
1.  Introduction
Submarine landslides are known as the second most common tsunamigenic sources, and can produce destructive 
tsunamis with catastrophic impacts in the near field (Harbitz et al., 2014; Okal & Synolakis, 2004; Synolakis 
et al., 2002). The causes of these tsunamigenic landslide events range from sediment instability along submarine 
slopes, to the destabilization of the sea floor caused by volcanic, seismic and construction activities (e.g., the 
1994 Skagway landslide tsunami (Sabeti & Heidarzadeh, 2020; Watts et al., 2003)). Predisposed to these hazards, 
Indonesia is situated at the converging boundary of the Indo-Australian, Philippine Sea, Caroline, and Sunda 
plates (Hutchings & Mooney, 2021), and has over 130 volcanoes located across the archipelago (Heidarzadeh, 
Ishibe, et al., 2020; Malawani et al., 2021). The tsunamigenic hazard of landslides in this region has been demon-
strated recently during the 2018 Anak Krakatau event, generating wave heights exceeding 13 m and at least 437 
fatalities (Grilli et al., 2019; Heidarzadeh, Putra, et al., 2020).

Driven by climatic and demographic pressures, the Indonesian capital city of Jakarta has been announced to be 
relocated to East Kalimantan on the island of Borneo, close to the existing city of Balikpapan (Figure 1) at the 
northern tip of Balikpapan Bay (Van de Vuurst & Escobar, 2020). This move places the new capital city on the 
western coast of the Makassar Strait, which has been published to have the highest frequency of historical tsunami 
events in Indonesia (Prasetya et al., 2001). Mapping of historical mass transport deposits within the Makassar 
Basin by Brackenridge et al. (2020) identified the coast between the Mahakam Delta and the south of Balikpapan 
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as an area of potential risk from submarine landslide-induced tsunamis. Notably, this is an area of particular risk 
due to its proximity to the announced location of the de facto capital city. This is further exacerbated by a number 
of additional factors all contributing to the oversteepening and destabilization of the continental slope: sediment 
erosion and deposition generated by the Makassar Throughflow currents, sediment influx from the Mahakam 
River, carbonate growth, and frequent proximal seismic events (Brackenridge et al., 2020; Gumbira et al., 2021; 
Hutchings & Mooney, 2021).

Research aiming to simulate the tsunamigenic landslide events in the Makassar Strait has generally followed 
scenario-based methodologies (e.g., Gumbira et al., 2021; Pranantyo et al., 2021). To develop the aforementioned 
scenario-based deterministic methodologies into a probabilistic tsunami hazard analysis within the Makassar 
Strait region requires the production of a catalog of synthetic (but realistic) tsunami events, involving the proba-
bilistic sampling of key parameters.

Tsunami modeling packages generally require significant time and computational resources to run, a limitation 
only more prevalent when needing to simulate a large number of synthetic tsunami events (Abrahams et al., 2023; 
Ai et al., 2021; Davies et al., 2022). One novel, yet increasingly popular method to overcome this issue is the utili-
zation of statistical emulation now breaking new frontiers in terms of the number of scenarios, locations, or scales 
used (e.g., Ehara et al., 2022; Gopinathan et al., 2021; Salmanidou et al., 2021). Statistical emulation provides 
a surrogate model which is fitted to a simulator's input-outputs overcoming the computational complexity and 
expense of carrying out simulations.

In this work, we make use of emulation to produce a set of probabilistic tsunami events within the Makassar Strait. 
This paper builds upon previous work focusing on single landslide event emulation (Salmanidou et al., 2017), or 
for specific slide locations (Løvholt et al., 2020; Salmanidou et al., 2019; Zengaffinen-Morris et al., 2022). To our 
knowledge, this is the first attempt to integrate statistical emulation into landslide-driven probabilistic tsunami 
hazard assessments for an entire region. We fit an array of Gaussian Process (GP) emulators to the relationship 
between the input parameters of a small set of simulated training scenarios and the maximum wave amplitude 
(distance between the wave crest and the still-water level; Sorensen (2005)) observed for a series offshore virtual 
gauges. We then use these fitted emulators to predict maximum wave amplitude at each virtual coastal gauge 
(Figure 1), given a large set of sampled input parameters. This enables us to observe the probabilistic distribution 
of maximum wave amplitudes at each gauge, with particular attention being paid to those surrounding the loca-
tion of the new capital city.

We present the various steps that form this methodology in Section 2, and the respective outputs in Section 3. 
Later, we discuss the impact of the outputs of this work and touch upon its limitations and proposed future work 
in Sections 4 and 5.

2.  Methods and Data
The workflow of this study consists of the following chronological steps: (a) A series of deterministic simulations 
are conducted for a subset of representative synthetic scenarios; (b) Quantities of interest, specifically maximum 
wave amplitude, are extracted from each simulation output; (c) Emulators are fitted to the relationship between 
the quantities of interest and input parameters; (d) Predictions of quantities of interest are generated from a larger 
sample of possible landslide scenarios; (e) The predicted outputs are interpreted to form the basis of a probabil-
istic assessment of tsunamigenic landslide hazard in the Makassar Strait.

2.1.  Tsunami Modeling

A synthetic database of 50 landslide events was created to act as a training set (Figure 2b). The Tsunami Open 
and Progressive Initial Conditions System (TOPICS), developed by Watts et  al.  (2003), was implemented to 
initialize the free surface deformation, which was used as input in the propagation model. Given the physical 
parameters of a submarine landslide, TOPICS uses the curve fits obtained from a nonlinear model to provide an 
approximation of the initialized water displacement field (e.g., Pranantyo et al., 2021; Watts et al., 2003). For 
each of the training events, location points (x and y) were sampled along a mid-continental slope depth contour 
of 1,500 m to generate a cross-slope profile. A second sampling process was used to sample a point along this 
profile. This two-stage process ensures that we can sample a point along the irregular shape of the continental 
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slope sampling space, as defined by depth contours. Values for landslide volume (v) were sampled with mini-
mum and maximum values of 50 and 600 km 3, respectively. We used a Latin Hypercube design to sample the 
three variables in a way that efficiently explores the input space for building a GP emulator. For each training 
scenario, we also calculate the Great-circle distance between the landslide location and gauge as an additional 
emulator input (dist).

The sampled landslide volume and location constrain the physical parameters relating to the initialized water 
displacement. At each site, GEBCO Bathymetric data (GEBCO Compilation Group, 2022) was used to obtain 
the average slope angle (θ) and water depth (d) at the landslide point of origin, and slide direction (ϕ) perpendic-
ular to the depth contour. The dimensions of the slide (i.e., its thickness, length and width) are maintained at the 
default ratio set within TOPICS (to create a set of initial surface conditions to be used by the wave propagation 
model), with the additional limiting of the maximum thickness (thmax) depending on the location of the slide 
along the shelf. This is done to account for the varying possible slide thicknesses, in kilometers, as determined by 
the study of seismic sections (Brackenridge et al., 2020), and are limited simply according to latitude as:

�ℎmax =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1300, if � > 0

1800, if −2 < � ≤ 0

1500, if � ≤ −2

� (1)

For the generation, propagation, and runup of the tsunami training events, we use the Basilisk framework, an 
open-source Computational Fluid Dynamics (CFD) library specializing in spatially adaptive solutions. This 
library has been developed and used in a range of CFD applications, but specifically, the free-surface solvers 
(including relatives such as Saint-Venant and Boussinesq-type schemes) have previously been used and validated 

Figure 1.  Locations and names of surface elevation gauges, shown with white and black concentric circles, relative to East 
Kalimantan (left) and Sulawesi (right). Topography and bathymetry data are sourced from GEBCO. Latitudes and longitudes 
of virtual gauges are given in Appendix B.
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for tsunami applications (Hayward et al., 2023; Hayward, Whittaker, Lane, Power, Popinet, & White, 2022; Lane 
et al., 2017; Lee et al., 2021; Popinet, 2015).

From this framework, we use the non-hydrostatic multilayer finite-volume numerical scheme to simulate the 
generation and propagation of tsunamis. The discrepancies between non-hydrostatic and hydrostatic numerical 
schemes become more evident in long distance wave propagation, where over-steepening of the leading wave may 
occur in hydrostatic solvers (Popinet, 2020). The model vertically incorporates incompressible Euler equations 
with a free surface and gravity using n layers, which are vertically discrete and horizontally gridded. This layer 
integration can be represented by the following equations:

𝜕𝜕𝑡𝑡ℎ𝑘𝑘 + ∇ ⋅ (ℎ𝐮𝐮)𝑘𝑘 = 0,� (2)

𝜕𝜕𝑡𝑡(ℎ𝐮𝐮)𝑘𝑘 + ∇ ⋅ (ℎ𝐮𝐮𝐮𝐮)𝑘𝑘 = −𝑔𝑔𝑔𝑘𝑘∇𝜂𝜂 − ∇(ℎ𝜙𝜙)𝑘𝑘 + [𝜙𝜙∇𝑧𝑧]𝑘𝑘,� (3)

𝜕𝜕𝑡𝑡(ℎ𝑤𝑤)𝑘𝑘 + ∇ ⋅ (ℎ𝑤𝑤𝐮𝐮)𝑘𝑘 = −[𝜙𝜙]𝑘𝑘,� (4)

∇ ⋅ (ℎ𝐮𝐮)𝑘𝑘 + [𝑤𝑤 − 𝐮𝐮 ⋅ ∇𝑧𝑧]𝑘𝑘 = 0,� (5)

where, in the x-z reference frame, k is the layer index, hk layer thickness, ϕk the non-hydrostatic pressure, uk, wk 
the horizontal and vertical velocity components, g gravitational acceleration, η the free-surface height (sum of 
layer thicknesses and bathymetry height zb), and

𝑧𝑧𝑘𝑘+1∕2 ≡ 𝑧𝑧𝑏𝑏 +

𝑘𝑘
∑

𝑙𝑙=0

ℎ𝑙𝑙,� (6)

the height of layer interfaces.

The numerical scheme implemented is described in further detail by Popinet (2020), and has been validated for 
wave propagation and runup (Hayward, Whittaker, Lane, & Power, 2022; Hayward, Whittaker, Lane, Power, 
Popinet, & White, 2022) and against various benchmarks, from simplified evolution of tsunami-like perturbations 

Figure 2.  Sampling of training and emulator input landslide locations. (a) Extent of location sampling space (shaded red) 
defined by 113 and 1,657 m depth contours (dashed black lines). (b) Locations of the 50 training submarine landslides, 
colored by volume, using Latin Hypercube sampling (see Appendix A). (c) Locations of the 2,000 emulator input 
landslide locations, colored by volume. Topography and bathymetry data is sourced from GEBCO (GEBCO Compilation 
Group, 2022).
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and periodic wave propagation to real cases such as the modeling of the dispersive features of the 2011 Tohoku 
earthquake tsunami (Popinet, 2020).

The Basilisk framework provides options for parallelization and a grid refinement algorithm using an adaptive 
tree walk protocol. This allows for the computationally and memory-efficient simulation of nonlinear runup and 
inundation with complete control over grid resolution, balancing the use of high resolution where required and 
computational efficiency where it is not (Popinet, 2013).

A digital elevation model (DEM) is constructed of the region comprised of a combination of SRTM and GEBCO 
datasets, reprojected and aligned to fit in the numerical model. We run each of the 50 training scenarios on 
systems containing 16 logical CPU cores. To initialize each simulation, the domain is filled with a bathymetry of 
the DEM and fluid layers are emplaced to represent sea-level at rest. The water surface displacement specified 
from TOPICS for the given landslide scenario is subtracted from the fluid layers, which results in the initial 
condition of the simulation. Boundary conditions are set to open flow to prevent the impact of wave reflections 
from the domain edges. Each scenario is compiled and run separately for a simulated time of 3 hr, where TOPICS 
is implemented at the initial time step, and the maximum spatial resolution is 33.75 arc-second.

2.2.  Numerical Gauges

An array of 14 virtual numerical gauges were created across the study area (Figure 1). Aside from the five central 
gauges located in the deeper, central waters of the Makassar Strait, the remaining gauges are focused offshore 
from concentrations of human populations and infrastructure. Particular attention is placed on the use of numer-
ical gauges around the entrance to Balikpapan Bay (labeled as Balikpapan and Balikpapan (2) in Figure 1). This 
is to best record, and later probabilistically quantify, the hazard posed to the recently announced new Indonesian 
capital city of Nusantara, East Kalimantan. Each of the virtual gauges were configured to output water surface 
elevation at each computed time step (Figure 3), and we compute the maximum wave amplitude at each gauge for 
each simulation, to form the output of interest for emulator fitting. In some cases, the initial grid refinement of the 
areas where numerical gauges are located results in non-zero surface elevations at the first timestep (e.g., Sangatte 
as shown in Figure 3). In these cases, there is at least one training scenario that generates an initial displacement 
responsible for altering the grid refinement at the point of the gauge. In cases where the largest computed wave 
amplitude is at the initial time step, we discount this value to ensure we are exclusively training on the maximum 
amplitude of the simulated wave.

2.3.  Statistical Emulation

For each of the training scenarios detailed in Subsection 2.1, maximum wave amplitude values were simulated for 
each numerical gauge location. Input-outputs consisting of scenario-specific landslide location (x and y), distance 
between gauge and landslide (dist) and landslide volume (v), and simulated maximum wave amplitude outputs 
were used to fit an emulator at each gauge location. To fit the emulators to the inputs-outputs of the 50 training 
scenarios, we use the Python package, Multi-Output Gaussian Process Emulator (MOGP) (Daub et al., 2022).

Once a fitted emulator was created for each numerical gauge location, a set 2,000 probabilistic scenarios were 
used to generate a set of predicted maximum wave amplitudes based on landslide location and volume. An 
important consideration when generating outputs from emulators is that inputs must fall within the same range 
as those used to fit them. Previous work has shown that the prediction uncertainty grows as inputs deviate from 
the emulator training points, and so to use inputs beyond the range of the training points would result in increas-
ing prediction error moving further from the minimum and maximum training parameter values (Mohammadi 
et al., 2019). With this in mind, a spatial sampling space was generated along the continental slope, between 113 
and 1,657 m depth contours (Figure 2a), within the depth ranges of the 50 training scenarios. This sampling space 
was then discretized into cell nodes 100 m apart (in both directions), generating 2,000 landslide locations from 
a possible approximately 1 million potential locations, to then be sampled from randomly (Figure 2c). For each 
input location, landslide volumes between 50 and 600 km 3 were sampled using a Latin Hypercube design. The 
locations and volumes of our landslide scenarios are based on the bathymetric and seismic profiles of previous 
landslides in the Makassar Strait published by Brackenridge et al.  (2020). We constrain the sampling area of 
the continental slope to the north and south based on the northernmost and southernmost limits of the mapped 
landslide deposits in Brackenridge et al. (2020), and define the upper and lower limits of landslide volume based 
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on the largest and smallest mapped volumes, respectively. The parameter distributions for each of the testing 
scenarios are shown in Figure 4.

2.4.  Parameter Sampling With Gaussian Multivariate Copulas

Beyond the use of the independently-sampled emulator inputs outlined above, we explore the use of alternative 
emulator input parameter sampling techniques to improve the output probabilistic wave amplitude distributions. 
Submarine mass failures are notoriously difficult to catalog, and as such, most knowledge of the slope failures 
within the Makassar Strait comes from the aforementioned analysis of mass transport deposits from surveys of 

Figure 3.  Time series outputs from each output gauge shown in Figure 1, given in meters, from which maximum wave 
amplitude outputs were derived. Note varying vertical scales.
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the seafloor. We use the mapped mass transport deposits published in Brackenridge et al. (2020) to construct a 
correlation between latitude and landslide volume, from which we calculate a new respective volume for each of 
the 50 training scenarios.

Using these latitudes and calculated volumes, we fit a Gaussian Multivariate Copula to the data using the Copulas 
library (datacebo, 2023). Copulas is a Python library used for modeling and sampling from multivariate distribu-
tions using Copula functions. This fitted copula was used to generate 2,000 synthetic latitude-volume parameter 
pairs. To ensure that the latitude was matched with a longitude value to place the landslide along the continental 
slope, we use the same spatial sampling grid as outlined in Section 2.3, and randomly sample along the longitudi-
nal axis within the bounds of the sampling space grid contours at the given latitude (Figure 5). It is worth noting 
that as this copula was fitted to the 50 uniformly sampled training landslides, the longitude and latitude sampling 
still remains relatively uniform, and the significant change is the sampling of volume. As it is crucial that all input 
parameters fall within the ranges of those used to train the emulators, we filter out any volume values that are less 

than 50 km 3, or larger than 600 km 3. After the landslide-gauge distance was 
computed for each landslide, these new copula-derived synthetic landslide 
parameters were used as alternative inputs for the fitted emulators. The result 
of this sampling approach is that we place a slight bias on larger landslides 
taking place at lower latitudes, as is reflected in previous work (Brackenridge 
et al., 2020).

3.  Results
3.1.  Emulator Outputs

For each virtual gauge, we use the array of fitted emulators to produce a set 
of maximum wave amplitude predictions based on 2,000 synthetic scenarios 
along the Makassar Strait continental slope. On a gauge-by-gauge basis, we 
can observe the relationships between the input parameters (x and y location, 
distance between gauge and landslide, and landslide volume) and the output 
quantity of interest, maximum wave amplitude, albeit with variability due to 
the other three parameters varying (not being held constant) so this is not a 
clear sensitivity analysis. We show examples of these emulator outputs, for 
gauges surrounding Balikpapan, in Figure 6.

When observing the correlations between emulator input parameters and 
predicted maximum wave amplitudes, we focus on the inputs of volume 
and landslide-gauge distance. As shown in Figure 6, the latitude and longi-
tude show a relationship with predicted wave amplitude that suggests higher 
uncertainties when the tsunami is required to interact with headlands and 
shallower waters. The relationships with volume appear more complex, with 
deeper-water gauges demonstrating larger uncertainty in prediction ability, 
yet some degree of positive correlation between volume and wave amplitude 

Figure 4.  Distributions of emulator testing inputs for 2,000 scenarios for (a) latitude, (b) longitude, and (c) landslide volume.

Figure 5.  Distribution of synthetic landslides generated through the use of a 
Gaussian Multivariate Copula (left). Relative volume of each landslide with 
respect to latitude is also shown (right).
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is shown across fitted emulators, agreeing with previous work (Murty, 2003). We also note that closer landslides 
show greater uncertainty when observing the correlation between wave amplitude and Euclidean landslide-gauge 
distance. As identified in Dignan et al. (2020), the directionality of the sliding mass has significant potential to 
influence the directionality of the largest tsunami waves, and this could explain these results. For the majority 
of landslide scenarios, the easterly sliding mass causes the resulting tsunami to need to reflect off the eastern 
coastline before reaching the Balikpapan gauges (which can also be seen in the delay in gauge arrival of scenar-
ios included in Figure 3), introducing wave amplitude stochasticity, and therefore uncertainty, in the process. 
The lack of linearity in the distance-wave amplitude plots in Figure 6 can also be attributed to the process of 
the tsunami interacting with nearby headlands and local bathymetry to reach the Balikpapan gauges, which are 
relatively well protected from tsunamigenic landslides generated at higher latitudes. In future works, empirical 
relationships for each parameter correlating with maximum wave amplitudes could be developed, similar to 
previous work, for example, in Sabeti and Heidarzadeh (2022).

3.2.  Emulator Validation

We evaluate the accuracy of the emulator predictions by using a leave-one-out cross validation (LOOCV) method 
(as in Sarri et al. (2012)) with the 50 training scenarios. LOOCV is a thorough, yet computationally intensive, 
technique for model evaluation, wherein each data point is iteratively used as a single test sample, while the 
remaining data is used for training. This provides an unbiased estimate of a model's performance and addresses 
potential issues of over-fitting and bias.

We fit the emulator 50 times for each gauge, each time leaving out one scenario from the fitting data. The 
removed scenario is then used to have the emulator predict the output, resulting in 50 predicted values that we 
compare to the corresponding simulated values. The proximity of the emulator-predicted values to the actual 
simulated values is used as a measure of its accuracy. We show this comparison of predicted and simulated maxi-
mum wave amplitudes for each gauge in Figure 7. Whilst there were some, albeit negligible, differences between 
actual and predicted maximum wave amplitudes for the Bontang gauge showed the closest match (root mean 
square error, RMSE = 0.001), followed by Balikpapan (RMSE = 0.02). The gauges with the highest RMSE, and 
therefore poorest prediction accuracy, were Koealabadak (RMSE = 2.17, Mean Error = 19.63%) and Sangatte 
(RMSE = 1.50). We propose that a possible source of the fluctuation in prediction accuracy links to the linearity 
of the fluid flow required to reach the respective gauge. The Koealabadak gauge is located in relatively shallow 
water, and is also somewhat protected by the Mahakam Delta from tsunamis generated on the southern end of the 

Figure 6.  Relationships between input parameters of latitude, longitude, landslide volume, and distance between landslide and gauge, and the emulator-predicted 
maximum wave amplitude for (a–d) Balikpapan and (e–h) Balikpapan (2) gauges. Note that other parameters are not held constant, which explains the spread. Latitudes 
and longitudes of virtual gauges are given in Appendix B.
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continental slope, the processes of shoaling and refraction introduce non-linear processes to tsunamis reaching 
the gauge, introducing difficult-to-predict stochasticity.

When we put the RMSE values from the LOOCV analysis into context, the prediction ability of all fitted emula-
tors was generally good. Excluding Koealabadak, the largest RMSE values ranged between 1.50 and 2.17, 
broadly meaning that the least accurate gauge had a prediction error of 0.71 m in maximum wave amplitude. The 
Koealabadak gauge had an RMSE of 2.17, which, as can be seen in Figure 7, is due to a minority of erroneous 
data points; the vast majority of data points within the LOOCV for Koealabadak show good prediction ability. 
As RMSE can be translated into the same units as the target value, in this case, centimeters, we can state that 
the majority of the gauges showed an RMSE of less than 71 cm, an error that is acceptable, particularly for the 

Figure 7.  Results of leave-one-out cross-validation of maximum wave amplitude emulator prediction. Root mean square error is shown for each gauge. Gray dashed 
line represents simulated maximum wave amplitude being equal to the predicted maximum wave amplitude, illustrating an exact prediction.
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purposes of this probabilistic assessment. Balikpapan and Balikpapan (2) gauges also showed very good predic-
tion accuracy, particularly the former, which is important for assessing landslide-based tsunami risk to the new 
capital. We must, however, consider this error when we analyze and extract results from the probabilistic wave 
amplitude distributions.

3.3.  Wave Amplitude Distributions

Using the predicted maximum wave amplitude outputs from the fitted emulators for the independently-generated 
2,000 landslide scenarios (as described in 2.3), we are able to produce a probabilistic histogram for each gauge 
location (Figure 8). From a probability perspective, the amplitude of each bar in the histogram can be interpreted 
as an estimate of the probability density of the corresponding maximum tsunami wave amplitude range.

When the emulator input parameters of the landslide scenarios are sampled using a fitted copula instead of inde-
pendently, the resulting predicted maximum wave amplitude distributions show some differences. In all cases 
along the eastern coast of the Makassar Strait, we see that using copula-derived parameter sampling shifts the 
distribution toward smaller wave amplitudes and leaves independent sampling of parameters producing distribu-
tions with more frequent larger wave amplitudes. This is replicated in the southern center-channel gauges. The 
comparison is either negligible or mixed along the western coastal gauges. Broadly speaking, there is a more 
noticeable difference in gauges located in shallower waters, an effect that can be seen around the two gauges 
offshore Balikpapan (Figure 9).

The resulting probabilistic wave amplitude histograms (Figure 8) vary spatially. For all gauges, the most likely 
maximum wave amplitude was around 0–2 m, but the wave amplitude distributions vary from gauge-to-gauge. 

Figure 8.  Histograms of maximum wave amplitude for each gauge location, as generated through the sampling of emulator input parameters from Figure 4.
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The Strait (Center) gauge shows significant probability of larger maximum wave amplitudes, but this is attrib-
utable to the proximity of the gauge to the landslide locations relative to the other deep water gauges. On the 
eastern coast, the shape of the distribution was broadly similar with maximum predicted wave amplitudes being 
6.5–10 m. Along the western coast, the wave amplitude distributions have more prominent peaks around 0–2 m, 
however, exhibit much higher maximum predicted wave amplitude values (up to 50 m). It is widely accepted 
that there is a strong relationship between water depth and maximum wave amplitude as the process of shoaling 
begins (Li & Raichlen, 2002; Synolakis, 1987), and so it is probable that these larger (yet relatively unlikely) 
tsunami events occur along this coast due to the shallower gauge depth and shoaling across the continental shelf. 
Exceptionally high maximum wave amplitude values, such as for Bontang, can generally be attributed to the 
maximum recorded wave amplitude recorded from the training scenarios (Figure 3). In the case of the Bontang 
gauge, a combination of large maximum amplitude training scenarios (attributed either to the largest volume 
landslides or to the gauge proximity to the source) and the shallow water depth at the gauge location are responsi-
ble for the small number of very large maximum amplitude values. Out of the proximal cluster of training events 
close to the Bontang gauge, the maximum landslide volume was just over 500 km 3, which generated a maximum 
wave amplitude of approximately 21 m. When the increased number of synthetic scenarios fill the sampling space 
more completely, we see larger maximum wave heights where these proximal events have volume values closer to 
600 km 3. Similarly high maximum wave amplitude values can be seen along this western coastline caused by the 
same impact of scaling up the number of events and the full use of the volume parameter range. The impact of  this 
is particularly prominent in Bontang (and less so in neighboring virtual gauges in Sangatte and Koealabadak) 
due to the Bontang gauge being located directly on the top edge of the continental slope and is, therefore, able 
to capture the maximum amplitude as shoaling occurs and before shallow water wave energy dissipation occurs.

Across the gauges, the distribution is typical of tsunami maximum wave amplitudes computed in other works, 
with decreasing frequency as maximum wave amplitudes increase (Choi et al., 2002; Fukutani et al., 2015; Zhang 
et al., 2020). As previously mentioned, we must consider the less than ±0.71 m influence that the prediction error 
has on these distributions when interpreting the most probable maximum wave amplitudes. For Koealabadak, the 
gauge with the poorest prediction performance in LOOCV (RMSE = 2.17), this error represents a 12% error in 
maximum probable wave height. Comparatively, the Balikpapan gauge LOOCV error (RMSE = 0.02) represents 
a 0.001% error in maximum probable wave height.

4.  Discussion
Experimenting with the use of fitted copulas to sample emulator input parameters provides an interesting source 
of discussion; when conducting a probabilistic assessment, we must, to some extent, make some assumptions 
regarding both the ranges and sampling of the model input parameters. In this work, we assumed a uniform 
random sampling to select the landslide locations. Although previous studies on the landslide deposits indi-
cate that there is a prevalence of more voluminous landslides in the South of the Strait, landslide locations are 
spread preconditioning slope instability along the Strait axis (Brackenridge et  al.,  2020). Future slope stabil-
ity assessments could shed light on potential landslide locations and could be therefore used to inform hazard 
assessment in the area. As the sampling of latitude and longitude remained random, the use of a copula only 

Figure 9.  Comparative histograms for (left) Balikpapan and (right) Balikpapan (2) gauges between the use of copula-derived 
(red) and uniformly sampled (blue) emulator input parameters.
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affected the sampling of volume and doing so reduced the frequency of larger events when compared to inde-
pendent sampling. Whilst the copula-derived inputs are arguably more realistic, using these inputs with smaller 
high-volume landslide frequency naturally influences the output maximum wave height histograms. As we 
also concentrate the high-volume landslide events around lower latitudes, we also see the differences between 
copula-derived inputs and uniformly-sampled inputs more clearly in higher latitudes where there is a more signif-
icant reduction in high-volume events. Obviously, the use of the most accurate sampling distributions is critical 
to ensure the validity of the probabilistic assessment. However, when it comes to submarine landslides, this can 
often be problematic as we are restricted by the availability of data and previous work done to map the volumes 
and extents of historic slides within the study area. Even still, submarine landslide catalogs carry significant 
error in identifying past slides and the presence of a past landslide does not equal the presence of another in the 
future of equal size. A balance must be found between making use of existing knowledge and geological records 
to create an informed sampling distribution, and using independent sampling to ensure we are not introducing 
excessive bias and error into the model output and, ultimately, the tsunami hazard assessment. In this paper, we 
argue that, due to the incomplete data available to fully identify the parameters of a larger sample size of land-
slides across the continental slope, an independent sampling strategy should be used to create the final maximum 
wave height frequency histograms.

The tsunami risk to the future capital city of Balikpapan is difficult to define from this analysis alone, however, we 
are able to observe the possibility of wave heights in some scenarios in excess of 15 m. Without simulating final 
stage runup and inundation, it is difficult to estimate the land area likely impacted by a tsunami of this height, yet 
the gauge's proximity to the coastline would suggest that there is a significant risk of landslide-generated tsunami 
inundation in the Balikpapan region from credible event scenarios.

5.  Conclusions
In this work, we develop the use of statistical emulation for wave amplitude prediction for tsunamigenic subma-
rine slope failures. We also evaluate the effectiveness and accuracy of emulators for the purpose of expediting 
the process of tsunami simulations in the Makassar Strait, with particular attention given to the sampling of 
emulator input parameters. The results of this paper represent a first step in conducting a probabilistic tsunami 
hazard assessment from tsunamigenic landslides in the region, providing maximum wave amplitude distributions 
for an array of gauges. We pay particular attention to gauges in the area offshore Balikpapan, in proximity to the 
new Indonesian capital, and the implications of our methodology when understanding the tsunami risk posed to 
the future city.

From predictions generated from a GP emulator fitted to input-outputs from the 50 training scenarios, we observe 
that the most probable maximum wave amplitude in the majority of gauges is between 0 and 2 m. On the eastern 
coast, the maximum predicted amplitudes were up to 10 m, and up to 50 m on the western coast. We show that 
the emulators are able to predict maximum wave amplitude with a good degree of accuracy, with the majority of 
gauges having an RMSE between simulated and predicted values of less than 0.7 m.

This paper also explores the potential use of Gaussian multivariate copulas to sample emulator prediction input 
values to create a more realistic distribution of volumes along the continental slope. We conclude that, despite 
the importance of sampling distributions used for probabilistic analysis being representative of the hazard itself, 
using a sampling distribution on incomplete information is something that should be avoided. On this basis, our 
analysis used independent sampling of individual distributions of the input parameters (not necessarily uniform), 
and in doing so, provides somewhat of a “relatively agnostic” probabilistic analysis.

Further work will advance this methodology by including the emulation of late-stage runup and inundation, 
allowing us to conduct end-to-end emulation of tsunami impact on land from input parameters. We also demon-
strate the benefit of using statistical emulation for tsunami simulators of increasing complexity, in an attempt to 
exploit their increased efficiency to maximum effect.

Appendix A:  Training Scenarios
Table A1 outlines the input parameters used for the 50 simulated training scenarios used for emulator fitting.
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Scenario X (deg) Y (deg) Volume Water depth Thickness Length Width Volume Slope Direction

1 117.840 −2.230 405.3 1657.0 1.358 35.365 28.292 405.3 10.33 315

2 118.050 −0.750 241.4 1187.0 1.335 27.532 22.026 241.4 3.559 265

3 118.040 0.480 596.15 1151.0 1.3 43.837 35.069 596.15 2.221 230

4 117.760 −1.330 171.55 758.0 1.209 24.387 19.509 171.55 9.822 255

5 118.060 −0.560 433.9 1034.0 1.681 32.888 26.31 433.9 4.389 270

6 117.830 −2.340 371.75 1039.0 1.308 34.516 27.612 371.75 7.017 320

7 118.430 0.660 295.85 145.0 1.035 34.616 27.693 295.85 5.788 170

8 117.780 −1.080 117.65 140.0 1.112 21.058 16.846 117.65 3.628 250

9 118.020 −0.530 67.6 911.0 1.022 16.651 13.321 67.6 8.142 270

10 118.080 −2.620 305.75 918.0 1.209 32.559 26.047 305.75 5.71 330

11 117.960 0.030 150.65 1223.0 0.846 27.319 21.855 150.65 2.782 290

12 117.960 −0.270 464.7 857.0 1.736 33.488 26.79 464.7 4.449 280

13 117.970 −2.380 252.95 1245.0 1.129 30.635 24.508 252.95 7.645 325

14 117.760 −1.200 534.0 336.0 1.8 35.259 28.207 534.0 5.678 250

15 117.330 −1.890 472.95 293.0 1.751 33.64 26.912 472.95 3.587 280

16 117.900 −1.060 354.15 848.0 1.537 31.069 24.855 354.15 10.622 250

17 117.410 −1.680 131.4 352.0 1.137 22.011 17.609 131.4 1.952 265

18 117.560 −1.690 574.15 1164.0 1.8 36.56 29.248 574.15 1.778 265

19 117.580 −2.200 206.75 326.0 1.06 28.587 22.87 206.75 1.334 340

20 117.420 −2.190 562.6 216.0 1.5 39.645 31.716 562.6 6.07 320

21 118.110 −2.630 165.5 985.0 0.998 26.358 21.086 165.5 2.534 355

22 118.150 0.580 262.3 989.0 0.991 33.304 26.643 262.3 2.179 205

23 118.030 −0.750 105.55 1070.0 1.09 20.144 16.115 105.55 3.873 260

24 118.210 0.650 420.15 617.0 1.196 38.365 30.692 420.15 4.328 195

25 117.770 −2.230 139.65 1040.0 0.959 24.696 19.757 139.65 5.561 330

26 118.030 0.530 85.75 885.0 0.761 21.723 17.378 85.75 2.938 230

27 117.760 0.130 446.55 531.0 1.231 38.996 31.197 446.55 1.842 270

28 117.880 −0.900 236.45 276.0 1.326 27.34 21.872 236.45 0.99 255

29 117.600 −1.510 442.15 793.0 1.696 33.054 26.443 442.15 3.553 245

30 117.430 −2.090 284.85 1031.0 1.177 31.842 25.474 284.85 3.186 315

31 118.010 −0.290 398.7 1167.0 1.618 32.137 25.71 398.7 6.75 285

32 117.680 −2.120 58.25 1368.0 0.837 17.073 13.659 58.25 1.378 325

33 117.990 −2.430 548.3 1031.0 1.5 39.138 31.31 548.3 3.872 320

34 117.940 −0.150 494.4 1009.0 1.79 34.021 27.217 494.4 6.316 285

35 117.980 −0.520 483.4 350.0 1.77 33.828 27.063 483.4 5.084 270

36 117.880 −0.220 526.85 113.0 1.8 35.022 28.017 526.85 4.42 285

37 117.900 −0.730 280.45 127.0 1.405 28.923 23.139 280.45 4.767 265

38 117.550 −1.540 387.15 618.0 1.597 31.874 25.499 387.15 5.392 250

39 117.540 −1.820 364.05 1237.0 1.555 31.319 25.055 364.05 1.279 265

40 117.800 0.470 333.25 447.0 1.083 35.905 28.724 333.25 1.95 245

41 117.340 −1.990 218.3 492.0 1.293 26.599 21.279 218.3 6.136 275

42 117.780 0.320 194.65 530.0 0.903 30.054 24.043 194.65 2.904 270

43 117.780 0.030 321.7 154.0 1.068 35.524 28.42 321.7 4.277 280

Table A1 
Input Parameters for 50 Training Scenarios Used for Emulator Fitting

 23335084, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
002951 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [08/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

DIGNAN ET AL.

10.1029/2023EA002951

14 of 16

Appendix B:  Gauge Locations
Table B1 lists the latitudes and longitudes of the virtual gauge locations used to output the tsunami waveforms 
referenced throughout this paper.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
The training simulation scenario data (including gauge time series outputs, wave propagation animation, and files 
required to run simulations) used to fit the emulators, as described in this work, are freely available on Zenodo in 
Dignan et al. (2023) under Creative Commons Attribution International License version 4.0.

Scenario X (deg) Y (deg) Volume Water depth Thickness Length Width Volume Slope Direction

44 117.990 0.200 184.75 1220.0 0.89 29.491 23.593 184.75 3.488 260

45 117.650 −1.350 521.35 323.0 1.8 34.838 27.871 521.35 1.284 245

46 117.920 −0.920 579.65 344.0 1.8 36.735 29.388 579.65 5.135 260

47 118.330 0.610 81.35 855.0 0.756 21.238 16.991 81.35 5.49 185

48 117.760 −1.460 340.4 1263.0 1.513 30.708 24.566 340.4 2.856 245

49 118.010 −2.570 101.15 295.0 0.902 21.681 17.345 101.15 5.429 320

50 118.010 0.300 503.2 1347.0 1.3 40.274 32.22 503.2 1.876 250

Table A1 
Continued

Gauge name Latitude (°) Longitude (°)

Balikpapan 116.96136 −1.3422408

Balikpapan (2) 116.83125 −1.2976918

Benoa Baro 118.07562 0.837846

Bontang 117.65768 0.1201377

Koealabadak 117.54825 −0.2625696

Padoda 119.28057 −1.2618419

Palu 119.64130 −0.5532147

Pasangkaju 119.34705 −1.1494960

Sangatte 117.72156 0.4357668

Strait (Center) 118.18652 −0.7368904

Strait (North-Center) 118.21940 −0.1216501

Strait (North) 118.25246 0.3475711

Strait (South-Center) 117.98890 −1.3838551

Strait (South) 117.68971 −1.9283596

Table B1 
Latitude and Longitude Location of All Virtual Numerical Gauges
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