network models have seen particularly widespread uptake
in recent academic work in the earth sciences (Reichstein
et al., 2019). These models are appealing because they can be
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2 GOEL AND GORSE

powerful feature extractors. Given an unstructured dataset like
an image collection or a text corpus, they can learn useful and
relevant representations of this information to make highly
accurate predictions. They are the current state of the art for
many prominent benchmark tasks in computer vision, natu-
ral language processing, and in other areas (Alzubaidi et al.,
2021). Motivated by the success of deep models in other
fields, there has been much recent research on the applica-
tion of deep learning to seismology (see, for instance, Zhu
et al., 2022; van der Laat et al., 2021; Soto & Schurr, 2021;
Saad et al., 2022). However, the increasing use of deep learn-
ing is a double-edged sword. Even though they can be highly
accurate, these models are not explainable (i.e., there is no
simple human-understandable account as to why the model
is making a certain prediction), nor even interpretable (i.e.,
there is no direct or easy way to understand which input fea-
tures are causing the model to return a certain output). In a
risk-sensitive field such as medical diagnosis or seismology,
these aspects of the problem are very important and predic-
tive accuracy is usually only one among many criteria used
to evaluate a prediction system (Doshi-Velez & Kim, 2017).
In contrast to the recent academic interest in deep learning,
seismological agencies around the world still currently use
methods which are simple and interpretable by design, have
been used for many years, and lend themselves to inspection
by specialists for anomalies and errors (NORSAR, 2018).

This contrast between academic research focus and current
seismological practice raises the following question: To what
extent is the complexity of a deep learning model actually
needed for seismological tasks? There is a level of concern
in some quarters of the geosciences community (see, e.g.,
Waheed et al., 2020; Mignan & Broccardo, 2020) that deep
learning models (neural networks with many auxiliary ‘hid-
den’ layers) are being developed unnecessarily for problems
where less complex learning algorithms, such as shallow
neural network models (networks with few, or no, hidden lay-
ers), have comparable performance and better interpretability
or explainability characteristics. A notable recent example
of such criticism was in the prediction of earthquake after-
shocks, where it was demonstrated in Mignan and Broccardo
(2019) that a logistic regression (LR) model with three train-
able parameters – in other words, a single neuron with two
inputs – performed as well as a 13,451 parameter neural
network (DeVries et al., 2018) for this task. Such a case
suggests it is possible there may be other seismological prob-
lems where the complexity of a deep neural network may be
unneeded.

This study considers one such problem, that of the detec-
tion of induced seismicity in the Groningen Gas Field, located
in the province of the same name in the Netherlands. The
detection and characterization of microseismic events using
machine learning have become a topic of increasing interest,
as evidenced in the recent review of Anikiev et al. (2023). In

Waheed et al. (2020), a simple LR model – essentially, a min-
imally shallow neural network without a hidden layer – with
five trainable parameters was used for low-magnitude earth-
quake detection in data from this area, on the grounds that the
interpretability of such a model would highly advantageous.
The following year, a paper from the same research group
(Shaheen et al., 2021) used a convolutional neural network
(CNN), a type of deep learning model introduced originally
for image recognition problems, for the same task, using a
similar, but not identical, Groningen dataset. The results of
these two studies were in apparent contradiction, as Waheed
et al. (2020) implied that a simple LR model was more than
adequate for this task and that there was no need for a com-
plex CNN model, while Shaheen et al. (2021) seemed to
conversely imply that deep learning was required. However,
due to methodological and data differences, it was not pos-
sible to reach a definite conclusion from a comparison of
the results of these works as to which model-simple, feature-
based, or complex, based on raw seismic waveform data – is
more appropriate.

We aim in this study to make a comparison between these
models, the shallow LR model and the deep CNN model, with
minor changes as appropriate, and as noted in the relevant
sections of this paper, to ensure that the results from the LR
and CNN models can be directly compared. We train both
our own version of the LR model of Waheed et al. (2020)
and an augmented version of this model that uses a further
set of interpretable statistical input features. Our work in this
paper builds on our earlier work in Gorse and Goel (2022),
here re-training the CNN model of Shaheen et al. (2021) for
use when the test data are segregated on the basis of event, as
in Trani et al. (2020), rather than seismogram, as in Shaheen
et al. (2021). Results from the LR models are then com-
pared to results from the CNN model. (These two papers,
Waheed et al., 2020, and Shaheen et al., 2021, will from this
point onward be referred to, on occasion, as our LR and CNN
benchmarks, respectively.)

Notably, in this work, while we train the models with the
same high proportion of earthquake examples, relative to non-
earthquake, ‘noise’ examples, as used in Waheed et al. (2020),
we additionally challenge the models with test sets in which
the proportion of earthquake examples is reduced, with the
aim of discovering if the relative strengths of the LR and
CNN models are affected by the proportion of earthquakes
in the test data. Machine learning models trained on imbal-
anced data have a tendency to over-assign to the majority
class during learning. One common way to address this prob-
lem is to train instead on balanced or close-to-balanced data
(data, in this instance, in which the number of earthquake
examples is close to that of non-earthquake examples). How-
ever, it is not always clear that models trained on balanced
data will perform well for a test set in which the number of
positive cases (here, earthquake examples) is proportionally
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EARTHQUAKE DETECTION, MACHINE LEARNING 3

smaller, more typical of a natural scenario (in which most 30
s samples of seismic waveforms will not contain a seismic
event). The problem potentially posed by imbalanced datasets
is widespread in machine learning and would be expected to
affect all the models considered in this work. In studying the
effects of class imbalance on these models, we measure the
degree of data imbalance in terms of imbalance ratio (IR),
which is the inverse of the signal-to-noise ratio. IR is used in
this work because it is the predominant measure of data class
imbalance in machine learning applications.

We discover that, for each imbalance ratio considered, both
LR models correctly detect every earthquake, while the CNN
does not, and at the initial IR considered in both of our
benchmark papers, our best-performing LR model, in fact,
outperforms the CNN in relation to accuracy and Matthews
correlation coefficient (Matthews, 1975). At higher IRs (pro-
portionally fewer earthquake examples in the test set), the
performance of the augmented LR model does deteriorate
more rapidly than that of the CNN; however, we will argue
that the use of further input features might be able to lift the
performance of our interpretable LR model to a level at which
it could become competitive with a CNN for practical use.

STUDY CONTEXT AND DATA USED

Induced seismicity in the Groningen Gas Field

The Groningen Gas Field is located in the province of the
same name in the northern part of the Netherlands. It is the
largest natural gas field in Europe and among the 10 largest
in the world. The first significant discovery of gas in this area
occurred in 1959 as a result of exploration by Nederlandse
Aardolie Maatschappij (NAM), a joint partnership between
private firms Shell and Esso. Soon after this discovery, it
became clear to NAM that the volume of gas present in the
reservoir was unprecedented. Initial estimates from explo-
ration suggested 60 billion cubic metres (bcm), but this was
quickly revised upwards to 150 bcm. The latest estimates
suggest that both these numbers are significantly downward
biased and place the correct estimated gas volume at 2900
bcm, of which 2070 bcm had already been extracted as of
2017 (van de Graaf et al., 2017).

Concerns about induced seismicity associated with gas
extraction in the Groningen Gas Field were first publicly
voiced in the late 1980s, as evidenced in Vlek (2019). How-
ever, as this paper goes on to explain, the watershed event
which swayed public sentiment about Groningen gas from
positive to negative was a magnitude 3.6 earthquake that
occurred near Huizinge in 2012, which caused widespread
damage to property, which led to the Dutch government intro-
ducing, and since maintaining, annual production caps for
Groningen. It is currently planned to cease gas production by

1 October 2023 (Reuters, 2023). It has in addition initiated an
enhanced monitoring process via an unusually dense network
of seismic detection stations called the G-network (NORSAR,
2018), from which our data are derived.

The G-network

The G-network, which became operational in the Groningen
region in 2016, was built upon a pre-existing seismic detection
network, now known as the ‘old borehole network’, initiated in
the early 1990s, with the aim of reducing the distance between
stations to no more than 5 km in the new network. The sen-
sor configuration of the G-network boreholes is the same as
in the old borehole network, with four three-component geo-
phones located at 50 m intervals (at 50, 100, 150 and 200
m) in each borehole. Seventy new borehole stations were set
up between 2010 and 2015 (NORSAR, 2018), with Figure 1
showing the geographical extent of this seismic network and
demonstrating the high density of stations.

Data from the G-network provide an excellent platform for
the study of induced seismicity, these data being used not
only in our benchmark papers, and in the current work, but
also, for example, in Paolucci et al. (2021). The dense and
evenly spaced detection stations of the network allow for gran-
ular monitoring of seismic activity at a range of magnitudes,
with seismograms from each station being publicly available
from a set of web services hosted by the Royal Netherlands
Meteorological Institute (KNMI) website (Royal Netherlands
Meteorological Institute (KNMI), 1993). In addition, the four-
geophone structure of each station in the G-network leads to
the possibility of using the moveout pattern as an additional
indicator of example type (earthquake or noise), as in Shaheen
et al. (2021).

Data sourcing, pre-processing, and partitioning

G-network data were obtained from the KNMI website refer-
enced above, which makes available both raw seismic wave-
form data and meta-data (the latter allowing, for instance, the
identification of the detection station that recorded the signal)
for both event and non-event instances. The objectives were
to obtain data as close to identical to those used by our con-
volutional neural network (CNN) benchmark (Shaheen et al.,
2021) as was feasible and to partition the data as similarly
as possible; where any adaptations needed to be made, on
grounds of practical feasibility or good practice in machine
learning, these will be noted in the discussion below. Follow-
ing our CNN benchmark, we downloaded seismograms for a
time window of 30 s; in the case of event data the window
extended 15 s before and after the P-wave pick, and the case
of noise data to 15 s before and after the (randomly) selected
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4 GOEL AND GORSE

F I G U R E 1 The Groningen area with functioning seismic stations shown in green triangles and closed stations shown in red triangles
(reproduced from Royal Netherlands Meteorological Institute (KNMI) (1993), with permission).

origin time. All waveform data were detrended, demeaned and
bandpass-filtered to frequencies of 5–25 Hz, again as in our
CNN benchmark. In addition, in order to be compatible with
this benchmark model, the resulting seismograms were then
downsampled by a factor of two. Finally, we note that we gath-
ered data from all four geophone levels of the G-network,
as our CNN benchmark requires this. In the case of event
data, we downloaded data satisfying the following criteria:
magnitude ≥ 0.2; origin date between 1 October 2017 and
28 February 2018, inclusive of the end dates; depth between
zero and 100 km. This query returned 56 events. However,
both of our benchmark papers reference only 47 events dur-
ing this period. The discrepancy was resolved by noting that
nine of the 56 events were located in the Essen and Aar-
borg regions, considerably south of Groningen, only one of
which, the closest to Groningen, was in fact detected by the
G-network; these nine events were removed from our dataset.
After discarding also seismograms that originated from the
old borehole network (since both benchmark papers used data
from the G-network stations only), we were left with 2300
positive-labelled seismograms, the same number as in the
two comparison studies. We would ideally have picked non-
event data from the same 2017–2018 period as event data.
However, KNMI has limited retention of noise data, so the
required number of 4000 non-event examples was obtained
from the corresponding time period in 2020–2021. For those
later experiments which examine the effect of the imbalance
ratio on model performance, it was necessary to augment the
test datasets with further noise examples. Additional negative
examples required for the increasing noise-to-signal phase of
this study were drawn from this same period, with 38,100 new
samples collected.

We divide our data into the train (60%), validation (20%)
and test (20%) sets, as was done in our CNN benchmark
(Shaheen et al., 2021), though not in our logistic regression
benchmark (Waheed et al., 2020), which latter had only a
70:30 train: test split. We split our data by event rather than
seismogram (as was done in both benchmark papers) in order
to prevent data leakage from test to train datasets. Event-based
partitioning was also used in the KNMI study of Trani et al.
(2020). Hence, for example, our test set may not contain 20%
of the seismograms, as events are detected by varying num-
bers of G-network stations; however, this difference, as with
the differing time period from which noise data were derived,
is not problematic for the internal comparisons within this
study, noting that in the current work the CNN is retrained
specifically for use with event-segregated data.

LEARNING MODELS AND
PERFORMANCE MEASUREMENT

Learning models

Logistic regression

The primary model used in this study is logistic regression
(LR), as used in the first of our benchmark papers (Waheed
et al., 2020). The major appeal of this linear model is that
its fitted weights can be used to understand the role and
importance of different features. An elastic net penalty

𝜆[𝛼
𝑝∑

𝑗=0

|||𝛽𝑗
||| + (1 − 𝛼)

𝑝∑
𝑗=0

𝛽2
𝑗
], (1)
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EARTHQUAKE DETECTION, MACHINE LEARNING 5

where the 𝛽𝑗 are the (𝑝 + 1) weights of the model, may be
added to the LR loss function. The sum of weight magnitudes∑𝑝

𝑗=0 |𝛽𝑗| in the above is known as the LASSO penalty. It
encourages a sparse solution or, in other words, variable selec-
tion. The sum of squared weight values

∑𝑝

𝑗=0 𝛽
2
𝑗

is known as
the ridge penalty. It functions to average the coefficients of
highly correlated features but does not drive coefficient values
to zero, so does not perform variable selection. The parameter
𝛼 (which determines the balance between LASSO and ridge
penalties) and the regularization parameter 𝜆 can be chosen
via grid search on a validation dataset. It should be noted that
in our work an elastic net penalty was used only in the prelimi-
nary feature selection phase, as a means to filter new candidate
features according to their importance, our final model being
a simple LR model as in Waheed et al. (2020).

Convolutional neural network

As stated previously, the major objective of this paper is
to benchmark an interpretable LR model (based on that of
Waheed et al., 2020, with a number of additional features, to
be described below, that enhance its performance) against a
convolutional neural network (CNN) devised for use on the
same Groningen dataset. CNNs, a type of deep learning net-
work based on the operation of mammalian visual systems,
were first introduced in LeCun et al. (1998) and have since
become the dominant paradigm for deep learning (Alzubaidi
et al., 2021). They have become increasingly popular for seis-
mic waveform analysis, being used, for example, in the work
of Mousavi et al. (2020) and Zhu et al. (2022), and much has
been claimed for the effectiveness of these models. However,
in terms of interpretability, being deep learning models of
substantial complexity they represent the polar opposite of LR
models. For the safety-critical area of earthquake detection, it
would therefore be reasonable to require concrete evidence
that such complex models were the only feasible option for
this task.

The CNN architecture used in this work was obtained
from the authors of Shaheen et al. (2021). It was designed
to take advantage of the multiple geophone levels used in
the G-network, leveraging the potential of the moveout pat-
tern of energy to distinguish between disturbances originating
underground (more likely to be a seismic event) and ones orig-
inating at the surface (more likely to be noise). Because, as
explained earlier, our datasets are not identical to those of our
CNN benchmark (differing period for noise data extraction;
use of event-based, rather than seismogram-based, strati-
fication), this CNN was fully retrained for our purposes.
The shape of the array input to the CNN is (4, 3001, 3),
corresponding to four geophones, 3001 time points (after pre-
processing), and three channels per geophone, respectively,
with the CNN architecture as given in Shaheen et al. (2021). In

addition, we used the same means of initialization of weights,
the same optimizer and the same learning rate as in our CNN
benchmark, also.

Performance measurement

One key sense in which the work of this paper differs from
many other studies in academic seismology is that our models
are challenged on test data with progressively higher imbal-
ance ratios (IRs), representing more natural ratios of noise
signals to earthquake signals, in order to determine the effect
of IR on model performance. Assessing model performance
in situations of high-class imbalance requires caution. Accu-
racy (the proportion of correct classifications relative to the
total number of examples), despite still being in wide use in
such situations, can be misleading: for example, if 90% of
examples are negative, an accuracy of 90% can be achieved
by assigning all examples to this majority class, despite the
resulting model being entirely useless as a classifier. In our
work, we quote accuracy due to its continuing wide use as
a performance measure, independently of IR, but regard the
Matthews correlation coefficient (MCC) (Matthews, 1975) as
our primary performance measure, due to its robustness in
situations of class imbalance (Chicco & Jurman, 2020). The
MCC is defined by

MCC = (TP × TN − FP × FN)∕[(TP + FP)

× (TP + FN) × (TN + FP) × (TN + FN))]
1
2 , (2)

in which TP is the number of true positives (earthquake exam-
ples correctly classified as such), TN is the number of true
negatives (noise examples correctly classified as such), FP is
the number of false positives (noise examples wrongly clas-
sified as earthquakes), and FN the number of false negatives
(earthquake examples wrongly classified as noise). The MCC
takes values between +1 and −1. A value of +1 indicates
a perfect classifier, while an MCC of −1 indicates a classi-
fier which predicts every example to be of the opposite class.
An MCC of 0 indicates a classifier which performs no better
than random or which, importantly for the case of imbal-
anced datasets, wrongly categorizes all examples as being of
the majority class. In the example used in the discussion of
accuracy, where a deceptively high accuracy of 90% could be
obtained by assigning all examples to the majority class, the
lack of utility of the model would be revealed in its MCC of 0.

FEATURE CONSTRUCTION

We derived our input features (listed below, with their names
within the relevant packages, together with their designations
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6 GOEL AND GORSE

within this work) from two sources. The means of selection
are described in the subsections below.

Initial choice of input features

Two sources of potential features were used, described below.

Highly comparative time series analysis features
as used in logistic regression benchmark

Highly comparative time series analysis (HCTSA) (Fulcher
& Jones, 2014) is a package that derives, for a given time
series, up to 7700 statistical features that are known to perform
well as descriptors in a wide range of domain areas. Using
single (Z-) channel seismogram data, Waheed et al. (2020)
used HCTSA’s inbuilt features to first create a list of 50 high-
performing features, then used HCTSA’s correlation matrix
functionality to choose the four features from this list that
were closest to being uncorrelated with each other while at the
same time separating the data well. These features, denoted
here W1–W4, are among the final eight features used here, as
all four were later found to be valuable in classification using
the elastic net selection process. They have the following def-
initions, taken from the HCTSA documentation (Fulcher &
Jones, 2014):

∙ DN_RemovePoints_min_05_fzcacrat (W1): It measures
how time-series properties change as points are removed.
Specifically, it computes the first zero-crossing of the nor-
mal linear autocorrelation function as 50% of the lowest
values are removed.

∙ SY_SlidingWindow_s_s_5_1 (W2): Sliding window mea-
sure of stationarity. Specifically, it divides the time series
into five windows and computes the standard devia-
tion in each window followed by computing the stan-
dard deviation of the resulting five standard deviation
values.

∙ ST_MomentCorr_002_02_mean_std_sqrt_mi (W3): It
measures correlations between simple statistics in local
windows of a time series. Specifically, it computes mutual
information between two vectors formed by computing the
mean and standard deviation of the time series in a sliding
window. The length of the sliding window is 2% of the
entire time series with a 20% overlap between consecutive
windows.

∙ FC_Surprise_dist_100_5_q_500_tstat (W4): It measures
the level of surprise due to the next data point given recent
memory. Specifically, it coarse-grains the time series into
five groups and computes a summary of information gain
with 100 previous memory samples.

F I G U R E 2 Distributions of weight values for the 72
best-performing LR models with an elastic net penalty.

Additional features from catch22

The catch22 MATLAB package (Lubba et al., 2019) was cre-
ated by the authors of HCTSA as a computationally efficient
package that uses only the 22 HCTSA features discovered
to be ‘best performing’ over a wide range of different time
series. It was found that none of the features in our LR bench-
mark were included in the catch22 set. This could be because
their means of selection of the four HCTSA features substan-
tially differed from ours, as noted in the conclusion of this
work, when discussing the possibility of adding further input
features to the LR model.

Feature selection using the elastic net

The combination of HCTSA, as used in Waheed et al. (2020),
with catch22 thus provided us with four previously used
features (from HCTSA), and 22 new, and potentially high-
performing, ones (from catch22). We then used an LR model
with an elastic penalty, as described in the section on learning
models, to select the most important among these 26 fea-
tures, using a grid search to select the 𝜆 and 𝛼 parameters of
Equation (1). We discovered many (72) models with identi-
cal performance in terms of the validation of the Matthews
correlation coefficient (MCC), with the distribution of weight
values for each feature for these models being plotted in
Figure 2.

This figure confirms the value of the original four HCTSA
features (denoted here W1–W4), and four of the catch22 fea-
tures (denoted C10, C11, C14, and C15), with C11 appearing
especially promising. These features have the following defi-
nitions, taken from the catch22 documentation (Lubba et al.,
2019):
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EARTHQUAKE DETECTION, MACHINE LEARNING 7

∙ PD_PeriodicityWang_th0_01 (C10): Time intervals
between successive extreme events above the mean.

∙ CO_Embed2_Dist_tau_d_expfit_meandiff (C11): Time
intervals between successive extreme events below the
mean.

∙ DN_OutlierInclude_p_001_mdrmd (C14): Exponential fit
to successive distances in two-dimensional (2D) embedding
space.

∙ DN_OutlierInclude_n_001_mdrmd (C15): Periodicity
measure of Wang et al. (2007).

These four new features were, therefore, added to the
HCTSA-selected group from our LR benchmark. The 18 less-
influential catch22 features, and the use of the elastic net
penalty, were then discarded in order to have a simple, more
easily interpretable LR model.

As examples of the interpretation of these features, we first
consider, from the HCTSA set, the feature W2, which from
Figure 2 appears the most potentially useful of this set, having
its entire distribution of values most clearly separated from
zero. It is calculated within HCTSA using a sliding window
from which a mean and standard deviation of amplitude can be
derived, and in this context may reflect that, while the mean
remains constant, there is a sudden increase in the variance
after the P-wave onset.

As a second example, from the catch22 set, we consider the
feature C11, which from Figure 2 appears the most potentially
useful of this set. This feature is the exponential fit to succes-
sive distances in a 2D embedding space and is constructed as
follows:

∙ set a particular window size 𝜏 (we use the catch22 default
value of 30); each point in the embedding space then
becomes X𝑡 = (x𝑡, x𝑡 + 𝜏),

∙ calculate 2D Euclidean distances between successive points
so constructed to yield d𝑡,

∙ fit a 2D exponential distribution to these distances, and
∙ calculate the deviation from this fit and use this as the

feature.

The plots in Figures 3 and 4 show the 2D distances from
the above-calculated feature for a randomly picked negative
(noise) example and a randomly picked positive (earthquake)
example from the test set, respectively. The value of the calcu-
lated feature derived from these distances is likely to be very
different in the negative and positive cases.

RESULTS

Data exploration

Table 1 shows descriptive statistics for the 47 seismic events
considered in the benchmark work to which we compare our

F I G U R E 3 Feature C11: successive distances in 2D embedding
space (see the text for details) for a randomly selected negative example
from the training data.

F I G U R E 4 Feature C11: successive distances in 2D embedding
space (see the text for details) for a randomly selected positive example
from the training data.

models and also in this current work. For each variable tab-
ulated, the mean is different from the median. This suggests
that these variables are unlikely to be distributed according
to a symmetric distribution, and in particular are unlikely to
be normally distributed, which is also evident in the plots
to follow.

Figure 5 (left) shows the frequency distribution of the num-
ber of stations used in event detection. There are 77 stations
in the G-network. A large fraction of events were detected
by less than 10 stations. A small fraction of events were
detected by between 40 and 50 stations. Since most of the
events are of small magnitude, it would be expected that
they would predominantly be detected by a limited number
of nearby stations. Figure 5 (right) shows the relationship
between the number of stations used in event detection and the
estimated magnitude of an event. The best fit line is upward
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8 GOEL AND GORSE

T A B L E 1 Descriptive statistics related to event detections.

Mean Std. Min. 25% 50% 75% Max.

Number of stations used in detection 16.28 14.48 2 5 10 23.5 52

Magnitude 1.05 0.60 0.22 0.67 0.92 1.35 3.43

Distance to the nearest station (km) 1.61 1.31 0.13 0.99 1.37 1.97 8.94

Distance to the farthest station (km) 23.82 18.85 8.65 14.86 20.41 26.11 107.06

F I G U R E 5 Distribution of station counts in event detection (left) and their relationship with event magnitude (right).

F I G U R E 6 Distributions of distances from an event epicentre of the nearest (left) and furthest (right) stations used in detection.

sloping, as we would expect: higher magnitude events are
detected by more stations. The minimum distance frequency
distribution in Figure 6 (left) suggests that most events are
detected by at least one station which is at most 3 km away
from its epicentre, while the corresponding maximum dis-
tance plot in Figure 6 (right) suggests that the majority of
events are detected by stations at most 40 km away from their
epicentre.

Logistic regression experiments at baseline
imbalance ratio

These first experiments, summarized in Table 2, aim to
elucidate the value of the four selected catch22 features.
The experiments are carried out at the same noise-to-signal

T A B L E 2 Logistic regression model test results at IR of 1.73:1.

Model description Test accuracy (%) Test MCC

Baseline (LR) 98.99 0.9786

Baseline + selected catch22 (LR+) 99.76 0.9948

Abbreviations: LR, logistic regression; MCC, Matthews correlation coefficient.

ratio (IR) as our benchmark logistic regression (LR) model
(Waheed et al., 2020), namely 1.73:1, in order to facilitate a
direct comparison with this earlier work. However, our base-
line model makes minor adjustments to this model, as noted
in the section on data sourcing and pre-processing. We use a
validation set for both LR models, to enable hyperparameter
optimization and early stopping, in order to prevent over-
fitting. Our primary performance measure is the Matthews
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EARTHQUAKE DETECTION, MACHINE LEARNING 9

T A B L E 3 LR and CNN test results at IR of 1.73:1.

Accuracy (%) MCC

LR LR+ CNN LR LR+ CNN

98.99 99.76 99.61 0.9786 0.9948 0.9917

Abbreviations: LR, logistic regression; LR+, baseline (LR) + selected catch22;
CCN, convolutional neural network.

F I G U R E 7 Feature importance plot from LR+ model.

correlation coefficient (MCC), for reasons explained in the
performance measurement section. However, we also report
test accuracy, due to its wide use in results reporting, and in
our LR benchmark; again, as explained in this earlier section.
Results are assessed for significance testing using a two-sided
t-test at the 5% threshold.

It is evident that both the test accuracy and test MCC of the
baseline model are very high. High-accuracy values were also
obtained in both of our benchmark papers; they are in part due
to the relative ease of detecting induced seismicity in a very
densely configured network such as the G-network. It is note-
worthy (as evidenced in the confusion matrices of Table 5)
that neither the LR or LR+ models have any false negatives
(undetected earthquakes). However, comparing the LR and
LR+ models, there is even so a statistically significant ben-
efit from the addition of the new features from catch22; this
is associated with a decrease in the number of false positives
(sections of seismic waveform data wrongly labelled as con-
taining a seismic event). The proportional benefit of the new
catch22 features in this respect will be seen to increase with
increasing IR, as will be shown later in this results section.

The average weight magnitudes (evidencing the importance
of the features to the resulting LR models) associated with all
eight external inputs are shown in Figure 7, in which W1–W4
are the HCTSA feature weights and C10, C11, C14 and C15
the catch22 feature weights. It is evident that the four new
catch22 features had a substantial impact on the augmented
model’s decision-making; all four are more highly weighted

than all but one of the original HCTSA features. Nonethe-
less, three out of the four HCTSA features are clearly also
important, and W2 highly so (in fact the most highly weighted
feature overall), the only HCTSA feature of possibly limited
importance being W3.

Comparison to convolutional neural network
model at baseline imbalance ratio

Our feature-augmented LR model, LR+, described above,
was then compared, on the same test dataset, to results from
the model of Shaheen et al. (2021), our convolutional neu-
ral network (CNN) benchmark. Our objective was to discover
whether the additional complexity of a CNN model was truly
necessary for this task. The CNN model architecture had
been made available to us by the authors of Shaheen et al.
(2021), and, as explained earlier, was retrained on the train-
ing data. Table 3 shows the test performance of the LR+
model compared to that of the CNN model and the LR model.
The CNN, as might be expected on the basis of the logis-
tic regression results of Table 2, performed very well on
this dataset. However, it was not the best-performing model;
despite the CNN’s very substantial additional complexity and
opportunity to benefit from the use of the moveout pattern,
the LR+ model in fact had a statistically significantly higher
test MCC and accuracy. Moreover, as previously noted, nei-
ther of the LR models displayed any false negatives on the test
dataset.

Effect of increasing IR on the performance of
the models

As we noted in the Introduction, academic studies in earth-
quake detection usually train machine learning models on
datasets with low imbalance ratios, with the hope, but with
often limited evidence, that the trained models will perform
equally well when tested on higher ratios (i.e., propor-
tionally fewer earthquake examples) or in continuous tests.
Table 4 shows, for the LR, LR+, and CNN models, results
for expanded test datasets with higher IRs (constructed by
oversampling noise data, as outlined in the section on data
selection and preparation). Tables 5 and 6, in addition, show
the confusion matrices, for all models considered, in the
cases of the IRs 1.73:1 and 50:1, respectively. As would be
expected, the test accuracies and MCCs drop, for all mod-
els, with increasing IR. This is seen more noticeably for the
logistic regression models. However, the logistic regression
models continue to have zero false negatives. It is notable,
also, that the benefit of the additional catch22 features is
progressively more evident at higher IRs, these four extra fea-
tures, taking the total number of inputs to the LR models from
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10 GOEL AND GORSE

T A B L E 4 LR and CNN test results at progressively higher IRs, where the columns headed ‘LR+/LR’ give the relative benefit, at each IR, of
adding the four extra catch22 features to the logistic regression model.

Accuracy (%) MCC
IR LR LR+ LR+/LR CNN LR LR+ LR+/LR CNN

1.73:1 98.99 99.76 1.008 99.61 0.9786 0.9948 1.017 0.9917

5:1 91.27 93.77 1.027 99.63 0.7663 0.8203 1.070 0.9866

10:1 71.33 81.70 1.146 99.69 0.4062 0.515 1.268 0.9814

25:1 62.59 75.27 1.203 99.69 0.2388 0.3164 1.325 0.9595

50:1 59.33 73.19 1.234 99.69 0.1642 0.2227 1.356 0.9265

Abbreviations: CCN, convolutional neural network; IR, imbalance ratio; LR, logistic regression; LR+, baseline (LR) + selected catch22.

T A B L E 5 Confusion matrices at IR 1.73:1 for the LR, LR+, and CNN models.

LR LR+ CNN
Predicted
negative

Predicted
positive

Predicted
negative

Predicted
positive

Predicted
negative

Predicted
positive

True
negative

1297 21 1313 5 1313 5

True positive 0 763 0 763 3 760

Abbreviations: CCN, convolutional neural network; LR, logistic regression; LR+, baseline + selected catch22.

T A B L E 6 Confusion matrices at IR 50:1 for the LR, LR+, and CNN models.

LR LR+ CNN
Predicted
negative

Predicted
positive

Predicted
negative

Predicted
positive

Predicted
negative

Predicted
positive

True
negative

22,295 15,805 27,681 1,0419 37,981 119

True positive 0 763 0 763 3 760

Abbreviations: CCN, convolutional neural network; IR, imbalance ratio; LR, logistic regression; LR+, baseline (LR) + selected catch22.

four to eight, leading to a 36% improvement in MCC for our
LR+ model compared to the LR model, re-implemented from
Waheed et al. (2020).

DISCUSSION AND CONCLUSIONS

In this study, we asked whether a logistic regression (LR)
model with interpretable features can perform as well as
a convolutional neural network (CNN) in detecting low-
magnitude earthquakes in the Groningen Gas Field in the
Netherlands. This question is important because there has
been a recent move in academic seismology, as in many
other fields, towards the use of complex deep learning models
whose workings are impossible for a human analyst to inspect
and understand in a simple way. However, in risk-sensitive set-
tings such as earthquake detection, interpretability is a highly
desirable model characteristic, making a benchmark study
such as this valuable and timely.

In the first stage of our work, we replicated as closely as
possible the procedures in our LR benchmark (Waheed et al.,
2020), which used the same Groningen event dataset. We used
an LR model trained with the same four features from the
highly comparative time series analysis (HCTSA) package
(Fulcher & Jones, 2014) that were used in our LR benchmark,
though we adjusted this model in order to make the treat-
ment of the data (e.g., length of time window) compatible with
the model of Shaheen et al. (2021), our CNN benchmark, to
which our LR results would later be compared. In the second
stage, we improved on this initial LR model by the addition of
four further interpretable features from the catch22 package
(Lubba et al., 2019), selecting these features via a prelimi-
nary elastic net modelling phase. Finally, in the third stage,
we benchmarked both of our LR models against the retrained
CNN model, first at the imbalance ratio (IR) of 1.73:1 used
in both of our benchmark papers, Waheed et al. (2020) and
Shaheen et al. (2021), and then at progressively higher ratios,
moving towards ones more typical of a natural setting (i.e.,
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EARTHQUAKE DETECTION, MACHINE LEARNING 11

one in which, according to the labelling provided by (Royal
Netherlands Meteorological Institute (KNMI), there are pro-
portionally very few 30 s windows that contain a seismic
event).

On the 1.73:1 test data, we discovered that our feature-
augmented LR model (LR+) was surprisingly statistically
significantly more effective, in relation to both accuracy and
Matthews correlation coefficient (MCC), than the far more
complex CNN model. The LR+ model (as did the four-input
LR model) additionally had zero false negatives, that is, earth-
quake events incorrectly classified as noise, on this dataset.
It can be strongly argued that false negatives are less tol-
erable than false positives in seismological applications not
only because an undetected earthquake is liable to have more
negative consequences than a false alarm but also because
it is standard practice within seismological agencies such as
KNMI to reduce false alarms by the manual review of all event
detections (NORSAR, 2018). The number of false positives,
therefore, needs only be rendered manageable, not necessarily
reduced to zero.

When moving to data with larger proportions of noise
(higher IRs), the performance of both LR models decreased
with the amount of noise, though the LR models continued to
have zero false negatives. The performance of the CNN did
decrease substantially less rapidly with IR, compared to the
LR models. However, the CNN had 283,700 free parameters,
as opposed to the nine of the LR+ model. Furthermore, in
relation to the LR models, we discovered that the proportional
benefit of the additional catch22 features increased with IR;
these four extra parameters were able to boost the MCC of the
LR+ model, at an IR of 50:1, by 36% compared to the MCC
of the baseline LR model.

That such a small number of extra features could have
such a large proportional benefit, and moreover one that was
observed to increase with IR, suggests that the use of fur-
ther input features, either statistical or seismological in nature,
might allow the creation of an interpretable LR model with a
performance comparable to that of a CNN not only at a low IR,
such as the initial 1.73:1 considered in this work and in both
of our benchmark papers (where our LR+ model in fact out-
performed the CNN), but at IRs more typical of a real-world
scenario. We note here the distinction between the concepts of
interpretability and explainability. The former requires only
that the degree of influence of each input feature on the out-
put of a model is readily apparent. The latter requires also that
the means by which each feature affects the output is under-
standable in lay, or at least domain expert, terms. New features
with a seismological origin would have an explainable influ-
ence. However, statistically motivated features derived from
packages like HCTSA and catch22, in general, would not.
It is for this reason we would term any linear model that
included features of this latter type to be interpretable rather
than explainable.

Considering the first additional statistically motivated fea-
tures, we note that Waheed et al. (2020) selected their four
HCTSA features using a substantially different method to
the elastic net feature selection method used here; this may
be the reason why their selected features did not, for exam-
ple, include any of the four catch22 features we additionally
used in the LR+ model, despite these being highly ranked
in the feature importance plot of Figure 7. One approach
that could be taken in further work might be to begin with
all (around 7700) of the features computed by the HCTSA
package and use a feature selection tool such as Minimum
Redundancy Maximum Relevance (mRMR) (Ding & Peng,
2005) to choose the most relevant features. mRMR was devel-
oped initially for use in bioinformatics applications (Ding &
Peng, 2005) but has since been used more widely, notably
in Zhao et al. (2019), and including, within the geosciences,
in an earthquake prediction model proposed by Asim et al.
(2018).

Turning to domain-specific input features, Miranda et al.
(2019) used three-dimensional measurements of the degree
of polarization and vertical power radius against total power
(RV2T) within an LR ensemble model which used data from
four Colombian triaxial seismological stations, achieving 95%
accuracy in the detection of seismic events. A variety of other
domain-motivated features have been used within models for
earthquake signal detection, for example, in Kaur et al. (2013),
Vallejos and McKinnon (2013), Lindenbaum et al. (2016),
and Reynen & Audet (2017), and there is clearly scope for the
exploration of the use of such features alongside ones from
statistical toolkits such as HCTSA. It would additionally of
interest to compare the LR+ and CNN models on similar data
from other regions, for example, to use the Oklahoma, USA,
dataset from Reynen & Audet (2017).

We certainly do not claim there is no place in seismol-
ogy for deep learning. Yet shallow models, such as LR,
are of indisputable appeal due to their simplicity and trans-
parency. We believe, on the basis of the results presented
here for the Groningen Gas Field dataset, where our LR
model was benchmarked against a far more complex CNN
model for the same task, that it is worth further exploring
the potential utility of LR models for this and for other seis-
mic datasets, ones relating to both induced and tectonic source
earthquakes.
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