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Abstract

This paper explores how cross-sectional data can be exploited jointly with
longitudinal data, in order to increase estimation efficiency while properly tack-
ling the potential bias due to unobserved individual characteristics. We propose
an innovative procedure and we show its implementation by analysing the deter-
minants of consumption in Nicaragua, based on data from three Living Standard
Measurement Study surveys from 1993, 1998 and 2001. The last two rounds con-
stitute an unbalanced longitudinal data set, while the first is a cross-section of
different households. Under the assumption that the relationship between ob-
served and unobserved characteristics is homogeneous across time, information
from longitudinal data is used to clean the bias in the unpaired sample. In a sec-
ond step, corrected unpaired observations are used jointly with panel data. This
reduces the standard errors of the estimation coefficients and might increase their
significance as well, otherwise compromised by the limited variation provided by
the short longitudinal data.
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1 Introduction

The availability of high quality longitudinal data sets is rare in developing countries. In

most cases, researchers rely on short panel data or unpaired cross sections. Nonetheless,

properly accounting for individual effects is fundamental in order to avoid bias due to

the omission of unobservable characteristics.

Estimation efficiency increases with the size of the cross-sectional sample, and

with the number of survey rounds across time. With short panels, especially if the time

variation in the variables of interest is not high, estimation relies on a small number

of observations and is affected by high standard errors. As a result, coefficients often

look statistically not significant.

When proper panel data are not available, the literature has attempted various

approaches, for example by matching locations across different cross-sections (Pitt,

Rosenzweig and Gibbons (1993)), or by creating pseudo-panels of birth cohorts of

individuals (Deaton (1985)).

In this paper, we develop a new approach, which can be applied when short

panel data and other unpaired cross-sectional data are available. We show that non-

longitudinal sources of the data can be exploited to increase panel models estimation

efficiency. The underlying idea is that the proper panel model - based on the short

longitudinal data - provides information that the researcher can use, in order to address

the problem of bias from unobservable characteristics in the non-longitudinal data. In

fact, cross-sectional data are likely to lead to the estimation of biased coefficients, and

consequently to poor policy decisions. Our methodology suggests a fashion to exploit

the panel nature of part of the data to correct the bias for all periods, i.e. also for

those years in which only cross-section data are available.

The validity of the results depends on the key assumption of time-invariant rela-

tionship between observed and unobservable characteristics. We use pseudo-panels à

la Deaton to validate this hypothesis, i.e. that the relationship between observable and

unobservable characteristics is comparable in longitudinal and non-longitudinal data

sets. We argue that the benefit of the correction of the bias is higher than the cost of

the underlying assumption.

The idea is applied to the analysis of the determinants of consumption in Nicaragua,

by using data from the Living Standard Measurement Study (LSMS) surveys of 1993,

1998 and 2001. The last two rounds constitute an unbalanced longitudinal data set,

while the first is a cross-section of different households. We show that exploiting non-

longitudinal data allows reducing the standard errors in the panel model, increasing

efficiency while controlling for unobserved heterogeneity.

The paper is organized as follows. Section 2 describes the structure of the data
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set, and introduces the consumption model on which the econometric exercise will be

performed. Section 3 outlines the empirical strategy, by explaining how information

from longitudinal data can be used to clean the unpaired observations from the bias

due to the omission of household fixed effects. We define a new estimator and derive

the expression for its variance-covariance matrix. Eventually, we explain how pseudo-

panels can be used to test the underlying hypothesis that the relationship between

observed and unobserved characteristics is homogenous across time. Section 4 applies

the procedure to a consumption model for Nicaragua, and leads the reader along the

different results provided by alternative techniques. Section 5 concludes.

2 Data and Consumption Model

We use data from three Living Standard Measurement Study (LSMS) surveys carried

out in Nicaragua in 1993, 1998 and 2001 by the World Bank, which collected infor-

mation on demographic characteristics, assets, economic activities, income and con-

sumption. The LSMSs from 1998 and 2001 provide an unbalanced panel of more than

4000 households 1 per-period. Due to attrition of about 25%, only 3015 households are

surveyed in both periods. However, previous work (Davis and Stampini (2002)) shows

that attrition is quite random in nature and is not expected to produce a bias in the

analysis of household consumption. After cleaning outliers and missing values, we are

left with a balanced panel of two periods and 2791 households, a cross section of 1240

households in 1998 and 1399 households in 2001.

Data from 1993 are not part of the longitudinal set. In 1993, the LSMS sur-

veyed 4454 households. After cleaning for outliers and missing values, we can exploit

information on 4201 households. The structure of our data set is summarized in Table

(1).

The main variable of interest in our application is per-capita household con-

sumption. Values from the three years are normalized to 1995 prices2. We estimate a

standard consumption equation:

Cit = α + βXit + [φi + uit] (1)

where C is the logarithm of per capita household consumption, X is the vector of

household characteristics, φi represents the household idiosyncratic effect, which could

1A household is defined as physical address where a family lives within a ”segmento censal”.
2According to the Consumer Price Index FP.CPI.TOTL of World Development Indicators for

Nicaragua.
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be either fixed or random, and uit is a normally distributed error term. α and β contain

the parameters to be estimated.

Consumption is a function of the following variables: demographic characteristics

(household size and composition, age and gender of the head of the household); human

capital (share of adult members over 15 years old with primary, secondary and higher

education -excluded category illiterate); labour market participation (share of adult

working members in non-agricultural self-employment, agricultural self-employment

in large farms, and non-agricultural wage-employment -excluded category agricultural

wage-employment and small farming); infrastructure and assets (availability of elec-

tricity and water in the house, quality of the dwelling as proxied by dirt floor, property

of the house (registered or not), land size and number of heads of cattle).

Mean values and standard deviations of the above variables are reported in

columns 1 and 2, Table (2), where 1993-1998-2001 sample and panel data statistics

are compared. There is no systematic difference between the two samples.

3 The Empirical Strategy

If panel data were not available, equation (1) would be estimated omitting the term

φi. This may create two kinds of problems, depending on the fact that the household

idiosyncratic effect might be fixed or random in nature. In the former case, β may

be affected by omitted variable bias, as observed household characteristics would pick

up the effect of omitted unobserved and unobservable variables (upward bias). In the

latter, the problem would be an improper treatment of heteroscedasticity: β would be

consistent, but estimates of its standard errors would be biased.

When T cross sections are available -in our case three-, the estimation of equation

(1) for each time period produces T estimates of β, potentially either biased, or with

biased standard errors. Longitudinal data allow estimating unbiased coefficients and

standard errors, although producing a single estimate for each element of β. The

Hausman test can be used to determine if a random or fixed effect model is more

appropriate. The former is preferable (being both consistent and efficient) if there

is no correlation between household characteristics and idiosyncratic effect, in other

words if this correlation does not alter the regression coefficients. Otherwise, fixed

effects are preferable.

Unfortunately, the panel model exploits only a small part of available information

(5,582 observations out of 12,422). Information provided by the 1993 survey, as well

as the cross-sectional parts of 1998 and 2001, remains unexploited. We will show that

this information has the potential to increase estimation efficiency. Depending on the
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relationship between household observed and unobserved characteristics - i.e. the fact

that the covariance cov(Xit, φi) is different from zero or not- we need to proceed in two

different ways, examined in the next two sections.

3.1 Uncorrelated case

If the observed household characteristics Xi are uncorrelated with the unobserved

household effects φi, both fixed and random effect techniques provide consistent es-

timates of the coefficients in equation (1). However, the random effect estimation

is more efficient, i.e. the standard errors of the estimators are lower. In fact the

within-fixed effects ’throw away’ variability, either by differencing (in the case of two

observations across time) or by computing the distance from the mean (in the case of

more then two). The random effect estimation, on the other hand, simply accounts

for the fact that the errors for paired observations in the balanced panel are correlated

with one another. For this reason, proper weights are applied. When adding unpaired

observations, we need to correct for the fact that (a) these are not correlated with

paired observations and (b) are characterized by a different variance. Hence, unpaired

observations need to be weighted differently, in order to account for heteroskedasticity3.

3.2 Correlated Case

If household unobserved and observed characteristics are correlated, a fixed effect model

is required. As we will show in section (4), the Hausman test reported in Table (5)

rejects the null hypothesis of non-systematic difference in coefficients between RE and

FE. It follows that omission of household fixed effects in equation (1) produces biased

estimates of β. A bias-correction procedure (such as Least Squares Dummy Variables

(LSDV) for longitudinal data) is required. This is the focus of the next section.

3.2.1 Correcting the Bias

Estimating model (1) including household dummy variables using only the 2,791 house-

holds of the balanced panel (LSDV) provides consistent estimates of the parameters.

This is equivalent to estimating the model in differences with OLS. Only time variant

explanatory variables can be included in the model, as every characteristic constant

over time ends up in the household specific fixed effect.

We estimate the following model, equivalent to (1):

3Something similar happens when first order autoregressive disturbances are tackled through the
Prais-Winsten procedure - the first observation and the partial differenced observations (for periods
2 through T) need being weighted differently.
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∆01−98Ci = β∆01−98Xi + ∆01−98ui (2)

where ∆01−98C = C01 − C98 and ∆01−98X = X01 − X98, ∆01−98ui = ui01 − ui98

and recover unbiased estimates of β through the standard OLS formula:

β̂OLS∆01−98 = (∆01−98X
′∆01−98X)−1∆01−98X

′∆01−98C (3)

Applying OLS to pooled longitudinal data -using only the households of the

balanced panel (9801BAL)- provides instead biased estimates of the coefficients. The

expression for the estimators is as follows:

β̂OLS9801BAL = (X ′
9801BALX9801BAL)−1X ′

9801BALC9801BAL (4)

The difference between these two sets of estimates is a consistent estimate of the

OLS bias for each coefficient, and defines the following vector:

b̂ias = β̂OLS9801BAL − β̂OLS∆01−98 =

(X ′
9801BALX9801BAL)−1X ′

9801BALC9801BAL − (∆01−98X
′∆01−98X)−1∆01−98X

′∆01−98C (5)

Subtracting X × b̂ias from consumption C for each household belonging to the

balanced panel and applying expression (5) allows reproducing the unbiased coeffi-

cients β̂OLS∆01−98 . In fact, this procedure purges the dependent variable from the

correlation between explanatory and omitted variables. Under the assumption that

the relationship between observed and unobserved characteristics is the same for panel

and unpaired households (an assumption we will discuss in Section 3.2.2), the same

procedure can be applied to all data from 1993, 1998 and 2001. The new dependent

variable is defined as follows (where the superscript C stands for ”cleaned”):

CC
93,98,01 = C93,98,01 −X93,98,01 × b̂ias (6)

From this point onward, we will use the subscript ∆01−98 to indicate differences in

the balanced panel, 98,01 for pooled observations of the balanced panel, and 93,98,01

for all pooled observations. For our procedure, the fact that some unpaired observations

are recorded in 1993, and others in 1998 and 2001 (the unbalanced component of the

panel) is not relevant. The reader may think of all unpaired observations as recorded

in 1993. Applying the standard OLS formula to the new ’cleaned’ dependent variable,

we derive the new estimator as follows (again C means ”cleaned”):
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β̂C
OLS93,98,01 = (X ′

93,98,01X93,98,01)
−1X ′

93,98,01C
C
93,98,01

= (X ′
93,98,01X93,98,01)

−1X ′
93,98,01{C93,98,01 −X93,98,01[(X

′
98,01X98,01)

−1X ′
98,01C98,01

−(∆01−98X
′∆01−98X)−1∆01−98X

′∆01−98C]} =

(X ′
93,98,01X93,98,01)

−1X ′
93,98,01C93,98,01 −

(X ′
93,98,01X93,98,01)

−1X ′
93,98,01X93,98,01[(X

′
98,01X98,01)

−1X ′
98,01C98,01 −

(∆01−98X
′∆01−98X)−1∆01−98X

′∆01−98C]} =

(X ′
93,98,01X93,98,01)

−1X ′
93,98,01C93,98,01 − Ik{(X ′

98,01X98,01)
−1X ′

98,01C98,01 −
(∆01−98X

′∆01−98X)−1∆01−98X
′∆01−98C]} =

(X ′
93,98,01X93,98,01)

−1X ′
93,98,01C93,98,01 − (X ′

98,01X98,01)
−1X ′

98,01C98,01 +

(∆01−98X
′∆01−98X)−1∆01−98X

′∆01−98C ⇒
β̂C

OLS93,98,01 = β̂OLS93,98,01 − β̂OLS98,01 + β̂OLS∆01−98 =

β̂OLS93,98,01 − β̂OLS98,01 + β̂FE98,01 =

β̂OLS93,98,01 − b̂ias (7)

The new estimator is a linear combination of three separate OLS estimates.

If β̂OLS93,98,01 = β̂OLS98,01 - i.e. if the estimates from pooled 93-98-01 and pooled

98-01 are affected by the same bias - the cleaned 93-98-01 estimates will simply collapse

to the fixed effect estimates for 1998-2001. Exploiting the greater number of observa-

tions will allow reducing the standard errors of the estimation. However, this is only a

special case.

In general, OLS applied to the corrected data for 1993, 1998 and 2001 yield new

consistent estimates of β - even if β̂OLS93,98,01 6= β̂OLS98,01. The new estimator is indeed

unbiased:

E[β̂C
OLS93,98,01] = E[β̂OLS93,98,01]− E[β̂OLS98,01] + E[β̂FE98,01]

= βOLS93,98,01 − βOLS98,01 + βFE98,01

= βOLS93,98,01 − bias = βC
OLS93,98,01 (8)

We define

W = X93,98,01; Z = X98,01; ∆ = ∆01−98X;

ε1(3n×1) = ε93,98,01; ε2(2n×1) = ε98,01; ε3(n×1) = ∆01−98ε
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I3nσ2
1 = V (ε1) = E[ε1ε

′
1]; I2nσ

2
2 = V (ε2) = E[ε2ε

′
2]; Inσ

2
3 = V (ε3) = E[ε3ε

′
3]

and we know that the variance-covariance matrix of the cleaned estimator -under

the assumption of homoskedasticity and no-autocorrelation- is given by the following

expression:

V AR(β̂C
OLS) = (W ′W )−1[σ2

1 − 2σ2
2 + 2σ2

3] + (Z ′Z)−1[σ2
2 − 2σ2

3] + (∆′∆)−1σ2
3 (9)

The formal derivation of expression (9), as well as the formula for the most general

case characterized by heteroskedasticity and autocorrelation, is presented in Appendix.

3.2.2 Relationship between observable and unobservable characteristics

Our bias-correction procedure relies on the fundamental assumption that the rela-

tionship between observable and unobservable characteristics is homogenous in the

sub-sample of unpaired observations and in the balanced panel.

In order to attribute to unpaired observations (referred to as 1993) the same bias

computed on the balanced panel 1998-2001, we need to assume that the covariance

between the observable characteristics (Xit) and the omitted unobservable variables

(φi) is the same in the two samples. This hypothesis can be formalised as follows:

COV (X93, φ93) = COV (X98,01, φ98,01) ⇒
E[X93φ93]− E[X93]E[φ93] = E[X98,01φ98&01]− E[X98,01]E[φ98,01] (10)

Unfortunately, there is no way to test this hypothesis directly on household data,

because φ93 cannot be estimated.

To validate our proposal, we replicate the analysis and test the key hypothesis

within a pseudo-panel à la Deaton (1985). Pseudo-panels are cohort panels, in which

the structure of the fixed effect is homogenous across time by definition.

We create a cohort database (pseudo panel or synthetic panel), subdividing the

sample in groups defined by the same value of a few key observed time-invariant char-

acteristics. The cohort panel is a real panel (with unobservable characteristics stable

across time), in which φ93 = φ98,01. For the cohort panel we can write:

H0 : COV (X93, φ) = COV (X98,01, φ) (11)
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Being the fixed effect in 1998 and 2001 the same by construction 4, we can split

the test in two parts:

H0 : COV (X93, φ) = COV (X98, φ)

E[X93φ]− E[X93]E[φ] = E[X98φ]− E[X98]E[φ]

E[X93φ−X98φ]− {E[X93]− E[X98]}E[φ] = 0

E[X93φ−X98φ]− E[X93 −X98]E[φ] = 0

E[(X93 −X98)φ]− E[X93 −X98]E[φ] = 0

H0 : COV [(X93 −X98), φ] = 0 (12)

H0 : COV (X93, φ) = COV (X01, φ)

E[X93φ]− E[X93]E[φ] = E[X01φ]− E[X01]E[φ]

E[X93φ−X01φ]− {E[X93]− E[X01]}E[φ] = 0

E[X93φ−X01φ]− E[X93 −X01]E[φ] = 0

E[(X93 −X01)φ]− E[X93 −X01]E[φ] = 0

H0 : COV [(X93 −X01), φ] = 0 (13)

We test the double hypotheses through Hausman tests, comparing fixed versus

random-effect estimates separately for the balanced pseudo-panel data for 1993-1998

and 1993-2001. This double test verifies a sufficient -stronger than necessary- condition

for (11) to hold.

If we fail to reject the null hypothesis of homogenous relationship between ob-

servable and unobservable characteristics in the pseudo-panel, we may feel comfortable

assuming that the same holds for household data.

3.2.3 Pseudo Panel and the Homogeneity Hypothesis

Deaton (1985), Nijman and Verbeek (1990), Verbeek and Nijman (1992) have investi-

gated the pros and cons of the creation of cohorts from repeated cross sections. Deaton

(1985) defines a cohort as a ”group with fixed membership” across time, and proposes

the construction of an artificial panel of cohorts, called pseudo-panel. For example, all

families with a 30-year old female head, living in the rural area of Rio San Juan, in

1993, are ’grouped’ in a new unit -with each variable assuming the mean value within

the cohort. The number of observations drops.

4We will formally test the hypothesis that household effects for 1998-2001 are fixed rather than
random through a Hausman test.
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When the database is ’collapsed’ in cohorts, the model becomes:

CCt = α + βXCt + [φC + uCt] (14)

where the subscript Ct stands for cohort at time t 5. The specification is the same

as in model (1), but now φC captures the cohort rather than household fixed effect.

As most literature on pseudo panels, we define cohorts on the basis of the year

of birth of the household head. All households whose head was born in the same year

form a cohort and, as such, can be tracked over time. However, not all cohorts exist

at all times: for example, cohorts with very high initial values of age are likely to be

lost across time. Such attrition makes the panel unbalanced.

Widening the window of the date of birth to intervals of more than one year

reduces attrition. This happens because of an increase in the number of households

per cohort, which also improves estimation’s precision of cohort means. On the other

hand, for a natural trade-off , this decreases the overall size of the balanced panel.

In addition to the date of birth of the head, for the definition of cohorts we exploit

two time-invariant characteristics: the gender of the household head and the region of

residence.

In theory, considering the observed values, 2,464 combinations of the three char-

acteristics are possible (2 genders by 88 years of birth by 14 regions). In practice, only

about 1,300 of these combinations are observed in each period. Of these, only 844

(about 63 percent) are observed in all three data sets. Our balanced pseudo-panel is

hence made of three observations across time of 844 cohorts.

Two potential problems need being addressed: selection and time invariance.

Selection. Cohorts that do not have three time observations are not part of

the balanced pseudo panel. Only if this selection is random, representativeness is

preserved. Summary statistics for the pseudo panel sample are presented in Table

(2), together with those of the full cohort sample: close correspondence between the

mean value of basic characteristics suggests random attrition, so that selection does not

seem to be an issue. The standard deviations are often smaller than for household data,

because cohorts wash out part of the heterogeneity across household (the intra-cohort

variability).

Time invariance. Two dynamic events deserve particular attention: change of the

head of the family (e.g. marriage, death) and migration of households across regions.

In our sample few household change the head of the family between 1998 and 2001 and

5Deaton (1985) points out that CCt, XCt are error-ridden measures of the true cohort means.
Under the assumption of normally distributed and independent errors, he suggests a procedure of
correction of the variance-covariance matrix.
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according to Ambler (2005) migration across regions was very limited in those years,

even after the Hurricane Mitch.

Overall, the criteria chosen for the definition of the cohorts seem to ensure good

representativeness and size of the balanced panel.

We use the balanced pseudo panel to test the key hypothesis that the relationship

between observed characteristics and fixed effects is homogenous across time (we call

homogeneity hypothesis). We perform three tests. The Hausman test for 1998-2001

confirms that a fixed effect specification for the model is the most appropriate for the

pseudo panel, consistently with our findings for the household panel. The Hausman

test for 1993-1998 shows that the difference between the observable characteristics in

the two years is uncorrelated with the fixed effect, which implies that the correlation

between observable characteristics and fixed effect is the same in both years. The same

holds for 1993-2001. The results reported in Table (3) support the null hypothesis that

COV (X93, φ) = COV (X98,01, φ). Tests performed on the unbalanced pseudo panel

lead to the same conclusion. This is an indirect assessment of the validity of the key

assumption for household data, on the basis of which we now proceed applying our

bias-correction technique.

4 Results

The first way to estimate the consumption model described in equation (1) is to split

the data by year and obtain three separate estimates of the coefficients β for 1993,

1998 and 2001. We focus our comments on the variables measuring education, both for

practical reasons -which advise against discussing all coefficients-, and because of the

relevance of the question asking wether a poor household can be lifted out of poverty

by increasing its level of human capital 6.

Estimates of selected coefficients are presented in Table 4. In 1993, a household

in which all adults hold a primary school degree consumes 26 percent more than if all

adults had no degree (omitted category) 7. Secondary education (always relative to

6Deaton (1985) warns that: ”Expenditure differences between poor and rich consumers are not
likely to be replicated by making a poor man rich unless the poor and the rich are otherwise identical”.
Berhman (1990) states: ”In many cases schooling appears in substantial part to be a proxy for other
characteristics, such as ability and motivation and family background, rather than representing purely
the effects of schooling per se. Also the economic impact on human resource investments of the poor
appears to be more through price effects and less through income effects than often is claimed”.
Nonetheless, Stampini and Davis (2006) show that education represents one of the fundamental assets
that allow households exiting poverty in Nicaragua.

7The dependent variable is in log and we can interpret the coefficients as semi-elasticity.
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no degree) is associated with an increase in consumption by 60 percent, and college

and higher education with an increase by 116 percent -suggesting increasing returns to

schooling. Evidence from 1998 and 2001 broadly confirms these results.

Cross-sectional estimates are likely to be biased because of the omission of time-

invariant household unobserved and unobservable characteristics. Such bias is null only

if unobserved characteristics are orthogonal to all regressors included in the model. Our

data allow removing the bias by exploiting the balanced panel component of 1998 and

2001 data for the estimation of a panel fixed effect model.

A panel model will provide a single estimate of the β vector. It is worth noting

that this may be problematic in case year-by-year estimation led to very different

measures -for example because the structure of returns to education is changing. Panel

model estimates provide a time-average of unbiased marginal effects.

Table (5) presents fixed-effect and random-effect estimates on the balanced panel

sample. The latter do not differ substantially from those obtained with yearly OLS

(Table 4). Fixed-effect estimates are radically different. They show that primary

education has no significant impact on consumption. Secondary and higher education

have positive significant effects, though of much smaller size than suggested by OLS

estimates. A household in which all adults have a college degree consumes 15 percent

more than if all adults had no school degree at all. Most of the effect estimated by OLS

seem to be due to household time-invariant unobserved characteristics. The Hausman

test confirms that fixed-effect and random-effect estimates are systematically different.

The fixed-effect model is the most appropriate in our case.

Fixed-effect estimates are reported in Column 1 of Tables (6) & (7). Such es-

timates are unbiased. To measure the bias due to the omission of household time-

invariant unobserved characteristics, we calculate OLS estimates on the pooled sample

of the balanced panel. These estimates -reported in Column 2- resemble those of Table

(4). The bias -given by the difference between Column 2 and Column 1- is reported

in Column 3. Column 4 shows the results of the application of the bias-correction

procedure to the households of the balanced panel. It perfectly replicates Column 18.

As the tests outlined in Section 3.2.3 with reference to pseudo-panel data suggest

that the relationship between observed characteristics and fixed effects is homogenous

across time, we proceed by applying the same bias-correction technique to the pooled

sample of all observations from the three years.

Column 5 in Tables (6) & (7) reports biased estimates from OLS on the pooled

sample of all households (1993, 1998 and 2001). These are a weighted average of the

8If standard errors were not corrected according to formula 9, they would on the contrary reproduce
those from OLS estimation reported in Column 2.
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three columns in Table (4). Eventually, Column 6 presents the results of the application

of our bias-correction procedure to the same pooled sample. Corrected standard errors

are calculated according to formula (9).

As expected, the new coefficients are not identical to those of the fixed-effect

model. However, they always have the same sign and confirm all significant effects.

Remarkably, they are estimated more efficiently than fixed-effect coefficients on the

balanced panel: all standard errors are lower than in Column 1. In some cases, the

combination of a slightly larger estimate of the coefficient and a smaller standard

error make a previously non-significant variable significant. For example, access to

running water in the house is associated with a significant increase in consumption

by 4.5 percent -while the coefficient from the fixed-effect estimation on the balanced

panel was not statistically different from zero. Living in a house with unpaved floor

is associated with a significantly lower (by 7.5 percent) level of consumption -while

the effect estimated with the fixed-effect model was not significant. In addition, the

significance level of some already significant coefficients grows. For example, the effect

of higher than secondary education is now significant at the 1 percent level of confidence

-while the significance level for the fixed effect estimate was 5 percent.

Although the differences are not large, the above results confirm our intuition that

the combination of unpaired observations and longitudinal data can increase estimation

efficiency, relative to traditional panel data models.

5 Conclusions

We proposed and explored an innovative econometric procedure, which exploits non-

longitudinal data to increase efficiency in the estimation of panel data models.

We focused mainly on fixed effect models. We are aware that random effect

models are a valuable alternative, especially in contexts where the structure of the

family is subject to high time variation. For this reason, we briefly discussed the case

of random (time variant) unobservable characteristics as a theoretical alternative in

section (3.1). The reason of our focus on fixed effect models is twofold. First, they

were the most appropriate in our case, according to the tests we performed. Second,

they represent the most interesting case from the theoretical point of view, as in the

case of time variant household effects the procedure of integration of unpaired data and

balanced panels boils down to a properly designed Feasible Generalized Least Square

estimation.

We showed that, under the key assumption that the covariance between observed

characteristics and fixed effects in the unpaired observations is the same as in the
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balanced panel (homogeneity hypothesis), information from the latter can be used to

clean the bias due to the omission of time invariant unobservable characteristics. In

a second step, corrected unpaired data can be exploited to improve the precision of

panel model estimators. We are aware that the underlying assumption is not testable

in our household data. Nonetheless, we propose the use of a pseudo panel to test the

hypothesis for cohorts from the same data.

We applied the new methodology to the estimation of a consumption model using

data from three Living Standard Measurement Study surveys carried out in Nicaragua

in 1993, 1998 and 2001. The last two rounds constitute an unbalanced longitudinal

data set, while the first is a cross-section of different households. We showed that the

application of the ’fixed-effect correction’ to unpaired data and the integration with

the balanced panel lead to efficiency gains, relative to the case in which the estimation

relies only on the balanced panel.

The magnitude of the efficiency gain is likely to be a function of the size and

variability of non-longitudinal data relative to the balanced panel, although additional

research is needed to better understand the determinants of the result.
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Appendix: The variance of the OLS estimator Corrected for unobserved

heterogeneity

Defining

W = X93,98,01; Z = X98,01; ∆ = ∆01−98X;

ε1(3n×1) = ε93,98,01; ε2(2n×1) = ε98,01; ε3(n×1) = ∆01−98ε

we can write

V AR(β̂C
OLS) = E{[(W ′W )−1W ′ε1 − (Z ′Z)−1Z ′ε2 +

(∆′∆)−1∆′ε3][ε
′
1W (W ′W )−1 − ε′2Z(Z ′Z)−1 + ε3∆(∆′∆)−1]′}

= E{(W ′W )−1W ′ε1ε
′
1W (W ′W )−1 − (W ′W )−1W ′ε1ε

′
2Z(Z ′Z)−1

+(W ′W )−1W ′ε1ε
′
3∆(∆′∆)−1 − (Z ′Z)−1Z ′ε2ε

′
1W (W ′W )−1

+(Z ′Z)−1Z ′ε2ε
′
2Z(Z ′Z)−1 − (Z ′Z)−1Z ′ε2ε

′
3∆(∆′∆)−1

+(∆′∆)−1∆′ε3ε
′
1W (W ′W )−1 − (∆′∆)−1∆′ε3ε

′
2Z(Z ′Z)−1

+(∆′∆)−1∆′ε3ε
′
3∆(∆′∆)−1}

= (W ′W )−1W ′E[ε1ε
′
1]W (W ′W )−1 − (W ′W )−1W ′E[ε1ε

′
2]Z(Z ′Z)−1

+(W ′W )−1W ′E[ε1ε
′
3]∆(∆′∆)−1 − (Z ′Z)−1Z ′E[ε2ε

′
1]W (W ′W )−1

+(Z ′Z)−1Z ′E[ε2ε
′
2]Z(Z ′Z)−1 − (Z ′Z)−1Z ′E[ε2ε

′
3]∆(∆′∆)−1

+(∆′∆)−1∆′E[ε3ε
′
1]W (W ′W )−1 − (∆′∆)−1∆′E[ε3ε

′
2]Z(Z ′Z)−1

+(∆′∆)−1∆′E[ε3ε
′
3]∆(∆′∆)−1

(15)

Formula (15) states that the variance of β̂C
OLS is lower than the variance of the FE

model on the 98-01 balanced panel if the sum and subtraction of the first eight addenda

is negative. As this general case is not easily treatable, we assume homoskedasticity

and no autocorrelation.

I3nσ2
1 = V (ε1) = E[ε1ε

′
1]; I2nσ

2
2 = V (ε2) = E[ε2ε

′
2]; Inσ

2
3 = V (ε3) = E[ε3ε

′
3]

In this case, we can simplify as follows:
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V AR(β̂C
OLS) = (W ′W )−1W ′[I3nσ2

1]W (W ′W )−1 − (W ′W )−1W ′




0 0

0 0

Inσ2
2 0

0 Inσ
2
2

0 0




Z(Z ′Z)−1

+(W ′W )−1W ′




0

0

−Inσ
2
3

Inσ2
3

0




∆(∆′∆)−1

−(Z ′Z)−1Z ′
[

0 0 Inσ
2
2 0 0

0 0 0 Inσ2
2 0

]
W (W ′W )−1

+(Z ′Z)−1Z ′ [I2nσ2
2

]
Z(Z ′Z)−1 − (Z ′Z)−1Z ′

[
−Inσ

2
3

Inσ
2
3

]
∆(∆′∆)−1

+(∆′∆)−1∆′
[

0 0 −Inσ2
3 Inσ

2
3 0

]
W (W ′W )−1

−(∆′∆)−1∆′
[
−Inσ2

3 Inσ2
3

]
Z(Z ′Z)−1

+(∆′∆)−1∆′ [Inσ
2
3

]
∆(∆′∆)−1

With further simplification, we obtain formula (9):

V AR(β̂C
OLS) = (W ′W )−1W ′W (W ′W )−1σ2

1 − (W ′W )−1Z ′Z(Z ′Z)−1σ2
2

+(W ′W )−1∆′∆(∆′∆)−1σ2
3 − (Z ′Z)−1Z ′Z(W ′W )−1σ2

2

+(Z ′Z)−1Z ′Z(Z ′Z)−1σ2
2 − (Z ′Z)−1∆′∆(∆′∆)−1σ2

3

+(∆′∆)−1∆′∆(W ′W )−1σ2
3 − (∆′∆)−1∆′∆(Z ′Z)−1σ2

3

+(∆′∆)−1∆′∆(∆′∆)−1σ2
3

= (W ′W )−1σ2
1 − (W ′W )−1σ2

2

+(W ′W )−1σ2
3 − (W ′W )−1σ2

2

+(Z ′Z)−1σ2
2 − (Z ′Z)−1σ2

3

+(W ′W )−1σ2
3 − (Z ′Z)−1σ2

3

+(∆′∆)−1σ2
3

= (W ′W )−1[σ2
1 − 2σ2

2 + 2σ2
3] + (Z ′Z)−1[σ2

2 − 2σ2
3] + (∆′∆)−1σ2

3
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Number of households, by year 1993 1998 2001

Unpaired 4201 - -

Unpaired - 1240 -

Balanced Panel - 2791 2791

Unpaired - - 1399

Total 4201 4031 4190

Table 1: Structure of the database
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Households Cohorts

All 93-98-01 Panel 98-01 All 93-98-01 Panel 93-98-01

Variable Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Real per-capita Consumption* 4563 6491 4409 4930 5020 5480 5140 5182

D. Female Head 0.27 0.44 0.27 0.45 0.41 0.49 0.32 0.47

Age Head 46.07 14.42 47.48 14.33 50.31 18.58 47.53 15.43

Family Size 6.81 3.06 6.86 3.08 5.40 2.31 5.60 2.06

D. Urban 0.57 0.50 0.56 0.50 0.58 0.49 0.59 0.49

D. Water 0.59 0.49 0.60 0.49 0.53 0.44 0.55 0.42

D. Electricity 0.68 0.46 0.70 0.46 0.64 0.41 0.65 0.39

D. Dirt Floor 0.46 0.50 0.46 0.50 0.49 0.40 0.47 0.37

D. Property Reg. 0.51 0.50 0.51 0.50 0.54 0.39 0.53 0.35

D. Property Not-Reg. 0.31 0.46 0.35 0.48 0.27 0.33 0.28 0.30

D. Not-Property 0.18 0.39 0.14 0.35 0.19 0.29 0.19 0.25

% Kids aged 0-4 0.13 0.14 0.12 0.13 0.13 0.12 0.13 0.11

% Kids 5-10 0.17 0.15 0.17 0.15 0.15 0.13 0.16 0.12

% Males 11-14 0.06 0.09 0.06 0.09 0.05 0.07 0.05 0.06

% Female 11-14 0.05 0.09 0.05 0.09 0.05 0.07 0.05 0.06

% Males 15-19 0.06 0.10 0.07 0.10 0.06 0.09 0.06 0.08

% Female 15-19 0.06 0.10 0.06 0.10 0.06 0.09 0.06 0.08

% Males 20-34 0.11 0.13 0.10 0.12 0.10 0.12 0.10 0.11

% Female 20-34 0.12 0.12 0.11 0.12 0.12 0.11 0.12 0.10

% Males 35-59 0.09 0.11 0.09 0.11 0.07 0.10 0.08 0.10

% Female 35-59 0.09 0.10 0.10 0.11 0.10 0.11 0.10 0.10

% Males > 60 0.03 0.08 0.03 0.08 0.05 0.13 0.04 0.11

% Female > 60 0.03 0.09 0.03 0.09 0.07 0.16 0.05 0.12

% Adults Prim. Ed. 0.23 0.28 0.23 0.27 0.21 0.22 0.22 0.19

% Adults Sec. Ed. 0.15 0.25 0.16 0.24 0.13 0.19 0.14 0.18

% Adults Higher Ed. 0.06 0.18 0.07 0.19 0.06 0.13 0.07 0.13

% Adults Self. Emp. 0.37 0.39 0.35 0.36 0.37 0.32 0.39 0.29

% Adults Big Farmers 0.04 0.16 0.05 0.18 0.04 0.12 0.04 0.11

% Adults Non-Agr. Wage Emp. 0.42 0.41 0.42 0.39 0.39 0.34 0.41 0.32

Land Use 5.82 35.81 6.85 41.72 6.32 32.84 6.17 21.62

# Cattle 1.64 10.78 1.57 9.66 2.09 10.64 1.89 6.59

# Observations 12422 5582 (2791x2) 4010 2532 (844x3)

Notes: Time invariant variables for cohort construction: Female Headed household, Year of

birth of the head, Region, Urban Rural. D. stands for Dummy. * Cordobas at 1995 prices.

Source: Our elaboration on LSMS data.

Table 2: Summary Statistics: Samples Comparison
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chi2(.) = (b−B)′[(Vb − VB)(−1)](b−B) Prob > chi2

1998-2001 125.56(26) 0.0000

1993-2001 70.50(26) 0.0000

1993-1998 62.57(26) 0.0001

1993-1998-2001 78.14(26) 0.0000

Notes: Number of Coefficients in parenthesis.

Table 3: Hausman Test of the relationship between observable and unobservable char-

acteristics: Balanced Pseudo Panel
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OLS, all households

Variable 1993 1998 2001

Share with primary education 0.265*** 0.292*** 0.294***

(0.037) (0.032) (0.030)

Share with secondary education 0.597*** 0.566*** 0.539***

(0.045) (0.037) (0.034)

Share with higher education 1.159*** 1.104*** 0.969***

(0.062) (0.05) (0.039)

Share in non-ag. self-employment 0.133*** 0.120*** 0.082***

(0.031) (0.028) (0.027)

Share in large farming 0.499*** 0.438*** 0.307***

(0.127) (0.051) (0.040)

Share in non-ag. wage employment 0.064* 0.052* 0.067**

(0.033) (0.029) (0.028)

running water in or outside house 0.191*** 0.140*** 0.123***

(0.026) (0.021) (0.019)

has electricity 0.340*** 0.246*** 0.239***

(0.029) (0.023) (0.021)

dirtfloor -0.298*** -0.234*** -0.228***

(0.024) (0.019) (0.017)

yes/no own house, with escritura -0.007 0.052** 0.046**

(0.028) (0.022) (0.020)

yes/no own house, without escritura -0.044 -0.02 -0.041*

(0.031) (0.023) (0.021)

# manzanas land use 0.001 0.001** 0.001**

(0.001) (0.000) (0.000)

# cattle vacuno 0.005*** 0.003*** 0.005***

(0.001) (0.001) (0.001)

Constant 8.954*** 8.731*** 8.689***

(0.114) (0.097) (0.086)

Observations 4201 4031 4190

R-squared 0.53 0.58 0.61

Notes: Standard errors in parenthesis.

Table 4: OLS year by year
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Balanced Panel Households

Variable FE RE Difference

Share with primary education 0.032 0.278*** -0.246***

(0.043) (0.028) (0.033)

Share with secondary education 0.118** 0.583*** -0.465***

(0.058) (0.032) (0.048)

Share with higher education 0.150** 0.888*** -0.738***

(0.073) (0.040) (0.061)

Share in non-ag. self-employment 0.029 0.069*** -0.040*

(0.030) (0.023) (0.019)

Share in large farming 0.03 0.197*** -0.167***

(0.046) (0.036) (0.028)

Share in non-ag. wage employment -0.02 0.039 -0.059**

(0.032) (0.024) (0.021)

running water in or outside house 0.029 0.137*** -0.108***

(0.029) (0.018) (0.023)

has electricity 0.080** 0.237*** -0.157***

(0.035) (0.020) (0.029)

dirtfloor -0.032 -0.206*** 0.174***

(0.029) (0.017) (0.024)

yes/no own house, with escritura -0.001 0.049** -0.050**

(0.027) (0.020) (0.019)

yes/no own house, without escritura 0.014 0.005 0.009

(0.027) (0.020) (0.018)

# manzanas land use 0.000 0.000 0.000**

(0.000) (0.000) (0.000)

# cattle vacuno 0.003*** 0.006*** -0.002**

(0.001) (0.001) (0.001)

Constant - 8.734*** -

(0.083)

Observations 5582 5582

R-squared 0.152 0.44

Hausman Test 410.29

Prob > chi2 0.0000

Notes: Standard errors in parenthesis. Hausman Test: chi2(27) =

(b−B)′[(V b− V B)(−1)](b−B)

Table 5: FE, RE and Hausman test
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Balanced Panel Households All households

Variable FE Pooled Bias Bias-C. Pooled Bias-C.

98,01 98,01 Col. (2)-(1) 98,01 93,98,01 93,98,01

∆l(pc Cons.) l(pc Cons.) l(pc Cons.) l(pc Cons.) l(pc Cons.)

D. Female Head -0.047 -0.025 0.022 -0.047 0.011 -0.011
(0.038) (0.017) (0.038) (0.013) (0.036)

Age Head -0.004*** -0.004*** 0.000 -0.004*** -0.005*** -0.005***
(0.001) (0.001) (0.001) (0.001) (0.001)

Family Size -0.082*** -0.071*** 0.011 -0.082*** -0.072*** -0.083***
(0.005) (0.003) (0.005) (0.002) (0.005)

% Kids 0-4 -0.593*** -0.895*** -0.302 -0.593*** -1.041*** -0.739***
(0.134) (0.085) (0.134) (0.062) (0.117)

% Kids 5-10 -0.525*** -0.865*** -0.34 -0.525*** -0.893*** -0.553***
(0.128) (0.077) (0.128) (0.058) (0.115)

% Males 11-14 -0.506*** -0.819*** -0.313 -0.506*** -0.808*** -0.495***
(0.146) (0.096) (0.146) (0.072) (0.126)

% Female 11-14 -0.467*** -0.593*** -0.126 -0.467*** -0.726*** -0.601***
(0.138) (0.096) (0.138) (0.074) (0.119)

% Males 15-19 -0.538*** -0.661*** -0.123 -0.538*** -0.596*** -0.472***
(0.143) (0.088) (0.143) (0.067) (0.128)

% Female 15-19 -0.406*** -0.449*** -0.043 -0.406*** -0.510*** -0.467***
(0.135) (0.088) (0.135) (0.066) (0.117)

% Males 20-34 -0.208 -0.441*** -0.233 -0.208 -0.411*** -0.178
(0.134) (0.081) (0.134) (0.06) (0.118)

% Female 20-34 -0.302** -0.169** 0.133 -0.302** -0.209*** -0.342***
(0.13) (0.08) (0.13) (0.06) (0.115)

% Males 35-59 0.017 -0.09 -0.107 0.017 -0.078 0.029
(0.131) (0.077) (0.131) (0.057) (0.117)

% Female 35-59 -0.186 -0.022 0.164 -0.186 -0.124** -0.288***
(0.117) (0.069) (0.117) (0.052) (0.105)

% Males > 60 -0.17 -0.034 0.136 -0.17 -0.043 -0.178
(0.144) (0.083) (0.144) (0.062) (0.128)

Notes: Standard errors in parenthesis.

Table 6: Bias Corrected OLS: Panel, Pooled and bias-corrected OLS (part I)
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Balanced Panel Households All households

Variable FE Pooled Bias Bias-C. Pooled Bias-C.

98,01 98,01 Col. (2)-(1) 98,01 93,98,01 93,98,01

∆l(pc Cons.) l(pc Cons.) l(pc Cons.) l(pc Cons.) l(pc Cons.)

% Prim. Ed. 0.032 0.309*** 0.277 0.032 0.281*** 0.003
(0.043) (0.027) (0.043) (0.019) (0.038)

% Sec. Ed. 0.118** 0.590*** 0.472 0.118** 0.562*** 0.091*
(0.058) (0.03) (0.058) (0.023) (0.054)

% Higher Ed. 0.150** 0.981*** 0.831 0.150** 1.025*** 0.194***
(0.073) (0.037) (0.073) (0.029) (0.070)

% Self. Emp. 0.029 0.075*** 0.046 0.029 0.106*** 0.061***
(0.03) (0.024) (0.03) (0.017) (0.023)

% Big Farmers 0.03 0.298*** 0.268 0.03 0.326*** 0.058
(0.046) (0.038) (0.046) (0.032) (0.040)

% No Agr. Emp. -0.02 0.044* 0.064 -0.02 0.056*** -0.009
(0.032) (0.025) (0.032) (0.018) (0.025)

D. Water 0.029 0.140*** 0.111 0.029 0.157*** 0.045*
(0.029) (0.017) (0.029) (0.013) (0.026)

D. Electricity 0.080** 0.238*** 0.158 0.080** 0.274*** 0.117***
(0.035) (0.019) (0.035) (0.014) (0.033)

D. Dirt Floor -0.032 -0.218*** -0.186 -0.032 -0.260*** -0.075***
(0.029) (0.015) (0.029) (0.012) (0.026)

D. Prop. Reg. -0.001 0.060*** 0.061 -0.001 0.042*** -0.019
(0.027) (0.019) (0.027) (0.014) (0.023)

D. Prop. Not-Reg. 0.014 -0.01 -0.024 0.014 -0.028* -0.004
(0.027) (0.02) (0.027) (0.015) (0.022)

Land Use 0.000 0.000** 0.000 0.000 0.001*** 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

# Cattle 0.003*** 0.006*** 0.003 0.003*** 0.005*** 0.002**
(0.001) (0.001) (0.001) (0.000) (0.001)

Constant - 8.728*** - -0.000 8.813*** 0.085
- (0.078) - (0.078) (0.058) (0.058)

Observations 2791 5582 5582 12422 12422
Number of households 2791 2791 2791 9631 9631
R-squared 0.152 0.596 0.152 0.56 0.283

Notes: Standard errors in parenthesis.

Table 7: Bias Corrected OLS: Panel, Pooled and bias-corrected OLS (continued)
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