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Abstract

General Relativity and the ACDM framework are currently the standard lore and consti-
tute the concordance paradigm. Nevertheless, long-standing open theoretical issues, as well
as possible new observational ones arising from the explosive development of cosmology the
last two decades, offer the motivation and lead a large amount of research to be devoted in
constructing various extensions and modifications.

All extended theories and scenarios are first examined under the light of theoretical
consistency, and then are applied to various geometrical backgrounds, such as the cosmological
and the spherical symmetric ones. Their predictions at both the background and perturbation
levels, and concerning cosmology at early, intermediate and late times, are then confronted
with the huge amount of observational data that astrophysics and cosmology are able to
offer recently. Theories, scenarios and models that successfully and efficiently pass the above
steps are classified as viable and are candidates for the description of Nature.

This work is a Review of the recent developments in the fields of gravity and cosmology,
presenting the state of the art, high-lighting the open problems, and outlining the directions of
future research. Its realization was performed in the framework of the COST European Action
“Cosmology and Astrophysics Network for Theoretical Advances and Training Actions”.
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Preface

The dawn of the 21st century came with very positive prospects for gravity, cosmology and
astrophysics. Technological progress made it possible for cosmology to enter to its adulthood
and become a precision science, both for its own shake as well as for being the laboratory of
gravity, which can now be accurately tested and investigated in scales different than the earth
ones. As a result, the opinion that cosmology is one of the main directions that will lead to
progress in physics in the near future, is now well established.

“Cosmology and Astrophysics Network for Theoretical Advances and Training Actions”
(CANTATA) is a COST European Action established in 2015 in order to contribute to the front
of research in the fields of gravity, cosmology and astrophysics. It involves Institutions from 26
European countries, as well as from 5 countries abroad. CANTATA Collaboration has a variety
of interests, which include: i) the classification and definition of theoretical and phenomenological
aspects of gravitational interaction that cannot be enclosed in the standard lore scheme but might
be considered as signs of alternative theories of gravity, ii) the confrontation of the theoretical pre-
dictions with observations at both the background and the perturbation levels, iii) the production
of numerical codes to simulate astrophysical and cosmological phenomena, iv) the construction of
self-consistent models at various scales and the investigation of the features capable of confirming
or ruling out an effective theory of gravity, v) the study of how extended and modified theories
of gravity emerge from quantum field theory and how mechanisms produced by the latter may
explain cosmological dynamics. This Review presents the recent developments in the above fields.

Emmanuel N. Saridakis
Ruth Lazkoz

Vincenzo Salzano

Paulo Vargas Moniz
Salvatore Capozziello
Jose Beltran Jiménez
Mariafelicia De Laurentis
Gonzalo J. Olmo
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natural units

List of notational conventions used in this manuscript, unless otherwise stated.
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35. Testing the Dark Universe with
Cosmic Shear

Valeria Pettorino, Alessio Spurio Mancini

Although a cosmological constant framework is still in agreement with current data, several
other cosmological models in which gravity is modified are also still viable. There are several
approaches that one can adopt in order to distinguish ACDM from modified gravity models.
One can try to: a) use or combine different probes, b) get more data, ¢) improve the analysis to
extract more information from the available data. Below we focus on weak lensing, its different
approaches and the impact of statistics we use on constraining or distinguishing cosmological
models.

Weak lensing describes, in particular, small distortions in the observed image of galaxy
shapes, induced by the presence of massive structures along the line of sight. Weak lensing
can be typically described in terms of shear and convergence fields, quantifying anisotropic and
isotropic distortions respectively. Convergence can be derived from shear, up to a constant,
and both depend on the angular position 6 on the sky. Given a convergence map x(#) for a
particular realisation of a model, one can also compute the aperture mass map [2161,2162] by
applying a filter (see, for example, [2163] for a review of different filters adopted in literature).

In we will recall different weak lensing methodologies; in we will describe how well
we can use current and future probes (in particular including cross-correlations or combining
with galaxy clustering) to test modified gravity models; in we recall how higher order
statistics, and in particular peak counts, can help in breaking degeneracies between parameters;
finally in we illustrate recent results using machine learning techniques to improve the
discrimination efficiency between ACDM and alternative theories in which gravity is modified
with respect to General Relativity.

35.1 2D, Tomographic and 3D Weak Lensing

Here we provide a mathematical description of cosmic shear in a general modified gravity context,
similar to the one presented in [2164]. We focus on two different formalisms commonly used
to study the evolution in redshift of the lensing effect, so-called ‘tomography’ and ‘3D cosmic
shear’. We assume spatial flatness throughout, and consider scalar linear perturbations on a
Friedmann-Robertson-Walker metric, such that the line element in Newtonian gauge can be
written as

ds® = — (14 20) dt* + a*(t) (1 — 20) dx*, (35.1)

with the scale factor a(t) and the Bardeen potentials ¥ and ®. In General Relativity ¥ = ® in
absence of anisotropic stress, but this is in general not true in a modified gravity theory. Poisson’s
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equation links one of the Bardeen potentials to the overdensity field J(k, x),

3 Qm 4(kX)
2 (kxm)?* a(x)

with the Hubble radius xg = 1/Hy and the function u(k, a(x)) parameterising variations from
General Relativity, its value being 1 in standard gravity. We also define
V(k, a(x))

n(k,a(x)) = Sk, alx)’ (35.3)

as the ratio of the Bardeen potentials, again identically equal to 1 in General Relativity in
absence of anisotropic stress. Other choices (such as 3, defined in terms of the lensing potential
U + @), of such two functions of time and scale are also possible, and may be more or less
convenient; see [2165] or [2166] for a review.

A quantitative description of cosmic shear starts with the definition of the lensing potential

\Il(k7 X) =

(ks a(x)), (35.2)

X N
Wei) = [ ay X ) + o) (35.4)
0 XX

as a weighted projection of the sum of the Bardeen potentials along the line of sight. In
Eq. X is the comoving distance and the normalised vector n selects a direction in the sky.
From its definition in Eq. we notice that the lensing potential is sensitive to the growth
of perturbations of the gravitational potentials, as well as to the geometry of the Universe
through the weighting factor X)&’fl. We will assume that the integration in Eq.|35.4]is carried out
along the unperturbed light path, following the Born approximation. The lensing observables,
i.e., convergence and shear, are derived from the lensing potential through linear relations, so
that these three fields share the same statistical properties. Hence, cosmic shear is sensitive to
structure growth and the geometry of the Universe.

The sensitivity of cosmic shear to the growth of structure is particularly important in studies
of cosmic acceleration, as different dark energy and modified gravity models are endowed with
different predictions for structure growth. As a consequence, it is crucial to include redshift
information in a cosmic shear analysis, so that the effect of dark energy on structure growth can
be studied in its evolution with redshift. A two-dimensional analysis (like the one carried out
in [2167], for example) can achieve this goal only to a limited extent, as it projects quantities
along the line of sight; this implies loss of redshift information, due to the mixing of spatial
scales and to the reduced sensitivity to those parameters that, entering the model in a nonlinear
way, may produce different effects on the lensing signal at different redshifts [2168].

To overcome the limitations of a purely two-dimensional analysis, a formalism was first
introduced in [2169], which assigns galaxies to different redshift bins according to their estimated
(photometric) redshift, and calculates correlations of the lensing signal through redshift bins. This
approach is commonly known as tomography and is the most common methodology to analyse
a cosmic shear survey (as used, e.g., in [2170]). The integration along the line of sight that
characterises a two-dimensional analysis is here reduced to the width of the redshift bin; the
correlation among different redshift bins provides information on the evolution in redshift of the
lensing signal. Defining the matter power spectrum Ps(k) as

(5(k,2)0(K, 2)) = (2m)* Ps(k, 2)0" (k — K'), (35.5)

and making use of the Limber approximation [1587,2171,2172], one can write down the flat-sky
tomographic convergence power spectrum between tomographic bins ¢ and j as

Cr () = / fjgmw/x,x) Wi/ %) Ps(/x. ). (35.6)
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where the lensing efficiency function W;(¢/x, x) is defined as

3, /°°d , dz ni(2(x)) (x—x’) [1+ 1
Wy Iy dx’  a(x’') xx’ n/x, x")

Wit/x. x) = ] w(/x.x),  (35.7)

with n;(z(x)) the distribution of sources in the i-th bin, normalized to one, [ dxn;(z(x)) = 1.
Clearly, this approach still remains an approximation to a purely 3-dimensional treatment of the
cosmic shear field, as it is still characterised by an averaging in redshift, which produces loss of
information.

An alternative formalism, commonly known as 3D cosmic shear, makes use of a spherical
Fourier-Bessel decomposition of the cosmic shear field, to include all of the redshift information
in the analysis. First introduced in [2173] and subsequently refined in [2174-2176], this method
has so far been applied to real data only in [2177]. A code comparison between available
codes and numerical challenges have been discussed in [2178]. 3D cosmic shear is based on a
decomposition of the cosmic shear field in a suitable basis of functions, given by a combination of
spin-2 spherical harmonics 2Yp,, (1) for the angular components, and spherical Bessel functions
for the radial coordinate j;(kx); together, these functions constitute the spherical Fourier-Bessel
basis. The shear tensor v(x, fi) is defined as the second @ derivative of the lensing potential ¥

v&sﬁyzéaﬁwQaﬁ) (35.8)

The shear v can be expanded in the spherical Fourier-Bessel basis as
. 2 Ny
1008 = 25 [ b 6) i (3) e, (35,9
Im
where the coefficients 7y, (k) are given by

2 N £ [
) =2 [ 32 [ d006 3 ilhn) (0. (35.10)
The covariance of shear modes can be related to the matter power spectrum [2164,2178,2179],

_ L, 902, (0+2) [dk - _
G (1)) = o a0y [ By Gl ) Gk’ ) 8 55
L—2)

where

Gf(ka k/)

——

dzn,(2) Fo(z, k) Up(z, k'), (35.11)

Fy(z,k) = [ dzpp(2p|2) jelkx" ()], (35.12)

1B A =X L o 1
ety = 5 [ 22 (00 ity P (b2 () a0 [ 1+ s

(35.13)

O |

The estimates v of the pure cosmic shear field v keep into account observational effects such
as the redshift distribution n,(z) of the lensed galaxies and the conditional probability p(zp|z)
of estimating the redshift z, given the true redshift z. More recently, 3D cosmic shear was
used in [2164] to forecast modified gravity predictions, with a quantitative comparison with a
tomographic analysis, whose results we recall below.
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35.2 Current Data and Forecasts on Horndeski Gravity

The Horndeski Lagrangian [2180] is the most general scalar-tensor theory of gravity with a
scalar degree of freedom in addition to the metric, that respects the following conditions: it is
four-dimensional, Lorentz-invariant, local and has equations of motion with derivatives not higher
than second order. The latter condition guarantees that the theory is safe from Ostrogradski
instabilities [197]. We will consider only universal coupling between the metric and the matter
fields (collectively described by @, and contained in the matter Lagrangian £,,), which are
therefore uncoupled to the scalar field. The Horndeski action can be written as follows:

5
S[gum \Ij] = /d4x\/jg [Z ;Li[g;wv \Il] + Lm[g/wa (I)M]‘| ) (35.14)

= 87GN
Ly = Go(W, X),
L3 =—G3(¥,X)0V,
L4=G4(¥Y, X)R+ Gyx (¥, X) [(5\11)2 _ \IJ;MV\IJ§Nll:| ’
Ls = G5(V, X) G, T
- éG5X(\II, X) [(O0)® 4 20,0, W o — 30, U OV

The subscripts W, X denote partial derivatives, e.g. G;x = %C;g The choice of the arbitrary
functions G; (¥, X) of the scalar field ¥ and its kinetic term X = —%(%\I/ 0"V determines the
specific gravity model considered within this class. Several known models of dark energy and
modified gravity are contained within this class, such as quintessence, f(R) and Galileon models.

The evolution of linear perturbations in Horndeski gravity can be fully described by four

functions of (conformal) time 7 only [217,2181]:

i) ag is the kineticity function, representing the kinetic energy of the scalar perturbations
arising directly from the action;

ii) ap is the braiding function, which describes mixing of the scalar field with the metric
kinetic term;

iii) aypy is the Planck mass run rate, describing the rate of evolution of the effective Planck
mass;

iv) ar is the tensor speed excess, describing deviations of the propagation speed of gravitational
waves from the speed of light. This function has recently been constrained to be very
close to 0, its General Relativity value, by the detection of the binary neutron star merger
GW170817 and the associated gamma ray burst GRB170817A [1177,2182].

Constraints on these functions can be obtained from large-scale structure observations by
choosing a time parametrization, such as the one that traces the evolution of the dark energy
component Qpg(7):

ai(t) = &Qpg(t) i=K,B,MT (35.15)

and getting constraints on the proportionality coefficients &;. All of these functions are identically
vanishing in General Relativity, so that any detection of a value different from 0 would be a clear
signal of deviations from Einstein’s gravity. This is the idea developed in [2164] and [2183], using
cosmic shear as the cosmological probe (alone and in cross-correlation with other observables)
to constrain Horndeski gravity.
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In [2164], the authors present a Fisher matrix forecast for the Euclid survey, with the goal of
quantitatively predicting its constraining power on Horndeski parameters as introduced above
Eq. B5.2] The parameterization chosen for the evolution of the a functions is the one described
by Eq. The authors fix the values of ag and ap to 0, the former being largely uncorrelated
with the other three functions and unconstrained by large-scale structure probes, the latter
being strongly constrained by gravitational wave experiments. Moreover, they present a forecast
comparing tomography and 3d cosmic shear, presenting expressions for both formalisms in
a general modified gravity setting (similarly to the description provided in Sec. . They
simultaneously place constraints on a set of cosmological parameters describing the evolution of
the background (assumed to be well modelled by a ACDM model), as well as on the Horndeski
parameters oy and ap, which act at the perturbation level. They find that a 3D analysis can
constrain Horndeski theories better than a tomographic one, with a reduction of the errors of
the order of 20% on the Horndeski parameters.
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Figure 35.1: 1-0 Fisher forecast contours for Fuclid-like survey, obtained with tomography (red)
and 3D cosmic shear (blue). The parameters constrained are a set of standard cosmological
parameters describing the evolution of the background and the Horndeski &g and &y parameters
acting on the perturbations. As discussed in [2164], a 3D analysis tightens constraints on all
standard and Horndeski parameters of about 20% with respect to a tomographic analysis. The
figure is taken from [2164].

Despite performing a conservative cut in angular and radial scales and only using a linear
matter power spectrum for the calculation of the covariance of the cosmic shear modes, 3D cosmic
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shear performs better than tomography in constraining both standard and Horndeski parameters
(as shown in Fig. taken from [2164]). The two methods show similar degeneracies, despite
being completely independent in their implementation and based on two different formalisms. To
illustrate the importance of non-linear corrections, the authors produce constraints with 3D
cosmic shear and a prescription for the non-linear matter power spectrum based on [2184]; the
resulting increase in sensitivity from the non-linear corrections calls for the development of
nonlinear prescriptions for general dark energy models in view of applications to future datasets.

In [2183], the authors present a cross-correlation analysis of cosmic shear, galaxy-galaxy
lensing and galaxy clustering tomographic power spectra from ~450 deg? of cosmic shear data
from the Kilo Degree Survey (KiDS) and two overlapping spectroscopic samples from the GAlaxy
and Mass Assembly (GAMA) survey. The goal of this analysis is to provide the first constraints
on Honrdeski parameters achieved from currently available cosmic shear data (alone and in
cross-correlation with the other two probes). The methodology followed to model the power
spectra extends to a Horndeski gravity setting the analysis performed in [2185], carried out in
ACDM on the same power spectra dataset. The authors adopt the same parameterization for
the Horndeski o, aps functions chosen in [2164] (and given by Eq. [35.15)), finding values for
ap and épy compatible with ACDM. Interestingly, the values found for Sg = 0g5+/€2,,/0.3 (a
combination of the parameters €, and og particularly well probed by lensing) are in better
agreement with the Planck CMB values when the analysis is carried out in Horndeski gravity,
rather than in ACDM; the tension in the (), — og plane between large-scale structure and CMB
measurements is largely reduced in Horndeski gravity (see Fig.[35.2)).

1;17 ACDM‘ ‘ ‘ ‘ ‘ PE Horr;deski
1.20! PE 4 pem 4 pee ACDM | 1.20/| PE 4 pem L pe2 Horndeski .
Planck TT--lowTEB (Planck+2016) ACDM Planck (TT + low TEB) Horndeski
Planck TT + lowTEB (Planck+ 2016) ACDM
1.05¢ 1.05¢
& 0.90] & 0.90|
0.75¢ 0.75¢
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0.08 0.16 024 032 040 048 0.08 0.16 024 032 040 048
in in

Figure 35.2: 68% and 95% contours on the cosmological parameters Qy, and og. The grey
contours are obtained considering ~450 deg® of cosmic shear data from the KiDS survey; the
green contours are obtained from a joint analysis of cosmic shear - galazy-galaxy lensing and
galaxy clustering from the same KiDS samples and two overlapping spectroscopic samples from
the GAMA survey. In the left panel, large-scale structure and CMB probes are analysed assuming
a ACDM model (the Planck contours in magenta are the same as in [2186]). In the right
panel, the large-scale structure constraints are obtained assuming Horndeski gravity; in brown we
plot the Planck contours assuming Horndeski gravity, whereas in magenta the ACDM contours
of [2186] (the same as in the left panel) are reproduced for comparison.
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35.3 Higher-order Statistics and Lensing Peak Counts

Using different statistics, beyond the second-order Gaussian power spectrum, can help to capture
non Gaussian content and better discriminate among different cosmological models. An analysis
of a variety of different statistics in weak lensing observables has been extensively presented
in [2163]. In particular, it is relevant to ask the following questions: if a non-standard gravity
cosmology is mimicking a cosmological constant, can we distinguish the two scenarios using weak
lensing? Which statistic best discriminates them? Massive neutrinos are degenerate with the
strength of a fifth force gravitational interaction: higher values of the neutrino mass suppress
the growth of structure, and can therefore compensate higher values of the strength of the fifth
force interaction, which would enhance the growth. For example, an f(R) model with amplitude
fro ~ 1075 and massive neutrinos of m, ~ 1.5V can mimic the matter power spectrum of a
cosmological constant model with a neutrino mass of 0.06 eV (as currently typically fixed in
ACDM). Authors in [2163] then used hydro simulations for ACDM and different f(R) cosmologies
(of the type Hu-Sawicki), built on purpose to be degenerate in their matter power spectra. They
then compared different statistics in weak lensing observables, including variance, skewness,
kurtosis and peak counts, i.e. the number count of lensing peaks in their aperture mass maps.

Results show that peak counts best capture non-Gaussian information and represent the
statistic that has a higher chance to discriminate between f(R) and ACDM models, with a
discrimination efficiency that depends on redshift and angular scale of observation. Figure [35.3
from [2163] nicely shows this effect for a specific filtering scale.

Peak counts are therefore a promising tool for future weak lensing surveys. In addition, as
shown in forecasts presented in [2187], combining peak counts with lensing power spectrum can
improve the constraints on the sum of neutrino masses, on the relative matter density €2,,,, and
on the primordial amplitude A, by factors 39%, 32%, and 60% respectively, as compared to
constraints derived from the power spectrum alone [2188]. More recently, in [2189] the authors
proposed a new statistics that joins peaks and voids, and avoids the problem of defining what is
a peak or what is a void.

35.4 Machine Learning and the Dark Universe

Machine learning has recently seen an increase in applications in all fields, including cosmology for
which new opportunities and challenges have been recently summarised in [1605]. Convolutional
Neural Networks (CNN) have been used in particular on weak lensing observables, trained on
convergence maps, to discriminate models along the ,,, 0 degeneracy [2190-2192]. In [2193]
the authors also showed that the network can exploit information related to the steepness of local
peaks, rather than to their amplitude. More recently, it was shown in [2194] that CNN can break
the degeneracy discussed above between neutrino masses and the dark universe, significantly
outperforming all statistics, including peak counts.

We briefly recall here the main result developed in [2194], as this directly compares with what
discussed in and the python code used in the analysis has been made publicly available:
specifically, authors apply CNN to discriminating between ACDM cosmologies and f(R) (Hu-
Sawicki) models with massive neutrinos. The authors start from one simulation per model: this
is possible for a classification problem, for which simulations are done on purpose for models
which are degenerate at the level of the power spectrum. Convergence maps are then obtained
with random reorientation in the same simulation run; furthermore, a compressed representation
of the input is used, which reduces the dimentionality of the data and speeds up the training.
As known, the network learning procedure consists in updating the parameters (weights) in the
cost function via gradient descent and back-propagation in order to match the desired output.
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Figure 35.3: Histograms of aperture mass statistics for ACDM and fs5(R) models (i.e. Hu-
Sawicki models with amplitude fro = 107°) and different values of the neutrino mass m,. Each
histogram, with area normalised to one, comprises 256 samples of the statistic computed at a
filtering scale of ¥ = 0.586" and for sources at redshift zs = 2.0. Solid lines represent the result
of smoothing the distribution by KDE (cf. Sect. 5.8 in [2163]). Considering the most degenerate
case with ACDM, f5(R) with m, = 0.15 €V, second- and higher-order moments of M,y do not
appear able to distinguish the models. Peak counts, on the other hand, shown here for a 3o
threshold, cleanly separate the two distributions. It is interesting to note that peak counts separate
all f5(R) cases from ACDM by approximately the same amount, independent of m,,. The figure
is taken from [2163].

This learning (training) process is done on 75% of the available input data (for which labels are
known) and tested on the remaining 25% of input data. Validation accuracy (i.e. the ratio of
correct predictions to the total number of test observations) has been shown to go from 92%
(for a noiseless case) down to 48% for a pessimistic noise level.

The results in [2194] show that the CNN is able to discriminate ACDM from f(R) gravity
better than other statistics, including peak counts, for all choices of noise levels. For example, for
an intermediate/optimistic noise level (o = 0.35 standard deviation in Gaussian random noise),
ACDM can be discriminated with 79% accuracy (against 30% maximum accuracy for peak count
statistic, for the same redshift). Including all four source redshifts available {0.5,1,1.5,2} further
increases CNN accuracy to 87% for the same noise level. With respect to peak count statistic,
CNN also seems to be more efficient in discriminating among different neutrino masses, within
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f(R) scenarios. Different types of machine learning techniques were also tested on the same
simulations in [2195], finding that CNN is the one that best performs, among the ones tested.

While the results are promising for classification problems, this proof of concept opens the
path to new challenges. First, one may want to also address a regression problem, i.e. infer
cosmological parameters from real data: in this case, one can expect many more simulations to
be needed, and a different architecture to serve for regression. Second, one may expect weak
lensing systematics to also play a role when dealing with real data, and it is not clear at this
stage if machine learning will be robust to these systematics. This has to be investigated in the
future.
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