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A B S T R A C T   

This study proposes a three-dimensional non-orthogonal multiple-relaxation-time (NMRT) phase-field multi
phase lattice Boltzmann (PFLB) model within a recently established unified lattice Boltzmann model (ULBM) 
framework [Luo et al., Phil. Trans. R. Soc. A 379, 20200397, 2021]. The conservative Allen-Cahn equation and 
the incompressible Navier-Stokes (NS) equations are solved. In addition, a local gradient calculation scheme for 
the order parameter of the Allen-Cahn equation is constructed with the non-equilibrium part of the distribution 
function. A series of benchmark cases are conducted to validate the proposed model, including the two-phase 
Poiseuille flow, Rayleigh-Taylor instability, binary liquid/metal droplet collision, and a bubble rise in water. 
The present simulation results are in good agreement with existing simulation and experimental data. In the 
simulation of the co-current two-phase Poiseuille flow, the present model is proven to resolve the discontinuity at 
the phase interface and provide accurate results at extremely high density ratios (i.e., up to 106). Finally, the 
proposed model is adopted to simulate two challenging cases: (1) water droplet splashing during its impacting on 
a thin liquid film and (2) liquid jet breakup. The simulation results demonstrate an excellent agreement with 
previous experimental results, both qualitatively and quantitatively. In these simulations, the Weber number and 
Reynolds number reach 105 and 6000, respectively, and the viscosity can be as low as ∼ 10− 4, in the lattice unit.   

1. Introduction 

Multiphase fluid flow is ubiquitous in science and engineering and 
has received considerable research attention in the past few decades. A 
wide range of applications can benefit from a thorough understanding of 
multiphase phenomena, such as the anti-icing of the turbine blade (Cao 
et al., 2009; Sarkar and Farzaneh, 2009), inkjet printing (Castrejón-Pita 
et al., 2008; Gan et al., 2009) and spray cooling (Kim, 2007; Liang and 
Mudawar, 2017; Liang and Mudawar, 2017). Multiphase interfacial 
dynamics is a typical nonlinear, nonequilibrium and multiscale phe
nomenon. The complexity of multiphase flow presents a significant 
challenge to both analytical and experimental approaches due to the 
high dimensionality of the physical parameter space, hindering attempts 
to uncover the underlying mechanisms. Advanced numerical methods 
are therefore desired to supplement the analysis and experiment 
(Brennen and Brennen, 2005). Owing to the mesoscopic nature, high 
computational efficiency and simple algorithm, the lattice Boltzmann 

(LB) method has been regarded as a promising numerical approach to 
model multiphase fluid flow (Benzi et al., 1992; Qian et al., 1995). One 
significant feature of LB method is that it is fully explicit. In the simu
lation of incompressible multiphase flow. It does not require solving the 
pressure Poisson equation, which is usually computationally expensive. 
Numerous multiphase LB models have been proposed for multiphase 
flow, such as the colour gradients model, the free energy model, the 
pseudopotential model, and the phase field model (Huang et al., 2015; 
Li et al., 2016). Amongst them, the phase field model has attracted much 
interest because of its potential to capture large interface topological 
deformations and to model complex instability dynamics (Wang et al., 
2019). 

In the phase field LB model, two evolution equations of distribution 
functions are incorporated to solve the interface tracking equation and 
the incompressible Navier-Stokes (N-S) equations. To obtain accurate 
solutions of these two equations, improved LB models have been 
continuously proposed. On the one hand, for the interface tracking 
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equation, there are two widely-used governing equations, namely the 
Cahn-Hilliard (CH) equation (Cahn, 1959) and the Allen-Cahn (AC) 
equation (Allen and Cahn, 1976). The CH equation has been commonly 
used in the early-stage phase-field LB models (He et al., 1999; Lee and 
Lin, 2005) because it satisfies the mass conservation by nature. Never
theless, the CH equation involves a fourth-order derivative of the phase 
indicator, the solution of which requires extra efforts using the LB 
method (Liang et al., 2023). In contrast to the CH model, the AC equa
tion does not include high order derivatives, which makes it more 
compatible with the LB model (Wang et al., 2019; Mitchell et al., 2018). 
Initially, the use of AC interface equation is limited because it does not 
satisfy the mass conservation. This problem is solved later by recon
structing the equation to be conservative (Chiu and Lin, 2011; Sun and 
Beckermann, 2007). As pointed out in Refs. (Liang et al., 2023; Wang 
et al., 2016), the AC equation is superior in computational efficiency, 
numerical stability, and simplicity over the traditional CH interface 
tracking equation. Therefore, the AC equation becomes popular in the 
phase field LB model. To solve the conservative AC equation, Geier et al. 
(Geier et al., 2015) proposed a central moment-based LB model. How
ever, both Ren et al. (Ren et al., 2016) and Wang et al. (Wang et al., 
2016) claimed that Geier’s model cannot fully recover the target AC 
equation, where the time differentiation should be included in the 
source term. Accordingly, an improved multiple-relaxation-time (MRT) 
model is developed in Ref. (Ren et al., 2016). In some recent studies, the 
efficiency and the accuracy of the LB model for the AC equation are 
further improved using, for example, a nondiagonal relaxation matrix 
(Zhang et al., 2022; Xu et al., 2021), the local gradient calculation 
scheme (Zhang et al., 2022; Liang et al., 2018), or improved collision 
operators (De Rosis and Enan, 2021). However, challenges remain in the 
LB model of the AC equation, especially in achieving high-order accu
racy and simulating the narrow interface. 

For the incompressible NS equations, two LB models are proposed, i. 
e., the momentum-based model and the velocity-based one. For the 
momentum-based model, a modified equilibrium function is proposed, 
which integrates the hydrodynamic pressure as the primary quantity of 
interest (Lee and Lin, 2005; He et al., 1999). By contrast, in the 
velocity-based LB model proposed by Zu and He (Zu and He, 2013), the 
equilibrium distribution functions recover fluid velocity-based macro 
dynamic equations rather than the fluid momentum-based ones. 
Recently, a central moment-based cascaded LB model is developed for 
the velocity-based model (De Rosis and Enan, 2021; Gruszczyński et al., 
2020). It has been pointed out that the momentum-based model is more 
efficient in parallel computing than the velocity-based one because it 
does not require a prediction-correction scheme to update the pressure 
and it has no velocity derivatives in the interface forces (Fakhari et al., 
2017). Besides, the momentum-based model has better potential in 
simulating large viscosity ratio and density ratio as it follows the 
H-theorem (Zu and He, 2013). Moreover, the momentum-based model 

has been improved by using a weighted MRT collision operator (Fakhari 
et al., 2017), coupling large eddy simulations (An et al., 2021), and 
proposing a simplified force term (Liang et al., 2018). Nevertheless, 
discontinuity at the phase interface is produced in the momentum-based 
model, which causes velocity fluctuations and hampers its applications 
in simulating large-density ratio multiphase flow (Zu and He, 2013). 

Despite continued progress in the development of phase field LB 
models, there is still room for further improvements in order to simulate 

challenging multiphase flow problems, especially realistic multiphase 
flows at large density ratios and high Reynolds numbers. For high 
density ratio (~103) multiphase flow, the achievable Reynolds number 
in the existing phase field LB model is typically around (~102). Addi
tionally, comprehensive comparisons between numerical and experi
mental results are still lacking. In this work, we proposed a three- 
dimensional phase-field LB model within a recently proposed unified 
lattice Boltzmann model (ULBM) framework (Luo et al., 2021). In our 
model, the conservative AC equation (Chiu and Lin, 2011; Sun and 
Beckermann, 2007) is used for the interface tracking, coupling with the 
incompressible NS equations for the fluid flow. A non-orthogonal 
moment set (Fei et al., 2018; Fei et al., 2019) is used to construct the 
non-orthogonal MRT LB model (NMRT) to solve the target governing 
equations. The proposed model is then used to reproduce various com
plex multiphase experiments, including binary liquid/metal droplet 
collision, bubble raising, water droplet splashing and liquid jet break. 

The outline of this paper is as follows: we begin with an introduction 
of the conservative phase field multiphase model and the ULBM 
framework in Section 2.1. Then, the constructed ULBM (NMRT) model 
for the interface tracking equation and incompressible NS equations are 
given in Sections 2.2 and 2.3, respectively. In Section 3, we provide 
comprehensive validations and assessments for the proposed ULBM 
(NMRT-PFLB) PF model. The conclusions of this work are given in 
Section 4. 

2. Methodology 

2.1. The ULBM (NMRT) and the conservative phase field multiphase 
model 

In the present phase field multiphase LB model (i.e., ULBM (NMRT) 
PF ), a conservative AC equation is used for interface tracking (Chiu and 
Lin, 2011): 

∂ϕ
∂t

+∇(ϕu) = ∇⋅Mϕ

(

∇ϕ − n
[
1 − 4(ϕ − ϕ0)

2]

w

)

, (1)  

where ϕ is the order parameter (phase indicator). In the two-phase 
system, the heavy phase and the light phase are indicated by the order 
parameter ϕh and ϕl, respectively. In this work, the value of ϕh for pure 
heavy phase is set as 1 and that of ϕl for pure light phase is set as 0, with 
ϕ0 = (ϕh +ϕl)/2 = 0.5 indicating the position of the interface. n is the 
unit vector normal to the interface, which is defined as n = ∇ϕ/|∇ϕ|. 
Mϕ is the mobility and w stands for the interface thickness. u = [ux, uy,

uz] is the fluid velocity. In the phase field multiphase model, the con
servative AC equation is coupled with incompressible NS equations, and 
the continuity and momentum equations for incompressible multiphase 
flows can be expressed as (Unverdi and Tryggvason, 1992):  

ρ indicates the fluid density, ν is the fluid kinematic viscosity, νb stands 
for the non-hydrodynamic bulk viscosity and P is the pressure; Fs and Fb 
are the surface tension and body force, respectively. The surface tension 
Fs is determined by: 

Fs = μϕ∇ϕ . (3)  

μϕ = 4β(ϕ − ϕl)(ϕ − ϕh)(ϕ − ϕ0) − k∇2ϕ stands for the chemical poten

∇⋅u = 0,
∂(ρu)

∂t
+∇⋅(ρuu) = − ∇P +∇⋅

(

ρν
(
∇u +∇uT)+ ρ

(

νb −
2
3

ν
)

(∇⋅u)I
)

+ Fs + Fb.
(2)   
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tial, and the parameters β = 12σ/w and k = 3σw/2 are related to the 
interface thickness w and the surface tension σ. In this work, we adopt 
the ULBM (NMRT) framework for the phase field multiphase model. The 
general evolution equation of the collision operator with forcing term in 
the ULBM framework can be written as (Luo et al., 2021): 

fi(x+eiΔt,t+Δt)= f ∗i (x,t)=
M− 1N− 1(I − S)NMfi(x,t)+M− 1N− 1SNMf eq

i (x,t)+ΔtM− 1N− 1(I − S/2)NMCi.

(4)  

fi and f∗i are the pre-collision and post-collision distribution functions, 
respectively. f eq

i is the equilibrium distribution function and Ci is the 
forcing term. ei and Δt = 1 are the discrete velocities and the time step, 
respectively. I is the unit matrix, and S represents the relaxation matrix. 
It should be noticed that ei and S are varied accordingly based on the 
adopted lattice model (i.e., D3Q19 model and D3Q27 model in this 
work). The details can be found in Appendixes 2 and 3, respectively. 

In the ULBM framework, the transformation matrix M is adopted to 
transform the distribution functions (fi) to their raw moments (m), and 
the shift matrix N is used to convert the raw moments into the central 
moments (m̃), the transformation/shift can be expressed as: 

m̃ = Nm = NMfi. (5) 

As pointed out in the recent work of Mitchell et al., (2021), for the 
phase-field LB model, the central moment-based collision operator in
creases the numerical dispersion. Therefore, the raw moment-based 
collision operator is adopted, which corresponds to the shift matrix N 
= I. Accordingly, the collision step in the raw moment space can be 
re-written as: 

m∗ = Mf ∗i = (I − S)m + Smeq + Δt
(

I −
S
2

)

R. (6)  

meq = Mf eq
i and R = MCi are the discrete equilibrium moment and 

discrete forcing term in the raw moment space, respectively. In this 
study, we adopt a simplified non-orthogonal moment set which is 
originally proposed in Refs. (Fei et al., 2018; Fei et al., 2019) to construct 
the ULBM (NMRT) model. We first define the raw moments as: 

kpqn =
∑

fiep
ixe

q
iye

n
iz, p, q, n ∈ {0, 1, 2}, (7)  

where ux, uy, and uz are the velocity components in x, y and z directions, 
respectively. The non-orthogonal moment set (m) in raw moment cor
responding to D3Q19 and D3Q27 lattice models can be found in Ap
pendixes 2 and 3, respectively. Then, by substituting Eq. (7) into m, the 
transformation matrix M can be obtained, and its explicit expression can 
be found in the Appendix. 

It is noted that compared with the traditional orthogonal moment 
set, there are more zero terms in M and M− 1, and the sub-lattice model 
(e.g., D3Q19) can be deduced from the full-lattice model (D3Q27) 
directly (as shown in Appendix 3). Furthermore, in traditional MRT-LBM 
phase field models with conventional orthogonal moment sets, the 
discrete equilibrium moments and forcing terms are often very complex. 
In particular, in the three-dimensional case, it may contain hundreds of 
terms. In contrast, our ULBM (NMRT) model leads to a concise expres
sion. Therefore, our proposed model exhibits favourable features such as 
a simplified implementation and improved computational efficiency. 
The above ULBM (NMRT) model has been widely adopted in the pseu
dopotential multiphase model. It has been demonstrated that the ULBM 
(NMRT) model has advantages in terms of computational efficiency, 
flexibility and numerical robustness (Wang et al., 2020; Wang et al., 
2021; Wang et al., 2020). 

2.2. ULBM (NMRT) model for the conservative Allen-Cahn equation 

In this section, we integrate the conservative AC equation into the 
ULBM (NMRT) framework. The collision operator in raw moment space 

is written as: 

m∗
ϕ =

(
I − Sϕ

)
mϕ + Sϕmeq

ϕ + Δt
(

I −
Sϕ

2

)

Rϕ. (8) 

The subscript ϕ represents the phase indicator. To recover the target 
AC Eq. (1), differing from Refs. (Fakhari et al., 2017; Fakhari et al., 
2017), we choose the equilibrium distribution function as: 

f eq
ϕ,i = ϕω

(
|ei|

2
)[

1 +
ei.u
c2

s

]

... (9)  

where ω(|ei|
2
) is the weight, and Cs = 1/

̅̅̅
3

√
stands for the lattice sound 

speed. The discrete equilibrium moment in the raw moment space (meq
ϕ ) 

can be achieved by multiplying the transformation matrix M with feq
ϕ,i. 

The forcing term is written as (Ren et al., 2016): 

Cϕ,i = ω
(
|ei|

2
)

ei.
Fϕ +

∂(ϕu)
∂t

c2
s

,
(10)  

where Fϕ,i is given by: 

Fϕ =
[
Fϕ,x,Fϕ,y,Fϕ,z

]
=

[
1 − 4(ϕ − ϕ0)

2]

3w
n. (11) 

Similarly, by multiplying the transformation matrix M, the discrete 
forcing term in the raw moment space is Rϕ = MCϕ,i. The details of the 
D3Q19 and D3Q27 ULBM (NMRT) model for the AC equation can be 
found in Appendix. The order parameter can be calculated by 

ϕ =
∑

i
fϕ,i. (12)  

fϕ,i is reconstructed by fϕ,i = M− 1m∗
ϕ after the collision in the raw 

moment space. The relaxation parameters are sϕ,1 = sϕ,2 = sϕ,3 =

1/(Mϕ /c2
s + 0.5) and the other relaxation parameters can be chosen 

freely. To save the computational cost, we set the other relaxation pa
rameters as 1. Applying the Chapman-Enskog (CE) analysis in Appen
dix 1, it can be proven that the above LB model can recover the target AC 
equation Eq. (1) without high-order error terms. It is worth mentioning 
that the gradient terms in Eq. (11) can be calculated by the second-order 
lattice-based finite difference (FD) scheme: 

∇ϕ =
∑

i

ω
(
|ei|

2
)

ϕ(x + ei)ei

c2
s

. (13)  

And the Laplace operator in Eq. (3) is given by: 

∇2ϕ = 2
∑

i

ω
(
|ei|

2
)
(ϕ(x + ei) − ϕ(x))

c2
s

. (14) 

The time derivative in Eq. (25) is then calculated by the Eulerian 
scheme, i.e., 

∂t(ϕu) =
ϕ(t)u(t) − ϕ(t − Δt)u(t − Δt)

Δt
. (15)  

2.3. ULBM (NMRT) model for the incompressible Navier-Stokes 
equations 

In this study, the momentum-based LB model is used for incom
pressible flow. Motivated by Refs. (Lee and Lin, 2005; He et al., 1999), 
when solving the incompressible NS equations in the phase-field 
multiphase model, a modified distribution function is now introduced: 

gi = fic2
s + ω

(
|ei|

2
)
(P − P0), (16)  

where P0 = ρc2
s stands for the ideal gas equation of state. The equilib
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rium distribution function is geq
i = feq

i c2
s + ω(|ei|

2
)(P − P0), f eq

i = ρΓi, 
where Γi is defined as: 

Γi = ω
(
|ei|

2
)
[

1 +
ei.u
c2

s
+
(ei.u)2

2c4
s

−
(u.u)
2c2

s

]

, (17)  

substituting Eq. (16) into the discrete Boltzmann equation for the par
ticle distribution function: 

Dgi

Dt
= Ωg + Γi(ei − u)⋅F + ω

(
|ei|

2
)D(P − P0)

Dt
. (18) 

D/Dt = ∂t + ei.∇ is the total derivative and Ωg stands for the colli
sion term for gi. F is the total force, which can be expressed as (He et al., 
1999; Fakhari et al., 2017; Fakhari et al., 2016): 

F = − ∇(P − P0) + Fs + Fb. (19) 

P is constant in the nearly incompressible limit, and P0 = ρc2
s is also 

constant as the conservative AC equation is adopted. Thus (Fakhari 
et al., 2017; Fakhari et al., 2016): 

D(P − P0)

Dt
= (ei − u)⋅ ∇(P − P0). (20)  

Substituting Eqs. (19, 20) into Eq. (18) and neglecting the O(Ma3,

Ma is Mach number) terms, i.e., (Γi − ω(|ei|
2
))∇P, the reconstructed 

discrete Boltzmann equation can be written as: 

Dgi

Dt
= Ωg + Cg,i

Cg,i = (ei − u)⋅
[(

Γi − ω
(
|ei|

2
))

∇P0 + ΓiFg

]
.

(21)  

Fg = Fs + Fb, and therefore the corresponding collision operator of the 
ULBM (NMRT) model for incompressible NS equation is given as: 

m∗
g =

(
I − Sg

)
mg + Sgmeq

g + Δt
(

I −
Sg

2

)

Rg, (22)  

where the discrete equilibrium moments in the raw moment space can 
be calculated as meq

g = Mgeq
i . 

Similarly, the discrete forcing terms in the raw moment space can be 
given by Eq. (21) and M, where Rg = MCg,i. Notably, we simplify the 
discrete forcing terms by ignoring the high order terms (~ O(Ma3), 
related to u3 and uuFg). The explicit expression of meq

g and Rg for the 
D3Q19 lattice model and D3Q27 lattice model can be found in Appen
dixes 2 and 3, respectively. 

In this study, the fluid density is calculated by interpolating the order 
parameter as, 

ρ = ρl +
ϕ − ϕl

ϕh − ϕl
(ρh − ρl), (23)  

where ρh and ρl stand for the density of the heavy phase and the light 
phase, respectively. According to Eq. (23), the derivatives of P0 can be 
determined by ϕ, where: 

∇P0 = ∇ρc2
s = c2

s
(ρh − ρl)

(ϕh − ϕl)
∇ϕ. (24) 

In most previous phase-field LBM models, the gradient in Eq. (24) is 
given by the lattice-based FD scheme (i.e., Eq. (13)) (Wang et al., 2019). 
Alternatively, some recent works (Wang et al., 2016; Zhang et al., 2022; 
Liang et al., 2018) pointed out that the gradient term can be deduced 
locally from the non-equilibrium part of the distribution functions. 
Through the CE analysis in Appendix 1, the gradient of ϕ in the current 
ULBM (NMRT) PF model relates to the non-equilibrium part of the mϕ: 

∂ϕ
∂x

= 3Fϕ,x − 3sϕ,1

(
mϕ,1 − meq

ϕ,1 + 0.5
(
Fϕ,x + ∂t(ϕux)

))
,

∂ϕ
∂y

= 3Fϕ,y − 3sϕ,2

(
mϕ,2 − meq

ϕ,2 + 0.5
(
Fϕ,y + ∂t

(
ϕuy
)))

,

∂ϕ
∂z

= 3Fϕ,z − 3sϕ,3

(
mϕ,3 − meq

ϕ,3 + 0.5
(
Fϕ,z + ∂t(ϕuz)

))
.

(25) 

This is the local scheme for the gradients of ϕ in Eq. (24), which is 
designated as the Local scheme in this paper. Although the above 
equation needs implicit terms to calculate Fϕ, it can be made explicit by 
algebraic derivation (e.g., Eq. (20) in Ref. (Zhang et al., 2022)). Geier 
et al. (Geier et al., 2015) pointed out that undesired grid-scale oscilla
tions are generated when using the Local scheme for the interface 
tracking equation. Consequently, in our work, the Local scheme Eq. (25) 
is only adopted when solving the incompressible NS equations  (i.e., in 
Eq. (24)). The gradient terms involved in the interfacing tracking 
equation (i.e., in Eq. (11)) are still calculated by the FD scheme. In the 
following Section 3.1.1, we will show that this setup can solve the 
interface discontinuity caused by using the FD scheme when solving the 
NS equation. 

Following the collision step in raw moment space (Eq. (22)), the 
distribution function can be reconstructed by gi = M− 1m∗

g. The macro
scopic variables are calculated as: 

P =

(
∑

i
gi +

Δt
2

u⋅∇P0

)

,

ρu =

(
∑

i
giei

C2
S

+
ΔtF

2

)

.

(26) 

With the CE analysis in Appendix 1, the above ULBM (NMRT) PF 
model can recover the target NS equations in the nearly incompressible 
limit. The relaxation parameters sv = [sg,4, sg,5, sg,6, sg,8, sg,9] are related to 
the fluid kinematic viscosity, where ν = (1 /sv − 0.5)C2

SΔt. Besides, the 
bulk viscosity νb depends on sg,7, and νb = 2/3(1 /sg,7 − 0.5)C2

SΔt. All 
the other relaxation parameters can be chosen freely. In the following 
simulations, without any statement otherwise, we set sg,0 = sg,1 = sg,2 =

sg,3 = sg,7 = 1 and the rest of high-order (i > 9) relaxation parameters as 
1.25. To avoid the implicit velocity, the gradient terms involved in Eq. 
(26) are also calculated by Eq. (13). 

3. Results and discussion 

3.1. Model validations 

In this section, we validate the accuracy and stability of the proposed 
ULBM(NMRT) PF model through several benchmark cases. In subsection 
3.1.1, we conduct the Laplace test of a static droplet to assess the model 
stability. Then in subsection 3.1.2, we validate the accuracy of our 
model by simulating a co-current two-phase Poiseuille flow. Finally, in 
subsection 3.1.3, the Rayleigh-Taylor instability (RTI) is simulated to 
verify the ability of the proposed model for modelling multiphase flows 
with complex interfacial deformations. 

3.1.1. Laplace verification and static droplet test at large density ratios 
In the Laplace test, a static droplet with an initial radius R0 is placed 

at the centre of a 4R0 × 4R0 × 4R0 box, with periodic boundaries in all 
directions. The simulation is first conducted using the D3Q19 ULBM 
(NMRT) PF model with the Local scheme. The initial density field is 
described by the following function: 

ρ(x) = ρh + ρl

2
−

ρh − ρl

2
tanh

[
2(X − R0)

w

]

, (27)  

where X stands for the distance from the droplet centre. In this case, we 
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choose w = 5, Mϕ= 0.01. The density ratio and dynamic viscosity ratio 
are set as 1000 (ρh = 1000, ρl = 1) and 1 (νh = νl = 0.1), respectively. 
In this case, R0 varies from 12 to 50, for three different surface tensions 
(i.e., σ = 0.1, 0.05, 0.01). The pressure difference ΔP between different 
phases and the analytical results based on the Laplace law ΔP = 2σ /R0 
are plotted in Fig. 1(a). The numerical results show good agreement with 
the analytical results, with the maximum relative error being less than 
3%. Fig. 1(b) demonstrates the density profiles for the case of R0 = 30, 
with two different interface widths, w = 3 and w = 5. For comparison, 
we also plot the numerical results of the FD scheme and the analytical 
solutions obtained by Eq. (27). As indicated in Fig. 1(b), both the Local 
scheme and the FD scheme achieve excellent agreements with the 
analytical results. Fig. 1(c) presents the relative error (ϵ = |ρsim. −

ρana.|/ρana. × 100%)  between the simulation results and the analytical 
solution for the density distribution. It can be found that for narrower 
interface cases, the maximum relative errors are larger than those for 
wider interface cases, while the differences between the FD scheme and 
the Local scheme are small. The average relative errors for the cases of w 
= 3 and w = 5 are 2.0% and 1.2%, respectively. 

We then conduct a static droplet test to compare the numerical 
performance of different LB models, including the D3Q19 model with FD 
scheme (D3Q19 FD), the D3Q19 model with Local scheme (D3Q19 

Local), the D3Q27 model with Local scheme (D3Q27 Local), and the 
single relaxation time D3Q19 model with Local scheme (D3Q19 SRT). 
The difference between the Local scheme and the FD scheme is reflected 
in the calculation of Eq. (24). Similar to the setup in the Laplace veri
fication, a static droplet with R0 = 30 is placed in the centre of a 4R0 ×

4R0 × 4R0 box, and the density ratio is set as 1000. Table 1 records the 
maximum spurious velocities for different simulation parameters. The 

Fig. 1. (a) Laplace law verification for a static droplet, where the different symbols stand for different surface tension, the dashed lines stand for the analytical 
results; (b) the density profiles of the droplet interface at the density ratio of 1000 (ρh = 1000, ρl = 1), obtained by using FD scheme and Local scheme, the lines in 
the figure represent the analytical solution; (c) relative errors between simulation results and analytical solutions of density distribution. 

Table 1 
Comparison of maximum spurious velocities in the gas phase under different 
simulation parameters, by using D3Q27 and D3Q19 ULBM (NMRT) PF. The last 
row stands for the total CPU time of 20,000Δt for various cases.  

Simulation parameters D3Q19 FD D3Q19 
Local 

D3Q27 
Local 

D3Q19 
SRT 

νh,l = 0.05, σ = 0.01 8.95× 10− 8 9.01× 10− 8 7.60× 10− 8 9.70×

10− 7 

νh,l = 0.01, σ = 0.01 5.44× 10− 7 5.50× 10− 7 4.67× 10− 7 NaN 
νh,l = 0.002, σ =

0.01 
NaN NaN 3.46× 10− 6 NaN 

νh,l = 0.05, σ =

0.0001 
8.95×

10− 10 
9.00×

10− 10 
7.60×

10− 10 
1.14×

10− 9 

CPU Time (s) 178.7 151.5 231.7 /  
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maximum spurious velocities are similar between the FD and the Local 
schemes, and the spurious velocities of the MRT model are always one 
order of magnitude lower than the SRT model. It is worth mentioning 
that the D3Q27 MRT model can remain stable when νl,g is as low as 
0.002, In the meantime, it has an additional cost of 50% CPU time 
compared with the D3Q19 model. The Local scheme requires less CPU 
time compared with the FD gradient scheme because it does not calcu
late the integration of the non-local variables. 

3.1.2. Simulation of co-current two-phase Poiseuille flow 
To verify the numerical accuracy of our ULBM (NMRT) PF model, a 

co-current two-phase Poiseuille flow is investigated. In this simulation, 
the computational domain in x, y and z directions is set as 10 × 100 × 1, 
where the periodic boundaries are set in x and z directions and the non- 
slip boundary in y direction. The initial density field in the y direction is 
given by: 

ρ(x) = ρh + ρl

2
−

ρh − ρl

2
tanh

[
2(z − 50)

w

]

, (28)  

where the bottom part is occupied by the heavy-phase fluid and the rest 
by the light-phase fluid. In the simulation, the fluid is driven by a con
stant body force in the x direction, where Fb = ρgx̂. Three different 

density ratios are tested as, ρh/ρl = 1000/1, 100/1 and = 10/1. In this 
test, we set σ = 0.001, Mϕ= 0.1 and g = 10− 8; the viscosity 
ratioμh/μl = ρhνh/(ρlνl) is fixed as 100 for all cases. It is worth nothing 
that, similar to the density profile, the viscosity profile is also described 
by a linear interpolation relation, where: 

μh = μl +
ϕ − ϕl

ϕh − ϕl
(μh − μl). (29) 

It is known that for the co-current Poiseuille flow driven by the 
constant body force, the N-S equation can be simplified as (Fakhari et al., 
2017): 

d
dy

(

μ dux

dy

)

+ ρg = 0. (30) 

For comparison, we calculate the analytical solution of ux by using a 
second-order FD method. 

The D3Q27 ULBM (NMRT) PF model with FD scheme and Local 
scheme is adopted in the simulation, with two different interface widths 
w = 2.5 and w = 5.0. Fig. 2(a) presents a comparison of the order 
parameter gradient achieved by the simulations and the analytical so
lutions based on Eq. (30). As shown in the figure, the FD scheme and the 
Local scheme both achieve reasonable results compared with the 
analytical solution at different values of w. Nevertheless, the Local 

Fig. 2. Simulation of a two-phase co-current Poiseuille flow at viscosity ratio μh/μl = 100; (a) the gradient of the order parameter in the y direction; the x direction 
velocity at the density ratio equals (b)ρh/ρl = 10, (c) ρh/ρl = 100, and (d) ρh/ρl = 1000; the simulation results in the figure are obtained by FD ULBM (NMRT) PF 
(blue) and Local ULBM (NMRT) PF (red) models, and the lines in the figure stand for analytical results. 
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scheme provides more accurate results for the interfacial points (also 
highlighted in the inserted figure of Fig. 2(a)). Fig. 2 (b ~ d) presents the 
comparison of simulation results and the analytical solutions for ux at 
different density ratios. It can be found that, for the low density ratio ρh 
/ρl = 10/1 case, results from both the FD and the Local schemes are 
almost consistent with the analytical solutions. However, with the in
crease of the density ratio, the simulation results obtained by the FD 
scheme clearly deviate from the analytical solutions at the large density 
ratios (e.g., ρh/ρl = 1000/1, ρh/ρl = 100/1). This finding is consistent 
with results in Zhang et al., (2022), which can be explained by the 
discontinuity at the interface. As indicated in Figs. 2(c) and (d), when 
the interface is thinner (w = 2.5), the simulation results obtained by the 
FD scheme become worse in the case of ρh/ρl = 100/1 and diverge when 
ρh/ρl = 1000/1. Table 2 shows the relative errors between the simula
tion results and the analytical results for the cases in Fig. 2 (b ~ c). As 
can be observed, the relative error is increased with the density ratio for 
the FD scheme while it remains small for all the cases by using the Local 
scheme. The maximum relative error for the Local scheme is 4.07%, 
which occurs for the case with large density ratios (~1000). It can be 
seen that the local scheme improves the continuity across the phase 
interface and therefore leads to more accurate results and better algo
rithmic stability, especially for the narrow interface thickness and large 
density ratio. 

Now we give a theoretical analysis of the interface discontinuity 
phenomenon. According to the CE analysis of the ULBM model for the 
NS equations at O(ε1) level (in Appendix 1), it can be found that the 
derivative ∇P0 in Eq. (24) is used to offset the derivative caused by the 
additional term P0 = c2

s ρ in the distribution function. For example, for 
the m(1)

g,4, according to Eq. (A5) in Appendix 1 we have: 

m(1)
g,4 =

c2
s Δt
s4

(
Rg,4 −

(
c2

s ∂x
(
ρuy
)
+ c2

s ∂y(ρux)+ ∂t1
(
ρuyux

)))
, (31)  

based on Eq. (A14), we have: 

∂t1
(
ρuyux

)
= ux∂t1

(
ρuy
)
+ uy∂t1(ρux) − uxuy∂t1(P)

≈ − ux∂t1(P) − uy∂t1(P) + uxFg,y + uyFg,x,
(32)  

considering the nearly incompressible limit, which implies ∂t(P) ≈ 0, 
Eq. (31) can be re-written as: 

m(1)
g,4 = −

ρc4
s Δt
s4

(
∂xuy + ∂yux

)
+

c2
s Δt
s4

(
ux
(
∂yP0 − c2

s ∂yρ
)
+ uy

(
∂xP0 − c2

s ∂xρ
))
,

(33)  

where the last term on the right-hand side of Eq. (33) represents the 
offsetting term. From this offsetting term, it can be found that the dif
ference between ∇P0 and c2

s ∇ρ leads to the discontinuity at the 

interface. Ideally, the term c2
s ∇ρ which is implicitly generated in the LB 

evolution at O(ε1) level should be eliminated by the terms ∇P0 in Rg. 
Nevertheless, as indicated in Fig. 2.(a), when adopting the FD scheme, 
the errors of the order parameter gradient can be generated at the 
interface, thus leading to the deviations between ∇P0 and c2

s ∇ρ. In 
addition, the deviations are increased with the density ratio ρh/ρl 
(related to the ∇P0) and viscosity ratio vh/vl (link to the 1/sv). There
fore, the interface discontinuity is more significant for higher density 
and viscosity ratios. 

To validate the above analysis, we simulate the cases in Fig. 2 in a 
wider range of operating parameters. The relative errors between the 
simulation results and the analytical solutions are listed in Table 3. The 
relative errors for the FD scheme increase with νh/νl and ρh/ρl and are 
always one magnitude higher than those for the Local scheme. For Local 
schemes, its accuracy is more dependant on the viscosity ratio than on 
the density ratio. This finding is consistent with the above analysis. It 
can be found that the Local scheme can provide an accurate result at an 
extremely high-density ratio (ρh/ρl = 106), which demonstrates the 
power of our current model in simulating the large density ratio 
multiphase problems. 

3.1.3. Simulation of the Rayleigh-Taylor instability 
Finally, we validate our model by simulating the RTI in two- 

dimension (2D) and three-dimension (3D). The RTI is an instability 
phenomenon with strong interfacial deformation, which has a wide 
range of applications such as astrophysics and confinement fusion 
(Instability of Liquid, 1950; Dimonte et al., 2005). Firstly, we simulate a 
quasi-2D case by using D3Q27 ULBM (NMRT) PF model with both the 
Local scheme and the FD scheme. The size of the computation domain in 
x, y and z directions is L× 1× 4L, where L stands for the reference 
length. The top and bottom walls are set as non-slip boundaries and the 
side walls are set as periodic boundaries. In the RTI simulation, the 
upper part of the simulation domain in z direction is set as the heavy 
phase fluid, and the fluid flow is driven by gravity with Fb = − ρg z

⌣
. 

Initially, a small deformation is added on the phase interface, for the 
two-dimensional case, the phase-field is described as: 

ϕ(x) =
ϕh + ϕl

2
+

ϕh − ϕl

2
tanh

⎡

⎢
⎢
⎣

z − 0.2Lcos
( 2πx

L

)

w

⎤

⎥
⎥
⎦. (34) 

To compare the current simulation results with the existing results in 
the literature, we set the values of the relevant non-dimensional 
numbers the same as, the Atwood number At = (ρh + ρl)/(ρh − ρl) =

0.5, the Reynolds number Re = ρhU0L/μh = 3000, and the viscosity 
ratio μh/μL= 1, where the reference velocity is U0 =

̅̅̅̅̅
gL

√
. Other pa

rameters are also set the same: the capillary number Ca = μhU0/σ =
0.26, Péclet number Pe = LU0/w =1000. The reference length is L = 256 
and the interface thickness w = 5. We choose the reference time t0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L/(gAt)

√
as 16,000, and the dimensionless time is defined as T∗ = t/t0. 

The simulation results for the 2D case are shown in Fig. 3. As presented 
in Fig. 3(a), during the evolution, the front interface of the heavy phase 
falls and rolls up along the flank of the spike. With the continuous fall of 
the heavy phase, the rolled-up heavy phase fluid is constantly stretched 
and finally breaks up into small dissociative droplets. The temporal 
evolution of the fluid is consistent with pervious simulations, e.g., in 
Refs. (Ren et al., 2016; Fakhari et al., 2017; Dinesh Kumar et al., 2019). 
We also record the evolution of the bubble front and liquid front, and 
compare our simulation results with previous simulation results from 
Ren et al. (Ren et al., 2016) in Fig. 3(b). Both the results from the Local 
scheme and the FD scheme can achieve excellent agreement with pre
vious data. 

We then extend the simulation to 3D using the D3Q27 ULBM (NMRT) 
PF with the Local scheme. The simulation domain is set as L× L× 4L, 

Table 2 
The relative errors between the simulation results and analytical results.   

ρh/ρl = 10 ρh/ρl = 100 ρh/ρl = 1000 

FD w = 5 4.5% 8.36% 20.26% 
Local w = 5 2.0% 1.9% 4.07% 
FD w = 2.5 2.71% 32.64% NaN 
Local w = 2.5 2.99% 1.92% 2.51%  

Table 3 
A comparison of the relative errors between the simulation results and analytical 
solution for the lawyer two-phase Poiseuille flow at various viscosity ratios and 
density ratios.   

νh /νl = 1,
ρh /ρl =

100 

νh/νl = 10,
ρh/ρl =

100 

νh/νl = 1,
ρh/ρl =

1000 

νh/νl = 1,
ρh/ρl =

105 

νh/νl = 1,
ρh/ρl =

106 

FD 9.43% 10.84% 18.12% 24.59% 31.55% 
Local 0.77% 1.77% 0.72% 0.82% 1.28%  
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and the initial phase-field is described as: 

ϕ(x) =
ϕh + ϕl

2
+

ϕh − ϕl

2
tanh

{
z − 0.1L(cos(2πx/L) + cos(2πy/L))

w

}

.

(35) 

For the 3D case, we set At = 0.5, Re = 128, μh/μL = 3, Ca = 9.1 and 
Pe = 744, which are the same as set by Zu&He  (Zu and He, 2013). L =
128 and t0 = 6000 are set in this simulation case. Fig. 4(a) presents a 
comparison between the previous simulation results (Zu and He, 2013) 
and our current simulation results for the time evolution of the positions 
of the bubble, spike and saddle (marked in Fig. 4(b)). Our simulation 
results agree well with Zu&He’s simulation results, except for some 
small discrepancies at the later stage of the simulation. Fig. 4(b) dem
onstrates the evolution of the phase interface, which is in good agree
ment with the previous simulation results for the same case (He et al., 
1999; Zu and He, 2013). Based on the simulation results presented in 
this section, the accuracy of the proposed ULBM (NMRT) PF model can 
be validated. In the following section, we will adopt this model to 
investigate the realistic multiphase problem with a large density ratio. 

Based on the above test results, we would like to conclude this sub
section by highlighting the advantages of our proposed ULBM (NMRT) 

PF model: (1) The numerical stability and computational efficiency are 
improved by using non-orthogonal moment sets to construct MRT 
collision operators. (2) The proposed Local scheme resolves the interface 
discontinuity encountered in the conventional FD scheme. (3) The cur
rent model has the potential to simulate multiphase flows with a large 
density ratio, up to 106. 

3.2. Simulation of droplet and bubble dynamics with large density ratios 
and high Reynolds numbers 

In this section, we demonstrate the capability of the proposed ULBM 
(NMRT-PFLB) model in reproducing multiphase experiments with 
realistic physical parameters. In subsection 3.2.1, we reproduce the 
experiment of a bubble rising in a water-air system. In subsection 3.2.2, 
we first simulate the collision of binary tetradecane droplets, and then 
extend the simulation to the collision of binary liquid metal droplets 
with extremely high density ratios. 

3.2.1. Simulation of a bubble rising 
We first consider the case of a bubble rise driven by buoyancy, which 

is a common phenomenon in a wide range of engineering applications. 

Fig. 3. (a) Temporal evolution of the density contours of 2D-RTI, at Re = 3000, Pe = 1000, At = 0.5, μh/μl = 1 and Ca = 0.26. (b) Time evolution of bubble front 
and liquid front for 2D-RTI. 

Fig. 4. (a) Time evolution of bubble front, saddle, and spike for 3D-RTI, at Re = 128, Pe = 744, At = 0.5, μl/μg = 3 and Ca = 9.1. (b) Temporal evolution of the 
phase interface, which is coloured by the normalized velocity. 
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The bubble rising phenomenon has been widely investigated, but most 
of the existing works used small density ratios (101 ∼ 102) to maintain 
numerical stability (Wang et al., 2019). By contrast, we calculate a 
realistic water-air system with a density ratio of 1000 using the D3Q27 
ULBM (NMRT) PF model with the Local scheme. The computational 
domain is a L × L × 4L tunnel, with the reference length L = 256. The 
bottom and top walls are set as non-slip boundaries, and the other di
rections are periodic boundaries. A bubble with a radius R0 = 0.125L is 
placed at a distance of 0.25L from the bottom of the tunnel. The density 
ratio of the surrounding liquid and bubble is ρh/ρl = 1000, with the 
viscosity ratio μh/μl = 100, which corresponds to the water-air system. 
Due to the buoyancy effect, the bubble rises from the bottom of the 
tunnel and eventually leads to a steady-state terminal shape and velocity 
(Ut) when the buoyancy force is balanced by the resistance. In this 
system, the terminal shape and velocity of the bubble are governed by 
two critical dimensionless numbers, the Bond number Bo = ρh(2R0)

2g 
/σ, and Morton number Mo = μ4

hg/(ρhσ3). To ensure the droplet ter
minal velocities satisfy the incompressible limitation, the gravity is set 
as 5× 10− 6. In this section, we consider three different cases with 
various Bo and Mo, and the simulation parameters can be found in 
Table 4. 

Our simulation results are compared with the experimental data in 
Ref. (Bhaga and Weber, 1981) and the previous simulation results from 
the velocity-based phase field LB model (Dinesh Kumar et al., 2019), 
Smoothed Particle Hydrodynamics(SPH) simulation results (Zhang 
et al., 2015) and  front tracking method (FTM) (Hua et al., 2008) 
simulation results. We first quantitatively compare the droplet terminal 
Reynolds numbers (Re = 2ρhUtR0/μh). As indicated in Table 4, our 
proposed model demonstrates better performance over other models for 
the large-Re cases. The maximum relative error between our simulations 
and experiments are 4.47%, which is lower than the simulation results 
obtained by the previous LBM model in Ref. (Dinesh Kumar et al., 2019). 
The qualitative comparison of the bubble’s terminal shapes can be found 
in Fig. 5. As can be seen, the results of ULBM (NMRT) PF model achieve 
good agreement with the experimental results (Bhaga and Weber, 1981) 
for the bubble’s terminal morphologies. Furthermore, similar to the 
previous simulations (Tripathi et al., 2015), at a large terminal Re, small 
satellite bubbles peel off from large bubbles. Thanks to the full 3D 
simulation with realistic physical parameters, we can capture the small 
fingering shapes at the edge of large bubbles, which is less obvious in 
previous LB simulations (Hua et al., 2008). 

3.2.2. Simulation of the binary droplet collisions 
In this subsection, we first simulate a head-on collision of tetrade

cane droplets using the D3Q27 ULBM (NMRT) PF model with the Local 
scheme and compare the simulation results with the experimental data 
(Tang et al., 2012). The computational domain is set as a 250 ×250 ×
500 box, with periodic boundaries in all directions. Two cases are 
considered, namely binary equal-size and unequal-size droplet colli
sions. In the simulation, we set the density ratio as ρh /ρl = 1000. During 
the collisions, the droplet dynamics is governed by two dimensionless 
numbers, which are the Weber number Wes = 2ρhRs,0U2

0/σ (Rs,0 and U0 

stand for the radius of the small droplet and relative speed, respectively) 
and size difference Δ = Rl,0/Rs,0 (Rl,0 = 50 lattices stand for the larger 
droplet radius). Following the suggestion of Fakhari et al. (Fakhari et al., 

2017), we choose Mϕ= 0.05 and w = 5 for better stability and accuracy. 
For the case of equal-size droplet collision, we have Wes = 40, Δ = 1,

Reynolds number Re = 2ρhU0Rs,0L/μh = 500, and the viscosity ratio μh/

μl = 166.7, which are comparable to the experiment setup (Tang et al., 
2012). The qualitative comparison between the numerical and experi
mental results can be found in Fig. 6(a). In agreement with the experi
mental results, a liquid disk is created due to the coalescence and 
collision of the binary droplets. Then, a reflective separation of the two 
droplets can be observed and a liquid bridge is formed between the two 
separated droplets. Finally, the neck of the liquid bridge breaks and the 
liquid bridge retracts to form the third satellite droplet, which eventu
ally leads to the reflective separation of the three satellite droplets. 
Notably, owing to the good numerical robustness, a very small satellite 
droplet (shown in the red braked in Fig. 6(a)) with a radius around 2 
lattices (5 μm in physical unit) can be captured in our simulation. Then 
we simulate an unequal droplet collision, with the simulation parameter 
Wes = 62.4, Δ = 1.78, Re = ρhU0Rs,0L/μh = 375 and the viscosity ratio 
μh/μl = 166.7. As shown in Fig. 6(b), similar to the experimental results, 
the droplet presents a penetration-separation process after the collision. 
The droplet morphologies in the simulation results are in excellent 
agreement with the snapshots of the experiment. 

In addition to the head-on tetradecane droplet collision, we also 
simulate off-centre collision of binary liquid metal droplets. To satisfy 
the liquid metal – air system, the density ratio in this simulation is set as 
ρh/ρl = 5000 and viscosity ratio μh/μl = 117.8. Besides, we choose 
Wes = 61, Δ = 1 Re = 4000 and the off centre distance Δx = X/Ds,0 =

0.7 (X indicates the separation between the vertical centre lines of 
droplets) to match the experimental conditions in Ref. (Jia et al., 2019). 
The comparison between the experimental results and our simulation 
results is shown in Fig. 6(c). It can be seen that our ULBM (NMRT) PF 

Table 4 
Comparison of simulated Re with the experiment result and previous simulations.  

Case Bo Mo Re: 
Exp. 

Re (Bhaga and Weber, 
1981) NMRT 

ϵNMRT Re (Dinesh Kumar et al., 
2019) LBM 

ϵLBM Re (Zhang et al., 
2015) SPH 

ϵSPH Re (Hua et al., 
2008) FTM 

ϵFTM 

1 32.2 8.20×

10− 4 
55.3 55.54 0.43% 57.55 4.07% 52.6 4.88% 54.8 0.9% 

2 115 4.63×

10− 3 
94 92.83 1.24% 99.6 5.96% 88.0 6.38% 89.6 4.6% 

3 339 43.1 18.3 19.12 4.47% 19.76 7.98% 18.1 1.1% 17.8 2.7%  

Fig. 5. Comparison of the bubble’s terminal shape with pervious simulation 
results [Dinesh Kumar et al., 2019) and the experimental results [Bhaga and 
Weber, 1981). 

G. Wang et al.                                                                                                                                                                                                                                   



International Journal of Multiphase Flow 168 (2023) 104582

10

model reproduces this extremely large density ratio multiphase flow 
successfully, as the droplet exhibits stretching separation after collision 
with satellite droplets formation. The numerical droplet evolution 
qualitatively agrees with the experiment snapshots, except for a differ
ence in the number of generated satellite droplets (3 for the experiment 
and 4 for our simulation), which is caused by the reverse breakup of the 
centre stretching jet. Considering this dynamic is very sensitive to the 
off-centre distance (Qian and Law, 1997) and the initial shape of the 
metal droplet, this discrepancy is acceptable. To the best of our 
knowledge, this is the first time that the LB method achieves this kind of 
extreme density ratio metal droplet dynamics with a large Re number. 

3.3. Simulation of complex multiphase flow 

In this section, we adopt the ULBM (NMRT) PF model to simulate the 
multiphase phenomena with extreme operation conditions (e.g., 
extreme density ratios, Weber numbers, Reynolds numbers). To test the 
capability of our proposed model in capturing complex multiphase 
instability phenomena, two experiments are reproduced, that is, the 
water droplet crown splashing and the liquid jet breakup. 

3.3.1. Simulation of droplet splashing 
Firstly, we simulate a water droplet splashing as it impacts a thin 

liquid film. In this simulation, the density ratio of the heavy phase and 

Fig. 6. A comparison of the simulation results with the experimental results [Tang et al., 2012) for a binary droplet head-on collision. (a) Wes = 40 and Δ = 1 (b) Wes 

= 62.4 and Δ = 1.78 at ρh/ρl = 1000 and μh/μl = 166.7. (c) Simulation of binary metal droplets off-centre collision and compared with experimental results [Jia 
et al., 2019), Wes = 40, Δ = 1 and Δx = 0.7, at ρh/ρl = 5000 and μh/μl = 117.8. 
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light phase is set as ρh/ρl = 1000 with a viscosity ratio μh /μl = 67, 
which corresponds to the realistic water-air system. The same case has 
been studied previously using the phase field LB models, but most 
studies used unrealistic parameters (e.g., a small Reynolds number, 
usually lower than 2000 and 2-D simulation (Zhang et al., 2022; Liang 
et al., 2018; Fakhari et al., 2017; An et al., 2021). In our simulation, we 
reproduce experimental cases for a water droplet impacting a thin water 
film, by using the D3Q27 ULBM (NMRT) PF model with the Local 
scheme. The computational domain is set as a 14R0 × 14R0 × 6R0 box, 
with periodic boundaries for the side boundaries and non-slip bound
aries for bottom and top walls, the initial droplet radius is R0 = 60. 
Following Fakhari et al. (Fakhari et al., 2017), we set the interface 
thickness w = 5 and mobility Mϕ = 0.05 to maintain numerical stability 
and accuracy. In the simulation, consistent with the experiment condi
tion, we keep the droplet Weber number We = 2ρhR0U2

0/σ = 380 and 
Reynolds number Re = 2ρhU0R0/μh = 6000 (Zhu et al., 2021). We 
simulate two cases with different liquid film thicknesses, h∗ = h /(2R0)

= 0.15 and h∗ = 0.35 (h is the liquid film thickness) and compare with 
the experimental cases h∗ = 0.07 and h∗ = 0.16 with the same Weber 
number We = 380. Notably, considering the influence of the interface 
thickness, the liquid film thickness in our simulation is thicker than the 
experiment. 

Initially, the droplet is placed 10 lattices away from the liquid film, 
with a vertical velocity U0 = 0.045 in lattice unit. Similar to the previous 
simulation, we introduce a random disturbance with a magnitude of 
0.05U0 (Ming and Jing, 2014; Liang et al., 2019) into the droplet ve
locity from t∗ = 2R0/U0 = 0.1 and withdraw it when t∗ = 0.5. Besides 
the Local scheme, we also attempted the FD scheme for the same case. 
The simulation diverges as the droplet contacts with the liquid film with 
the FD scheme, indicating Local scheme have a better numerical stability 
in the practice. The comparison between the numerical and experi
mental results is shown in Fig. 7. In our simulation, We = 380 
> 34Re1/4, Ohnesorge number Oh = μh/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2R0ρhσ

√
= 0.0032 < 0.0044 , 

which corresponds to the breakup conditions proposed in 
Ref. (Burzynski et al., 2020). As shown in Fig. 7(a) and Fig. 7(b), similar 
to the experiment observation (Zhu et al., 2021), both cases capture the 

droplet prompt splash (shown in the red bucket) which occurs a short 
period after the droplet contact with the liquid film. The radiuses of the 
satellite droplets in the prompt splash range from 1~3 lattice (1.7% ~ 
5% of the R0), which are in good agreement with the results of the ex
periments in Ref. (Burzynski et al., 2020). 

Besides the prompt splash, the simulation results also reproduce the 
key dynamics features observed in the experiment. As shown in Fig. 7 
(a), when the droplet impacts a thicker liquid film, rim instability can be 
observed at the edge of the liquid crown. Liquid fingers can be found as 
the crown is retracted while there is no breakup of liquid fingers, which 
is consistent with the experimental observation (Zhu et al., 2021). We 
also observe the central jet at the later stage of the droplet evolution, 
which is formed by the rebound of the central liquid sheet. This phe
nomenon is also observed in the experiment. For the case of droplets 
impinging on the thinner liquid film, we can find liquid fingers gener
ated with the liquid crown developing, and secondary droplets escape 
from the liquid fingers as the liquid crown still expands. Moreover, we 
observe the fingering jet formed from the retraction of the liquid crown 
and eventually breakup into satellite droplets. These numerical results 
are consistent with the experimental phenomena (Wu et al., 2021; Lu 
et al., 2020). It should be noticed that the fingering breakup of the liquid 
crown is less obvious in previous 3D LB simulations (Sitompul and Aoki, 
2019; Schwarzmeier et al., 2023), which proves our new model has a 
better ability to reproduce the experimental phenomenon. 

In additional to the qualitative comparison of the droplet morphol
ogies, we also quantitatively compare the evolution of the droplet crown 
diameter with the experimental data (Zhu et al., 2021) and the power 
law fitting function r/D0 = C(Ut/D0)

0.5 (Fakhari et al., 2017). As shown 
in Fig. 7(c), our simulation results agree well with the experiment, for 
both the diameter evolution and breakup point (marked in the figure). 
By fitting simulation results based on the power law fitting functions, the 
fitting prefactor C is obtained as 0.8 and 1 for the cases of h∗ = 0.07 and 
h∗ = 0.16, respectively. The fitting values are close to previous experi
ment findings (Yarin and Weiss, 1995) and the famous Wagner’s theo
rem (Wagner, 1932). 

Fig. 7. Comparison between the experimental snapshots (grey) [Zhu et al., 2021) and the simulation results (colour, coloured by the normalized velocity) of a water 
droplet impacting a thin water film at We = 380 and Re =6000. The dimensionless liquid film thickness (a) h∗ = 0.16 and (b) h∗ = 0.07; (c) the time evolution of 
droplet crown diameters and a comparison with the experiment data (symbols) and power law fitting (lines). 
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3.3.2. Simulation of liquid jet breakup 
In this subsection, we simulate the breakup of a liquid jet when 

injected into another liquid. In this simulation, the density ratio of the 
heavy phase is set as ρh/ρl = 1.7 and viscosity ratio μh /μl = 7.14 (νh /νl 
= 1/4.2). These setups correspond to the simulation setup (Saito et al., 
2017) and experimental conditions (Saito et al., 2016) of Saito et al.’s 
works. The computational domain is a cuboid box, and the top wall is set 
as the non-slip boundary of a circular inlet with a diameter d0 at the 
central, where the heavy phase is injected with an initial speed u0. The 
bottom wall is set up as a Neumann outflow boundary, and the side walls 
are set as periodic boundaries. Following the setup of Saito et al. (Saito 
et al., 2017), in this case, the body force is written as Fb = − (ρ − ρl)g z

⌣
, 

which indicates the gravity only acts on the heavy phase. The interface 
thickness is set as w = 5 and mobility Mϕ = 0.05. The dynamics of the 
injected liquid jet is governed by three critical dimensionless numbers, 
which are Reynolds number (Re = ρhu0d0/μh), Ohnesorge number (Oh 
= μh/

̅̅̅̅̅̅̅̅̅̅̅̅
d0ρhσ

√
) and Froude number (Fr = μh/

̅̅̅̅̅̅̅̅̅̅̅̅
d0ρhσ

√
). 

Three typical jet dynamics are simulated in the present work, 
including dripping, sinuous and atomization. Firstly, we consider the 
situation of the dripping jet. In this simulation, we set d0 = 20 and the 
computational domain is 140× 140× 350. The characteristic numbers 
are Fr = 8.5, We = 5 and Re = 300, corresponding to Oh = 0.0075. 
The evolution of the liquid jet is shown in Fig. 8, in which we can find a 
swollen part generated at T∗ = tu0/ d0 = 7.5 and pinch-off from the 
liquid jet at T∗ = 30. The jet tip performs a long-wave mode primary 
breakup, and the short waves generated after the pinch-off of the pri
mary droplet propagate upstream and lead to a later short-wave mode 
breakup. These qualitative findings are consistent with previous simu
lation results for the small Oh liquid jet breakup mechanism (Shinjo and 
Umemura, 2010). Notably, benefiting from the high accuracy of the 
ULBM (NMRT) model, we reproduce the tiny satellite droplets (pointed 
out in the figure) when the primary droplet breaks up. This phenomenon 
is also observed in the previous experiments of the same liquid-liquid 
system (An et al., 2021; Saito et al., 2017), while it is hardly observed 
in previous simulations by using the colour gradient LBM (An et al., 
2021). 

We then simulate the liquid jet breakup in the sinuous regime, 
with Fr = 8.5, We = 220 and Re = 2200, corresponding to Oh =
0.0075. As shown in Fig. 9, a mushroom-shape head appears after the 
heavy-phase liquid injection. With the development of the liquid jet, 
similar to the experimental observations (Saito et al., 2017) and 

previous simulation (An et al., 2021), we can find the return flow of a 
mushroom head causes Kelvin–Helmholtz instability waves (i.e., T∗ =

15) on the liquid column. Afterwards, the pinch-off of the instability 
waves causes droplet entrainment (i.e., T∗ = 28). Since there is no 
artificial perturbation, the instability waves are caused naturally owing 
to the nonlinear hydrodynamics. In addition, we quantitatively compare 
the liquid jet penetration length with the experimental and numerical 
results. As shown in Fig. 11(a), our simulation shows an excellent 
agreement with Saito et al.’s experiments (Saito et al., 2016). Both our 
current simulation results and their latest simulation by using the 
D3Q27 MRT colour gradient LB model (Saito et al., 2017) present better 
accuracy than their previous simulation by using the D3Q19 MRT colour 
gradient LB model (Saito et al., 2016). 

Finally, we simulate the jet atomization at large We and Re. In this 
simulation, Fr = 8.5, We = 105 and Re = 3400, corresponding to Oh =

0.03. It is worth mentioning that the experimental viscosity ratio 
(νh/νl = 1/4.2) (Saito et al., 2016) is adopted in this simulation, which 
leads to the kinematic viscosity of the light phase being as lower as υl =

3.5× 10− 4. As indicated in the Fig. 10, similar to the sinuous case, a 
mushroom shape head can be observed after the liquid jet injection (i.e., 
T∗ = 7.5). On the other hand, due to the strong Kelvin–Helmholtz 
instability, we can find the mushroom-shape head breaks up soon after 
the jet penetration and tiny droplets are generated by the pinch-off of the 
instability waves (as shown when T∗ = 15). With the continuous 
development of the liquid jet, numerous tiny droplets are detached from 
the liquid column. The qualitative evolution of the liquid jet also agrees 
well with previous simulations (Saito et al., 2017; Saito et al., 2016). 

We conclude by plotting all of the simulated cases in a regime map 
(Saito et al., 2017; Saito et al., 2017) and qualitatively comparing the 
liquid jet morphologies with the experimental results in Ref. (Saito et al., 
2017). As presented in Fig. 11(b), our simulation results are consistent 
with the experiment snapshots, and our simulation parameters match 
the corresponding regimes. The simulation results in section 3.3 
demonstrate the excellent stability and accuracy of the ULBM (NMRT) 
PF model since our simulations not only reproduce the key instability 
phenomena involved in various complex multiphase experiments but 
also provide accurate and stable results with the demanding physical 
conditions (extreme lower viscosities, large density ratios, high Weber 
numbers). The results in this section prove the power of the proposed 
model in modelling the complex multiphase problem. 

Fig. 8. Illustrations of the dripping case (coloured by the normalized velocity): Re = 300, Oh = 0.0075 and Fr = 8.5. The computational domain is set to be 140 
×140 × 350 and d0 = 20. 
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4. Conclusion 

In this paper, we propose a three-dimensional phase-field lattice 
Boltzmann model (PF LBM) for multiphase flows at large density ratios 
and high Reynolds numbers. The proposed model is built within a 
recently proposed unified lattice Boltzmann model (ULBM) framework, 
with a non-orthogonal moment set being used to construct the multiple- 
relaxation-time (NMRT) collision operator. In addition, we provide a 
local gradient calculation scheme which is based on the non-equilibrium 
part of the distribution function in raw moment space. Benefiting from 
the non-orthogonal moment set, our proposed model leads to a simpli
fied implementation and enhanced computational efficiency. According 
to a detailed Chapman-Enskog analysis, our proposed model can accu
rately recover the target conservative Allen-Cahn equation for interface 
tracking and the target Navier-Stokes equations in the nearly incom
pressible limit. 

The proposed model is comprehensively validated and assessed by 
comparing our simulation results with experimental results, analytical 

results, and previous simulation results. It is shown that the constructed 
ULBM(NMRT) PF model can provide better numerical stability 
compared with the single-relaxation-time collision operator. Besides, 
the local gradient calculation scheme is found to reduce the computa
tional cost and provide better numerical accuracy compared with the 
finite difference scheme for gradient term calculation. We also find that 
the Local scheme prevents the interface discontinuity that occurs in the 
simulation of co-current Poiseuille flow, which can be explained by the 
fact that the derivative terms calculated by the Local scheme in the 
discrete forcing eliminate the derivative terms generated by the modi
fied distribution function. 

After validations, the proposed model is adopted to simulate the 
Rayleigh-Taylor instability and the realistic multiphase problems with 
large density ratios, i.e., binary droplet collision and bubble rising. The 
current simulation results achieve good agreement with previous 
simulation results and experiment results, both qualitatively and quan
titatively. Notably, our simulation accurately reproduces the binary 
collision of liquid metal droplets at an extremely high density ratio (up 

Fig. 9. Illustrations of the sinuous case (coloured by the normalized velocity): Re = 2200, Oh = 0.0075 and Fr = 8.5. The computational domain is set to be 300 
×300 × 1000 and d0 = 50. 

Fig. 10. Illustrations of the atomization case (coloured by the normalized velocity): Re = 3400, Oh = 0.03 and Fr = 8.5. The computational domain is 350 ×350 
×1000 and d0 = 50. 
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to 5000) and a large Reynolds number (~ 4000). 
Finally, the proposed model is adopted to simulate challenging 

multiphase problems under extreme conditions, including droplet splash 
on impacting liquid film and liquid jet spray. For the case of droplet 
splash, the simulated Reynolds number reaches 6000, at a density ratio 
of 1000. For the case of a liquid jet spray, our simulation can reproduce 
various liquid jet breakup regimes for a variety of operating parameters, 
with the Weber number reaching 104and the viscosity as low as ∼ 10− 4 

in lattice unit. The simulation results agreed well with the previous 
experimental results in both cases, demonstrating unprecedented ca
pabilities of the proposed NMRT-PFLB model within the ULBM frame
work. Considering the generality and versatility of the ULBM 
framework, the new NMRT-PFLB model can be used to tackle a wide 
range of realistic multiphase problems, such as jet spray in engines and 
boiling in powerplants. In addition, the ULBM framework is able to 
incorporate any new and advanced multiphase flow models to further 
extend its capability. 
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Appendix 

A.1. Chapman-Enskog (CE) analysis for the ULBM model 

At the beginning of this section, we first present a general expression of the Chapman-Enskog (CE) analysis for the ULBM model. A second-order 
Taylor series expansion of Eq. (1) at (x, t) yields can be expressed as: 

Δt(∂t + ei⋅∇)fi +
Δt2

2
(∂t + ei⋅∇)

2fi + O
(
Δt3) =

− M− 1N− 1SNM(fi − f eq
i ) + ΔtM− 1N− 1

(

I − S
2

)

NMCi

(A1)  

by multiplying the transformation matrix M and substituting N = I, Eq. (A1) can be written as: 

Fig. 11. (a) A comparison of simulation results of liquid jet penetration length with the experimental results (hollow symbols) (Saito et al., 2016) and previous 
simulation results (lines) (Saito et al., 2017) for case 2; (b) the regime map for the outcomes of liquid jet spray at various Re and Oh numbers, the hollow symbols on 
the map indicate the experimental result (grey snapshots) and the solid symbols represent the simulation cases (colour snapshots). 
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(I∂t1 + D1)m +
Δt
2
(I∂t1 + D1)

2m + O
(
Δt2) =

−
S
Δt

(m − meq) +

(

I −
S
2

)

R,
(A2) 

where D = Cx∂x + Cy∂y + Cz∂z and Ca = M[diag(e0a, e1a……, e18a)]M− 1 for a = x, y, z. by introducing the following relation: 

∂t = ε∂t1 + ε2∂t2 + …, D = εD1, m = meq + εm(1) + ε2m(2) + …,Ri = εR(1), (A3)  

where ε stand for an order parameter, Eq. (A2) can be written in the consecutive orders of ε: 

O
(
ε0) : m(0) = meq , (A4)  

O
(
ε1) : (I∂t1 +D1)m(0) = −

S
Δt

m(1) +

(

I −
S
2

)

R(1), (A5)  

O
(
ε2) : ∂t2m(0) + (I∂t1 +D1)

(

I −
S
2

)(
m(1) +

Δt
2

R(1)
)
= −

S
Δt

m(2). (A6) 

Firstly, we provide a CE analysis for the ULBM (NMRT) PF model in Section 2.2 for the AC equation. For the distribution function fϕ,i, it has 
∑

i
fϕ,i =

ϕ. Consequently, according to Eqs. (A24) and (A25) and assuming m(1)
ϕ = mϕ − meq

ϕ , m(n)
ϕ = 0(n ≥ 2), it can be deduced that m(1)

ϕ, 0 =
∑

i
fϕ,i − meq

ϕ,0 = 0.

Substituting Eqs. (A25) and (A26) into Eq. (A5), we have the relation at ε1 level for i = 0: 

∂t1(ϕ) + ∇⋅(ϕu) = 0. (A7)  

For i = 1 ~ 3, it has: 

∂t1(ϕux) + c2
s ∂x(ϕ) −

(
1 −

sϕ,1

2

)(
Fϕ,x + ∂t1(ϕux)

)
= −

sϕ,1

Δt
m(1)

ϕ, 1

∂t1
(
ϕuy
)
+ c2

s ∂y(ϕ) −
(

1 −
sϕ,2

2

)(
Fϕ,y + ∂t1

(
ϕuy
))

= −
sϕ,2

Δt
m(1)

ϕ, 2

∂t1(ϕuz) + c2
s ∂z(ϕ) −

(
1 −

sϕ,3

2

)(
Fϕ,z + ∂t1(ϕuz)

)
= −

sϕ,3

Δt
m(1)

ϕ, 3

(A8) 

It can be found that the Local gradient calculation scheme Eq. (25), named as Local scheme) is achieved by substituting the relation m(1)
ϕ = mϕ − meq

ϕ 

into Eq. (A8). Liang et al. (Liang et al., 2018) proved that the Local scheme achieves second-order accuracy in space. By Eq. (A6), we can get the 
following relation at ε2 level for i = 0: 

∂t2(ϕ) +
(

1 −
sϕ,1

2

)
∂x

(
m(1)

ϕ, 1 +
Δt
2

R(1)
ϕ, 1

)
+
(

1 −
sϕ,2

2

)
∂y

(
m(1)

ϕ, 2 +
Δt
2

R(1)
ϕ, 2

)

+
(

1 −
sϕ,3

2

)
∂z

(
m(1)

ϕ, 3 +
Δt
2

R(1)
ϕ, 3

)
= 0.

(A9)  

Substituting Eq. (A26) and Eq. (A8) into Eq. (A9), we can achieve the following equation at O(ε2) level: 

∂t2(ϕ) + ∇⋅Mϕ
(
3Fϕ − ∇ϕ

)
= 0, (A10)  

where sϕ,1 = sϕ,2 = sϕ,3 = 1/(Mϕ /c2
s +0.5). Combining Eq. (A7) at O(ε1) and Eq. (A10) at O(ε2) level and substituting Eq.(11) for Fϕ, we can get: 

∂ϕ
∂t

+∇(ϕu) + ∇⋅Mϕ

([
1 − 4(ϕ − ϕ0)

2]

w
n − ∇ϕ

)

= 0, (A11)  

which is the target AC equation (Eq. (1)). Therefore, it shows that the current ULBM (NMRT) model in Section 2.2 can recover the target interface 
tracking equation without high order error terms involved. 

Then, we provide a CE analysis for the ULBM (NMRT) model for the incompressible NS equation. Based on Eqs. (A24, A27) and (A28), and 
assuming m(1)

g = mg − meq
g , m(n)

g = 0 (n ≥ 2), we have : 

m(1)
g,0 =

∑

i
gi − meq

g,1 = −
Δt
2

u⋅∇P0,m(1)
g,1 =

∑

i
gieix − meq

g,1 = −
Δtc2

s

2
Fg,x,

m(1)
g,2 =

∑

i
gieiy − meq

2 = −
Δtc2

s

2
Fg,y,m(1)

g,3 =
∑

i
gieiz − meq

g,3 = −
Δtc2

s

2
Fg,z.

(A12)  

substituting Eqs.(A27, A28) and (A12) into Eq. (A5), for i = 0 ∼ 3, the following continuity and momentum equations at ε1 level can be achieved: 

∂t1(P) + c2
s ρ
(
∂xux + ∂yuy + ∂zuz

)
= 0 (A13) 
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∂t1(ρux) + ∂x
(
u2

xρ + P
)
+ ∂y

(
uxuyρ

)
+ ∂z(uxuzρ) = Fg,x

∂t1
(
ρuy
)
+ ∂x

(
uxuyρ

)
+ ∂y

(
u2

yρ + P
)
+ ∂z

(
uyuzρ

)
= Fg,y

∂t1(ρuz) + ∂x(uxuzρ) + ∂y
(
uyuzρ

)
+ ∂z

(
u2

z ρ + P
)
= Fg,z

(A14) 

For simplification, we introduce a new variable m(1)
g = (m(1)

g +ΔtR(1)
g /2), and the following continuity and x-direction momentum equations at ε2 

level can be achieved from Eq. (A6): 

∂t2(P) = 0, (A15)  

c2
s ∂t2(ρux) + c2

s ∂x

{(
1 −

sg,7

2

)
m(1)

g,7 +
(

1 −
sg,8

2

)
m(1)

g,8 +
(

1 −
sg,9

2

)
m(1)

g,9

}

+
(

1 −
sg,4

2

)
∂ym(1)

g,4 +
(

1 −
sg,5

2

)
∂zm(1)

g,5 = 0.
(A16)  

Substituting Eqs. (A27, A28) into Eq. (A5) and ignoring the high order terms (~ O(Ma3), related to u3 and u∇P) (Lee and Lin, 2005; Zu and He, 2013). 
For i = 4 ∼ 9, m(1)

g can be expressed as: 

m(1)
g,4 = −

ρc4
s Δt
(
∂xuy + ∂yux

)

s4
,m(1)

g,5 = −
ρc4

s Δt(∂xuz + ∂zux)

s5
,

m(1)
g,6 = −

ρc4
s Δt
(
∂yuz + ∂zuy

)

s6
,m(1)

g,7 = −
2ρc4

s Δt
(
∂xux + ∂yuy + ∂zuz

)

s7
,

m(1)
g,8 = −

2ρc4
s Δt
(
∂xux − ∂yuy

)

s8
,m(1)

g,9 = −
2ρc4

s Δt
(
∂yuy − ∂zuz

)

s9
,

(A17)  

it is worth noting that during the derivation of Eq. (A17), the implicit derivative at t1 level, i.e., ∂t1(ρu) is replaced by Eq. (A14). Substituting Eq. (A17) 
into Eq. (A16), we can get the following moment equation at O(ε2) level: 

∂t2(ρux) = ∂y
(
ρν
(
∂xuy + ∂yux

))
+ ∂z(ρν(∂xuz + ∂zux))+

∂x

(

ρνb(∇⋅u) +
2
3

ρν
(
2∂xux − ∂yuy − ∂zuz

)
)

,
(A18)  

where the kinematic viscosity (ν) and bulk viscosity (νb) are: 

ν =

(
1
sv
− 0.5

)

C2
SΔt, sv =

[
sg,4, sg,5, sg,6, sg,8, sg,9

]
,

νb =
2
3

(
1

sg,7
− 0.5

)

C2
SΔt.

(A19) 

Similarly, the moment equations in y and z directions at O(ε2) level are also achieved by Eqs. (A6) and (A17), which can be written as: 

∂t2
(
ρuy
)
= ∂x

(
ρν
(
∂xuy + ∂yux

))
+ ∂z

(
ρν
(
∂yuz + ∂zuy

))

+∂y

(

ρνb(∇⋅u) +
2
3

ρν
(
2∂yuy − ∂xux − ∂zuz

)
)

,
(A20)  

∂t2(ρuz) = ∂x(ρν(∂xuz + ∂zux)) + ∂y
(
ρν
(
∂zuy + ∂yuz

))

+∂z

(

ρνb(∇⋅u) +
2
3

ρν
(
2∂zuz − ∂xux − ∂yuy

)
)

,
(A21)  

combing the momentum equations at O(ε1) and O(ε2) levels, the following macroscopic equations can be obtained: 

1
c2

s ρ
∂P
∂t

+ ∇⋅u = 0,

∂(ρu)
∂t

+∇⋅(ρuu) = − ∇P +∇⋅
(

ρν
(
∇u +∇uT)+ ρ

(

νb −
2
3

ν
)

(∇⋅u)I
)

+ Fg

(A22) 

Notably, the continuity equation recovered from the current model includes a derivative of the pressure. Nevertheless, in the nearly incompressible 
limit, the time derivative of the pressure is very small and can be ignored (He et al., 1999; Li et al., 2012). Consequently, Eq. (A22) can be rewritten in 
the same form as the target incompressible NS equation. The above analysis proves that our ULBM (NMRT) PF model can recover the target 
incompressible NS equations in the nearly incompressible limit. 

A.2. D3Q27 ULBM (NMRT) PF model 

The details of the D3Q27 ULBM (NMRT) PF model are presented in Appendix 2. For the D3Q27 lattice model, its discrete velocities (ei = [|eix〉,|eiy〉,

|eiz〉]) can be written as: 
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|eix〉 = [0, 1, − 1, 0, 0, 0, 0, 1, − 1, 1, − 1, 1, − 1, 1, − 1, 0, 0, 0, 0, 1, − 1, 1, − 1, 1, − 1, 1, − 1]T,⃒
⃒eiy
〉
= [0, 0, 0, 1, − 1, 0, 0, 1, 1, − 1, − 1, 0, 0, 0, 0, 1, − 1, 1, − 1, 1, 1, − 1, − 1, 1, 1, − 1, − 1]T,

|eiz〉 = [0, 0, 0, 0, 0, 1, − 1, 0, 0, 0, 0, 1, 1, − 1, − 1, 1, 1, − 1, − 1, 1, 1, 1, 1, − 1, − 1, − 1, − 1]T,

where i = 0…26 and |⋅〉 donates a 27-column vector. The superscript T is the transposition symbol. The relaxation matrix S is: 

S = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,

s13, s14, s15, s16, s17, s18, s19, s20, s21, s22, s23, s24, s25, s26 )
(A23) 

For the D3Q27 lattice model, the non-orthogonal raw moment set is designed as: 

m = [k000, k100, k010, k001, k110, k101, k011, k200 + k020 + k002,

k200 − k020, k200 − k002, k120, k102, k210, k201, k012, k021, k111, k220, k202, k022,

k211, k121, k112, k122,k212, k221, k222
]T

(A24)  

Where the subscript of moments is in ascending order of (p+ q+ n). Accordingly, the transformation matrix is: 

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 − 1 0 0 0 0 1 − 1 1 − 1 1 − 1 1 − 1 0 0 0 0 1 − 1 1 − 1 1 − 1 1 − 1
0 0 0 1 − 1 0 0 1 1 − 1 − 1 0 0 0 0 1 − 1 1 − 1 1 1 − 1 − 1 1 1 − 1 − 1
0 0 0 0 0 1 − 1 0 0 0 0 1 1 − 1 − 1 1 1 − 1 − 1 1 1 1 1 − 1 − 1 − 1 − 1
0 0 0 0 0 0 0 1 − 1 − 1 1 0 0 0 0 0 0 0 0 1 − 1 − 1 1 1 − 1 − 1 1
0 0 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1 0 0 0 0 1 − 1 1 − 1 − 1 1 − 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1 1 1 − 1 − 1 − 1 − 1 1 1
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
0 1 1 − 1 − 1 0 0 0 0 0 0 1 1 1 1 − 1 − 1 − 1 − 1 0 0 0 0 0 0 0 0
0 1 1 0 0 − 1 − 1 1 1 1 1 0 0 0 0 − 1 − 1 − 1 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 − 1 1 − 1 0 0 0 0 0 0 0 0 1 − 1 1 − 1 1 − 1 1 − 1
0 0 0 0 0 0 0 0 0 0 0 1 − 1 1 − 1 0 0 0 0 1 − 1 1 − 1 1 − 1 1 − 1
0 0 0 0 0 0 0 1 1 − 1 − 1 0 0 0 0 0 0 0 0 1 1 − 1 − 1 1 1 − 1 − 1
0 0 0 0 0 0 0 0 0 0 0 1 1 − 1 − 1 0 0 0 0 1 1 1 1 − 1 − 1 − 1 − 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 1 − 1 1 1 − 1 − 1 1 1 − 1 − 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 − 1 − 1 1 1 1 1 − 1 − 1 − 1 − 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1 − 1 1 1 − 1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 − 1 − 1 − 1 − 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 1 − 1 − 1 1 − 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1 1 − 1 − 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 1 − 1 1 − 1 1 − 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 − 1 − 1 1 1 − 1 − 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 − 1 − 1 − 1 − 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Following the introductions in Section 2.2, the discrete equilibrium moment and forcing terms in the raw moment space for D3Q27 lattice model 
can be written as: 

meq
ϕ = Mf eq

ϕ,i =
⎡

⎣
ϕ,ϕux,ϕuy,ϕuz, 0, 0, 0,ϕ, 0, 0,ϕuxc2

s ,ϕuxc2
s ,ϕuyc2

s ,ϕuzc2
s ,

ϕuyc2
s ,ϕuzc2

s , 0,ϕc4
s ,ϕc4

s ,ϕc4
s , 0, 0, 0,ϕuxc4

s ,ϕuyc4
s ,ϕuzc4

s ,ϕc6
s

⎤

⎦

T
(A25)  

And, 

Rϕ = MCϕ,i =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0,Fϕ,x + ∂t(ϕux),Fϕ,y + ∂t
(
ϕuy
)
,Fϕ,z + ∂t(ϕuz), 0, 0, 0, 0, 0, 0,

(
Fϕ,x + ∂t(ϕux)

)
c2

s ,
(
Fϕ,x + ∂t(ϕux)

)
c2

s ,
(
Fϕ,y + ∂t

(
ϕuy
))

c2
s ,(

Fϕ,z + ∂t(ϕuz)
)
c2

s ,
(
Fϕ,y + ∂t

(
ϕuy
))

c2
s ,
(
Fϕ,z + ∂t(ϕuz)

)
c2

s , 0, 0, 0, 0,
0, 0, 0,

(
Fϕ,x + ∂t(ϕux)

)
c2

s ,
(
Fϕ,y + ∂t

(
ϕuy
))

c2
s ,
(
Fϕ,z + ∂t(ϕuz)

)
c2

s , 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(A26) 

In solving the NS equation, similarly, the discrete equilibrium moment and forcing terms in the raw moment space can be written as: 

G. Wang et al.                                                                                                                                                                                                                                   



International Journal of Multiphase Flow 168 (2023) 104582

18

meq
g = Mgeq

i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P, ρc2
s ux, ρc2

s uy, ρc2
s uz, ρc2

s uxuy, ρc2
s uxuz, ρc2

s uyuz,P + ρc2
s |u|

2
,

(
u2

x − u2
y

)
ρc2

s ,
(
u2

x − u2
z

)
ρc2

s , ρc4
s ux, ρc4

s ux, ρc4
s uy, ρc4

s uz, ρc4
s uy, ρc4

s uz,

0, c4
s

(
P + ρu2

x + ρu2
y

)
, c4

s

(
P + ρu2

z + ρu2
y

)
, c4

s

(
P + ρu2

x + ρu2
z

)
,

ρc4
s uyuz, ρc4

s uxuy, ρc4
s uxuz, ρc6

s ux, ρc6
s uy, ρc6

s uz, c6
s

(
P + ρc2

s |u|
2
)
,

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(A27) 

and, 

Rg = MCg,i =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u⋅∇P0,Fg,xc2
s ,Fg,yc2

s ,Fg,zc2
s ,
(
ux
(
Fg,y + ∂yP0

)
+ uy

(
Fg,x + ∂xP0

))
c2

s ,(
ux
(
Fg,z + ∂zP0

)
+ uz

(
Fg,x + ∂xP0

))
c2

s ,
(
uz
(
Fg,y + ∂yP0

)
+ uy

(
Fg,z + ∂zP0

))
c2

s ,(
2u⋅Fg + 5u⋅∇P0

)
c2

s , 2
(
ux
(
Fg,x + ∂xP0

)
− uy

(
Fg,y + ∂yP0

))
c2

s ,

2
(
ux
(
Fg,x + ∂xP0

)
− uz

(
Fg,z + ∂zP0

))
c2

s ,
(

u2
y∂xP0 + 2uxuy∂yP0 + Fg,xc2

s

)
c2

s ,
(
u2

z ∂xP0 + 2uxuz∂zP0 + Fg,xc2
s

)
c2

s ,
(
u2

x∂yP0 + 2uxuy∂xP0 + Fg,yc2
s

)
c2

s ,(
u2

x∂zP0 + 2uxuz∂xP0 + Fg,zc2
s

)
c2

s ,
(
u2

z ∂yP0 + 2uyuz∂zP0 + Fg,yc2
s

)
c2

s ,(
u2

x∂zP0 + 2uxuz∂xP0 + Fg,zc2
s

)
c2

s ,
(
u2

z ∂yP0 + 2uyuz∂zP0 + Fg,yc2
s

)
c2

s ,(
ux
(
2c2

s Fg,x + ∂xP0
)
+ uy

(
2Fg,y + ∂yP0

)
+ c2

s uz∂zP0
)
c2

s ,(
ux
(
2c2

s Fg,x + ∂xP0
)
+ uz

(
2Fg,z + ∂zP0

)
+ c2

s uy∂yP0
)
c2

s ,(
uy
(
2c2

s Fg,y + ∂yP0
)
+ uz

(
2Fg,z + ∂zP0

)
+ c2

s ux∂xP0
)
c2

s ,(
uz
(
Fg,y + ∂yP0

)
+ uy

(
Fg,z + ∂zP0

))
c4

s ,
(
ux
(
Fg,z + ∂zP0

)
+ uz

(
Fg,x + ∂xP0

))
c4

s ,(
ux
(
Fg,y + ∂yP0

)
+ uy

(
Fg,x + ∂xP0

))
c4

s ,
(

u2
y∂xP0 + 2uxuy∂yP0 + u2

z ∂xP0 + 2uxuz∂zP0 + c2
s Fg,x

)
c4

s ,
(
u2

x∂yP0 + 2uxuy∂xP0 + u2
z ∂yP0 + 2uyuz∂zP0 + c2

s Fg,y
)
c4

s ,
(

u2
x∂zP0 + 2uxuz∂xP0 + u2

y∂zP0 + 2uyuz∂yP0 + c2
s Fg,z

)
c4

s ,
(
2c2

s u⋅Fg + 5u⋅∇P0
)
c4

s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A28)  

A.3. D3Q19 ULBM (NMRT) PF model 

The details of the D3Q19 ULBM (NMRT) PF model are introduced in appendix 3. The discrete velocities are: 

|eix = [0, 1, − 1, 0, 0, 0, 0, 1, − 1, 1, − 1, 1, − 1, 1, − 1, 0, 0, 0, 0]T,⃒
⃒eiy = [0, 0, 0, 1, − 1, 0, 0, 1, 1, − 1, − 1, 0, 0, 0, 0, 1, − 1, 1, − 1]T,
⃒
⃒eiz = [0, 0, 0, 0, 0, 1, − 1, 0, 0, 0, 0, 1, 1, − 1, − 1, 1, 1, − 1, − 1]T,

(A29) 

and the D3Q19 non-orthogonal raw moment set (m) can be written as: 

m = [k000, k100, k010, k001, k110, k101, k011, k200 + k020 + k002,

k200 − k020, k200 − k002, k120, k102, k210, k201, k012, k021, k220, k202, k022]
T
,

(A30) 

thus, the transformation matrix M is: 
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M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 − 1 0 0 0 0 1 − 1 1 − 1 1 − 1 1 − 1 0 0 0 0
0 0 0 1 − 1 0 0 1 1 − 1 − 1 0 0 0 0 1 − 1 1 − 1
0 0 0 0 0 1 − 1 0 0 0 0 1 1 − 1 − 1 1 1 − 1 − 1
0 0 0 0 0 0 0 1 − 1 − 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
0 1 1 − 1 − 1 0 0 0 0 0 0 1 1 1 1 − 1 − 1 − 1 − 1
0 1 1 0 0 − 1 − 1 1 1 1 1 0 0 0 0 − 1 − 1 − 1 − 1
0 0 0 0 0 0 0 1 − 1 1 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 − 1 1 − 1 0 0 0 0
0 0 0 0 0 0 0 1 1 − 1 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 − 1 − 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 1 − 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 − 1 − 1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In terms of the D3Q19 ULBM (NMRT) model for the AC equation, following the same steps in Section 2.2, the discrete equilibrium moment in the 
raw moment space can be written as: 

meq
ϕ = Mf eq

ϕ,i =
⎡

⎣
ϕ,ϕux,ϕuy,ϕuz, 0, 0, 0,ϕ, 0, 0,ϕuxc2

s ,ϕuxc2
s ,ϕuyc2

s ,ϕuzc2
s ,

ϕuyc2
s ,ϕuzc2

s ,ϕc4
s ,ϕc4

s ,ϕc4
s

⎤

⎦

T
(A31)  

And the discrete forcing term is: 

Rϕ = MCϕ,i =
⎡

⎢
⎢
⎢
⎣

0,Fϕ,x + ∂t(ϕux),Fϕ,y + ∂t
(
ϕuy
)
,Fϕ,z + ∂t(ϕuz), 0, 0, 0, 0, 0, 0,

(
Fϕ,x + ∂t(ϕux)

)
c2

s ,
(
Fϕ,x + ∂t(ϕux)

)
c2

s ,
(
Fϕ,y + ∂t

(
ϕuy
))

c2
s ,(

Fϕ,z + ∂t(ϕuz)
)
c2

s ,
(
Fϕ,y + ∂t

(
ϕuy
))

c2
s ,
(
Fϕ,z + ∂t(ϕuz)

)
c2

s , 0, 0, 0

⎤

⎥
⎥
⎥
⎦

T

(A32) 

For the D3Q19 ULBM (NMRT) model for the incompressible NS equation, similarly, the discrete equilibrium moment in the raw moment space can 
be written as: 

meq
g = Mgeq

i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P, ρc2
s ux, ρc2

s uy, ρc2
s uz, ρc2

s uxuy, ρc2
s uxuz, ρc2

s uyuz,P + ρc2
s |u|

2
,

(
u2

x − u2
y

)
ρc2

s ,
(
u2

x − u2
z

)
ρc2

s , ρc4
s ux, ρc4

s ux, ρc4
s uy, ρc4

s uz, ρc4
s uy, ρc4

s uz,

c4
s

(
P + ρu2

x + ρu2
y − 0.5ρu2

z

)
, c4

s

(
P + ρu2

z + ρu2
y − 0.5ρu2

x

)
,

c4
s

(
P + ρu2

x + ρu2
z − 0.5ρu2

x

)
,

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(A33)  

and the discrete forcing term is: 
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Rg = MCg,i =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u⋅∇P0,Fg,xc2
s ,Fg,yc2

s ,Fg,zc2
s ,
(
ux
(
Fg,y + ∂yP0

)
+ uy

(
Fg,x + ∂xP0

))
c2

s ,(
ux
(
Fg,z + ∂zP0

)
+ uz

(
Fg,x + ∂xP0

))
c2

s ,
(
uz
(
Fg,y + ∂yP0

)
+ uy

(
Fg,z + ∂zP0

))
c2

s ,(
2u⋅Fg + 5u⋅∇P0

)
c2

s , 2
(
ux
(
Fg,x + ∂xP0

)
− uy

(
Fg,y + ∂yP0

))
c2

s ,

2
(
ux
(
Fg,x + ∂xP0

)
− uz

(
Fg,z + ∂zP0

))
c2

s ,
(

u2
y∂xP0 + 2uxuy∂yP0 + Fg,xc2

s

)
c2

s ,
(
u2

z ∂xP0 + 2uxuz∂zP0 + Fg,xc2
s

)
c2

s ,
(
u2

x∂yP0 + 2uxuy∂xP0 + Fg,yc2
s

)
c2

s ,(
u2

x∂zP0 + 2uxuz∂xP0 + Fg,zc2
s

)
c2

s ,
(
u2

z ∂yP0 + 2uyuz∂zP0 + Fg,yc2
s

)
c2

s ,
(

u2
y∂zP0 + 2uyuz∂yP0 + Fg,zc2

s

)
c2

s ,
(
ux
(
2c2

s Fg,x + ∂xP0
)
+ uy

(
2Fg,y + ∂yP0

)
+ c2

s uz∂zP0
)
c2

s ,(
ux
(
2c2

s Fg,x + ∂xP0
)
+ uz

(
2Fg,z + ∂zP0

)
+ c2

s uy∂yP0
)
c2

s ,(
uy
(
2c2

s Fg,y + ∂yP0
)
+ uz

(
2Fg,z + ∂zP0

)
+ c2

s ux∂xP0
)
c2

s ,

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A34) 

It can be found that the terms in Eqs. (A31~ A34) can be extracted directly from the corresponding moments in the D3Q27 model, which 
demonstrates our proposed model has good portability across various lattice models. 
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Comparison of free-surface and conservative Allen–Cahn phase-field Lattice 
Boltzmann method. J. Comput. Phys. 473, 111753. 

Liang, H., Wang, R., Wei, Y., Xu, J., 2023. Lattice Boltzmann method for interface 
capturing. Phys. Rev. E 107, 025302. 

Wagner, H., 1932. Über stoß- und gleitvorgänge an der oberfläche von flüssigkeiten. 
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