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A B S T R A C T

The behavior of confined suspensions of soft droplets under pressure-driven flow, passing an obstacle within
a planar channel, is investigated by means of a mesoscopic lattice Boltzmann model capable of simulating
soft non-coalescing droplets. The simulations reveal that the threshold of the pore size, below which the
flux vanishes, is between 1 and 2 droplet diameters, and increases with the packing fraction. Moreover, we
show that the classical Beverloo relation between the total flux and the pore size is not suitable for the soft
suspensions considered here.
1. Introduction

The flow of particle suspensions is of widespread practical [1,2]
and fundamental [3–5] interest. Hard particle suspensions or granu-
lar media are the subject of a decades-long activity in the realm of
statistical mechanics and kinetic theory [6,7]. On the contrary, dense
and soft flowing suspension systems are widespread in engineer and
applied research [8]. They also draw the interest of experimental
physicists [9–11], but elude the effort of theorists and for this reason
lack a systematic and comprehensive theoretical framework.

One challenge of understanding and controlling the suspension
rheology is that the response is nonlinear, with a forcing threshold
below which the medium is static [12–15]. Furthermore, just above
threshold the response may be intermittent even though the forcing is
steady. Familiar examples include avalanches down the surface of a
heap as well as gravity-driven discharge from a horizontal hole at the
bottom of a deep container or ‘‘silo’’. For the latter, the mass discharged
per unit time is given by the ‘‘Beverloo’’ relation:

𝑊 = 𝐶𝜌𝑏(𝑔𝐷𝑐 )1∕2𝐷2
𝑐

(

𝐷 −𝐷𝑐
𝐷𝑐

)𝑛−1∕2
(1)

where 𝑛 is spatial dimensionality, 𝜌𝑏 is the density of the hard particle
suspensions, 𝑔 = 980 cm∕s2, 𝐷 is the hole diameter, 𝐷𝑐 = 𝑘𝑐𝑑 is the
critical diameter (with 𝑑 the grain diameter) below which average flow
disappears, and 𝐶 and 𝑘𝑐 are dimensionless fitting parameters [16]. Ac-
cordingly, and in contrast with viscous fluids, the discharge of grains is
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independent of filling depth. Typical ranges for the numerical constants
are 0.5 < 𝐶 < 0.7 and 1.2 < 𝑘𝑐 < 3, depending on grain shape and
friction. The Beverloo equation entails the existence of a threshold hole
diameter, 𝐷𝑐 , of a few grains across, below which the flux vanishes.
Just above this cutoff, the flow is intermittent with random jamming
events [17,18].

Jamming through an orifice is highly useful for probing the extreme
limits of flowing particle suspensions, since in this situation the bulk –
continuum-like – behavior of a large system may be influenced by a rel-
atively small number of particles near the hole. Furthermore, jamming
is a natural phenomenon that illustrates spontaneous evolution from a
freely flowing state to a jammed state with no change in the external
forcing. Similar issues are important for understanding the flow of
suspensions and emulsions [19–26] through constrictions, where the
hydrodynamics of the flowing fluid as well as the capillary effects must
be taken into account, e.g., the flow of vortices through an array of
pinning sites in superconductors [27], as well as automotive [28] and
pedestrian [29] traffic. In spite of many simulations [17,30] and exper-
iments in both two- and three-dimensional hoppers [12,18,31,32], the
ability to predict or control clogging is still lacking [33].

The flow of suspensions through porous structures, which leads
to a partial or full filtration, is widely used in industry either to
purify fluids or to separate species in chromatography, microfluidics, or
nanofluidics [34]. Filtration has also a major impact in the environment
(water and wastewater treatment, drilling well productivity, pollutant
vailable online 9 June 2023
045-7930/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.compfluid.2023.105958
Received 30 January 2023; Received in revised form 6 April 2023; Accepted 19 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ay 2023

https://www.elsevier.com/locate/compfluid
http://www.elsevier.com/locate/compfluid
mailto:linfei@ethz.ch
https://doi.org/10.1016/j.compfluid.2023.105958
https://doi.org/10.1016/j.compfluid.2023.105958
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2023.105958&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Fluids 263 (2023) 105958L. Fei et al.

t

s
o
a
e
u
f
i
p

s
t
o
d
r
i

2

m
a
m

𝑓

a

Fig. 1. The discrete lattice used in this work. The fluid lives in the D2Q9 lattice while
he interactions extend to the D2Q25 lattice.

torage in soils, unbalance of ecosystems or floods due to accumulation
f fine sediments in gravel-bed streams, etc.) [35–37] A straightforward
pplication of understanding obstruction of suspensions is found in
cological engineering: there, an alternative that is becoming widely
sed for removing pollutants from waste water is the use of subsurface
low treatment. The most important drawback of this technique is
ts unpredictable lifetime, mostly limited by clogs that obstruct the
ores [38].

In this paper we offer a new insight in the flow behavior of soft
uspensions, based on the mesoscopic lattice Boltzmann simulations of
he soft suspensions under pressure-driven flow, passing through an
bstacle within a planar channel. In Section 2, we give a brief intro-
uction of the adopted numerical method. In Section 3, the simulation
esults are analyzed and discussed. Finally, a short summary is given
n Section 4.

. Numerical method

In this paper, a two-species mesoscopic lattice Boltzmann (LB)
odel based on an extended pseudopotential interactions [39,40] is

dopted to investigate the flow behavior of soft suspensions. The LB
odel takes the form (see [41–44] for details):

𝑘,𝑖(𝐱 + 𝐞𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓𝑘,𝑖 −
𝛥𝑡
𝜏𝑘

(𝑓𝑘,𝑖 − 𝑓
𝑒𝑞
𝑘,𝑖) + 𝛥𝑡𝐹𝑘,𝑖. (2)

where 𝑓𝑘,𝑖 is the probability of finding a particle of species 𝑘 (𝑘 = 1, 2)
t the space 𝐱 and time 𝑡, moving along the 𝑖th direction 𝐞𝑖 of the two-

dimensional nine-velocity (D2Q9) lattice in Fig. 1. 𝛥𝑡 = 1 is the lattice
time step. The right-hand side, computed at (𝐱, 𝑡), is the time relation
(due to collisional interactions) toward the local equilibrium 𝑓 𝑒𝑞𝑘,𝑖 on a
time scale 𝜏𝑘. 𝐹𝑘,𝑖 is a forcing term representing the effects of the total
force 𝐅𝑘 acting upon each species of the suspensions [45].

The total force imposed on each species is 𝐅𝑘 = 𝐅𝑏𝑘+𝐅
𝑟
𝑘+𝐅

𝑐
𝑘, where 𝐅𝑏𝑘

is the body force, 𝐅𝑟𝑘 is interspecies repulsive force, acting between the
two species, and 𝐅𝑐𝑘 the intraspecies force, encoding the competition
between a short range (within the first-belt D2Q9 lattice in Fig. 1)
attraction and a mid-range (extending to the D2Q25 lattice in Fig. 1)
repulsion within each species [39,40,46]. The repulsive interspecies
force is defined as usual [39],

𝐅𝑟𝑘 = −𝜌𝑘(𝐱)
∑

𝑘̄

𝐺𝑘𝑘̄
8
∑

𝑖=0
𝑤(|

|

𝐞𝑖||
2)𝜌𝑘̄(𝐱 + 𝐞𝑖𝛥𝑡)𝐞𝑖, (3)

where 𝐺𝑘𝑘̄ = 𝐺𝑘̄𝑘 is the strength coefficients for the interspecies
interaction, and the weights are 𝑤(0) = 4∕9, 𝑤(1) = 1∕9, and 𝑤(2) =
1∕36. The competing interaction force is explicitly written as [46],

𝐅𝑐𝑘 = −𝐺𝑘,1𝜓𝑘(𝐱)
8
∑

𝑤(|
|

𝐞𝑖||
2)𝜓𝑘(𝐱 + 𝐞𝑖𝛥𝑡)𝐞𝑖
2

𝑖=0
− 𝐺𝑘,2𝜓𝑘(𝐱)
24
∑

𝑗=0
𝑝(||
|

𝐞𝑗
|

|

|

2
)𝜓𝑘(𝐱 + 𝐞𝑗𝛥𝑡)𝐞𝑗 , (4)

where 𝐺𝑘,1 and 𝐺𝑘,2 are the strength coefficients for the short-range
and middle-range interactions respectively, and the weights for D2Q25
lattice are 𝑝(0) = 247∕420, 𝑝(1) = 4∕63, 𝑝(2) = 4∕135, 𝑝(4) = 1∕180,
𝑝(5) = 2∕945 and 𝑝(8) = 1∕15120. The pseudopotential originally
suggested by SC [39,40], 𝜓𝑘(𝜌𝑘) = 𝜌0(1 − 𝑒−𝜌𝑘∕𝜌0 ) (with a uniform
reference density 𝜌0 = 1.0 for each component) is adopted. The above
definition of 𝐅𝑐𝑘 is to mimic the spatially complex (non-monotonic)
interactions among molecules within each species. We wish to point
out that the incorporation of 𝐅𝑐𝑘 provides an important extension of
the original pseudo-potential model [39,40], as it allows the emergence
of supramolecular forces, e.g., positive disjoining pressure [47], in the
lattice kinetic model. Such an extension has met with significant success
in reproducing many features of a variety of soft flowing systems, such
as aging, elastoplastic rheology, and structural frustration, in confined
and unbounded flows of micro-emulsions [47–49]. More details about
the numerical scheme adopted in this paper can be found in [45].

We prepare the soft suspensions by packing monodisperse droplets
in a 2D pressure-driven flow, within a micro-channel of size 3𝐿 = 990
and 𝐿 = 330 along the streamwise (𝑥) and cross-flow (𝑦) directions,
respectively. Moreover, an obstacle with height 𝐻 is placed along the
𝑦 direction at 𝑥 = 𝐿. The no-slip boundary conditions for the velocity
are imposed on the top and bottom walls, as well as the obstacle; non-
wetting boundary conditions (contact angle of 𝜃 = 180◦) are applied
for the droplets. For the droplet (surrounding fluid) occupied region,
the species densities are approximately 𝜌1 = 0.02, 𝜌2 = 1.0 (𝜌1 =
1.0, 𝜌2 = 0.02), with unity dynamics viscosity ratio 𝜇1 = 𝜇2 = 0.1.
The mass packing fractions 𝛷 are tuned within 0.412 ≤ 𝛷 ≤ 0.622 via
changing the numbers of the equal-size droplets, with diameter 𝑑 = 30.
The pressure difference 𝛥𝑝 is set to give a peak velocity 𝑈0 = 0.05
for the corresponding single-species Poiseuille flow, and imposed via
a homogeneous body force 𝛥𝑝∕3𝐿. Therefore, the pressure boundary
condition at the inlet and outlet of the channel is replaced by the
periodic condition. In the paper, the interspecies force 𝐅𝑟𝑘 is tuned to
realize a surface tension 𝛾 = 0.02 by setting 𝐺𝑘𝑘̄ = 𝐺𝑘̄𝑘 = 2.33, and
the competing interaction force 𝐅𝑐𝑘 is tuned with 𝐺𝑘,1 = −10, and
𝐺𝑘,2 = 8 to achieve a positive disjoining pressure, sufficient to avoid
droplet coalescence. The propensity of the droplet to deform under
shear, is usually measured by the Weber number 𝑊 𝑒 = 𝜌𝑑𝑢2∕𝛾, which
in our case is well below 0.1. We note that the LB units are used
for convenience, while the appropriate mapping between LB units and
physical units can be found in [50,51].

3. Results

In our simulations, the obstacle size is changed progressively to
study the effect of the (dimensionless) pore size 𝛿 = 𝐷∕𝑑, with 𝐷 =
(𝐿−𝐻)∕2 the real pore size, on the flowing behavior of the suspensions.
A typical snapshot for 𝛿 = 4.5 at 𝛷 = 0.622 is shown in Fig. 2.
It is seen that our numerical method captures the main features of
such suspensions, including stable and non-coalescing droplets, locally
moderate deformations, and non-wetting boundary conditions for the
droplets. We wish to point out that, without the obstacle, the present
system reduces to the pressure-driven suspensions studied in our pre-
vious work [45], where our numerical scheme has been verified by
empirical expressions [52] for the effective viscosity of the suspensions
as a function 𝛷.

In Fig. 3, we show the horizontal average velocity 𝑢 (normalized by
𝑈0) as a function of 𝑦 for different packing fractions at 𝛿 = 4.5. Different
from the Poiseuille flow profile (single-species, 𝛷 = 0), we see the
velocity profile flattens gradually in the central region of the channel
with the increase of 𝛷, as expected for such kind of non-Newtonian
fluid [45,47]. We note the characteristic velocity in our system is 𝑢 <
0.01. The corresponding Reynolds number (based on 𝐿 and 𝜇 ) is less
1
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Fig. 2. A typical snapshot of pressure-driven soft suspensions in a planar channel at
packing fraction 𝛷 = 0.622. The red and green color represents high and low density
of droplets, respectively, and the obstacle is marked as the blue strip along 𝑦 direction
at 𝑥 = 330. The obstacle height is 𝐻 = 60, giving the pore size 𝛿 = 4.5.

Fig. 3. Plot of the velocity profiles at different packing fractions 𝛷 at 𝛿 = 4.5.

Fig. 4. Time evolution of the global flux of the system at different packing fractions.

than 33, out of the region of flow instability in single-species flow [41],
i.e., periodically shed vortices.

To quantify the behavior of the suspensions, the global flux of the
system is measured. In Fig. 4, the time evolution of the normalized flux,

𝑄 = [∫

𝐿

0
𝑢(𝑦)𝑑𝑦]∕(2𝑈0𝐿∕3), (5)

is compared among different packing fractions. It is seen that the flux
for each case increases to an approximately steady value, in spite of
some fluctuations, after the first 2 × 105 steps. The average flux 𝑄̄ can
then be obtained by the time average of 𝑄 in the steady stage. An
interesting point is the relation between flux through the hole and peak
3

Fig. 5. Plot of global flowing flux as a function of the relative pore size 𝛿 = 𝐷∕𝑑
near the zero-flux point (𝑄̄ → 0). Through numerical extrapolation, we can obtain
the horizontal intercept 𝑘, i.e., the zero point of 𝑄̄, for each case. Inset, plot of the
horizontal intercept 𝑘 as a function of 𝛷.

Fig. 6. Semi-log plot of the global flowing flux 𝑄̄ as a function of the relative pore
size 𝛿 − 𝑘, at different mass packing fractions. The phase diagram can be divided into
a linear region and an exponential region, at the smaller and larger relative pore size,
respectively. Inset, plot of the global flowing flux 𝑄̄ by (𝛿 − 𝑘)3∕2 as a function of 𝛿−𝑘.

velocity 𝑈0, which can be considered equivalent of the free fall velocity
in hopper experiments [53,54]. Since 𝑄̄ is the flow velocity (averaged
over the transverse direction 𝐿) normalized by the peak velocity 𝑈0 it-
self, the real flux divided by density, 𝑊 ∕(𝜌1+𝜌2), is 𝑄𝑈0𝐿, and this – at
large enough 𝐷 – should be compared to 𝑈0𝐷. In conclusion we should
verify if 𝑄 ∼ 𝐷∕𝐿. For instance in the region where 𝐷 ∼ 102 we observe
𝑄 ∼ 0.2, which roughly agrees with the simple dimensional expectation.
In order to see the robustness of this relation, we have also checked that
fluxes 𝑊 collapse when increasing 𝐿 at constant forcing (not shown).

We now move to study the effect of pore size on the global flowing
flux (or the permeability) of the system. Similar to the case in dry
granular materials, it is important to evaluate the forcing threshold,
below which the suspensions are fully jammed (𝑄̄ = 0). In the sim-
ulations, it is hard to directly obtain the pore size at which the flux
𝑄̄ = 0 is exactly zero. Alternatively, the threshold value of 𝛿 can be
obtained by finding the intercept of the function between 𝑄̄ and 𝛿.
Although the explicit relationship is unknown yet, it is reliable to find
the intercept by linearly fitting the change of 𝑄̄ with 𝛿 near the zero-
flux point, as shown in Fig. 5. In the inset, we show that the jammed
pore size 𝑘 is between 1.0 and 2.0 and increases with 𝛷. We note that
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Fig. 7. Case of a single hole. (a): semi-log plot of the global flowing flux 𝑄̄ as a function of the relative pore size 𝛿 − 𝑘, at different mass packing fractions. (b): ratio between
lows with two and one holes as a function of 𝛿 for different packing fractions.
or dry granular matters, such a jammed pore size is usually around
.2 ∼ 3.0 [16], and for dilute suspensions the smallest relative pore
ize for the penetration is convergent to 𝑘 = 0 (𝛷 → 0), while our
ystem is located in between. Studying the configuration of droplets in
he jammed regime, we have seen that structures similar to static arches
ust before the holes appear.

Then, we consider to verify the applicability of the Beverloo relation
n the present soft suspensions. Inspired by the Beverloo relation, we
hen consider the change of 𝑄̄ with 𝛿 − 𝑘. As shown in Fig. 6, with
he decrease of the 𝛿 − 𝑘, it is more and more difficult to drive the
‘pass’’ of the droplets through the obstacle, namely producing a smaller
̄ . For a given 𝛿 − 𝑘, 𝑄̄ is also decreased with the increase of 𝛷,
hich is as expected and consistent with the case in planar channel
ithout the obstacle [45]. For the present simulations, we find that our
ata are not in agreement with the Beverloo relation for dry granular
aterials. Mainly, we could not find a range where the 3∕2 power-

aw between 𝑄̄ and 𝛿 − 𝑘 can be convincingly fit: this is better seen
n the inset where the rescaled flux does not show any tendency to
e constant. Nevertheless, we find the semi-log of the plot shows a
ery good linear fit at large pore size, i.e., 𝛿 − 𝑘 ≥ 1, indicating an
xponential dependence of permeability on pore size in the region
ar from the threshold. When the pore size is further decreased, the
easured flux 𝑄̄ deviates from the exponential law and linearly drops

o zero, corresponding to the cases shown in Fig. 5.
For the sake of completeness we have considered two variants of

he model. The first variation is going from two holes to a single hole,
here the obstacle with an open hole in the middle is located at 𝑥 = 𝐿.
he main results are seen in Fig. 7. The phenomenology is similar,
ut the flow with one hole is much slower than half of the flow with
wo holes when the volume fraction is large, supposedly because of
he growth of spatial correlation and therefore more and more relevant
oundary effects.

The second variation consists in considering a bi-disperse system,
btained by preparing droplets with initially the same radius but dif-
erent density: they rapidly deformate and tend to two populations with
ifferent radii (with a radius ratio of 1.2 : 1.0). The results for fluxes
re shown in Fig. 8 and apparently bear no relevant differences with
espect to the monodisperse case. This is important in order to evaluate
he effect of disorder in the system.

. Conclusion

In summary, soft suspensions with equal-size droplets in a pressure-
riven channel flow with an obstacle is simulated using a two-species
4

Fig. 8. Effect of bidispersity for the flux as a function of 𝛿 at 𝛷 = 0.622.

mesoscopic lattice Boltzmann method. By changing the obstacle size,
the behavior of soft suspensions in such geometry is numerically in-
vestigated. With increasing volume fraction of the dispersed phase (𝛷),
the velocity profile flattens in the channel center, deviating from the
classical Poiseuille flow profile in the single component limit (𝛷 → 0).
With decreasing pore size, the global flowing flux drops dramatically
and the threshold pore size, below which the traverse of droplets fully
disappear, i.e. (jamming), is obtained by linear interpolation near the
zero-flux point.

Our numerical results show that the threshold of the dimensionless
pore size, below which the flux vanishes, is between 𝑘𝑐 = 1.0 and
2.0, and increases with 𝛷. Moreover, we find that the global flowing
flux of the soft suspensions first exhibits an exponential dependence
on the relative pore size, followed by a linear dependence, rather than
the 3/2 power-law dependence as in the classical Beverloo relation
for the hard particle suspensions. The phenomenological law holds for
both two holes and single-hole systems and is also robust against slight
loss of the monodispersity. In addition to the interests in statistics
and soft matter physics, the present work provides new insights into
many applications involving suspensions flow in confined space, for
example, pedestrian dynamics [29], foam injection for enhanced oil
recovery [55] and microfluidic scaffolds for tissue engineering [56], to

name but a few.
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