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Nonsense-mediated mRNA decay
(NMD) is a fundamental surveillance and
gene regulatory pathway in eukaryotic
cells.

NMD is an important regulator of neuro-
nal homeostasis by modulating pro-
cesses such as development, learning,
and memory.

Mutations in key NMD factors have been
identified in a range of
neurodevelopmental disorders, and
NMD dysregulation has been described
in several neurodegenerative diseases.
The processes of mRNA export from the nucleus and subsequent mRNA transla-
tion in the cytoplasm are of particular relevance in eukaryotic cells. In highly
polarised cells such as neurons, finely-tuned molecular regulation of these pro-
cesses serves to safeguard the spatiotemporal fidelity of gene expression. Non-
sense-mediated mRNA decay (NMD) is a cytoplasmic translation-dependent
quality control process that regulates gene expression in a wide range of scenar-
ios in the nervous system, including neurodevelopment, learning, and memory
formation. Moreover, NMD dysregulation has been implicated in a broad range
of neurodevelopmental and neurodegenerative disorders. We discuss how
NMD and related aspects of mRNA translation regulate key neuronal functions
and, in particular, we focus on evidence implicating these processes in the mo-
lecular pathogenesis of neurodegeneration. Finally, we discuss the therapeutic
potential and challenges of targeting mRNA translation and NMD across the
spectrum of largely untreatable neurological diseases.
NMDmodulation exhibits potential thera-
peutic benefits in some animal disease
models. Translating these paradigms,
however, to neurodegeneration in clinical
settings is complex because of (i) limited
understanding of the full scope of roles
of NMD factors, (ii) limited knowledge of
the disease stage at which NMD is dys-
regulated, and (iii) the difficulty of opti-
mally targeting such a broad cellular
process.

The aforementioned concepts highlight
the importance of further mechanistic
understanding of the roles of NMD in
acute and chronic adverse contexts.
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NMD in the nervous system
NMD is a eukaryotic mRNA surveillance mechanism and regulator of mRNA stability that broadly
serves to downregulate premature translation termination codon (PTC)-containing mRNAs [1,2].
It can degrade transcripts that contain genetic nonsense mutations that occur in ~30% of all
human diseases, and/or transcripts resulting from RNA processing errors. Ultimately, NMD can
mitigate the harmful effects of such phenomena by limiting the synthesis of the resulting and
potentially deleterious C-terminally truncated proteins [2,3]. Beyond restricting the level of
aberrant transcripts, NMD has a well-established role in fine-tuning the expression of phys-
iologically occurring endogenous mRNAs, some of which encode full-length proteins [4].
Altogether, NMD modulates crucial cellular processes, including cellular response to stress.
In the context of the nervous system, NMD is involved in neurodevelopment, including
neurogenesis and cellular differentiation [5,6].

Owing to their polarised structure, neurons rely heavily on post-transcriptional control of gene
expression, localising mRNAs to specific sub-cytoplasmic areas, and triggering their stimulus-
dependent translation in a tightly regulated manner [7]. Such mRNA regulation is primarily
mediated by RNA-binding proteins (RBPs) and their respective protein and RNA interactomes
[7]. It follows that localised mRNA translation in neurons can trigger NMD in a time- and
location-dependent manner, thereby modulating key neuronal processes, particularly those
that occur remotely from the cell body [8,9]. Indeed, NMD has galvanised considerable atten-
tion in neuroscience not only because it regulates a variety of processes, from axonal guidance
during neurodevelopment through to synaptic potentiation [5,8,10], but also because NMD
dysregulation has been observed in several neurodevelopmental and neurodegenerative dis-
eases [11–13].
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In this review we provide an overview of NMD as an mRNA regulatory mechanism before
discussing its role in regulating key neuronal functions and its involvement in neurodegeneration,
with an emphasis on amyotrophic lateral sclerosis (ALS). We discuss findings from human stud-
ies, as well as from a range of experimental model organisms. Finally, we highlight the prospects
for targeting NMD as a potential therapeutic strategy and discuss outstanding questions in the
field.

Factors underlying NMD
Defining true NMD targets has proved to be challenging owing to the multistep nature of the
process that exhibits a degree of redundancy, while involving several factors that play roles
in broader cellular processes, including other types of mRNA degradation [14–17]. Moreover,
the magnitude of NMD differs substantially between transcripts, depending on their character-
istics, the composition of their messenger ribonucleoprotein (mRNP) complex [14], and the cell/tis-
sue-specific concentration of NMD factors and enhancers. This gives the concept of localised
NMD responses such as endoplasmic reticulum (ER) NMD considerable traction [18]. Despite
the aforementioned challenges, some features are considered to be prominent predictors of
NMD, as described in Box 1.

Key factors involved in NMD include up-frameshift proteins 1, 2, and 3 (UPF1, UPF2, and UPF3),
– evolutionarily conserved proteins that comprise the core NMD machinery in all eukaryotes [19].
Auxiliary factors involved in the process in higher eukaryotic organisms mainly modulate the func-
tions of core NMD factors by recruiting components of the degradation machinery and/or trigger-
ing mRNA degradation [20,21]. These were termed SMG (suppressor with morphogenetic effect
on genitalia) proteins owing to the phenotypes observed in a mutagenesis screen in
Caenorhabditis elegans where most of these factors were identified (see Table 1). In human
cells, UPF3 exists as paralogue proteins UPF3A and UPF3B [22]. UPF3B exhibits a stimulating
effect on NMD, whereas the action of UPF3A is complex. UPF3A was initially reported to exhibit
Box 1. NMD target determination

Alternative splicing-coupled NMD is common in mammalian cells where it is typically caused by inclusion of an exon that
contains a PTC (poison exon) or by exclusion of an exonwhich gives rise to a PTC in the new reading frame (essential exon)
[88]. Of human multi-exon genes, ~95% undergo alternative splicing and up to ~35% of mammalian alternative splicing
events are predicted to contain a PTC [89,90]. However, not every PTC triggers NMD to the same extent, and a transcript
cannot be considered to be a bona fideNMD target merely by the presence of a PTC [90]. NMD inhibition does not seem to
affect the expression of weakly expressed and poorly conserved alternative splicing PTC-containing isoforms [90]. Instead,
NMD-specific regulation primarily targets a small proportion of PTC-carrying alternative splicing events, often in relatively
conserved genes and those that encode RNA-binding proteins and splicing factors [88,91,92]. These genes often direct
splicing to NMD-targeting isoforms when the protein level is high, allowing the splicing factor to modulate its splicing pat-
terns and regulate the level of its own protein production [88]. Alternative splicing-coupled NMD is also established as a
regulatory mechanism for cell type- and tissue-specific gene expression in the absence of such clear autoregulatory feed-
back loops. In these cases, splicing modulation can change the splicing pattern of a gene in favour of either NMD or pro-
ductive translation. Importantly, many of these regulatory events have been shown to occur specifically in the nervous
system [25,26,33,93].

The development of NMD reporters, based on genes that possess NMD-inducing features, was crucial to advance our
understanding of the characteristics of transcripts targeted by NMD and to provide key mechanistic insights into this pro-
cess in a range of cell- and tissue-specific NMD responses across diverse models [94–96]. A PTC positioned at least 50 nt
upstream of an exon–exon junction is broadly considered to be a predictor of efficient NMD in mammalian cells [87]. Ad-
ditional NMD-inducing cis features include upstream open reading frames (uORFs), retained introns, and long 3'-untrans-
lated regions (UTRs) [97–100]. Interestingly, a combination of long-read and short-read sequencing reported no difference
in 3′-UTR mean length between NMD-sensitive and insensitive transcripts, disputing long 3′-UTRs as a characteristic of
NMD-targeted transcripts [101]. The presence of an intron in the 3′-UTR was found to be a more accurate predictor of ef-
ficient NMD [101]. Altogether, long 3′-UTRs remain an NMD-inducing characteristic in lower eukaryotes, whereas NMD is
primarily determined by splicing-dependent signals in mammalian systems [87].
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very low NMD activity, but was later characterised as an NMD inhibitor that antagonises UPF3B
function [22]. Further complicating the picture, UPF3A has more recently been reported to be an
NMD enhancer that is somewhat functionally redundant with UPF3B, and becomes upregulated
when UPF3B expression decreases [23,24]. Table 1 provides a list of proteins involved in NMD in
mammalian cells and their respective functions.

NMD was typically considered to occur during the pioneer round of translation shortly after or
during mRNA entry into the cytoplasm. However, mRNAs are often transported to particular
sub-cytoplasmic locations in a translationally repressed state, and the PTC is only 'recognised'
and the mRNA targeted for degradation when translation is triggered by a specific stimulus,
thus enabling NMD to act in a spatiotemporally regulated manner [10,18]. The extent of mRNA
degradation by NMD is context-dependent, and several models have been formulated to
describe the mechanism of NMD, of which the exon junction complex (EJC) model and the
faux 3′-untranslated region (UTR) model are the most prominent (Figure 1).

Roles of NMD in the nervous system
NMD in neurodevelopment
Temporal changes in NMD activity can have differential effects on neuronal development [5,11].
In neural stem cells, a key pro-differentiation factor, SMAD7, which negatively regulates prolif-
erative TGF-β signalling, is continually degraded by NMD, thus maintaining the stem cell state
[5]. Analyses primarily in mouse neural cell lines and mouse brain, as well as explorations in
human neuronal lines and Xenopus laevis, indicate that a neuronal-specific miRNA, miR-128,
is dramatically upregulated during development and binds to and suppresses UPF1, UPF3B,
and an EJC factor, MLN1. As a consequence of NMD suppression, SMAD7 is upregulated,
which in turn inhibits TGF-β signalling and ultimately triggers cellular differentiation. Additional
miRNAs involved in NMD suppression in neurons that were identified in the study include
Table 1. List of proteins involved in the NMD process in mammalian cells (i.e., NMD factors) and their respective
functions

Protein Function Refs

UPF1 ATP-dependent helicase
Central NMD factor

[82]

UPF2 Regulates UPF1 activity
Bridges UPF1 and UPF3

[83]

UPF3A Initially identified as an NMD suppressor [22]

Its recently discovered NMD-activating function can compensate for UPF3B function [23,24]

UPF3B Part of the EJC complex
Brings the EJC, UPF2, and UPF1 together

[19]

SMG1 Kinase that phosphorylates and activates UPF1 [84]

SMG5 Forms a heterodimer with SMG7
Deadenylation, decapping, and exonucleolytic degradation of NMD targets
Phosphatase that dephosphorylates UPF1

[20]

SMG6 Endonucleolytic cleavage of mRNA [21]

SMG7 Forms a heterodimer with SMG5
Deadenylation, decapping, and exonucleolytic degradation of NMD targets

[20]

SMG8 Subunit of the SMG1 complex [85]

Suppressor of SMG1 kinase activity [86]

SMG9 Subunit of the SMG1 complex [85]

Suppressor of SMG1 kinase activity [86]
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Figure 1. Models of nonsense-mediated mRNA decay (NMD). (A) The exon junction complex (EJC) model is a
prevalent conceptualisation of mammalian NMD. Eukaryotic release factors 1 and 3 (eRF1 and eRF3) associate with
the ribosome once it terminates translation at a stop codon, followed by UPF1 and SMG1 association, which together
form the SURF (SMG1–UPF1–eRF1–eRF3) complex. A ribosome terminating at a premature translation termination
codon (PTC) undergoes NMD if there is at least one EJC downstream, in which case UPF2 serves as a connection
between UPF1 bound to the terminating ribosome and UPF3 bound to the EJC. Once this interaction is established,
SMG1 phosphorylates and activates UPF1, triggering mRNA degradation. Introns are rare in the 3′-untranslated region
(3′-UTR), therefore, when a ribosome terminates at a normal stop codon and no EJCs are located downstream,
protein synthesis can be completed. (B) The faux 3′UTR model. Upon termination at a normal stop codon, interaction
between eRFs and PABPCs stimulates release of the newly synthesised protein as well as of ribosomes, enabling
ribosome recycling for another round of translation and stabilising the translation circuit. When termination occurs at a
PTC, no interaction between eRFs and PABPCs is achieved. Ribosome stalled at a PTC leads to NMD factors binding
the terminating ribosome instead, causing mRNA degradation. Ribosomes are depicted in the figure in orange, and
nascent peptides in purple. Abbreviations: eIF, eukaryotic initiation factor; eIF4A3, MAGO, Y14, components of the
exon junction complex; m7G, 7-methylguanosine; PABPC, cytoplasmic poly(A)-binding protein; START, start codon;
STOP, termination codon; UPF, up-frameshift protein. Panels inspired by Figure 1 in [87].
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miR-9 and miR-124. UPF3B and UPF1 are not only modulated by miR-128 and miR-9 but also
negatively regulate these miRNAs [5]. Such bidirectional control suggests that NMD factors
and these miRNAs form a negative feedback loop that directs the fate of a neural stem cell
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into either stemness or a terminally differentiated state, depending on the input signal
(Figure 2A).

NMD has recently been shown to regulate neuronal survival and homeostasis in a study on
mouse brain development that provided in vivo genetic evidence for the physiological significance
of NMD coupled to alternative splicing [25]. Notably, neuron-specific inclusion of the evolutionarily
conserved Bak1 microexon 5 was reported to trigger NMD of Bak1 transcripts, thus limiting
BAK1 protein production. Given that BAK1 represents a major checkpoint for apoptosis, its sup-
pression by NMD provides a mechanism for neurons to reduce apoptosis, which is essential for
organismal survival. Moreover, by analysing Bak1/BAK1 splicing across human tissues and be-
tween mouse and human neuronal differentiation, the study found that this developmental regu-
lation of BAK1 is indeed conserved from mouse to human tissues [25]. Addressing the impact of
acute and chronic adverse contexts on this regulatory mechanism remains an important goal for
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Figure 2. Overview of roles of nonsense-mediated mRNA decay (NMD) in the nervous system. (A) NMD regulates neural cell fate. (Left) In neuronal stem cells,
NMD factors are highly expressed, and NMD efficiently downregulates its targets, including cell proliferation inhibitors, differentiation activators, SMAD inhibitors, andmiR-128,
all of whichmaintain the proliferative cell state. (Right) In response to neurogenic stimuli, miR-128 is upregulated, reducing the expression of up-frameshift protein 1 (UPF1) and
reducing NMD efficiency, thus causing NMD targets that control stem cell state to be upregulated, and directing the cell to commit to a neural lineage. The NMDmachinery is
depicted in blue. Inspired by the graphical abstract in [5]. (B) NMD regulates axon guidance. Axon positioning relies on the interaction between surface membrane receptors,
(roundabout proteins, ROBOs) and proteins of the extracellular matrix. In commissural axons,Robo3.2 is in a translationally repressed state before crossing the ventral midline
(left). Once the midline is reached, Robo3.2 (middle) is translated, thus enabling other ROBOs to interact with the extracellular matrix, and repelling the axon from this area.
When the axon crosses the midline, Robo3.2 transcript is degraded by NMD (right), ensuring that ROBO3.2 protein is only produced in a tight temporal and spatial
manner. Inspired by the model depicted in Figure S7 of [8]. (C) NMD modulates synaptic plasticity. Arc expression is regulated at the translational and NMD levels in
response to neuronal stimulation. Neuronal stimulus causes rapid Arc mRNA synthesis, translocation to the dendrites and quick burst of translation. Once the stimulation
ends, the mRNA is rapidly degraded by NMD, preventing further protein synthesis.
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future studies. NMD has also been shown to be involved in mouse axon formation via temporal
regulation of TRIM46 [26]. An intriguing concurrent but independent regulation of two alternative
exons was revealed, where inclusion of exon 8 leads to NMD of Trim46 and exclusion of exon 10
leads to an unstable TRIM46 protein isoform. During axonogenesis, transcriptional activation and
enhanced exon 8 exclusion/exon 10 inclusion in turn increase stable TRIM46 protein production.
Together, these regulatory mechanisms coordinate the spatiotemporal expression of TRIM46,
which is among the earliest markers of axon specification [26].

Depletion of UPF3B at a late neural stem cell stage reduces the ability of these cells to differenti-
ate, which suggests that NMD activity promotes the later stages of neuronal differentiation [11].
Furthermore, mouse hippocampal neurons deficient in UPF3B exhibit reduced axonal growth
and increased arborisation of both axons and dendrites [27]. Cumulatively, these studies suggest
temporal regulation of NMD whereby it is suppressed at early stages of differentiation but be-
comes reactivated once precursors commit to a neuronal lineage, after which NMD persists as
an important regulator of neuron-specific homeostatic functions.

NMD in neuronal homeostasis and axon guidance
NMD also plays a role in directing axon growth by guiding it in the required direction towards
another cell/tissue (e.g., neuron or muscle) with which it will establish a synapse [28,29]
(Figure 2B). Axon guidance depends in part on the interaction between neuronal surface mem-
brane receptors (roundabout proteins, ROBOs) and proteins of the extracellular matrix (SLIT
proteins) [30]. The expression of ROBO proteins 1, 2, and 3 is restricted to specific neuronal
subtypes in a temporally regulated manner, and the process of axon guidance is particularly
well studied in commissural axons that cross the ventral midline [30]. ROBO1 and ROBO2 per-
form key roles in commissural axon growth because they interact with SLITs located in the mid-
line area where this interaction is regulated by ROBO3. Robo3 expresses two transcript
isoforms in mouse commissural neurons – Robo3.1 and Robo3.2 – giving rise to two protein
isoforms with distinct C-terminal domains [8,9]. Robo3.1 is the only isoform translated as the
axons approach the midline area, while Robo3.2 transcript is still in its translationally repressed
state. Once the axon passes the midline, ROBO3.2 protein is synthesised, increasing the ability
of ROBO1 and ROBO2 to bind to SLITs, which in turn repels the axon from the midline area,
allowing appropriate axon positioning [9].

The Robo3.2 transcript in mice contains a retained intron which introduces an NMD-inducing
PTC into the new reading frame [8], but the transcript can also lead to the production of a
ROBO3.2 protein isoform with an alternative C-terminal end. Because Robo3.2 is translationally
repressed until it reaches the midline, it escapes NMD. Once the axon has crossed the midline,
local cues trigger rapid translation of Robo3.2mRNA but only brief upregulation of the protein be-
cause the transcript is also degraded by NMD. This allows tight temporal and spatial control of the
expression of the protein. Moreover, neurons can exhibit varied magnitudes of NMD, which could
modulate ROBO3.2 protein expression differently in different types of neurons, resulting in varied
axonal trajectories in the brain and spinal cord [8].

NMD and synaptic function
NMD modulates synaptic plasticity, a process that enables fine-tuning of synaptic strength in re-
sponse to patterns of neural activity, and that is considered to be crucial for learning and memory
(Figure 2C) [31,32]. A key transcript that plays a role in synaptic plasticity, Arc mRNA, has also
been identified as an NMD target [10]. Upon activation, the Arc gene exhibits fast transcriptional
activation and mRNA localisation to the dendrites, followed by its translation. Upon protein syn-
thesis and the end of neuronal stimulation, the transcript that harbours two introns in its 3′-UTR
884 Trends in Neurosciences, October 2023, Vol. 46, No. 10
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undergoes degradation by NMD [10]. Hence, the protein is synthesised only during neuronal ac-
tivation, which in turn enhances synaptic strength.

NMD regulates the expression of the most abundant synaptic protein PSD-95, and thereby is an
important determinant in synaptogenesis. Specifically, in early mouse brain PTBP1 and PTBP2
repress Psd-95 exon 18 splicing, generating an isoform with a PTC in exon 19 that is targeted
by NMD [33]. During embryonic development, the sequential downregulation of PTBP1 and
PTBP2 permits splicing of exon 18 and alleviates post-transcriptional NMD-mediated repression
of Psd95, allowing its expression late in neuronal maturation. Importantly, this study also showed
that the PTC in exon 19 is conserved across mammalian species including humans. Hence, it is
conceivable that similar regulation of this alternative splicing event is also present in humans [33].
It would be of considerable interest to examine in future studies how acute and chronic adverse
contexts could impact on the fidelity of this process.

NMD and neurological disorders
Mutations of key factors involved in NMD have been associated with a range of
neurodevelopmental disorders. In this context, copy-number variants of most NMD and EJC
genes were found to contribute to disease pathology [34]. In addition, NMD is implicated in a
range of neurological diseases which have a profound impact on patients, carers, and society.
These range from intellectual disabilities that impair daily functions to progressive neurodegener-
ative disorders such as ALS [12,35–37]. NMD involvement in the pathogenesis of
neurodevelopmental disorders has been reviewed elsewhere [38,39], and some of the key stud-
ies are summarised in Box 2. In the following we focus primarily on neurodegenerative disorders,
where several NMD targets have been implicated in ALS, and frontotemporal dementia (FTD)
(depicted in Figure 3, Key figure) [12,37].
Box 2. NMD and neurodevelopmental disorders

Copy-number variants of UPF2 have been linked to autism spectrum disorder and other forms of intellectual disability (ID),
and other protein-coding variants were identified in disorders linked to speech and language deficiencies [34]. In mice, se-
lective and conditional removal of Upf2 in the forebrain results in memory, communication, and social deficits [36]. In this
model, UPF2 loss resulted in elevated neuroinflammation, a phenotype alleviated by anti-inflammatory agents that also im-
proved the behavioural deficiencies [36].

Dysfunction of UPF3B can lead to ID, autism, attention deficit hyperactivity disorder (ADHD), and schizophrenia
[11,102,103]. Disease-causing mutations typically reside within the middle region of UPF3B that is important for its role
in mRNA translation termination and ribosome recycling, as evidenced by in vitro studies [104,105], as well as for UPF3B
interaction with UPF2 [106]. Other mutations were identified in the region that encodes an amino acid residue, Y160D, that
is crucial for stabilising the UPF2–UPF3B interaction. These mutations lead to a greatly reduced affinity of UPF3B for UPF2
and reduced NMD efficiency. UPF3A, which is greatly upregulated in response to UPF3B downregulation and by the
Y160D mutation, binds to UPF2 instead, but seemingly cannot fully compensate for UPF3B function [106]. Some of the
mutations in UPF3B identified in X-linked intellectual disability disorders (XLID) are found within the eRF3 interacting do-
main, whereas others introduce a PTC [103], resulting in reduced transcript levels.

Upf3b null mice exhibit deficiencies in fear-conditioned learning and prepulse inhibition [107], the latter being often ob-
served in schizophrenia and related disorders. In Upf3b null mice, cortical pyramidal neurons also manifest reduced den-
dritic spine maturation, and neural stem cells exhibit impaired differentiation with delayed electrical maturation. Many
dysregulated transcripts within the frontal cortex of Upf3b null mice were identified as direct NMD targets with established
roles in neural differentiation and disease [107]. Transcriptome-wide effects of UPF3B deficiency were further explored
using lymphoblastoid cell lines derived from people with ID and loss of function mutations in UPF3B [108]. Affected upreg-
ulated genes include Rho GTPase activating protein 24 (ARHGAP24) that is involved in axon and dendrite growth and
branching, as well as ROBO1 that is involved in axon guidance. Interestingly, UPF3A protein was shown to be stabilised
in such patients, and this correlated with decreased symptoms and a reduced extent of transcriptome deregulation [108].
Cumulatively, this suggests that UPF3Amight partly compensate for andmodulate UPF3B function in a dose- (and indeed
context-) dependent manner.
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Figure 3. Alzheimer's disease (AD) is highlighted in blue. Parkinson's disease (PD) and Kufor Rakeb (KR) syndrome, a rare
form of Parkinsonism, are highlighted in green. The details of how NMD is implicated in the pathogenesis of these diseases
are illustrated and highlighted in text. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are highlighted
in purple. FTD/ALS mutations often reside in genes encoding splicing factors and affect their function and localisation, thus
causing splicing defects that give rise to aberrant transcripts. This results in RNA and protein sequestration/phase separation,
possibly stimulated by factors such as stress and ageing, ultimately leading to disease manifestation. For several mutations,
defects in NMD and translation have also been observed at both a localised and global level. In addition, the aberrant
transcripts sequester translation factors, which may impair translation elsewhere. This has been observed in ALS, either as
a result of impaired translation of faulty transcripts and/or in response to unfolded protein and integrated stress responses.
Abbreviations: AS, alternative splicing; RBP, RNA-binding protein.
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NMD and neurodegeneration
FTD and ALS
FTD is a progressive neurodegenerative disorder characterised by changes in personality, behav-
iour, and language function owing to loss of neurons in the frontal and temporal lobes [40]. ALS in
turn is a progressive neurodegenerative disease where loss of upper and lower motor neurons
leads to paralysis, swallowing and speaking difficulties, and eventually respiratory failure
[41–44]. Relative to ALS/FTD studies, examination of NMD in other forms of neurodegeneration,
including Alzheimer's disease and Parkinson's disease, is still in its infancy, and is primarily limited
to nonsense mutations and aberrant mRNA processing observed in some forms of the disease,
as highlighted in Figure 3. For this reason we focus here on ALS/FTD.

Both familial and sporadic forms of ALS have been linked to dysregulation of RNA metabolism in
motor neurons and nuclear-to-cytoplasmicmislocalisation of specific RBPs, either with or without
their aggregation [45,46]. ALS is an age-related disease that might be triggered – at least in part –
by cellular ageing in already vulnerable cells [47]. ALS motor neurons may already have a
886 Trends in Neurosciences, October 2023, Vol. 46, No. 10
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predisposition for aberrant RNA and protein phase separation but exist in a state of compensated
dysfunction. Stress and/or cellular ageing could tip the cells into decompensated dysfunction
which may result in clinical manifestation and indeed progression [48,49]. If the cells are already
prone to deregulated phase-separation dynamics, a stress response could promote further path-
ological aggregation, which in turn might hinder normal mRNA transport, localisation, and trans-
lation in axons and dendrites [48,50,51]. The cells may ultimately become unable to undergo
appropriate activation upon extrinsic stimuli. Global repression of translation and in particular
NMD may cause the accumulation of aberrant transcripts, natural NMD targets, and faulty tran-
scripts that arise due to RBP mislocalisation which could also contribute to aberrant phase tran-
sitions. Alternatively, NMD might become hyperactivated in a compensatory manner to combat
the accumulation of faulty transcripts. Such homeostatic dysregulation could progress over
time and ultimately induce toxicity and initiate cell death, highlighting the importance of exploring
the link between NMD and disease further [12].

Familial FTD, ALS, and ALS with FTD have variable genetic backgrounds, but a hexanucleotide
repeat expansion (HRE) of a GGGGCC (G4C2) sequence in the first intron of the C9orf72 gene
is the most common mutation underlying these diseases [52–54]. Healthy individuals typically
contain up to 30 repeats within the gene, whereas individuals who develop these diseases exhibit
between 700 and 1600 repeats [55]. mRNA translation and NMD are heavily implicated in these
types of neurodegeneration, as detailed below, and the best-characteristic examples are
schematised in Figure 3. At least in part, C9orf72 pathogenesis occurs as a consequence of a
non-canonical form of mRNA translation, termed repeat-associated non-AUG (RAN) translation,
that leads to the production of dipeptide repeat proteins (DPR proteins) [56,57]. These proteins
can interfere with nucleocytoplasmic mRNA and protein trafficking, leading to pathological pro-
tein aggregation and further exacerbating defects in transcript localisation and metabolism
[12,58]. Indeed, global mislocalisation of proteins towards a more cytoplasmic proteome was
observed in HEK cells expressing a C9orf72 pathogenic repeat expansion [12]. The key proteins
identified are involved in mRNA processing and translation, in particular eRF1 (a release factor
and regulator of translation termination, peptide release, and ribosome recycling) that is also im-
portant for triggering NMD [59]. In cells with a pathogenic number of repeats, this protein appears
to reside on the cytoplasmic side of nuclear membrane invaginations. An increased presence of
UPF1 was also observed in these structures [12]. It is possible that UPF1 is pooled to HRE tran-
scripts to eliminate them by NMD. Alternatively, UPF1might exhibit NMD-independent roles in re-
lation to these transcripts. Nonetheless, if UPF1 and eRF1 are possibly being sequestered within
cytoplasmic invaginations of the nuclear membrane, this raises the question of whether their func-
tion is impaired elsewhere in the cell. One might also speculate that NMD integrity could become
impaired by UPF1 sequestration to stress granules, as observed in some cases of repetitive ex-
pansions. However, in discord with this possibility, it appears that stress granule formation and
NMD inhibition are independent consequences of DPRs and that the former does not determine
the latter [60]. Instead, it seems that the NMD deficit observed in the C9orf72 post-mortem brain
by assessing a panel of putative NMD targets is more likely caused by DPR-mediated transla-
tional repression. Moreover, UPF1 exhibited protective effects on the survival of primary cortical
neurons treated with PR20 (ProArg20) DPR proteins, but its NMD-deficient mutants did not, sug-
gesting that any UPF1 therapeutic benefit could be driven by its function in NMD. By contrast, by
assessing a panel of five endogenous NMD targets, NMD seemed not to be affected in an in-
duced pluripotent stem cell (iPSC)-derived neuronal model of C9orf72 mutation [61], although it
remains to be determined whether these findingswould be generalised in systematic assessment
of NMD status by looking at more targets across the genome. In a Drosophila model of this mu-
tation, UPF1 overexpression reduced neurotoxicity, whereas its knockdown was deleterious,
suggesting that promoting UPF1 function could have therapeutic benefits, which the authors of
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this study argue are driven by UPF1 modulation of DPR levels rather than via effects on the tran-
scripts themselves [61]. Altogether, even though the link between UPF1 and C9orf72 -related
ALS remains incompletely resolved, potential benefits observed in the aforementioned studies
argue in favour of assessing this connection further in the hope of designing more informed ther-
apeutic strategies. To reconcile seemingly divergent findings with regard to the role of NMD in
C9orf72 -mediated neurodegeneration with fidelity and precision, future research should con-
sider that its role may be (i) disease stage-specific, (ii) developmental stage-specific, (iii)
species-specific, and (iv) determined, at least in part, by heterologous cell–cell (e.g., neuron–
glia) interactions. Beyond these studies, it will be crucial to determine the non-canonical roles of
UPF1 in physiological and acute/chronic adverse contexts. Specifically,Upf1 knockout is embry-
onic lethal [62], and its knockdown/overexpression will fundamentally alter cellular homeostasis.
Therefore, although the aforementioned interventions may be of therapeutic benefit in some
models of C9orf72 -mediated neurodegeneration, the broader canonical and non-canonical ac-
tions of UPF1 on cellular physiology are of crucial importance to consider before determining its
candidacy as a viable therapeutic target.

Nonsense mutations in the progranulin (GRN) gene can cause FTD. Knock-in mice for the most
common Grnmutation, which introduces a PTC at position 493, exhibit reduced GrnmRNA levels,
lack progranulin, and have several neurological defects [63]. These mice match Grn knockout
mice, and exhibit TDP-43 accumulation in the cytoplasm and reduced synaptic activity [64]. The
mutation-containing Grn mRNA isoform is an NMD target and is stabilised upon NMD inhibition.
Furthermore, the truncated protein derived from the mutant transcript isoform is functional [63]; how-
ever, NMD inhibition as a potential therapeutic strategy remains to be explored in this disease context.

TDP-43 is an RBP involved in mRNA transport and localisation as well as in localised mRNA
translation control, primarily of G-quadruplex-containing mRNAs [65]. Mutations in the TARDBP
gene (which encodes TDP-43) have been demonstrated to cause ALS [66]. Moreover, ubiquitina-
tion, abnormal phosphorylation, cleavage, and aggregation of wild-type TDP-43 in the cytoplasm
is the key hallmark of >95% of all ALS cases, with the exceptions of FUS and SOD1 familial ALS.
Notably, TDP-43 proteinopathy is also a pathological hallmark of ~45% of all FTD cases [41]. The
TARDBP gene (which encodes TDP-43 protein) contains three alternative polyadenylation signals
(PASs) as well as three alternative introns within the last exon, making it another RBP that can
autoregulate its expression via alternative splicing-coupled NMD [67]. The protein switches to dis-
tal alternative PASs that trigger NMD once the canonical protein-coding transcript and protein
levels are satisfactory. Upon reduction in transcript and protein level as a result of NMD activation,
the proximal PAS is selected, and this increases the level of functional protein [67]. In healthy cells,
TARDBPmRNA and TDP-43 protein levels in nuclear and cytoplasmic compartments depend on
the balance between protein synthesis and NMD. However, TARDBPmutations identified in ALS
switch this balance towards synthesising the protein that accumulates in the cytoplasm, poten-
tially because of splicing and/or NMD defects [67]. Whether this balance could feasibly be re-
stored via NMD manipulation is of particular interest, considering how widespread TDP-43
pathology is in ALS and beyond.

FUS is a DNA-binding protein and RBP, and FUS mutations have been identified in a subset of
familial ALS cases [68,69]. Importantly, in addition to the relevance of FUS pathology in ALS,
FUS pathology also characterises ~10% of all FTD cases [42]. This protein is predominantly nu-
clear; however, it also localises to neuronal dendrites, axon terminals, and neuromuscular junc-
tions [70]. FUS can form ribonucleoprotein granules and plays key roles in splicing, mRNA
processing, and localised translation [37]. In normal physiology, FUS regulates localised transla-
tion in axons [71,72] and modulates the activity and expression of ion channels [73], transporters,
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Outstanding questions
Components of the NMD machinery
subserve different cellular functions,
and understanding the relationship be-
tween these functions and the 'molec-
ular logic' of their regulation is a
pertinent question to address. This
will advance our understanding of
how NMD factors become
deregulated in neurodegeneration and
provide insights into therapeutically
tractable targets. What is the full func-
tional scope of NMD components?

Functional redundancy appears to be
among the design principles of NMD
activity. Layers of redundancy may
allow a shift in the threshold for NMD
activation in different states such as
acute versus chronic adverse contexts
and/or in a stimulus-specific fashion.
Does NMD exhibit multi-level functional
thresholding?

NMD appears to regulate functionally
coherent subsets ('regulons') of RNAs
in a context-dependent manner. This
role of NMD and the impact on the
RBPs bound to target RNAs requires
further investigation. Could NMD
serve to release RBPs bound to cyto-
plasmic transcripts, which could then
relocalise to the nucleus to facilitate
splicing? Might NMD have a further
role in fine-tuning biomolecular
ribonuclear condensates? Could
these processes be perturbed in neu-
rodegeneration?

A low-resolution view of NMD may
assume that the process is spatially
homogeneous in the cell. However,
emerging evidence implicates hetero-
geneity in the subcellular localisation
of NMD activity. How does a departure
from NMD spatiotemporal homeosta-
sis contribute to acute injury and
neurodegeneration? Relatedly, is NMD
differentially activated in different stages
of a disease, between diseases, and in
various cell types?

What are the potential side effects
of NMD manipulation at the cell,
tissue, organ, and organism levels,
and how could these inform thera-
peutic candidacy?
and other proteins required for synaptic function [74]. Mutant FUS is mislocalised to the cyto-
plasm in motor neurons where it forms stable aggregates that are thought to contribute to path-
ogenesis [73]. It has also been shown that wild-type FUS can be mislocalised from the nucleus in
sporadic ALS cases, but FUS inclusions do not form [46]. Mutant FUS accumulates within synap-
tic ends, triggering a local integrated stress response (ISR) which suppresses local translation and
impairs synaptic transmission, thus reducing neuronal survival [72] (Figure 3). NMD factors reside
within FUS inclusions [37]. In addition, UPF1, the phosphorylated active form of UPF1 (p-UPF1),
UPF3B, and XRN1 are all upregulated in FUSmutant cells. By contrast, UPF3A was found to be
downregulated. Even though the role of UPF3A in NMD is incompletely resolved, the cumulative
data implicate hyperactivation of NMD in FUSmutant cells. In addition, UPF1 in FUSmutant cells
coprecipitates more with mutant FUS and considerably less with its own mRNA and UPF3B
mRNA, suggesting a potential NMD autoregulatory impairment [37]. NMD autoregulation is typ-
ically achieved through NMD factors binding to their own transcripts, thus modulating their levels
in response to the NMD requirement [75,76], and mutant FUS could impair this process. More-
over, the levels of endogenous NMD targets are decreased in FUSmutant cells, further suggest-
ing that NMD is activated to a higher degree [37]. How much the observed NMD impairment
contributes to disease remains a salient issue to address.

UPF1, a key NMD regulator, was identified in a yeast genetic screen as an attenuator of TDP-43-
and FUS-mediated cell toxicity [77]. UPF1 overexpression was also found to promote cell survival
in primary rodent cortical neuron models of ALS [78]. Notably, overexpression of either wild-type
or mutant TDP-43 or FUS significantly reduced neuronal survival of the mutant cells, whereas
human UPF1 (hUPF1) overexpression led to a significant increase in survival. Overexpression of
UPF1, however, did not rescue survival phenotypes in either theSOD1 or Huntingtin (HTT) mutant
cells used in the study [78]. This is possibly due to divergent disease mechanisms involving differ-
ent pathways that are independent of UPF1. UPF1 seems to exert its protective effect on TDP-43
and FUS at least in part via NMD because NMD suppression via a small-molecule inhibitor
followed by UPF1 overexpression had an attenuated, albeit still positive, effect on cell survival [78].
In addition, human UPF2 appeared to have beneficial effects on cellular survival in these disease
models [78]. Overexpression of MOV10, which (much like UPF1) is a helicase of superfamily 1
(SF1) and has a recently described role in NMD, was also found to abrogate ALS phenotypes
[78,79]. The therapeutic potential of UPF1 has been further explored in an in vivo study that used a
rodent spinal cord TDP-43 overexpression model which results in progressive paralysis of the
limbs [13]. Simultaneous overexpression of UPF1 appeared to abrogate some of the disease pheno-
types. From a therapeutic perspective, it should be noted that UPF1 is a broad regulator of RNAme-
tabolism, and its manipulation would not be straightforward because it would probably cause several
off-target effects. An added complication is that our mechanistic understanding of how this protein
and its roles are affected in different types of diseases is limited. With that, the observed beneficial ef-
fects of UPF1 modulation in preclinical studies argue in favour of further exploration.

Concluding remarks and future perspectives
NMD is a complex, spatiotemporally regulated, and context-specific process. It operates in cell
type- and tissue-specific manners and comprises different pathways (canonical and non-
canonical) which can work cooperatively or competitively within or between cells. This complex
interplay of NMD pathways determines cellular and tissue homeostasis. The departure from ho-
meostasis that often accompanies disease states may affect NMD and its inherent complexity in
different ways at different stages of the disease. These points notwithstanding, NMD modulation
as a therapeutic strategy could be particularly beneficial when an underlying cause or modulator
of neuronal pathology is a mutation-derived PTC-harbouring mRNA. The appropriate strategy
would be case-specific and would depend on the functional outcome of the mutation in question.
Trends in Neurosciences, October 2023, Vol. 46, No. 10 889

CellPress logo


Trends in Neurosciences
OPEN ACCESS
Beyond disease-inducing nonsensemutations that could be directly targeted by NMD, NMD itself
is affected in a range of disease models, and NMDmodulation had beneficial outcomes for some
of the phenotypes [13,78].

Localised NMD, such as ER-NMD as well as NMD limited to synaptic ends, is of increasingly
recognised importance for cellular functions. However, the exact effects that localised NMD
has on neuronal function as well as on disease onset and progression remain to be fully explored
(see Outstanding questions). Beyond RNA quality control, NMD has recently been suggested to
contribute to a form of protective adaptation through a mechanism known as 'transcriptional
compensation' [80,81]. This notion proposes a compensatory mechanism to adapt to the harm-
ful effects of a mutation by increasing the expression of a related gene (or possibly even a set of
genes) with the capacity to counteract the otherwise negative consequences of the mutated
gene. In the context of NMD, comprehensive understanding of such potential non-canonical
functions would be important when considering the viability of this pathway as a target for thera-
peutic intervention. It is clear that merely activating or inhibiting NMD is an over-simplistic
approach to disease therapy. A more nuanced approach, for example, targeting specific down-
stream factors in NMD, would probably bemore tractable. Our review highlights the complexity of
NMD and argues for careful investigation of the true granularity of its spatiotemporal regulation
across different neurological diseases.
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