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Abstract 

Studies of the association between developmental trajectories and adult health require 

methods relating developmental measures from different life stages to single measures of 

health outcomes. We present a joint multivariate response model to a longitudinal 

response variable, body mass index (BMI), and two single measure adult outcomes - 

systolic blood pressure (SBP) and high density
 
lipoprotein cholesterol (HDL-C), to 

investigate the association between BMI trajectories and adult cardiovascular disease 

(CVD) risk factors. We adopt a linear spline model for repeated BMI measures to allow 

for distinct childhood and adult curves and separate models for SBP and HDL-C. The 

models are fitted simultaneously by assuming the joint distribution of random 

coefficients. The model is applied to the 1958 British Birth Cohort (n=17,000), whose 

BMI was recorded at six ages from 7 to 45y (16,820 with one or more measures) and 

SBP and HDL-C were measured at 45y. Results show that the rate of BMI gain in 

adulthood has a stronger association with SBP and HDL-C than the rate of BMI growth 

in childhood (p<0.05 for SBP in boys and for HDL-C in both genders). For SBP, the 

estimated correlation for the rate of adult BMI gain is 0.27 (95% CI: 0.23, 0.32) in males 

and 0.35 (0.31, 0.38) in females, compared to 0.22 (0.16, 0.27) and 0.18 (0.11, 0.25) 

respectively for the rate of childhood growth. For HDL-C the correlation is -0.43 (-0.48, -

0.38) and -0.45 (-0.48, -0.41) for adult BMI gain compared to -0.14 (-0.17, -0.10) and -

0.26 (-0.30, -0.22) for childhood growth. Furthermore, the rate of childhood growth is 

associated with adult outcomes, independent of adult BMI gain.  

Conclusions Joint multivariate response modeling is a useful approach for estimating the 

association between repeated exposure variables at different life stages and adult 

outcomes, therefore has important applications in the life-course epidemiology.  
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1. Introduction 
 

In longitudinal birth cohort studies, variables are often collected for each individual at multiple time 

points. Cohort studies are often used in life course epidemiology to investigate how risks for adult 

diseases may accumulate over time and to identify critical periods when the effect has a greater 

impact. For example, physical growth and development in childhood and adulthood have been 

associated with adult disease risks. A simple approach used to study such an association is a 

conditional linear regression model where all repeated growth measures are included as independent 

variables. The model is re-parameterized in terms of the first measure and all subsequent consecutive 

increments [6, 14, 17]. The conditional models have been applied to assess how changes of BMI 

across the life course influence later cardiovascular disease (CVD) risk factors [4, 17, 20]. This 

approach does not account for the fact that timing of measures may not be the same across individuals 

and it includes only individuals with complete data on the repeated measurements, although multiple 

imputation may be applied for the missing growth measures [6]. The conditional model may become 

impractical when there are a large number of growth measurements as there would be many 

consecutive intervals. Some have suggested that we only include time points representing important 

periods of growth instead of using all available measures [4]. Another two-step approach is to first fit 

a random effect model to the repeated growth measurements. The individual-specific growth 

parameters (i.e. slope, which indicates the rate of growth) are estimated from the model and are then 

used as independent variables in the primary model for each disease risk [1, 5, 18]. As the individual-

specific parameters are estimated, they are subject to errors. This approach requires the assumption 

that enough information is available for each individual to obtain the estimates of the growth 

parameters and their variances with adequate precision. 

 

We consider a flexible approach which is closely related to the general multivariate normal linear 

random effects model [15]. We use a joint model for a mixture of single and repeated measurements 

of response variables to examine the relationship between longitudinal changes of BMI and adult 

CVD risk factors. We adopt a linear spline model with random coefficients for BMI to allow for 

different curves for BMI changes in childhood and adulthood, and separate models for CVD risk 

factors with only a random intercept term. The models for BMI and CVD risk factors are fitted 

simultaneously by considering the joint distribution of their random coefficients. The joint model can 

be defined in a multilevel framework, where the measurement are assumed to be level-1 units, 

clustered within individuals (level-2 units) [11]. The estimates of growth characteristics are derived 

from the model’s parameters. The correlations between growth characteristics and values of CVD risk 

factors are obtained directly using the estimated covariance matrix. Thus these joint models have 

important applications to life-course study of adult health, for example, to explore how parameters 

characterize growth and development at different life stages are associated with adult disease risks. 

 

The outline of this paper is as follows: Section 2 describes the use of a joint model to analyze 

longitudinal BMI measurements and two adult CVD risk factors: adult systolic blood pressure (SBP) 

and high density
 
lipoprotein cholesterol (HDL-C); it also describes the correlation coefficients 

between growth characteristics of BMI (i.e. BMI at specific ages or rates of BMI changes) and each 

CVD risk factor. Section 3 describes the 1958 British birth cohort study and the results from the joint 

model analysis, and Section 4 contains a discussion. 

 

 

 

2. A joint model for single and longitudinal response variables 

 
2.1 The joint model  
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In the present case of one longitudinal (BMI) and two single measure response variables (SBP and 

HDL-C), we denote )1(
ijy  to be the log 10 transformed BMI ( )1(

ijy =
ijBMIlog , nj ,...2,1 , 

jni ,...,2,1 , 

jn is the number of measurements on individual j ), ijt to be the exact age at each measurement, )2(
jy  

and )3(
jy  to be adult SBP and log 10 transformed HDL-C ( )3(

jy =
jHDL log ). We assume that )1(

ijy  

follows a piecewise linear curve with a single knot at age 0t (same for all individuals). The indicator 

represents two age ranges, with 1
0
ttij

I  for 0ttij   or 0
0
ttij

I  otherwise. We specify only a random 

intercept term for )2(

jy  and )3(

jy . The joint model for multivariate response variables can be written as 

 

ijttijjijjjij eIttty
ij

  0
)( 0210

)1(     

jjy 3

)2(       (1) 

jjy 4

)3(   

 

where random coefficients j0 , j3 and j4 are individual-specific intercepts for the three response 

variables. For the response variable )1(
ijy , there are two individual-specific slopes on age, 

j1  (slope 1 

for 0ttij  ) and 
jj 21    (slope 2 for 0ttij  ), which indicate the degree of BMI changes over time. 

The coefficients ),...,,( 410 jjj  characterize individual’s deviation from the estimated mean values.  

Model (1) is fitted jointly assuming that random coefficients 
j = T

jjjjj ),,,,( 43210   are 

independently and identically distributed (iid) across j and follow a multivariate normal distribution 

with mean  = T),,,,(
43210

 and individual-level (level-2) covariance matrix 

 

 =























2

4

34

2

3

2423

2

2

141312

2

1

04030201

2

0











. 

 

An unstructured covariance matrix is specified. The errors  ije  are assumed to be iid across i and j 

with ije ~ N (0,
2

e ), and independent of the random effects j . In the simultaneous equations model 

(1), the responses are dependent on each other. The covariance terms represent the degree to which the 

individual intercept and slopes for the response variable )1(
ijy  ( j0 , j1 , j2 ) co-vary within 

themselves and with values of )2(
jy  and )3(

jy  ( j3  and j4 ). 

 

Model (1) can be expressed as a multivariate model 
j

T

jj εβXy  j
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T

jy T
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1)2( jn  vector of response variables on individual j and )1(

jy = T

jnjj j
yyy ),...,( )1()1(

2

)1(

1
, 

jβ  is a 15  vector 

of random effects, T

jX  is an 5)2( jn  matrix  



















1

1

j
T
j

Z

X  

Section on Statistics in Epidemiology – JSM 2011

4527



where jZ  is an 3jn  matrix of constants  
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and 
jε

T
jjnjj eee )0 ,0 , ..., ,,( 21  is an 1)2( jn  vector of level-1 errors. 

 

 

2.2 Correlations between growth characteristics of )1(
ijy  and values of )2(

jy  and )3(
jy   

The growth characteristics we are interested include the values of )1(
ijy  at age t, written as 

ijjj et  10   ( 0tt  ) and 
ijjjjj ett  )( 21020   ( 0tt  ), and slopes for )1(

ijy , slope 1 (
j1 ) and 

slope 2 (
jj 21   ). The correlation between values of )1(

ij
y  at age t and )2(

jy  (i.e. 
j3

 ),  which is a 

function of t , can be written as 
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The correlation between each slope of )1(
ijy  and the values of )2(

jy  can be expressed as follows  
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The correlation coefficient (between -1 and 1) assumes that the measures (slope of )1(
ijy and intercept 

)2(
jy ) follow a normal distribution.  

  

There is no constraint added to the covariance matrix, thus formula (3) represents the correlation 

between each slope of )1(
ijy  and )2(

jy  values when the correlation between the other slope and 
)2(

jy  

values is accounted for through the covariance matrix. For example, 
13

 / 2

3

2

1
  is the correlation 

between slope 1 of )1(
ijy  (

0tt  ) and 
)2(

jy  values when the correlation between slope 2 ( 0tt  ) and 
)2(

jy  

values is adjusted for. We may also estimate the correlation between slope 1 of )1(
ijy  and 

)2(
jy   when 

the correlation for slope 2 of )1(

ij
y  is not accounted for. This can be estimated by adding a constraint of 

0
2313
  to the covariance matrix. Similarly, we can estimate the correlation between slope 2 and 

)2(
jy  values ignoring the correlation between slope 1 and 

)2(
jy  by setting a constraint 013  . This 

application is particularly useful in life-course epidemiology to study whether BMI increase during a 

specific period affects an outcome, independent of BMI changes during other periods.  

 

For the response variable
)3(

jy , its correlations with growth characteristics of )1(
ijy  can be obtained by 

replacing the parameters for 
)2(

jy
 
in (2) and (3) with the respective parameters for 

)3(

jy .  
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We fit the joint model in MLwiN. The model’s parameters (  ,  , and 2

e ) are first estimated using 

the iterative generalized least squares (IGLS) algorithm of Goldstein (1986) which provides maximum 

likelihood estimates [21]. For the linear spline model for )1(

ij
y , the knot is positioned at different ages 

and -2log (likelihood) of each model is compared. The location of the knot 0t  is chosen based on the 

likelihood profile function [13].   

 

The correlation coefficients are non-linear functions of the parameter estimates. Thus their theoretical 

distributions are complicated and the explicit formulae of their variances can not be directly expressed. 

There are several approaches to calculate the variance for the estimate that is a non-linear function of 

model parameters, for example using Taylor series [7] and re-sampling methods [19]. In the current 

study we apply the semi-parametric bootstrap re-sampling procedure. Each sample is drawn (with 

replacement) from estimated residuals at each level to create a dataset that has the same multilevel 

structure. These sampled residuals are then added to the fixed part of the model to obtain a new set of 

responses. Estimates of model parameters and the correlation coefficients are obtained for each of the 

bootstrap sample. We re-sampled 499 bootstrap datasets to obtain the means and 95% confidence 

intervals (CI) for the correlations coefficients.   

 

 

 

3. Child-to-adult BMI and adult CVD risk factors in the 1958 British birth cohort 

 

3.1 Data 
The 1958 British birth cohort  includes all children born in England, Wales, and Scotland in one week, 

March 1958 [2]. Approximately 17,000 live births were followed-up at multiple ages from 7 to 50y. 

Height and weight were recorded in childhood at 7, 11, and 16y, and in adulthood at 23, 33, and 45y. 

All variables were measured by medical personnel using standard protocols, except for 23y when 

height and weight were self-reported. Body mass index (BMI, kg/m
2
) was derived at each age. At 45y, 

12,069 cohort members were invited to participate in a medical assessment. Blood pressure (BP, 

mmHg) was measured three times using an Omron 705 automated sphygmomanometer. The average 

of three systolic blood pressure (SBP) measurements is used in the analyses. Non-fasting venous blood 

samples were collected. Total and high density lipoprotein cholesterol (HDL-C, mmol/L) were 

analyzed using enzymatic methods. The formation on anti-hypertensive medication was recorded. The 

cohort remained in adulthood has been found to be representative of the original birth sample in most 

respects [9]. Ethical approval for data collection at 45y was given by the South East England Multi-

Centre Research Ethics Committee. 

 

The main analysis involves 8,657 male and 8,163 female cohort members with at least one BMI 

measure between 7 and 45y, or a measurement of SBP or HDL-C at 45y. Thus a majority of 

participants are included in the analysis (all individuals had at least one BMI measure, 9297 had a SBP 

measure and 7808 had a HDL-C measure). We apply model (1) to three response variables, 

longitudinal BMI measurements from 7 to 45y, and individual level SBP and HDL-C. The aim is to 

examine how BMI at particular ages and changes of BMI from childhood to adulthood are associated 

with SBP and HDL-C at 45y. As in model (1), BMI at each age and HDL-C are log 10 transformed to 

correct for their right skewness. At age 45y, 429 individuals were taking anti-hypertensive medication. 

The estimated association between BMI trajectories and SBP is likely to be underestimated if the 

treatment effect is not accounted for. In the current analysis, we add a constant of 10mmHg to the 

observed SBP in treated participants [22]. BMI trajectories and measures of CVD risk factors differ by 

genders. The observed mean BMI and SBP at 45y are higher for males than females; 27.8 kg/m
2
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(sd=4.3) versus 27.0 kg/m
2
 (sd=5.5) for BMI, and 133.5 mmHg (sd=15.4) versus 121 mmHg 

(sd=16.0) for SBP. Mean HDL-C is lower for males than females; 1.43 mmol/l (sd=0.34) versus 1.69 

mmol/l (sd=0.41).  

 

There are a maximum of six BMI measures per person. The observed mean BMI shows distinct rates 

of BMI changes in childhood and adulthood (Figure 1).  
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Figure 1: Geometric mean BMI trajectories (estimated from joint model) and observed values  

 

We fit two linear curves to repeated BMI measurements, one for “childhood’’ and one for 

“adulthood’’, where the knot 0t  is the age at which the time rate of growth changes. A gender-specific 

knot is chosen at age 20y for males and 16y for females based on likelihood profile (Figures 2a and 

2b). We fitted model (1) separately to males and females. The parameter estimates for fixed effects are 

given in Table 1. The correlation coefficients between growth characteristics and SBP and HDL-C at 

45y are given in Table 2. 
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Figure 2a: -2loglikelihood (1958 males) 
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Figure 2b: -2loglikelihood (1958 females) 

 

 

3.2 Results 
Child-to-adult BMI 

The curves of geometric mean BMI shown in Figure 1 are derived from the fixed part of the model for 

BMI ( 00210 )(
10 ttIttt  

). The estimated curves are close to the observed values. There is a 

significant difference between child and adult slopes, indicating that BMI increase is faster in 

childhood than in adulthood (Table 1, p-value for 2  <0.05). Comparing the curves for males and 

females, there is little difference in mean BMI at 7y, but BMI trajectories diverge thereafter when girls 

gain BMI at a faster rate than boys in childhood. Childhood slope for BMI log  is 0.0142 (se=0.0001) 

for girls, compared to 0.0121 (se=0.0001) for boys (p-value for the gender difference <0.05). Their 
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rate is similar in adulthood. The gender difference remains and geometric mean BMI for males (27.7 

kg/m
2
) is significantly higher than that for females (26.6 kg/m

2
) (p-value for the difference <0.05).  

 

 

 

Table 1 Parameter estimates (standard error) for BMI trajectories ( BMI log ), SBP and HDL-

C ( HDL log ) at 45y using bootstrap sampling † 

BMI trajectories Males  Females  

Childhood slope ( 1 ) 0.0121(0.0120,0.0122) 0.0142(0.0140, 0.0143) 

Adulthood slope ( 21   ) 0.0038(0.0037, 0.0038) 0.0038(0.0037, 0.0039) 

difference in slopes ( 2 ) -0.0083(-0.0085,-0.0081) -0.0104(-0.0106,-0.0102) 

Geometric mean at 7 15.51(15.48,15.55) 15.42(15.37,15.46) 

Geometric mean at 11 17.35(17.31,17.38) 17.56(17.52,17.61) 

Geometric mean at 45 27.69(27.62,27.83) 26.63(26.47,26.77) 

SBP   

Intercept for SBP ( 3 ) 133.48(133.03,133.93) 120.95(120.47,121.48) 

HDL-C   

Intercept for HDL log  ( 4 ) 0.1435(0.1401,0.1469) 

 

0.2143(0.2109,0.2177) 

 
Geometric mean HDL at 45 1.3916(-0.6162,3.3994) 

 

1.638(-0.3628,3.6388) 

 
 

† 499 bootstrap samples were draw to estimate the parameters and their standard errors 

 

 
Child-to-adult BMI trajectories and SBP and HDL- cholesterol at 45 years 

The mean SBP, estimated from the fixed part of the model, is close to the observed values. The 

geometric mean for HDL-C is estimated at 1.39 mmol/L for males and 1.64 mmol/L for females 

(Table 1). There is only a weak inverse correlation between SBP and HDL-C (Table 2). 

 

 

Table 2 Correlation coefficients (95% CI) - Estimated using bootstrap sampling † 

 Bootstrap estimate (95% CI) 

SBP Males Females 

BMI7 & SBP 0.03(-0.00, 0.05) 0.03(-0.05,0.05) 

BMI11 & SBP 0.07(0.04, 0.10) 0.06(0.04,0.08) 

BMI45 & SBP 0.27(0.24, 0.29) 0.29(0.27,0.32) 

Child slope & SBP 0.22(0.16, 0.27) 0.18(0.11, 0.25) 

Adult slope & SBP 0.27(0.23, 0.32) 0.35(0.31, 0.38) 

HDL-cholesterol   

BMI7 & HDL-C -0.044 (-0.056, -0.031) -0.097 (-0.110,-0.081) 

BMI11 & HDL-C -0.068 (-0.087, -0.048) -0.148 (-0.168, -0.124) 

BMI45 & HDL-C -0.287 (-0.316, -0.258) -0.414 (-0.448, -0.376) 

Child slope & HDL-C -0.135 (-0.174, -0.097) -0.263 (-0.299, -0.219) 

Adult slope & HDL-C -0.429 (-0.482, -0.380) -0.447 (-0.479, -0.411) 

 

† 499 bootstrap samples were draw to estimate the parameters and their standard errors 
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Using the covariance estimates, the correlation coefficients between BMI from age 7 to 45y and SBP 

and HDL-C, a function of age, are estimated from expression (2). The correlations are also given by 

Figure 3 for SBP and Figure 4 for HDL-C to illustrate how the correlations change over age. SBP at 

45y is weakly associated with BMI at 7y, but the correlation strengthens with increasing age (Figure 

3). Thus SBP has a strong correlation with concurrent BMI at 45y, 0.27 (95% CI: 0.24, 0.29) for males 

and 0.29 (95% CI: 0.27, 0.32) for females (Table 2). The findings indicate that higher adult SBP is 

associated with larger increases in BMI from 7y onwards.  
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Figure 3: Correlation coefficients between BMI log  and SBP 
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Figure 4: Correlation coefficients between BMI log and HDL log  

 

Applying expression (3) we obtain the estimates for correlation coefficients between the rates of BMI 

changes and SBP. Large BMI increases in childhood and adulthood are both significantly correlated 
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with adult SBP. When the correlations of child and adult slopes with SBP at 45y are both considered 

in the model, the correlation for child slope with SBP is 0.22 (0.16, 0.27) for males and 0.18 (0.11. 

0.25) for females, and the correlation for adult slope with SBP is higher, at 0.27 (0.23, 0.32) and 0.35 

(0.31, 0.38) respectively (Table 2). When only one slope is considered (i.e. the correlation between the 

other slope and SBP is set to be zero), the correlation between child slope and SBP becomes stronger, 

at 0.25 (0.23, 0.28) and 0.20 (0.16, 0.24) respectively (data not presented). The correlation between 

adult slope and SBP is 0.35 (0.31, 0.39) and 0.36 (0.33, 0.40). This indicates that although SBP has a 

stronger association with rate of BMI gain in adulthood, rate of BMI growth in childhood is 

significantly associated with adult SBP, independent of rate of BMI gain in adulthood.  

 

Figure 4 shows the correlation between BMIlog  from 7 to 45y and HDLlog  at 45y. Patterns of 

relationships for HDL-C are similar to those for SBP, but in the opposite direction. Although BMI at 

7y has a weak inverse correlation with HDL-C, the correlation also strengthens with increasing age 

(Figure 4).  The correlation with HDL-C is much stronger with rate of BMI change in adulthood than 

in childhood. Similar to SBP, the negative correlations between BMI changes in childhood and 

adulthood and HDL-C at 45y remain significant when correlation between child and adult slopes and 

HDL-C are both considered (Table 2). This indicates that rates of BMI increases in childhood and 

adulthood are independently associated with HDL-C at 45y.  

 

 

 
4. Discussion 

 

We fitted joint models to repeated BMI measurements and SBP and HDL-C in mid-adulthood to 

investigate the associations between life-course BMI trajectories and adult CVD risk factors in the 

1958 cohort. Joint models can be applied to a wide variety of situations, including the life-course 

study of adult diseases. The key feature of joint modeling is that we have an individual-level 

covariance matrix for the longitudinal and single measure response variables. We can obtain the 

estimates for the correlation coefficients between growth characteristics of the longitudinal variable 

and later outcomes using the components of the covariance matrix.  

 

The application of this class of joint models to life-course studies has several advantages: first, 

individuals do not have to be measured at the same ages or have the same number of time points, thus 

subjects with incomplete data are not excluded from the analysis; second, the model takes into account 

of the fact that measurements are clustered within individuals (i.e. between repeated measures and 

between multiple response variables); and third, the model is useful when there is a large number of 

growth measurements and simple approaches examining consecutive intervals are impractical.      

 

Goldstein has shown a joint multivariate response model for predicting adult height using repeat 

childhood height and bone age [11] and more recently predicting adult BMI and glucose level study 

from growth between birth and 10 years of age [12]. The multivariate response model has also been 

used to study the effect of school resources on pupil attainment [21]. Our aim is not to make prediction 

of adult outcomes, but to use the estimation of the variance-covariance components of the random 

coefficients to quantify the strength of the associations between characteristics of child-to-adult BMI 

trajectories and SBP and HDL-C at 45y. Williams (2001) has used a joint multivariate model proposed 

by Zucker [24] to longitudinal BMI and blood pressure measurements in children [23]. In the present 

study, we adopt a linear spline model with random coefficients to repeated BMI measurements to 

allow for distinct growth parameters for childhood and adulthood. A two-step approach has been used 

in previous research where the individual-specific growth parameters estimated from a growth curve 

model in the first stage are used as predictors of adult outcomes in the second stage [1, 3, 8, 10, 18]. 
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The second-stage model however ignores the fact that the growth parameters are sample estimates and 

therefore subject to sampling variability. One important feature of the joint model presented here is 

that individual-specific growth characteristics are directly related to each disease risk to estimate their 

associations. The model is flexible as it allows to jointly model not only responses of the same type 

(like our example of BMI and CVD risk factors), but also responses of different types [12]. However 

in the joint model we do not assume a causal relationship between BMI trajectories and adult outcome.  

 

In the 1958 cohort, there are relatively small number (a maximum of six) of BMI measures on 

individuals between 7 and 45y. The measures are widely spaced over the life-course and at each 

follow up there is little spread. Thus we assume a linear spline model with one knot, which describes 

the average rate of growth over two time periods (childhood and adulthood) [16], but can not capture 

the detailed patterns of BMI changes (i.e. critical period such as pubertal growth spurt). When there 

are more measurements are available, the joint model can be extended to include more knots or more 

complex function of age to characterize growth trajectories. In the current study, we have also 

explored similar joint models but applying quadratic spline curves to repeated BMI measures. 

Although these models provide a smooth curve with a continuous growth rate, the data do not support 

the quadratic spline model as the current model provides the better fit for the data (Figures 5a and 5b).  

Covariates can be added to the joint models for child-to-adult growth or adult outcomes. The 

correlation coefficients would be interpreted as the association between BMI growth and SBP (or 

HDL-C) that is not explained by the covariates.    
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Figure 5a: Geometric mean BMI trajectories (linear and quadratic spline curves) and observed mean 

values for males  
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Figure 5b: Geometric mean BMI trajectories (linear and quadratic spline curves) and observed mean 

values for females  

 

 

There are critical periods, for example, during infancy and puberty when growth may be important in 

relation to CVD risks in late life. High adult BMI has been associated with adverse CVD risk factors 

such as raised BP and lower HDL-C [20]. Few studies have investigated the long term effect of 

childhood growth on CVD risks in later life. Using a joint model for repeated BMI measures and SBP 

and HDL-C at 45y, we found that allowing for the within individual correlation, although BMI at 7y 

has only a weak association with SBP and HDL-C, larger increases in BMI subsequently both during 

child and adult life, which accumulate to a higher adult BMI, are strongly associated with a higher 

SBP and a lower HDL-C in mid-adulthood. Although rate of BMI change is greater in childhood than 

in adulthood, BMI gain in adulthood has a stronger association with CVD risk factors than BMI 

growth in childhood. This is expected as BMI increase in childhood is part of normal development, 

whereas BMI increase in adulthood is due almost entirely to weight gain, as adult height changes little 

once attained. Although there is only a weak correlation between SBP and HDL-C, high BMI and rate 

of BMI increase both in childhood and adulthood are significantly associated with higher SBP and 

lower HDL-C. Prevalence of obesity continues to increase in many populations with younger 

generations becoming obese at an earlier age. Our findings suggest that control of excessive weight 

gain at any life stage will have a beneficial effect on reducing adult CVD risks.  
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