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MOTIVATION Automated phenotyping of mouse behavior is essential for improving standardization and
increasing throughput, especially in the context of translational research, which may involve large numbers
of different mouse groups. Unsupervised automated phenotyping of mouse cognitive functions, such as
learning and memory, has been particularly challenging. Moreover, ideally the testing should be animal-
friendly and ethologically relevant. Here, we present the homemonitoring system, which includes fully auto-
mated implementation of T-maze, novel object recognition, and object-in-place tests, as well as monitoring
of locomotion activities. All testing is carried out with no food or water restrictions.
SUMMARY
Automated home-cage monitoring systems present a valuable tool for comprehensive phenotyping of natu-
ral behaviors. However, current systems often involve complex training routines, water or food restriction,
and probe a limited range of behaviors. Here, we present a fully automated home-cage monitoring system
for cognitive and behavioral phenotyping in mice. The system incorporates T-maze alternation, novel object
recognition, and object-in-place recognition tests combined with monitoring of locomotion, drinking, and
quiescence patterns, all carried out over long periods. Mice learn the tasks rapidly without any need for water
or food restrictions. Behavioral characterization employs a deep convolutional neural network image anal-
ysis.We show that combined statistical properties ofmultiple behaviors can be used to discriminate between
mice with hippocampal, medial entorhinal, and sham lesions and predict the genotype of an Alzheimer’s dis-
ease mouse model with high accuracy. This technology may enable large-scale behavioral screening for
genes and neural circuits underlying spatial memory and other cognitive processes.
INTRODUCTION

Characterizing animals’ natural behaviors1,2 is paramount for

understanding how the brain works. Currently, available tests

are limited in scope and duration and often lack ethological

relevance. In addition, the results commonly show significant
Cel
This is an open access article und
variability due to variation in experimental conditions (e.g.,

food or water restriction, time of an experiment), individual

animal differences, and potential subjective bias of the experi-

menter. To address these limitations, several automated plat-

forms have been introduced.3–6 While progress in automated

passive monitoring of motor behavior (e.g., an animal’s
l Reports Methods 3, 100532, July 24, 2023 ª 2023 The Authors. 1
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position, speed, posture) has been significant owing to the ad-

vances in software algorithms and hardware equipment, the

so-called active phenotyping (whereby a mouse is required to

perform memory and other cognitive tasks in their home cages)

still presents a major challenge. Namely, all current commercial

systems require elaborate pre-training involving food or water

restriction.7–10 These requirements may induce biologically un-

natural conditions and limit the duration for which the testing

may be carried out. Lastly, the current systems are limited in

the range of cognitive performances they are designed to

test. Specifically, they implement different versions of place-

preference tasks,7–10 whereby a mouse has to learn and relearn

places associated with food or water rewards. No currently

available home-cage-based monitoring system includes auto-

mated T-maze alternation,11,12 novel object,13,14 and object-

in-place15 recognition tasks.

Here we describe the smart-Kage, a home-cage monitoring

system for fully automated comprehensive cognitive and

behavioral phenotyping of individually housed mice, compatible

with long-term experiments. To demonstrate the usefulness of

this system for basic and translational research, we character-

ized a small group of mice with hippocampal and medial ento-

rhinal lesions known to exhibit substantial impairments on

spatial memory tasks,16 as well as the widely used AppNL-G-F

Alzheimer’s disease (AD) mouse model.17 Cognitive tasks

include T-maze-like alternation (‘‘smart T-maze’’), novel object

recognition (‘‘smart NOR’’), and object-in-place recognition

(‘‘smart OPR’’) tasks carried out continuously and simulta-

neously in the smart-Kage without any interference from the

experimenter. These tasks constitute some of the most widely

used spatial memory tasks and are part of most standard

behavioral test batteries designed to assess learning and mem-

ory.18 In addition, the system monitors an animal’s position,

water consumption, quiescence, and locomotion patterns. We

show that mice with hippocampal lesions can be separated

from those with medial entorhinal lesions and sham controls

on an individual animal basis. Moreover, in tandem with a short

(�7 days) test on a standard forced-choice T-maze task, indi-

vidual mice from all three groups could be separated with

high (>90%) accuracy. Finally, we could identify individual

AppNL-G-F mice with 80% (4/5 mice) accuracy, which was com-

parable to the performance of the analogous gold-standard

T-maze, NOR, and OPR tests.
Figure 1. The smart-Kage system
(A) Side (left) and front (right) views of the smart-Kage with all components label

(B) Top views of the smart-Kage interior with example CNN-based video t

mouse exploring the surface of a side panel, mouse running on the wheel, and

body part.

(C) Automated phenotyping pipeline. Phenotyping begins by collecting top-view

stored on network-attached storage (NAS) devices and backed up to the cloud a

mouse trajectories and body postures. A random forest classifier is used to assign

the underlying mouse phenotype using agglomerative (hierarchical) clustering.

(D) The smart-Kage behavioral labeling accuracy (top) is evaluated as the ability

ground-truth frames used to calculate the phenotyping performance is shown at t

to running on the wheel (W) or quiescence states (Q). Each T-maze trial prediction

the nose-poke ports, resulting in 100% accuracy in this category (not shown).

(E) An example of the performance on the smart T-maze at different ITI collected

See also Figures S1–S3 and Video S1.
RESULTS

The smart-Kage system
The smart-Kage consists of three connected compartments (two

corridors and an open space compartment) separated by three

transparent boundaries (Figures 1A, 1B, and S1A). Each corridor

leads to a water spout accessed through a nose-poke port with

infrared sensors to detect the mouse’s drinking attempts. On

each side of the smart-Kage, 20 mL water reservoirs are con-

nected to the drinking spouts via small solenoid valves attached

to the sides of the cage, which automatically open whenever a

mouse triggers infrared sensors at the ‘‘correct’’ nose-poke

ports.

The smart T-maze alternation task is designed to emulate the

standard T-maze alternation task,11,12,19 which is a highly sensi-

tive working memory test for detecting hippocampal damage20

because its successful execution requires an animal to

remember its previous choices. Spontaneous alternation is a

natural tendency of mature rodents to alternate their choice

arms on a T-maze (or Y-maze), which becomes severely

impaired in rodents with hippocampal lesions.21 The forced-

choice alternation test is analogous to the spontaneous alterna-

tion test. However, in the former case the task consists of a

sample and a test phase: during the sample phase, one of the

choice arms is blocked by the experimenter, with the reward

placed at the end of the freely accessible arm; during the test

phase, the animal must choose the opposite arm from the previ-

ously visited one to receive the reward (Figure S1G). The impair-

ment is negatively correlated with the duration between two

consecutive choices called the inter-trial interval (ITI).12

Normally, standard spontaneous alternation, as well as forced-

choice T-maze tasks, are conducted with a fixed ITI,12,21 which

for practical considerations is usually constrained to <1–5 min

(at longer intervals the trials become prohibitively long, and the

mouse starts jumping out of the ‘‘start arm’’). The smart

T-maze task requires the mouse to alternate between the left

and the right corridors to activate the water release, probing

the mouse’s ability to recall the position of its previous choice

(Figure S1G). The water is supplied for as long as the mouse

keeps its nose in the port (short <1 s withdrawals were allowed

before shifting the active spout to the opposite side). Similar to

the ITI in standard T-maze tasks, ITI was measured as the time

elapsed between different spout visits, i.e., the time between a
ed. The schematics is provided up to scale.

racking of different mouse behaviors. From left to right: mouse drinking,

mouse in a quiescent state inside the nest. Each dot labels a specific mouse

videos of the smart-Kage interior through an infrared (IR) camera. The data are

nd offline external storage. The videos are then analyzed using CNN to obtain

behavioral labels. In the final stage, behavioral parameters are used to predict

of the classifier to avoid false and find true positives (F1 score). The number of

he bottom; drum exploration (L-dr, R-dr) is a much sparser behavior compared

was immediately checked against the ground-truth activation of IR sensors in

from one mouse continuously tested over >8 months.

Cell Reports Methods 3, 100532, July 24, 2023 3



Article
ll

OPEN ACCESS
mouse leaving the corridor after the nose poke and the next

trigger of infrared sensors at a nose-poke port. The ITI is not en-

forced on the mouse (i.e., a mouse freely chooses when to make

the next visit to a drinking spout) and, consequently, the perfor-

mance of a whole range of ITIs (ranging from tens of seconds to a

few hours) can be measured on the smart alternation task.

The smart NOR and OPR memory tasks take advantage of

rodents’ innate tendency to exhibit increased exploratory activity

toward new stimuli, similar to the analogous standard NOR and

OPR memory tasks.13,14,22 Standard NOR and OPR tasks begin

with a sample phase, whereby a mouse is placed in the familiar

open arena and is presentedwith two unfamiliar objects that they

can directly explore for several minutes (Figure S1H). After a

fixed ITI ranging from seconds to days, the mouse is returned

to the same familiar arena for a test phase and is presented

with two objects, one familiar and one unfamiliar. In the OPR

task, both objects are familiar during a test phase, but their loca-

tions are swapped. It has been suggested that the performance

on standard NOR andOPR tasksmay be affected in rodents with

parahippocampal and hippocampal lesions, respectively.22 The

smart-Kage incorporates an analogous NOR task, which is im-

plemented by two rectangular panels (6.4 cm 3 9.2 cm) posi-

tioned symmetrically on each side wall (Figures 1A and S1).

The surface of the panels can change between eight distinctly

different textures and colors (e.g., aluminum foil, different grades

of sanding paper, plastic surfaces, etc.), and a mouse can

directly explore them by touch, smell, and vision, similar to direct

object exploration in standard NOR and OPR tasks. The surface

panels are attached to two octagonal drums flanking the sides of

the smart-Kage. Different surface panels are presented via the

rotation of the drums. The drums are rotated by rotors placed

in the centers of the drums (Figures 1A and S1). The rotation oc-

curs only when amouse is engagedwith one of the water spouts,

so it cannot directly observe the change. The drums are set to

rotate once every two days around the middle of the dark phase

(i.e., when the light in the mouse-holding room is off). The smart

NOR task is quantified by measuring the exploration time asso-

ciated with the change of the surface panel. The changes can

happen on either wall individually (left or right NOR) or on both

walls simultaneously (double NOR). The smart OPR task con-

sists of presenting the same patterns as previously, but at

‘‘swapped’’ locations. We also implemented hybrid changes,

with one of the walls assuming the pattern identical to the previ-

ous one on the opposite wall while the latter changes to a

completely new unseen pattern or remains unchanged

(Figure S1F).

Mouse activity within the smart-Kage was continuously re-

corded by an overhead infrared (IR) camera at two frames per

second (0.5 s temporal resolution). Themouse’s precise position

was determined by employing a deep convolutional neural

network (CNN)23 with 1.85 mm spatial resolution (Figures 1A–

1C and S2A–S2C; STAR Methods). Mouse behaviors were

grouped into four distinct categories of interest (Figure 1B and

Video S1): (1) T-maze choices; (2) drum-panel exploration; (3)

running on the wheel; and (4) quiescence states. The behaviors

of interest were inferred from the collected set of mouse trajec-

tories and body postures using a random forest classifier (Fig-

ure 1C), which achieved >80% prediction accuracy when
4 Cell Reports Methods 3, 100532, July 24, 2023
compared against manually annotated ground-truth frames (Fig-

ure 1D and STAR Methods). All behavioral and cognitive pheno-

typing tests were run automatically, continuously, and in parallel

without any interference from the experimenter. Mice quickly

learned the tasks without any need for water or food restrictions.

Importantly, the system performance was stable over time and

was well suited for long-term studies (Figure 1E; >8 months,

limited only by the duration of the experiment).

System application for phenotyping different mouse
groups
To demonstrate the usefulness of the smart-Kage for cognitive

and behavioral phenotyping, we first tested three groups of

C57BL/6J mice with the experimenter blinded to the mouse’s

phenotype: mice with ibotenic-acid-induced lesions in (1) the

hippocampus (HP mice, n = 5); (2) medial entorhinal cortex

(mEC mice, n = 4); and (3) a control group (control mice, n = 9)

that received sham surgical procedures in the hippocampus,

medial entorhinal cortex, or medial prefrontal cortex (Figure S3).

All sham groups were combined into a single control group for

further analysis, since there were no detectable behavioral or

cognitive differences among them. The sample size of the HP

group was chosen a priori based on the expected large effect

size (Cohen’s d = �2.5) of the performance on the standard

T-maze alternation task of HP vs. control mice.24,25 To achieve

statistically robust conclusions, the estimated minimal group

size of 4 is required with the power set to 0.8, the significance

level to 5%, and the expected effect size of 2.5 (to calculate a

sample size, we used the G*Power software package with

two-tailed Wilcoxon signed-rank test [one sample case]). The

performance of mECmice on similar tasks is less well character-

ized. As a result, we used the estimated sample size for the HP

group (i.e., n = 4). All mice were randomly assigned to each

group prior to commencing the study. The mice were run in

two batches (Figure S1E and Table S1). They were tested

for �1 month in the smart-Kages before lesioning, followed by

an additional 2 months post-surgery testing.

To benchmark the performance of the smart-Kage, the same

mice also underwent a battery of gold-standard spatial memory

tests (T-maze forced-choice alternation, NOR, and OPR

tasks)8,11,13,14,26 either after (the second batch) or both before

and after (the first batch) they were tested in the smart-Kages

(Figure S1E).

To demonstrate the usefulness of the smart-Kage for trans-

lational research, we also blindly tested a small number of

AppNL-G-F mice (Table S1), which were previously reported

to exhibit mild cognitive deficits on spatial memory tasks.17,27

Finally, we characterized ten additional C57BL/6J mice with

no lesions (Table S1) to test the generality of our clustering

analysis.

Smart T-maze task
Since access to the water spouts was unrestricted, ITIs were un-

constrained. For visualization purposes, we have arranged these

ITIs into three groups, <2 min, 2–10 min, and >10 min, reflecting

short, mid-range, and long-term working memory, respectively.

All pre-lesionedmice rapidly learned the smart T-maze task, per-

forming above chance levels after 1 day at <2 min ITIs and after
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�2.5 days at 2–10 min ITIs (Figure 2A). The performance drop-

ped rapidly with longer ITIs, reaching the chance level at

�10 min ITI (Figure 2B), consistent with the working memory

time span measured on the standard T-maze task.12 The spatial

working memory was significantly impaired in mice with hippo-

campal lesions compared to their pre-lesion performance and

sham controls (Figures 2C and 2D). Specifically, we observed

a significant drop in maximum performance (Figures 2D and

2F: 81.8 ± 2.6% pre-lesion vs. 58.3 ± 2.7% post-lesion, t =

6.2765, p = 0.0099, paired Student’s t test, significant after

Benjamini-Hochberg correction, p < 0.05) and a non-significant

reduction in the working memory time span (Figures 2D and

2G: 10.2 ± 1.2 min pre-lesion vs. 5.6 ± 1.7 min post-lesion, t =

2.6388, p = 0.1731, paired Student’s t test). On the other hand,

there was no significant change in maximal performance in

mEC mice (Figures 2E–2F: 80.3 ± 2.0% pre-lesion vs. 75.1 ±

6.1% post-lesion, t = 0.5452, p = 0.6235, paired Student’s t

test). Notably, in HP mice, the performance started to improve

after �1.5 months post lesion (Figure 2C). This performance

compensation timescale is comparable to the observations in

other well-known hippocampal-dependent tests, such as the

Morris water maze (�43 days).28 We also found that impairment

on the smart T-maze alternation task in HP mice was accompa-

nied by a significant increase in spout visits at shorter ITIs

(Figures 2D and 2H: 41.7 ± 8.9 visits/day pre-lesion vs. 148.4 ±

24.0 visits/day post-lesion, t = �5.8164, p = 0.0129, paired Stu-

dent’s t test, significant after Benjamini-Hochberg correction,

p < 0.05). The results are consistent with previous findings

demonstrating larger water consumption in animals with hippo-

campal lesions.29 No such phenotype was observed in mice

with entorhinal lesions (Figures 2E and 2H: 33.9 ± 0.9 visits/

day pre-lesion vs. 51.2 ± 16.4 visits/day post-lesion, t =

�0.9501, p = 0.4122, paired Student’s t test). Statistical tests

for additionally tested T-maze behavioral features, which were
Figure 2. Smart T-maze alternation task

(A) The smart T-maze alternation task is rapidly learned at shorter ITI periods (<

(>10 min): teal. The performance on longer ITI periods (>10 min) is below chance

(B) The average distribution of performance (top) and daily frequency of spout visit

(ITI at 50% T-maze performance).

(C) Running average performance at different ITI intervals (top) and frequency of sp

dashed line). The performance for all ITI domains significantly dropped after the l

improved after �1.5 months post lesion (red arrowhead). The horizontal dashed

(D and E) The average distribution of performance (top) and daily frequency of spo

indicates the memory time span.

(F–H) Maximum performance (F), memory time span (G), andmaximum number of

post-surgery (orange). (F) Maximum performance between pre-lesion vs. post-les

76.3 ± 1.9% vs. 79.4 ± 1.1%, t = �1.5796, p = 0.2292; HP: 81.8 ± 2.6% vs. 58.3 ±

p = 0.6235). (G) Memory time spans are not significantly different between pre- vs

p = 0.4954; HP: 10.2 ± 1.2 min vs. 5.6 ± 1.7 min, t = 2.6388, p = 0.1731; mEC: 10.1

during pre- vs. post-lesion is significantly increased in HPmice while it remains com

visits/day, t = 1.0214, p = 0.4122; HP: 41.7 ± 8.9 visits/day vs. 148.4 ± 24.0 visits/da

t = �0.9501, p = 0.4122).

(I) The performance of the same mice on the standard T-maze task. The performa

t = 4.7058, p = 0.0008; control vs. mEC: t = 3.5735, p = 0.0046), whereas there is

(J) Daily average performance on a standard T-maze task in control (left), HP (m

Pre-lesion period, blue; post-lesion period, orange. All data are represented as m

was used for all comparisons, unless stated otherwise. The normality of the data

rate with Benjamini-Hochberg correction. *p < 0.05, **p < 0.01, ***p < 0.005; n.s.

See also Figures S1G and S3 and Table S1.
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not significantly different between groups, are shown in

Figure S4A.

Importantly, unlike the difference in performance between the

HP and mEC groups observed on the smart T-maze task, mice

with both hippocampal and entorhinal damage showed dramatic

impairments on a standard forced-choice alternation T-maze

task (Figures 2I and 2J). Our findings indicate that although both

standard and smart T-maze tasks are hippocampal dependent,

they have remarkably different sensitivity to mEC lesions, which

appears to depend on the lesion size (Figure S3). Currently the un-

derlying cause of this difference remains unknown. However, this

offersanunprecedentedopportunity touseboth tests in tandemto

distinguish between the hippocampal,medial entorhinal, and con-

trol mice on an individual animal basis with 94% accuracy.

Smart NOR and OPR tasks
Our results show that all groups increased their exploration time

in response to the change of a surface panel (Figures 3A and 3B).

Similar to observations in standard tests, the increase in explora-

tion was a natural behavior that did not require any pre-training

and occurred from the first encounter (Figures S5A–S5C). The

time to notice the change was comparable in all mouse groups

(Figure 3B; 1.2 ± 0.1 min vs. 1.6 ± 0.2 min vs. 1.4 ± 0.2 min in

control, HP, and mEC groups, respectively; F = 2.58, p =

0.109, one-way ANOVA). There was also no significant change

in average exploration time pre- and post-lesion in both smart

NOR and OPR tasks in any of the different mouse groups

(Figures 3C–3F; p > 0.25). Similarly, we found no significant dif-

ference between all groups when tested on the standard NOR

and OPR tasks (Figures S5D and S5E; STAR Methods).

Locomotion and quiescent behaviors
In addition tomeasuring the performance of the mice on cognitive

memory tasks,wealsoassessed their locomotionandquiescence
10 min). Short ITI (<2 min): magenta; medium ITI (2–10 min): purple; long ITI

levels (p < 0.05, binomial test).

s (bottom) in control mice. The red dashed line indicates the memory time span

out visits (bottom) in HPmice before and after the hippocampal lesions (vertical

esion, accompanied by a significant increase in spout visits. The performance

line indicates chance-level performance.

ut visits (bottom) in HP (D) and mEC (E) mice, respectively. The red dashed line

daily drinking attempts (H) in control, HP, andmECmice pre-surgery (blue) and

ion is significantly reduced in HPmice but not inmEC or control groups (control:

2.7%, t = 6.2765, p = 0.0099; mEC: 80.3 ± 2.0% vs. 75.1 ± 6.1% , t = 0.5452,

. post-lesion in all groups (control: 8.4 ± 0.8 min vs. 9.9 ± 0.8 min, t = �1.0364,

± 1.1 min vs. 10.0 ± 0.7 min, t = 0.0639, p = 0.9531). (H) Number of spout visits

parable inmEC and control groups (control: 39.7 ± 2.5 visits/day vs. 36.8 ± 1.2

y, t =�5.8164, p = 0.0129; mEC: 33.9 ± 0.9 visits/day vs. 51.2 ± 16.4 visits/day,

nces between control and test groups are significantly different (control vs. HP:

no significant difference between HP and mEC mice (t = �0.8242, p = 0.4370).

iddle), and mEC (right) mice, respectively.

ean ± standard error of the mean (SEM). Independent-samples Student’s t test

was verified with a Shapiro-Wilk test, and p values adjusted for false discovery

, not significant.
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Figure 3. Smart novel object and object-in-place recognition tasks

(A) A typical ethogram showing the exploration of side panels of a single HP mouse tested for �3 months. The time of lesion surgery and the following week of

recovery is indicated by the white gap between days 30 and 40. Purple shapes indicate the time of side-panel change (left-facing triangle, left drum NOR; plus

sign, left drum OPR + right drum NOR; right-facing triangle, right drum NOR; 3, left drum NOR + right drum OPR).

(B) The average mouse response to L-NOR (top left), R-NOR (top right), and OPR (bottom left) tasks 20 min before and after the change of a side panel, indicated

by the purple dashed line. Top, middle, and bottom rows of each plot correspond to control, HP, and mECmice, respectively. The left and right columns of each

(legend continued on next page)
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patterns. Voluntary activity on the running wheel has been previ-

ously associated with increased hippocampal neurogenesis and

improvements in mouse’s performance on spatial memory

tasks.30,31 However, it is unknown how mice with hippocampal

and medial entorhinal damage use a running wheel.

Our results show that mice with hippocampal damage did not

show a statistically significant change in time spent running on

the wheel (Figures 4A–4C: 185.5 ± 40.5 min/day pre-lesion vs.

60.9 ± 19.5 min/day post-lesion, t = 2.2154, p = 0.2733, paired

Student’s t test) in contrast to a significant �78% increase in

their overall movement in the smart-Kage (Figures 4B and 4D:

385.5 ± 19.1 min/day pre-lesion vs. 685.3 ± 31.5 min/day

post-lesion, t =�6.7665, p = 0.0075, paired Student’s t test, sig-

nificant after Benjamini-Hochberg correction, p < 0.05). Interest-

ingly, the movement increase was accompanied by instances of

stereotypical behaviors, such as running in a circular trajectory

that was not observed in control mice (Video S1). No change in

running on the wheel was observed in mice with medial entorhi-

nal lesions (Figures 4B and 4C: 127.7 ± 16.6 min/day pre-lesion

vs. 141.1 ± 9.7 min/day post-lesion, t = �0.6588, p = 0.8357,

paired Student’s t test) or the control group (Figures 4B and

4C: 133.4 ± 20.9 min/day pre-lesion vs. 133.1 ± 12.5 min/day

post-lesion, t = �0.0242, p = 0.9813, paired Student’s t test).

These groups also did not exhibit any noticeable change in the

overall movement in the smart-Kage post-surgery (Figures 4B

and 4D: mEC mice: 445.1 ± 19.0 min/day pre-lesion vs.

498.6 ± 25.4min/day post-lesion, t =�1.1974, p = 0.3435, paired

Student’s t test; control mice: 420.2 ± 24.1 min/day pre-lesion

vs. 454.6 ± 31.6 min/day post-lesion, t = �1.0067, p = 0.3435,

paired Student’s t test).

Next, we assessed quiescent states of the mice, defined as

periods when the mouse was completely and continuously

motionless for at least 5 min (Figure 5A and STAR Methods).

We found that control mice spent most (78%–83%) of their

12-h light phase immobile or sleeping (Figures 5B–5D: 596.1 ±

15.3 min/day pre-lesion vs. 561.3 ± 17.2 min/day post-lesion,

t = 2.2325, p = 0.0842, paired Student’s t test) with occasional

brief activity periods usually related to water or food consump-

tion. On the other hand, as expected, they spent only around

23%–25% of the time immobile during the dark phase

(Figures 5B and 5F: 179.5 ± 15.3 min/day pre-lesion vs.

161.9 ± 13.9 min/day post-lesion, t = 1.2955, p = 0.3168, paired

Student’s t test). Mice with hippocampal lesions showed signif-

icantly disrupted and less regular quiescence patterns

(Figures 5A–5C) accompanied by an overall significant decrease

in average immobility time during both light and dark phases

(Figures 5A, 5B, 5D, and 5F: light phase: 625.4 ± 7.1 min/day

pre-lesion vs. 524.1 ± 11.1 min/day post-lesion, t = 10.630,
plot correspond to the exploration time of the left and the right side panel, respecti

both or none of the side panels changed. The exploration on days with no chang

(C–E) Average daily side-panel exploration time for control (C), HP (D), and mEC

(F) Mean object exploration time between pre-lesion vs. post-lesion remains un

t = 0.0541, p = 0.9582; HP: 5.2 ± 1.1 min/day vs. 11.1 ± 1.8 min/day, t = �2.291

(Wilcoxon signed-rank test was used for mEC).

Pre-lesion period, blue; post-lesion period, orange. All data are represented as m

was used for all comparisons, unless stated otherwise. The normality of the data

rate with Benjamini-Hochberg correction. *p < 0.05, **p < 0.01, ***p < 0.005; n.s.

See also Figures S1F, S1H, and S5.
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p = 0.0012; dark phase: 155.4 ± 21.0 min/day pre-lesion vs.

52.6 ± 7.2 min/day post-lesion, t = 4.4055, p = 0.0348, paired

Student’s t test, significant after Benjamini-Hochberg correction,

p < 0.05). Notably, both hippocampal (102.6 ± 5.5 min/day pre-

lesion vs. 68.0 ± 7.4 min/day post-lesion, t = 3.6773, p = 0.032,

paired Student’s t test, significant after Benjamini-Hochberg

correction, p < 0.05) and control (98.7 ± 6.5 min/day pre-lesion

vs. 78.8 ± 5.6 min/day post-lesion, t = 3.4773, p = 0.0252, paired

Student’s t test, significant after Benjamini-Hochberg correction,

p < 0.05) groups showed a significant decrease in the average

‘‘nap’’ duration during the light phase, while mEC mice showed

similar non-significant trends (91.2 ± 4.3 min/day pre-lesion vs.

69.9 ± 13 min/day post-lesion, t = 1.418, p = 0.2512, paired Stu-

dent’s t test), likely reflecting some general age-related (or, alter-

natively, experience in the smart-Kage related) trend (Figure 5E).

Finally, the mice with medial entorhinal lesions showed a sig-

nificant decrease in average ‘‘nap’’ duration (an average duration

of a single immobility state) during the dark phase (Figure 5G:

35.9 ± 0.8 min pre-lesion vs. 28.5 ± 1.8 min post-lesion, t =

5.9352, p = 0.0288, paired Student’s t test, significant after

Benjamini-Hochberg correction, p < 0.05) while it was not signif-

icantly changed in other mouse groups. Additional behavioral

features related to quiescence that showed no statistically signif-

icant changes are shown in Figures S4B and S4C.

Automated classification of different mouse groups
Can we use the smart-Kage to achieve high sensitivity in classi-

fying different mouse groups? To address this question, we

blindly tested four different mouse groups comprised of already

described HP, mEC, and control groups, and a newly added

AppNL-G-F ADmouse model group and its age-matched controls

(Figures 6, S4D–S4J, and S6–S8). AppNL-G-F mice and their con-

trols were characterized at two different periods (Table S1) for

4 months (the first period) and 1.5 months (the second period),

which were carried out 12.5 months apart to investigate how

their behavior in the smart-Kage changes with time. We found

that AppNL-G-F mice significantly decreased novel object explo-

ration time (Figures 6A–6E: 3.8 ± 0.2 min/day vs. 1.5 ± 0.3 min/

day during the first and the second period, respectively, t =

7.7614, p = 0.003, paired Student’s t test, significant after

Benjamini-Hochberg correction, p < 0.05). They also remained

immobile for longer, with longer average ‘‘nap’’ durations

(Figures 6F–6H: average total time of immobility during the light

cycle: 519.3 ± 12.6 min/day vs. 591.2 ± 4.3 min/day during

the first and the second period, respectively, t = �5.8559,

p = 0.0084, paired Student’s t test, significant after Benjamini-

Hochberg correction, p < 0.05; and 53.1 ± 3.4 min/state vs.

90.1 ± 3.4 min/state during the first and the second period,
vely. The bottom left and bottom right plots show animal exploration time when

e was measured at 12:00 p.m. for direct comparison.

(E) mice, respectively.

changed in all three groups (control: 4.6 ± 0.4 min/day vs. 4.6 ± 0.4 min/day,

, p = 0.2514; mEC: 6.4 ± 0.7 min/day vs. 6.2 ± 1.1 min/day, w = 4, p = 0.9102

ean ± standard error of the mean (SEM). Independent-samples Student’s t test

was verified with a Shapiro-Wilk test, and p values adjusted for false discovery

, not significant.



A B

C D

Figure 4. Running on the wheel and general locomotion in the smart-Kage

(A) A typical ethogram showing daily wheel-running activity of a single HP mouse tested for �3 months. The time of lesion surgery and the following week of

recovery is indicated by the white gap between days 30 and 40.

(B) Average general locomotion (dotted) and wheel-running (dashed-dotted) behaviors in control (top), HP (middle), and mEC (bottom) mice, respectively.

(C) Average time per day spent running on the wheel is unchanged between pre- vs. post-lesion in all groups (control: 133.4 ± 20.9 min/day vs. 133.1 ± 12.5 min/

day, t = �0.0242, p = 0.9813; HP: 185.5 ± 40.5 min/day vs. 60.9 ± 19.5 min/day, t = 2.2154, p = 0.2733; mEC: 127.7 ± 16.6 min/day vs. 141.1 ± 9.7 min/day,

t = �0.6588, p = 0.8357).

(D) HP mice were significantly more mobile after lesion while mEC and control mice displayed no change in overall movement between pre- vs. post-lesion

(control: 420.2 ± 24.1 min/day vs. 454.6 ± 31.6 min/day, t = �1.0067, p = 0.3435; HP: 385.5 ± 19.1 min/day vs. 685.3 ± 31.5 min/day, t = �6.7665, p = 0.0075;

mEC: 445.1 ± 19.0 min/day vs. 498.6 ± 25.4 min/day, t = �1.1974, p = 0.3435).

Pre-lesion period, blue; post-lesion period, orange. All data are represented as mean ± standard error of the mean (SEM). Independent-samples Student’s t test

was used for all comparisons, unless stated otherwise. The normality of the data was verified with a Shapiro-Wilk test, and p values adjusted for false discovery

rate with Benjamini-Hochberg correction. *p < 0.05, **p < 0.01, ***p < 0.005; n.s., not significant.
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Figure 5. Quiescence states in the smart-Kage
(A) A typical ethogram showing quiescence states of the same mouse as in Figure 4A. White and black regions indicate quiescence and mobile intervals,

respectively. The time of lesion surgery and the following week of recovery is marked as the white gap between days 30 and 40.

(B and C) The total daily average time spent in quiescence (B) and average duration of each quiescent state (C) in control (top), HP (middle), and mEC (bottom)

mice. Solid and dashed lines correspond to light and dark phases, respectively.

(D–G) Mean daily quiescence time and the mean duration of a single quiescent state during the light (D and E) and dark (F and G) phases in control, HP, and mEC

mice, respectively. (D) Mean daily quiescence time during light phase (control: 596.1 ± 15.3 min/day vs. 561.3 ± 17.2 min/day, t = 2.2325, p = 0.0842; HP:

625.4 ± 7.1 min/day vs. 524.1 ± 11.1 min/day , t = 10.630, p = 0.0012; mEC: 588.8 ± 8.7 min/day vs. 538.2 ± 24.8 min/day, t = 1.3289, p = 0.2759). (E) Mean

duration of quiescent state during light phase (control: 98.7 ± 6.5min/day vs. 78.8 ± 5.6min/day, t = 3.4773, p = 0.0252; HP: 102.6 ± 5.5min/day vs. 68.0 ± 7.4min/

day, t = 3.6773, p = 0.032; mEC: 91.2 ± 4.3 min/day vs. 69.9 ± 13 min/day, t = 1.418, p = 0.2512). (F) Mean daily quiescence time during dark phase (control:

179.5 ± 15.3 min/day vs. 161.9 ± 13.9 min/day , t = 1.2955, p = 0.3168; HP: 155.4 ± 21.0 min/day vs. 52.6 ± 7.2 min/day, t = 4.4055, p = 0.0348; mEC: 186.0 ± 12.1

(legend continued on next page)
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respectively, t = 0.0048, p = 0.0096, paired Student’s t test, sig-

nificant after Benjamini-Hochberg correction, p < 0.05). These

changes were accompanied by lower general locomotion activ-

ity (Figure 6I: 517.7 ± 8.7 min/day vs. 380.2 ± 28.0 min/day,

t = 5.4728, p = 0.0108, paired Student’s t test, significant after

Benjamini-Hochberg correction, p < 0.05); however, on average

no change in the time spent running on the wheel was observed

(Figure 6J: 81.2 ± 13.3 min/day vs. 91.0 ± 18.4 min/day,

t = �0.5654, p = 0.602, paired Student’s t test).

Next, we used 32 commonly applied cognitive and behavioral

measurements to investigate whether mice can be accurately

assigned to their corresponding groups. The measurements

were based on one of the four categories described above (Fig-

ure S9 and Table S2): (1) the performance on the smart T-maze

alternation task, (2) NOR and OPR tasks; (3) quiescence states;

and (4) wheel-running behavior.

Of note, the measures within the category showed some de-

gree of correlation; however, there was little to no correlation be-

tween the measurements from different categories (Figure S10

and STAR Methods). Significant correlations between each

type of behavior were identified as those whose absolute value

was higher than a threshold value calculated as the 95th percen-

tile value of randomly shuffling existing features across mice

within each feature type (STAR Methods).

The mice were grouped using an agglomerative (hierarchical)

clustering algorithm to predict the underlying mouse phenotype

(Figures 7A and 7B; STAR Methods). Specifically, we ran 25,000

optimization simulations, whereby in every simulation we tested

a different combination of a clustering algorithm and its associ-

ated hyperparameters. The following common clustering algo-

rithms were tested: k-means, Bayesian Gaussian mixture

models, agglomerative clustering, OPTICS, spectral clustering,

and affinity propagation. We chose a subset of clusterings that

identified the only a priori known group (the control mice) with

100%accuracy. The final clusteringwas chosen from this subset

after unblinding the remaining group identities (control, HP,

mEC, and AppNL-G-Fmice). We found that agglomerative clus-

tering using ward linkage and Euclidean distance metric showed

the highest accuracy in identifying these groups. The accuracy

was measured as the percentage of correctly identified mice

(Figure 7C). It should be noted that no additional clustering sim-

ulations were run after unblinding, i.e., the optimal clustering was

chosen from among simulations done before unblinding to mini-

mize human bias. Next, we tested the clusters’ quality and stabil-

ity by applying a leave-one-animal-out approach. We ran 10,000

clustering simulations, whereby one randomly chosen mouse

was removed from the dataset and the same clustering was

repeated on the remaining dataset. The resultant clusterings

were compared with the original clustering using the mean

Silhouette score32,33 and the chance-adjusted Rand Index (RI)

score34,35 to quantify the quality and stability, respectively
min/day vs. 170.1 ± 14.1 min/day, t = 1.1984, p = 0.3168). (G) Mean duration of qu

day, t = 0.2471, p = 0.811; HP: 29.7 ± 1.4 min/day vs. 20.5 ± 3.2 min/day, t = 2.40

0.0288).

Pre-lesion period, blue; post-lesion period, orange. All data are represented as m

was used for all comparisons, unless stated otherwise. The normality of the data

rate with Benjamini-Hochberg correction. *p < 0.05, **p < 0.01, ***p < 0.005; n.s.
(STAR Methods). The estimated mean Silhouette score and RI

value of our clustering were (mean ± SD) 0.1547 ± 0.0928 and

0.8926 ± 0.1463, respectively, which were significantly higher

compared to chance threshold values calculated as the 95th

percentile values of the surrogate data generated by randomly

shuffling existing features across mice within each feature type

(STAR Methods), indicating an appreciable deviation of our orig-

inal clustering from randomness.

Using this approach, wewere able to correctly classify 100%of

animals belonging to the control cluster (27/27; 18 pre-lesioned

mice and 9 post-lesion sham control mice), 100% (5/5) of mice

with hippocampal lesions, and 25% (1/4) of mice with medial en-

torhinal lesions (Figures 7A–7C). Interestingly, one of the mEC

mice was clustered together with the HP group but stood out as

anoutlierwithin this group (Figure 7B, redarrowhead). The two re-

mainingmice withmedial entorhinal lesions weremisclassified as

controls. After unblinding the histology results, we found that the

correctly identified mEC mouse had the largest volume of the

medial entorhinal cortex removed, followed by the mouse within

the HP cluster (Figure S3C). ThemECmice groupedwith the con-

trols had much more limited mEC lesions.

We also successfully identified 80% (4/5) of AppNL-G-F mice.

The only misassigned AppNL-G-F mouse was classified as a

control, although it was a strong outlier within the control group

(Figure 7B, purple arrowhead). Of note, AppNL-G-F control mice

were classified outside the general control cluster, likely due to

their different genotype and/or age compared to pre-lesioned

mice and sham controls (STAR Methods). The classification ac-

curacy achieved by the smart-Kage was comparable to that of

the standard T-maze, NOR, and OPR tasks (Figures 7C and 7D;

60% [3/5] AppNL-G-F mice). Thus overall, 7 (4/5 AppNL-G-F and

3/3 age-matched controls) out of 8 correct performances is

significantly better than what would be expected by chance

(p < 0.05, binomial test). In the case of the standard tests,

the grouping was based on the performance on the T-maze

alone, as results from NOR and OPR tasks did not serve as

good predictors (Figure S5F and STAR Methods). Adding

more tests to the battery, such as open-field exploration, could

improve the accuracy of standard tests. However, each new

test would require separate pre-training; currently, no standard

test can separate HP and mEC mice.

Finally, to further demonstrate the analytical power of our

approach, we tested an additional batch of ten new unle-

sioned C57BL/6J mice of the same sex (males) and age

(16 weeks) as other pre-lesioned C57BL/6J mice, character-

ized over 30 days in the smart-Kages, to investigate which

cluster they would be assigned to based on their proximity

to our previously identified clusters. We found that all ten

mice were closest to the control cluster (Figure 7E). This is

further proof of principle of the robustness of our current clas-

sification approach.
iescent state during dark phase (control: 28.4 ± 1.2 min/day vs. 29.3 ± 3.0 min/

45, p = 0.111; mEC: 35.9 ± 0.8 min/day vs. 28.5 ± 1.8 min/day, t = 5.9352, p =

ean ± standard error of the mean (SEM). Independent-samples Student’s t test

was verified with a Shapiro-Wilk test, and p values adjusted for false discovery

, not significant.
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DISCUSSION

Here we described a home-cage monitoring system (the smart-

Kage) which incorporates T-maze alternation and NOR and

OPR tests, enabling their fully automated repetitive execution

over long periods. In the current study the phenotyping was

focused on cognitive domains, especially important for research

on neurological disorders. In line with previous studies using

analogous standard tests, we showed that: (1) the span of the

working memory in mice is �10 min12; (2) changes of external

drum patterns in the smart-Kage resulted in their increased

exploration in line with the standard NOR; (3) the swap of the

two familiar patterns results in their increased exploration in line

with the standard OPR task; (4) mice show a strong preference

to run on the running wheel, in line with the previous observa-

tions36; and (5) locomotion activity of mice is strongly controlled

by the circadian rhythm. Contrary to the standard T-maze alter-

nation task, we were not required to implement any water or

food restrictions.Weshowed that thedelay inwater consumption

encountered after choosing an incorrect water spout was a suffi-

ciently negative reinforcer to trigger rapid learning on the smart

T-maze alternation task, eliminating any need for food or water

restriction and thus contributing to the ethological relevance of

our system. In addition, the smart-Kage also simultaneously

characterizes a range of other non-cognitive behaviors, such as

locomotion and quiescence states, which in themajority of cases

likely serve as a proxy for sleeping patterns in mice.37

In the proof-of-principle experiments using small samples of

mice with hippocampal, medial entorhinal, and sham lesions

as well as the AppNL-G-F AD mouse model and their

controls, we demonstrated the effectiveness of the smart-

Kage by focusing on hippocampal-parahippocampal-depen-

dent spatial working memory, novel object, and OPR behav-

iors. In a blind test, we showed that using the smart-Kage

we could identify different groups of mice with high accuracy

and sensitivity without making any assumptions about specific

unambiguous group phenotypes. Instead, we relied solely on

combining multiple behavioral measures recorded in the

smart-Kage, which on their own often showed only non-signif-
Figure 6. Phenotyping of AppNL-G-F mice in the smart-Kage

(A and B) A typical ethogram showing the exploration of side panels of a single Ap

over 4 months and the second period lasted �1.5 months. Between the end of th

Purple shapes indicate the time of side-panel changes (left-facing triangle, left dru

drum NOR; 3, left drum NOR + right drum OPR).

(C and D) Average daily side-panel exploration time for AppNL-G-F (C) and age-m

(E–J) Average daily object exploration time (E), total quiescence time during lig

quiescence frequency (G), and their average duration (H), locomotion (I), and runni

second period. (E) Average daily object exploration time (AppNL-G-F: 3.8 ± 0.2 min

6.1 ± 0.8min/day, w = 1, p = 0.8131 [Wilcoxon signed-rank test]). (F) Total quiescen

day, t = �5.8559, p = 0.0084; control: 562.6 ± 21.4 min/day vs. 555.7 ± 17.3 m

(AppNL-G-F: 10.7 ± 0.5 states/day vs. 7.4 ± 0.3 states/day, t = 3.8942, p = 0.0352; c

Mean duration of quiescence states during light phase (AppNL-G-F: 53.1 ± 3.4 sta

states/day vs. 67.4 ± 4.8 states/day, t = 0.0153, p = 0.9892). (I) Mean daily duration

t = 5.4728, p = 0.0108; control: 504.8 ± 22.6 min/day vs. 512.3 ± 64.2 min/day, t =

day vs. 91.0 ± 18.4 min/day, t = -0.5654, p = 0.602; control: 80.2 ± 10.7 min/day

5–9months of age, blue; 18–20months of age, green. All data are represented asm

was used for all comparisons, unless stated otherwise. The normality of the data

rate with Benjamini-Hochberg correction. *p < 0.05, **p < 0.01, ***p < 0.005; n.s.

See also Figures S6–S8 and Table S1.
icant behavioral and cognitive trends (at least in the small

samples that we employed). Unlike previously reported ap-

proaches that used the ‘‘leave-one-animal-out procedure’’

(i.e., the identities of all but one animal were provided for clus-

ter assignment), our clustering algorithm was trained only on

the pre-lesioned mice representing a known control group.

All other clusters, which included both lesion and sham

post-lesion groups and mice with AD-associated genetic

modifications, were produced automatically in a completely

unsupervised way, and the best solution was chosen based

on the optimal group assignment for all groups combined.

We showed that our approach yielded results comparable to

behavioral phenotyping using the three most prominent anal-

ogous standard memory tests. Importantly, newly added ten

unlesioned C57BL/6J mice were automatically assigned to

the ‘‘control cluster’’ based on their closest proximity in the

multi-dimensional feature space. Thus, we expect that our

home-cage monitoring system will provide a promising tool

for automated phenotyping of more natural behaviors, probing

spatial memory and object recognition, which may enable

direct comparison across labs and improved standardization.

Limitations of the study
The number of mice per group used in this study is limited except

for acontrol group.Thesmall numberwasaffordedbecauseof the

strong effect size in mice with hippocampal lesions; however,

larger groups may be useful for mice with mEC lesions and AD

mice. Additionally, all experiments have been carried out in the

same animal facility.

The training data for neural network (NN) models for tracking

cannot bemade publicly available, since it is a proprietary data-

set. However, this will not prevent replicating the system, as it is

a ‘‘helpful’’ but not necessary part of the system implementa-

tion. Creating training datasets is a standard part of the

DeepLabCut algorithm,23 and they are chosen arbitrarily.

Thus, each user can define their own training datasets from

the raw image data.

The NOR and OPR tests were carried out only with short ITIs

(up to a few minutes). Longer ITIs must be explored to identify
pNL-G-F (A) and an age-matched control (B) mouse. The first testing period was

e first and the start of the second period, there was an 8 month gap (white bar).

m NOR; plus sign, left drum OPR + right drum NOR; right-facing triangle, right

atched control (D) mice, respectively.

ht phase (F), the corresponding number of quiescent states per day, called

ng on the wheel (J) inAppNL-G-F and age-matched control mice between first vs.

/day vs. 1.5 ± 0.3 min/day, t = 7.7614, p = 0.003; control: 4.2 ± 0.2 min/day vs.

ce time during light phase (AppNL-G-F: 519.3 ± 12.6min/day vs. 591.2 ± 4.3min/

in/day, t = 0.3743, p = 0.7441). (G) Quiescence frequency during light phase

ontrol: 9.4 ± 0.4 states/day vs. 9.5 ± 0.5 states/day, t = 0.1381, p = 0.9028). (H)

tes/day vs. 90.1 ± 3.4 states/day, t = �5.6729, p = 0.0096; control: 67.5 ± 4.7

of general movment (AppNL-G-F: 517.7 ± 8.7 min/day vs. 380.2 ± 28.0 min/day,

�0.0837, p = 0.9409). (J) Daily wheel running time (AppNL-G-F: 81.2 ± 13.3 min/

vs. 54.0 ± 10.5 min/day, t = 1.4248, p = 0.5806).

ean ± standard error of themean (SEM). Independent-samples Student’s t test

was verified with a Shapiro-Wilk test, and p values adjusted for false discovery

, not significant.
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Figure 7. Behavioral clustering on an individual animal basis

(A) Hierarchical clustering dendrogram of the 32-dimensional feature space.

(B) Clustering silhouette plot. Warmer colors indicate good separation from neighboring clusters, whereas colder colors indicate potential outliers in respective

clusters. An mEC outlier in the HP cluster and an AppNL-G-F outlier in the control cluster are marked with red and purple arrowheads, respectively.

(C)Confusionmatrix comparing actual and predicted animal identitiesdetectedby smart-Kage. The values indicate the percentage of animals assigned toeachclass.

(D) Animal clustering based on the standard T-maze task. The dashed lines demarcate distinct clusters: controls at >70% performance, HP and mEC mice at

50%–60% performance, and AppNL-G-F mice at 60%–70% performance (control: 82.7 ± 13.4%; HP: 53.4 ± 4.4%; mEC: 56.9 ± 8.3%; AppNL-G-F: 71.8 ± 11.2%).

(E) The Euclidean distance between the newly added control mice and previously identified groups in behavioral feature space(control vs. HP: 5.5 ± 1.2 vs. 7.9 ±

0.8 [t = �5.18931, p = 8.232351e-05]; control vs. mEC: 5.5 ± 1.2 vs. 10.8 ± 0.9 [t = �10.75881, p = 5.729525e-09]; control vs. AppNL-G-F: 5.5 ± 1.2 vs. 7.0 ± 0.8

[t = �3.20276, p = 4.932517e-03]; control vs. undef.: 5.5 ± 1.2 vs. 13.4 ± 1.1 [t = �15.21472, p = 4.063801e-11]).

All data are represented as mean ± standard error of the mean (SEM). Independent-samples Student’s t test was used for all comparisons, unless stated

otherwise. The normality of the data was verified with a Shapiro-Wilk test, and p values adjusted for false discovery rate with Benjamini-Hochberg correction.

*p < 0.05, **p < 0.01, ***p < 0.005; n.s., not significant.

See also Figures S3 and S9 and Table S2.
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values for which mice with hippocampal and mEC lesions and

AD mice become impaired as predicted based on the observa-

tion in analogous standard tests.

Finally, the home-cage monitoring system is designed for sin-

gle-mouse testing, which may be suboptimal in terms of poten-

tial stress induced by isolation and low throughput. If permitted

by experimental design, the ability to test group-housed mice
14 Cell Reports Methods 3, 100532, July 24, 2023
would increase throughput and may be more ethologically rele-

vant. On the other hand, group housing may not be appropriate

for some experiments as it will introduce noise associated with

‘‘crowd behavior’’ or with emerging hierarchical structures.

Group housing also has another well-known issue that co-

housed males tend to fight, which may inflict severe injuries

and cause additional stress.
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Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DE-

TAILS

B Mice

d METHOD DETAILS

B Surgery

B Blinding procedures

B Histology

B Smart-Kage design

B Experimental procedures

B Testing in the smart-Kages

B Standard forced-choice alternation T-maze task

B Standard NOR and OPR tests

B Smart-Kage data collection

B Mouse video tracking

B Behavioral labeling

B Feature PCA analysis

B Feature correlation analysis

B Mouse group assignment in smart-Kages

B Mouse group assignment based on standard memory

tests

d QUANTIFICATION AND STATISTICAL ANALYSIS
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Supplemental information can be found online at https://doi.org/10.1016/j.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Ibotenic acid Sigma-Aldrich I2765; CAS: 2552-55-8

Deposited data

Mouse processed behavioral data This paper Zenodo: https://doi.org/10.5281/zenodo.8003569

Experimental models: Organisms/strains

Mouse: C57BL/6J Charles River Strain Code 632

Mouse: AppNL�G-F: Apptm3.1Tcs/Apptm3.1Tcs Mary Lyon Center Harwell;

Paulsen lab (Uni. Of Cambridge)

RRID:MGI:6160916

Software and algorithms

Arduino IDE 1.8 Arduino https://www.arduino.cc/en/software

Python version 3.7.10 Python Software Foundation https://www.python.org

DeepLabCut Mathis et al.23 https://github.com/DeepLabCut

Scikit-learn Pedregosa et al.38 https://scikit-learn.org/

Custom analysis code This paper Zenodo: https://doi.org/10.5281/zenodo.8003569

Other

Arduino Mega 2560 Rev3 Arduino https://www.arduino.cc/

Raspberry Pi 3 Model B Raspberry Pi Foundation https://www.raspberrypi.com/

2-Way NC Pinch Valve 12VDC NResearch, Inc. Part# 161P011

Stepper motor – Nema 17 Adafruit Product ID: 324
RESOURCE AVAILABILITY

Lead contact
Further information and request for resources should be directed to and will be fulfilled by the lead contact, Julija Krupic (jk727@cam.

ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Processed data have been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in the

key resources table. The training data for NN models for tracking cannot be made publicly available since it is a proprietary

dataset. The raw image data required to reanalyse the processed data is available from the lead contact upon reasonable

request.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon reason-

able request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
Experimental procedures and animal use were performed in accordance with UK Home Office regulations of the UK Animals (Sci-

entific Procedures) Act 1986, following ethical review by the University of Cambridge Animal Welfare and Ethical Review Body

(AWERB). All animal procedures were authorized under Personal and Project licences held by the authors.
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Four groups ofmicewere used in the study: C57BL/6Jmicewith lesions to 1) the hippocampus, 2) themedial entorhinal cortex or 3)

sham controls, with saline injections in the hippocampus, medial entorhinal cortex or medial prefrontal cortex. The fourth group

comprised AppNL-G-F17,27 mice (Table S1). All mice used in this study were males.

Eighteen C57BL/6J mice sourced from Charles River underwent lesion procedures. The experiments were carried out in two

batches �3 months apart. The mice were 10–16 weeks old when they were transferred to the smart-Kages. They were individually

housed in the smart-Kages for �30 days prior- and �60 days post-surgery. The mice weighed 25-30 g at the time of the surgery.

Water and food were supplied ad libitum. The first batch was tested on the standard forced-choice alternation T-maze task, object

recognition and object-in-place recognition tasks before and after testing in the smart-Kages. The second batch underwent the same

standard tests only after their testing in the smart-Kages was completed. The mice were individually housed in clear plastic cages

(16 cm3 27 cm3 18 cm, W3 L3 H) when they were tested on standard tasks (Figure S1E). They were maintained on a 90% body

weight food restriction schedule when tested on the standard forced-choice T-maze alternation task. We also tested ten additional

unlesioned 16-week-old C57BL/6J male mice for 30 days in the smart-Kages to test the generality of our clustering framework.

ThreeAppNL-G-FKI mice17,27 and three age-matched Appwt/wtKI negative controls were included in blinded test experiments. They

were 22–24 weeks old when first tested in the smart-Kages. We also included two additional AppNL-G-F KI positive males aged

39 weeks whose identity was known. The mice were continuously tested for �4.5 months. The second testing period commenced

�8 months later and lasted for�1.5 months. All eight mice were tested on the standard tests before and after they were tested in the

smart-Kages.

All mice were kept on a 12:12 h light: dark cycle (with lights on at 9:00 a.m. and off at 9:00 p.m.) at a controlled temperature

(21–23�C) and humidity (50–60%).

METHOD DETAILS

Surgery
Mice were anesthetized with 1–3% isoflurane in O2, and 0.05mg/10g body weight Metacam and 0.05mg/10g Baytril was adminis-

tered to facilitate recovery. Chemical lesions were induced by injection of 10mg/mL ibotenic acid dissolved in pH7.4 PBS into selected

brain regions using a Nanofil syringe controlled by the micropump. To induce hippocampal lesions, we used the same coordinates

and injected volumes as previously described in Voikar et al.9 To induce mEC lesions, we aimed to inject the following four coordi-

nates bilaterally. mEC1 (150 nL): AP: 0.4 mm anterior to sinus; ML: 3.4 mm from the midline; DV:2.4 mm; mEC2 (150 nL): AP: 0.4 mm

anterior to sinus;ML: 3.4mm from themidline; DV:1.6mm;mEC3 (150 nL): AP: 0.4mmanterior to sinus;ML: 2.8mm from themidline;

DV:3.0 mm; mEC4 (150 nL): AP: 0.4 mm anterior to sinus; ML: 2.8 mm from themidline; DV:2.2 mm. The injection syringe was tilted at

6� anterior-to-posterior angle. Following surgery, mice were individually housed in a conventional cage, and their health conditions

were monitored for six days before they returned to their corresponding smart-Kage when fully recovered.

Blinding procedures
The brain regions targeted for lesioningwere known only to the researcher who conducted the lesion surgeries. Micewere selected at

random, and their identities were unknown. Experimenters responsible for conducting behavioral tests, maintenance of smart-Ka-

ges, data collection and analysis were blinded to the lesion identity and groups for the duration of the experiments. The genotypes

of three homozygotes AppNL-G-Fmice and three control littermates were kept hidden from all the experimenters until the analysis was

completed. The identities of two older homozygote AppNL-G-F mice were known to the researchers.

During the lesion quantification from the histology, the experimenter was blind to the animals’ characterization in the smart-Kage or

their performances on the standard tests.

Histology
Following completion of the experiments, the mice were given an overdose of sodium pentobarbital and perfused transcardially with

phosphate-buffer saline (PBS), followed by 4% formaldehyde to fixate the brain tissue. The brains were carefully extracted from the

skull and stored in 4% paraformaldehyde (PFA) at 4�C. Brains were then imaged using serial two-photon tomography, which sliced

and imaged the entire brain every 20 mm coronally with a resolution of 4 mm in x and y using autofluorescence at 800 nm. To estimate

mEC lesions, brains were resliced computationally into sagittal sections. Lesion volumewas estimated bymanually marking the total

brain area volume and the lesion volume every 60 mm (for HP lesions) and 50 mm (for mEC lesions).

Smart-Kage design
The smart-Kages and associated components were designed using computer-aided design software. The smart-Kages were

manually assembled from parts made of 3- and 5-mm thick transparent acrylic sheets that were laser-cut into correct dimensions

and designs. The final dimensions of smart-Kage were 39 cm 3 32 cm x 44 cm (W x L x H). The smart-Kage was fastened to a

base and flanked by two drums used for NOR and OPR tasks (see above). An overhead infra-red camera was installed on a remov-

able lid, providing a top view into the Kage interior andwas used for continuous video recording at two frames/second. Infra-red LEDs

were distributed around the lid to provide illumination. The smart-Kage was fittedwith two pairs of beam breakers positioned near the

water spouts to detect when a mouse attempted to engage in drinking behavior and trigger a solenoid valve if the approached spout
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was ‘correct’ (i.e., different from the previously visitedwater spout). The two solenoidswere placed on the outer sides of the sidewalls

and connected to nearby attached small water containers via a thin tube. The beam breakers and solenoids were connected to and

controlled by a single-board microcontroller attached to the outer part of the back wall of the smart-Kage. The microcontroller was

also connected to and controlled the rotation of the drums used for NOR and OPR tasks. The drums were only rotated when the

mousewas in one of the corridors engaged in ‘drinking behavior’ (or displaying an attempt to drink) so that a mouse could not directly

observe the rotation of the drums. The rotation timingwas programmed by the experimenter – although the exact timing depended on

when a mouse engaged with any of the water spouts.

All data generated was automatically transferred to a single-board computer for data sorting and storage (see below). The smart-

Kage contained a running wheel, a climbing platform and nestingmaterial. The smart-Kage included three integrated cognitive tasks:

the smart spontaneous T-maze task, smart NOR and OPR tasks. Each mouse interacted with the tasks of its own volition, and data

was continuously gathered using sensors and a video camera.

Experimental procedures
Mice were group-housed and acclimatized in the holding facility for at least one week prior to the start of experiments. Before trans-

ferral to the smart-Kages, the first batch of C57BL/6J and AppNL-G-F mice underwent a series of standard behavioral tasks,

comprising forced-choice alternation T-maze task, novel object recognition (NOR) and object-in-place recognition (OPR) tests. All

mice participated in the same set of tests following the smart-Kage experiment. The standard testing protocols were based on pub-

lished versions in the literature11,14 and briefly described below.

Testing in the smart-Kages
Mice were kept single-housed in the smart-Kages with free access to food and water. During the habituation stage (5–7 days), mice

received water from both spouts. After the habituation period, a smart spontaneous alternation T-maze task commenced when only

one of thewater spouts (an active spout) providedwater at any given time. The location of the active water spout alternated every time

a mouse received the water (i.e., accessed an active spout). The smart NOR and OPR tests were implemented by rotating the side

drums to present one of the eight side patterns (0.5 cm3 6.4 cm x 9.2 cm) accessible for a mouse to explore. The drum rotation was

programmed to occur every two days between 12 a.m.–4 p.m. and occurred only when a mouse was drinking water in one of the

corridors to ensure that it could not observe the change. The patterns were presented according to a schedule designed to test

the mouse’s spatial and non-spatial ‘object’ recognition abilities. The drum-change sequence consisted of the following combina-

tions: (1) left-drum only NOR, (2) right-drum only NOR, (3) both drums NOR, (4) left-drum only OPR, (5) right-drum only OPR, (6) both

drums OPR, (7) left-drum NOR/right-drum OPR, and (8) right-drum NOR/left-drum OPR.

Mice underwent lesion surgery after 4–6 weeks of residing in the smart-Kages and were kept in conventional cages for six days of

post-operative care. Following full recovery from surgical procedures, mice were transferred back to the same smart-Kages and kept

for 8–12 weeks. The smart-Kages were cleaned every two weeks. Mice were tested in standard behavioral tests following the smart-

Kage experiment, as described below.

Standard forced-choice alternation T-maze task
The test was conducted using a T-shaped enclosure consisting of a start arm adjoining two perpendicular goal arms.Micewere food-

restricted for at least 12 h before each experiment day andwere kept at approximately 90%of initial bodyweight. Soyamilk was used

as a reward and was located in a food well at the end of the goal arms. One day prior to the testing session, mice were habituated to

the apparatus by allowing them to freely explore the enclosure. The habituation consisted of four 3-min periods of exploration, inter-

leaved by a 10-min interval. During the habituation, mice could drink soya milk ad libitum from the food well at both goal arms.

Each daily session was composed of 10 trials, and each trial consisted of a sample run followed by a test run. Each pair of the

sample and test runs were separated by about 12–15 min. During the test run, the mouse was kept in the start arm for 10 s before

exploring the goal arms. If the goal arms were not visited within 90 s, the mouse was removed, and the trial was terminated.

Standard NOR and OPR tests
We closely followed the protocol described by Leger et al. (2013).14 Namely, the tests were performed in a 0.53 0.5m2 square enclo-

sure. Objects were placed 15 cm from thewalls. Object exploration was defined as instances when themouse looked or sniffed at the

object in proximity (<2 cm) or when there was direct contact with a snout or paws. Climbing or chewing was not counted as object

exploration. One day before the tests began, the mice were allowed to freely explore the enclosure without any objects present. The

habituation consisted of two 10-min periods of exploration, with a 3-h interval in between each period. The tests comprised a familiar-

isation session followed by a test session with a 2-h inter-trial delay. For NOR, two objects were included in each session, and for

OPR, two pairs of objects were used. The familiarisation session was run for 5 min unless a mouse explored an object for over 40

s, at which point the mouse was removed and the trial terminated. In NOR, one of the two objects was replaced with a new one be-

tween sessions. The other object was replaced with an identical object to ensure familiarity was not based on a mouse marking the

familiar object. In the OPR task, all objects were replaced with identical objects during the test trial, and the positions of one pair were

swapped between sessions. An overhead camera was used to capture videos of mouse activity for post-hoc visual inspection and

analysis.
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Smart-Kage data collection
Parameters and functions of smart-Kage sensors andmotors were configured using a custom-written script. An overhead IR camera

was used to capture videos of mouse activity at two frames per second (temporal resolution of 0.5 s). Additionally, every approach

toward the water spouts (both correct and incorrect choices) was relayed by beam-break sensors to the controller. Time was synced

directly from the internet. All data generated was instantaneously transmitted to a computer for storage, logging and sorting.

Mouse video tracking
The mouse location was tracked from recorded videos using a ResNet-101 deep convolutional neural network (CNN). The starting

architecture (pre-trained on ImageNet) was retrained for mouse tracking within the smart-Kage using transfer learning implemented

in DeepLabCut (DLC)23 software and a dataset of video frames manually labeled with eight mouse body parts (snout, left and right

ears, neck, 3 points along themouse’s spine and tail base; Figure 1B). The retrainingwas done in 9 consecutive cycles with the ADAM

optimizer, batch processing (batch size 8) and imgaug image augmentor.23,39 In each consecutive training cycle, the dataset was

manually expanded with frames on which the resulting network from the previous cycle performed poorly. The expanded dataset

was then randomly split into train and test subsets (95% and 5%, respectively), the network trained on the training subset and its

performance evaluated on the test subset. The random splitting of the dataset was repeated three timeswithin each cycle (generating

three different ‘‘shuffles’’ of train and test datasets, Figures S2A and S2B) to safeguard against overestimated network performance

due to a favourably chosen test subset. The network performance in each cycle was estimated as the average test dataset error (MAE

between predicted and ground truth mouse body-part labels) across all 3 test shuffles. The cycles were repeated until network per-

formance plateaued in cycle nine at 1.69 px (spatial resolution of 1.85 mm; Figure S2C). A total of 800 manually labeled frames

were used.

Behavioral labeling
Behavioral labels (e.g., ‘exploring NOR’, ‘T-maze trial’, ‘quiescence’ etc.) were assigned to mouse trajectories and body postures in

three main ways. Smart T-maze trials were assigned whenever a mouse presence in the corridors coincided with beam-breaker

detection. Sleeping was assigned to frames with little or no detected motion, cross-validated with frame subtraction. Finally, pattern

exploration and running-wheel exercise were assigned with a random forest classifier. The classifier hyperparameters were tuned

with randomized 3-fold cross-validation, and the classifier was subsequently trained on a training dataset of video frames manually

labeled with ground-truth behavioral labels. Specifically, a 32-dimensional feature vector was extracted from each frame, containing

(x, y) coordinates and (|vx|, |vy|) absolute speeds for all eight body parts. The body-part speeds were calculated as position differen-

tials between two subsequent frames (vx = xt+1-xt, vy = yt+1-yt), followed bymedian averaging with a rolling window of 81 frames (40 s;

Figure S2D). The chosen features explained 95% of the variance in the training dataset (Figure S2E). The classifier performance for

each behavioral category was estimated on the test dataset, as shown in Figure 1D. A total of 542,530 manually labeled frames were

used, with an 80%: 20% random train: test dataset split.

Feature PCA analysis
We tested which behavioral measurements used for clustering analysis were the most important in differentiating between animal

phenotypes (explaining the variance in the dataset) with Principal Component Analysis (PCA; Figures S2F–S2I). The first two principal

components by definition explain the largest percentage of variance in a given dataset; in our case, the first two PCA components

explained 33% of total variance (Figure S2G). T-maze and quiescence behavioral features were the most relevant in the first PCA

component (Figure S2I, top), whereas the second PCA component was explained largely with NOR/OPR features (Figure S2I, bot-

tom), indicating that no single behavior was sufficient to distinguish between animal phenotypes.

Feature correlation analysis
We tested whether behavioral measurements used for clustering analysis were correlated by computing their pairwise Pearson’s r

correlation coefficients. The correlation coefficients were computed for all pairs of 32 behavioral measures across all mice. This re-

sulted in a 32x32 correlation matrix, with Pearson’s r coefficients ranging from �1 (strong negative correlation) to +1 (strong positive

correlation) (Figure S10A). Significantly correlated pairs of behavioral measurements were identified as the ones whose absolute

Pearson’s correlation coefficient value was above the threshold, determined as the 95th percentile of correlation values, obtained

from randomized data. Data was randomized by randomly shuffling behavioral measurements across mice without mixing different

types of measures (Figure S10B). The shuffling process was repeated 10,000 times, and the 32x32matrix of 95th percentile threshold

correlation values was calculated (Figure S10C). Finally, we identified significantly correlated measures by subtracting the 32x32

threshold matrix from the corresponding absolute values of the behavioral correlation matrix. All values above zero indicated a sig-

nificant correlation between pairs of behavioral measures (Figure S10D).

Mouse group assignment in smart-Kages
We aimed to minimize human bias by optimizing clustering parameters within the blinded experimental framework. To achieve this,

we took advantage of one ‘known’ group within the otherwise blinded experimental dataset. Namely, all pre-lesioned mice repre-

sented a known control group because prior to the lesion procedures (for which we were blinded), all three groups (HP, mEC and
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sham control) consisted of C57BL/6J mice of similar age and same gender and were broadly expected to show similar ‘normal’

behavioral phenotypes. Therefore, in our case, a part of the dataset (i.e., pre-lesioned control mice) is labeled, and we are dealing

with a semi-supervised problem. To include this information in the training of our clustering algorithm, we ran 25,000 clustering sim-

ulations with our data (32 behavioral features for all mice, not just controls). In every simulation, we tested a different combination of a

clustering algorithm and its associated hyperparameters. The following common clustering algorithms were tested: K-means,

Bayesian Gaussian mixture models, agglomerative clustering, OPTICS, spectral clustering and affinity propagation. Next, we chose

a subset of clusterings that identified the only a priori known group (the ‘control’ mice) with 100% accuracy. The final clustering was

chosen from this subset after unblinding the remaining group identities (HP, mEC, sham controls and AppNL-G-F). We found that

agglomerative clustering using ward linkage and Euclidean distance metric showed the highest accuracy in identifying these groups.

The accuracywasmeasured as the percentage of correctly identifiedmice (Figure 7C). It should be noted that no additional clustering

simulations were run after unblinding; i.e., the optimal clustering was chosen from among simulations done before unblinding to

minimize human bias.

Next, we tested the clusters’ quality and stability by applying a leave-one-animal-out approach. We ran 10,000 clustering simula-

tions, in which one randomly-chosen animal was removed from the dataset and the same clustering repeated on the remaining

dataset. The resultant clusterings were compared with the original clustering using the mean Silhouette score32,33,38 and the

chance-adjusted Rand Index (RI) score34,35 to quantify the quality and stability, respectively. The mean Silhouette score ranges

from �1 (worst) to +1 (best), where positive values indicate good separation (a high quality) between clusters, and negative values

indicate that amousewas assigned to the wrong cluster and is hence an outlier. Values close to zero signal overlap between clusters.

The estimatedmeanSilhouette score of our clusteringwas equal to 0.1547± 0.0928 (mean± std). TheRI score ranges from0 (random

labeling) to 1 (identical clusters). The estimated mean RI value of our dataset was 0.8926 ± 0.1463 (mean ± std).

To test the ‘goodness’ of such clustering quality and stability, we compared it with the Silhouette score and RI obtained from the

randomized data (Figures S2J and S2K). The randomized data was generated by randomly shuffling existing features across mice

within each feature type (e.g., T-maze feature cannot be swappedwith the locomotion feature, Figure S10B). Good clustering stability

was defined as the one with the Silhouette and RI scores higher than a chance threshold value calculated as the 95th percentile value

of the surrogate data. Each surrogate dataset generation was repeated 10,000 times. The resultant chance Silhouette score

threshold was 0.1137 (mean ± std: 0.0564 ± 0.0293), while the resultant chance RI score was equal to 0.1243 (mean ± std:

0.001 ± 0.0666). These values indicate a good deviation of our original clustering from randomness.

Mouse group assignment based on standard memory tests
We used the performance measurements from standard T-maze, NOR, and OPR tasks to group the mice on an individual animal

basis to benchmark the prediction of the smart-Kage against analogous standard tests (Figure S4F). 42.86% (12/28) and 46.43%

(13/28) of mice were discarded in NOR and OPR tests, respectively, at a 30% threshold difference between the exploration of

both objects during the familiarisation session. The remaining mice were clustered with simple threshold criteria. Similar to the

smart-Kage clustering above, these thresholds were selected to assign a maximum number of control mice into a single ‘control’

cluster. Mice with T-maze performance below 70%, the absolute value of NOR d2 ratio below 0.04 and the absolute value of

OPR d2 ratio below 0.06 were identified as displaying cognitive decline. In brief, the d2 ratio is the difference in exploration time be-

tween the novel and familiar object, normalized with respect to their combined exploration time. Hence, a d2 value of 0 indicates

equal exploration time between the two objects, whereas values closer to +/�1 indicate a preference for one of the objects.

QUANTIFICATION AND STATISTICAL ANALYSIS

The effects of different lesions were tested by statistically comparing pre- and post-lesion periods of equal time spans (�30 days)

within each group (control, HP and mEC mice) independently; in the case of translational AppNL-G-F mice, periods of different

mice age (i.e., 5–9 months vs. 18–20 months) were compared instead.

First, the normality of our data was checked using the Shapiro-Wilk test.40 Since the majority of our measures were found to be

normally distributed, we proceeded with parametric statistical tests unless otherwise stated. Specifically, the mean value of a given

behavioral measure (averaged across days) was calculated for each mouse, and all combined pre-lesion means were compared to

their post-lesion counterparts with paired samples Student’s t-test. In the case of non-normally distributed data, the non-parametric

Wilcoxon signed-rank test was applied. A one-way ANOVA with repeated measures correction was used when comparing animal

reaction times to changes in drum patterns between the three lesion groups. All p-values were corrected for multiple comparisons

within each behavioral type (Table S2) using the Benjamini-Hochberg correction. All data presented is reported as mean ± s.e.m.

unless stated otherwise.

Python was used for all statistical calculations41; paired samples Student’s t-test: scipy.stats.ttest_rel42; Wilcoxon signed-rank

test: scipy.stats.wilcoxon; one-way ANOVA: statsmodels.stats.anova.AnovaRM.43
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