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Abstract

The objective of this thesis is the investigation of the behaviour of solid particles sus-
pended in a viscoelastic liquid and subjected to mixing in a stirred vessel. In particular,
the well-known phenomenon of viscoelasticity-induced particle migration, was observed
for the first time in the flow field generated in stirred vessel. This thesis is divided in three
parts.

First, we performed an experimental campaign aimed at the study of the mixing of
a non-Newtonian liquid-solid suspension in a cylindrical vessel equipped with a dual-
blade impeller. The experiments were performed with liquids with different rheological
behaviours. Particle image velocimetry (PIV) was used to measure the velocity filed of
the liquid while particle tracking velocimetry (PTV) was employed to measure velocity
and concentration fields of the solids. We show that in the presence of viscoelasticity, the
particles accumulate at the centre of the vortices created by the impeller.

We then focused on the viscoelasticity-induced migration in the flow field created
by a Rushton turbine in an unbaffled vessel. We propose a scaling law for predicting the
migration time as a function of the Weissenberg number (Wi). The experimental campaign
shows that the particles migrate in the radial direction driven by the presence of gradients
of shear-rate. Finally, the scaling law is validated against experimental data obtained at
different Wi.

The third part, describes the development of CFD tool, based on the volume of fluid
(VOF) framework, for the simulation of particles in viscoelastic fluids. The objectives
were, (1) to use the VOF model to simulate a solid sphere in flow, and (ii) to simulate the
rotational velocity of a sphere in a viscoelastic fluid. Although, the model was capable of
simulating a solid sphere with good accuracy in the Newtonian case, the viscoelastic case

failed to reproduce the results available in the literature



Impact statement

The significant level of sophistication of most formulated products and the everlasting
need of achieving controlled and reproducible product quality, constitute a crucial chal-
lenge for the manufacturing of complex formulations. For some products, such as tooth-
paste, the ability of effectively including new functionalities and at the same time ensuring
robustness of the manufacturing process has proven to be relevant for the overall health
and well-being of consumers. One aspect of manufacturing that is central to this thesis
is the mixing of solids in highly-viscous, complex fluids in mechanically agitated ves-
sels. Regardless of the specific application, mixing is certainly one of the most important
steps in many industrial processes. Its understanding can, and often does, leads to in-
creased efficiency, reduced costs, and lower energy consumption, thereby benefiting both
the producers and the consumers.

Among the various complex behaviours of solids in viscoelastic liquids, viscoelasticity-
induced, cross-flow particle migration in stirred vessels emerged as a phenomenon of
interest in this work. While the investigation of any novel or surprising experimental
result is inherently of academic interest, the segregation of the solid phase caused by
this phenomenon constitutes a clear hindrance to any mixing process. Additionally, a
deep understanding of the causes of the migration phenomenon and their interaction with
controllable process variables could lead to the exploitation of the migration as a sep-
aration device, which could prove useful in applications where conventional separation
techniques fall short.

With the same objective in mind, the final part of this work explores the possibility of
using a Volume of Fluid (VOF) computational approach as a tool for further investigation
into viscoelasticity-induced particle migration. The relatively modest computational cost
and easy implementation of this model, together with its wide availability in both com-
mercial and open-source platforms, suggest that it could represent a useful tool for the
simulation of multi-particle systems and large scale problems.

The key findings of this thesis provide insights into two crucial points. Firstly, solids
in highly viscous, non-Newtonian fluids tend to segregate in specific areas of the flow,
with the direction and velocity of the phenomenon being linked to the fluid dynamics of
the flow and the rheological nature of the fluid. Secondly, the VOF method can be readily

applied for the simulation of the dynamic of a single solid sphere in a viscoelastic fluid.
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These novel findings hold great promise in developing new mixing and separation devices,
as well as deepening our understanding of cross flow particle migration in complex, three-

dimentional flows of non-Newtonian fluids.

Highlights

1. An experimental investigation was aimed to study the dynamics of solid particles in
highly viscous, non-Newtonian fluids under agitation in a stirred vessel. The study
utilized a toothpaste mixer design and demonstrated the effects of viscoelasticity-
induced particle migration. The results showed that particles tend to accumulate in
the core of the vortices formed in the flow domain and that the accumulation was
caused by the viscoelasticity of the suspending liquid. The study contributes to the
understanding of particle dynamics in non-Newtonian fluids and can be useful in

industrial processes where such fluids are involved.

2. A second experimental campaign investigated the viscoelasticity-induced particle
migration in a three-dimensional flow field generated by a Rushton turbine. The
study aimed to validate a scaling law for predicting particle migration time as a
function of the Weissenberg number and test the usefulness of simple heuristic ar-
guments in capturing the phenomenon. The study used particle image velocimetry
to reconstruct the three-dimensional velocity and deformation rate fields and parti-
cle tracking to measure the evolution of the particle distribution. The proposed scal-
ing law was validated against experimental data obtained at different Weissenberg

numbers, impeller diameters, and fluid compositions.

3. The VOF numerical method was utilized to simulate the rotational velocity of a
solid sphere in a viscoelastic fluid at various Weissenberg numbers in a shear flow
between parallel plates. The goal was to optimize simulation parameters for predict-
ing the dynamics of solids in liquid and to investigate the impact of viscoelasticity
on solid sphere rotation in simple shear flow. The study demonstrated successful
outcomes in both aspects, highlighting the effectiveness of the VOF method for
predicting rotational dynamics of solid particles in viscoelastic fluids under shear

flow.
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Chapter 1

Introduction

1.1 Scope of the research

The scope of this research is to investigate the phenomenon of viscoelasticity-induced
particle migration in the complex, three-dimensional flow such as those observed in stirred
tanks. The work was part of the wider aim to study the effect of complex rheological
behaviours on the efficacy of conventional mixing systems, in the context of healthcare
formulation manufacturing. The research is part of the EPSRC Future Formulations grant
CORAL, a collaboration between the Departments of Chemical Engineering, Mechanical
Engineering and Mathematics at UCL and is partly sponsored by the industrial partner
GlaxoSmithKline.

1.2 Motivation

Complex formulations are a common feature of our daily lives, encompassing a wide
range of items such as cosmetic and healthcare products, food, building materials, and
inks. The composition of such materials usually includes multiple phases and active
agents, which must be carefully balanced to achieve the desired functionality and texture
of the final product. This level of sophistication, coupled with the need to ensure con-
trolled and reproducible quality of the finished product, represents a significant challenge
in manufacturing.

In certain sectors, such as oral health, the ability to efficiently incorporate novel prod-
uct functionalities while maintaining a robust manufacturing process is not only impor-
tant to manufacturers but also to the overall health and well-being of consumers (WHO,
2020). Toothpaste serves as a prime example, as it is a daily essential for millions of
people worldwide, playing a fundamental role in maintaining good oral healthcare and
preventing diseases. Typical toothpaste formulations comprise of a liquid phase (typi-

cally water), a dispersed phase as a rheology modifier, a solid phase with thickening and
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abrasive properties, as well as active chemicals such as fluoride.

The manufacturing of toothpaste, like many other formulated products, involves a
batch approach where raw materials are added sequentially in stirred vessels with complex
geometries. However, these vessels are characterized by large volumes and complex flow
fields, which can lead to dramatic concentration and temperature heterogeneity within
the vessels for highly viscous, or complex fluids. This complexity makes it arduous to
achieve precise control of the process conditions, and manufacturing protocols are often
based on empirical experience rather than a clear scientific understanding of the system.

One specific challenge identified in this work is the segregation of the solid phase
caused by the phenomenon of viscoelasticity-induced particle migration. The cross-
streamlines, viscoelasticity-induced particle migration refers to the phenomenon where
particles suspended in a viscoelastic fluid experience an unbalanced force that drives them
in preferential directions. This effect is caused by the combined effect on a non-uniform
flow field and the viscoelasticity of the suspending fluid. The migration of particles has
important implications for various applications, including microfluidics, biotechnology,
and material science (Yuan et al., 2018; Zhou and Papautsky, 2020). Most of the available
literature of this phenomenon is limited to simple flow configurations (flow between paral-
lel plates, channel or Couette flow, etc.). In these conditions, the relationship between the
features of the underlying flow and the intensity of the viscoelastic forces causing the mi-
gration can be relatively easy to understand. The flow fields inside stirred vessels are not
generally simple. They are almost always three-dimensional with regions of high shear,
vortices, and eddies. We will show that in these conditions, the viscoelasticity of the fluid
can induce particle migration, leading to the formation of clusters or aggregates, which
can impact product quality and yield. At the same time, the complexity of the flow field
prevents a straightforward analysis of the migration phenomenon and the consequent pre-
diction of industrially relevant parameters like mixing efficiency or agglomeration time.

By gaining a better understanding of the underlying physics, it may be possible to
develop new strategies for controlling (or maybe exploiting) particle migration, improving

the efficiency and effectiveness of many industrial processes.

1.3 Research objectives

The proposed research aims at investigating the correlation between viscoelasticity-induced
particle migration and the relevant rheological and flow dynamic quantities. Particular
attention will be given to the analysis of the effects of the fluid relaxation time and the de-
formation rate generated by the rotation of the impellers, on the particle migration inside
mixers. The goal is to develop a scaling law that can predict the characteristic migration
time based on the relevant viscoelastic properties of the flow. To achieve this objective,

advanced experimental techniques will be employed, including particle image velocime-
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try (PIV) and particle-tracking velocimetry (PTV), to visualize the flow field and track the
movement of the particles. The rheological properties of the fluid will be measured using
a rotational rheometer, and the results will be used to validate the developed scaling law.
The findings of this research will provide a deeper understanding of the complex interplay
between viscoelasticity and particle migration in stirred vessels. The developed scaling
law can be used to optimize the design and operation of industrial mixers for various
applications, resulting in improved product quality and process efficiency.

A separate but at the same time relevant objective is to develop a Volume of Fluid
(VOF) Computational Fluid Dynamics (CFD) approach for the simulation of the dynamic
of solids suspended in a viscoelastic fluid. Although other approaches have been proven
successful in simulating similar systems, a consensus on the best computational tools
available for tackling such problems is still lacking. In this work, we will develop a VOF-
based CFD approach that can simulate the dynamics of a single solid particle suspended in
a viscoelastic fluid. Within this simulation framework, both the solid and the fluid phases
will be treated as two fluids. The VOF method is a popular technique for simulating mul-
tiphase flows, which has been widely used in industry and academia due to its simplicity
and accuracy. Our approach will be based on OpenFOAM, an open-source CFD code that
has a large user community and is known for its robustness and flexibility. Most of the
focus will be spent on the identification of the parameter space within which the assumed
equivalence between a solid sphere and a highly viscous liquid is valid. The performance
of this approach will be then evaluated by comparing its results with experimental data

and other numerical methods available in the literature.

1.4 Thesis outline

This thesis is structured in six chapters. An introduction to the background and moti-
vation for this work has been provided in this introductory chapter, together with the
main objectives of the research. The literature review found in Chapter 2 aims to pro-
vide the fundamental theory necessary for the interpretation of the results presented in
the following chapters. First, the concept of stirred vessels and their general working
principle is introduced, together with a review on the state of the art on their use for the
mixing of complex liquid-solid systems. Then, a general introduction on the rheology of
complex fluids is presented with particular emphasis on their classification and character-
ization. This is followed by a more careful analysis on the mathematical description of
viscoelastic fluids and an overview of the available constitutive equations and their range
of application. The results are presented throughout Chapters 3 to 5. Given the variety of
approaches used, each chapter contains a small introduction, its individual methodology,
results and conclusions subsections.

Chapter 3 investigates the motion of solid particles dispersed in highly viscous poly-
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mer suspensions agitated in a vessel by a dual paddles impeller. The impeller design
was based on an existing mixing system for the manufacturing of toothpaste. First, the
experimental methodology and findings are presented, demonstrating the accumulation
of particles caused by the action of the viscoelasticity-induced particle migration. The
study employs a refractive index matching method and a combination of particle image
velocimetry and particle-tracking velocimetry techniques to measure the velocity fields of
the solid and fluid phases simultaneously, along with the spatio-temporal distribution of
the solids in the tank. The experimental data show that in a Newtonian ambient fluid, par-
ticles disperse uniformly in the plane of measurement, while in a strongly shear-thinning,
viscoelastic ambient fluid, they tend to accumulate in the core of the vortices formed in
the flow domain. The study also finds that the solids migrate to the core of the vortices
when the ambient fluid is purely viscoelastic fluid.

In Chapter 4, the study is restricted to the purely viscoelastic case and a scaling law
is proposed for predicting the characteristic particle migration time as a function of the
viscoelasticity of the flow. The law is validated against experimental data obtained in a
stirred vessel equipped with a Rushton turbine. The shape of the impeller was chosen
as an intermediate level of complexity between the simple two-dimensional Poiseuille
or Couette-flow usually encountered in the literature and the complex three-dimensional
flows present in industral mixers. In particular, the three-dimensional flow field of a Rush-
ton turbine could be easily studied in terms of its main directions of strain, which provided
a better understanding of the migration dynamics and the underlying forces driving it.
Particle image velocimetry is adopted to reconstruct the three-dimensional velocity and
deformation rate fields generated by the rotation of the Rushton turbine in both Newtonian
and viscoelastic fluids.

Chapter 5 focuses on the simulation of the rotation of a solid spherical particle in a
shear flow between two parallel plates, using a multiphase VOF numerical scheme. The
chapter begins with the mathematical description of the deformation of viscous droplet in
simple shear flow and the presentation of the analytical solutions available in the literature.
These equations allowed the prediction of the transient deformation of a viscous drop in
simple shear flow as a function of the constitutive properties of the two phases. The VOF
model is then used to derive the optimal values of the constitutive properties to assign to
the dispersed phase. Finally, the model is used to derive the rotational velocity of a solid
sphere suspended in a viscoelastic fluid in simple shear flow.

Finally, Chapter 6 summarises the final remarks of this research and gives recommen-

dations for future research.



Chapter 2

Theoretical Background and Literature

Review

The main purpose of this chapter is to summarise the relevant literature and present an
overview of the theoretical background needed to interpret the results of this research.
First, the state of the art on the use of stirred vessels for the mixing of liquid-solid sus-
pensions is introduced. Then, generalities on the rheology of complex fluids and their
mathematical modelling are presented, focusing on the most relevant material functions
and constitutive equations used throughout the results chapters. This is followed by a de-
scription of some of the numerical algorithms available for the simulation of multiphase
systems. Particular emphasis will be given to the volume of fluid (VOF) method and to

its implementation in the open-source software OpenFoam.

2.1 Stirred vessels and laser based velocimetry

Mixing is an essential unit operation in the process industry playing a critical role in nearly
80% of the existing fields Atiemo-Obeng et al. (2004). Typical industrial mixing problems
involve the blending of miscible liquids, the dispersing of gases in liquids, the creation
of liquid-liquid emulsions and the suspension of solids in liquids. Solid-liquid mixing
is one of the most important mixing processes as it plays a crucial role in many unit
operations such as suspension polymerization, solid-catalyzed reactions, dispersion of
solids, dissolution, leaching, crystallization and precipitation (Zlokarnik, 2001; Atiemo-
Obeng et al., 2004).

Given the wide range of application, there is no single piece of equipment capable of
performing efficiently in all possible conditions and engineers have developed several ap-
paratuses with specific ranges of application (Nienow et al., 1997). Among these, stirred
tanks are the most common piece of equipment used in industry to suspend solids in lig-
uids, and are of particular interest for this research. The terms mixing tank, mechanically

agitated tank and stirred tank are here used interchangeably.
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Figure 2.1: Circulation patterns in fully baffled tanks: (a) a double circulation loops with a radial
impeller, (b) purely axial flow with a hydrofoil, and (c) angled discharge with a pitched-blade-
turbine (PBT) pumping down (adapted from Jaszczur and Miynarczykowska (2020)).

Stirred tanks are usually constituted by a cylindrical vessel equipped with one or more
mechanical stirrers. Although they are conceptually very simple, their design can be com-
plex and is commonly based on experience. The geometric configuration of both impeller
and tank, together with the fluid physical properties, in particular viscosity, dramatically
affect the fluid dynamics of the system. Any rotating impeller in a mixing tank creates
a characteristic, three-dimensional flow field constituted by a rotational flow (i.e. a flow
in the angular direction), and additionally, a superimposed flow pattern that can be axial,
radial or mixed (see. Fig. 2.1). The relative intensity of these two components depends
on both the configuration of the system (i.e. position of the impeller, relative impeller to
tank diameter, presence of baffles, etc.) and on the impeller shape. Examples of common
shapes for industrial impellers are reported in Fig. 2.2. Exhaustive experimental work was
conducted in the second half of the last century to characterise and study the flow fields
generated by standard impeller designs (Metzner and Taylor, 1960; Nienow and Miles,
1978; Yianneskis et al., 1987; Kresta and Wood, 1993; Jaworski et al., 1996)

Many everyday items as well as many liquids of industrial interest are complex, or
non-Newtonian, fluids. The exact definition of such class of fluids will be given in the
following sections. For the moment, we will consider as non-Newtonian those fluids,
suspensions, slurries or emulsions that produce a non-predictable (or "complex") response
to the application of a stress. This complex response is often responsible for the poor

mixing performances of typical impeller-tank configurations (Dickey, 2015).
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Figure 2.2: Common impeller designs (Atiemo-Obeng et al., 2004).

For example, non-Newtonian behaviour is usually accompanied by high viscosity
(higher that 1 Pa-s) at which point, the viscosity alone reduces the mixing efficiency
by strongly reducing the circulation of fluid in the vessel (see Fig. 2.3a). Another more
complex non-Newtonian behaviour includes the presence of a yield-stress (common in
gel-like materials), that is, a minimum amount or force needs to be delivered to a fluid

in order to initiate a flow. These fluids exhibit an initial high resistance to motion and/or

Stagnant | |
Fluid
\\
Cavern /
low viscosity high viscosity Formation
(a) (b)

Figure 2.3: Examples of mixing issues: (a) Reduction of liquid circulation cause by high viscosity
and, (b) formation of caverns around the impeller (adapted from Kresta et al. (2015) and Dickey
(2015)).
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the formation of caverns of moving fluid surrounded by an almost stagnant region (see
Fig. 2.3b). The presence of an elastic response is also a typical feature of non-Newtonian
fluids. Fluids of this kind can behave like dough or melts of polymeric materials and
rotate together with the impeller in an almost solid-like fashion.

To prevent the aforementioned issues, specialized equipment, namely close-clearance
impellers, are usually necessary for performing mixing in such conditions. These im-
pellers are typically large in size, nearly the same size as the tank diameter, and provide
gentle blending of liquids at low shear. The most common designs are the anchor and
the helical ribbon impellers, shown in Fig. 2.4a and 2.4b. Another relevant example is
found in the work of Cortada Garcia (2018), who described the mixing of non-Newtonian
fluids in a dual coaxial impeller used for the manufacturing of oral healthcare products
(Fig. 2.4c¢). This particular configuration was designed for the mixing of a highly viscous,
non-Newtonian solution of glycerol, polyethylene glycol (PEG) and Carbopol with a solid
phase.

(a) Anchor (b) Helical ribbon (c) Dual coaxial impellers

Figure 2.4: Examples of close-clearance impellers with , (a) Anchor impeller, (b) helical ribbon
impeller and, (c) Dual impeller for toothpaste manufacturing constituted by one central, multi-
paddles impeller and a secondary scraper (Cortada Garcia, 2018).

In stirred vessels, the degree of dispersion of the solid phase is generally classified into
three levels: on-bottom motion, complete off-bottom suspension, and uniform suspension.
These are illustrated in Fig. 2.5. Most of the studies on the mixing of solids-liquid systems
in stirred vessels have focused on Newtonian fluids, usually operating in turbulent regime.
Over the years, numerous solutions have been proposed for optimizing these systems. A
detailed review of these solutions is beyond the scope of this article but can be found in
the comprehensive works of Atiemo-Obeng et al. (2004) and Kresta et al. (2015).

The few studies on the laminar mixing of liquid-solid suspensions involved Newtonian
fluids and aimed to evaluate how the configuration of the mixing device (e.g., shape and
dimensions of impellers, presence of baffles, etc.), the properties of the phases and the
operating conditions influence the system performance (Bertrand et al., 2018; Ibrahim and
Nienow, 1999; Lassaigne et al., 2016; Li et al., 2011; Gong et al., 2018). For example,
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Ibrahim and Nienow (1999) investigated the effect of the impeller shape on the value of
the minimum impeller speed needed to suspend the solid phase (i.e., the “just-suspending
speed,” Njy) for a large range of Reynolds numbers, while Lassaigne et al. (2016) used a
pitched blades turbine (PBT) to show that the N, increases when the particle diameter, the
solid volume fraction, or the liquid viscosity increase. Limited information is available on
the solid-liquid mixing in viscoelastic fluids. To the author’s knowledge, the few existing
studies are limited to the critical impeller speed required for particle suspension and to
the liquid phase mixing times (Kawase et al., 1997; Mollaabbasi and Mohebbi Najmabad,
2016).

he T, 0 0 0

Figure 2.5: Degrees of suspension: (a) Partial suspension: some solids rest on the bottom of
the tank for short periods; (b) Complete suspension: all solids are off the bottom of the vessel;
(c) Uniform suspension: solids suspended uniformly throughout the vessel Atiemo-Obeng et al.
(2004).

A phenomenon recently encountered when dealing with solid-liquid suspensions in
stirred vessels is the spontaneous clustering of the solid phase. The involuntary accumu-
lation of solids in separate regions of the flow represents a clear impairment to the mixing
process and can affect negatively the quality of the products and/or the efficiency of the
whole operation. The study by Wang et al. (2014) examined solid-liquid suspensions in
Newtonian and non-Newtonian laminar flows, adopting a three-dimensional particle vi-
sualization method to expose the real-time trajectories of the particles. In their study,
they showed that the particles clustered in the cores of the toroidal vortices created by the
impeller rotation. In particular, the revolving blades of the impeller generated two coex-
isting, confined regions, above and below the blades, wherein the particles migrated. The
migration was induced by inertial perturbations in the flow outside these regions, where,
owing to the high shear rates present near the blades, the particle trajectories deviate from
the path lines of the fluid, enabling the particles to cross the boundaries of these regions
and settle into their cores.

In most of the studies reported above, the velocity fields were measured with laser-
based techniques, such as particle image velocimetry (PIV) (Gabriele et al., 2011; Mon-
tante et al., 2012; Unadkat et al., 2009; Charalambidou et al., 2023; Samaras et al.,
2020b,a) and Laser Doppler anemometry (LDA) (Guiraud et al., 1997; Micheletti and
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Yianneskis, 2004; Virdung and Rasmuson, 2007a). When these techniques are applied to
solid-liquid systems, especially dense ones, optical accessibility is a major limiting fac-
tor. Particles obstruct and scatter the laser light, which leads to results of poor quality.
This is why the solid volume fraction in most of the studies mentioned above was limited
to 1% (Guiraud et al., 1997; Montante et al., 2012; Unadkat et al., 2009). To overcome
this problem, researchers have proposed to match the refractive index between the solids
and the surrounding liquid (Gabriele et al., 2011; Micheletti and Yianneskis, 2004; Gong
et al., 2018; Virdung and Rasmuson, 2007a; Li et al., 2018). The study by Gong et al.
(2018) was the first to match the refractive indices of the solid and fluid phases in a lam-
inar flow, and compared the mean fluid velocities obtained from experiments with those
found numerically via CFD simulations.

As mentioned in Sec.1.2, accurately characterizing the velocity field inside a stirred
vessel is crucial for understanding the effect of flow on solid particle migration. In this

study, we will employ Particle Image Velocimetry (PIV) as the primary technique for this

purpose.

2.1.1 Flow visualization in stirred vessels - PIV

The velocimetry technique based on particle images in its modern sense was introduced
in the work of Adrian (1984). PIV is currently the state-of-the-art, optically based diag-
nostics tool for fluid dynamic. It involves injecting tracer particles into the fluid flow and
illuminating them with a laser light sheet. A high speed camera and the laser are synchro-
nised to take two consecutive snapshots of the flow. The velocity is then calculated from
the displacement of the particles and the time difference between the two laser pulses.
A schematic representation of all the steps involved in the PIV technique is reported in
Fig. 2.6.

The selection of seeding particles is a crucial aspect of PIV systems. The main re-
quirements are that the particles accurately follow the fluid flow without introducing any
perturbations. This implies that, once the flow is initiated, the seeding particles rapidly
relax to the local fluid velocity. This condition is achieved when the particle terminal
velocity, denoted by vg, is small relative to the fluid velocity and their Stokes number,
denoted by St, is much less than 1. An exact definition of these terms will be give in
Chapter 3. It is noted that St quantifies the particle response time to the fluid flow while
v, 18 the steady state velocity attained by a particle falling in a fluid under the action of
gravity. Both these quantities depend on particle size, density and the fluid properties.
Therefore, to ensure rapid relaxation of particles to the local fluid velocity, seeding parti-
cles with small diameters and a similar density to the fluid (ideally neutrally buoyant) are
required.

The choice of particle material is dependent on the nature of the fluid being investi-
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Figure 2.6: Schematic representation of the PIV method (Adrian, 1984).

gated. Typically, glass beads, polystyrene, polyethylene, aluminum flakes or oil droplets
(for gas fluids) are used for macro PIV investigations, with a diameter range of 10 to 100
micrometers. Refractive index of the seeding particles should be different from that of the
fluid being seeded to allow for scattering of the laser sheet by the particles towards the
camera. In certain conditions, fluorescent particles may also be used.

PIV does not measure the velocities of each particle individually; instead, the local
velocity of the fluid is obtained by tracking the displacement of an ensemble of particles
within an interrogation window. An interrogation window (W) is a subset of the image,
typically constitute by 16x16, 32x32, or 64x64 pixels, within which a certain number of
seeding particles are located. When adequate hardware is used, the fluid can be com-
pletely masked so that the images show only the position of the particles that are emitting
sufficiently intense light; in other words, those that are illuminated by the laser on the
plane of interest. In these conditions, each interrogation window has a specific inten-
sity distribution (/). The value of the average displacement for the interrogation window
is then found by performing a cross-correlation analysis between the two images. The
cross-correlation analysis involves calculating the correlation C(s) between two images
by shifting one image relative to the other and computing the correlation between the two
images at each shift. The shift that produces the maximum correlation value corresponds
to the displacement between the two images (Top of Fig. 2.7)

The mathematical expression of the cross-correlation function for an interrogation
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Figure 2.7: Top: Example of a section of a PIV image pair representing the particle image distri-
bution at the time #y (left) and 79 + At (right). The interrogation windows A and B are highlighted
by the red boxes. Bottom: The corresponding cross-correlation function features a distinct peak
representing the particle image displacement (Scharnowski and Kéhler, 2020).

window is:
Cs) = /W 1 (X) B (x +8)dx 2.1

where /1 and I, are the intensity distributions of the window on images 1 and 2 respec-
tively, x is coordinates vector and s is the displacement or shift of the second image with
respect to the first one. The representation of C(X) in the s, — s, plane is a series of peaks
(Bottom of Fig. 2.7). The value of s corresponding to the largest peak is taken as the
average displacement for that interrogation window.

It can be shown that the computation of Eq. 2.1 on an interrogation window with NxN
points requires N* operations. This number of operations rapidly becomes very large
(Bastiaans, 2000). In reality, the correlation between two images is evaluated by using
Fourier’s theory. This technique, sometimes referred to as phase-correlation, involves
first calculating the Fast Fourier Transform (FFT) of each image and then compute the
phase difference between the FFTs of the two images. Finally, the inverse FFT is used to
obtain the displacement between the images in the spatial domain. The phase-correlation
method, performed on the same NxN grid, requires &’(N?log, N) operations. A detailed

derivation of this technique can be found in Bastiaans (2000).
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2.2 Rheology and constitutive equations for viscoelastic
fluids

In the previous sections, terms like ‘non-Newtonian’, ‘purely viscous shear-thinning flu-
1ds’, ‘viscoelastic fluids’ came up to indicate fluids with rheological behaviour that dif-
fers from simple Newtonian response. Despite this, a clear definition of these terms and
of what can be classified as "non-Newtonian" property has not been given. Rheology is
the branch of physics that aims at answering this question and more generally, studies
the response of fluid materials to stress and deformation. Rheology is an extensive task,
extremely useful to solve fluid dynamics problems involving complex fluids as well as to
understand the microscopic structure of complex materials and formulations. Given the
breadth of the subject, entire books have been devoted to the analysis of different aspects
of the relationship between stress and deformation of different types fluid materials. The
scope of this section is to introduce the concepts relevant to this research and the most
important material functions used throughout the thesis to characterise the rheological

behaviour of all the materials implemented.

Upper plate moves with
constant velocity V

i
¢

Figure 2.8: Unidirectional steady shear flow between parallel plates.
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Fluids are classically classified according to their response, in terms of stress, to the
action of an externally imposed deformation. The kind and intensity of this response de-
pends on the characteristic of the imposed deformation as well as from the microstructure
of the fluid. We can begin by defining one of the two standard kinds of flows, shear flow,
that is often used to characterise the rheology of liquids. According to Bird et al. (1987a),

a shear flow can be defined as the flow in which:

(i) It exists a one-parameter family of surfaces, the shearing surfaces, that move iso-
metrically, that is, the relative distance between two points on a surface remains

constant; and

(i1) the volume of every fluid element is constant.
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An example of homogeneous simple shear flow is the one given by the following velocity
field
Uy = Txs uy, =0; u, =0 (2.2)

where 7, is the velocity gradient and the term homogeneous indicates that ¥, is uni-
form throughout the flow. If additionally, ¥, is independent of time, the flow is also said
to be steady or viscometric®. The absolute value of ¥, is called the shear rate y. A simple
shear flow is easily generated between two parallel plates (Fig. 2.8) when on of the two
plates moves along the x axis with constant velocity V. A fluid element within such a flow

is subject to a deformation that can be expressed at every point as:

Ex = — (2.3)
yX

dy
where ds, is the differential distance covered by a fixed point in the infinitesimal time
dt. € is called the shear strain, and represents the only non-zero component of the

deformation tensor. In this context, the shear rate can also be expressed as:

. dey  duy
dt dy

(2.4)

A constitutive equation, in the context of fluid rheology, is a mathematical expression that
relates the stress (i.e. force per unit area) of a fluid element to the rate of deformation
applied. The simplest form of constitutive equation is the "Newton’s law of viscosity"
which considers a linear relationship between these two quantities, where the proportion-
ality constant is the Newtonian viscosity 1. If one considers the case in Fig. 2.8, this

relationship is:

Ty =—N——=-—NY (2.5)

Fluids obeying Eq. 2.5 are referred to as Newtonian fluids. The Newtonian viscosity is
independent of the shear rate and is a characteristic property of the fluid and its tempera-
ture.

7 is also an example of material constant, that is, a variable that can be used to char-
acterise the rheological behaviour of a material. As it will be show, for non-Newtonian
fluids, a variety of experiments can be performed in order to obtain different material
functions that are dependent on shear-rate, frequency, time and so on. Throughout this
work, the rheology of fluids was investigated only via shear rheology techniques. Ac-
cordingly, the subsequent sections focus on the description of the material functions that

can be obtained in a viscometric shear flow and on the consequent classifications of non-

“For the sake of conciseness, a more rigorous definition of viscometric flow was not included, but
interested readers can refer to Bird et al. (1987a, Chapter 3).
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Newtonian fluids.

2.2.1 Material functions in shear flow

This section aims to introduce material functions in a simple shear flow, which are essen-
tial to understand the rheology of non-Newtonian fluids. However, before delving into
the specifics of shear flow, it is necessary to generalize the definition of a Newtonian fluid
and describe the stress tensor for both Newtonian and non-Newtonian materials in shear

flow.

Newtonian Fluids

Newton’s law in Eq. 2.5 can be extended to and arbitrary, three-dimensional, time depen-

dent flow of an incompressible fluid as:
o=pl+7=pl—ny (2.6)

where O is the rotal fluid stress tensor, p is the thermodynamic pressure (exerted by the
fluid on the surrounding environment) and 7 is the deviatoric part of the total stress tensor,
that is, the part associated with the motion of the fluid. For simplicity, we will refer to the
symmetric tensor T simply as the fluid stress tensor. In Eq. 2.6, 7 = (Vu+ Vu’) is the

rate of deformation tensor.

g

Figure 2.9: Stress tensor.

In the simple shear flow of Eq. 2.5, the rate of deformation tensor is:

0 % 0
¥ =Vu+Vul = % 0 0 2.7

0O 0 O
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and this leads to a total stress tensor of the form:

0 7Ty

pl—ny= (2.8)

o o
S =R O
S O =
S O O

00 0 p 0 0
p O+t O O =10 p O] —7
0 p 0O 0 O 0 0 p
It follows that, for a Newtonian fluid in simple shear flow, the normal components of the
stress tensor are identically zero (T = Ty, = T,z = 0). At the same time, the symmetry of

the stress tensor requires Ty, = Ty, = —N7.

Steady shear flow material functions

For a Newtonian fluid we know that in the simple shear flow between parallel plates, only
the shear component of the stress 7y, is non zero. However, for a general non-Newtonian
fluid we have to assume that all six independent components of the stress are non zero.
It is possible to prove however that for the flow of an incompressible, isotropic fluid,
in the hypothesis that the stress depends only on the flow field, the stress tensor for the

unidirectional, steady shear flow of Eq. 2.2 can be expressed as:

P+ T Tyx 0
oc=pl+1= Tyx P+ Ty 0 (2.9)
0 0 p+ T

where the presence of the diagonal components 7; indicates the possibility of the exis-
tance of normal stresses. From the experimental point of view, it is impossible to separate
the pressure and the normal stress contribution from the measurement of normal forces
acting on surfaces. This means that the only quantities of interest in simple shear flow

are:

Shear stress: Tyx
First normal stress difference: Ni = Ty — Ty (2.10)
Second normal stress difference: Ny =1y — 1

The hypothesis that the stress tensor depends only on the velocity field implicates that for
a steady-state shear flow, the stresses thus defined are only function of the shear rate ¥,.

To this end we can define the three material functions:

Tyx = =N (Tx) Yo (2.11)
Toe — Ty = Ny = =1 (%) T (2.12)
Ty — Tor = No = =2 (Fo) T (2.13)
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where 1 (%) is the non-Newtonian viscosity while W (.) and W2 (%) are respectively
the first and second normal stress coefficients. The viscosity is the better understood and
often most important property of non-Newtonian fluids. A more complete discussion of
the dependence of the viscosity from the shear rate will be given later on but a typical
behaviour is the one reported in Fig. 2.10. At low shear rates, the stress is proportional to
the shear rate and the viscosity approaches a constant value 1o named the zero shear rate
viscosity. Increasing the rate of deformation, the viscosity of most non-Newtonian liquids
decreases with the shear rate. In a logn versus log ¥ graph, this manifests in the form of

a linear region, or "power law" region, with negative slope.
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Figure 2.10: Non-Newtonian viscosity for a low-density polyethylene melt at different tempera-
tures (Meissner, 1975).

An important property of the viscosity of most non-Newtonian fluids is that changing
the temperature 7" does not change the functional dependence of 1n(7); it affects only
the value of 1o and the range of shear rates over which the viscosity transitions from
a low-shear Newtonian region to a high-shear power law region. This property can be
exploited to widen the range of shear rates accessible via a technique known as time-
temperature superposition or method of reduced variables. Data obtained at different
temperatures can be collapsed on a single master curve by plotting the reduced viscosity
N(T)No(Ty)/No(T) versus ary, where ar is a shift factor. According to this method, the
viscosity measured at 7" and 7 is the same, after correcting for the effect of the temperature
on 1o, to the viscosity measured at 7 and shear rate ar?y.

The results of performing this procedure on experimental the data in Fig. 2.10 are
reported in Fig. 2.11. Although the shift factor a7 is simply an empirical parameter that
can be adjusted in order to collapse the curves of 11(7), it is usually derived from the values
of no(T). For example the curve in Fig.2.11 was obtained with ar = 1o(T)/no(Tp). It is

important to mention that the time-temperature superposition principle can be applied to
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Figure 2.11: Master curve for Non-Newtonian viscosity for the same low-density polyethylene
melt at of Fig. 2.10. The shift factor is ar = no(T)/No(Tp) and the reference temperature is
To = 150°C (adapted from Laun (1978)).

all the other material functions obtainable in simple shear flow as will be used extensively

throughout this thesis.
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Figure 2.12: Dependence of (a) the fist and (b) the second normal stress coefficients on the shear
rate.

The trends of the first normal stress coefficients with shear rate are reported in Fig. 2.12a.
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It can be seen that ¥ has a large power law region in which it decreases with 7, often by
several orders of magnitude. At low rates, N; is proportional to 7> so that ¥ tends to a
constant value W . Finally, from Fig. 2.12b it is evident that the second normal stress
coefficient is always negative for isotropic liquids and much smaller, usually 10%, of ¥
(Maklad and Poole, 2021). Additionally, in the range of shear rates usually explorable

with standard rheometers, W, does not present either a high or low shear rate plateau.

Unsteady shear flow material functions

The only unsteady shear flow techniques used in this work is the small-amplitude oscilla-
tory shear (SAOS) experiment. This techniques involves the measurement of the unsteady
response of a fluid that is sheared between two parallel plates, with one of them oscillat-
ing in its own plane with angular frequency @ (we can imagine the situation in Fig. 2.8
where the upper plate oscillates with velocity u,(t) = V cos @t). It can be proven that the
velocity across the gap can be considered linear in y as long as wh?/2v < 1, where £ is
the height of the gap and v is the kinematic viscosity of the fluid. In these situation, the

shear strain and the shear rate can be written as:

€x(0,1) = &) sin ot (2.14)
Tox(t) = Fyycos @t (2.15)

where ng and J'ISX = a)egx are the amplitudes of the shear strain and shear rate oscillations.
For non-Newtonian fluids, the shear stress of the fluid oscillates with the same frequency
o but is not in phase with either the strain or the shear. So that, in the limit of sufficiently

small deformations, the stress is:

Ty (1) = A(@)€, sin (@t + §) (2.16)
Tye(t) = B(@) % cos (w1 — ) (2.17)

where y = /2 — 0. If we separate the in-phase and out-of-phase parts of Egs. 2.16 and

2.17 we can define two equivalent sets of material functions as:

Ty (t) = —G'(@)e), sin wt — G (w) &) cos wt (2.18)

(1) = =1/ (@) % cos 01 — " (@) 7, sin wr (2.19)

where the amplitude and the phase angles in Egs. 2.16 and 2.17 are releted to G’ and G”
by:

A@)=VG2+G?  tand=G"/G (2.20)

B(w) =+/n"?+n"? tany =n"/n’' (2.21)
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Figure 2.13: Example of generalised Newtonian fluid behaviour.

These material functions can be understood by considering that for a perfectly elastic
solid the stress is always in phase with the applied deformation (i.e. G'(®) = const and
G (@) = 0); while, for a Newtonian fluid, the stress is always in phase with the shear rate
(i,e. n'(0) =n and n”(®) = 0). For these reasons, G’ (= " w) is called the storage
modulus as it gives an estimation of the elastic energy stored in the material during the
deformation. While G” (= n’®) is known as the loss modulus as it gives information
about the viscous character of the fluid. Finally, n’ is named the dynamic viscosity while

the phase angle 0 between stress and strain is given as loss tangent tan .

2.2.2 Generalised Newtonian fluids

In the previous sections, it was mentioned that the viscosity of many real fluids is not
a constant value but it depends on the rate of deformation applied. Fig. 2.13 shows
the qualitative behaviour of the shear stress as a function of the shear rate for different
non-Newtonian fluids. The simplest way to describe this behaviour is by modifying the
Newtonian constitutive equation and include a viscosity that depends of the rate of defor-
mation. If a scalar value, the viscosity, has to depend on the tensor ¥, it must depend only
on those combination of components that are independent of the reference system, that is,
the invariants of ¥. As reported by Bird et al. (1987a, Chapter 4), the only invariant that
is non-zero for an incompressible Newtonian fluid in shear flow is the second invariant

11 = %(y: ¥). The constitutive equation for a generalised Newtonian fluid is then:

T=-n(N7Y (2.22)

1
V=VII=\[37:7 (2.23)
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where Eq. 2.23 provides a definition of shear rate for a general three-dimensional flow.
Although for some specific applications one can use measured data for 1(7), it is often
useful to introduce simple empirical models that are able to describe experimental value
with sufficient accuracy. Over the years, many models were proposed and tested for
different non-Newtonian fluids and some of them are reported in Table 2.1.

The most common type of time-independent non-Newtonian behaviour observed is
pseudo-plasticity or shear-thinning. This behaviour is characterized by a viscosity that
decreases with increasing shear rates. Both in the limit of very low and very high shear
rates, most shear-thinning fluids exhibit Newtonian behaviour as shown schematically in
Fig. 2.14. The limit values of the viscosity at very low and high shear rates are referred
to as the zero shear viscosity, 1o , and the infinite shear viscosity, N, respectively. The
region in which the viscosity decreases with 7y is usually referred to as the "power-law
region".

The behaviour just described can be captured by mathematical expressions for 1(7)
that decrease monotonically with the shear rate and present asymptotic values for both
large and small values of 7. Two commonly used models that exhibit these characteristics
are the Cross and Carreau-Yasuda (C-Y) models, reported in Egs. 2.25 and 2.26, respec-
tively. The C-Y model is particularly versatile, as its five parameters provide sufficient
flexibility to fit a wide variety of experimental 1n(7) curves. In addition to the two pa-
rameters that specify the Newtonian plateaus (1 and 7N.), the C-Y model includes three
additional parameters: the Carreau characteristic time A., which is typically associated
with the inverse of the shear rate at which the shear-thinning behaviour begins; the flow
index 0 < n < 1, related to the steepness of the power-law region; and the index a, which
is related to the smoothness of the shear-thinning transition.

N
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Figure 2.14: Shear-thinning behaviour (adapted from Chhabra and Richardson (2008).
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Table 2.1: Different functional models for shear-thinning fluids

Model n(y)
Power law n=kKky"! (2.24)
Cross L (2.25)

No—MNw 1+K7"

Carreau-Yasuda (C-Y) N — Neo a1

— 1+ APwa®]" ™ (2.26)
o [1+( n?) ]
. 0
Ellis n= () (2.27)
()

In some engineering applications, it is sufficient to capture the power-law region of the
curve 1 (7). This region can be fitted by a simple power law model of the kind reported in
Eq. 2.24. In Eq. 2.24, K and n represent two empirical fitting parameters, known as fluid
consistency and flow index respectively. This model can be used for both shear-thinning
and dilatant (shear-thickening) fluids, where in the former case n assumes values between
0 and 1 while in the latter n > 1.

It is worth noting that alternative approaches have been proposed to introduce simple
expressions for a non-constant 1 in non-Newtonian fluids. For instance, instead of using
the shear rate, other flow related invariants can be considered, such as the second invariant
of the stress tensor, I1; = %(T : T). One such example is the Ellis model (Equation 2.27),

where the viscosity is a function of the stress tensor magnitude 7 = 4/ %T : T) while 1; /2
and o are two fitting parameters.

Although for most engineering applications, the generalised Newtonian fluid approach
gives a good estimation of the flow rates and shearing forces in steady shear flow, it is
however unable to explain the behaviour of most non-Newtonian fluids. One can notice
for example that a time-dependent behaviour or the presence of normal stresses in shear

flow cannot be predicted by a simple shear-dependent viscosity.

2.2.3 Viscoelastic fluids

Many materials of practical interest, such as polymeric liquids, suspensions, gels and
pastes, are viscoelastic. A viscoelastic material is typically defined as a fluid that, when
subjected to deformation, exhibits a stress response with both a viscous and an elastic
component. The presence of an elastic response to a sudden deformation (or sudden
cessation of a constant flow) can help to explain some of the peculiar behaviours exhibited
by certain non-Newtonian fluids. For instance, if a polymer suspension is forced to flow
in a straight tube by the application of a pressure gradient and the gradient is suddenly

removed, the fluid will partially recede as shown in Fig. 2.15. In this example, some of
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the energy provided to the fluid is stored as elastic energy by the stretching of the long
polymer molecules. Once the forcing is removed, the molecules are allowed to recoil

back to their original shape, causing the fluid to partially recede in the tube.

VISCOUS FLUID VISCOELASTIC FLUID
o TR b '”"'-I_'—“‘.
ENE —~  —(] | —
S ! J i
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—g.-lll —_— — | 1 = —
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Figure 2.15: Elastic recoil (Steffe, 1996).

This section aims to provide a general introduction to the fluid viscoelasticity and its
mathematical treatment. The most significant constitutive equations will be introduced
and discussed, with particular emphasis on those used later on in this thesis. Addition-
ally, some of the material functions used to estimate the parameters contained in said

constitutive equations will be discussed.

Maxwell model

The first attempt to obtain a viscoelastic constitutive equation was made by Maxwell
(1867). He proposed that a viscoelastic model could be obtained by the combination of
Newton’s law of viscosity and Hooke’s law of elasticity. To better understand Maxwell’s
model, we need to introduce the concept of stress for a Hookean solid.

Consider the shearing deformation of a Hookean solid between parallel plates in
Fig.2.16. At some time f(, the solid is in an isotropic stress state with no additional
external stress imposed. At time ¢ > t(, the upper plate is subject to an infinitesimal dis-
placement S(7,7) in the x direction. If the displacement in the material is a liner function

of the distance, at any point we can write:

S(to,t)
B

sx(n10,1) = y = &x(to,1)y (2.28)

where €,(f,t) is the yx component of the infinitesimal strain tensor €, which can be

defined in terms of the displacement gradient tensor as € = Vs + Vs’ . Then, the shear



Chapter 2 Rheology 43

Upper surface
undergoes
displacement

S(10,1)

Material line at time ¢,

1‘

H Material line attime t > (5 :

Sx(010,1) = [S(t0,1)/Bly = & (t0,1)y
ol

Figure 2.16: shear deformation between parallel plates (adapted from Bird et al. (1987a).

stress for a Hookean solid is:

T(t) = —Gaa—syx = —Gey(to, 1) (2.29)
where G is the elastic modulus of the solid. Eq. 2.29 shows that the stress at time ¢ is
proportional to the strain at time ¢, referred to the isotropic stress state at time #y. In other
terms, the Hookean solid has a memory of its past stress state. As it will be seen, this
concept of a memory can be extended to the Maxwell model. It is important to notice that
the shear components of the rate of strain 9, and infinitesimal strain tensors are related

by:

t

Ex(to,t) = }'/yx(t')dt’ (2.30)
Iy
With reference to the simple shear flow in Fig. 2.8, the Maxwell model is:

Mo ) Tyx

Tyx—i‘EW = —n()'}"yx (2.31)

where 1 is the zero-shear rate viscosity. This equation can be generalised to an arbitrary,

small displacement flow by employing the tensor form:

0 .
1:+7L§1:: —NoY (2.32)

where A = 19 /G is the fluid relaxation time. Eq. 2.32 is written in terms of material
coordinates and therefore the time derivative is a material derivative. In a flow that is
steady from a Lagrangian point of view (that is, from the point of view of an observer
integral with the fluid element), Eq. 2.32 is a first order partial differential equation that

can be integrated between 7y and ¢ yielding:

T(1) + 0¥ = [T(t0) + Mo (t0))e % (2.33)

Hence, after a time of order A, the stress relaxes to the value of a Newtonian fluid with
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viscosity 7. If on the other hand, ¥ varied with a time scale 7y, the fluid behaviour can

be understood introducing the following dimensionless variables:
T =1/1; Y =¥/7; "=t/7y (2.34)

where the quantities with subscript ¢ indicate a scale value for the corresponding variable.

Thus, Eq. 2.32 can be written as:

T+ ——1"=
Ty Ot T,

A d 0% g (235)
The ratio A / 7y is defined as the Deborah number De and is the only important dimension-
less number for the Maxwell fluid. if De << 1, the characteristic time of variation of the
rate of deformation is large compared to the fluid relaxation time, so that a fluid element
has sufficient time to relax before any substantial change in ¥ has occurred. In this case,
" ~ (NoY./7.)Y" and the material behaves like a Newtonian fluid (7(¢) = no¥(¢)). In the
opposite case of De >> 1, the time derivative term dominates the left side of Eq. 2.35,
hence, (A/ 1:7,)%1:* ~ —(NoY/:)Y". Integration with respect to time, taking into account
the tensorial form of Eq. 2.30, returns 7(r) ~ —(1o/A)&(fo,7) which is the stress of a
Hookean solid with modulus G = 1n/A.

As will be shown later on, it is useful to express the Maxwell model in its integral
form. To this end, Eq. 2.32 can be integrated with respect to time in the interval t €
[—eo 0] with the requirement that 7(—oo) is finite. The Maxwell constitutive equation

can then be written as:
t !
() = — / ] {%e_(l_l ALy ar (2.36)

The quantity within brackets is the relaxation modulus of the Maxwell fluid. In this form,
the Maxwell model states that the stress at time ¢ depends of the values of the rate of strain
at all past times ¢’ < ¢, with a weighting factor that decays exponentially when moving
backward in time. In other words, a Maxwell fluid has contains the notion of a fading
memory of past strain states.

A simple two-parameters Maxwell model is often insufficient to describe the linear
viscoelastic behaviour of certain materials. An attempt at generalising the Maxwell model
can be made by introducing a linear dependence on the time derivative of ¥ and obtain the

constitutive equation:
d . ad .
T—i‘/ﬂL]ET: —MNo (Y—FAZEY) (2.37)

which is known as the Jeffrey model and the constants A; and A, are the relaxation time
and the retardation time respectively.

Another way to extend the applicability of the model is by building a superposition of
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Maxwell models and obtain the constitutive equation of the generalised Maxwell model:
n a )
=Y () Tk+/1ka—fk =Y (2.38)
k=1 !

where 1y and A, are the zero-shear viscosity and relaxation time of the kth mode and 7 is
the total number of modes. Eq. 2.38 can be also integrated to obtain an expression similar
to Eq. 2.36:

T / {Z Tk ~(1=1') M"}y(t )i’ (2.39)

An estimation of the 2 parameters of the Maxwell model can be obtained from the
linear viscoelastic material functions described in Sec.2.2.1. If we substitute Eq. 2.15 in

Eq. 2.36, we derive the expressions for G’ and G” for a Maxwell fluid:

Aw?
¢()= s (2:40)
()]
¢"(0) = s (2:41)

In an oscillatory shear flow, the characteristic time of variation of shear-rate depends on
the oscillation frequency, 7y =~ 1/®. Hence, if both moduli are normalised by the elastic
modulus G, = 1/A, Egs. 2.40 and 2.41 can be written as:

Dé?
I = 2.42
¢ (@) 1+ De? (242)
De
G"* = 2.43
(@) 1 + De? ( )

For De < 1, both moduli increase with De but at different rates, with G’* ~ De?
and G"* ~ De. Whilst, for De > 1, G™ ~ 1 and G"* ~ 1/De, and the storage modulus
reaches a constant value (i.e. Ge) and the loss modulus reduces to zero. The typical
behaviour of a Maxwell fluid is depicted in Fig. 2.17. The transition from the viscous to
the elastic regimes can be identified with the crossover of the two lines of G™* and G”*, in
correspondence of De = 1. Notably, the inverse of the crossover frequency is equal to the
fluid relaxation time.

Real fluids typically exhibit more complicated relaxation dynamics, which, in certain

cases, can be accurately described using the generalized Maxwell model. The mathemat-
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Figure 2.17: G’ (solid lines) and G” (dash lines) for a Maxwell fluid. The crossover point of G’
and G” correspond to the inverse of the fluid relaxation time. Hence, for @ < 1/A the material
behaves as a Newtonian liquid with G’ < @? and G” o @; for @ > 1/A it behaves as an Hookean
solid with G’ = 19/A? and G” = 0.

ical expressions of the two moduli for a generalised Maxwell fluid with » modes is:

n n ;Lsz
Go)=Y G, =Y A (2.44)
k; k;l-l-),kza)z
Gl =Y G =y O 2.45
(@) ,;1 k ,;H/l,ng (245)

An example of the use of an 8-modes generalised Maxwell model is reported in Fig. 2.18.
On the same graphs are also reported the curves for each of the 8 single modes together

with the corresponding relaxation times.
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Figure 2.18: (a) Storage modulus G’ and (b) loss modulus G” for a low-density polyethylene
melt. Data fitted with an 8-modes generalised Maxwell model. Each single mode is reported with
a dashed line together with the corresponding relaxation time (Data from Bird et al. (1987a)).
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Despite their large use, linear constitutive equations like the Maxwell model present
several limitations. For instance, they are unable to describe a shear-rate dependent vis-
cosity or the presence of normal-stress phenomena as they are non-linear effects. As a
result, more complex constitutive equations have been developed to overcome these limi-

tations.

Non linear models

In this section a more general class of constitutive equation that can be used for arbitrary
flow will be introduced. The general idea is to progressively include non linear terms (in
either the stress or the strain rate) to linear constitutive equations. A first set of constitutive
equations, known as quasi-linear models, can be obtained by reformulating the linear vis-
coelastic models reported in the previous section. A first example is the upper convected
Maxwell model (UCM), where the material time derivative appearing in Eq. 2.32 has been
replaced with the upper convected time derivative, T= Dt _[(Vu)T -7+ 7 (Vu)] where
D

D is the material time derivative:

v .
T+AT=—1noY (2.46)

By substituting the dimensionless quantities defined in Eq. 2.34 in Eq. 2.46, we obtain:

T = (&) D o ) [(Vur)T e e (V)] = — ("O%) 7 (2.47)

Ty Dt Te

In Eq. 2.47, two dimensionless numbers arise: the Deborah number, previously defined
as the ratio of the relaxation time to the characteristic time scale of variation of the de-
formation rate tensor, and the Weissenberg number, which is defined as Wi = A .. This
dimensionless number is related to the non-linear part of the constitutive equation, which
is responsible, as will be shown, for the appearance of normal stress phenomena.

The upper convected time derivative can also be substituted to the time derivatives of
both the stress and strain rate tensors in Eq. 2.37. The result is the constitutive equation
of the convected Jeffreys model or Oldroyd-B fluid:

v
T+ A ‘Y’Z —MNo (‘}’—I— A '}') (2.48)

Note that if A, = 0, the Oldroy-B model reduces to the UCM model while for A; = A, it
reduces to a Newtonian fluid with viscosity 7.
Throughout the rest of the thesis, non-linear constitutive equation of the kind just

introduced will be written in a form know as split stress approach. Accordingly, the stress
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of viscoelastic fluid will be written as the sum of a solvent and polymer contributions,
T=T,+7T, (2.49)

The solvent contribution is then modelled as a Newtonian fluid with viscosity 1y (T, =
ns7¥) while the polymer contribution can be expressed with one of the non-linear models
available. For instance, if T, is expressed with the UCM of Eq. 2.46, the stress of the fluid
in Eq. 2.49 becomes:

v . Ans VY
T+AT=—(ns+ { 4+ — } 2.50
(Ms+np) | ¥ ns+77py ( )

which is identical to an Oldroyd-B model with 9 = s +1,, A1 = A and A, = /ln_ﬂ%_p‘
Some of the most common constitutive equations in the split stress tensor form are re-

ported in Tab. 2.2.

Table 2.2: Common non-linear constitutive equations in the split stress tensor form.

Model ns(7) np(7) A7) Constitutive Equation
Oldroyd-B s Mp A T,+ 2 ;p: np(vu + VuT) (2.51)
White-Metzner api=l Lyl
€ Ny ML+ &P AL+ (LY)]E T+ A(7) Tp=1,(7)(Vu+ Vu’) 2.52)
Giesekus s My A T,+AT, +ocni (t,-1,) =mp(Vu+val) (253
P
*FENE-P s M A Av a D (1
Tt = %(Vu+VuT)— D <?> AT, +an,l|
. ‘ ' ' (2.54)
24 A r
f= - +ig/i3 %) and a = LZL:

As already mentioned, the inclusion of non-linear terms in the constitutive equations
allows the prediction of normal stresses in simple shear flow. With reference to the usual
simple shear flow of Eq. 2.5, for an Oldroyd-B fluid the three components of the stress

tensor are:

Tyx - _HO%IX
Ty = 2770(2'1 - A‘Z)ny (255)
Ty =0

This means that the Oldroyd-B model predicts a constant viscosity, a constant first normal
stress coefficient ¥; = W o = 21n0(A; — A2) and a zero second normal stress coefficient.

Finally, it is also possible to include terms in the constitutive equation that are non-
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linear in stress. An example is the Giesekus model expressed as:

T=1T,+7T,

Ty =1sY (2.56)

Tp+4 Tvp _aﬁ {tp T} =—mp7
Mp

where o is a dimensionless parameter named mobility factor. The inclusion of non-linear
terms in the constitutive equations gives material function that are much more realistic.
For instance, it is possible to obtain values of viscosity and first normal stress coefficients
that rapidly decrease with shear rate. Additionally, the second normal stress coefficient
is non-zero and can be adjusted relatively to the first normal stress coefficient as ¥ o =
—(a/2)¥20.

The constitutive laws reported in Table 2.2 can also be formulated in terms of the
conformation tensor A(x,), which can be considered as an approximate measure of the
structural state of the fluid at the molecular level (Bird et al., 1987b). Although this ap-
proach originates from the elastic dumbbell models proposed in molecular theory, the
formulation presented here is based on the macroscopic description proposed by Grmela
and Carreau (1987) as reported by Fattal and Kupferman (2004). According to the au-

thors, the polymeric stress tensor can be expresses in the form:

(A-T) (2.57)

where We is the already introduced Weissenberg number, and g(A) is a scalar- valued
function that only depends on the invariants of A. Note that even though Eq. 2.57 is
written using dimensionless variables, we kept the same notation for conciseness. The
constitutive equation can then be written as an evolution equation for the conformation
tensor:

aa—? (- V)A — (Va)A — A(Vu)T = &)

where, the scalar function g(A) and the polynomial P(A) depend on the choice of con-

0(A) (2.58)

stitutive model. The constitutive equations written in the conformation tensor form, are
reported in Table 2.3. As it will be shown later, the log-conformation tensor approach, a
variation of the conformation tensor approach, is the one used in the viscoelastic solvers
rheoInterFoam for the numerical approximation of the polymer contribution to the stress

tensor.
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Table 2.3: Constitutive equations in the conformation and log-conformation tensor formulations

Model conformation tensor *log-conformation tensor
Oldroyd-B T, =P (A-T) Y=1(eO-T)
White-Metzner (C-Y) T,= % (A-T) Y= ﬁ) (e®-T)
Giesekus T,= % (A-T) Y= %[(e’e —I)—ae? (e ® —1)?
*“FENE-P T, = 2L (fA—al) Y =4 (ae®—fI)

* For conciseness, the operator Y = %—? +u-VO —(Q0 — 0Q) — 2B was introduced

2, A
. f— L +Wrr(1p) and a— 12
S 2-3 T 23

2.3 Computational fluid dynamic for viscoelastic liquids

and the volume of fluid method

In the following section, I will present a brief description of the numerical methods em-
ployed for the simulation of two-phase systems. The scope is to introduce all the relevant
equations and parameters at play and facilitate the presentation of the results contained in
Chapter 5. Particular emphasis will be posed on the volume of fluid (VOF) method with
specific reference to its implementation in the open-source, finite-volumes solver Open-
Foam. As it will be clarified later, both the multiphase Newtonian solver interFoam
and the multiphase, viscoelastic solver rheoInterFoam will be used in this work. These
solver employ the same form of the VOF method but differ in the mathematical descrip-
tion of the fluid stress tensor. In particular, the viscoelastic solver uses the split stress
approach described in Sec.2.2.3, where the exact form of the polymer contribution to the
stress tensor depends on the choice of constitutive equation. Accordingly, a brief de-
scription of the numerical implementation of viscoelastic constitutive equations will be

presented.

2.3.1 The Volume of Fluid method

The simulation of fluid systems involving more than one phase is an old and rich field
of study that has received constant attention from the scientific community. Within the
modeling community, problems involving two fluid phases are referred to as two-phase
flows. A classification of the most prominent classes of modelling approaches to two-
phase flow is reported in Fig. 2.19.

A first distinction can be made based on the number of phases considered. In this
context, two-fluid models employ two sets of equations (one for each phase) for the com-
putation of the conservation of mass, momentum and energy while, as the word suggests,

only one set of equations is required for one-fluid models. While two-fluid models are
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found to be applicable for simple problems, they have proven to be unsuitable for real-
istic scenarios (Prosperetti and Tryggvason, 2009). When two-phase flows are simulated
by solving a single set of equations for the whole flow field, it is necessary to locate the
portions of the domain occupied by each phase. This is crucial in order to account for
differences in the material properties of the different fluids and to add appropriate terms

for interfacial phenomena, such as surface tension.

Two-phase flows

models

Eulerian

I ]
K . 11 Rk - 1
Interface-tracking 11 Interface-capturing r
o =4
11 1
L

Figure 2.19: Classification of numerical methods for two-phase flows (adapted from Mirjalili
et al. (2017)).

Broadly speaking, the one-fluid numerical models that have been proposed can be
classified in two main categories, Lagrangian and Eulerian methods (Benson, 2002). La-
grangian methods employ specialized algorithms to track the position, as a function of
time, of the interface (in the case of Front tracking) or of each phase (in the case of
marker-and-cell (MAC)) from the beginning of the simulation. Although, Lagrangian
formulations have proven to be highly reliable in certain conditions, they are also compu-
tationally demanding for problems involving rapidly evolving material boundaries, phase
changes and large deformations or rotations of the interfaces.

On the other hand, in Eulerian formulations, the position of the interface is not explic-
itly tracked from the beginning of the computation. Instead, at the beginning of each time
step, an indicator function is used to reconstruct (or "capture") the interface. At the end of
the time step, when the flow field has been resolved, the indicator is transported with the
fluid velocity. The choice of indicator or reconstruction algorithm allows the definition
of different methods, usually referred to as interface-capturing methods. Among these
methods, the Volume of Fluid (VOF), the Level-set (LS) and the Phase field methods are
the most commonly employed numerical algorithms.

In the level set methods of Osher and Sethian (1988), a contouring function (the level-

set function) is initialised on the entire domain as a signed distance from the interface
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with a positive value in one phase and negative in the other (Fig. 2.20). The movement
of the interface is captured by applying a transport equation to the contouring function.
Since this transport equation does not represent a conservation law (because the level-set
function is not a physical quantity), the LS method is not intrinsically mass conservative
(Gibou et al., 2018).

]
/
-~

0.0 0.0 0.0 | 0.0 | 0.0
pd s

%

LS VOF
Figure 2.20: Schematic illustration of the LS and VOF methods

In the Phase fluid method, the transport equation governing the phase indicator func-
tion, which is similar to the one applied in the LS method, is modified by incorporating
physical effects that govern thin interfaces. This approach offer some desirable properties
that have attracted the interest of two-phase flow modelers in recent years (Anderson et al.,
1998; Badalassi et al., 2003; Ding et al., 2007). Both the Level-set and Phase field meth-
ods have been widely investigated in the literature, and each method possesses its own set
of advantages and disadvantages. A comprehensive examination of these methods can be
found in Prosperetti and Tryggvason (2009) for the Level-set method and Mirjalili et al.
(2017) for the Phase field method.

The most used interface-capturing method is indubitably the VOF method, firstly
proposed by Hirt and Nichols (1981). In this class of finite volumes (FV) methods, a
scalar indicator is used to track the volumes of the two fluids in each computational cell
(Fig. 2.20). The physical volume fraction or phase fraction of one phase o is commonly
used as the indicator function. Conventionally in the VOF method, the transport equa-
tion of the volume fraction, is solved along the continuity and conservation of momentum

equations.

L1V (pu)=0 (2.59)
d
(5;1) +V.-(pun) =—-Vp+V.-7+pf, (2.60)
da
W+V-(ua) =0 (2.61)

where u, p, and 7 are the velocity, pressure and stress tensor fields for a single fluid phase
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with density p; while f, represents the body forces per unit mass. In the VOF model,
the latter term includes the gravitational and interfacial forces f}, = f, +fy. The volume
fraction « varies in the interval 0 < o < 1, where the extremes of this interval identify
areas of the flow where only one of the phases is present. Accordingly, gradients of ¢ are
only possible in correspondence of the interface. Throughout the computational domain,
the two phases are considered as one effective fluid with properties calculated as weighted

averages based on the distribution of the volume fraction.
p=pia+p(l—a) (2.62)

n=ma+n(l—-a) (2.63)

where the subscripts 1 and 2 identify the two fluid phases.

VOF methods can be further divided in geometric and algebraic methods according
to the numerical approach used to solve the phase fraction transport equation (Eq. 2.61).
The geometric VOF method involve two main steps. Firstly, the interface is reconstructed
in each computational cell utilizing the volume fraction field data. The interface is repre-
sented by a set of straight line segments (in 2D) or flat surfaces (in 3D). Various methods
are available that differ in the precise way of calculating this line or surface from the
volume fraction values. Two commonly used methods are the Simple Line Interface Cal-
culation (SLIC) and Piecewise Linear Interface Calculation (PLIC). In SLIC, the interface
is defined by a set of straight lines, each aligned with the mesh cell, while in PLIC, the
interface is reconstructed as a set of linear segments perpendicular to the interface. Once
the interface is reconstructed, in each cell the interface is advected by the underlying flow
field. A comprehensive review of geometric interface-reconstruction methods is provided
by Rider and Kothe (1998).

Finally, in algebraic VOF, the volume fluxes required to solve Eq. 2.61 can be formu-
lated algebraically, without explicit interface reconstruction, by using the so-called High
Resolution Differentiating Schemes (HRDS). This methods allows to avoid the compu-
tationally expensive explicit interface reconstruction at the cost of introducing the possi-
bility of the loss of boundedness for ¢ or the smearing of sharp interfaces. These risks
are introduced by the choice of discretization scheme for the convective term in Eq. 2.61.
Higher-order schemes are notoriously unbounded and result in a loss of total mass of
fluid. On the other hand, first-order upwind (UW) schemes although bounded, intro-
duce an unacceptable amount of numerical diffusion, while first-order downwind (DW)
scheme produce enough negative numerical diffusion to artificially wrinkle the interface
(Hirt and Nichols, 1981; Ubbink and Issa, 1999). Some authors proposed HRDS that
are a combination of UW and DW schemes with the main objective of reducing the nu-
merical diffusion of the interface. The most common are the e Compressive Interface
Capturing Scheme for Arbitrary Meshes (CICSAM) of Ubbink and Issa (1999) and the
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High Resolution Interface Capturing (HRIC) scheme by Muzaferija (1998).

VOF method in interFoam

The particular formulation used in this work is the algebraic VOF method implemented
in the multiphase, transient solvers interFoam and rheoInterFoam available in Open-
Foam v6 and in the utility rheoTool v4.0. As already mentioned, the resolution of the
hyperbolic advection equation for the volume fraction (Eq. 2.61) is notoriously trouble-
some and can lead to serious numerical errors. Two critical issues in the simulation of free
surface problems using VOF are the conservation of the phase fraction and the numeri-
cal diffusion of the interface. The problems are particularly evident in cases with high
density or viscosity ratios, where even small errors in volume fraction can produce large
errors in the calculation of the averaged physical properties. Additionally, errors in the
evaluation of the interface curvature lead to the rise of an artificial flow at the interface
known as spurious current (Scardovelli and Zaleski, 1999; Deshpande et al., 2012). To
mitigate all the aforementioned problems, interFoam solves a different form of Eq. 2.61
that includes an artificial contribution to the convection of the phase fraction (Deshpande
et al., 2012). If we consider a binary system where « is the volume fraction of phase
1, then (1 — ) indicate the volume fraction of phase 2. We can write the two transport
equations for each phase fraction as:
8&_(: +V.(n) =0; (2.64)
d(l—a)

4 Vg1 - )] =0; (2.65)

Assuming that the contributions of the velocities of each phase to the evolution of the free
surface are proportional to the corresponding phase fraction, and defining the velocity of
the effective fluid in a VOF model as a weighted average,

u=ou;+(1—o)u (2.66)

we can rewrite Eq. 2.61 as:

%—?—FV- (uat) + V[uw,a(l—a)] =0 (2.67)
where u, = u; —uy is the relative velocity between the phases, designated as compres-
sion velocity. This artificial convection term assumes non-zero values only for o # 0, 1
and is therefore only active at the interface. The discretization of the compression term
V]u,o(1 — o)] and the definition of the relative velocity u, in Eq. 2.67 are used to con-
trol and minimise the diffusion of the interface without the need to use special schemes

such as CICSAM. A detailed description of the derivation of u, from the underlying flow
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and volume fraction fields and the discretization of the compression term are reported by
Deshpande et al. (2012).

An accurate calculation of the volume fraction field is necessary for the correct evalu-
ation of the interface curvature that is required in the determination of the surface tension
force term in Eq. 2.60. The interfacial force per unit volume f;, is evaluated using the con-
tinuous surface force (CSF) model, valid for a constant surface tension (Brackbill et al.,
1992).

f,=yxVa (2.68)

where 7 is the interfacial tension between the two fluids and k represents the average

curvature of the interface defined as,

K= _V. (;_Zr) (2.69)

The treatment of the stress tensor appearing in Eq. 2.60 is different for the two solvers
interFoam and rheoInterFoam. For the former, both phases are considered Newtonian
fluids and the stress tensor is simply related to the rate of strain tensor T = 1(Vu— VuT),
where the viscosity is calculated via Eq. 2.63. In rheoInterFoam, the stress tensor ap-
pearing in Eq. 2.60 is decomposed in its solvent and polymeric contributions as expressed
in Eq. 2.49. The solvent contribution is modelled as a Newtonian stress with viscosity
Ny = ans1 + (1 — &), 2, where 1;; is the solvent viscosity of the phase i. On the other
hand, the polymeric stress is calculated as a weighted average based on the volume frac-
tion of the phases (Davoodi et al., 2021):

T, =0T, +(1— )T, (2.70)

in cases where the ith phase is Newtonian, 7, ; = 0.
The final form of the conservation of momentum equation implemented in the vis-

coelastic solver is:

p (88_1; +u- Vu) -V-[(ns+n,)Vu=-Vp—-V.-(n,Vu)+V.17,+f, (2.71)

It features a stabilizing diffusive term (V - 1,Vu) added to both sides of the expression
(Pimenta and Alves, 2017). The use of the both-side-diffusion (BSD) technique increases
the ellipticity of the momentum equation, which improves the solver stability especially
for constitutive modesl that lack a solvent contribution to the stress tensor. Finally, the
exact expression of T, ; is of course dependent on the particular choice of constitutive
equation for the viscoelastic fluid. The direct discretization of the polymeric stress in the
integral form reported in Sec. 2.2.3 causes a loss of stability of the conventional Finite Vol-

umes numerical methods. This issue, known as the “High Weissenberg Number Problem”
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(HWNP), include large normal stresses near geometric singularities and worsening of the
problem with grid refinement. This issue is resolved, in the context of rheoInterFoam,

via the introduction of the Log-conformation approach

The Log-conformation approach

The numerical issues encountered in the simulation of flows with high values of Weis-
senberg numbers are well known in the literature. They are commonly explained by the
loss of accuracy of the discretization methods in area of the flow experiencing an exponen-
tial growth of stresses (Fattal and Kupferman, 2004). Most of the solutions proposed in the
literature involve a change of variables in the constitutive equation (Fattal and Kupferman,
2004; Afonso et al., 2012; Balci et al., 2011; Fattal and Kupferman, 2005). The solver
rheoInterFoam, utilizes the log-conformation approach proposed by Fattal and Kupfer-
man (2004, 2005). This method involves the reformulation of the constitutive equation
in terms of the natural logarithm of the conformation tensor. This strategy naturally pre-
serves the positive definiteness of the conformation tensor and linearizes the stress field
in regions of exponential growth, leading to an improved stability of the solver. Here we
report a brief presentation of the log-conformation approach but a detailed mathematical
derivation can be found in the works of Fattal and Kupferman (2004, 2005). The relation-
ship between the polymeric extra-stress tensor and the conformation tensor for different
constitutive models is reported in Table 2.3.

The log-conformation formulation requires the definition of a new tensor ® as the

natural logarithm of A.
® =In(A) =RIn(A)RT (2.72)

In Eq. 2.72, the positive definite conformation tensor A is diagonalized as A = RART,
where R is a matrix whose columns are the eigenvectors of A and A is a diagonal matrix
of the eigenvalues of A. The constitutive equation for a generic viscoelastic liquid in the
conformation tensor form (Eq. 2.58) can then be expressed in terms of © as:

90 2(¢®) o

- . _ _ _ _ (C)
o TuVe—(Q0-0Q)-2B=" ¢ ®0(c? (2.73)

which represents the action of the deformation field on @ as a composition of a pure
rotation €, and a symmetric volume-preserving deformation B aligned with the principal
axes of @”. For the derivation of Eq. 2.73 and exact definitions of the tensors B and Q,
we refer to Fattal and Kupferman (2004) and Pimenta and Alves (2022). The expression
of the right side of Eq. 2.73 depends on the choice of constitutive equation and some
examples are reported in Table 2.3.

Each time step, Eq. 2.73 is solved along with the mass and momentum conservation

bNote that Q is in general different from the vorticity tensor
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equations. Subsequently, ® is diagonalised as @ = RA®RT and the conformation tensor

is recovered from the inverse of Eq. 2.72:
A =exp(@®) = Rexp(A)RT (2.74)

Finally, the polymeric stress tensor can be computed from Eq. 2.57 and used in the mo-

mentum equation.



Chapter 3

Experimental investigation of the
solid-liquid separation in a stirred tank

owing to viscoelasticity

This chapter reports on the experimental investigation of the dynamics of solid particles
dispersed in highly viscous, non-Newtonian fluids under agitation in a stirred vessel. The
choice of mixing system was based on an existing design for a toothpaste manufacturing
mixer, which was previously studied by Cortada-Garcia et al. (2018). The objective of
this study is to demonstrate the effects of viscoelasticity-induced particle migration in
such systems.

Experimental data revealed that in a Newtonian ambient fluid, particles disperse uni-
formly in the plane of measurement, whereas in strongly shear-thinning viscoelastic am-
bient fluids, particles tended to accumulate in the core of the vortices formed in the flow
domain. The migration of solids towards the vortex core was also observed in purely
viscoelastic (Boger) fluids, and was found to be strictly linked to the viscoelastic nature
of the fluid as determined by the evaluation of the characteristic migration time. Further-
more, the effect of viscoelasticity on the flow field was assessed, with particular attention

given to the vortex sizes and circulation intensities.

Part of this chapter has been published in:

Weheliye, H. W., Meridiano G., Mazzei, L., Angeli, P. (2020). Experimental investigation
of the solid-liquid separation in a stirred tank owing to viscoelasticity, Physical Review
Fluids, 5, 063302.
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3.1 Introduction

The use of mechanically agitated vessels, for the mixing and suspension of solids highly
viscous non-Newtonian liquids, is an extremely common operation in many industries
such as healthcare, formulation manufacturing, food, and energy. Despite this, most of
the literature on mechanically agitated fluid-particle mixers is focused on the study of
turbulent Newtonian flows.

Extensive literature exists in the field of solid-liquid stirred tanks, encompassing both
experimental and computational approaches. Zwietering (1958) introduced the concept of
the just-suspended speed (Nj,), defined as the impeller speed at which no particles remain
stationary on the tank bottom for more than 1-2 seconds, based on a significant amount of
experimental observations. Since then, various researchers have measured N in diverse
mixing configurations using different experimental techniques. For instance Electrical
Resistance Tomography (ERT) has been used by a number of researchers to examine the
impact of impeller type, impeller speed, impeller off-bottom clearance, and particle size
on mixing efficiency (Hosseini et al., 2010; Carletti et al., 2014; Tahvildarian et al., 2011;
Harrison et al., 2012). Additionally, Positron Emission Particle Tracking (PEPT) has been
utilized as a non-intrusive Lagrangian flow visualization technique to obtain complete
3D velocity and concentration fields of both continuous and dispersed phases in opaque
mixing equipment (Guida et al., 2009, 2010). A review focusing on different kinds of
measurement techniques about particle concentrations in the solid-liquid stirred tanks has
been reported by Tamburini et al. (2013). As for investigations about the flow field in
stirred vessels, laser-based optical imaging techniques such as Laser Doppler Anemome-
try (LDA) (Guiraud et al., 1997; Micheletti and Yianneskis, 2004; Virdung and Rasmuson,
2007a) and Particle Image Velocimetry (PIV) (Virdung and Rasmuson, 2007b; Unadkat
et al., 2009; Gabriele et al., 2011; Montante et al., 2012) are the most widely used. In
applying these techniques to solid-liquid systems, a main limiting factor is the solids
concentration which, in the studies referred to here, was less than 1% by volume. Mea-
suring velocity in the presence of particles can be problematic due to the obstruction and
scattering of laser light as the solids volume fraction increases. To address this issue, re-
searchers have used Refractive Index Matching (RIM) methods. For example, Micheletti
and Yianneskis (2004) employed a mixture of 1-methylnaphtalene, 1-chloronaphtalene,
and tetraline as the continuous phase and poly(styrene-(1%)co-divinylbenzene) impurity-
free monodisperse particles as the dispersed phase to study liquid velocity characteristics
with solids volume fractions up to 2% using LDA. Virdung and Rasmuson (2007a) used a
mixture of benzyl alcohol and ethanol with glass spheres as the continuous and dispersed
phases, respectively, to investigate axial velocities and turbulence levels in a stirred tank
with LDA, achieving a maximum solids volume fraction of 9%. In a following study, the

same authors also utilized PIV with image analysis to separate particles and liquid in their
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camera frames to measure velocities of both phases up to 1.5% solids by volume. Gabriele
et al. (2011) used p-cymene and PMMA spheres as the continuous and dispersed phases,
respectively, to investigate turbulence properties in a high throughput stirred vessel with
PIV, achieving up to 5% (by volume) particles for both up-pumping and down-pumping
configurations.

A phenomenon recently encountered when dealing with solid-liquid suspensions in
stirred vessels is the spontaneous accumulation of the solid phase in specific areas of
the flow, caused by a cross-flow migration (that is the movement of solids across the
streamlines of the fluid phase). The involuntary accumulation of solids in separate regions
of the flow represents a clear impairment to the mixing process and can affect negatively
the quality of the products and/or the efficiency of the whole operation. The study by
Wang et al. (2014) examined solid-liquid suspensions in Newtonian and non-Newtonian
laminar flows, adopting a three-dimensional (3D) particle visualization method to expose
the real-time trajectories of the particles. In their study, they showed that the particles
accumulated in the cores of the toroidal vortices created by the impeller rotation. In
particular, the revolving blades of the impeller generated two coexisting, confined regions,
above and below the blades, wherein the particles migrated. The migration was induced
by inertial perturbations in the flow outside these regions, where, owing to the high shear
rates present near the blades, the particle trajectories deviate from the path lines of the
fluid, enabling the particles to cross the boundaries of these regions and settle into their
cores.

As will be shown, a similar phenomenon is observed in the absence of inertia when the
suspending fluid is viscoelastic. The present study aims to investigate the motion of solid
particles dispersed in highly viscous, viscoelastic fluids under agitation in a stirred vessel,
with a particular focus on the accumulation phenomenon. This part of the research has two
primary objectives: first, to show that the accumulation of the solid phase is exclusively
caused by the viscoelasticity-induced cross-flow migration of the solid phase, and second,
to relate the characteristic velocity of the migration to the intensity of the elastic character
of the flow. To achieve these goals, a refractive index matching method was employed
along with a combination of PIV and PTV techniques to simultaneously measure the
velocity fields of the solid and fluid phases. A strongly shear-thinning viscoelastic fluid
and two Boger fluids were employed in order to separate the effects of the elasticity from
those of shear thinning. The tracking of the solid phase also allowed the estimation of
the characteristic migration time, that is the time needed for the complete segregation of
the solids. This time was measured at different values of the Weissenberg number, Wi, in

order to estimate the effect of the viscoelasticity on the migration velocity.
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3.2 Materials and methods

3.2.1 Rheological characterization

Table 3.1: Properties of the fluids and solid phases measured at 23°C.

Acronym Glycerol ZnCl, H,O Xanthan PAA p n n Re
[wt%]  [wt%] [wi%] [ppm]  [ppm] [kg/m’]  [Pa-s]

GZy 42 18 40 - - 1630 0.25 1.487  65-100

GZst 42 18 40 1300 - 1630 5.9-0.27 1487  65-100

GWy 98 - 2 - - 1250 0.71 1.475 33-50

GWpy 98 - 2 - 100 1250 ~0.8 1.475 33-50

GWpa 98 - 2 - 200 1250 ~0.85 1.475 33-50

To investigate the effect of the rheological properties, five different fluids were used
throughout the experimental campaign. Specifications about the compositions, density
(p), viscosity (1) and refractive index (7,,) are provided in Table 3.1. Among these fluids,
those labeled as GZ were composed of glycerol (42% by weight), water (18%), and zinc
chloride (40%). The particular composition of GZ was chosen to ensure that the refrac-
tive indices of the fluid and solid phases were matched. As will be shown later, when
the refractive indices of a fluid and its suspended solids match, it becomes possible to
measure the velocity of both phases simultaneously. Two versions of GZ were prepared:
a Newtonian fluid denoted as GZy, and a non-Newtonian, shear-thinning fluid denoted as
GZsr. GZgr was obtained by the addition of 1300 ppm of Xanthan gum (XG, supplied
by Sigma-Aldrich, UK), an organic bio-polymer that is well-known for inducing strong
shear-thinning behaviour. The molecular weight of Xanthan Gum, not provided from the
manufacturer, was obtained by Migliozzi et al. (2021) through gel permeation chromatog-
raphy (GPC), yielding an average molecular weight of 1.76 x 10° g/mol. Similarly, the
fluids labeled as GW were comprised of glycerol (98%) and water (2%). Three versions
of GW were prepared: a Newtonian fluid denoted as GWy, and two purely viscoelastic,
or Boger, fluids denoted as GWp; and GWp,. These Boger fluids were obtained by re-
spectively adding 100 and 200 ppm of polyacrylamide (PAA, supplied by Sigma-Aldrich,
UK) having a molecular weight of M,, =5 — 6 x 10 g/mol, respectively.

Given the high viscosity of all the solvents, the polymer suspensions were prepared
by initially creating stock solutions, which were subsequently diluted with the correct
amount of solvent. Specifically, for fluid GZg7, a stock solution at 3250 ppm of XG
in water was prepared by gently dispersing the 3.25g polymer powder in 1 kg of warm
milli-Q water (DW, temperature kept at 40 °C). During this stage, the liquid was kept at a

temperature of 40°C to reduce its viscosity and facilitate polymer dissolution. During the
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dispersion step, it was important to keep a swirling flow in the container and gradually
pour the powder in the centre of the vortex to avoid agglomeration. Similarly, for the two
Boger fluids, the stock solutions were prepared by adding 5g of PAA to 1 Kg of warm
milli-Q water (concentration of the stock solution was 5000 ppm). The stock solutions
were then stirred gently with a magnetic stirrer for at least 24 hours to fully disperse the
polymer powders.

An estimation of the expected rheological behaviour of polymer suspensions can be
obtained through the evaluation of the polymer concentration regime. When the con-
centration of polymers is low, the suspension will typically exhibit a pure viscoelastic
behaviour, whereas at high concentrations, it will become shear-thinning. The point at
which the suspension transitions from dilute to semi-dilute is known as the characteristic
overlapping concentration, or ¢*. This concentration serves as a threshold for the dilute
regime: concentrations below c¢* are therefore considered dilute, and interactions between
polymer molecules are assumed to be negligible. A standard criterion for the evaluation
of ¢* is to consider the reciprocal of the polymer intrinsic viscosity [1] (Flory, 1953), i.e.
¢t = [n]_l. The intrinsic viscosity of a particular polymer is a function of the molecu-
lar weight of the polymer and on the solvent used. For a particular polymer suspension,
[1] can be estimated via the Mark-Houwink correlation once the molecular weight of the

polymer Mw is known. The relation is typically given in the form:
[n] = KyMw™ 3.1

where K and ayy are the Mark-Houwink parameters that are only function of the solvent
type and operating temperature. Estimations of the Mark-Houwink parameters for the
two polymers of interest were obtained from the literature and are reported in Table. 3.2
(Madkour and Mark, 1999; Abed et al., 2016; Milas et al., 1985). Using these values,
¢* was estimated to be approximately 710 ppm for PAA and 360 ppm XG. Therefore,
the concentrations of PAA in the fluids GWp; and GWp; were low enough to remain in
a dilute regime and expect that no shear-thinning effects should be observed, whilst the
concentrations of XG in GZsy were well above ¢* thus it should present a strong shear-
thinning behaviour. Note that these values are only estimates and should not be intended
as precise thresholds since the parameters in Table 3.2 were obtained by dissolving the
polymers in water at 25°. Nonetheless, similarly to water, the solvents used in this study
are considered to be "good solvents" for both XG and PAA Flory (1953). It is then rea-
sonable to assume that the use of the parameters in Table 3.2 produce a good first order
approximation of the intrinsic viscosity of the polymers.

In the following sections, it will become necessary to define the dimensionless Weis-
senber (Wi) number to quantify the elasticity of the flow. To this end, a characteristic

relaxation time of the fluids involved, Az, will be evaluated according to Zimm’s theory
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(Zimm, 1956; Abed et al., 2016; Del Giudice et al., 2017):

Fn]Mwny

A —
< RT

(3.2)

where R is the ideal gas constant, T is the absolute temperature and 7y is the solvent

viscosity. The factor F is given by:
oo 1
F = Z T 0.53 (3.3)
i=1!

where u is a parameter that depends on the quality of the solvent and is equal to 0.6 for
soluble polymers suspended in a good solvent (Del Giudice et al., 2017). The value of
the relaxation times calculated in this manner are also reported in Table 3.2. Note that the
value of A, for XG is reported only for completeness given that Zimm’s theory is strictly

only applicable to dilute polymer suspensions.

Table 3.2: Mark-Houwink parameters used for the two polymers and corresponding intrinsic
viscosities and Zimm’s relaxation time.

Mw [g/mol] Ky [g/mL]  ay [-] [n] [mL/g] ¢ [ppm] Az [s]

PAA 5% 100 49x1073 0.8 1120.4 890 1.15
XG 1.76 x 10° 1.7x 1074 1.14 2246 450 0.22

All the experiments reported in the following sections were carried out in a temperature-
controlled laboratory at 23°C. Hence, all the rheological measurements were conducted
at the same temperature. The rheological properties of all the fluids were tested with
an Anton Paar MCR302 stress-controlled rotational rheometer, equipped with a peltier
plate to precisely control the operating temperature and a cone-plate measuring system
(OD: 50 mm and truncation angle of 1°). For all measurement samples, the fluid menisci
were covered with silicon oil (5 cSt) to seal the interface and avoid solvent evaporation.
Steady-shear flow tests were performed to obtain flow curves of all the experimental fluids
at 23°C. The tests were performed by ramping up the shear rate  from 0.01 to 2000 s~
At each value of shear rates, both the torque and the normal force acting on the cone were
measured. This allowed to measure the shear stress and the first normal stress difference
simultaneously.

Viscosity values at different shear rates are presented in Fig. 3.1a for the three so-
lutions displaying non-Newtonian behaviour. As it can be seen, GZgr shows a marked
shear-thinning behaviour with a viscosity ranging between 5.9 and 0.27 Pa-s. The viscos-
ity curve for the shear-thinning fluid can be interpolated with the Carreau-Yasuda (C-Y)

model:

() = Moo+ (M0 — M) [1 4 (A7) T (3.4)
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where 7). is the viscosity on the plateau where the shear rate is very high (in the limit
to infinity), 1o is the viscosity on the plateau where the shear rate is very small (in the
limit to zero), A. is a time constant and »n is the flow index. In the range of shear rates
investigated, the viscosity drops by about one order of magnitude, with a shear index of
0.53 and a time constant of 12.3 s. As expected, the fluid GZg7 also displays a measurable
degree of elasticity. This can be observed in Fig. 3.1b in the form of an increasing first
normal stress difference. Fig. 3.1a also reports the viscosity curves for the two Boger
fluids GWp; and GWp,. Since the polymer concentration in these fluids is below the
overlapping concentration, the viscosity remains almost constant throughout the entire
measurement range. The two fluids also display a measurable normal force as shown by
the curves of N1(7) in Fig. 3.1b. As expected, N1 increases with the shear rate and a
larger concentration of PAA corresponds to larger values of N1. Noticeably, at values of
¥ < 100, N1 o< 7* which is the expected behaviour of purely elastic fluids (James, 2009).
This is also showed by the dashed straight line with slope 2 reported in Fig. 3.1b.

3.2.2 Experimental apparatus

Solid particles

To visualise the flow of the liquid phase in the presence of solids, we matched the re-
fractive indices of the two phases. PMMA spherical particles of 1.5 mm diameter and
refractive index r, of 1.487 were employed as solid dispersed phase. The refractive in-
dices of both GZy and GZgr fluids, measured with a Bellingham and Stanley Model 5
Abbe refractometer, were found to be equal to 1.487 + 0.0005 (at 23 °C). The refractive
indices were relatively insensitive to temperature (decreasing from 1.487 to 1.485 with a
5 °C temperature rise), so that no temperature correction was required. To avoid any over-
heating of the fluids, mainly caused by the rotating impeller, the experimental runs were
kept short (below 30 minutes). The experiments were conducted at particle volumetric
concentration ranging from O to 2%, within the dilute regime. At the values of N used,
the particles were always sufficiently suspended and the air-liquid interface remained es-
sentially flat. This allowed to avoid any image distortion resulting from the generation of
a central vortex around the shaft of the impeller.

In the case of the GZy and GZgr, the matching of the refractive indices of the solid
and liquid phases allowed the simultaneous measure of the fluid (via PIV) and the solids
(via PTV) velocities. The velocity fields and the time evolution of the particle distribution
fields for these fluids were measured at N = 700 and N = 100 rpm.

In contrast, the refractive indices of the two Boger fluids (with a r,, = 1.475 at 23
°C) differed significantly from those of the solids. Consequently, the velocity field of the
liquid phase was determined via PIV in the absence of the solids. Subsequent experiments

were conducted at the same impeller speed to measure the time evolution of the solids
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Figure 3.1: Material functions in simple shear flow of the three non-Newtonian fluids: (a) shear
viscosity and (b) first normal stress difference.
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distribution. The purely viscoelastic fluids were tested at impeller speeds 800 < N <
1500 rpm.

Tank geometry

The experiments were carried out in a cylindrical flat-bottomed vessel of diameter 7 = 50
mm, as shown in the schematic diagram of Figs.3.2b and 3.2c. The liquid in the vessel was
agitated by a stainless steel dual impeller with two flat blades (see Fig. 3.2b) of diameter
D = 37.5 mm, blade height of W = 6 mm, impeller clearance from the bottom of the
vessel of C = 10 mm, and a liquid height of H = 60 mm. The vessel was encased in a
square trough, filled with the fluid mixture GZy in order to minimize the optical distortion
resulting from the curvature of the cylindrical surface. Both the vessel and the trough were
made of acrylic (r,, = 1.495) to match the refractive index of the working fluid and of the
dispersed phase (PMMA). At the beginning of each run, the particles were placed at the
top of the liquid in the vessel. To avoid air entrapment when the agitation started, a lid
was placed on top of the liquid surface, so that the floating particles were entirely wetted
(Fig. 3.2c). The Reynolds number, Re = pND? /1, for the Newtonian (GZy and GW) and
Boger (GWp; and GWp,) mixtures was based on the impeller diameter D, impeller speed
N, fluid density p , and constant viscosity 1. For the shear-thinning fluid (GZg7), the
Reynolds number was defined according to the procedure of Metzner and Otto (1957).

First, an average shear rate (}) in the area surrounding the impeller is estimated as:

() = ksN (3.5

where the value of kg depends exclusively on the impeller type and impeller-tank configu-
ration. The impeller used in our work was similar to that adopted by Cortada-Garcia et al.
(2018), for which k; = 15. Although this number was not accurately measured for the
specific system under examination, it is assumed that it provides a reasonable estimation
of the order of magnitude of the shear rate around the impeller. With the value of (})
obtained from Eq. 3.5, the apparent viscosity of the shear-thinning fluid was calculated

from Eq. 3.4. Thus, the Reynolds number for the GZg7 fluid was given by:

pND?
Moo+ (M0 — Neo) [1 4+ (AcksN )]
From the above, the average shear rates for the GZgr mixture at N = 700 rpm and 1000

Re = (3.6)

n—1
a

rpm are 175 and 250 s !, respectively. This corresponds to Re = 65 and Re = 100. Notice
that, both values of (}) lie within the shear-thinning regime of GZgy. Finally, the elastic
character of the flow will be estimated via the definition of a Weissenberg number Wi =

Az(y) for the stirred vessel.
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Figure 3.2: (a) Experimental setup for the PIV experiments, (b) 3D visualizations of the dual blade
impeller and (c) schematic of the tank geometry showing visualization areas for both PIV/PTV and
solid mixing configurations.
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PIV measurements

The PIV setup included a dual cavity Nd:Yag green laser (532 nm) (Litron Laser, 14.5 Hz,
1200 mJ) and a straddling CCD camera with 2048 x 2048 pixels with a spatial resolution
of 32 ym/ px, equipped with a 105 mm Nikon lens. As tracers for the PIV measurements
in the fluid phase, fluorescent polymer particles with 20 um diameter made of melamine
resin and coated with Rhodamine B were employed. For the experimental conditions

investigated, the tracer relaxation time was negligible compared to the convection time

(St = £ ’lgfj]N << 1) , where p; and d; are the tracer density and diameter, respectively.

In the case of refractive index matching, the PMMA solids become invisible when
fully submerged in the fluid. To overcome this, a small quantity of aqueous Rhodamine
6G dye was added to the suspending liquid to make the particles visible as black circles.
The complete procedure for this is described in a later section. However, for experiments
with the Boger fluids, where refractive indices were not matched, the PMMA particles
were dyed with Rhodamine 6G. The dyeing process involved mixing the particles in an
aqueous solution containing 0.1% weight of Rhodamine 6G for 24 hours. After that, the
particles were strained and allowed to dry for an additional 24 hours, resulting in a thin
layer of dye deposited on the spheres. Although this layer was not permanent and would
leach into the fluid during the experiments, it was stable enough to carry out experiments
lasting up to 60 minutes.

An orange filter with a cutoff wavelength at 570 nm was employed to ensure that
only the light emitted from the tracers and the particles (maximum emission at 590 nm)
was recorded by the camera. The laser and the camera were synchronized by means of
a Laser Pulse Synchroniser (Model 610035 TSI) and they were controlled via the Insight
4G (TSI) software. The laser beam was guided through a collimator and two cylindrical
lenses (25 mm and 15 mm) that transformed it into a narrow plane of 1 mm thickness.
Measurements were obtained on both the vertical and horizontal planes. For the vertical
plane measurements, the generated laser sheet was reflected on a 45° silver-coated mirror
and entered the vessel from the bottom as shown in Fig. 3.2a. For the measurements on
the horizontal plane, a horizontal laser sheet was generated just above the top impeller
while the camera was positioned underneath the vessel (not shown in the figure). The
images were captured using either phase-resolved or time-resolved measurements. For the
former, the image capture was synchronized with the impeller blade position using a hall
switch sensor. For each experiment, 100 image pairs were taken at the same phase angle
(i.e., the angle between the upper blade of the impeller and the laser sheet) to produce 100
instantaneous velocity vector fields. The phase-resolved velocity field was then obtained
by averaging the instantaneous vector fields.

Phase-resolved experiments were carried out for PIV/PTV measurements and the time

between each laser pulse At varied depending on the speed of the impeller to ensure
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that the tracers did not move out of the image plane during capture. To maximise the
field of view in the vertical plane, the phase-resolved measurements were carried out
on a plane at an angle of 5° to the top blade, as shown in the plane view on the right-
hand side of Fig. 3.2c. Additionally, the measurement was limited to the left-hand side
of the vessel (blue box in Fig. 3.2c). Vector fields on the horizontal plane were also
obtained through phase-locked measurements on a single plane at z/T = 0.8. However,
to calculate all the components of the shear rates, it was necessary to obtain PIV data
on multiple horizontal and vertical planes. To this end, additional measurement were
performed in the range z/7T = 0.78 — 0.82, with intervals of Az/T = 0.02, along with
two vertical PIV measurements from ¢ =5 — 7° at an interval of A¢ = 2°. For the same
image magnification and spatial resolution, time-resolved measurements were carried out
to investigate the time evolution of the distribution of the solids in the tank. In these tests,
1000 images ere captured with an image acquisition frame rates of 14.5 Hz, utilizing the

whole field of view, as shown in Fig. 3.2c¢ (red box).

Image analysis

Fig. 3.3a shows a typical raw image obtained from the PIV measurements in the GZgr
mixture (1300 ppm xanthan gum) at Re = 65. In this image, the bright spots correspond
to the tracers in the continuous phase, while the bright circles represent the suspended
particles. The intensity values of the 8-bit images range from O (representing black) to
255 (representing white). To isolate the tracer particles and the edges of the solid spheres,
the raw image in Fig.3.3a was binarised using an ad hoc threshold value determined from
the intensity histogram. The resulting image is shown in Fig.3.3b. Subsequently, a median
filter was applied to the binarized images to remove the tracer particles.

The edges of the particles were detected with the use of a circular Hough transform
(CHT) algorithm (Atherton and Kerbyson, 1999). According to the algorithm, at each
edge point of a single solid sphere it is possible to draw a series of circles with center in
the edge point considered and a varying radius 7y, < r < Fyuqc. The definition of a range
of radii is necessary as not all the solid spheres are expected to be located with their center
laying exactly on the laser plane. Once every possible circle (employing every edge point
and every value of the radius) has been drawn, the intersection point passed by the highest
number of circles is selected as "real" center of the particle. Fig. 3.3c shows the result of
the boundaries detection algorithm performed on the image in Fig. 3.3b.

The images shown in Fig. 3.3c displaying the positions of the particles, were then used
in particle tracking velocimetry (PTV) and solids mixing analysis. The velocities of the
particles was measured with the cross-correlation/relaxation (ICCRM) technique in the
PTVlab toolbox by Brevis et al. (2011), which involves tracking the motion of individual
particles between two successive camera frames. First, each particle is detected and local-

ized on each camera frame; then, the two particle images in the two consecutive frames
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Figure 3.3: Image analysis during pretreatment stages, for Re = 65, GZgr mixture and particle
volumetric concentration of 1%. (a) Raw PIV image, (b) binarized image without the dye, (c)
image with the detected solids and (d) image with only the PIV tracer particles.
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are “matched,” i.e., identified as belonging to the same particle without ambiguity. This
identification is performed via the two-step PTV algorithm, denoted ICCRM, that com-
bines the well-known cross-correlation (CC) and relaxation method (RM). The difference
between the positions of the two particle images gives the particle displacement between
the two frames, while the time is given by the time difference between two consecutive
images.

To quantify the degree of mixing of the particles in the tank over time, a similar
method to that developed by Camesasca et al. (2006) was employed. According to their
approach, the measurement plane was split in small sub-regions, denoted by the index i,

and the Shannon entropy S; was calculated in each one as follows:

Z p;(i)Inp;(i) (3.7)

where pj(i) is the ratio of the number of pixels filled by the solids over the total
number of pixels in region i, while p,(i) is the ratio of the number of pixels filled by the
fluid over the total number of pixels in sub-region i. The entropy for the whole field of

view is then estimated as the average of the entropies of all the sub-regions:

1NR

Zs (3.8)

According to Brandani et al. (2013), the entropy S is a measure of the disorder present
in a solid-liquid system. In a hypothetically perfectly mixed system, where particles are
uniformly distributed throughout the field of view, the entropy value is § = 1. On the
other hand, the initial state of a system, where all particles are situated at the top of the
liquid prior to stirring, is characterized by a low value of entropy. By analyzing the time
evolution of S, one can estimate the mixing state of the system over time.

Finally, by subtracting Fig. 3.3c¢ from Fig. 3.3b, one can isolate the signal of the trac-
ers, as shown in Fig. 3.3d. These images were then binarized to eliminate the effect of
the dye. The velocity of the fluid was calculated from the tracer displacements between
two consecutive images with the freeware package JPIV, using a 50% window overlap
for a final interrogation window with resolution of 16x 16 pixels. An amplitude filter was
applied to each cross-correlation box to eliminate the vectors that substantially deviated
from the median value (Westerweel and Scarano, 2005). Since the solid spheres were
larger than an individual interrogation window, this caused a larger number of zero val-
ues in the liquid phase. These values were omitted when calculating the phase-average
velocity fields.

In the experiments involving Boger fluids, where the refractive indices of both the
fluids and particles were not matched, PIV measurements were carried out without the

presence of solids. The time evolution of the solid dispersion was then obtained by per-
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forming additional time-resolved tests after the addition of the dyed PMMA particles.

Steady-state flow

As it will become clear later, it was necessary to establish whether the fluid velocity field
in the vessel could be considered fully developed before the particles were drawn in. To
this end, the temporal evolution of the flow field was investigated for the case of the GZy
fluid. The spatial mean fluid velocity magnitude (W) ’ was calculated from the

PIV measurements previously described, using the following equation:

( 2+u> A/( u2+u>dA (3.9)

where u, and u, are the radial and axial fluid velocity components, respectively, on the
plane of measurement and A denotes the area over which the integral is computed. In
this case, A is the left-hand side of the vertical plane of measure (blue area in Fig. 3.2c¢).
The mean velocity was estimated at several times. Each of these times referred to the
same position of the impeller blades (phase angle ¢ = 5°) but to a different number of
revolutions from when the impeller was started. Hence, instead of reporting the mean
velocity as a function of time, it is here reported as a function of the number of revolutions,
N;.

0.12 . — . . .

Figure 3.4: Variation of the dimensionless mean fluid velocity magnitude as a function of the
number of revolutions N, for the fluid mixture GZy and Re = 65.

Experimental results for GZy at Re = 65 are presented in Fig.3.4. The measurements
were conducted in the presence of solids. The graph illustrates that initially, there is a

sharp increase in the mean fluid velocity, which then stabilizes to a nearly constant value
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after three revolutions (Ny = 3). The inset of Fig.3.4 shows that the solids are located at
the free surface for Ny = 2, indicating that the solids are only drawn in when the flow has
reached a steady state. By N; = 10, the solids are uniformly distributed over the upper
part of the vessel, as evident from the inset of Fig. 3.4.

3.3 Results

3.3.1 Shear-thinning fluid

We first examine the motion of the particles in the Newtonian mixture, GZy, at steady
state. Fig. 3.5a shows the phase-averaged velocity fields of the fluid (left plot) and solid
(right plot) phases at Re = 65. The phase-averaged velocity, (i;), is given by:

(wiy=—25 u (3.10)

where u; is the i-th component of the instantaneous velocity and Ny corresponds to the
number of measurements taken at a phase angle, ¢ = 5°. The velocity vectors have been
normalized with the impeller tip speed. The flow field generated by the dual paddle im-
peller is similar to that reported in Cortada-Garcia et al. (2018), with the fluid ejected
from the impeller radially towards the tank wall. The fluid then moves axially and curves
towards the center line of the tank, where it is drawn towards the impeller. All the fluid
appears to move and no stagnant zones can be identified.

Fig. 3.5a (right plot) seems to indicate that the solid spheres follow the fluid path-
lines in their vortical motion with the velocity of each sphere being close to the local
velocity of the fluid. This is expected as inertia effects are negligible. For this case, the
density difference between the two phases is equal to 440 kgm ™3 and the particle set-
tling velocity due to gravity, U; , is much less than the characteristic velocity of the fluid,
ND (U;/nND ~ 1 x 1073 << 1). In addition, the particles Stokes number is less than
unity (St ~ 1 x 1073 << 1), i.e., the particles relax quickly to the local fluid velocity.
To confirm this, it was necessary to calculate the slip velocity between the two phases
us = |up —uys| where up, and uy are the instantaneous particle and fluid velocities, respec-
tively. To determine the slip velocity, a methodology similar to that proposed byFrédéric
et al. (2003) and Derksen (2012) was employed. For every pair of images, each particle
can be included in a correlation box sufficiently large to contain both the particle and the
minimum amount of tracer necessary for the estimation of the fluid velocity. Employing
the PTV and PIV algorithms, one can then measure both the velocities of the particle and
that of the surrounding fluid. From this procedure, it was concluded that almost all the
spheres have a ratio |u, —uy|/|us| <<1 at all times, with the maximum value of this ratio

never exceeding 0.05.
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Fig. 3.5b shows the contour plots of the averaged solid volume fraction, (C), and the

tangential component of the vorticity, g, for the GZy mixture at Re = 65.

1 /T[]
(@) (b)

Figure 3.5: (a) Fluid (left figure) and solid (right figure) phase-averaged velocity fields; (b) con-
tour plots of the averaged solid volume fraction and dimensionless tangential component of the
vorticity @g in the upper part of the vessel. Both figure report the results for the fluid mixture GZy
at Re = 65 and particle volumetric concentration of 1%.

The solid volume fraction distribution was determined by assigning a value “1” to
pixels that fall inside a detected circle (see Fig. 3.3c) and “0” elsewhere. Averaging the
pixel values over 50 images then provides an estimate for the time averaged local solids
volume fraction field, (C), shown in the left image of Fig. 3.5b. As it can be seen, the
solids are uniformly dispersed up to a minimum height of z/T = 0.45. The steady-state
solids volume fraction field (C) in Fig. 3.5b is reached via two stages. Initially, solid
particles were placed atop the denser, immobile liquid. The particles would only stay
afloat if the cumulative effect of buoyancy and surface tension forces surpassed that of
gravity. Upon initiation of impeller rotation and consequent fluid motion, additional fluid-
particle interaction forces emerge, and in particular the drag force. In the first stage, this
force overpowers the buoyancy and surface tension forces and drags the particles away
from the surface and into the liquid bulk. In the second stage, the particles are dispersed
in the tank by the flow field. In the case examined, the particles are drawn into the liquid
bulk only at an impeller speed N > 700 rpm. At this speed, the flow reaches a steady
state while the particles are still at the liquid surface (see Fig. 3.4). Upon entry into the
flow domain, the solid particles rapidly relax to the local fluid velocities and subsequently
travel along the fluid pathlines of the large vortical motions situated above the upper blade
of the impeller. Although some particles were also observed to follow the pathlines of the
vortex immediately beneath the upper blade, the particles never reach the bottom of the
tank due to the segregation of the flow field produced by the dual blade impeller (Fig.3.5a,
left plot).

Contrary to the observations made by Wang et al. (2014), who reported particle ac-
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cumulation within the core of the vortices for a Newtonian ambient fluid and St << 1,
we did not observe any accumulation of particles in the core of the vortices in this study.
According to Wang et al. (2014), the solids take a considerable amount of time (up to
30 minutes) to accumulate, particularly for large particles (d, = 2.8 mm). Nonetheless,
even after 30 minutes, no indications of accumulation of the solid phase in the core of the
vortices were observed in this study. Since the particles closely follow the fluid pathlines
and no accumulation is observed in the vessel for the Newtonian ambient fluid, for the

rest of the study it will be assumed that the role of inertia on the trajectory of the particles

is negligible.
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Figure 3.6: Contour plot of the averaged solid volume fraction and dimensionless tangential com-
ponent of the vorticity wyg and radial concentration profile (C)*, for fluid mixture GZg7 and particle
volumetric concentrations of 1% and 2% at (a) Re = 65 and (b) Re = 100.

The effects of rheology of the suspending fluid on the distribution of solids in the
vessel was first investigated via the use of the shear-thinning fluid GZgr. Fig. 3.6 presents
the steady-state averaged solid volume fraction and tangential vorticity contour plots for
two distinct values of Re, along with the corresponding averaged radial solid volume
fraction profiles, denoted as (C)*. The quantity (C)*, defined as (C(r)), is computed over
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a cross section of the vessel. As we can see from Fig. 3.6a, for Re = 65 the averaged solid
volume fraction maps are substantially different from those observed for the Newtonian
case. Now, solids accumulate in the three vortical regions of the flow, two immediately
above the top impeller blade and one below it. The radial solid volume fraction profiles
for two particle volumetric concentrations, 1% and 2%, are shown in the right image in
Fig. 3.6a. For both, the main features of the profiles agree with the three accumulation
areas identified in the left image in Fig. 3.6a.

When Re increases to 100, the two vortices in the top of the tank merge to form a
larger one just above the top impeller blade, while the bottom vortex elongates along the
radial direction and shifts closer to the top impeller blade (Fig. 3.6b). The changes in
the flow field are reflected in the averaged solid volume fraction map. The particles now
accumulate in the two large vortical regions above and below the top impeller blade. The
axial solid volume fraction profile in the right image in Fig. 3.6b shows two main peaks
for the two different particle volumetric concentrations investigated. The bottom peak is
larger for the larger solid volume fraction. Moreover, for both particle concentrations,
more solids are trapped in the top vortex. That is likely because, as the solids are drawn
into the fluid, they first encounter the top vortex, so that most particles become entrapped
there; only few particles manage to move further down in the vessel, ending up in the
vortex below the top impeller. For Re = 65, the behaviour is similar, but less pronounced,
and the averaged solid volume fractions are higher in the vortical structures above the
impeller blade compared to those below.

The spatio-temporal distributions of the solids in the tank at the imaging plane for the
GZy and GZgr fluids as well as the Shannon entropy S at Re = 65 are shown in Figs. 3.7a
and 3.7b.

The supplementary videos reported by Weheliye et al. (2020) show how the solids
distribute in the imaging plane over time for both fluids. For GZy (Fig 3.7a), the Shannon
entropy follows a sigmoidal profile with the normalized time tN. The entropy is initially
low, when all the particles are at the top of the liquid, as shown in diagram a above
Fig. 3.7a. AstN increases, S increases monotonically because the flow draws the particles
into the tank along the impeller shaft (diagram b in Fig. 3.7a). At tN = 14.6, where
uniform solid mixing has been achieved in the vessel region above the bottom impeller,
S plateaus at a value of 0.48. Similarly, in the non-Newtonian case (GZgr), the Shannon
entropy starts from a low initial value, which rapidly increases with time up to a maximum
value of around 0.42.

The observed maximum value of S for the GZgr mixture was found to be lower than
that of the GZy mixture. This can be attributed to the fact that in the case of the GZ¢r mix-
ture, particle accumulation occurs almost immediately after the solids are introduced into
the vessel, prior to the complete dispersion. Consequently, the solids occupy a relatively

smaller portion of the flow domain (as illustrated in diagram b above Fig. 3.7b), leading
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Figure 3.7: Variation of the Shannon entropy S, with increasing ¢tN at Re = 65 and particle volu-
metric concentration of 1% for (a) GZy; (b) GZsr.

to a lower S value. As N increases, the Shannon entropy decreases, nearly plateauing at
a value of 0.22 with a fluctuation of about + 5%. The decrease of S reflects the reduction

in the area of the image occupied by the particles, as shown in diagram ¢ above Fig.3.7b.

3.3.2 Purely viscoelastic fluids

From the results presented, it was clear that the non-Newtonian nature of the suspending
fluid was the cause of the accumulation of the solid phase. However, it was still unclear
whether the particle migration seen in the Xanthan gum mixture was caused by the shear
thinning of the viscosity or the elastic behaviour of the ambient fluid. For this reason, the
experiments were repeated with the two purely viscoelastic fluids GWp| and GWg,. This
allowed to effectively isolate the effects of elasticity from those of the shear-thinning vis-
cosity. Furthermore, it should be noted that the density difference between the liquid and
solid phases in these fluids is relatively small, with a value of approximately 60 kg/m?>.
This is a representative value for various industrial processes involving the separation of
solid particles from highly viscous liquids.

Fig. 3.8a shows the averaged solid volume fraction (left side) and tangential vorticity
contour plots along with the corresponding velocity vector field (right side) in the plane of
measurement, for the Newtonian GW mixture (Wi = 0) at Re = 45 and particle volumetric
concentration of 1%. The contour plot of the averaged solid volume fraction shows that
the solids are almost uniformly dispersed throughout the whole measurement plane. In

contrast to the GZy case, the solid particles do reach the bottom of the vessel in this case.
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This can be attributed to the lower density difference between the two phases, which
is only 60 kg/m?> for the GW mixture. This behaviour is in line with the findings of
Takahashi and ichiro Sasaki (1999), who showed that the minimum height reached by the
suspended phase is strongly dependent on the density difference between the phases.

When the PAA polymer is added (Fig. 3.8b) the averaged solid volume fraction map
for the particles suspended in the GWp, mixture at Wi = 25 is similar to that obtained for
the suspension in the GZg7 mixture (see Fig. 3.6). The solids have accumulated in each
of the vortex cores of the flow. From the contour plot on right side of Fig. 3.8a, one can
see that for the GW mixture, the vortices are formed around the upper and lower sides
of the top blade. The intensity of the two vortices is comparable, although they are not
symmetrically positioned with respect to the blade center line (i.e., with the upper vortex
closer to it). At a phase angle of ¢ = 5°, it is still possible to see the vortices generated
by the bottom impeller at an angle of 95° from the bottom leading blade (after a quarter
of impeller revolution). Their intensities are still significant and approximately equal to
93% of the upper blade vortices.

The intensity of the upper vortices in the GWp; fluid at Wi = 25 shown in Fig. 3.8b
(right side) is comparable to that for the GW case. However, the vortices at the bottom
impeller have significantly dissipated after a quarter of a revolution, with intensity values

decreased by about 36% and size shrunk by up to 40% compared to the Newtonian fluid.
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Figure 3.8: Averaged solid volume fraction (left side) and dimensionless tangential vorticity con-
tour plots along with the dimensionless phase-averaged velocity field (right side) at Re = 45 and
particle volumetric concentration of 1% for the fluids: (a) GW (Wi = 0) and (b) GWg, (Wi = 25).

These features are summarized in Fig. 3.9, that shows the circulation intensity I"* for

the different fluid mixtures at varying Reynolds number. I'* is calculated as follows:

= / | g |dA i (3.11)
Ami

Wi
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where the integration is carried out over the area Ay; where the dimensionless vorticity
g /7N is larger than 1. Fig.3.9a displays the areas A, for the GW fluid, in the absence
of particles at Re = 45. Figs.3.9b and 3.9c¢ illustrate the variation of I'* for the GW, GWpg|,
and GWp, mixtures with respect to Re for the areas below the top (A1) and the bottom
(A2) blades of the impeller, respectively. As Re increases, higher circulation intensity is
observed in both regions.

In the absence of elastic stresses, the circulation intensity of the vortices located in
areas Ay and Ay, is similar for the GW mixture, at all values of Re. This can be seen
by comparing the curves in Figures 3.9b and 3.9c. However, for the GWg; and GWp,
mixtures, elastic stresses are present and increase with polymer concentration. This leads
to a different behaviour of the upper and lower vortices. The vortices near the top blade
are measured on a vertical plane at an angle of 5° behind the blade, and the circulation
levels remain similar for all the fluids at all Re. On the other hand, the vortices generated
by the bottom blade are measured at an angle of 95° (after 1/4 of a rotation) from the
bottom leading blade. Here, the suppression of the circulation intensity caused by the
elastic stresses on the vortices is evident as signaled by the curves in Fig. 3.9c. For
example, at Re ~ 50 the circulation intensity of GW (Wi = 0) is almost 60% higher than
that for GWp, (Wi = 28). The suppression of the circulation intensity and the reduction
of the vortex size in viscoelastic fluids have previously been reported in the literature and
is attributed to the presence of the elastic stresses acting along the circular streamlines of
the vortices (Palacios-Morales et al., 2015; Sousa et al., 2011).
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Figure 3.9: (a) Visualization of the area Ag;, over which the circulation I'* has been estimated
(example for the fluid GW at Re = 45 and Wi = 0). Variation of the space-averaged dimensionless
circulation intensity with increasing Re for (b) A1 and (c) Ago.

These results suggest that the solid migration to the core of the vortices and the sup-
pression of the vortices in the flow are caused by the viscoelasticity of the ambient fluid.
As reported by D’ Avino et al. (2017), cross-flow migration of solids has been observed

for viscoelastic fluids in the absence of inertia in simple shear and pressure-driven flows



Chapter 3 Results 80

in channels with a constant cross section. For almost all the flows examined, the authors
found that the solids migrated from regions of high to regions of low shear rate. In the case
of a pipe flow, with the fluid flowing in the z direction, the radial migration arises from the
combined action of the first normal stress difference N; and the shear rate gradients. For
this simple shear flow, the first normal stress difference is given by N = 7., — T, o< 7. N
increases with the shear rate, and consequently the side of the particle facing the region of
high shear rate is subject to a force larger than that acting on the side facing the region of
low shear rate. The resultant force is responsible for the migration and is directed from re-
gions of high (close to the pipe wall) to regions of low (close to the pipe center line) shear
rates. Solid migration from high to low shear rate regions in viscoelastic fluids has also
been reported in a concentric annulus configuration with a rotating inner cylinder (Karnis
and Mason, 1966; Lormand and Phillips, 2004; D’ Avino et al., 2012). In this flow geom-
etry, the inner rotating cylinder produces a shear flow (in the » — 6 plane) which stretches
the polymer molecules around the cylinder in the azimuthal direction. This leads to a first
normal stress difference that is larger close to the inner cylinder compared to the outer
one. This generates an imbalance in the normal stresses around the particles, a condition
that causes a cross-flow migration towards the outer wall, where the shear rate is low.

In the present study, the flow system resembles the concentric annulus flow described
above, with the difference that the inner cylinder is equipped with impellers generating
vortical flows above and below them. Therefore, to interpret the particle migration ob-
served, measurements need to be taken in the horizontal plane (i.e., in the r — 6 plane).
Fig. 3.10a and 3.10b exhibit the averaged solid volume fraction and velocity vector fields
for the mixtures GW and GWp,, at Re = 45, for a particle volumetric concentration of 1%
atz/T = 0.8. The flow fields for both mixtures are typical of rotating fluids with the max-
imum velocity magnitude located near the tip of the impeller and the minimum near the
walls (r/T = 0.5) and near the edge of the shaft (i.e., /T = 0.05). The volume fraction
contour maps show a uniform distribution of the solids in the plane for GW, while for the
GWp, fluid the solids tend to localize in the region r/T =~ 0.270.38.

To better understand the accumulation of the particles, the velocity components in the
region where the migration occurs were analysed. The data in Fig. 3.11a show the radial
(u,), tangential (ug), and axial (u;) velocity component profiles obtained for the mixture
GWpy at ¢ = 5° and z/T = 0.8 above the upper blade of the impeller. For Re = 45 and
Wi = 25, ug exhibits a parabolic-like profile with a maximum absolute value of 1 m/s at
r/T = 0.33, which corresponds to the core of the vortex. The maximum absolute value
of ug is an order of magnitude greater than the maximum absolute value of u, and almost
four times that of u,. For the same fluid mixture a similar ug profile is obtained at Re = 33
and Wi = 18, where the maximum absolute value is 0.65 m /s and the slope of the profile
is less steep than that obtained at Re = 45 and Wi = 25.

In order to identify areas of high shear, the components of the shear rate were com-
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Figure 3.10: Horizontal plane measurements of the averaged solid volume fraction (left side) and
dimensionless velocity field (right side) at Re = 45, z/T = 0.8 and particle volumetric concentra-
tion of 1% for the fluids: (a) GW at Wi = 0 and (b) GWpg, at Wi = 25.

puted from the velocity data. These rates have a direct impact on the direction and inten-
sity of particle migration in the vessel. In Fig. 3.11b the components of the shear rate,
Yoz» v and 7, are plotted against the radial coordinate for the same location z/7 = 0.8.

The three components are calculated as:

_ dug  1du;
'}/Gz—a_z‘f’;% (3.12)
, du, du,
e =52 o (3.13)
. 1du, d [ug
o= 35 a5 (1) G14

The r — 6 component of the shear rate is an order of magnitude greater than the other
two. The maximum absolute value of ¥,.9 occurs outside the vortex region, where 7,¢
exhibits a nearly linear increase, while at the center of the vortex it reaches its minimum
absolute value. This is in agreement with the literature on stirred tank reactors (Bouremel
et al., 2009), where the rate of deformation is lowest at the core of the vortex and highest
around the edges of the vortex. At Re = 33 and Wi = 18, a similar ¥, profile is obtained,
where the absolute values of },¢ are smaller compared to those at Re = 45 and Wi = 25.
We also compared the profiles of 7,9 obtained for the fluid mixtures GW (Wi = 0) and
GWpy (Wi =25) at Re =45 and z/T = 0.8, both shown in Fig. 3.11c. Both profiles show
a similar trend where the shear rate has a minimum at the core of the vortex and the
absolute value increases further away.

From previous considerations, we can deduce a dynamic of the accumulation phe-
nomenon. In particular, it seems that the particles migrate radially to the core of the vor-

tices under the combined action of the first normal stress difference N1 (i.e., the fluid elas-
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Figure 3.11: (a) Comparison of the radial profiles of the radial (u,), tangential (ug), and axial (u;)
velocity profiles; (b) 7.9, 7, and ¥, obtained from vertical and horizontal plane measurements for
the fluid mixture GWp; at z/T = 0.8. (c) Comparison of the r — 6 component of the shear rate ¢,
for the fluid mixtures GW (Wi = 0) and GWg, (Wi = 25) for Re =45 at z/T = 0.8.
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ticity) and the presence of gradients of shear rate in the horizontal plane (gradients in the
component %.g). The particle migration mechanism in the current system is summarized
schematically in Fig. 3.12. As can be seen in Fig. 3.12a in a Newtonian ambient fluid,
at different times, a single particle follows the same fluid pathline. This behaviour is ex-
pected, because the role of inertia on the trajectory of the particle is negligible. Fig. 3.12b
shows that in a viscoelastic ambient fluid a single particle moves from one vortical path-
line to another owing to the imbalance of radial forces acting on it. At the core of the
vortex the shear rate has a minimum (see Fig. 3.11c) while further away the absolute
value of the shear rate increases. Therefore, one side of the solid (in the radial direction),
located far from the core of the vortex, faces a region of high shear rate while the other
side faces a region of low shear rate. The imbalance of the shear rate causes a difference
in the normal force (i.e., a force along in the r direction) across the particle which pushes
it towards the center of the vortex. Once in the middle of the vortex the particle can only
move in the tangential direction.

The impact of the viscoelasticity on the time required for complete accumulation of
solids in the r — z plane was also studied. Specifically, the dimensionless characteristic
migration time #,N was evaluated for mixtures GWg; and GWp; at different values of Wi.
The migration time represents the duration from the first solid draw-down in the vessel to
the complete accumulation of the solid phase. In practise, the value of #;,N was calculated
as the time at which the Shannon entropy reaches 99% of its steady state value. The

results are presented in Fig.3.13. For the dilute polymeric solutions considered here, the
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Figure 3.12: Schematic diagram of the vortex above the right top impeller and the dynamic of a
single particle for (a) Newtonian and (b) purely viscoelastic ambient fluid. Particles located far
from the center of the vortices experience a force that pushes always towards the center of the
vortex. The force is directed radially and arises from the presence of gradients of J,¢.

elastic relaxation time A is a constant and the Weissenberg number (Wi = A,N) is varied
by increasing the impeller speed, N. As expected, the dimensionless migration time (z;N)
for both fluid mixtures decreased with increasing Wi, indicating faster solids migration
in the vessel. Additionally, higher values of Wi were found to correspond to increased
dominant shear rate (%) as depicted in Fig.3.11c, leading to faster cross-flow migration

due to the rise in N1.
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It can also be seen that the dimensionless migration time #;N for GWp, is almost twice
that for GWp,, indicating that doubling the polymer concentration (which increases Ny),
while keeping Wi constant, reduces ;N by twofold. For similar Re, the solids migration
times due to viscoelasticity shown in Fig. 3.13 are at least three orders of magnitude lower
than those due to inertia measured by Wang et al. (2014). Finally, it is worth pointing out
that the characteristic migration time reported here is not equivalent to the migration time
reported in the literature by D’Avino et al. (2012) for a single particle, and therefore

comparisons between the two times must be made with care.
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Figure 3.13: Variation of the dimensionless characteristic solids migration time, #,N, with increas-
ing Wi with a solid volume fraction of 1% for the fluids GWp1 and GWp2.

3.4 Conclusions

This chapter presents an experimental investigation on the viscoelasticity-induced migra-
tion of solid particles in a stirred vessel. Particle Image Velocimetry (PIV) and Particle
Tracking Velocimetry (PTV) techniques were used to measure the velocity fields of the
liquid and solid phases and the evolution of solid concentration in a tank equipped with a
dual-blade impeller.

Results showed that in a Newtonian fluid, solid particles quickly relax to the local
fluid velocity and disperse uniformly over time. However, in a non-Newtonian, shear-
thinning fluid, an accumulation of solid particles at the core of the vortices was observed.
To isolate the effect of fluid elasticity, the experiments were repeated with two purely vis-

coelastic (Boger) fluids. Results indicated that solid particles also accumulated at the core
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of vortices in these fluids, with the accumulation time decreasing with increasing Weis-
senberg number (Wi) and polymer concentration. Additionally, vortex size and circula-
tion intensity were found to decrease with increasing Wi. The observed particle migration
phenomenon can be useful for separating solid particles from high-viscosity liquids, par-
ticularly when the densities of the particles and the ambient liquid are similar, making
gravity settling ineffective. Furthermore, the migration time of solid particles induced by
viscoelasticity was found to be at least three orders of magnitude lower than that observed
for inertia-induced migration in previous studies.

Having encountered the viscoelasticity-induced migration in stirred vessel, the next
chapter will be devoted to further understanding the nature of the phenomenon, the forces
involved and their dependence on the fluid dynamics and rheological properties. While
the experimental results reported here have established the correlation between viscoelas-
ticity and migration, they did not provide reliable estimations of the migration time and/or
velocity. This is because, in all the experiments, the migration has consistently been over-
lapped with the initial dispersion of the solids, making it impossible to obtain accurate
measurements of the characteristic migration time. Furthermore, the estimation of fluid
relaxation time via Zimm’s theory did not take into account the degradation of polymers
occurring in the vessel during prolonged stirring, leading to an overestimation of the relax-
ation time and subsequently of Wi. The upcoming chapter will address these challenges
and offer a more nuanced understanding of the viscoelasticity-induced migration in stirred

vessels.



Chapter 4

Scaling law for the
viscoelasticity-induced particle

migration in stirred vessels

Following the results reported in Chapter 3, we investigate the viscoelasticity-induced
migration of solid particles immersed in the three-dimensional flow field created by the
rotation of a Rushton turbine. At the same time, we propose a scaling law for predicting
the characteristic particle migration time as a function of the Weissenberg number. Our
choice of experimental setup and mixing system was aimed at building up the level of
complexity from the simple, two-dimensional Poiseuille or Couette-flow usually encoun-
tered in the literature. In particular, we researched a three-dimensional flow field that
could be easily studied in terms of its main directions of strain. The objective was to in-
troduce a scaling law and to test the usefulness of simple heuristic arguments in capturing
the viscoelastic-induced particle migration phenomenon even in these conditions.

Particle image velocimetry is adopted to reconstruct the three-dimensional velocity
and deformation rate fields generated by the rotation of the Rushton turbine in both New-
tonian and viscoelastic fluids; concurrently, particle tracking is used to measure the evo-
lution of the particle distribution in the tank. The experimental campaign shows that
the deformation rate field is essentially bi-dimensional and confined to the r — 6 plane.
Accordingly, the particles migrate only in the radial direction driven by the presence of
gradients of shear rate on the » — 0 plane. Finally, the scaling law is validated against ex-
perimental data obtained at different Weissenberg numbers, impeller diameters and fluid
compositions. The results show good agreement between the scaling law and the experi-
mental data.

Fart of this chapter has been published in:
Meridiano G., Weheliye, H. W., Mazzei, L., Angeli, P. (2022). Scaling law for the

viscoelasticity-induced particle migration in stirred vessels, Journal of Non-Newtonian

86
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Fluid Mechanics, 309, 104918.

4.1 Introduction

The systematic study of the dynamics of particles in viscoelastic fluids started over half
a century ago (Leal, 1979; Brunn, 1976b) with earlier works mainly reporting experi-
mental observations, in simple flow cells, of complex behaviours, such as migration and
accumulation of the particles. The experimental results were also qualitatively supported
by theoretical predictions derived under the conditions of slow and slowly varying flows,
and of small particle sizes (Leal, 1979; Brunn, 1976b; Ho and Leal, 1976; Brunn, 1976a).
The development of more accurate experimental techniques, like particle velocimetry,
allowed the detailed analysis of the dynamics of the particles in a wide range of flow con-
ditions. Accurate simulations were also made feasible by the development of numerical
algorithms capable of treating non-Newtonian fluids. As a result, several aspects of the
particle motion in viscoelastic media have since been understood, especially for simple
particle shapes, such as spheres. An accurate work reviewing a large part of the liter-
ature on this subject is that by D’Avino and Maffettone (2015). The main conclusion
of the aforementioned studies is that migration is observed when there is an imbalance
of viscoelastic normal stresses around the particles. This imbalance can be caused by
the non-uniformity of the flow field in which the particles are immersed and/or by the
particle-wall interactions. If present, the shear-thinning of the ambient fluid influences
both the direction and velocity of the migration process. The effect of secondary flows
has also been investigated, mainly by considering the migration of a sphere immersed
in the pressure-driven channel flow of a viscoelastic fluid (Li et al., 2015; Villone et al.,
2013). According to these studies, the secondary flow drastically changes the migration
dynamics by affecting velocity, trajectory and equilibrium position of the particles.

In the previous chapter, a combination of particle image velocimetry (PIV) and parti-
cle tracking velocimetry (PTV) was used to investigate the different behaviours of solid
particles stirred in Newtonian and viscoelastic ambient fluids. The solid phase consisted
of monodisperse PMMA particles with a diameter of 1.5 mm, while the mixing system
was an unbaffled cylindrical vessel stirred by a dual-blade paddle impeller. It was found
that in a viscoelastic fluid the particles tended to accumulate at the centre of the vor-
tices created by the impeller. The speed of this process was found to be related to the
viscoelasticity of the flow; in particular, the dimensionless time scale of the migration
process (equal to the time scale of the process multiplied by the impeller rotational speed)
decreased exponentially with the Weissenberg number (equal to the relaxation time of
the ambient fluid multiplied by the impeller rotational speed). Although those results
constituted the first report on the viscoelasticity-induced particle migration in complex

three-dimensional flows in stirred vessels, they only presented a qualitative relation be-
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tween the migration speed and the viscoelasticity of the flow. The difficulty in obtaining
accurate values for the migration time was the limiting factor for any quantitative analysis.
This difficulty arose because the initial dispersion process of the particles in the ambient
fluid overlapped with the beginning of the particle migration process.

In this chapter, we report on experiments that overcome this limitation and allow esti-
mating the particle migration time accurately. Additionally, an heuristic argument similar
to that of D’Avino and Maffettone (2015) is introduced to derive, via scaling, a novel
expression for the particle migration velocity in stirred vessels. To verify the applicability
of this expression, two sets of planar PIV measurements were employed to reconstruct
the three-dimensional flow field created in an unbaffled cylindrical vessel by the rotation
of a Rushton turbine, in both Newtonian and viscoelastic fluids. The Rushton turbine was
chosen as a midpoint between the simple flows usually encountered in the literature for
viscoelasticity-induced particle migration and the complex flow fields generated in indus-
trial mixers. In particular, this turbine generates a well-characterized, three-dimensional
flow field that can be easily studied in terms of its main directions of strain. To isolate the
effect of normal stresses from other non-Newtonian properties (i.e. shear-thinning), the
study is limited to viscoelastic fluids with constant viscosity (Boger fluids). The condi-
tions of the migration tests were chosen to minimize the effect of both gravity and inertial
forces on the particle dynamics.

The characteristic time of particle migration predicted by the scaling equation was
compared with the experimental data obtained in a wide range of fluid elasticity, impeller
diameter and impeller speed. The experimental particle migration velocity was accurately
measured via particle tracking (PT) experiments that allowed the estimation of the degree

of dispersion of the solid phase and its change in time.

4.2 Materials and methods

4.2.1 Experimental setup

The experiments were conducted in a flat-bottomed cylindrical vessel with a diameter
T =50 mm. The fluid was stirred with two different standard Rushton turbines with a di-
ameter D of 17 and 35 mm. The impeller clearance from the bottom and the liquid height
were 25 and 50 mm, respectively. To minimize the optical distortion arising from the
curvature of the tank, we enclosed the vessel in a square trough filled with glycerol. The
vessel, the trough and the 17 mm impeller were made of transparent acrylic material to
maximize the volume of fluid accessible for measurements, while the 35 mm impeller was
made of stainless steel. The solid phase consisted of acrylic spherical particles (density
of 1.2 g cm™3) with a diameter dp of 500 um coated in Rhodamine B (Cospheric). The
difference between the refractive index of pure glycerol (1.475) and the acrylic (1.495)
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was small enough to discount the effect of the light refraction on the images. Both the
PIV and PT experiments were conducted using the same optical setup consisting of a con-
tinuous diode laser, a mirror and a high-speed camera. The light was generated using a
Laserglow5 continuous laser (532 nm, 3000 mW) equipped with a spherical and a cylin-
drical lens mounted in series to create a 1 mm laser sheet. A Phantom high-speed camera
was equipped with a 105 mm Nikon lens resulting in a spatial resolution of 50 um/px.
Finally, an orange filter was connected to the camera lens to eliminate any reflections of
the laser light.

4.2.2 Rheology

Three ambient fluids were used. A Newtonian reference fluid (GW), made of a mixture
of 96% glycerol and 4% water, and two dilute polymer solutions with nearly constant
viscosity (Boger fluids). The polymer solutions were obtained by dissolving 100 ppm of
polyacrylamide, PAA, (M,, = 5 — 6 x 10° g/mol) in a mixture of glycerol, water and zinc
chloride. Compositions and properties of the ambient fluids are reported in Table 4.1,

while details about the preparation procedure can be found in chapter 3.

Table 4.1: Composition and physical properties of the ambient fluids measured at 23°C.

Acronym Glycerol ZnCl, H,0 P Mo Np A
[wt%] [Wt%] [wt%] [kg/ m3] [Pa - s] [Pa - s] [ms]
GW 96 - 4 1236 0.51 - -
GWioo 98 - 2 1237 0.58 0.017 21
Rl 16 45 39 1640 0.75 0.010 3.5

In Table 4.1, 1, and ng are the polymer contribution to the viscosity and the total vis-
cosity of the mixture, while A denotes the fluid relaxation time (see Chapter 2). To char-
acterize the viscoelastic behaviour of the polymer solutions, two tests were conducted:
small-amplitude oscillatory shear (SAOS) and steady-state simple shear tests. Both were
conducted on an Anton Paar MCR302 rotational rheometer at a temperature ranging from
0 to 70°C for the shear tests and from 10 to 50°C for the SAOS tests. The larger tem-
perature range required for the simple shear tests is motivated by the very small values
of normal forces exhibited by the dilute polymer suspensions in the range of shear rate
normally accessible by the rheometer (0.01-100 s~!). All the data obtained at different
temperatures were shifted to the reference temperature of 23°C through the method of
reduced variables whose detail can be found in section 2.2.1. This technique enabled the
extension of the interval of shear rates or angular frequencies accessible for the measure-
ments. The rheometer was equipped with a 50 mm cone and plate (CP) for the steady-state

simple shear tests and a 50 mm parallel plate (PP) measuring system for the SAOS tests.
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The PP system allowed the use of the thermal expansion compensation function of the
instrument, which automatically adjusts the gap between the plates when the temperature
is changed. This function allowed conducting the sequence of shear tests at different tem-
perature on a single fluid sample. The non-uniformity of the shear-rate profile inside the
gap of the PP system required the use of the Rabinowitsch-Mooney correction, which was
automatically performed by the software of the rheometer.

Polymer solutions are susceptible to mechanical degradation when subject to intense
shear for a prolonged time. The degradation is caused by the breaking of the long molec-
ular chains of the suspended polymer and results in a drastic change of the rheological
properties of the fluid (Mackenzie and Jemmett, 1971). To estimate the magnitude of this
degradation, each fluid was subjected to intense stirring at 1500 rpm for 1.5 hours into
our mixing system, while the rheological properties were measured at regular intervals
of 30 min. To estimate the relaxation times, the experimental data were fitted with the
multimode Giesekus constitutive equation, with a number of modes n between 1 and 3.

In particular, the stress of the fluid, 7, is defined as:

n
T=Ts+ ) Tpi 4.1)
=1
v Ak .
Tok+M Tpi +O‘kﬂ(1’-p,k “Tpk) = Mpi¥ (4.2)
P

where the subscript k indicates the parameters of the k —th mode of the constitutive equa-
tion. For brevity, the exact expressions of the material functions G'(®), G”(®) and ¥ ()
for the Giesekus model are not reported here but can be found in Bird et al. (1987a, ch. 7,
p. 368). The multimode Giesekus model was preferred to the more common multimode
Maxwell model because it was able to successfully predict both the linear viscoelastic
properties obtained by the SAOS tests and the non-linear shear-thinning of the first nor-
mal stress coefficient obtained in the steady-state simple shear tests.

The results of both the SAOS and the simple shear experiments for the two viscoelas-
tic fluids are reported in Fig. 4.1. A high degree of polymer degradation can be detected
after 30 min of stirring. This is clearly shown by the sizable reduction in storage modu-
lus for both GWjgg (Fig.4.1a) and Rljoy (Fig.4.1b). The overlapping between the curves
obtained after 30 min and 1.5 hours indicates that most of the mechanical breaking of
the polymer chains happens in the first half hour of stirring. After this time, no further
degradation is evident. It is interesting to notice that the value of the loss modulus does
not change considerably due to the polymer degradation; this is because the impact of the
polymer degradation on the value of the total viscosity of the solution is relatively small.
A corresponding reduction of the first normal stress coefficient can also be observed for
both fluids (Fig.4.1c) and 4.1d). In a similar way, it appears that most of the reduction

of the normal force is observed after 30 min of stirring although some degradation is still
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Figure 4.1: SAOS experimental data and model fitting at three different stirring times for (a)
GWoo and (b) Rl pp: (») G” at 0 min; (o) G” at 30 min; (0) G” at 90 min; (O) G’ at 0 min; (@)
G’ at 30 min; () G’ at 90 min. Simple shear experimental data and model fitting at three different
stirring times for (¢) GWjoo and (d) Rljoo: (&) W1 at O min; (a) ¥ at 30 min; (¢) ¥, at 90 min.

observed after 90 min. Finally, the close fit between the data predicted by the model and
the experimental results proves that the polymer solution can be successfully modelled
with the Giesekus constitutive equation.

As we will show in section 4.3.2, the migration of the solid phase can last up to 40
minutes. Considering the previous results, we conclude that the polymer degradation
and the relative change of the fluid relaxation time would seriously hinder the estimation
of the Weissenberg number (Wi) of the flow. To account for this phenomenon, prior to
any migration test, the polymer solution was loaded in the mixing system and stirred
for 90 min at 1500 rpm. At the end of this phase, the breaking of the polymer chains
was assumed to be complete. Finally, all the rheological properties considered depend
strongly on the fluid temperature. To assess the extent of the temperature change induced
by the mechanical stirring, the temperature of the fluid was measured at the beginning and
at the end of each test. For all the conditions considered, the temperature difference was

found to be below 2 °C. The final values of the viscosity and relaxation time were then
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considered constant throughout the experiments.

4.2.3 Particle image velocimetry

The reconstruction of the 3D velocity field was carried out for the Newtonian reference
fluid and the GW viscoelastic fluid. It was assumed that the effect of the fluid viscoelas-
ticity on the fluid dynamics inside the tank only depends on the polymer concentration via
the value of Wi and is not affected by the composition of the Newtonian solvent in which
the polymer is dissolved. In other words, when stirring either GWjqg or Rl at a spe-
cific value of Wi, the resulting flow fields are considered hydrodynamically equivalent.
However, it should be noted that these two fluids have different densities and relaxation
times, so equivalent Wi values do not necessarily imply equivalent Re. In the context of
this section, the equivalence of the two systems refers to the fact that the influence of vis-
coelasticity on the flow field, such as changes in vortex shape/intensity or shifts in local
extrema of velocity, is solely dependent on Wi.For this reason, the fluid Rljop was not
subjected to the PIV tests.

The two mixtures were stirred with the 35 mm Rushton turbine at two impeller speeds,
N = 333 and 666 rpm; this corresponds to Wi = 1.15 and 2.3 for the fluid GW(g at 333
and 666 rpm, respectively. 20 um fluorescent polymeric particles were employed as trac-
ers for the PIV measurements. The tracer particles were made of melamine resin and
coated with Rhodamine B, which at room temperature has a high fluorescent intensity.
For the experimental conditions investigated, the tracer relaxation time was negligible
compared to the convection time (St = p{gg}g’

and diameter, respectively). Concurrently, the terminal velocity and the slip velocity re-

<< 1, where p; and d; are the tracer density

sulting from inertial effects are several orders of magnitude smaller that the fluid velocity,
guaranteeing that the tracer rapidly relaxes to the local value of the fluid velocity.

Schematic diagrams of the PIV setups for the horizontal and vertical plane measure-
ments are provided in Fig. 4.2a and 4.2b, respectively. In the remainder of the paper, a
cylindrical coordinate system (r, 0, and z) with origin in the center of the base of the
vessel will be used. To reconstruct the velocity field, two sets of 2D PIV tests were con-
ducted in the horizontal and vertical directions. Several works in the literature report on
the flow field produced by a Rushton turbine in conditions similar to those investigated in
this work (Mavros et al., 1998; Liné et al., 2013; Rice et al., 2006; Yoon et al., 2005; Hill
et al., 2000). Some of these works use stereo-PIV to measure the entire 3D velocity field
in the vessel. Although this technique has been extensively validated, in the present work
it was found that the use of 2D PIV measurements ensured a higher spatial resolution for
the measured vector field.

The horizontal PIV measurements were carried out at intervals of Az/T = 0.02 in
the height interval z/7 = 0 — 0.48 (see Fig. 4.3a). At the beginning of each test, the
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Figure 4.2: PIV setups for the horizontal measurements (a) and vertical measurements (b).

position of the laser plane was adjusted at the desired z level. The image capture was then
synchronized with the impeller position using a hall switch sensor. This allowed capturing
images at a fixed impeller phase angle 8 (i.e. the azimuthal angle or rotation of the
impeller around the vertical axis z) equal to 0°. A total of 100 images pairs (corresponding
to 100 impeller rotations) were captured for each horizontal plane; on each plane, the
velocity field was then obtained by averaging the 100 instantaneous vector fields. The
vertical velocity field was obtained through time-resolved measurements. In this case, the
laser plane was kept in the same vertical position throughout the tests (see Fig. 4.3b) and
the image acquisition was not synchronized with the impeller phase angle. Starting from
an angle 6 =0, a total of 3000 images were captured with an acquisition rate f of 1000 Hz
and 2000 Hz for N = 333 rpm and 666 rpm, respectively. This allowed obtaining images

with a resolution AG = %% = 2°. The displacement of the tracer between the images
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at 6; and 6;,1, with i = 1,...,90 was used to calculate the velocity field at the angle

%. For each phase angle, a total of 33 velocity fields were obtained and subsequently

averaged. The independence of the PIV results from the sample size is shown in Fig. A.1

in Appendix B.

z/T 0.5} 1 0.5 z/T

N

—05 0 0.5 —05 0 0.5
r/T r/T

(a) (b)

Figure 4.3: Schematic representation of the locations of horizontal measurements (a) and vertical
measurements (b).

Each velocity field was calculated from the tracer displacements between two con-
secutive images with the freeware package JPIV, using a 50% window overlap for a final
interrogation window with resolution of 16x 16 pixels. An amplitude filter was applied
to each cross-correlation box to eliminate the vectors that substantially deviated from the
median value. Note that both the u, and u, components of the fluid velocity along the
0 direction were directly available from the vertical measures, while the horizontal tests
provided u, and ug along the z direction. In order to obtain the full 3D velocity field in
the stirred tank, we first azimuthally stacked the vertical measurements. Subsequently,
the horizontal measurements were stacked along the z direction. The exact placement of
the horizontal velocity vectors was decided by comparing the values of the u, components

obtained from both the horizontal and the vertical measurements.

4.2.4 Particle tracking

The particle tracking experiments were performed with the optical system in the config-
uration shown in Fig. 4.2b. The objective of these tests was to determine the particle
migration time as a function of the Weissenberg number defined as the product of the
fluid relaxation time and the characteristic scale value of the shear rate (Wi = A7},). The

scale value of the shear rate was chosen as the average shear rate in the fluid surrounding
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the impeller. This value was calculated according to Metzner and Otto (1957) as follows:
Ye = kN (4.3)

where k; is the Metzner and Otto constant that mainly depends on the shape of the
impeller. Although Eq. 4.3 was originally derived for inelastic shear-thinning fluids,
Seyssiecq et al. (2003) derived the values of k; for a Rushton turbine for a wide array
of viscoelastic fluids. Their work reports a value of ks ranging from 9 to 12. In this work
the intention is to capture the order of magnitude of the migration velocity, hence it was
assumed a value of k; = 10. Finally, the migration time is defined as the time at which no
significant change in the distribution of the particles can be detected. Experiments were
conducted with both the 17 mm and the 35 mm turbines at a rotation speed N ranging
from 200 to 1200 rpm for both the Newtonian and the two viscoelastic fluids. This re-
sulted in Wi values between 0.05 and 2 and Re = %002 values between 5 and 15. At the
beginning of each test, 1.5 g of acrylic spheres (equivalent to a volume fraction of 1%)
were placed on the liquid surface. The system was then stirred at 2000 rpm for 5 min until
a homogeneous particle distribution was achieved. At this point, the impeller speed was

adjusted to the desired value and the recording was started.

(b)
Figure 4.4: (a) raw PT image; (b) image with the detected solids for Rl oy at Wi = 1.33.

The PT tests were performed with the impeller phase angle locked at 0°. The images
were acquired with a frequency of 0.6 Hz for a time ranging from 15 min to 2 hours
depending on the impeller velocity and the migration speed. Fig. 4.4a shows a typical
raw image obtained from a PT experiment for the fluid Rl oo at Wi = 1.33. The bright
circles correspond to the suspended solid particles. Based on the intensity histogram of
the raw image, we used a threshold value to binarise the images and isolate the solid

spheres. To detect the edges of the solid particles, a circular Hough transform algorithm


kjqz110
Highlight


Chapter 4 Materials and methods 96

(CHT) was employed. The CTH algorithm provided the position and the diameter of all
the solid particles crossing the 1 mm laser plane. In order to account only for the particles
that fully cross the laser plane, all the spheres with a diameter lower that 0.5 mm were
discarded. The image shown in Fig. 4.4b, clearly displaying the position of the particles,
was then used for the analysis of the migration phenomenon. The degree of dispersion of

the solid phase was estimated through the use of the Shannon entropy function (S):

M 2
S=Y.Y pi()np;(i) (4.4)

i=1j=1

where M is the number of sub-regions in which the image is divided, and p;(i) is the ratio
between the number of pixels occupied by the j —th phase and the total number of pixels
in the i —th sub-region. A more detailed description of this function and its calculation

are reported in Chapter 3.

4.2.5 Strain rate tensor

The scaling law that we will propose in Section 4.3.3 is derived for a spherical particle
immersed in a bi-dimensional, rotating shear flow. However, usually the flow field cre-
ated by a rotating turbine is complex and three-dimensional. In order to assess the extent
to which the flow field created by a Rushton turbine can be conceptually reduced to a
bidimensional rotating shear flow on the r — 6 plane, the rate of strain (or deformation)
tensor field was analysed. The velocity gradient (Vu) can be decomposed into a symmet-
ric part ¥, called strain rate tensor, and an antisymmetric part Q, referred to as rotation
rate tensor. The physical components of the strain and rotation rate tensors with respect

to a cylindrical coordinate system are reported in the following equations:

% brd (e +15) 4|5+ %]
- [ibg e e e s
] sl %
. 0 W, —0g
Q:E ~—0, 0 o (4.6)

where the vorticity o is defined as:

1du, Oduy du, Jdu, 10 1du,
= -————-— —_—— - —_— 4.7
(r d0 Iz )er+<8z ar ot r&r(me) rae )< .7)
where e,, eg and e, are (mutually normal) unit vectors in the r, 8 and z directions, re-

spectively. Following the approach proposed by Bouremel et al. (2009), the principal
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components of the strain rate tensor (Eq. 4.8) were calculate in order to analyse the strain

dynamics in different regions of the vessel.

0 0 0 ®; —0;
Vu=10 85, 0|+ > -0; 0 o (4.8)
0 0 8% w;, —o 0

with S7,, S5, and S3; the eigenvalues of ¥ and @], @; and w; the components of the
vorticity vector along the local principal axes of the strain rate tensor. The local principal
axes are defined by the eigenvectors associated with the eigenvalues S7,, S5, and S3;.
The change of vector basis allows identifying the local velocity of deformation in the
directions of the principal axes (i.e. velocities of stretching or compression). In particular,
if §7; > 0 (no summation over the index i is implied) the fluid element is stretched in the i
direction, whereas if Sj; < 0, it is compressed. The values of the three components of the
strain rate tensor can also be used to assess the intensity of the deformation in the three
principal directions relative to each other. In particular, if one of the three components
is small compared to the other two, the deformation field can be essentially regarded as

bi-dimensional.

4.3 Results

4.3.1 Velocity field and flow structure

An overview of the three components of the velocity field for the fluid GW;g at Re = 4.3
and Wi = 0.44 is reported in Fig. 4.5. All the velocities are normalised with the impeller
tip speed TDN. The fluid is stirred with the 37 mm Rushton turbine. The 37 mm impeller
was made of stainless steel; therefore, only the lower part of the tank was accessible to
measurements. To provide sufficient information about the flow field, we divided both
plots in six sectors, each reporting the component of the velocity over an angle of 60°
for six axial positions z/T (i.e. 0.39, 0.41, 0.43, 0.44, 0.46 and 0.48) with the axial
coordinate decreasing counter-clockwise and impeller rotating in the clockwise direction.
The overall flow can be described as the superposition of a rotational flow around the z
axis and of a rotational flow in the r — z plane. In this plane, the fluid moves in the positive
r direction with the maximum radial velocity in correspondence of the edge of the palettes
of the impeller. The fluid then slows down as it approaches the walls of the vessel. On
reaching the wall, the radial component of the fluid velocity rapidly reduces to zero, while
the axial component increases. The stream then divides into two equal parts directed
above and below the axial position of the impeller and circulates back returning to the
impeller region. Unsurprisingly, the value of the angular component of the velocity is an

order of magnitude larger than the other two; hence, the dominating motion is represented
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by the rotation around the z axis. It is known that unbaffled stirred tanks usually present a
central vortex at the liquid-air interface. Given the small value of the Reynolds number, at
all the conditions examined the central vortex remains small and confined to a small area
around the shaft of the stirrer.

As it will be shown in Section 4.3.2, the migration of the particles is caused by the
presence of an elastic force acting in the radial direction. The intensity of this force is not
uniform along the z axis and it reaches its maximum value in the vicinity of the impeller.
This means that the secondary flow described above contributes to the dynamics of the
migration insofar as it continuously circulates the solids in the r — z plane and leads the
particles to move on helicoidal pathlines around the z axis.

Fig. 4.6a and 4.6b show the contour plot of the normalised angular component of the
vorticity for both the Newtonian fluid and the viscoelastic fluid GWjgg at Re = 4.3 and
Wi =0 and 0.44, respectively. From Fig. 4.6a it can be seen that in the Newtonian case
the rotation of the turbine creates the characteristic toroidal vortex flow-structure, with the
maximum value of the angular vorticity located at the tip of the impeller and at z/T = 0.48
and r/T = 0.35. The vorticity then decreases when moving further away from the impeller
both in the radial and in the axial directions. Note that the vortex created by the turbine
affects the volume of fluid from r/T = 0.2 to r/T = 0.40 and only gradually decreases
in intensity when moving further away along the z direction. As Fig. 4.6b shows, the
viscoelasticity of the fluid substantially changes the shape of the vortical structures. In
particular, the toroidal vortex present in the Newtonian case loses its continuity and breaks
into smaller trailing vortices that depart from the tip of the turbine. The intensity of
the vorticity is also reduced, the maximum value of the normalized angular component
reducing from 2.2 for the Newtonian case to 1.6 for the viscoelastic case. It can also be
observed that the centre of the vortex shifts in both the radial and axial directions and is
now located at z/T = 0.44 and r/T = 0.3. The difference between the two flow fields can
be clearly observed in Fig. 4.6¢c and 4.6d, where the three-dimensional structure of the
vortex is shown by plotting iso-vorticity surfaces at wg /TN = 1.5.

The contour plots of the principal components of the strain rate tensor S7,;, S5, and
S35, for the fluid GWjgo at Wi = 0.44 are shown in Fig. 4.7a - 4.7c for six values of z/T.
The strain rate ST, is positive over the entire plane of measure, while S5, is everywhere
negative. This indicates that the fluid is always stretched along the principal direction
associated with S}, and compressed along the direction associated with S3,. On the other
hand, S35 changes sign from positive to negative, indicating the presence of both areas of
stretching and compression. The strain rates S}, and S3, are always dominant, as their
dimensionless absolute values reach a peak of 1.5, while for S35 it is —0.4 < S3, /TN <
0.4. All three strain rates assume local absolute maxima close to the impeller blades for
every z/T considered. Although not reported in Fig. 4.7, it is important to notice that

the eigenvectors associated to S}, and S, are everywhere parallel to the » — 6 plane and
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Figure 4.5: Dimensionless radial (a), axial (b) and angular (c) components of the velocity field
for the fluid GWjg at Re = 4.3 and Wi = 0.44.
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Figure 4.6: Vorticity plot and vortex structure for GW (a) and (c) and GW) (b) and (d) at Re = 4.3
and Wi = 0.44. In both cases, the impeller rotates in the clockwise direction.

orthogonal to each other, while the one associated with S35 is everywhere parallel to the
z direction. Apart from a small area around the tip of the impeller blades, the strain rate
S35 is everywhere close to zero. This indicates that the local deformation of the flow is
essentially bi-dimensional and controlled by two strain rates of stretch and compression
mutually orthogonal to each other and parallel to the r — 6 plane.

As reported by D’ Avino and Maffettone (2015), one of the necessary conditions for
viscoelastic particle migration is the presence of shear rate gradients. In the nearly bi-
dimensional rotating shear flow described so far, the only relevant component of the rate-
of-strain tensor is that associated with the coordinates r and 6. Fig. 4.7d reports the
normalised, absolute value of this component. It is possible to observe that for every
value of z/T, the absolute value of 9 shows a non-monotonic behaviour when moving
in the positive r direction, with the presence of two areas of maximum and minimum
shear. For example, at z/T = 0.48, },¢ initially decreases from the value of 1 at r/T =0
to the value of 0 at r/T = 0.3, it then increases until reaching its maximum value of 1.5

at r/T = 0.41, and then sharply decreases until reaching a value of 0 next to the wall.
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Figure 4.7: Normalised principal strains (a,b,c) and absolute value of the r — 8 component of the
strain rate tensor (d) for GWjgg at Re = 4.3 and Wi = 0.44. The impeller rotates in the clockwise
direction.

Moving along the axial direction, the maximum absolute value of ¥,.¢ decreases from 1.5
atz/T =0.48 to 1 at z/T = 0.39. In addition, the radial position of the maximum of J,¢
moves to increasing value of r/T while the size of the area of low shear rates widens. The
variation of ¥,¢ is responsible for the migration of the particles in the r — 6 plane toward

lower absolute values of shear rates.

4.3.2 Migration experiments

A second set of experiments was carried out to track the distribution of the solid particles
in the tank and its evolution in time. At the beginning of each test, the solid particles were
placed on top of the liquid surface. The liquid was then stirred at an impeller speed of 2000
rpm for 5 min. After 3 min of stirring at 2000 rpm, the particles were uniformly dispersed
throughout the flow. If stirring continues, the Newtonian and viscoelastic systems show
two radically different behaviours.

Fig. 4.8a compares the average solid volume fraction ((C)) and the normalised angu-
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Figure 4.8: Vorticity contour plot and particles concentration for GW (a) and Rl (o (b) at Re = 10
and Wi = 0 and 0.35, respectively.

lar vorticity contour plots, after 90 min of stirring, for the fluids GW and Rlog at Re = 10
and Wi = 0 and 0.35, respectively. For the Newtonian case, no significant change in the
particle distribution is observed. The solids remain uniformly distributed up to 90 min
after the stirring is initiated. For the viscoelastic case, on the other hand, Fig. 4.8b shows
an accumulation of the solid phase at the centre of the vortex created by the rotation of
the impeller. The migration velocity was estimated by calculating the degree of disorder
of the liquid-solid system represented by the Shannon entropy index (S*). Fig. 4.9a and
4.9b show the evolution of the Shannon entropy with time for the Newtonian fluid, GW,
and for the viscoelastic fluid, Rl (g, at Re = 10 and Wi = 0 and 0.35, respectively. In these
graphs, the time t = 0 corresponds to the moment at which the impeller rotational velocity

is reduced from 2000 rpm to the desired final value. At the conditions of the experiments,

_ psdy
- 18T]0

of the particles relax rapidly to their dynamic equilibrium values. If the particles have the
same density as the ambient fluid (which is the case for the fluids GW and GWjq), this

the particles Stokes number (St N > was much less than unity; thus, the velocities

equilibrium value is equal to the local velocity of the fluid. Although the density of the

fluid RI;(o is higher than the density of the solids, both the terminal velocity of the spheres
(V _ 8dp(ps—py)
1= 18T]Q

the fluid velocity (ﬂv—]fv ~ 107> while e~ 10_3). We can then assume that in both flu-

) and the slip velocity induced by inertia are still negligible compared to

ids (GW and Rl ) the particles rapidly relax to the local equilibrium and that when this
happens, the effect of gravity and inertia are negligible. At this stage, the particles are uni-
formly dispersed into the flow and no migration is evident. To facilitate the comparison,
the value of §* was normalised by dividing it by the maximum value reached during the
mixing. In both cases, $* assumes its maximum value at the beginning of the experiment.
For the Newtonian case, there is no appreciable change of S* throughout the duration of

the test (that is, the particles are uniformly dispersed in the liquid and remain that way);
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S* /Simax remains almost constant at a value of 1 with fluctuation of &+ 3%. Contrarily, the
Shannon entropy for the viscoelastic fluid reduces sharply from the initial value of 1 at
t = 0 to the value of 0.54 at t = 30 min. This decrease reflects the reduction of the region
of the tank occupied by the particles and can be used to estimate the time required for the
particle cross-streamline migration. In particular, the final migration time is taken to be

the time at which the Shannon entropy reaches 99% of its final value.

0 5 1‘0 1‘5 2IO 25 3‘0 3‘5 40 0 5 1‘0 1I5 26 25 SIO 3I5 40
time [min] time [min]
(a) (b)
Figure 4.9: Normalised Shannon entropy for GW (a) and Rl g9 (b) at Re = 10 and Wi = 0 and
0.35, respectively.

4.3.3 Scaling law for viscoelasticity-induced particle migration

Here, we propose a simple heuristic argument to understand the nature of particle mi-
gration in stirred vessels and identify the parameters that influence this phenomenon.
Consider a nonuniform two-dimensional shear flow, for example that created in the gap
between two concentric cylinders (Taylor-Couette flow), where the inner cylinder rotates
with an angular velocity Q while the outer cylinder is stationary.

Consider a sphere of radius a and density p; moving in the streamwise () direction
at the same velocity as the fluid (Fig. 4.10a). We can assume that the particle is neutrally
buoyant, so that its density is the same as the fluid density (ps). In the absence of forces
acting on the sphere in the direction normal to the flow (r direction), the particle would
simply move along with the fluid in a circular trajectory concentric with the two cylinders.
Experimental evidence (Ho and Leal, 1976; Karnis and Mason, 1966; D’ Avino et al.,
2012) shows that if the suspending fluid is viscoelastic, the particle moves towards the
decreasing shear rate direction, i.e. towards the outer cylinder. The migration is caused
by an imbalance of the viscoelastic normal force acting across the particle. To derive an
expression for the migration velocity v,,, we first write a balance of forces on the particle.
Divide the sphere in half using an imaginary cutting plane normal to the velocity gradient

direction. Each hemisphere is subject to a radial force arising from the fluid elasticity.
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The magnitude of this force depends on the average shear rate acting on each hemisphere.
For the first hemisphere:
F(r) ~ a*t.,(r) (4.9)

where 7,, is the rr-component of stress tensor of the fluid. For the second hemisphere, we

write:
F(r+a) ~d*t,(r+a) ~ a*[t,(r) +aD, T (r)] ~ F(r) + @ (Trre /1) (4.10)

Here, 7, is the scale of 7, and r. is the characteristic length along which the shear-rate
(and thus 7,,) changes significantly. It is assumed that a/r. << 1. Then, the total force
acting on the particle is:

Fp ~ €Ty, 4.11)

with € = a/r.. This force causes the particle to accelerate in the r-direction and is bal-

anced by the fluid drag force. Assuming that the Stokes law is valid, we can write:
Fp ~ Moau, (4.12)

where Fp is the drag force, 1o the fluid viscosity and u, the velocity scale in the radial
direction. At equilibrium, the value of u. can be obtained by equating Eq. 4.12 and

Eq. 4.11; this yields:
A€y

Mo
All the relations above are expressed in terms of the normal stress scale. This makes

(4.13)

l/lc ~

sense, insofar as the normal stress is the cause of particle migration. However, it might
be useful to eliminate 7., relating it to the shear rate scale and the fluid viscoelastic
properties. If we write the fluid stress tensor as a superposition of solvent and polymer
contributions (T = T, + T,), which is the form usually adopted for polymer solutions
(Bird et al., 1987a; Macosko, 1994), it can be proven that in a bidimensional Taylor-
Couette flow the rr-component of the stress arises only if T, # 0 with its exact expression

depending on the constitutive model chosen (Bird et al., 1987a). In general, we can write:

Trre ~ MpAT; (4.14)

where 7, is the polymer contribution to the viscosity of the solution, 19 = 1+ 1, 4 is
the relaxation time, and ¥, is the scale of the shear rate. Eq. 4.14 implies a constant value
of the first normal stress coefficient. As shown in Fig. 4.1c and 4.1d, the liquids used in
this study exhibit a shear-thinning of the first normal stress coefficient at high shear rates.
Despite this fact, Eq. 4.14 can still be used in the region of Wi numbers where the first

normal stress coefficient remains constant; i.e. Wi < 5 for Rl g9 and Wi < 7 for GWqp.
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Substituting Eq. 4.14 in Eq. 4.13, we obtain:
Mp .
e ~ ~Lare? (4.15)
Mo

Finally, we can rearrange Eq. 4.15 to derive a direct expression for the dimensionless

characteristic migration time 7. = ;<7
(4

M
N, €2Wi

te (4.16)

The scaling law described so far has been derived in the hypothesis of a sphere immersed

F(r+a) ~ F(r) + a3(t&./re)

F(I‘) ~ az‘[rr(r)

(a)

(b)

Figure 4.10: (a) Schematic of the elastic force acting on the sphere, and (b) particle path line in
the stirred vessel.

in a viscoelastic fluid subject to a nonuniform, two-dimensional rotating shear flow (like
the one present in a Taylor-Couette apparatus). In the previous section, it was shown
that the three-dimensional flow created by a Rushton turbine, in an unbaffled vessel, in
laminar regime can be visualised as the superposition of a main rotational flow around the
z axis and a secondary rotational flow in the r — z plane. It was also shown that the rate of
deformation in the z direction is negligible in comparison to the planar deformation rates
in the r — 0 plane. This means that, at least with regard to the rate-of-strain tensor, the
flow field can essentially be considered bi-dimensional. Furthermore, the variation of ¥,¢
along the radial direction (Fig. 4.7d) indicated that in the »r — 0 plane, the rotating flow is
nonuniform.

Fig. 4.10b shows a schematic representation of the trajectory of the spheres. Following

the movement of the liquid, the spheres rotate around both the z axis and in the r — z plane.
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During their motion, they are subjected to the elastic force arising from the presence of
gradients of shear rate in the r — 0 plane. These gradients are always oriented along r
and directed toward decreasing absolute values of the shear rate. The result is that the
spheres move along a spiral pathline ending at the centre of the toroidal vortex created
by the impeller. To apply Eq. 4.16 to the stirred vessel, we need to assign a value to
all the characteristic quantities involved. The characteristic shear rate - was chosen as
the average shear rate defined in Eq. 4.3 with value of ks = 10, while the characteristic

length scale of the flow was assumed equal to the impeller diameter D. The migration

0.1 0.5 1 2 3
Wi

Figure 4.11: Dimensionless characteristic migration time as function of the Wi number. Experi-
mental data (red squares) and model prediction.

time predicted by the heuristic scaling was validated against the data obtained from the
migration experiments. The results are shown in Fig. 4.11 in terms of dimensionless
characteristic migration time as a function of the Wi number. In agreement with the
scaling law, the experimental data show an inverse dependence between ¢, and Wi as
highlighted by the plotted line #. = k/Wi. Here, the constant k is used as a simple fitting
parameter as the scaling law proposed is only expected to capture the order of magnitude
of the time scale of the migration. However, it is interesting to notice that the value
of k in Fig. 4.11 is found equal to 8.55 x 10%, very close to the value of %81—2 that, in
the conditions examined, is equal to 8.89 X 10* and 3.67 x 10* for RI 09 and GWjgp,

respectively.
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4.4 Conclusions

In this chapter, a heuristic argument capable of predicting the characteristic migration
time of solid particles suspended in a viscoelastic medium in a stirred vessel has been
introduced. Planar PIV was used to reconstruct the three dimensional velocity profile
produced by a Rushton turbine in an unbaffled vessel and to assess the effect of the fluid
elasticity on the flow field. The reconstruction of the flow field was also used to assess
the applicability of the scaling law to the flow in exam. It was found that the velocity field
could be reduced to a nonuniform rotating shear flow around the z axis. Particle tracking
experiments were also conducted in order to estimate the degree of dispersion of the solid
phase and its evolution in time. In accordance with the literature, the experimental data
confirmed that in a viscoelastic fluid the solid particles migrate across the streamlines
and accumulate in areas of low shear rate. The characteristic velocity of this migration
was estimated by calculating the degree of dispersion of the solid phase, through the
Shannon entropy index, as a function of time. The experimental data were then used to
validate the proposed scaling law. The scaling law was tested against data obtained with
different viscoelastic fluids, impeller speeds and impeller diameters. The good agreement
between the experimental data and the proposed equation confirms the validity of the
scaling argument.

The results reported in this work show that solid particles immersed in the flow field
produced by a Rushton turbine segregate in particular areas of the flow under the effect
of the viscoelasticity-induced cross-flow migration. At first glance, this behaviour seems
to be an obstacle to the mixing process for which stirred vessels are usually employed.
On the other hand, the same phenomenon could be used for the continuous separation of
solids from solid-liquid suspensions in those circumstances when settlers and filters prove
to be inconvenient. This is especially for the separation of neutrally (or nearly neutrally)

buoyant solids immersed in viscous, non-Newtonian fluids (Fig. A.1).



Chapter 5

Numerical investigation of the effect of
viscoelasticity on the dynamics of a solid

sphere in a shear flow using VOF

In this chapter, I report on the ability of the VOF method to predict the effect of viscoelas-
ticity on the rotational velocity of a solid spherical particle immersed in the shear flow
between two parallel plates. The objectives are (i) to describe the use of a VOF numer-
ical scheme for the simulation of the motion of a solid body in flow, and (ii) to use the
same model in order to derive the rotational velocity of a solid sphere in a viscoelastic
fluid at different values of the Weissenberg number (Wi). To this end, initial simulations
with a Newtonian fluid were performed in order to test the numerical approach and op-
timize the parameters of the simulation. Particular emphasis was given to the estimation
of the optimal constitutive properties assigned to the solid phase. The same case was also
used to perform a grid independence study. Subsequently, simulations for the viscoelastic
case were performed at different values of the Weissenberg number. The non-Newtonian
phase was modelled with the Oldroyd-B constitutive equation and the results were com-

pared with those available in the literature.
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5.1 Introduction

As reported in Chapter 2, the problem of the rotation of a solid sphere in a viscoelastic
fluid subject to shear flow is a fundamental fluid-dynamic problem that has been studied
extensively (D’Avino and Maffettone, 2015). The problem under exam is the rotation of
a single, neutrally buoyant, non-Brownian, inertialess spherical particle in an unbounded
liquid subject to shear flow. This problem, for the case of a Newtonian fluid, was first
addressed by Einstein (Einstein, 1905, 1911), who reported that the particle rotates at a
rate @ that depends on the applied shear rate ¥ and is given by:
Y
0= 5 (5.1)

This result is obtained by solving the mass and linear momentum balance equations, in
the limit of creeping flow, for a free spherical particle immersed in an unbounded simple
shear flow (Leal, 2007). This theoretical prediction has been confirmed by several experi-
mental observations where the rotational velocity was either measured directly (Trevelyan
and Mason, 1951; Snijkers et al., 2009) or derived from inferred quantities such as sus-
pension viscosity and streamlines (Vand, 1948; Cox et al., 1968).
Early experimental observations of the rotation rate in non-Newtonian fluids were limited
to small De (Bartram et al., 1975; Gauthier et al., 1971a,b). In these conditions of slow
flow, the elastic forces are weak enough that the rotation rate was found to be identical
to the Newtonian case. The recovery of the Newtonian behaviour at vanishing De was
also predicted by the analytical solutions proposed by Brunn (1976b), and confirmed by
more recent works (Greco et al., 2005, 2007; Koch and Subramanian, 2006). The rotation
rate at non-vanishing De was also investigated experimentally for a wide array of particle
shapes and suspending liquids (Astruc et al., 2003; Snijkers et al., 2009). Although the
data are scattered, all the experiments confirm that the viscoelasticity of the suspending
fluid causes a decrease of the rotation rate of the sphere with respect to the Newtonian
case.
The net decrease of the rotation rate has also been observed through direct numerical sim-
ulations (DNS) by a number of authors. Hwang et al. (2004) performed 2D numerical
simulations of a single particle suspended in an Oldroyd-B fluid in a sliding bi-periodic
domain. The authors reported smaller values of the rotation rate with increasing De.
The same results were confirmed by 3D numerical simulations for different constitutive
equations (D’Avino et al., 2008; Ji et al., 2011). The effect of different rheological be-
haviours was highlighted by the implementation of both purely viscous models (Newto-
nian and shear-thinning) and viscoelastic models. Purely viscous models did not produce
any change in the rotation velocity with respect to the Newtonian case. Conversely, sim-

ulations performed with constitutive equations accounting for the fluid elasticity showed
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a reduction of the rotational velocity as a function of De. In unconfined and dilute sys-
tems, the slowing effect was not influenced by the shear-thinning of the fluid viscosity
and by the presence of a second normal stress difference. These results agree with recent
analytical solutions proposed by Housiadas and Tanner (Housiadas and Tanner, 2011a,b).
Additionally, transient results show a correlation between the time evolution of the ro-
tation rate and the first normal stress difference Ny, suggesting the importance of this
material function on the slowing effect.

All the aforementioned results were obtained using different multiphase DNS frame-
works, often implemented using in-house software. Although these models greatly ex-
tended our understanding of the effect of the fluid rheology on the particle dynamics,
they are complex, application-specific and usually limited to the study of single parti-
cle systems. Additionally, these models cannot be easily implemented in commercially
available solvers, limiting their applicability to the simulation of simple lab scale prob-
lems. In recent years, the development of reliable numerical schemes for the computation
of viscoelastic constitutive equations has led to the wide availability of commercial and
open-source solvers for single and multiphase systems. Despite this fact, a benchmark
tool for the direct simulation of viscoelastic liquid-solid systems is still lacking. With this
in mind, in the next section I explore the possibility of using a volume of fluid (VOF)
model for the simulation of the dynamics of a solid sphere suspended in a viscoelastic
fluid. This approach is not completely new as Strom et al. (2011) used a similar approach
for the handling of solid particles in rarefied gases. The relatively modest computational
cost and easy implementation of the VOF model, together with its wide availability in
both commercial and open-source platforms, suggest that it could represent a useful tool

for the simulation of multi-particle systems and large scale problems.

5.2 Modeling a solid sphere as a fluid droplet - Newto-

nian simulations

As mentioned in Chapter 1, in a two-phase system the VOF model describes each phase
as a different fluid with distinct physical properties. To make a fluid droplet correctly
mimic the behaviour of a solid sphere, two criteria need to be met: (i) the droplet must
maintain a spherical shape throughout the entirety of the simulation; (ii) the reduction
of momentum transfer from the suspending fluid to the droplet must be negligible; this
implies a negligible internal circulation in the fluid droplet. Strém et al. (2011) suggest
that a measure of the conformance to the second criterion can be obtained by the analysis

of the ratio of the drag force on a fluid particle to that on a solid sphere in Stokes flow:

38+2
Fiokes.fuia  0®NMa3p73U 3B +2

FStokes,solid B 67”70U B 3B +3

(5.2)
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where f3 is the viscosity ratio between the fluid making up the particle and the fluid flow-
ing around it, a is the radius of the particle and U is the fluid velocity far away from the
particle. If one assumes that the drag is the only mechanism responsible for the trans-
fer of momentum between the phases, then Eq. 5.2 is an expression of the reduction of
momentum transfer due to the representation of the solid phase as a fluid. To meet the
requirement (ii) (the reduction of momentum transfer from the suspending fluid to the
droplet must be negligible), we must ensure that the ratio in Eq. 5.2 is close to one (that
is, B — o), because that would indicate a complete equivalence between the fluid and
solid drag forces. To meet the requirement (i) (the droplet must maintain a spherical
shape throughout the entirety of the simulation), we have to study the effect of the viscos-
ity ratio, of the surface tension and of the flow conditions on the dynamic deformation of
a fluid droplet. To this end, we will now briefly introduce the mathematical description of

the problem as it is traditionally presented in the literature.

5.2.1 Drop deformation in simple shear flow

When a neutrally-buoyant, inertialess, spherical drop of viscosity 71, embedded in a sec-
ond immiscible liquid of viscosity 1, is subjected to a shear flow, the stresses of the
external fluid on the drop surface cause the drop to translate, rotate and deform. In the
limit of slow flow (that is, Stokes or creeping flow), for Newtonian fluids the dynamical
equation is linear, and so the flow can be studied by exploiting the superposition tech-
nique. A purely shearing flow can be split in three component flows: a uniform flow
(associated with the value of the undisturbed velocity field of the ambient fluid at the
center of the particle), a rigidly rotating flow (associated with the anti-symmetric part of
the velocity gradient of the purely shearing flow), and a purely straining flow (associated
with the symmetric part of the velocity gradient of the purely shearing flow). The first
flow makes the particle translate, the second induces rigid rotations only, while the third
induces pure deformations only. Since the translation and rigid rotation do not deform
the particle, to study the particle deformation, one can consider only the purely straining
flow. The linearity of the Stokes equation ensures that the same result are valid in a purely
shearing flow. This approach was employed by Taylor (1934) to estimate the deforma-
tion of a viscous droplet suspended in a second liquid subject to pure straining flow. The
droplet deformation can be quantified using the deformation parameter D initially pro-
posed by Taylor (1934). For small deformations, at steady state the droplet assumes an
ellipsoidal shape and D can be defined in terms of the major, L, and minor, B, axes of the

ellipsoid (see Fig. 5.1):
_L-B

~1TB (5.3)
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This small deformation will only cause a small change in the stress distribution in both

fluids. Therefore, at the interface, we can write:

ol —c>=0 (5.4)

[N

1

6l — o= —2y# (5.5)

Eq. 5.4 and 5.5 represent the continuity of tangential stress and the balance of normal
forces at the interface. Accordingly, ¢’ is the stress exerted by phase i at the inter-
face, while the indices n and ¢ indicate the components of stress force vector n- ¢’ in
the directions normal and tangential to the interface. These components are defined as
G,l; =n-o0'-nand G,i =n-o'-t, where n is the normal unit vector to the interface, point-
ing into phase 2, and ¢ is the tangential unit vector. Finally, 77 is the local mean curvature

of the interface that can be expressed as:

Figure 5.1: Representation of the initial and deformed states of a sheared droplet.

,%”:—%Bs-n (5.6)

where dy denotes the surface gradient operator. The sign of .#° depends on the direction
of the unit vector n. In general, 5 < 0 when n points away from the local center of
curvature. Therefore, for example, for a spherical droplet of radius a, n is the unit vector
normal to the droplet and pointing into the suspending liquid (i.e., away from the center of

curvature), the mean curvature is negative and equal to —(1/a). An equivalent expression

1/1 1
H =5 (R—1+172) (5.7)

where 1/R; and 1/R; are the principal curvatures at the point in question. Considering

for the mean curvature is:

the definition of the stress tensor (¢ = pI + T), we can use Eq. 5.7 to express Eq. 5.5 as
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follows:
1 2 1 2N 1 ~1
n-(t —1°)-n+(p —p°)=—-v(R " +R;") (5.8)

A similar equation is reported by Taylor (1934) for a nearly spherical droplet in a pure
straining flow:

1 2

T — 15 = —y(R "+ Ry ") + constant (5.9)

where 7!, is the rr component of the viscous stress tensor of the fluid, expressed in a
spherical coordinate system (r — @) with origin at the center of the droplet?. Taylor also
reports an analytical expression for 7! — 72 for the slow flow around a nearly spherical

droplet:

2 2
A19n +16m2 (x y > (5.10)

Trzr - Trlr =MmnY m-+mn a2
where x and y are the coordinates of a Cartesian coordinate systems with origin at the
center of the droplet. Eq. 5.10 together with Eq. 5.9 can be used to calculate the final
shape of the nearly spherical drop that satisfies the balance of normal forces. In terms of

D, the results can be expressed as:

198 + 16

D:Cam

(5.11)
where Ca = an,y/ oy, is the capillary number, o1, is the interfacial tension between the
two phases and 7 the shear rate in the suspending fluid. Egs. 5.10 is only valid for small
deformations and is obtained by assuming that the contribution to the normal stress due
to viscous forces is small compared with that due to surface tension. This means that
Eq. 5.11 is valid only for Ca < 1. In a similar way, Taylor also obtained the asymptotic
value for D in the case of a highly viscous droplet (8 > 1), obtained neglecting the effect

of the surface tension. s

P=1p

Eq. 5.11, valid in the limit Ca < 1, indicates that the effects of the interfacial tension

(5.12)

and of the fluid viscosity on the final deformation of the droplet are almost completely
expressed through Ca as the ratio % ~ 1. We also notice the additional result that,
in the limit of large 3, the steady-state deformation is independent of Ca and inversely
proportional to the viscosity ratio. This suggests that a large value of B is a condition
sufficient to ensure the sphericity of the fluid droplet at steady state.

The transient response to start up of the flow was described theoretically by Cox
(1969) and Rallison (1980) in terms of the temporal evolution of the deformation pa-
rameter D and the angle 0 (i.e. the orientation angle formed between the major axis of

the drop and the direction perpendicular to the flow (Fig. 5.1)). The solution was obtained

“Note that for small deformation, at every point of the droplet interface n- 7' -n = 17,
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via a perturbation expansion around small values of the deformation, without any explicit
restriction on Ca or 3 other than those which are implied by the assumption that the de-
formation remains small. The response depends on both 8 and Ca and can be illustrated

by the following equations:

_ 20m _ 4o 2

D(t) = Dy [1 —2e 19Caf cos(Jt) +e 19@;3} (5.13)
~ B cos § 20 ,~ 136 gin ;
T 19B |e ™Cab cosyt — 1| + g,e P sinyr
0(t) = i Earctan T . TR (5.14)
—Ca |e B cosyt — 1|+ 19Be 19CaB sin yt
where Dy is the steady state deformation given by:
5(198+16

(195 + 16) (5.15)

Po= 4(1+ BN/ (19B)2 + (20/Ca)?

The steady state value of the angle 6 can be obtained from Eq. 5.14 by letting t — —+oo.

1 19
6 = %+§arctan (Z—OﬁCa) (5.16)
Since the deformation parameter D (and Dy) is taken to be positive, it can be shown that
the values of the angle 8 must be such that (Cox, 1969):

/4 <0 <3m/4 (5.17)
/4 <6y <m/2 (5.18)

The value of the deformation given by Eq. 5.15 is seen to be small either when f is
large, or when Ca is small, or when both f3 is large and Ca is small. To substantiate this
claim, Table 5.1 reports the expressions for the steady-state deformation and orientation
angle in the limits of large B and small Ca. It can be observed that all expressions in
the table predict a vanishingly small droplet deformation. Additionally, the steady state
deformation of the droplet, given by Eq. 5.15, yields the same results as obtained by
Taylor (1934) in two cases.

1. Firstly, when the capillary number Ca < 1/ or Ca < 1, whichever is more restric-
tive, the distortion is opposed by the action of the surface tension and Eq. 5.15 and
5.16 reduce to:

19+ 16 T

where Eq. 5.19 is equivalent to the expression reported by Taylor (1934) (Eq. 5.11).

D():Ca
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In this scenario, there are three possibilities. If > 1, then the condition Ca < 1/
is more restrictive than Ca < 1, and simply requiring Ca < 1 is not sufficient to
obtain the same result as Eq. 5.19. If B ~ 1, then the conditions Ca < 1/ and
Ca < 1 are equivalent. This scenario is the one referred to in the works of Torza
et al. (1972) and Rallison (1984). Finally, if B < 1, then the condition Ca < 1 is
more restrictive than Ca < 1/f.

2. Secondly, when the internal viscosity of the droplet is high (8 > 1) and Ca >
1/, or alternatively when Ca < 1 and B > 1/Ca, the droplet shape is maintained
through rotation, as explained in Rallison (1984), and the steady deformation is:

5 T
Dy=— 5.21 d 6 = = 5.22
0= 28 (5.21) an =7 (5.22)
where Eq. 5.21 is equivalent to the second expression reported by Taylor (1934)

(Eq. 5.12).

Table 5.1: Expressions of the steady state deformation (D) obtained from Eq. 5.15, for the four
combinations of 8 and Ca that result in small deformations.

Ca>>1/B Ca<<1/B
B>>1 DOZ%; 90=g Do:Ca%; (_-)Ozg

B>>1/Ca B <<1/Ca
Ca<<1 Doz%; Gozg Dozccz%; eozg

In the case of a shear suddenly started from rest, Egs. 5.13 and 5.14 describe a drop un-
dergoing a transient motion which may be regarded as a damped "wobble". After a long
time (t — +o0), the wobble stops and the droplet assumes the steady configuration de-
scribed by the values of Dy and 6y. Fig. 5.2 shows the predictions of Cox’s model for
a droplet with constant B = 1 under different shear rates. At low Ca, the deformation
grows monotonically to its steady state value. At higher capillary numbers, the curves
begins to present an overshoot and, as Ca increases, the overshoots become larger and are
followed by undershoots. For higher Ca, the transient behaviour becomes evidently os-
cillatory with an oscillation period inversely proportional to the shear rate. The viscosity
ratio plays a very similar role to Ca. At low ratios, the deformation parameter increases

monotonically to its steady-state value while for large viscosity ratios, the behaviour is no
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Figure 5.2: Prediction of Cox’s model for the deformation parameter at 8 = 1 for different capil-

lary numbers.
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Figure 5.3: (a) Time evolution of the dimensionless deformation parameter at Ca = 0.25 for
different viscosity ratios and (b) corresponding steady-state shape of the fluid droplet.
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longer monotonic and stationary conditions are reached after a transient oscillatory phase.
A visual example of this effect is reported in Fig. 5.3a as the time evolution of the dimen-
sionless deformation parameter D/Dy. It is important to notice that the increment of the
intensity of the oscillation observed at higher 8 happens in the context of a decreasing
value of Dy (Fig. 5.3b). This means that higher values of f are certainly helpful in both
maintaining a spherical shape for the droplet at all times (condition (i)) and reducing the

internal circulation (condition (ii)).

Droplet relaxation time

The time the droplet takes to reach its equilibrium configuration (i.e. the droplet relaxation
Ca} _

time tg) predicted by Cox’s model is = %11—;’ The same expression is obtained from
the general definition of relaxation time for a fluid droplet in simple shear reported by
Loewenberg and Hinch (1996), tg = w if the observation is limited to moderate
or high viscosity ratios (i.e. f > 1, or B =~ 1). As already mentioned, Cox’s model is
assumed to be valid for any combination of Ca and f that results in small deformations.
Based on this criterion, all four possible combinations of Ca and 3 presented in Table 5.1
satisfy Eq. 5.13 and thus have relaxation time 7. However, one of the reported cases,
namely Ca < 1 and 8 < 1/Ca, can also be realised assuming a small value of 8 (e.g.,
Ca =0.05 and B = 0.001). In this case, the deformation is certainly small (Dy = 0.05)
but the predictions for the relaxation time reported by Cox (1969) and Loewenberg and
Hinch (1996) are inconsistent ( zz # tg). To address this issue, a preliminary simulation
was conducted with Ca = 0.05 and B = 0.001, and a shear rate of 7 = 0.02. In this
case, the values of the two relaxation times are tz = 0.025 and tg = 2.503 s, respectively.
The simulation methodology will be explained in subsequent sections but the results of
the time evolution of the deformation parameter are presented in Fig. 5.4. Initially, the
dimensionless deformation D /Dy increases from zero to a maximum value of 1.2, before
eventually decreasing and reaching a steady-state value after a time of approximately 10 s
(ty/Ca(1+ B) =~ 4). These findings align with those reported by Loewenberg and Hinch
(1996) and confirm that the relaxation time suggested by Cox (1969) is only applicable at
moderate or high values of the viscosity ratio. Interestingly, when the product Caf > 1,

the drop dynamics, obtained from Eq. 5.13, are given by:
oprsin (1
D(t) =2Dysin 5 (5.23)
1
0(t) = Z[n(l —2n) + 1] (5.24)

where 27tn < yt <2m(n+ 1) and n represents any integer greater or equal to 0”. According
to Egs. 5.23 and 5.24, the droplet deforms and rotates indefinitely (fg — +oc) with a value

>The complete derivation of Eq. 5.24 is reported by Torza et al. (1972)
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Figure 5.4: Time evolution of the deformation parameter at f = 0.001 and Ca = 0.05 as a function
of the dimensionless time. The time was rendered dimensionless with the relaxation time reported
by Loewenberg and Hinch (1996), 1 = (14 )Ca/7.

of D oscillating between 0 and 2D, without ever attaining a steady state. The condition
Ca > 1 can be met in different scenarios, such as when both 8 and Ca are large, or
when f is large and Ca is moderate, or when Ca is large and 3 is moderate. However, the
last case does not necessarily imply small deformations, and as a result, Cox’s model is
not applicable.

As an example, the time evolution of D and 6 for f > 1 and Ca > 1/ is reported
in Fig. 5.5. In these conditions, D and 0 oscillate without damping. Attt =0, D =0
and 0 = 45° and, as t increases, D and 0 increase simultaneously. A maximum value
of D (=5/2p) is reached in correspondence of 6 = 90°. Further increase of 7 produces
a decrease in D while 0 continues to increase up to 135°, when the drop re-assumes its
initial undeformed shape. At this point 6 goes back to 45° and the cycle is repeated.
Finally, when the value of Caf3 > 1, the droplet undergoes continuous rotation, rendering
the concept of a steady state angle 6y meaningless. In the left column of Table 5.1, the
reported values of 6y correspond to the average angle 6 within the time interval 27tn <
7t <2m(n+1).

Amplitude and period of oscillation

By observing Eq. 5.13, it is clear that the oscillation period is independent from the fluid
properties and only a function of the shear rate applied , 7, = 27t/7. This prediction of
constant period is inaccurate since the first experimental works from Torza et al. (1972)
showed a reduction of the frequency of oscillation at moderate 3. Recently Escalante-
Veldzquez et al. (2018) proposed a modified version of Cox’s model including a corrective

parameter, function of the viscosity ratio, that improved the prediction of the period of
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Figure 5.5: Illustration of the undamped oscillations of a drop suddenly subjected to a shear field.
Both the drop deformation D and orientation angle 0, calculated from Eqgs. 5.23 and 5.24, have a
period of oscillation T, = 27/ 7.

oscillation. This model was validated against experimental and numerical results and

will be used throughout the next section as benchmark for the validation of the transient

01 4o \71/2
D(t) = Dy {1 ~ 2 755) cos ((1 — 3’[3—4> yr) +e(_190073ﬁ>} (5.25)

Finally, we can notice that the amplitude of the oscillation predicted by both Egs. 5.13

results.

and 5.25 can be expressed as:

209tm )

|D(l‘m) — D()| = Doe<7W (5.26)

where #,, indicates the value of the time in correspondence of the maximums an minimums
of D(t) (i.e. the values of ¢+ where dD(t)/dt = 0). The equation presented in Eq. 5.26
shows that the amplitude of oscillation is directly related to the steady deformation Dy
and exponentially decays over a characteristic time scale 7. As a result, it can be seen
that if a particular combination of Ca and f3 yields a small value of Dy, then it would also

assure a less intense oscillation at all times.

Period of rotation

For small deformations, the period of rotation 7, of a fluid particle located at the droplet
interface is given by (Bartok and Mason, 1959; Rumscheidt and Mason, 1961; Torza et al.,

1972):

4 I
r-4r B+l (5.27)

v VB(B+1)
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while the period of circulation 7. close to the center of the drop is:

_4rn 2(B+1)
7T V2B+S2B 1)

for B > 1/2¢, it is readily shown that 7, > T,, that is, the circulation inside the drop
becomes slower towards the center. When 8 > 1, both Egs. 5.27 and 5.28 reduce to

(5.28)

T ~ 4r/7. This means that for large , D — 0, and the drop rotates rigidly with angular
velocity @ = 7/2, in agreement with the value for a solid sphere (Einstein, 1905).

5.2.2 Simulations setup and convergence study

Before discussing the results for the Newtonian case, I will introduce the setup of the
OpenFoam cases together with the geometry and boundary conditions employed. Subse-
quently, the study on the mesh convergence will be presented.

A schematic representation of the computational domain used in the convergence
study can be found in Fig. 5.6. A time t = 0, a spherical droplet of radius a is posi-
tioned at the center of a square domain of length 2L = 254. In OpenFoam, any geometry
is necessarily treated as a three-dimensional domain. For 2D simulations, a special kind
of boundary condition, named empty, is employed. This condition is applied on the pair
of boundaries I's and I'q and has the effect of reducing the dimension of the problem to
the x-z plane. The upper and lower edges of the domain (I'; and I'4 in Fig. 5.6) represent
the walls of the channel. These walls slide in the positive (upper) and negative (lower)
x-direction with constant velocity +U. The shear rate across the channel can then be cal-
culated as ¥ = U /L. The confinement or blockage ratio, defined as € = a/L, is € = 0.08.
At this level of confinement, it has been proven that the effect of the walls on the dynamic
of the droplet can be safely neglected (Janssen and Anderson, 2007). Periodic boundary
conditions are imposed on the left and right edges of the domain (I'; and I'; in Fig. 5.6).
This is equivalent to simulating an array of particles separated by a distance of 2(L — a).
In these conditions, the volume fraction of solids is % (%)2 ~ 0.5%, which implies that
the suspension is dilute and the particles do not interact.

As mentioned in Section 2.3.1, the simulations for the Newtonian case are performed
using the multiphase, transient solver interFoam. The physical properties of the two fluid
phases are specified in a transportProperties file, an example of which is reported in
Appendix B, List. B.1. The two phases are symbolically labelled as water and air for
the high and low viscosity phases, respectively. The scalar indicator used to distinguish
between the two phases is named alpha.water and represents the volume fraction of the

water phase. For the Newtonian case, only the densities (rho), kinematic viscosities (nu)

“for f < 1/2, Eq.5.28 is not valid as Bartok and Mason (1958) describe the formation of two pockets of
fluid circulation close to the center of the drop.
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Figure 5.6: Schematic representation of the computational domain.

and interfacial tension (sigma) are required.

The domain is discretized with a mapped hexahedral mesh generated via the utility
blockMesh (example in List. B.2 in Appendix B). The total number of intervals in the
x and z directions is controlled via the variable nx. In order to improve the efficiency of
the simulations, a large fraction of the total number of cells was placed in the vicinity of
the fluid droplet where large gradients of velocity and pressure are expected. This was
achieved by subdividing the computational domain in 9 regions via the definition of three
intervals along both the x and z directions. The central intervals in both directions have
a length of 0.6L (30% of the total length), and define a square region at the center of the
domain that completely encloses the droplet (Fig. 5.7). Within this region, comprising
9% of the domain, were placed 60% of the total number of cells. Additionally, in all
the remaining 8 regions, the mesh was gradually refined towards the center. The mesh
convergence study was then simply conducted by changing the value of nx in the interval
50-150.

The simulations for the mesh convergence were performed with a value of =25 and
Ca = 1.5. These values were chosen to compare the results obtained from our simulations
to the numerical results reported by Kennedy et al. (1994) and the experimental data re-
ported by Torza et al. (1972). The time convergence has also been checked by decreasing
the time-step Afr. In OpenFoam, it is possible to perform transient simulations with an
adjustable time step via the setting of a maximum value of the Courant-Friedrichs-Lewy
number:

Co = Att. < Copmax (5.29)

where 7, is a the reciprocal of a characteristic time scale based on the local cell velocity.
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Figure 5.7: Example of 2D Mesh

For a quadrilateral mesh 7, = Zl | A)’C , where Ax; is the length of a computational cell
along the i-th direction. At the time j — 1, the value of Co is calculated for each com-
putational cell using Eq. 5.29. If we denote with x,, the location in the mesh where Co
assumes its maximum value indicated as Coy,, ;_1, the time-step for the next iteration is

computed as:
(Comax - Coxm,jfl )

Texm

Al‘j = Atj,1 + (5.30)

It was found that, although the steady state solution was not significantly affected by
the choice of Coy,y, the start-up behaviour could substantially differ. Despite this fact,
setting a value of Co,,,x = 0.1 was found sufficient to assure the convergence of the time-
dependent results. For all the simulations, the fluid is initially at rest and, at time ¢ = 0,
the upper and lower boundaries are set in motion with a constant velocity +U. For every

case, a total of 60 seconds are simulated.

Mesh convergence results

To assess the effect of the mesh size on the shape of the droplet, we analyzed the time evo-
lution and the steady state configuration of the interface. Fig. 5.8a shows the initial and
final shapes of fluid droplet, as predicted by Cox’s model, with a value of = 10"2s~!

B =25 and Ca = 1.5. In these conditions, the predicted steady state values of the defor-
mation parameter and orientation angle are Dy = 0.0429 and 6y = 1.8°. Accordingly, the
fluid droplet is only slightly elongated in a direction almost parallel to the x-axis. These
results can be used to evaluate the effect of the mesh size on the final shape reported in
Fig. 5.8b. The interface between the two fluids is obtained by extracting the geometric

coordinates of cells where the value of alpha.water = (0.5. As it can be seen, the sim-
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ulation results agree with the analytical solution of Cox et al. (1968). Additionally, it is
clear that all the simulations predict the same final shape of the fluid droplet regardless of
the mesh size.

The evolution of the deformation parameter as a function of the dimensionless time
t/tg is reported in Fig. 5.9a, together with the modified Cox model, the experimental data
of Torza et al. (1972) and the simulation results of Kennedy et al. (1994). We can first
notice that at all level of refinement, the deformation parameter shows the characteris-
tic damped oscillatory behaviour mentioned in Section 5.2.1 and a good agreement, at
least regarding the period of oscillation and the damping rate, with both the modified Cox
model and the numerical simulations performed by Kennedy et al. (1994). Despite this,
the predictions of the model and the results of the simulations significantly deviate from
the experimental data of Torza et al. (1972) in the exponential decay of the deformation
parameter. Kennedy et al. (1994) suggests that the assumption of uniform and isotropic
interfacial tension in the analytical and numerical models is at the root of these discrep-
ancies. Given that the same assumption is valid for the simulations reported in this work,
it is not surprising to observe the same discrepancy between the numerical and experi-
mental results at every value of mesh refinement. The main effect of the mesh refinement
is relegated to the initial peak value of D. For example, at nx = 50, D rapidly increases
from O to the value of 0.097, 25% larger than the one predicted by the model. The dis-
crepancy between the two peak values decreases for the successive peaks (to 12% for the
second and 8% for the third). The same behaviour is exhibited by the curve for nx = 100,
with a substantially smaller error at each peak (7.5, 5 and 2% for the first three peaks,
respectively).

Fig. 5.9b reports again the value of D(¢) for the finest mesh tested (nx = 150), but
over a longer time interval. As we can see, the damped oscillatory behaviour is almost
completely exhausted after a time ¢ /tg =~ 4. This can be expected since Eq. 5.13 shows an
exponential dependence of D(¢) with (¢/tg) (1 — e "/"e ~ 0.981 for t /1y = 4).

Finally, the overall effect of the mesh refinement is evaluated by computing the nor-
malised root-mean-square (NRMS) difference between the numerical and analytical val-

ues of the deformation over the entire simulation time:

VA (5 [D() — Dan (1))

Dy

NRMS = (5.31)

where 7, is the total number of time instants while D,,(¢) and Dy are the instantaneous
and steady state values of the deformation parameter calculated through Eq. 5.25 and 5.15.
The results are reported in Fig. 5.10. The reduction in NRMS indicates a progressively
better adherence between the numerical results and the analytical solution at larger nx,
with most of the improvement realized when moving from nx = 50 to 100. At nx = 100,

the mean difference between the simulation results and the analytical solution across the
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Figure 5.9: (a) Time evolution of the deformation parameter at 8 = 25 and Ca = 1.5 for different
dimensionless time for nx = 150.

mesh refinement levels, and (b) Time evolution of the deformation parameter as a function of the

remaining of this thesis.

whole simulation time is roughly 5% of Dy. A value of nx = 100 will be used for the
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Figure 5.10: Root-mean-square difference as a function of mesh size.

5.2.3 Newtonian results and parameters selection

In light of the considerations discussed in Sections 5.2.1, it seems natural that, in order
to assure the conservation of the spherical shape of the drop, one can either increase the
viscosity ratio or reduce the capillary number. A high value of 8 is however required
in order to minimize the internal circulation of the drop and the subsequent reduction
in momentum transfer (condition (ii) in Section 5.2). Strom et al. (2011) suggest that
values of 10000 for B and 0.01 for Ca are sufficient to assure both the sphericity of the
droplets and the absence of internal circulation. Although these values seem reasonable,
the authors do not report any quantitative proof of their statement.

To verify these claims, and obtain reliable values for our operating parameters, a series
of 2D simulations are performed on the Newtonian setup described in the previous section.
First, the value of 3 is determined by performing simulations where the value of Ca is
kept constant at 1 and the viscosity ratio is varied between 100-10000. Values of B < 100
were considered to be too small and excluded from the investigation. This was justified
by noticing that the ratio gg—ig (Eq. 5.2) is &2 0.997 at B = 100 but it drops to == 0.96 at 3
= 10. Finally, the value of 8 determined by the first analysis, is used in a consecutive set

of simulations where Ca is varied between 0.1 and 0.01.

Viscosity ratio

Given that the ultimate objective of this chapter is to predict the rotational velocity of a
solid sphere in a simple shear flow, the optimal value of the viscosity ratio is determined
by observing the variation of the time evolution of this quantity as a function of . We also
remind that for a solid sphere in shear flow, the steady-state value of the angular velocity

is 7/2. The angular velocity is estimated by extracting the value of the y-component of
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the vorticity (@y) at the center of the drop (location (0, 0, 0) in the computational domain)
at each time step. The angular velocity is then calculated as @ = /2, as the vorticity is
twice the angular velocity.

The time evolution of the ratio @/y for B = 100 is reported in Fig. 5.11 where the
time has been made dimensionless with the droplet relaxation time tg. For comparison,
we also report the value of the normalised deformation parameter. It can be seen that
after the flow is initiated, the angular velocity of the droplet increases sharply towards an
asymptotic value of 0.5. Upon reaching the asymptote, in analogy with what observed for
the deformation parameter, the angular velocity exhibits a damped oscillating behaviour.
The presence of oscillations suggests an influence of the deformation dynamics on the
rotational velocity of the fluid inside the droplet. Naturally, for the case of a solid sphere
in simple shear flow, no such oscillation is present and the time evolution of the angular
velocity reduces to a monotonic increase to a steady state value with time scale, in the case
of Stokes flow, of the order ~ L?/v, where V is the kinematic viscosity of the suspending
liquid.
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Figure 5.11: Comparison between the time evolution of the angular velocity and the deformation
parameter for § = 100 and Ca = 1.

The comparison with the deformation parameter reveals that the two quantities change
with the same time scale 7¢. This is shown, for instance, by the fact that the values of the
oscillation amplitudes for both @ and D decrease by the same amount (=~ 30%) when ¢ /tg
goes from 0.2 to 0.8. It is also evident that the two quantities oscillate with the same fre-
quency f ~ 1.55 x 1073 Hz. This is in agreement with the oscillation frequency predicted
by Eq. 5.25, ( — 313—4> % ~ 1.53 x 1073 Hz. From these considerations it follows that the

dynamic behaviour of the angular velocity of a drop is closely linked to its deformation.
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Figure 5.12: (a) Time evolution of the angular velocity at Ca = 1 for different viscosity ratios and
(b) close up view of the periodic oscillations.

Fig. 5.12a illustrates the temporal variation of the ratio @ /7 for four different viscosity
ratios. Regardless of the specific value of 3, the angular velocity demonstrates a pattern
similar to what shown previously. Initially, it rises rapidly to approach an eventual steady-
state value, after which it exhibits damped oscillations.

The amplitude of the oscillations is inversely proportional to the viscosity ratio. For
instance, at § = 100, the angular velocity oscillates between 0.5 and 0.48 with and ampli-
tude of 0.02 (2% of the mean value) while at B = 1000, the amplitude drops to 7 x 10~%
(0.14% of the mean value). At 8 = 10*, the amplitude becomes so small that the oscillat-
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ing behaviour is no longer observable. The effect of the viscosity ratio on the oscillation
amplitude is in accordance with Eq. 5.26 which predict an amplitude proportional to the
steady state deformation Dy. For all the cases in Fig. 5.12a, f >> 1 and Ca << 1/,
hence Dy ~ %. On the other hand, the frequency of the oscillation remains almost
unchanged when increasing . This is expected in light of Eq. 5.25, as the value of
< — 33_4> ~ 0 for all the values of viscosity ratio explored. Notably, the equivalence of
the frequencies is not readily apparent from a visual inspection of Figure 5.12b. This is
due to the choice of plotting against the dimensionless time variable ¢ /fg. Finally, in-
creasing 3 has the additional undesired effect of increasing the droplet relaxation time
(te = CaP /7). This means that the droplet shape and the angular velocity will oscillate
for a longer period of time before reaching a steady value. However, this is mitigated by
the fact that a higher value of 8 leads to a decrease in the amplitude of the oscillations.
As a result, the overall effect of the oscillations is reduced.

In conclusion, the results presented are in agreement with the suggestion of Strém
etal. (2011) and a value of B = 10* will be used for the rest of this work.

Capillary number

The time evolution of the ratio @/7 for two values of Ca is reported in Fig. 5.13. All the
simulations were performed with a constant value of 8 = 10*. Similarly to what was re-
ported before, it can be seen that as soon as the flow is started, the angular velocity rapidly
increases towards a steady-state asymptotic value. For all the values of Ca examined, the
asymptotic behaviour does not exhibit any evident oscillation. This remains true even at

relatively high capillary numbers (Ca = 1).
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Figure 5.13: Time evolution of the angular velocity at § = 10* for two values of Ca.
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From these results we can conclude that the spherical shape of the droplet is conserved
for a wide range of Ca as long as the viscosity ratio remains sufficiently high. This
conclusion can be understood in light of the synergetic effects exhibited by B and Ca
on the deformation parameter (Egs. (5.19), (5.21) and (5.25)). For the remaining of this

work, all the simulations will be conducted with a value of f = 10* and Ca = 0.01.

5.3 Viscoelastic case

In this section, we report the results of the numerical simulations for the evaluation of
the angular velocity of a single solid sphere, suspended in a viscoelastic liquid, in simple
shear flow. The fluid is modelled with the split stress tensor approach described in Section
2.2, where the polymer extra stress tensor is modelled with the Oldroyd-B constitutive
equation. The effect of the viscoelasticity on the angular velocity is examined well beyond
the limit of slow flow and up to Wi = Ay = 3. We limited our study to the Oldroyd-B
model as it allows studying the sole effect of the elasticity on the angular velocity of
the sphere, without any concern about the shear-thinning of the viscosity. In particular,
as mentioned in Section 2.2, when subject to a simple shear flow, an Oldroyd-B fluid
presents a constant viscosity, a first normal stress difference quadratic in the shear rate
(N1 =21, 7?) and no second normal stress difference. For its simplicity, it is often used
as first model assumption for the study of a generic viscoelastic fluid in non-linear regime
(i.e. outside the limit of small W7i).

For what concerns this study, the Oldroyd-B model was chosen for the additional
reason that, in its current implementation in rheoTool, it is the most reliably tested con-
stitutive equation. Most of the literature concerning the optimization of the numerical
stability of the viscoelastic solvers within OpenFoam in fact focuses on the Oldroyd-B
model (Fernandes, 2022; Spahn, 2019; Alves et al., 2021; Afonso et al., 2009).

To facilitate the discussion of the results in the following section, we introduce the two
relevant dimensionless numbers for the flow field under examination, namely the Deborah
number De and the Weissenberg number Wi. As already mentioned in Section 2.2.3, De
is the ratio of the relaxation time to the characteristic time of change of the kinematics of
the flow, while Wi is simply the product between the relaxation time and the characteristic
value of the shear-rate (A7). In an undisturbed simple shear flow, since at steady-state the
kinematics do not change along the pathlines of the fluid elements, the associated time
scale is infinite and De = 0. On the other hand, as always Wi = A 7. For the disturbed flow
around the particle, the pathlines of the fluid elements flowing around the particle are no
longer straight, and the fluid elements see their kinematics change as they flow around the
particle. The time scale of this change is equal to a/U,, where a is the particle radius and
U, is the scale of the velocity. This scale is equal to a, and so the time scale is 1/7. Then,

we obtain that De = Ay = Wi. Although the two numbers have two distinct definitions,
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they assume exactly the same value in the case under examinations. For this reason, the
results throughout the remainder of this chapter will be presented exclusively in terms of
Wi.

This section is structured as follows. First, we rapidly survey the geometric domain,
the required boundary conditions and the computational mesh employed. Subsequently,
the transient results and the flow streamlines around the solid sphere are presented. This is
followed by the presentation of the results for the steady-state value of the angular velocity
as a function of the Weissenberg number and the comparison with available data from the

literature. Finally, the conclusions of the study and some final remarks are reported.

5.3.1 Computational Domain

The computational domain and the boundary conditions (BCs) employed for the simula-
tion of a spherical particle in a viscoelastic fluid are similar to those described in Section
5.2.2. For the velocity field, Dirichlet BCs are imposed on the upper and lower walls of the
domain (I'; and I's in Fig. 5.6). In particular, the value of the velocity is u = ue, = £Ue,
on I'; and I'4 respectively. On these boundaries the pressure is calculated with a fully
developed BCs (zeroGradient in OpenFoam). The same BCs are imposed, for both
velocity and pressure, on the boundaries perpendicular to the flow direction (I'y and I'3).
In contrast to the Newtonian case, the viscoelastic simulations necessitated the use of a
three-dimensional grid. This was due to the fact that the angular velocity at Weissenberg
numbers greater than zero (Wi > 0) is determined by the three-dimensional distribution of
stresses around the sphere (D’Avino et al., 2008; D’ Avino and Maffettone, 2015). Con-
sequently, given the geometry of the problem, on the boundaries I'5 and I'¢ the symmetry
BCs are imposed:

u-n=_0 (5.32)

where 7 is the unit vector normal to the boundary. As mentioned in Section 2.3, together
with the usual continuity and linear momentum balance equations, the viscoelastic solver
rheoInterFoam solves an additional transport equation for the log-conformation tensor
O (Eq. 2.73). This means that an additional set of boundary conditions is necessary for
the numerical integration of @. In practice, for reasons related to the spatial discretization
of the stress divergence terms, rheoInterFoams further requires boundary values for the
polymeric extra-stress tensor T, (Fattal and Kupferman, 2004).

The boundary conditions for the extra-stress tensor and its logarithm are contained
in the two files tau.water and theta.water respectively (Appendix B). On the upper
and lower walls of the domain (I'; and I'4), the 1inearExtrapolation BC is applied for
both 7, and ®. The linearExtrapolation BC is expressed by the following equation:

Aijr =Aijp+ (VAij)p-dpy (5.33)
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where A;; is the ij component of the generic field A (scalar, vector or tensor), indices f
and P represent the boundary face and the cell owning that face, respectively, and dpy is
the vector connecting their geometrical centers from P to f. This BC computes the value
of the fields on the boundary faces from the corresponding values at the center of the
boundary cells. This is achieved by first calculating the gradient of the variable at the cell
center and then estimating the corresponding face value by linear extrapolation. Another
boundary condition that can be used for the stresses at the upper and lower boundaries is
the zeroGradient BC. This boundary condition assumes that the stress is fully developed
in space, and there will be no further change in the direction normal to the boundary. The
mathematical expression in this case can be derived from Eq. 5.33 by setting (VA;;)p =0.
However, this assumption is strictly valid only if the boundary is far enough to disregard
the effect of the sphere, which is certainly the case in our simulations. In practice, for the
stress and log-stress tensors, it has been observed that the 1ienarExtrapolation BC
enhances numerical stability compared to the more commonly used zeroGradient BC.
Therefore, the latter condition is imposed on I, and I'4 as well as on I'| and I'5. Similarly
to the velocity, the symmetry BC is applied to the boundaries labeled as I's and I'g for
both the stress and the log-stress tensors:

Tw—(Tp-n)n=0, To=T-n (T=1, O) (5.34)

For the non-Newtonian simulations, the computational mesh results from a three-
dimensional extension of the 2D mesh used for the Newtonian case with nx = 100. In
analogy with the 2D case, the three-dimension domain is discretized by fixing the total
number of intervals along the x, y and z directions to nx. The domain is then divided in
27 regions via the definition of three intervals along each direction. The central region
thus defined completely encloses the spherical drop and contains approximately 35% of
the total number of cells. An example of the 3D mesh can be found in Fig. 5.14. Due to
the large computational time, the validity of the simple extension of the 2D mesh to the
3D case was verified performing a single comparison between the results obtained at nx =
100 and nx = 200, for Wi = 2. The doubling of the mesh size caused a change of the final
value of the angular velocity of only 0.42% (®w/7 = 0.302 and @/} = 0.303 for nx = 100
and 200 respectively). The value of nx was then kept to 100 for the rest of the study. As
mentioned in the introduction to this section, the Oldroyd-B constitutive model was used
for all the simulations. This model requires the definition of three parameters, namely
the solvent and the polymer contribution to the total viscosity (7, and 1, respectively),
and the relaxation time A. The values of the two contributions to the viscosity were kept
constant throughout the entire study and equal to 1y = 1, = 0.5 Pa - s. This assumption
allowed us to compare our results to the experimental and numerical data reported by
Snijkers et al. (2011), Hwang et al. (2004), and Goyal and Derksen (2012). The value of
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Figure 5.14: Clip of the 3D mesh, cut along the x-z plane.

the shear rate 7 = U /L was also kept constant and equal to 1 for all the cases. Increasing
levels of elasticity of the flow (i.e. larger Wi), were then simply achieved by increasing

the value of the relaxation time.

5.3.2 Transient results

The viscoelastic simulations involved a transient analysis of the fluid’s behaviour. At
the outset of the simulation (¢t = 0), a simple shear flow was imposed on a fluid that was
initially quiescent. A comparison between the transient behaviour of stresses of the undis-
turbed suspending liquid during shear start-up and the period of rotation of the sphere at
different Wi values can provide useful insights. In this regard, we will plot the first normal
stress difference (Ny), the polymer contribution to the shear stress (7,), and the period of
rotation as function of the dimensionless time ¢ for various Wi.

The value of the angular velocity ®, at each time-step, is first obtained by extracting
the value of the y-component of the vorticity at the center of the solid particle. Similarly
to the Newtonian case, the angular velocity is then simply calculated as @ = w,/2. The
period of rotation of a single sphere in a Newtonian fluid in simple shear flow can be
expressed as the Jeffrey period Ty = 47/¥ (Einstein, 1905). Similarly to D’ Avino et al.
(2008), we use a normalized viscoelastic rotation period defined as T = Tyn /Ty = 7/20,
where Ty is the period of rotation of the sphere in the viscoelastic medium. For vanishing
Wi, the value of this ratio tends to unity. Both the shear and normal components of the

fluid stress are extracted in correspondence of the top boundary of the domain (mesh
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coordinates (0, 0, L). At this distance, the flow disturbance caused by the presence of
the sphere becomes negligible and the stresses are expected to reach the values predicted
by the Oldroyd-B model for a simple, undisturbed shear flow (i.e. T, = 1,7 and N; =
2n,YWi).

The time evolution of the dimensionless polymer shear stress (7, = T . /Mp7¥) and of
the first normal stress difference (N = Ny /21, JWi) are reported in Figs. 5.15a and 5.15b,
respectively. The dimensionless shear stress exhibits a monotonic increase from O to 1,
for all the considered values of Wi. However, the rate of convergence to the steady-state
value decreases at higher Wi. Similarly, the dimensionless first normal stress difference
also exhibits a monotonic increase from 0 to 1 and a growth rate inversely correlated
to Wi. One noteworthy observation is that, regardless of the value of Wi, the first normal
stress difference (V) takes roughly 60 to 70% longer to reach its steady state compared to
the shear stress. For instance, at Wi = 1, the time needed to reach 99% of the steady-state
value is ~ 4 s for 7., and ~ 6.75 s for V.

These observations are in agreement with the analytical solutions expressed in Egs. 5.35
and 5.36 for the response of an Oldroyd-B fluid subject to a start-up steady shear flow
(Bird et al., 1987a).

Tpx(t) = npi'/(l —e/ ’1) (5.35)
Ni(1) = 2n,A P [1 - (1+%) e*’/’ﬂ (5.36)

It is necessary to point out that the two analytic solutions in Egs. 5.35 and 5.36 are ob-
tained in the case of a simple shear flow set up instantaneously at the time t = 0. In this
scenario, the only relevant time scale is the fluid relaxation time. However, the simula-
tions conducted in this study employ a quiescent initial condition, and therefore, the time
required to attain a fully developed flow must be considered. For a Newtonian fluid, this
time is typically on the order of L?/v, where Vv represents the kinematic viscosity of the
fluid. Although this estimate does not apply generally to viscoelastic fluids, it is reason-
able to approximate the time required for a fully developed flow as L?/v; for the system
under examination, where Vs = 1);/ps represents the solvent contribution to the kinematic
viscosity of the fluid. For all the conditions examined in this study, L?/vs ~ 0.01s is
significantly smaller than A. This indicates that the flow can be regarded as fully devel-
oped before the onset of any elastic effect, enabling us to compare our results with the
analytical solutions presented in Eqs 5.35 and 5.36.

For the shear stress, Eq. 5.35 predicts a monotonic exponential increase of 7, , from

0 to a steady state value of 7,7, with a characteristic time scale A. The initial slope of

at
T Z X
P,x ( a[ [:0

stress that increases monotonically with time from 0 to a steady state value (21,7Wi)

) is positive and equal to 17,,/A. Similarly, Eq. 5.36 predicts a first normal
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Figure 5.15: (a) Time evolution of the dimensionless shear stress, (b) dimensionless first normal
stress difference, and (c) dimensionless period of rotation for a single sphere in shear flow at
different Wi. (—) Represents data from this work and (- - -) are the numerical data reported by
D’ Avino et al. (2008).
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Figure 5.16: Comparison between the time evolution of the normalised ratio Ty, /Ty obtained in
this study (—) and the data of D’ Avino et al. (2008) (- - -).

proportional to Wi. The initial rate of increase of N; is 0 and the function exhibits a
sigmoidal shape. The term (1 + %) appearing on the right-hand side of Eq. 5.36 also
explains the delayed onset of the steady-state behaviour observed for the first normal
stress difference compared to the shear stress. It in fact counteracts, at least initially, the
decay of the exponential term e=t/A), Finally, Fig. 5.15a and 5.15b also showcase the
numerical results from D’ Avino et al. (2008) for Wi = 1 and 2 (red dotted lines) alongside
the results of our simulations. Notably, the time evolution of the shear stress demonstrates
very good agreement with the experimental data. The time evolution of the normal stress
also shows good agreement, albeit marginally better for Wi = 1 than Wi = 2.

Fig. 5.15c reports the time evolution of the dimensionless period of rotation of the
sphere. Again, the rotation rate is initially 0 and rises monotonically to a steady-state
value. In analogy with Ny, the final value attained is a function of Wi. In particular, in
line with what found in the literature, larger Wi implicates larger periods of rotation (i.e.
slower rotation rates). Fig. 5.16 reports a comparison between the temporal evolution of
the period of rotation obtained in this study and the data reported by D’ Avino et al. (2008).
It is important to notice that D’ Avino et al. (2008) employed the upper-convected Maxwell
(UCM) constitutive model. While, in simple shear flow, the UCM model predicts the same
temporal evolution of the shear and first normal stresses as the Oldroyd-B model (from
which it can be derived when 71 = 0), it does not produce an equivalent slowing effect on
the particle rotation rate (Snijkers et al., 2009, 2011). To account for the different final
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value of angular velocity, the value of 7" in Fig. 5.16 was normalised as:

T-T

TF=_— 0
T.—Tp

(5.37)
where Ty and T. refer to the initial value of 7 at time r = O and the value of T at the
steady state, respectively. The time evolution of the normalised period of rotation indi-
cates again a good agreement between the simulations performed in this study and the
data of D’ Avino et al. (2008).

It is interesting to notice that the rotation rate dynamics follows the time evolution of
the normal stress. This seems to indicate a substantial effect of the normal stresses on the
rotation of the sphere. This result, already observed by D’ Avino et al. (2008) and Snijkers
et al. (2009), is somewhat surprising as one would expect that the rotation of the sphere
is mainly governed by the shear component of the fluid stress (that is, the component that
exherts a net torque on the particle). On the other hand we can notice that, if the slowing
effect was only caused by the buildup of the shear stress, passing from a Newtonian to a
viscoelastic fluid with the same total viscosity would not lead to a significant change in
the final torque acting on the sphere?. Then, the only effect of the viscoelasticity would
be a net delay of the onset of tangential stresses around the sphere and a subsequent
"retardation" of the rotation dynamics.

The presence of normal stresses strongly influences the pressure and velocity fields
around the particle. This fact alone could explain the similarity of behaviour of the time
evolution of the first normal stress difference and the rotation period. D’Avino et al.
(2008) also suggests that the normal forces are responsible for the loss of symmetry of

the streamlines observed at large De.

5.3.3 Steady-state results

Streamlines

To give an idea about the changes in flow structure observable in the non-Newtonian case,
and to offer a comparison with other results found in the literature, I will now present the
streamlines for the Newtonian as well as for the viscoelastic cases. The analysis will be
limited to the x-z plane at y = 0. The mirror symmetry of this plane assures that every
streamline starting on the x-z plane, remains on that same plane. This ultimately allows
the observation of the flow structures on 2D plots. It is well known that for a single,
inertialess sphere in an unbounded Newtonian fluid subject to a linear shear creeping flow
(Re < 1), the x-z plane can be divided in two separate sub-regions where the streamlines
behave in different ways (Cox et al., 1968). In the "inner" region, close to the sphere,

the streamlines are represented by an infinite set of closed curves surrounding the sphere.

In both cases the final shear stress acting of the sphere would have an order of magnitude of ~ 7., = oy
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Figure 5.17: Streamlines on the x-z plane for Newtonian and viscoelastic case

The zone extends to infinity in both the positive and negative x direction and becomes
thinner and thinner moving away from the sphere. In the "outer" region, fluid particles
move according to distorted streamlines from left to right, at z > 0, and from right to left
for z < 0. The degree of distortion of the streamlines depends on the proximity to the
sphere, with straight streamlines far away from it. The situation just described can be
visualized in Fig. 5.17a. The inner and outer regions are separated by a thick black line.
For the Stokes flow around the sphere, the flow field is symmetric with respect to the xy
(up-down symmetry) and zy (fore-aft symmetry) planes.

In Fig. 5.17b, the streamlines for the viscoelastic case with Wi = 0.3 are reported.
Despite the low Wi value, a substantial difference can be observed. In particular, the inner
zone is now divided in three areas, one surrounding the sphere and two lateral recircula-
tion zones. In the internal area, the flow field is again constituted by closed streamlines
surrounding the sphere. However, contrary to the Newtonian case, these streamlines do
not extend to infinity but remain confined within a small region around the sphere. The
two recirculation zones are located at opposite sides of the sphere, along the x axis. A
fluid element within a recirculation zone approaches the solid sphere coming from in-
finity without ever encountering it. In fact, the trajectory of any streamline within these
zones, upon reaching the center of the domain, bends sharply before going back to infin-

ity. The separation between the recirculation and internal zones can be identified in two
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saddle points located to the left and right side of the sphere. Notice also that these two
saddle points do not lie exactly on the x axis but are shifted downward and upward for
x < 0 and x > 0 respectively. These means that the flow field has lost both its fore-aft and
up-down symmetry.

Additional increments in Wi seems to only cause a progressive change in the stream-
lines. This means that the flow field conserves its overall structure (constituted by the
two recirculation, the internal and external zones), while the shapes of the different areas
and relative distances change with Wi. The only evident change passing from Wi = 0.3 to
Wi =1 (Fig. 5.17c¢) is that the bold line marking the separation between the internal and
external areas, moves closer to the sphere. At the same time, the saddle points move away
from the sphere along the x direction and slightly upward or downward for the right and
left sides respectively. Increasing Wi to 3 has, to a slightly larger extent, a very similar
effect to the one just described.

It is worth noticing that the flow field just described, and its behaviour with increasing
levels of viscoelasticity, differs from that reported by D’ Avino et al. (2008). In particular,
the flow field characterized by a four-zones structure, which we observed for any Wi > 0,
is reported only at Wi > 1. With the noticeable difference that, within the internal area,
D’Avino et al. (2008) report open streamlines spiraling toward a single orbit instead of
the bundle of closed streamlines reported here. This discrepancy can be explained by the
inadequate value of the blockage ratio, a/L. Figure 5.18 presents the normal components
(xx, yy, and zz) of the fluid stress tensor. To normalize the stresses, they have been divided
by the value of the first normal stress difference predicted by the Oldroyd-B model, 7;; =
=1,

while 7j, = 77, = 0. As shown in Fig. 5.18a, the xx component of the stress is significantly

Ti/2n,A 7. This implies that in the absence of any disturbances in the flow, 7},
higher than the other two components and reaches its maximum value (around 4) close
to the interface between the solid and liquid. The xx component displays two areas of
high stress at the top and bottom of the sphere (x/L = 0 and z/L = +a/L), as well as
two elongated symmetric areas of high stress upstream and downstream of the sphere.
When moving away from the sphere in the z direction, the stress decreases rapidly from
approximately 2.5 at z/L = +a/L to 1 at z/L = £1. Similarly, the stress also decreases
along the x direction, but the fluid never fully relaxes, and at x/L = +1, the stress still
has a residual value of approximately 2.5. Furthermore, the 7, component of the stress
(Fig. 5.18b) remains mostly confined near the sphere. It reaches its maximum value of 0.5
at the interface and quickly drops to zero outside of the region defined by the two intervals
—0.4<x/L<0.4and —0.2 <z/L <0.2. Finally, the T,, component (Fig. 5.18c) takes on
positive values at the top and bottom of the sphere, and negative values in two elongated
symmetric areas upstream and downstream of the sphere. As with the other components,
the stress decreases quickly when moving in the z direction and reaches zero at z/L > 0.3

and z/L < —0.3. Along the x direction, the fluid never fully relaxes, and at x/L = +1, Ty*y
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is approximately 0.01.
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Figure 5.18: Dimensionless normal components of the stress tensor at Wi = 3 and blockage ratio
a/L=0.08.

The fact that some components of the stress tensor fail to completely relax near the
domain boundaries suggests that the imposed boundary conditions may influence the nu-
merical solution around the sphere. To investigate this, an additional simulation was per-
formed with a smaller blockage ratio of a/L = 0.067. The mesh structure and boundary
conditions were kept the same as those used in the previous simulations. The results for
the three stress tensor components are shown in Figure 5.19. It can be observed that the
qualitative behaviour and the range of values for all components remain unchanged. How-
ever, the significant difference is that now both the 77 and 7y, components of the stress
become zero when moving away from the sphere along the x direction (see Figs.5.19b
and 5.19c¢). This is not the case for the 7}, component (Fig.5.19a), where the two sym-
metric areas of high stress upstream and downstream of the sphere still extend throughout
the entire domain. Nonetheless, the residual value at x/L = +1 decreases from 2.5 for
a/L = 0.08 to approximately 2 for a/L = 0.067, indicating a higher degree of fluid stress
recovery.

Despite the moderate reduction of blockage ratio, the shape of the streamlines sur-
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Figure 5.19: Dimensionless normal components of the stress tensor at Wi = 3 and blockage ratio
a/L=0.067.

rounding the sphere undergoes significant changes, as can be observed from the compar-
ison of Figs.5.20 and 5.17d. For the small blockage ratio, the lateral recirculation areas
observed for a/L = 0.08 are no longer present, and the flow field is now divided into three
distinct areas, marked by the three red curves in Fig.5.20. The "inner" area is the region
enclosed by the two external and the internal red curves. A fluid element starting within
this area follows a distorted circulation path around the sphere that elongates and tends
towards the external delimiting curves (lower and upper red curves). Note that within
the internal area in Fig.5.20, only a single streamline has been plotted starting from the
point (x/L = 0.075 and z/L = 0). In the other two areas, above and below the external
delimiting curves, the fluid moves along distorted streamlines from left to right, at z > 0,
and from right to left for z < 0. Moreover, the flow field does not exhibit either up-down
or left-right symmetry.

These findings differ from those reported by D’ Avino et al. (2008) for W > 1, where
the inner area is reported to further split in two zones separated by an attractor curve.
Nonetheless, the results obtained at a/L = 0.067 appear to be more consistent with the

physical behaviour expected for the system. In fact, any distortion of the streamlines
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around the sphere arises from the disturbance created by the presence of the sphere.
Therefore, it is reasonable to expect that far from the sphere, the flow would recover
its undisturbed behaviour. In the case of a simple shear flow, the undisturbed behaviour is
characterized by straight streamlines parallel to the direction of the imposed velocity. This
condition is not met for the simulations with a/L = 0.08, where the two recirculation ar-
eas in Fig.5.17d extend until the end of the simulation domain. However, for a/L = 0.067,
the inner area becomes increasingly narrow as one moves away from the sphere along the
x direction until it is no longer visible. Consequently, the flow far from the sphere is again
characterized by straight streamlines. These results seem to indicate that, contrary from
what reported for the Newtonian case, the accurate simulation of the behaviour of a solid

in the unconfined flow of a viscoelastic fluid requires a large blockage ratio (< 0.067).

Figure 5.20: Streamlines on the x-z plane at Wi = 3 and a/L = 0.067.

Angular velocity

Fig. 5.21 shows the results for the prediction of the angular velocity of a solid sphere in an
Oldroyd-B fluid as a function of the Weissenberg number. The results are reported in the
form of the ratio between 2/} = Ty /Tyn. For a Newtonian fluid, this ratio is equal to 1
(Einstein, 1905). As expected, a substantial slowing down of the angular velocity can be
observed as Wi increases. The figure also includes numerical data from previous studies
by Hwang et al. (2004), Goyal and Derksen (2012), and D’ Avino et al. (2008) as well
as experimental data reported by Snijkers et al. (2009). These authors employed various
numerical schemes to simulate the behaviour of a sphere suspended in an Oldroyd-B fluid,
assuming a viscosity ratio of 1,/1, = 1. Specifically, Hwang et al. (2004) utilized a finite
element scheme to directly simulate inertialess particle suspensions in simple shear flow
of an Oldroyd-B fluid, employing the sliding bi-periodic frame concept introduced by
Lees and Edwards (1972) on a 2D domain. Goyal and Derksen (2012) employed a lattice-
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Boltzmann scheme coupled with a finite volume solver to handle the transport equation of
the conformation tensor and obtained results up to Wi = 2. D’ Avino et al. (2017), on the
other hand, utilized a finite element scheme within a cubic cell containing a single sphere
at its center. The experimental data presented by Snijkers et al. (2009) were obtained by
measuring the angular velocity of 49 um polystyrene particles suspended in a solution
of high molecular weight PIB (2000 ppm of Oppanol B200, BASF) in a low molecular
weight PIB (Infineum S1054, Exxon Chemical). The polymeric suspension exhibited
Boger fluid behaviour, characterized by a constant viscosity and a quadratic increase of
the first normal stress difference with the shear rate. Therefore, it was possible to model
it with the Oldroyd-B constitutive equation.

Upon initial analysis, it is apparent that the data obtained in this study are in agree-
ment with all the numerical results reported in the literature up to a critical value of Wi
approximately equal to 2. Up to this value, both the results of this work and all the nu-
merical results reported show a weaker dependency of the angular velocity on Wi. This
slight over-prediction of the angular velocity was also discussed by D’ Avino et al. (2008)
who found that the discrepancy persisted even when modelling the fluid with a single or
a multi-modes Giesekus constitutive equation. For Weissenberg numbers (Wi) beyond 2,
this results of this study deviate significantly from those reported by Hwang et al. (2004)
and D’Avino et al. (2008). Notably, this study shows a more pronounced decrease in
angular velocity with increasing Wi, which aligns better with the experimental findings.
The exact reason for this discrepancy is not entirely clear. However, it is worth not-
ing that Hwang et al. (2004) conducted their simulations on a two-dimensional domain,
while D’ Avino et al. (2008) simulated only one quarter of the domain in three dimensions,
utilizing symmetry boundary conditions along the y — z and x — y planes (see Fig. 2). Itis
possible that the imposed forced symmetry of the flow field in both cases contributes to
the deviation from the experimental results. It is worth noting that all the angular velocity
results presented in this section were obtained with a blockage ratio of a/L = 0.08. How-
ever, as explained above, an additional simulation was conducted at Wi = 3 with a lower
blockage ratio of a/L = 0.067. The results of this simulation are not included in Fig. 5.21
as they yielded an identical value to the one obtained at Wi = 3 with a/L = 0.08.

5.3.4 Conclusions

In this chapter, we reported our results on the use of the VOF for the simulation of a
solid sphere suspended in an unbounded viscoelastic fluid and subject to a simple shear.
The scope was to provide a proof of concept for the use of the multiphase algorithm
rheoInterFoam, for the simulation of the dynamics of a solid particle in a non-Newtonian
fluid.

Initially, 2D simulations were carried out, where both the sphere and the suspending
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Figure 5.21: Results of the rotational velocity of a solid sphere in an Oldroyd-B fluid as a function
of Wi and comparison with available literature.

phase were modelled as Newtonian fluids. This preliminary study was used to assess the
possibility of simulating a solid sphere as a fluid phase with a high viscosity and interfacial
tension. The results show that by carefully choosing the value of the viscosity ratio 8 and
the Capillary number Ca, it was possible to assure the sphericity of the fluid droplet and
the absence of internal circulation throughout the entire simulation. The Newtonian case
was also used to perform a grid independence study that was subsequently extended to
the three-dimensional, viscoelastic case.

The simulations for the viscoelastic case were performed using the Oldroyd-B con-
stitutive equation to model the suspending fluid. The simulations were performed on a
three-dimensional grid with a Weissenberg number varying between 0 and 3. As expected,
increasing the viscoelasticity of the flow (i.e. increasing Wi), resulted in an increase of the
rotational period of the sphere. This result was in agreement with the available literature.
Furthermore, the analysis of the time evolution of the angular velocity of the sphere and
both the shear and normal stresses of the suspending fluid, revealed that the slowing effect
on rotation rate was strongly influenced by the buildup of normal stresses. Additionally,
the analysis of the streamlines around the sphere revealed that, at high Wi, the values of
blockage ratios a/L suggested in the literature are insufficient to completely neglect the
effect of the imposed boundary conditions on the flow field around the sphere. Finally, a
comparison of the predicted angular velocity with the available literature showed a good
agreement with the numerical data reported in the literature up to Wi = 2. Above this

value, the results of this work deviate from previously published numerical results but
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show a better agreement with experimental data. The reason for the disagreement is not
clear, but one potential explanation is that, at high Wi, the flow field around the sphere
becomes highly distorted and loses its symmetry with respect to the x —y and y — z ob-
served in the limit of W — 0. The use of a two-dimensional domain (as in Hwang et al.
(2004)) or the imposition of symmetry boundary conditions (as in D’ Avino et al. (2008))
may then lead to deviations from experimental results.

The preliminary results reported here, indicate that the suggested procedure is promis-
ing. It allows the setup of flow problems involving multiple phases, in a fast and reliable
way without the necessity of dealing with moving boundaries. More work is necessary to
verify the capability of this method to simulate more complex flow geometry and/or more
complex rheological behaviours.



Chapter 6

Conclusions and future work

6.1 Conclusions

The primary objective of this research was to examine the mixing of solid particles in
highly viscous, non-Newtonian fluids within stirred vessels. The focus was particularly
on the segregation of the solid phase observed when suspending solids in viscoelastic
liquids. The phenomenon was initially encountered during an experimental campaign de-
scribed in Chapter 3, where the dynamics of solid particles dispersed in highly viscous,
non-Newtonian fluids under agitation in a stirred vessel were studied using a mixing sys-
tem based on a previously investigated design for a toothpaste manufacturing mixer by
Cortada et al. (2018). The study aimed to correlate the migration phenomenon with the
viscoelastic nature of the suspending fluids and determine its direction and intensity based
on relevant rheological and fluid dynamic factors.

The results revealed that in a Newtonian ambient fluid, particles disperse uniformly in
the flow, whereas in strongly shear-thinning and/or viscoelastic ambient fluids, particles
tend to accumulate in the core of the vortices formed in the flow domain. The migration
of solids towards the vortex core was also observed in purely viscoelastic (Boger) fluids,
indicating that fluid viscoelasticity alone causes cross-flow migration. Furthermore, the
characteristic velocity of migration, determined by the measurement of the characteristic
migration time, was found to depend on the intensity of flow elasticity, characterized by
the Weissenberg number (Wi). Finally, a plausible migration dynamics was proposed,
consistent with the distribution of shear rates inside the tank.

To the best of the author’s knowledge, the observations in Chapter 3 represent the first
identification of viscoelasticity-induced particle migration in stirred vessels. Therefore,
further investigations of this phenomenon were warranted. However, limitations asso-
ciated with the experimental apparatus employed in Chapter 3 hindered the quantitative
correlation between migration velocity and the elastic character of the flow. Additionally,

the complex geometry of the mixing system only allowed intuitive inference of parti-
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cle dynamics and prevented precise characterization of the flow in terms of its principal
directions of strain.

Consequently, the research was expanded as detailed in Chapter 4. This chapter fo-
cused on experimentally investigating the dynamics of solid particles agitated by a Rush-
ton turbine using Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry
(PTV) techniques. The simplicity of the impeller geometry facilitated accurate measure-
ments of the three-dimensional flow field, which could be analyzed in terms of its prin-
cipal directions of strain. The complete knowledge of the velocity field was combined
with a thorough rheological characterization of the fluids, accounting for shear-induced
polymer degradation, to validate the predictions of a scaling law. The scaling law, derived
through heuristic reasoning, correlated the characteristic migration velocity with fluid rhe-
ological parameters (polymer viscosity and relaxation time) and the scale of shear rate in
the tank. A good agreement between experimental results and scaling law predictions was
observed, suggesting the applicability of the law as a design tool.

Finally, Chapter 5 presents a separate yet relevant study on the development of a
Computational Fluid Dynamics (CFD) method for simulating the dynamics of solids sus-
pended in viscoelastic fluids. The approach was validated against a well-documented case
study involving a solid particle placed at the center of a simple shear flow between par-
allel plates. The selection of this case study was based on its conceptual simplicity and
the availability of experimental and computational data in the literature. The proposed
approach utilized the open-source CFD code OpenFOAM, known for its robustness and
flexibility, as the foundation for the VOF-based method. Although other successful ap-
proaches exist for simulating similar systems, a consensus on the optimal computational
tools for addressing such problems is still lacking. This work focused on a VOF-based
CFD approach capable of simulating the dynamics of a single solid particle suspended
in a viscoelastic fluid. In this method, both phases of a biphasic system are treated as
fluids with their own physical properties (density, viscosity, interfacial tension, etc.). The
interface position is tracked by solving a transport equation for the volume fraction of one
of the phases. Initially, considerable effort was dedicated to determining the parameter
space where the assumed equivalence between a solid sphere and a highly viscous liquid
drop holds true. A parametric study revealed that this equivalence remains valid as long
as the viscosity ratio (i.e., viscosity of the dispersed phase divided by the viscosity of the
suspending phase) is larger than 10%, and the capillary number (Ca) is less than or equal
to 0.01.

Subsequently, simulations were performed for the viscoelastic case using the Oldroyd-
B constitutive equation to model the suspending fluid. Three-dimensional grids were
employed, with the Weissenberg number (Wi) varying between 0 and 3. As expected,
increasing the viscoelasticity of the flow (i.e., increasing Wi) led to an increase in the ro-

tational period of the sphere, consistent with existing literature. Additionally, analysis of
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the streamlines around the sphere indicated that at high Wi, the recommended blockage
ratios (i.e., the ratio between the radius of the sphere and the size of the computational
domain) found in the literature are insufficient to neglect the influence of imposed bound-
ary conditions on the flow field around the sphere. Finally, a comparison of the predicted
angular velocity with available literature showed good agreement with numerical data
reported in the literature up to Wi = 2. Beyond this value, the results diverged from pre-
viously published numerical results but exhibited better agreement with the available ex-
perimental data. The preliminary results presented in Chapter 5 demonstrate the promise
of the proposed procedure, enabling the setup of flow problems involving multiple phases
in a fast and reliable manner without the need to handle moving boundaries.

In conclusion, this research aimed to investigate the mixing of solids in highly vis-
cous, non-Newtonian fluids in stirred vessels, with a focus on the segregation of solid
particles in viscoelastic liquids. The findings in Chapter 3 provided the first observations
of viscoelasticity-induced particle migration in stirred vessels. Subsequent chapters ex-
panded on these observations, exploring the dynamics of solid particles under agitation
and developing computational methods for simulating their behaviour in viscoelastic flu-
ids. The experimental and numerical results obtained contribute to a better understanding
of particle migration phenomena and offer valuable insights for designing efficient mixing

systems in various industrial applications.

6.2 Future work

Although this work has achieved important steps towards the understanding of the phe-
nomenon of viscoelasticity-induced particle migration in stirred vessels, it also raised new

research challenges.

Migration in stirred tanks

In the context of stirred vessels, there are two distinct directions that can be pursued
regarding the segregation of the solid phase.

For conventional mixing operations where the dispersion of the solid phase and homo-
geneity are desired outcomes, further experimental campaigns using realistic mixing sys-
tems with industry-standard impellers can be conducted. This would involve exploring a
wider range of operating conditions, including variations in impeller-tank configurations,
impeller speeds, and properties of the involved phases. By identifying the conditions
that lead to particle clustering and segregation, recommendations can be made to mitigate
these issues. This may involve suggesting alternative impeller designs, adjusting impeller
speeds, or considering the implementation of discontinuous transient mixing regimes. The

goal would be to optimize mixing performance and achieve uniform dispersion of solids.
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In the context of separation devices, where segregation is desired, future research can
focus on harnessing the viscoelasticity-induced particle migration for solid separation.
Building upon previous work on Newtonian liquid-solid systems (Wang et al., 2014), ex-
perimental investigations can be conducted to explore the potential of viscoelastic systems
for efficient separation. The emphasis should be on "difficult-to-separate suspensions"
characterized by small density differences, high viscosity, and small-sized particles. The
design of batch or continuous separation processes can be explored, with the continu-
ous approach offering advantages in terms of process intensification. Optimal impeller
shapes, impeller-tank configurations, and operational parameters for effective separation
can be identified through experimental campaigns. A comparison with existing separation
processes in terms of speed, effectiveness, and cost/energy efficiency could also provide

valuable insights for practical implementation.

Volume Of Fluids computational methods

In future research, there are several directions to explore regarding the application of
the Volume of Fluid (VOF) method for simulating the dynamics of solids in viscoelastic
fluids. These investigations aim to enhance the understanding and applicability of the
VOF-based Computational Fluid Dynamics (CFD) approach.

One area of focus is to examine other simple flow systems, such as Taylor-Couette
flow or Poiseuille flow. These flow configurations offer well-defined, unidirectional flows,
providing a controlled environment to study the migration of solids in viscoelastic fluids.
By comparing simulation results with existing numerical and experimental data, the accu-
racy and reliability of the VOF method can be assessed, validating its capability to capture
the migration phenomenon in these simpler flow cases.

To approach the complexity of flows encountered in stirred vessels, it is important
to extend the analysis to non-unidirectional flows. Noticeably, stirred vessels involve
complex, three-dimensional flow patterns due to impeller shape, presence of baffles, and
vessel geometries. To comprehend the complex behaviour of solid in stirred vessels, it
is crucial to gradually progress from simple to moderately complex flow configurations.
Rather than directly simulating stirred vessels, an intermediate step could involve explor-
ing non-unidirectional flows that possess a moderate level of complexity such as flow
in non circular channels. These flow scenarios incorporate additional flow components,
such as secondary flows or recirculation zones, while remaining simpler than stirred ves-
sels. By employing the VOF method to simulate these intermediate flows, one could gain
insights into the interplay between flow characteristics and solid migration.

Another aspect to consider is the simulation of multiple particle systems. By start-
ing with two-particle systems, the interactions between solid particles, particularly their
hydrodynamic interactions, can be examined. This analysis involves studying the effects

of particle concentration, size, and shape on the migration behaviour. Understanding the
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dynamics of multiple particles and their interactions within viscoelastic fluids is crucial
for designing processes involving multiple solid phases.

Additionally, it is essential to evaluate the performance of the VOF method with var-
ious constitutive equations. While the Oldroyd-B constitutive equation was used in this
study, other viscoelastic models exist in the literature. Applying alternative, more realis-
tic constitutive equations to simple flow problems, such as Taylor-Couette or Poiseuille
flows, could enable the assessment of the ability of the VOF method to handle differ-
ent rheological behaviours and predict experimental results conducted with real fluids.
This investigation would provide insights into the versatility and applicability of the VOF
method for a broader range of viscoelastic fluids encountered in practical applications.

In summary, future work should focus on expanding the application of the VOF
method in simulating solids suspended in viscoelastic fluids. This can be achieved by
examining simpler flow problems to validate accuracy of the method and reliability. Fur-
thermore, investigating non-unidirectional flows resembling those found in stirred vessels
will provide insights into the behaviour of solids in realistic flow fields. Additionally,
studying multiple particle systems and exploring different constitutive equations will en-
hance the capabilities of the method and broaden its applicability. These efforts would
contribute to the development of the VOF method as a robust tool for simulating and

comprehending the dynamics of solids in viscoelastic fluid systems.
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Figure A.1: Convergence plot for the average velocity on the horizontal plane Z/T = 0.48 for the
fluid RIjo0 at Re = 4.3 and Wi = 0.4, as function of the sample size. The plane at Z/T = 0.48
was chosen as worst case scenario as the convergence of the average planar velocity appears to be
faster for all the others horizontal and vertical planes.
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Figure A.2: Time evolution of the particles positions on the horizontal plane for the fluid R/} at
Wi=0.35.
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Listing B.1: transportProperties

1// * % % % % % % % * * % % % % % % % % % * * % % * % * % % % * * % *x *x *x *x *x //
N
3 phases (water air);

4

5 water

6 {

7 transportModel Newtonian;
8 nu ilg

9 rho 1

10 }

11

12 air

13 {

14 transportModel Newtonian;
15 nu 10000

16 rho g

17 }

18

19 sigma 0.0032;

20

31// 3k 3k 3k >k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k >k 3k 3k % %k 3k 3 % %k 3k 3 % %k 3k 3 % %k %k 3 > %k %k 3 > % %k 3% > % %k % 3 % % % 3 % % % % % % % % % % % % % % % % % % % % % //

Listing B.2: blockMeshDict

1
2 convertToMeters 1;

{vertices

5(

6 ( -0.075 -0.075 -0.075)
7 ( 0.075 -0.075 -0.075)
8 ( 0.075 0.075 -0.075)
9 ( -0.075 0.075 -0.075)
10 ( -0.075 -0.075 0.075)
11 ( 0.075 -0.075 0.075)
12 ( 0.075 0.075 0.075)

13 ( -0.075 0.075 0.075)

14 ;

15

l6nx = 150

17 blocks
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19 hex (01 2 3 45 6 7) (nx nx nx)

20 simpleGrading (
21 (

22 (0.
23 (0.
24 (0.15 0.3 1)
25 (0.

29 (0.
30 (0.
31 (0.15 0.3 1)
32 (0.

35 (0.
36 (0.
37 (0.15 0.3 1)

35 0.
15 0.

//
35 0.

356 0.
15 0.

//
35 0.

35 0.
15 0.
//

2 2) // 35% x-dir, 20% cells,
3 1)
30% x-dir, 60% cells, expansion

2 0.5) // 35% x-dir, 20% cells,

2 2) // 35% x-dir, 20% cells,
3 1)
30% x-dir, 60% cells, expansion

2 0.5) // 35% x-dir, 20% cells,

2 2) // 35% x-dir, 20% cells,
3 1)

30% x-dir, 60% cells, expansion

38 (0.35 0.2 0.5) // 35% x-dir, 20% cells,

43 edges

44 (

45);

46

47 boundary

48 (

49 upperWall

50 {

51 type wall;
52 faces

53 (

54 (376
55 )

56 T

57 lowerWalls

59 type wall;
60 faces

61 (

62 (0 4 5

63 )3

66 left
67 {

2)

1)

68 type patch;
69 faces ((0 4 7 3));

70 }
71

72 right
73 {

74 type patch;
75 faces ((1 2 6 5)

76 i

77

78 front
79 {

)

expansion

=1

expansion

expansion

= il

expansion

expansion

=1

expansion

1/2

1/2

1/2
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90 ) ;

91

92 mergePatchPairs

93

94 ) ;

(

[/ %k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok o K K K K oK K ok ok ok ok ok ok ok ok K K K K K ok ok ok ok ok sk ok ok kK kK Kk Kk ok ok kokk ok kkkkkkkkkk [/

type

faces

back
{

symmetry;

(4 56 7));

type symmetry;

faces

dimensions

internalField

boundaryField

{

upperWall

{

type

lowerWalls

{

type

left

type

righ

type

fron

back

value

t

value

t

type

(0 3 2 1));

Listing B.3: tau.water

[1 -1 -2 00 0 01;

uniform (0 0 0 O O 0);

zeroGradient;

zeroGradient;

linearExtrapolation;
uniform (0 0 0 0 O 0);

linearExtrapolation;
uniform (0 0 0 0 0 0);

symmetry ;
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43
44

46
47
48
49

49

50 [/ %%k K ok ok ok ok ok ok ok ok kK K oK ok ok ok ok ok ok ok ok ok K K K K K K ok ok ok ok ok ok kR R K KK Kk Kk k ok ok ok k kK KKKk Kk kkkkkkkkkkkkkk [/

// 3k 3k >k 3k 3k %k >k 3k 3k %k >k 3k 3k % %k 3k 3k 3%k %k %k 3k 3k %k >k 3k 5%k %k >k 3k 3k % >k 3k 3%k % >k %k 3% % %k %k 3%k 3% %k >k 3k 5%k %k >k 3k 3% % >k 3k 3% % >k %k 3% % % %k 3% % % %k % % %k %k % %k ¥ //

type

dimensions

internalField

boundaryField

{

upperWall

{

type

lowerWalls

{

type

left

type

righ

type

fron

back

value

t

value

t

type

type

symmetry;

Listing B.4: theta.water

[ 000O0OGOOO0];

uniform (0 0 0 0 0 0);

zeroGradient;

zeroGradient;

linearExtrapolation;
uniform (0 0 O 0 O 0);

linearExtrapolation;
uniform (0 0 0 0 0 0);

symmetry;

symmetry;
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