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Abstract

As the aim of any doping regime is to improve sporting performance, it has been
suggested that analysis of athlete competitive results might be informative in iden-
tifying those at greater risk of doping. This research study aimed to investigate the
utility of a statistical performance model to discriminate between athletes who
have a previous anti-doping rule violation (ADRV) and those who do not. We ana-
lysed performances of male and female 100 and 800 m runners obtained from the
World Athletics database using a Bayesian spline model. Measures of unusual
improvement in performance were quantified by comparing the yearly change in
athlete's performance (delta excess performance) to quantiles of performance in
their age-matched peers from the database population. The discriminative ability of
these measures was investigated using the area under the ROC curve (AUC) with
the 55%, 75% and 90% quantiles of the population performance. The highest
AUC values across age were identified for the model with a 75% quantile
(AUC = 0.78-0.80). The results of this study demonstrate that delta excess
performance was able to discriminate between athletes with and without ADRVs
and therefore could be used to assist in the risk stratification of athletes for anti-

doping purposes.
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Championships suggests the point prevalence may have been
between 15% and 18% at the respective events. Nevertheless,

The current level of prevalence of doping in elite sport is unknown.
Research studies involving anonymous athlete self-reports estimate
the prevalence of doping within a 12-month period to be between
20% and 62% across a range of elite sports.>? A recent study®
involving analysis of blood values taken from doping control tests
at the Daegu (2011) and Moscow (2013) World Athletics

James G. Hopker and Jim E. Griffin are equally contributing authors.

despite the number of blood and urine samples taken from athletes
across all sports remaining relatively consistent, with 241,430 taken
in 2021 (267,645 in 2012 and 278,047 in 2019), the percentage of
those samples returning adverse analytical findings is falling (1.76%
in 2012, 0.82% in 2020 and 0.77% in 2021).* Therefore, given the
aforementioned prevalence, questions can be raised about the effi-
ciency of the current anti-doping policy and testing strategies of
anti-doping organisations (ADOs) in identifying the right athletes and
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testing them at the right time. As a consequence, there is a need to
gather additional information on athletes to provide a forensic style
intelligence-led approach to anti-doping.” Such an approach would
allow ADOs to make more informed decisions about assigning ath-
letes to registered testing pools, better targeting of individual athlete
tests and ultimately more efficient distribution of their anti-doping
resources. Indeed, anti-doping authorities such as the World Anti-
Doping Agency and the Athletics Integrity Unit highlight the impor-
tance of an intelligence-led approach to anti-doping involving risk
stratification of athletes based upon their athlete biological passport
profile and performance. ¢’

Many factors can affect performance such as maturation,®
improved training’ and technological advances.'® However, as the
primary reason for an athlete to dope is to artificially enhance their
performance, it is intuitive to consider the analysis of their sporting
performance as important information for ADOs to inform their anti-
doping activities. To this effect, the most recent version of the Inter-
national Standard for Testing and Investigations’ highlights the use of
sport performance history, including sudden major improvements
and/or sustained periods of high performance as relevant factors indi-
cating possible doping/increased risk of doping. Indeed, athletic per-
formance has been shown to be sensitive to new anti-doping
practices, such as the introduction of the ABP and out of competition

11-13 suggesting that

doping tests in a range of sporting disciplines,
longitudinal monitoring of athlete performance is a viable method to
inform anti-doping practice.

The main objective of what we have previously termed
‘the athlete performance passport’ (APP)'# is to distinguish between
expected changes in sporting performance and disproportionate
improvements which may be indicative of doping. We have previ-
ously developed a Bayesian hierarchical model to investigate both
population- and individual-level longitudinal performance trajectories
over time adjusted for age-related changes.r® Our work illustrated
how individual performance progression could be modelled while
allowing for confounders, such as atmospheric conditions, and could
be fitted using Markov chain Monte Carlo. We calculate a term
called excess performance by subtracting the population performance
trajectory from the individual performance trajectory to show
whether an athlete is performing better or worse than their
age-matched counterparts. Therefore, as suggested above, sudden or
unexpected changes in an athlete's level of excess performance
might therefore be indicative of doping. Indeed, using this logic, we
have previously demonstrated the potential for distinguishing
between the career performance trajectories of clean and doped ath-
letes.'® However, for use in targeted anti-doping efforts, it is neces-
sary to identify athletes using a probability risk stratification
approach. The objective of this study was therefore to validate the
use of performance data to discriminate between athletes with and
without previous anti-doping rule violations (ADRV). First, competi-
tive performance results over 11 years were used to construct longi-
tudinal profiles for individual athletes with and without ADRVs
during this period; then, the performance of our Bayesian model was

tested using these profiles.

2 | METHODS
21 | Data

We extracted 100 and 800 m results for both male and female ath-
letes from publicly available results databases of World Athletics
including athlete ID number, date of birth, sex, country of birth, coun-
try of representation, event details, performance result (time [s]) and
finishing position. The 100 m data contained results from both male
and female sprinters who had at least five competition results
between 8 January 2011 and 28 August 2021. The database con-
tained 2834 male athletes who have a personal best below 10.5 s and
1297 female athletes who have a personal best below 11.6s. The
male data set had 95,376 observed performances, with the female
data set having 48,999 observations. The ages for males athletes
ranged from 12 to 47 years, whereas females ranged from 12 and
42 years. The 800 m data set contained results from both male and
female middle distance runners who had at least five competition
results between 1 January 2011 and 10 April 2022. The database con-
tained 4382 male athletes (104,594 performance results) and 3760
female athletes (92,606 performance results). We also accessed pub-
licly available sanction data to identify athletes with a previous ADRV.
These data are composed of the date and reason for the sanction.
Only sanctions imposed for substance use that have been shown to
have a performance enhancing effect relevant to the discipline
(i.e., 100 or 800 m) were included within the subsequent analysis.

2.2 | Modelling performance

Our methodology for modelling performance has been developed

14-17) We use the specifica-

over several years (see previous studies
tion of a Bayesian spline model documented in Griffin et al'® to con-
struct performance trajectories for individual athletes. In brief, our
model assumes individual performances can be represented as the
sum of an individual performance trajectory, the effects of sport/
discipline specific confounders and an observation error. The model is
summarised by the equation below for M athletes, with y;; indicating
the jth performance for athlete i at age t;; (measured in years) and x;;
representing any observed confounders (e.g., atmospheric conditions)
for that performance. We use n; to denote the number of perfor-
mances for individual i. The model is

y;,,»:h,»(t)-i-x,‘,,{-i-e,‘,,», j=1,.,n,i=1,...M,

where h; is the individual performance trajectory for the ith individual,
¢ is population-level regression coefficients for the effects of con-
founders and ¢;; is observation errors that are assumed to follow a
standard skew-t distribution.'® This error distribution, rather than the
usual normal distribution, allows for the skewness and heavy tails
observed in sporting performance data (i.e., poor performances lie
much further from the median performance than exceptionally good

performances). We express the individual performance trajectory h;(t)
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as the sum of two parts: the population performance trajectory g(t)
and the excess performance trajectory of the ith athlete so that
h;(t) =g(t) +fi(t). The excess performance trajectory represents indi-
vidual performances adjusted for the average performance of athletes
within the population at the same age and any confounders and forms
the basis of our risk stratification measure. The population perfor-
mance trajectory g(t) is modelled as a fourth-degree polynomial,
which Griffin et al'® find is sufficiently flexible for sporting perfor-
mance, and fi(t) is flexibly modelled by separate Bayesian linear spline
model for each athlete. The model is identified by assuming that the
prior mean of fi(a) is O, where a is the smallest integer age in
the database.

2.3 | Athlete risk stratification

We develop an athlete risk stratification measure using excess perfor-
mance, which adjusts individual performance for the expected effects
of age and confounders and therefore does not depend on absolute
level of performance (which will be heavily influenced by physiological
factors). To understand risk, we consider yearly changes (which we
term delta excess performance) and assume that an athlete who
increases their level of competitive performance more rapidly than
seen in the comparator population is likely to be at greater risk of dop-
ing and therefore warrant closer scrutiny by ADOs.

Specifically, at each age, we consider the 55th, 75th and 90th
percentiles of delta excess performance derived from the wider popu-
lation in our analysis and denote the corresponding risk scores as M1,
M2 and M3, respectively. Further details of this calculation using out-
put from a Markov chain Monte Carlo algorithm are given in
Appendix A.1. Under these risk scores, athletes with larger values will
have a greater risk of doping.

ROC analysis was used to evaluate the ability of the risk scores to
discriminate performance profiles as either leading to an ADRV or not
ADRV in the next x years. We treat this as a binary classification prob-
lem for each age and use the standard area under the ROC curve
(AUC) as our metric of classification ability. This metric takes values
between 0 and 1 with larger values associated with better discrimina-
tion. A value of 1 implies perfect discrimination, and 0.5 is the same as
guessing at random.

The use of ADRVs rather than the (unobserved) true doping sta-
tuses of athletes has some important implications. We can only con-
sider whether an athlete receives an ADRV over a specific number of
years, and so we will also define the doping status of an athlete over
the same period. We define the ‘doping’ group to contain athletes
who are, at some time during the period, involved with a doping
regime that is designed to increase their performance over time,
rather than those involved ‘one-off’ instances of doping. We will refer
to all athletes not in this doping group as ‘clean’. The period doping
prevalence levels discussed in Section 1 imply that many doping ath-
letes will never receive an ADRV and so the group without an ADRV
will contain both doping and clean athletes. As a consequence, if our

risk stratification measure was successful at discriminating between

doping and clean athletes, we could still achieve a low AUC measure
because many doping athletes do not receive an ADRYV in the corre-
sponding period. For example, if the risk measure could perfectly dis-
criminate between doping and clean athletes, then athletes who are
doping but have not received an ADRV will be recorded as misclassi-
fied. This will lead to an AUC value below 1 (potentially far below 1).
We quantify how the level of the mislabelling of doping athletes as
without an ADRYV affects the AUC metric in Section 2.4 with further
details provided in Appendix A.1.1.

The difference between the group of athletes with ADRVs and
the group of doping athletes (without ADRVs) also leads to the fol-
lowing trade-off in the choice of doping observation period. First, the
doping group contains athletes who are not doping at a given age but
subsequently start doping. For these athletes, our risk stratification
measures will be small because the performances before the athlete
starts doping will be unaffected by doping. As observation period
increases, the number of such athletes will tend to increase and so
increasingly affect our estimate of the AUC implying a shorter obser-
vation period is preferable. Second, because the number of athletes
with ADRVs will be small relative to the total number of athletes, the
accuracy of the ROC (and the AUC measure) deteriorates as
the observation period become smaller implying that a greater obser-
vation period will be preferable to avoid a very small doped group. In
our analysis we subsequently consider 3-, 5- and 8-year observation
periods to investigate this trade-off. In order to maximise the number
of ADRVs recorded for a given value of period, we combined data
across combinations of discipline and sex (i.e., 100 m males and
females and 800 m males and females). Table 1 shows the number of
‘doped’ athletes under this definition for different observation

periods at a range of ages.

24 | The effects on the AUC of the ROC curve of
doping athletes without an ADRV

As we discussed in Section 2.3, some doping athletes will not receive
an ADRV which will effect estimation of the AUC of the ROC curve.
To investigate this effect further, we will distinguish between the true
status of an athlete (which we will call either truly clean or truly dop-
ing) and the observed status of an athlete determined by ADRVs
(which we will call either observed clean or observed doping). The true
doping status could correspond to the one described in the previous
section, but the analysis can be used with any definition of doping

over a period. The approach makes several assumptions

e There are no false positives, and so a truly clean athlete will never
have an ADRV.

e The probability that a truly doped athlete has an ADRYV (the preva-
lence of ADRV's in the truly doping group), that is, the doping

detection rate, is the same for all doped athletes.

Under these assumptions, the prevalence of ADRVs is estimated

from the prevalence of doping divided by the detection rate. To
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Age ADRYV cases (3 years) ADRYV cases (5 years)
18 3 4
19 4 5
20 5 10
21 3 8
22 13 18
23 17 20
24 14 18
25 13 19
26 12 16
27 9 13
28 11 11
29 <) 9
30 7 7

TABLE 1  The number of identified

ADRY cases (8 years) .
ADRYV cases across age intervals.

7
11
12
12
22
26
23
22
16
13

TABLE 2 The effect of mislabelling of doping status on AUC values for a doping prevalence (p) of 21.2% Petréczi et al'? with high to low

doping detection rates (d).

AUCire
AUCobserved (p=21.2%, d=50%)
0.78 0.82
0.75 0.78
0.70 0.73
0.68 0.70
0.65 0.67
0.60 0.61
0.55 0.56
0.50 0.50

understand these two values, consider the following example. Sup-
pose that the prevalence over a period of 1 year is 21.2%.*? If all dop-
ing athletes only take part in a doping regime for 4 weeks randomly
distributed throughout the year, every athlete was tested once at ran-
dom throughout the year, and the test was perfectly accurate (i.e., the
test result was positive if the athlete was doping), then the doping
detection rate would be 4/52 =1/13 and the probability of an athlete
receiving an ADRV would be 1/13 x21.2% =1.6%. This is just an
example, and in practice, there are several potential confounders, such
as the presence of false negatives at the testing stage, variation in
doping regimes, time between doping and anti-doping test and varia-
tions in testing times. As a consequence, it is difficult to identify the
size of the athlete population sub-group who are doping but do not
have an ADRV. Therefore, within our model, we assume both the
prevalence and proportion of doping athletes within the sub-group to
be relatively stable over time, and therefore, the probability of detec-
tion to increase over the observation time period (i.e., 3, 5 or 8 years)
as more athletes will test positive. This approach therefore allows us
to accommodate for the aforementioned uncertainties in identifica-
tion of truly doping athletes. Therefore, the probability of an athlete
receiving an ADRYV (if doping) would simply be calculated by dividing

AUCire AUCire

(p=21.2%, d=30%) (p=21.2%, d = 10%)
0.83 0.85

0.80 081

0.74 0.75

071 0.72

0.68 0.69

0.62 0.62

0.56 0.56

0.50 0.50

the number of athletes with ADRVs by the number of athletes who
are defined as doping but without ADRVs, that is, having established
the size of the ADRV group, the choice of prevalence can be used to
establish the rate of doping detection (i.e., the probability of an athlete
receiving an ADRV if doping).

We distinguish between the AUC calculated using the true labels
(either truly clean and truly doped) which we will call AUC; and the
AUC calculated using the observed labels (either observed clean and
observed doped) which we will call AUCypserved-

To illustrate the effect of doping athletes without an ADRV on
the value of the AUC metric, we used estimates of doping prevalence

1.1 These researchers used a random-

from the work of Petréczi et a
ised response technique to estimate a doping probability in the previ-
ous 12-month period of 21.2% from athletes participating at the
World Athletics Championship in Daegu, South Korea. In Table 2, we
demonstrate the impact of changes in doping detection on the ability
of our performance model to discriminate between doped and non-
doped athletes considering Petréczi et al.'s probability of doping.
Given the WADA 2021 Testing Figures Report,* the total percentage
of adverse findings (0.65%) suggests detection is low assuming the

prevalence is as high as documented in research analysing both point
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prevalence from abnormal blood profiles (15% to 18%°), and period
prevalence from anonymous athlete self-reports (21.2%'). As such,
assuming a period prevalence of 21.2% and a low detection rate
(g=0.1), an AUCgpserved Of 0.75 equates to an AUC without mislabel-
ling, AUCe, of 0.81. Although this difference seems quite small, the
AUC metric will usually only take values between 0.5 and 1, and so if
interpreted in this context, the observed change from 0.75 to 0.81 is
relatively large, with values close to 0.80 suggesting very good

performance.

3 | RESULTS AND DISCUSSION

We considered the ability of the risk measures described in Section 2.3
to correctly classify performance profiles as receiving or not receiving
an ADRV over « years. Figure 1 shows how the discriminatory perfor-
mance of the risk measures (as measured by the AUC metric) changes
depending upon whether we consider athletes receiving an ADRV in
the following 3, 5 or 8 years.

For example, when considering the model performance over a
3-year period, the AUC value for age 19 quantifies the ability of the
risk measures to classify an athlete who is 19 years of age as either
not having an ADRV
(i.e., between ages 20 and 22). If we consider a 5-year period, we con-

having or in the subsequent 3 years
sider between the ages of 20 and 24, and an 8-year period, between
the ages of 20 and 27 years. As can be seen from Figure 1, the AUC
values are fairly stable for the different measures and whether the 3-,
5- or 8-year observation period is used. The risk measure M2 (which
uses a threshold of 75%) and the 5- and 8-year periods give slightly
higher AUC values on average than other choices. Therefore, we rec-
ommend the use of this risk measure. All risk measures perform better
for the ages 19 to 23 than 24 to 29. For ages 19 to 23, the AUC met-
ric is between 0.65 and 0.70, which suggests that the risk measures
can discriminate between athletes with and without an ADRV. Partic-
ularly since, as discussed in Section 2.4, this is an underestimate of
the AUC if we had access to the true doping status of athletes. For
ages 24 to 29, the AUC metric is stable between 0.55 and 0.65 which
suggests that the risk metrics are not able to consistently discriminate
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FIGURE 1 AUC values for model performance at different ages over periods of (a) 3, (b) 5 and (c) 8 years at thresholds of 55% (M1 = x), 75%

(M2 = A) and 90% (M3 = \/) using delta excess performance in 100 and 800 m athletes. Only age points that have more than five ADRV

athletes are considered within the AUC analysis.

35UB01 7 SUOWILLIOD A1 3ol jdde ay) Ag peusenob ale saoiie YO ‘8N Jo sajni 10} Akelq1auluQ A3]1AA UO (SUOIIPUOD-PUR-SWLLBYWD"AB | 1M AReld 1 pUIUO//SdNY) SUORIPUOD pue SWB 18U} 39S *[7202/T0/60] U0 ARiqiTaulluQ A8|IM 's301nies ARiqi TON uopuoafe|oD AsAIUN AQ £9G€BIP/Z00T OT/I0P/0D A3 1M ARIq 1 BU1UO'S [euNo BIUR 10S lea A feue//:SAny Wouy papeojumoq ‘0 ‘'TT9.ZV6T



s | WILEY

HOPKER ET AL.

between ADRV and non-ADRYV athletes for these ages. However, as
shown in Table 1, it is important to acknowledge that there are a
much greater numbers of ADRVs for ages 19 to 23 compared with
ages 24 to 29. This may also reflect that the detection probability is
lower between ages 24 to 29 and so the underestimation of the AUC
is larger for these ages.

ROC analysis allows us to consider the overall ability of a risk
measure to discriminate between doped and clean athletes. It is also
interesting to consider how we can choose a threshold for a given risk
measure above which an athlete is considered particularly high risk of
doping based upon their delta excess performance. To provide an
example, we will concentrate on risk measure M2 for the 100 m. We
want to choose a threshold for the posterior probability that the delta
excess performance falls outside (greater than) the 75% quantile risk
measure across all athletes and are therefore at greater risk of doping.
We used false positive and true positive rates to identify the posterior
probability level which minimised false positives and maximised iden-
tification of athletes with ADRVs. In order to assess the specificity of
the model using the 75% quantile at different age points, we assessed
the false positive rate across different probability levels for delta
excess performance. The true positive rate ranges between 0.20 and
0.67 across the ages due to the changes in the number of observed
true positives (i.e., ADRVs) recorded at each age and athletes within
the database. As an example, at the age of 21 years using a period of
3 years and a false positive rate of 0.1, a posterior probability thresh-
old of 0.8 results in a true positive rate of 0.57. Incorporating all ath-

lete's performance profiles in our sample (across years 2011 to 2022)

—_
Q
N

would result in approximately 10% of 100 m sprinters being flagged
per year for delta excess performance. This level of prevalence is
based upon our observation of athletes who receive an ADRV over a
fixed number of years, which will be an underestimate of the true
doping prevalence, and is lower than has been reported by previous
self-report and randomised response studies,"? due to the assumed

high rate of false negatives.

3.1 | Application to the individual athlete
The output from our model is in the form of individual performance
trajectories (adjusted for covariates such as seasonality and wind
effects) and is presented across four different sets of analysis.
Figure 2 illustrates the performance trajectories for two 100 m ath-
letes, one with and one without an ADRV. The data points in the first
column represent the raw performance times of each individual
adjusted for covariates. The second column represents the data
adjusted by the posterior mean population performance trajectory,
month and wind effects. The third column shows the delta excess per-
formance, and the fourth column is the probability that the delta
excess performance exceeds the 75% quantile of the population
distribution.

As can be seen from Figure 2, the athlete with ADRV (top row)
demonstrates a negative excess performance (panel b), suggesting
that their performance is better than anticipated given the perfor-

mance level of age-matched peers. Similarly, the delta excess
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2 lllustrative performance model plots from a male sprinter with an ADRYV (top row) and a male sprinter without an ADRV (bottom
row). (a) Athlete raw performance with median (solid line) and confidence intervals (dashed lines), (b) athlete excess performance with median

(solid line) and 95% credible interval (dashed lines), (c) yearly delta excess performance and (d) probability of yearly delta excess performance to
exceed 75th percentile of the population. Dashed vertical line illustrates the timing of athlete A's ADRV.
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performance in this example has a high probability of exceeding the
75% quantile (panel d), suggesting that their performance is evolving
at a faster rate than anticipated at the time of their ADRV (shown by
vertical dashed line), and appears to be unabated, even after returning
to competition following their doping ban. The athlete's level of
excess performance (panel b) continues to increase as they age, reach-
ing 0.6's by the age of 34 years, that is, their performance decline
with age is much slower compared with their age-matched peers.
Linked with this, there is a high probability that the athletes have
exceeded the 75% quantile for delta excess performance at the time
of their ADRV, acknowledging the uncertainty within the model esti-
mates. Specifically, setting the probability of delta excess at 0.9 would
flag Athlete A's performances at the ages of 21-23 and 26-27 years.
By comparison, the athlete without the ADRV (Figure 2 bottom row)
who has a similar absolute performance level still demonstrates excess
performance suggesting that their performance is consistently about
0.3 s better than their age-matched counterparts (panel b), but their
delta excess performance is Os (panel c), which indicates that
their career evolves at the anticipate rate for their age. As a conse-
guence, there is a very low probability that the athlete would exceed
the 75% quantile delta excess performance (panel d). Therefore, we
would conclude that the athlete is a high-level sprinter that is per-
forming better than their age-matched counterparts but at a low risk
of doping.

Our retrospective analysis of competitive performance data in
athletes with and without ADRVs provides an indication that longitu-
dinal monitoring of competition results has a valuable role to play in
the fight against doping in sports. Specifically, by combining this type
of performance monitoring with other sources of data (e.g., biological,
whereabouts and social networks), there is the potential to improve
the effectiveness and efficiency of anti-doping programs and bring
greater certainty to the process of athlete risk stratification. In turn,
athletes with a higher probability of doping risk would therefore be
subject to closer scrutiny by ADOs. Moreover, given the longitudinal
nature of our modelling approach and comparison to the age-matched
population performance trajectory, even though an athlete may have
been ‘clean’ for many years, it is possible to ‘detect’ an abnormal
change in excess performance when doping occurs at the latter part
of a career to sustain a given performance level. Even though our
method could be applied to any sport in which the performance is
determined by a measurable outcome (e.g., in seconds, grams or centi-
metres), it is important to acknowledge that the model currently only
considers athletic competition results in isolated disciplines. As a con-
sequence, there is potential to miss important performance-related
information where an athlete competes over multiple events (e.g., 100
and 200 m or 800 and 1500 m). Future research is needed to consider
how performance-related information can be shared across different
events to construct a complete performance profile for individual ath-
letes. Moreover, future research should consider the efficacy of using
longitudinal performance profiling for anti-doping purposes in team
sport. The availability of large databases capturing all events gener-
ated during team sport at both match and individual player level pro-

vides an opportunity to quantify excellent performance and what

separates a top player from others. The challenge in team sport is to
account for the influence of tactical confounders (e.g., team forma-
tion, style of play and player role) on the physiological performance
capacity of the individual (e.g., total distance covered, total distance
covered within specific running speed zones, number of high speed
runs, number of sprints, top speed and work:recovery times measured
via time-motion analysis). Unique combinations of the above physical
and tactical parameters can be used to develop appropriate age-
related physiological performance trajectories for players and thereby
inform talent ID, development of training programmes and/or for

anti-doping purposes.

4 | CONCLUSIONS

This study demonstrates the utility of performance monitoring to
discriminate between athletes with historical ADRVs and those
without. Specifically, we demonstrate how our model could be
utilised to identify athletes who are at greater risk of doping. How-
ever, it is important to recognise that high levels of delta excess
performance are not sufficient to prove an athlete is doping and that
information obtained from this type of analysis should be integrated
with other data as part of a wider intelligence gathering approach
to anti-doping.
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APPENDIX A

A.1 | Calculating the risk measure from Markov chain Monte
Carlo output

Run the Markov chain Monte Carlo algorithm in Griffin et al,*> we will
use 0© to represent the sth posterior sample of a parameter ¢ and
assume that there are S samples. We define a and b to be smallest
and largest integer ages in database respectively. We can calculate

the risk measures in the following way:

1. Fori=1,..,,Mandj=a,..,b, calculate a posterior sample for A;; by
AP =£7() £~ 1) fors=1,....

2. Fori=1,..,M and j=a,...,b, calculate the posterior median of Aj;,

(1) S

i e A

3. We calculate the percentile of the med(A,-,,-) restricted to athletes

denoted med(4j;), by taking the sample median of A

with performances in the period from j to j+1. Let iy,...,i; be the

indices of the athletes with a performance in that period and calcu-

late the given percentile (50% for M,1J 75% for M,Zj and 90% for
ij) of med(Aj), ..., med(AiiJ») which is written g;

4. Fori=1,..,Mand j=a,...,b, calculate the risk measure for ith ath-
lete in period j as the posterior probability that A,-ij is greater than
q; which can be calculated by

w0l =

(A6
S
) '(Au >qi>’
s=1

where I(x) =1 if x is true and O otherwise.

A11 | The effects on the AUC of the ROC curve of doping
athletes without an ADRV

In this appendix, we provide more details on understanding the effect
of doping athletes without ADRVs on the ROC curve and the AUC
metric including mathematical details.

For a randomly chosen athlete, we define the random variables O
to represent the observed status of that athlete (clean/doped) and Y
to represent the true status of that athlete (clean/doped). We define
O=1 if the athlete is observed doped and O=0 if the athlete is
observed clean (and similarly for Y). The assumption in Section 2.4 can

be expressed as follows:

e There are no false positives, and so a truly clean athlete will never
have an ADRY implying that Pr(O=0]Y =0) =1.

e The probability that a doped athlete has an ADRVs is g and is the
same for all doped athletes. This implies that Pr(O=1|Y=1)=gq
andso Pr(0=0|Y=1)=1—q.

e The prevalence of doping is w which implies that Pr(Y=1)=w or
Pr(Y=0)=1-w.

Gneiting and Vogel?® show how the theoretical ROC curve can
be written in terms of the probability distributions of the risk measure
for the clean and doped groups. If we consider the truly clean and
doped groups, the distribution of the risk measure for the truly clean
and truly doped groups are denoted Fi and Giye. The ROC curve
for these true groupings can be written as

Rtrue(p):1_Gtrue(Ft7r3e(1_p))v O<p<1.
Similarly, we can define a theoretical ROC curve under the observed

groupings. This involves the distribution of the risk measure for the

observed clean and observed doped groups which are denoted
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Fobserved and Gopserved- We can link these distributions to Fie and
Giree. First,

Pr(0=0) =Pr(0=0|Y="1)Pr(Y =1)+Pr(O=0|Y =0)Pr(Y =0)

1-w

=1-gw+1l-w=1—-qw,
Pr(0O=1) =Pr(O=1|Y=1)Pr(Y=1)
+Pr(0=1|Y=0)Pr(Y=0) =
0

Pr(X <x,0=0) =Pr(X<x|0=0,Y=0)Pr(O=0]Y =0)Pr(Y =0)
+Pr(X<x|0=0,Y=1)Pr(O=0|Y =1)Pr(Y=1)
= Firue(X) (1 = W) + Girue (X) (1 —q)w.

and
Pr(X<x,0=1) =Pr(X<x|O=1Y=0)Pr(O=1|Y=0)Pr(Y=0)
0
+Pr(X<x|0=1,Y=1)Pr(O=1|Y =1)Pr(Y =1)

= Gtrue (X) qw.

This allows to calculate Fopserved and Gopserved as

Fopserved(X) =Pr(X<x/0=0) = %
:Ftrue(x)(l_w)+Gtrue(X)(1_Q)W (Al)
1—qw

=rFirue(X)+ (1 _r)Gtrue(X)v

PriXz<x,0=1
Gobserved (X) =Pr(X<x]0=1) = W = Girue (X), (A2)
where r= W This could be used to express the theoretical ROC

curve for the observed groups, which is

Robserved (P) = 1 — Gobserved (F;blsen/ed (1- p)) , 0<p<1,

in terms of Fopserved and Gopserved (although this does not lead to a
simple expression).

We now consider how AUC pserved is related to AUCe. First, we

can show that AUCpserved Can be expressed as

1 1
AUCobserved = /(; Robserved (P)dp =1 7/0 Gobserved (F;blserved (1 - P)) dp

1
:/ Fobserved (G;blserved (p)) dp'
(o]

A proof of this result is given in Appendix B. Using (A1) and (A2),
we get

1

AUCobserved = observed observed (p)> dp

1
1—1)Gurse (Gt (P)) + rFirse (Gitep) )
1

No\c\

(H)pdp+r/0 Furse (Gl (0)dlp

r 1 +rAUCe.

=(1-n3

APPENDIX B: PROOF OF EXPRESSION FOR AUC pscrved

Consider
A
AUCobserved =1- [) Gobserved (F;blserved(l - p)) .
Making the change of variable (1 —p) — p leads to
A
AUCobserved =1- /O Gobserved (F;t;lserved (p)) dp-

Assuming that Fopserved and Gopserved are continuous implies that
the composition of the functions Gopserved and Fokeq is continuous

Gobserved (F;blserved (0)) =0 and
Gobserved (F t;l;lserved(l)) =1 because Fopserved aNd Gopserved are distribu-

and invertible.  Furthermore,

tion functions. We can apply Laisant's integral formula for inverse

functions?! to derive the result

1
/c; (Gobsen/ed (F(:l;[served)) (p)dp

1
_ -1
+/0 (Gobserved °F0b15erved) (p)dp =1.-1-0-0=1,
or due to the properties of the inverse of a function composition,

1 1
./0 Gobserved (F;[;lserved (p))dp + /0 Fobserved (G;blserved (p)) dp =1.

This final equation implies that

1
AUCobserved =1- /0 Gobserved (F;biserved (p)) dp

1
= / Fobserved (G;[;lsen/ed (p)) dp‘
0
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