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Abstract
Purpose Volume measurement using MRI is important to assess brain atrophy in multiple sclerosis (MS). However, differ-
ences between scanners, acquisition protocols, and analysis software introduce unwanted variability of volumes. To quantify 
theses effects, we compared within-scanner repeatability and between-scanner reproducibility of three different MR scanners 
for six brain segmentation methods.
Methods Twenty-one people with MS underwent scanning and rescanning on three 3 T MR scanners (GE MR750, Philips 
Ingenuity, Toshiba Vantage Titan) to obtain 3D T1-weighted images. FreeSurfer, FSL, SAMSEG, FastSurfer, CAT-12, and 
SynthSeg were used to quantify brain, white matter and (deep) gray matter volumes both from lesion-filled and non-lesion-
filled 3D T1-weighted images. We used intra-class correlation coefficient (ICC) to quantify agreement; repeated-measures 
ANOVA to analyze systematic differences; and variance component analysis to quantify the standard error of measurement 
(SEM) and smallest detectable change (SDC).
Results For all six software, both between-scanner agreement (ICCs ranging 0.4–1) and within-scanner agreement (ICC range: 
0.6–1) were typically good, and good to excellent (ICC > 0.7) for large structures. No clear differences were found between 
filled and non-filled images. However, gray and white matter volumes did differ systematically between scanners for all software 
(p < 0.05). Variance component analysis yielded within-scanner SDC ranging from 1.02% (SAMSEG, whole-brain) to 14.55% 
(FreeSurfer, CSF); and between-scanner SDC ranging from 4.83% (SynthSeg, thalamus) to 29.25% (CAT12, thalamus).
Conclusion Volume measurements of brain, GM and WM showed high repeatability, and high reproducibility despite sub-
stantial differences between scanners. Smallest detectable change was high, especially between different scanners, which 
hampers the clinical implementation of atrophy measurements.

Keywords Brain volumetry · Multiple sclerosis · Segmentation · Reliability

Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central 
nervous system that is characterized by demyelination, visible as 
focal lesion, and neurodegeneration, observable as atrophy of the 
spinal cord and brain, which is present from the earliest stages and 
more prominently in the progressive stages of the disease [1]. The 
inflammation component in MS is generally well suppressed with 
disease-modifying therapies; however, brain volume change, as 

a proxy of neurodegeneration, has gained increased attention to 
further facilitate treatment (response) monitoring and prognosis of 
the individual patient [2, 3]. In addition, atrophy is strongly linked 
to clinical and cognitive disability [4–6]. Brain atrophy in people 
with MS occurs at a faster rate (approximately 0.5–1.35% per year) 
than in healthy aging subjects [7, 8]. While early treatments in 
MS had limited effect on brain atrophy, recently developed MS 
treatments showed reduced brain atrophy rates [9, 10]. Moreover, 
a recent study [11] indicated that brain atrophy is associated with 
disease progression which was independent of relapse activity. This 
highlights the importance of developing reliable atrophy measure-
ments in the clinic. Brain atrophy measurement using magnetic 
resonance imaging (MRI) is a way to assess disease progression 
and monitor treatment response in MS [8, 12].
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Automated brain segmentation techniques have enabled 
efficient and reproducible processing of MR images. However, 
brain volumetry in MS is still challenging, e.g. due to dif-
ferences in MR scanners, acquisition protocols, and analysis 
software. Differences between scanners include technological 
differences between vendors, models and field strength [13]. 
These effects are more pronounced in multi-center trials and 
especially in the clinical setting, where MR scanners and 
acquisition protocols can vary frequently, compared to single-
center trials where sources of variation are better standardized.

Choice of acquisition method, including scanner model, and 
of analysis software affect the resulting volume measurements, 
as shown for limited number of scanners or vendors (usually 2) 
and mostly limited numbers of analysis software (1–4, but up to 
7 for Durand-Dubief) [14–18]. Furthermore, most brain volume 
reproducibility studies have generally been performed for other 
disease types (such as Alzheimer’s Disease) or in healthy controls 
[19–21]. Additionally, the effect on detection of group differences 
is unclear. There are multiple freely available software packages 
for volume measurements on MR images [22–25]. Deep learning 
approaches have recently gained an increased interest in the field 
of brain volumetry and have shown promising results compared 
to traditional methods [26, 27]. New methods have generally been 
developed to be more robust for image contrast changes, however, 
within and between-scanner effects have not been studied, yet [28, 
29]. Quantifying the effect of scanner used on the output of each 
software will provide an improved understanding of the resulting 
variability in atrophy measures, as well as mitigation of that vari-
ability. Moreover, it would be useful for future patient studies, to 
have an indication of the minimum real volume change that can 
be detected within one subject on one, or multiple, scanner(s). 
Similarly, when multiple scanners are used, an indication for the 
between-group differences and power could be beneficial.

In the current study, we applied six freely available brain vol-
ume segmentation techniques, including two novel techniques 
designed to be robust for image contrast, on whole-brain 3D 
T1-weighted (T1w) scans of 21 people with MS acquired using 
MR scanners from three different vendors, to examine the impact 
on both model-based and supervised machine learning algo-
rithms. All subjects were scanned twice on the same scanner to 
assess the within-scanner repeatability. Besides within-scanner 
repeatability, we aim to quantify the between-scanner reproduc-
ibility of the volume measurements through evaluation of agree-
ment between the MR scanners. Additionally, we evaluate the 
effect of lesion filling on repeatability and reproducibility.

Materials and methods

Participants

Baseline scans from a 1-year follow-up study in 21 subjects 
with MS (relapsing remitting MS n = 16; secondary progressive 

MS n = 1; and primary progressive MS n = 4), diagnosed 
according to McDonald 2010 criteria [30] were obtained 
between November 2016 and February 2017. Subjects included 
were between 18 and 70 years old. Exclusion criteria were any 
neurological/neuropsychological comorbidity and contraindi-
cation to undergo MRI examination. The subjects underwent a 
scan and rescan, hereafter referred to as first (scan) and second 
(rescan) run, on three 3 T MR scanners in the same center. 
Different MR examinations were performed on the same day 
or with a maximum of eight days between the scans. Between 
the first and second run the subjects got of the scanner bed 
and walked a few steps before repositioning. The institutional 
review board approved the study protocol (NL555598.029.15) 
and written informed consent was obtained from all individuals, 
according to the Declaration of Helsinki.

MRI protocol

Patients were scanned on the following scanner: 1) 3 T GE 
Discovery MR750 (GE Healthcare, Milwaukee, USA), 2) 3 T 
Philips Ingenuity (Philips Healthcare, Best, The Netherlands) 
and 3) 3 T Toshiba Vantage Titan (Toshiba Medical Systems 
Corporation, Otawara, Japan, now part of Canon Medical). All 
exams were scanned by a trained post-doc (HA). The acquired 
images were 3D T1w (see Table 1) and only on the GE a single 
additional 3D Fluid Attenuation Inversion Recovery (FLAIR) 
was scanned, (TE/TR/TI = 130/8000/2340 ms and 1.0 × 1.0 × 1.2 
 mm3), using acquisition protocols optimized locally. The proto-
cols were optimized for diagnostic purposes for the same group 
of radiologists for each scanner. The aim of this study is to inves-
tigate if brain volume is affected by scanner differences in a 
clinical setting. Therefore, we did not standardize each TE, TR 
and TI between scanners. In the current study we will use the 
term between-scanner to encompass both the differences arising 
from using different scanners and the variations resulting from 
different acquisition protocols. By using “between-scanner” in 
this manner, we aim to acknowledge and account for the com-
bined influence of both factors on the observed volumes. For all 
acquisitions distortion correction was applied.

Lesion filling

To avoid potential variation due to MS lesions, lesions were 
filled on 3D T1w images [31]. Lesion segmentation was 
performed on the 3D FLAIR images using nicMS lesions 
(https:// github. com/ sergi valve rde/ nicMS lesio ns), which 
resulted in an individual lesion probability map for each 
patient in their 3D-FLAIR space. Afterwards, these were 
linearly registered to the six different 3D T1 spaces of the 
same patient using FMRIB's Linear Image Registration Tool 
(FLIRT) (Jenkinson & Smith, 2001), with 12 degrees of 
freedom, mutual information as the cost function and tri-
linear interpolation. Subsequently, a threshold of 0.5 was 

https://github.com/sergivalverde/nicMSlesions
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applied to obtain the lesion mask. Then, both the 3D T1w 
and lesion mask images were used to fill lesion on T1w 
images with the help of lesion automated preprocessing 
(LEAP) [32]. An example of the FLAIR and non-filled and 
filled T1w images is given in Fig. 1.

Brain volumetry

Both non-filled and lesion-filled images were segmented into 
regions of interest (ROIs) with the segmentation methods 
described in Sect. 2.4.1 to 2.4.7. For this study, we looked 
at whole-brain, white matter (WM),1 gray matter (GM), cer-
ebrospinal fluid (CSF) and bilateral deep grey matter (DGM) 
(amygdala, nucleus accumbens, caudate nucleus, hippocam-
pus, pallidum, putamen and thalamus) volume. If necessary, 
additional preprocessing (such as neck removal) was per-
formed. For additional analyses, we concentrated results to 
only whole brain, GM, WM, CSF and the thalamus volumes. 
Quality control (QC) of the segmentations was performed 
on a randomly selected set of images. An example of the 
segmentations is shown in Fig. 2.

CAT‑12

The Computational Anatomy Toolbox (CAT) 12 version 
1830 (http:// www. neuro. uni- jena. de/ cat/ index. html, Jena 
University Hospital, Jena, Germany) was used, which 
is an addition to SPM-12 (http:// www. fil. ion. ucl. ac. uk/ 
spm/ softw are/ spm12/, Wellcome Trust Centre for Neu-
roimaging) running in Matlab R2018b (The MathWorks, 
Natick, MA) [33]. Briefly, CAT-12 uses a combination of 
a priori tissue probability maps for normal subjects and an 
intensity-based tissue classification to increase the accu-
racy of the segmentation of an MR image into GM, WM 
and CSF [34]. The neck and skull are stripped automati-
cally before segmentation. The brain volume in CAT-12 
was defined as the sum of the GM and WM volumes and 
the total intracranial volume (TIV) was used for the nor-
malisation for head size. No additional pre-processing or 

manual intervention was performed. The cross-sectional 
data segmentation tool was run using the default settings 
including segmentation of the DGM structures using the 
Hammers atlas [35].

FreeSurfer

FreeSurfer version 7.1.1 was used; a detailed description can 
be found here: https:// surfer. nmr. mgh. harva rd. edu/ fswiki/ 
and has previously been described [23, 36]. In short, both 
volume-based and surface-based approaches are used to 
produce volume measurements of the brain. It applies sev-
eral automatic preprocessing steps such as skull stripping, 
intensity normalization and bias field correction. FreeSurfer 
presents the estimated TIV (eTIV), which is based on the 
relationship between the intracranial volume (ICV) and 
the linear transform to MNI305 space, as a normalization 
measure [37]. However, this relationship is biased by brain 
volume [38] and may therefore result in incorrect normali-
zation. Therefore, we also normalized FreeSurfer volumes 
with the segmentation-based estimate of the TIV (sbTIV) 
derived from SAMSEG. FreeSurfer was run with the -3T 
-all options.

SAMSEG

Sequence Adaptive Multimodal SEGmentation (SAMSEG) 
(https:// surfer. nmr. mgh. harva rd. edu/ fswiki/ Samseg) is a 
relatively new approach that has been described in [29]. In 
brief, SAMSEG uses a probabilistic atlas which is mesh-
based and does not require any preprocessing steps. The seg-
mentation-based estimate of the TIV (sbTIV) was used for 
normalization. SAMSEG is part of the FreeSurfer package.

FSL

FSL-FIRST was used for DGM segmentation and FSL-
SIENAX for WM, GM, CSF and whole brain segmentation 
both from FSL version 6.0.4 (https:// fsl. fmrib. ox. ac. uk/ fsl/ 
fslwi ki/) [24, 25, 39]. FSL-FIRST, a model-based tool, uses 
shape and appearance models which were derived from a 
large dataset. SIENAX separately estimates the GM, WM 
peripheral GM and ventricular CSF volume fractions [40]. 

Table 1  MRI acquisition parameters: FOV = Field of View, TR = Repetition Time, TE = Echo Time, TI = Inversion Time, FSPGR = Fast SPoiled 
GRadient Echo, TFE = Turbo Field-Echo, FFE = Fast Field Echo

Scanner Slices FOV
(mm2)

Pulse 
sequence 
name

Orientation Resolution  (mm3) TR (ms) TE (ms) TI (ms) FA (º)

GE Discovery MR750 172 256 × 256 FSPGR sagittal 1.0 × 1.0 × 1.0 8.2 3.2 450 12
Philips Ingenuity 176 256 × 256 TFE sagittal 1.0 × 1.0 × 1.0 7.9 4.5 900 8
Toshiba Vantage Titan 176 256 × 256 FFE sagittal 1.0 × 1.0 × 1.2 5.7 2.4 1050 9

1 For SAMSEG, FreeSurfer, SynthSeg and FastSurfer only cerebral 
WM was segmented.

http://www.neuro.uni-jena.de/cat/index.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://surfer.nmr.mgh.harvard.edu/fswiki/
https://surfer.nmr.mgh.harvard.edu/fswiki/Samseg
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/


1462 Neuroradiology (2023) 65:1459–1472

1 3

Fig. 1  Example of non-filled and filled T1w images and the additional FLAIR scan of the same subject. Red arrows indicate the lesions on 
FLAIR and the filled lesions on the T1w images

Fig. 2  Example of images of the 
GE scanner and corresponding 
segmentations for one subject 
and the first scan (non-filled). 
Please note that CAT12 and 
SIENAX + FIRST have different 
color scales
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Before this, a volumetric scaling factor is determined by reg-
istration of the skull image to the MNI 152 space [41]; this 
was used for normalization for both FIRST and SIENAX. 
As proposed by [42] the optimal parameters “-B -f 0.1”; and 
neck removal were applied for FSL-SIENAX in this study.

FastSurfer

FastSurfer (https:// github. com/ Deep- MI/ FastS urfer) is a 
convolutional neural network (CNN) based on FreeSurfer 
output [26]. It was trained on 140 subjects which were pro-
cessed with FreeSurfer version 6.0.0 and produces similar 
output. Additionally, the surface-based pipeline was run. 
No preprocessing was performed. The eTIV was used for 
normalization.

SynthSeg

Another CNN, called SynthSeg (https:// github. com/ BBill 
ot/ Synth Seg), tackles the generalizability problem of deep 
learning approaches by training on synthetic data which 
was sampled from manual and FreeSurfer segmentations 
and corresponding input images [28]. SynthSeg (v1.0) does 
not provide any normalization volume or estimate such as 
the eTIV or sbTIV, therefore sbTIV from SAMSEG was 
applied here.

Statistical analyses All statistical analysis was performed using 
R Statistical Software (version 4.1.1; R Foundation for Statisti-
cal Computing, Vienna, Austria). An overview of all statistical 
analyses is depicted in Fig. 3. Both repeatability and reproduci-
bility were assessed cross-sectionally with the intra-class corre-
lation coefficient (ICC) with a 95% confidence interval (CI) for 
absolute agreement within scanner (ICC-AA) and for consist-
ency between scanners (ICC-C), respectively. Note that the 
ICC-C does not reflect potential systematic difference between 
measurements. The ICC-values were classified according to the 
standards of Koo and Li (2016) [43]. ICC-C was tested on the 
first run of the scan-rescan images of all scanners. Reproducibil-
ity was assessed with a repeated measures ANOVA or a Fried-
mann test for not normally distributed data. If appropriate, post 
hoc testing was performed using pairwise t-tests or Wilcoxon 
signed rank tests. Reported p-values are Bonferroni corrected. 
The previous analyses were performed for un-normalized vol-
umes to mitigate effects of improper normalization. For the fol-
lowing analyses we did normalize because this is common prac-
tice in a cross-sectional setting. With the normalized volumes a 
variance component analyses (VCA) was performed. From 
variance estimates we computed the standard error of measure-
ment (SEM), as percentage of the mean, for within-scanner 
 (SEMwithin) and between-scanner  (SEMbetween) measurements 
[44]. Where  SEMwithin was defined as the square root of the 

residual variance (σ2
ε) divided by the mean volume of the struc-

ture ( V ): SEMwithin =

√

σ2
ε

�

−

V
100% , and the  SEMbetween 

was defined as the square root of the sum of the rater (scanner) 
variance (σ2

r) and σ2
ε divided by V : 

SEMbetween=

√

σ2
r
+σ2

ε

�

−

V
100% . Additionally we calculated 

the percentage smallest detectable change (SDC) from the SEM 
(SDC = 1.96 · 

√

2 · SEM), which indicates the minimum per-
centage change considered to be a significant change (with 95% 
certainty) [44]. To assess any fixed and proportional bias, Bland-
Altmann plots were created. These plots depict the volume dif-
ference between scanners as a function of the average volume 
with accompanying 95% CI. Moreover we executed a power 
analyses to evaluate the minimum group sizes needed to detect 
1% difference in volume, using alpha = 0.05 and 80% power. 
These analyses were run for situations within-scanner or 
between-scanners.

Results

Demographics

The demographics of the MS patients are shown in Table 2. 
The second run of one subject on the GE scanner had clear 
motion artifacts so these images were excluded from the 
analyses.

Reliability

The within-scanner ICC-AA was above 0.9 for brain, GM, 
WM and CSF volumes segmented on both the lesion-filled as 
non-filled images, indicating excellent reliability (Fig. 4 and 
supplementary materials Fig. 1). However, for smaller (DGM) 
structures, which are typically more difficult to segment, the 
ICC-AA values ranged from 0.64 to 0.99 indicating moder-
ate to excellent reliability. Generally, FreeSurfer and FSL 
have lower ICC-AA compared to other software. The overall 
between-scanner ICC-C was good to excellent (> 0.7), except 
for some small structures such as the accumbens (range: 
0.4–1). Figure 5 shows that generally SAMSEG has the high-
est overall ICC-C followed by FastSurfer and SynthSeg. An 
example of the ICC for the amygdala with 95% CI is given in 
Fig. 6. The 95% CI of the amygdala ICC for FSL and SAM-
SEG do not overlap for this instance, but for the GM these 
intervals are very similar. For the same software and brain 
structure ICC-AA were higher than ICC-C between scanners 
(range: 0.65–1 vs. 0.41–1). The ICC values for the lesion filled 
and non-lesion filled images and their corresponding CI were 
highly overlapping (Fig. 7).

https://github.com/Deep-MI/FastSurfer
https://github.com/BBillot/SynthSeg
https://github.com/BBillot/SynthSeg
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Systematic differences between scanners

Although the between-scanner reliability was high, sys-
tematic differences were found for all software pack-
ages in both GM and WM (Figs.  8 & 9). For every 
software package, the white matter for GE had a lower 
volume compared to Toshiba and Philips (p < 0.001, 
except for SynthSeg compared to Philips). Conversely, 
the volume of gray matter segmented from GE scans 
was higher compared to Philips (p < 0.001, except 

for SAMSEG). This was also true for GE vs. Toshiba 
for FastSurfer (p < 0.0001), FreeSurfer (p < 0.0001), 
SAMSEG (p < 0.01) and SIENAX (p < 0.001). Simi-
lar observations were found for the non-filled images 
(see supplementary materials). For whole-brain volume 
measurements differences were present depending on 
scanner and software except for FSL-SIENAX where 
there were no significant differences between scanners 
(supplementary materials Fig. 3).

Fig. 3  Schematic of measure-
ments with accompanying 
tests. Yellow indicates input 
data, orange indicates a data 
processing step, light-blue 
indicates a repeatability (within-
scanner) measure, dark-blue 
indicates a reproducibility 
(between-scanner) measure, 
purple indicates whole group 
analyses. pwMS = people with 
multiple sclerosis, LF = lesion-
filled, NF = non-filled, 
vol(s) = volume(s) derived with 
the software, ICC = intra-class 
correlation coefficient, ICC-
AA = ICC-absolute agreement, 
ICC-C = ICC-consistency, 
VCA = variance component 
analyses, SEM = standard error 
of measurement, SDC = small-
est detectable change
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Variance component analyses
 
Bland–Altman plots, standard error of measurement 
and smallest detectable change

In the Bland–Altman plots, although there was a fixed 
bias, no obvious proportional bias was observed. An 
example of the Bland–Altman plots is depicted in sup-
plementary materials (Fig. 6) for GM, WM and CSF 
volumes segmented with SIENAX. Similar observa-
tions were found for other software. In Table 3, the 

SEM of the normalized volumes is detailed as per-
centage of the mean for each structure separately. As 
can be seen from the table, the  SEMbetween is between 
1.75% and 12.42%, while the  SEMwithin is lower (range: 
0.37–5.25%) for the same structure and software. Simi-
lar observations were found for the SDC for un-nor-
malized volumes where, depending on the software 
and structure, the SDC for scans from between-scan-
ner analyses was up to nine times higher compared 
to within-scanner analyses Table 4. In Tables 3 & 4, 
FreeSurfer volumes were normalized with the sbTIV 
because eTIV normalized volumes resulted in an 
increase of the SDC up to 19.28% (supplementary 
materials Table 1).

Power analyses

A power analyses for sample size was conducted for 
between and within scanner measurements. In Fig. 10, 
the ratio of participants needed to detect 1% volume 
difference between groups for between scanner meas-
urements or within scanner measurements is depicted. 
Depending on the ROI and on the software used, multi-
ple scanner studies can yield a twofold increase in num-
ber of participants. Some structures are typically hard 
to segment so these result in an increase in participant 

Table 2  Demographics and clinical characteristics

Abbreviation: TEC dimethyl fumarate (Tecifidera), COP glatirameer 
acetate (Copaxone), AVO interferon-β1 α (Avonex), FIN fingolimod, 
NAT natalizumab, FAM fampridine (Fampyra). a Mean b Mean since 
diagnosis.

MS (n = 21)

Demographics at baseline
  Male, n (%) 6, (28%)
   Agea, y (range) 47.7 ± 9.4 (32–60)
  Disease  durationb (range) 11.38 ± 9.1 (1–40)

Disease-modifying treatment
  (none/TEC/COP/AVO/FIN/NAT/FAM), n 5/5/2/1/3/3/3/2

Fig. 4  Heatmap of the within-scanner agreement (ICC-AA) for each scanner for the lesion-filled T1w images

Fig. 5  Heatmap of the between-scanner agreement (ICC-C) for all three pairwise scanner combinations for the lesion-filled T1w images
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Fig. 6  An example of the ICC-C values for lesion filled images with the corresponding 95% confidence interval for GM (A: GE vs Philips, B: 
GE vs Toshiba, C: Philips vs Toshiba) and the Amygdala (D: GE vs Philips, E: GE vs Toshiba, F: Philips vs Toshiba)

Fig. 7  ICC-C scores for lesion filled (LF) and non-lesion filled (non-LF) with the 95% confidence interval for volumes of the Brain, CSF, GM, 
thalamus and WM segmented with CAT12 for GE vs Philips scanner
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Fig. 8  Boxplot (Tukey, line at 
median) of the total gray matter 
volume measurements grouped 
per scanner and software for 
lesion-filled images. * p < 0.05, 
** p < 0.01, *** p < 0.001 **** 
p < 0.0001

Fig. 9  Boxplot (Tukey, line at 
median) of the white matter 
volume measurements grouped 
per scanner and software for 
the lesion-filled images. Note 
that the volumes for FastSurfer, 
FreeSurfer, SAMSEG and 
SynthSeg are lower because 
these only consider the cer-
ebral white matter. * p < 0.05 
** p < 0.01 *** p < 0.001 
****p < 0.0001

Table 3  Standard error of 
measurement as percentage 
of the mean. For a situation 
within-scanner (W) or between-
scanners (B) (FreeSurfer was 
normalized by the sbTIV, 
since eTIV increased the SEM 
severely)

FastSurfer FreeSurfer SAMSEG FSL CAT12 SynthSeg

Comparison W B W B W B W B W B W B

Total brain 0.51 4.39 0.56 1.96 0.37 2.07 1.32 2.08 0.92 2.75 0.45 1.98
(Cerebral) WM 0.62 6.78 0.85 4.12 0.53 2.39 1.55 4.35 1.12 3.90 0.60 2.38
CSF 1.84 7.06 5.25 8.59 0.97 5.30 1.63 5.42 2.79 8.33 0.59 3.05
Total Gray 0.61 4.07 0.68 2.59 0.49 2.20 1.51 4.02 0.97 2.71 0.45 1.90
Thalamus 1.09 2.84 3.45 5.27 0.69 1.76 1.66 3.02 3.28 10.55 0.99 1.75
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number (e.g., the thalamus). For SynthSeg, the increase 
is less compared for example FreeSurfer or FastSurfer.

Discussion

In this study, we provided a comparative study of 6 freely 
available software packages for brain volume segmenta-
tion in people with MS by examining within and between-
vendor MR scanner effects. The main findings suggest that 
although the ICC scores were good to excellent, system-
atic differences between scanners were present between all 
the software packages examined. As expected, the within-
scanner repeatability was higher than the between-scanner 
reproducibility. Lesion filling did not increase the ICC 
because of the highly overlapping 95% CI, but we did see 
erroneous segmentations in non-filled images, especially 
in and around lesions (supplementary materials Fig. 7). 
With the different error and correlation metrics used in 
this study, several different topics of interest were studied. 

A high ICC value indicates good reliability, meaning that 
subjects can reliability be distinguished from each other. 
This can occur either because the subjects are sufficiently 
different from each other, or because the influence of 
other sources of variation (also known as measurement 
error) is small enough [45]. In the presence of substantial 
between-subject variation, this measurement error may 
be large, but relatively small enough to still result in a 
high ICC. Therefore, the measurement error, expressed 
as the SEM, is informative, as it relates to the precision 
of the measurement. Furthermore, the RM-ANOVA and 
post hoc analyses provide insights into the presence of any 
systematic bias.

Given the relatively small atrophy rates (0.5–1.5% 
depending on structure en disease type) in people with 
MS, it is important that the measurement error is within 
the bounds of the volume loss to accurately obtain informa-
tion on disease progression [7, 46]. We observed that for 
between-scanner measurements the SEM and SDC are sig-
nificantly higher compared to within-scanner measurements. 

Table 4  Smallest detectable 
change as percentage of the 
mean. For a situation within 
(W) or between-scanner (B). 
(FreeSurfer was normalized by 
the sbTIV, since eTIV increased 
the SEM severely)

FastSurfer FreeSurfer SAMSEG FSL CAT12 SynthSeg

Comparison W B W B W B W B W B W B

Total brain 1.43 12.17 1.56 5.43 1.02 5.73 3.67 5.77 2.55 7.62 1.26 5.48
(Cerebral) WM 1.70 18.78 2.35 11.43 1.48 6.61 4.29 12.05 3.11 10.82 1.66 6.61
CSF 5.11 19.57 14.55 23.81 2.68 14.69 4.52 15.03 7.72 23.09 1.63 8.45
Total Gray 1.69 11.27 1.88 7.17 1.36 6.10 4.20 11.15 2.70 7.52 1.25 5.27
Thalamus 3.01 7.88 9.57 14.62 1.92 4.89 4.61 8.36 9.08 29.25 2.76 4.83

Fig. 10  Heatmap of the ratio (between/within) of participants 
needed to detect 1% difference in (normalized) volume for a situ-
ation between (vendor) different MR scanners or within-scanner. In 
brackets the number of participants for a between-scanner situation 

is given. For example: for FastSurfer for between-scanner measure-
ments 642 participants are needed to detect 1% difference in brain 
volume while for within-scanner measurements this would be: 334 
(642/1.92 = 334)
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The estimates of the SEM (range: 0.37–1.32%) and SDC 
(range: 1.02–3.67%) suggest that the yearly total brain vol-
ume loss of a MS patient (0.5–1.35%) can be observed reli-
ably on the same scanner within one or two years, while 
for between-scanner scanner situation it may take up to 
5–10 years, depending on the structure of interest [46, 47]. 
Similar observations were found by Guo et. al [15] where 
they found that the coefficient of variation (CoV) was 
between 0.17–0.92% intra-scanner while the inter-scanner 
CoV was between 0.65 and 5.0%. In addition, Opfer et al. 
[48] also found that the within-scanner percentage differ-
ence was between 0.24% and 1.74% and found a tenfold 
increase for between scanner variability, which is in line 
with our results for the SEM. In contrast to the previous 
study, with the help of the SDC measure, information about 
the minimum change needed could be obtained. Our results 
concerning between-scanner differences are consistent with 
previous similar studies in MS [15, 49]. The lower ICCs, 
higher SEM and higher SDC for the smaller structures are 
likely due to the more difficult task of small ROI segmenta-
tion [50]. In addition, not segmenting, e.g., a WM-voxel on 
the GE scan while segmenting a voxel on the Philips scan 
has less influence on the ICC compared to the same situation 
for smaller structures.

The ICC analyses were performed on unnormalized vol-
umes to exclude any effects of improper normalization on 
those results. However, for the calculation of the SEM and 
for the power analyses we did look at normalized volumes 
since normalization is usually applied in a cross-sectional 
study. Especially for the SEM, when the eTIV of FreeSurfer 
was used for normalization, the SEM increased up to 6.95% 
compared to normalization with the sbTIV. Volumes nor-
malized with sbTIV resulted in similar SEM for FreeSurfer 
compared to other software. This suggests that the eTIV 
might not be a reproducible measure for normalization and 
other methods (e.g., sbTIV) have to be used when running 
FreeSurfer for segmentation, as suggested by FreeSurfer.

From all the segmentation methods, SAMSEG showed 
the lowest measurements error and highest between scan-
ner reproducibility. Similarly, the amount of participants 
needed to detect a 1% difference in volume was less com-
pared to other software. In addition, SynthSeg had similar 
performance compared to SAMSEG on the different met-
rics for reproducibility. Admittedly, most of the software 
had for example a lower SEM for GM (range: 0.49–1.51%) 
compared to the yearly GM atrophy rates (0.58–0.97%), 
assuming the measurement error does not increase over 
time. This was comparable for other structures [46]. How-
ever, the SDC increases systematically for between-scanners 
measurements. Both SAMSEG and SynthSeg have explic-
itly been developed to be adaptable to different scanners 
and moreover, different sequences [28, 29]. This suggests 
that for more reproducible results these types of software 

are preferable in contrast to the more traditional methods 
such as FreeSurfer and SIENAX. Noticeably, FastSurfer 
ICCs were higher than FreeSurfer, even though FastSurfer 
has been trained on FreeSurfer segmentation output instead 
of manual segmentations. It is worth mentioning that there 
are several more available software packages and that their 
accuracy assessment is warranted.

Even with the newest segmentation software, system-
atic differences between scanners persist. The goal of this 
research is not to provide one optimal software but to sup-
ply potential readers with a guideline to choose the optimal 
software depending on their input data and research pur-
pose. Moreover, here we quantified the reproducibility in 
a multi-scanner setting for MS patients. Although the idea 
for data harmonization has been around for a long time and 
been adopted by initiatives such as the Alzheimer’s Dis-
ease neuroimage initiative this is generally not feasible in 
clinical practice [51]. Even with the harmonized approaches 
there is too much freedom for the protocol parameters, such 
as receiver coil, TE/TR/TI and k-space sampling strategy, 
impacting e.g. effective spatial resolution and CNR [52]. In 
addition, harmonization proposals to account for site and 
scanner effect such as the travelling brain approach, have 
their disadvantages [53]. A possible solution could be to pro-
vide phantoms with similar characteristics to human brains 
as proposed by [54].

Limitations

Our study has some limitations. First, we had a relatively small 
sample size of 21 people with MS. Given this small sample size, 
we likely reported increased estimates of the variance compared 
to larger cohort studies. However, patients were scanned on 3 
scanners and two scans on each scanner resulting in a total of 
126 T1w scans for within patient comparisons. Secondly, we 
only looked at 3 T field strength. Currently, both 3 T and 1.5 T 
systems are frequently used in daily clinical care and tissues have 
different T1 and T2 relaxation times on 3 T versus 1.5 T sys-
tems which likely affects the segmentation [55, 56]. We unfor-
tunately did not have manually outlined segmentations to check 
the quality of the segmentation of the images. In addition, not 
every segmentation was visually inspected for correctness. Third, 
because the FLAIR images were only acquired on the GE scan-
ner, registration may have influenced the accuracy of the lesion 
filling pipeline. Moreover, potential between-scanner differences 
of FLAIR images could influence the T1w lesion-filling. How-
ever, among the many sources of variance (e.g., movement of 
the participant, scanner, protocol, software etc.) in this study we 
chose not to introduce an additional source of variance such as 
difference in the FLAIR protocol and differences in lesion seg-
mentation. Fourth, this study was conducted in one center and 
images were acquired by one technician with optimized protocols 
for the neuroradiologists of the specific center.
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Conclusion

We demonstrated high within- and between scanner ICCs 
for brain volume measurements on T1w in MS, though 
systematic differences between scanners are present for 
every scanner and every software, depending on the struc-
ture. This implies that for a clinical setting or a cross-
sectional multi-center/multi-scanner study, the effects of 
scanner need to be taken into account. Furthermore, to 
apply atrophy measurements in a clinical setting standardi-
zation of volume measurements in MS is needed.
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