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Abstract

Reconfigurability is a desired characteristic of future communication networks. From a transceiver’s

standpoint, this can be materialized through the implementation of fluid antennas (FAs). An FA consists

of a dielectric holder, in which a radiating liquid moves between pre-defined locations (called ports) that

serve as the transceiver’s antennas. Due to the nature of liquids, FAs can practically take any size and

shape, making them both flexible and reconfigurable. In this paper, we deal with the outage probability

of FAs under general fading channels, where a port is scheduled based on selection combining. An

analytical framework is provided for the performance with and without estimation errors, as a result of

post-scheduling delays. We show that although FAs achieve maximum diversity, this cannot be realized

in the presence of delays. Hence, a linear prediction scheme is proposed that overcomes delays and

restores the lost diversity by predicting the next scheduled port. Moreover, we design space-time coded

modulations that exploit the FA’s sequential operation with space-time rotations and code diversity.

The derived expressions for the pairwise error probability and average word error rate give an accurate

estimate of the performance. We illustrate that the proposed design attains maximum diversity, while

keeping a low-complexity receiver, thereby confirming the feasibility of FAs.
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I. INTRODUCTION

The numerous advances in antenna technology and in particular antenna arrays have been

important in the evolution of communication systems towards 5G and beyond 5G networks [1].

Indeed, the implementation of multiple-input multiple-output (MIMO) antenna architectures has

been an essential element in wireless networks for the realization of high data rates and spectral

efficiency due to beamforming and spatial multiplexing. Such antennas are usually made of metal

and are designed in such a way so as to meet specific network requirements. Furthermore, their

design is subject to physical constraints, the most significant being the spacing between two

antennas, which needs to be at least as half as the carrier’s wavelength to avoid electromagnetic

coupling [2]. Naturally, this metallic structure makes them static (i.e., inflexible), impractical

and too costly for very small devices to have many antennas.

Recently, there has been several efforts to introduce reconfigurability in wireless networks.

Towards this end, reconfigurable intelligent surfaces were proposed to control the propagation

environment via software-controlled metasurfaces [3]. From a transceiver’s point-of-view, the

notion of fluid antennas (FAs), also known as liquid antennas, has been recently proposed in

order to add both flexibility and reconfigurability at the radio frequency (RF) front-end [4]. In

particular, FAs consist of radiating liquid elements such as Mercury, eutectic gallium-indium

(EGaIn) and even sea water, enclosed in a dielectric holder [5]. The holder contains several pre-

defined positions, known as ports, where the employed liquid can be moved towards a selected

port in a programmable and controllable manner. Moreover, the FA uses just one RF chain and

so the spacing constraint does not apply in this case, making it a suitable technology for very

small devices [6]. It follows that in comparison to conventional static metallic antennas, FAs

can adjust their physical configuration (e.g., shape, feeding) as well as their electrical properties

(e.g., resonant frequency, radiation pattern) [7]. Therefore, this technology provides a new degree

of freedom in the design of wireless communication systems.

Despite the fact that FAs have been studied from an RF/microwave engineering perspective and

several early prototypes exist in the literature, e.g. see [4], [5], [8], [9], the theoretical foundations

of FAs and the investigation of communication techniques that unlock their full potentials are

still not understood. Indeed, the exploitation of the liquid dimension associated with the FAs

will open new design opportunities and establish a new communication paradigm [6], [10], [11].

In [6], the authors study the performance of an FA system in terms of outage probability and
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show that an FA can outperform a maximum ratio combining (MRC) system with conventional

antennas, when the number of ports is sufficiently large. The work in [10] extends the study

with respect to the ergodic capacity, where it is demonstrated that FAs can match the capacity

of MRC systems. Finally, the performance of FAs with multiuser interference is studied in [11];

it is shown that with a large enough number of ports, the FA attains a relatively low outage

probability. The aforementioned studies consider an FA within a linear space, where the selected

port is based on the selection combining scheme. They also assume that the performance is

not affected by any imperfections as a result of the channel estimation and selection process.

However, due to the sequential nature of FAs, estimation and selection will be affected by delays

between the pre-scheduling and the post-scheduling of a port, especially for a large number of

ports. Therefore, a proper analysis considering processing imperfections is of great importance.

Motivated by this, in this paper, we study the outage probability of an FA system, where

the channel at the selected port is subject to practical delays. We analytically determine the

loss in diversity and propose a prediction scheme to restore the performance. Now, selection

diversity techniques have been widely used due to the simplicity in their implementation and in

the design of transmission schemes, as all the signals are placed on one channel. On the other

hand, combining diversity techniques provide better performance as they exploit all the available

channels (ports) for transmission, which however implies a more sophisticated transmission

scheme design and multiple RF chains to activate multiple ports. Therefore, we also deal with the

design of a low-complexity coded modulation scheme for FA systems, which exploits the liquid’s

movement through the holder and achieves maximum code diversity. In uncoded transmission

over block-fading channels such as multiple-antenna [12] or cooperative channels [13], achieving

optimal performance requires space-time coding with full spreading (i.e. same space and time

dimensions), which increases the cardinality of the transmit symbol vector and thus results in

high demodulation complexity. However, when channel coding is implemented with optimal

interleaving, space-time rotations with limited spreading (i.e. time dimension smaller than space

dimension) can be used to complement the code diversity, thus leading to a low-complexity

receiver [14]. Therefore, code diversity can mitigate the drawback of non-ergodic fading channels,

in that a proper interleaving of bits over channel states allows to both recover diversity and

enhance the coding gain without additional complexity. Specifically, the contributions of this

paper are threefold.

• We study the performance of FA systems under general Nakagami fading channels. Three
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basic FA architectures are taken into account, namely, linear, circular and wheel-shaped,

which exhibit different correlation patterns between the ports. We derive analytical expres-

sions for the outage probability and show that the architecture with the best performance

differs, depending on the FA size. Moreover, the provided asymptotic expressions quantify

the system’s diversity and outage gain. An FA achieves full channel (spatial) diversity, which

is independent of the architecture, whereas its outage gain depends on the correlation pattern.

• By considering estimation errors due to delays, we present an analytical framework for

the outage probability of outdated channels. As a result of the post-scheduling errors, the

performance deteriorates significantly both in diversity as well as in outage gain; indeed,

in some cases, the performance is inversely proportional to the number of ports. To recover

the performance loss, we provide a linear prediction scheme based on channel knowledge

obtained from previous training resource blocks. We show that with just a small number of

training blocks, the performance is restored and maximum diversity can be obtained.

• We combine space-time rotations with code diversity to design space-time coded modu-

lations that have optimal performance over FA correlated block-fading channels. Unlike

previous designs, we consider scenarios in which not all modulated symbols in the trans-

mission vector are space-time rotated by introducing an average spreading factor. This will

allow to achieve maximum code diversity while further reducing the receiver’s complexity.

Expressions for the pairwise error probability (PEP) and average word error rate (WER)

are derived that give an accurate estimate for the performance of the coded modulations.

The rest of the paper is organized as follows. Section II describes the considered system model.

Section III presents the analytical framework for the performance of port selection with pre-

scheduling, post-scheduling and predicted channels. Section IV provides the coded modulation

design and WER performance for port combining. Finally, Section V presents the numerical

results and Section VI concludes the paper.

Notation: Lower and upper case boldface letters denote vectors and matrices, respectively;

[·]> and [·]† denote the transpose and the transpose conjugate, respectively; ||H|| gives the

Frobenius norm of matrix H; IN denotes the N ×N identity matrix; diag(a1, . . . , aN) denotes

a diagonal matrix with entries a1, . . . , aN on the main diagonal; P{X} and E{X} represent the

probability and expectation of X , respectively; Q(·) is the Q-function; Γ(·), Γ(·, ·) and γ(·, ·)

denote the complete, upper, and lower incomplete gamma function, respectively; Qm(·, ·) denotes

the Marcum-Q function of order m; Jn(·) and In(·) are the Bessel function and the modified
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(a) Linear. (b) Circular. (c) Wheel.

Fig. 1: Considered FA architectures.

Bessel function, respectively, of the first kind and order n [15];  =
√
−1 is the imaginary unit;

1X is the indicator function of X with 1X = 1, if X is true, and 1X = 0, otherwise.

II. SYSTEM MODEL

Consider a point-to-point network, with a conventional single-antenna transmitter and a single-

FA receiver. The FA uses a single RF chain and consists of N ports, evenly distributed over

a dielectric holder of a specific topological space, defined in the next sub-section. We assume

that the FA can switch on a single port by displacing the employed liquid to its location with a

mechanical pump [4]. The transmitter utilizes a fixed transmission power P .

A. FA Architectures

We consider three FA architectures1: a uniform linear array [2], [6] (Fig. 1a), a uniform

circular (toroidal) array [2], [9] (Fig. 1b), and a wheel-shaped array [16] (Fig. 1c). The size of

each topology is characterized by the value Wλ, where λ is the wavelength of the transmitted

signals. Moreover, due to their specific topological attributes, each architecture exhibits differ-

ent displacements values between the ports. Specifically, the displacement (i.e. the Euclidean

distance) at the n-th port from the first one is given by

dn =
n− 1

N − 1
Wλ, (1)

for the linear topology [6]. In this case, the displacement increases with n and so the maximum

displacement is unique and equal to dN . Moreover, all N displacements are distinct, i.e. d1 6=

d2 6= · · · 6= dN . For the circular topology, the displacement can be written as

dn = sin

(
n− 1

N
π

)
Wλ, (2)

1These three topologies are considered for the sake of studying the effect of different correlation patterns on the performance

of FAs. Nevertheless, the presented analytical framework is general and is not limited to these specific geometric topologies.
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which essentially corresponds to the circle’s chord formed by the two ports. Here, for N even,

the maximum displacement is unique and equal to dN
2

+1, whereas for odd N , the maximum

displacements are dN+1
2

= dN+3
2

. Also, the remaining displacements are pairwise equal, that is,

dn = dN−n+2. Finally, for the wheel-shaped topology, we have

dn = 1n>1
Wλ

2
, (3)

where it is clear that it is independent of the port’s location for n > 1, i.e. d2 = d3 = · · · = dN .

The displacements are illustrated in Fig. 1 for each topology.

B. Channel Model

All wireless links are assumed to exhibit Nakagami fading with integer parameter m ≥ 1. We

represent the Nakagami-m fading channels at the N ports by a set of Nm complex Gaussian

random variables, as follows [17]

g1,k = σ(x1,k + y1,k), (4)

gn,k = σ
(√

1− ρ2
nxn,k + ρnx1,k + 

(√
1− ρ2

nyn,k + ρny1,k

))
, (5)

for k = 1, . . . ,m, n = 2, . . . , N , σ > 0, where xn,k and yn,k are independent Gaussian random

variables with zero mean and variance 1/2, i.e. xn,k, yn,k ∼ N (0, 1/2). Let hn, n = 1, . . . , N ,

be the sum of the squared magnitude of gn,k, that is,

hn =
m∑
k=1

|gn,k|2. (6)

In this way, the random variables
√
hn are correlated Nakagami-m fading envelopes with E{hn} =

σ2m [17]. So hn is the sum of m independent squared Rayleigh envelopes [18] or, equivalently,

the sum of 2m independent squared zero-mean Gaussian random variables with variance σ2/2;

throughout this paper, we will consider σ2 = 1 for simplicity but the generalization to any

σ2 is straightforward. Therefore, by having the first port as the reference point, the correlation

coefficient between hn and h1 can be modeled by2

ρn = J0

(
2π
dn
λ

)
, (7)

where dn is defined based on the considered topology. Note that the observations regarding the

displacements for each topology also hold for the correlation coefficients. Finally, we assume

that the channel coefficients are known to the FA receiver, but not the transmitter.

2Note that alternative spatial correlation models were recently proposed in [19], [20] which differ slightly from the one used

in this paper. It would be an interesting future work to extend the work of this paper using the new models.
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III. PORT SELECTION WITH OUTDATED CHANNEL ESTIMATES

In this section, we study the performance of the FA system with port selection. We assume

that the FA employs a selection combiner and thus chooses the port with the strongest received

signal, that is, the port with
h = max{h1, h2, . . . , hN}. (8)

We also consider the case where the estimated (pre-scheduling) channel at any port is subject

to delays [21]. Since the estimation is done sequentially at each port, these delays correspond

to the duration needed for the liquid to be displaced at each port and estimate the received

channels. As such, by the time the port with the best estimate is scheduled (i.e. switched on),

that estimation could be outdated. We first focus on the performance of the estimated channels,

then of the one of the outdated channels and finally on the performance of predicted channels.

A. Estimated (Pre-scheduling) Channels

To facilitate the analysis, we let ĥn denote the estimated received channel at the n-th port

and ĥ = max{ĥ1, ĥ2, . . . , ĥN}. The theorem below provides the cumulative distribution function

(CDF) of the estimated ĥ.

Theorem 1. The CDF of the estimated ĥ is given by

Fĥ(x) =
1

Γ(m)

∫ x

0

exp(−z)zm−1

N∏
n=2

φn(z, x)dz, (9)

where

φn(z, x) = 1−Qm

(√
2zρ2

n

1− ρ2
n

,

√
2x

1− ρ2
n

)
, (10)

and ρn is given by (7).

Proof. See Appendix A.

Note that for the Rayleigh case (m = 1), the above CDF reduces to the one in [6]. Theorem 1

is general and applies to any FA topology, including the ones in Fig. 1. It is important to point

out that the performance of the FA improves as the correlation coefficients get smaller. To better

show this behavior, we take an asymptotic approach and derive the achieved diversity order and

outage gain [22]. Firstly, we provide a closed-form series representation of the CDF to assist

with the analysis. For the sake of convenience, we will denote

S , 1 +
N∑
n=2

ρ2
n

1− ρ2
n

. (11)
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Proposition 1. A series representation of the CDF of the estimated ĥ can be written as

Fĥ(x) =
1

Γ(m)

∞∑
k=0

ck
Sm+k

γ (m+ k, Sx) , (12)

where

ck =
∑

l2,l3,...,lN≥0
l2+l3+···+lN=k

α2,l2α3,l3 · · ·αN,lN , (13)

and

αn,l =

(
ρ2
n

1− ρ2
n

)l γ (m+ l, x
1−ρ2

n

)
l!Γ(m+ l)

. (14)

Proof. See Appendix B.

Obviously, for ρn = 0, ∀n, (12) reduces to the independent case as

Fĥ(x) =

(
1

Γ(m)
γ (m,x)

)N
, (15)

since S = 1 and all k > 0 terms are equal to zero. This scenario can be realized with a large

enough W and, in particular, with the wheel topology (see Fig. 1c above and Fig. 2c below).

Now, the estimated signal-to-noise ratio (SNR) at the n-th port is given by

η̂n =
P

mν2
ĥn, (16)

with average SNR η̄ = E[ηn] = P/ν2, where ν2 is the variance of the additive white Gaussian

noise (AWGN). Let η̂ be the largest estimated SNR, i.e. η̂ = max{η̂1, . . . , η̂n}. Then, the outage

probability can be written as

Po(θ) = P{log2(1 + η̂) < θ} = Fĥ

(
m

η̄
(2θ − 1)

)
, (17)

where θ is a pre-defined rate threshold. Therefore, from Proposition 1, one can easily obtain an

asymptotic expression for the outage probability.

Corollary 1. For high SNR values, the outage probability of the estimated η̂ is approximated by

lim
η̄→∞

Po(θ) ≈
(
m

η̄
(2θ − 1)

)mN
Γ(m+ 1)−N∏N
n=2(1− ρ2

n)m
. (18)

Proof. See Appendix C.
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Based on Corollary 1, the diversity order of the considered FA system is Gd = mN and the

outage gain is equal to

Go =
(m(2θ − 1))mN

Γ(m+ 1)N
∏N

n=2(1− ρ2
n)m

. (19)

It is well-known that the diversity defines the slope of the outage probability’s curve and the

outage gain represents the “distance” to the vertical axis [22], i.e., the smaller the value Go, the

better. From (19), we can observe that correlation negatively affects the outage gain. It follows

that the achieved diversity is independent of the FA’s topology but the employed topological

space characterizes the achieved outage gain. As such, the minimum outage gain is obtained by

the independent case, that is, when ρn = 0, ∀n.

B. Outdated (Post-scheduling) Channels

In what follows, we turn our attention to the outdated scenario. Thus, we will focus on the

performance of h, given by (8), conditioned on the outdated estimation ĥ. In this case, the

instantaneous outdated fading channels can be written as

g1,k =
√

1− µ2
1σ(x1,k + y1,k) + µ1ĝ1,k, (20)

gn,k =
√

1− µ2
nσ(xn,k + yn,k) + µnĝn,k, (21)

for k = 1, . . . ,m, n = 2, . . . , N and, with a slight abuse of notation, ĝ1,k and ĝn,k are given by

(4) and (5), respectively. As before, we assume σ = 1. As such, the estimation error between

ĥn and hn is captured by the correlation parameter µn modeled by [21]

µn = J0(2πfTn), (22)

where f is the Doppler frequency and Tn is the delay between the estimation and the activation

of the n-th port. Obviously, the delay Tn is proportional to the time it needs to estimate the

channel at a port [21], the size of the topology, the liquid’s chemical properties but also the

efficiency of the employed pump mechanism [4], [5]. In this work, we will focus on the first

two even though the model could essentially capture all deficiencies. Let τe be the duration for

estimating the channel at a port. Then, we assume that

Tn =

(
N − n+ 1

N

)
τeβ, (23)

where β captures the FA’s topological effect and is given by W , πW and NW/2 for the linear

(length), the circular (circumference) and the wheel-shaped topology (width), respectively.
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Now, let En denote the event that the n-th port has been activated. Then, the CDF of the

outdated channel h is given by

Fh(x) =
N∑
n=1

∫ ∞
0

Fhn|ĥn(x|ĥn)fĥn|En(y|En)dy, (24)

where Fh|ĥ(·|ĥ) is the conditional CDF and fĥn|En(·|En) is the probability distribution function

(PDF) of ĥ conditioned on the n-th port being selected, given in the following proposition.

Proposition 2. The conditional PDF of the estimated ĥn is

fĥ1|E1
(x|E1) =

1

Γ(m)
exp(−x)xm−1

N∏
k=2

φk(x, x)dz, (25)

for n = 1, and

fĥn|En(x|En) =
1

Γ(m)(1− ρ2
n)

∫ x

0

exp

(
− x+ z

1− ρ2
n

)(
xz

ρ2
n

)m−1
2

Im−1

(
2
√
xzρ2

n

1− ρ2
n

)
N∏
k=2
k 6=n

φk(z, x)dz,

(26)

for n = 2, 3, . . . , N .

Proof. See Appendix D.

The result in Proposition 2 quantifies the effect of each port on the FA’s overall performance.

Indeed, one can easily evaluate the CDF of the estimated ĥ by taking the sum of the conditional

CDFs, that is,

Fĥ(x) =
N∑
n=1

Fĥn|En(x|En), (27)

where Fĥn|En(x|En) are given in Appendix D; so (27) corresponds to Theorem 1, albeit in a

more complex form. Moreover, from Proposition 2, we can derive the probability of scheduling

the n-th port, i.e.

pn =

∫ ∞
0

fĥn|En(x|En). (28)

These probabilities are illustrated in Fig. 2. Observe that for ρn = 0, ∀n, we have Qm(0, z) =

Γ(m, z2/2)/Γ(m) and the above expression gives p1 = p2 = · · · = 1/N , which is true for the

independent case. The non-uniform property of the correlated case allows room for exploitation.

Specifically, one can focus on the ports that get selected more frequently in order to reduce both

the delays and the complexity. Moreover, through correlation one can predict the channels at

specific ports based on the channel knowledge at other ports. We can now state the final result.
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Fig. 2: Probability of selecting the n-th port; N = 10.

Theorem 2. The CDF of the outdated h can be written as

Fh(x) = 1−
N∑
n=1

∫ ∞
0

Qm

(√
2yµ2

n

1− µ2
n

,

√
2x

1− µ2
n

)
fy|En(y|En)dy, (29)

where fy|En(y|En) is given by Proposition 2.

Proof. By substituting the expressions of Proposition 2 in (24) and since hn | ĥn is a non-

central chi-square random variable with 2m degrees of freedom and non-centrality parameter

2ĥnµ
2
n/(1− µ2

n), the result follows.

Note that the above expression is valid for 0 ≤ µn < 1. If for a specific n we have µn = 1

(no delays), then the integral for the n-th term in (29) is reduced to (56) or (61), accordingly.

Obviously, if µn = 1 ∀n, the performance is given by Theorem 1 (or by (27)). On the other

hand, if µn = 0, ∀n, i.e. when the estimates are completely outdated (independent), Fh(x)

gives the performance of a randomly selected port, that is, Fh(x) = 1 − Γ(m,x)/Γ(m), since

Qm(0, z) = Γ(m, z2/2)/Γ(m). We should also remark that a closed-form series representation of

Theorem 2 could be derived by following the same methodology as in Proposition 1, but we omit

it for the sake of brevity. Nevertheless, we will provide a simplified asymptotic expression for

high SNRs. Let η denote the outdated SNR, so the outage probability is Po(θ) = Fh
(
m
η̄

(2θ−1)
)
.

Corollary 2. For high SNR values, the outage probability for the outdated η simplifies to

lim
η̄→∞

Po(θ) ≈
(
m(2θ − 1)

η̄

)m
mΓ(mN)

Γ(m+ 1)N+1
∏N

n=2(1− ρ2
n)m

×

(
(1− µ2

1)mN−m

(µ2
1 + (1− µ2

1)S)
mN

+
N∑
n=2

(1− µ2
n)mN−m

(
1− ρ2

n

1− µ2
nρ

2
n

)mN)
. (30)

Proof. See Appendix E.
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As expected, when the channels are outdated, the system is dispossessed of the channel

diversity and the achieved diversity is reduced to m. Attaining full channel diversity would

require µn → 0, which could be realized with extremely small FAs, i.e. W → 0. Still, this

may be impractical and so, in most cases, post-scheduling error due to delays is an inherent

characteristic of FAs. Therefore, in what follows, we consider a linear channel prediction scheme

in order to overcome this limitation [23].

C. Linear Prediction Scheme

We assume that the FA receiver obtains a sequence of channel estimates during a training

phase of duration D resource blocks. In other words, the receiver obtains the following for the

n-th port

ĝn,k = [ĝn,k(t− (D − 1)), . . . , ĝn,k(t− 1), ĝn,k(t)]
>, (31)

where ĝn,k(t) is the estimated channel at the t-th block for k = 1, . . . ,m. As before, we assume

perfect channel estimation at the receiver. The channel estimates for a fixed resource block are

spatially correlated over different ports based on the autocorrelation function defined in (7).

Moreover, for fixed n and k, the channel estimates over different resource blocks are temporally

correlated, i.e. E{ĝn,k(t1)ĝ∗n,k(t2)} = J0(2πf |t1−t2|τd), where τd is the duration of each resource

block [24]. Now the aim is to predict the channel g̃n,k(t + l), l steps ahead, for integer l ≥ 1

based on ĝn,k, and so we can write [23]

g̃n,k(t+ l) = a†n,kĝn,k, (32)

where an,k ∈ C1×D is the prediction coefficient vector. Due to perfect channel estimation, the

optimal a that minimizes the mean square error (MSE) is given by

a = R−1r, (33)

in which, R is the autocorrelation matrix with entries Rij = J0(2πf |i−j|τd), and ri = J0(2πf |l+

i− 1|τd), i, j = 1, 2, . . . , D. Remark that by using the optimal solution, the prediction vector a

is the same for all ports. Finally, the correlation coefficient between the actual and the predicted

channel is given by [24]

µ0 = E{g̃n,k(t+ l)g∗n,k(t+ l)} =
√
r†R−1r, (34)

irrespective of the considered port. The CDF of the predicted channel can be obtained using

Theorem 2 and by setting µn = µ0, n = 1, . . . , N .
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IV. PORT COMBINING WITH CODED MODULATION

In the previous section, we have derived outage probability expressions for FA port selection,

where the best port is scheduled for reception. In this section, we consider coded modulation

design and analysis for FA port combining, in which all the ports of the FA are used for

reception. Although it results in higher receiver complexity, this combining method is superior

to port selection as it exploits all the available resources, i.e. the FA ports. Based on a bound

on the diversity order, we propose a low-complexity scheme through which the channel decoder

can collect some amount of diversity at no additional complexity, while the remaining diversity

is collected by the demodulator.

A. Coded Modulation Design

We consider the transmission of a length-L code over an FA block-fading channel in which

the N ports are activated sequentially within the FA topology. For the sake of simplicity, we will

focus on the linear FA (Fig. 1a) and the Rayleigh fading case (i.e. m = 1). The channel model is

given by y = zSG+w = xG+w, where y is the complex baseband vector of received symbols

with dimensions 1 × N , z is the 1 × N vector of modulated quadrature amplitude modulated

(QAM)3 symbols with 2b symbols, b being the number of bits per symbol, and S is the N ×N

space-time rotation matrix with combining factor s ≤ N ; S is used to combine the symbols in z

onto the 1×N vector x, without affecting the overall energy, i.e E{z†z} = E{x†x}. The goal of

the rotation is to achieve higher diversity orders at the output of the demodulator, which will be

explained in the sequel. As the FA receives at a given port and at a given symbol time period,

the N ×N channel matrix G is diagonal with entries g1, . . . , gN . Finally, the 1 ×N vector w

consists of circularly-symmetric complex AWGN components with zero mean and variance ν2.

Based on the above, the digital transmission occurs as follows. At the transmitter, K infor-

mation bits are fed to a binary encoder producing a codeword c ∈ C (K,L, dH), where C is the

codewords ensemble and dH is the minimum Hamming distance of the code; the coding rate

is hence Rc = K/L. We will consider trellis-based codes, although the analysis in the sequel

applies to any type of binary linear code. The L coded bits are then interleaved and fed by

groups of b bits to the QAM modulator. Modulated symbols are then combined by groups of

3We consider QAM as it provides the best performance but the proposed design could be implemented with other modulations

as well.
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Fig. 3: Iterative APP demodulation and decoding receiver; Π and Π−1 represent interleaving and

deinterleaving, respectively.

s through a space-time rotation before being transmitted. At the receiver, an iterative soft-input

soft-output (SISO) demodulator/decoder is implemented that consists of the exchange of extrinsic

information about coded bits before deciding on the a posteriori probabilities (APP), as shown

in Fig. 3. Specifically, the APP QAM SISO demodulator computes the extrinsic probabilities

ξ(ci) given the channel likelihoods and the a priori probabilities π(ci) fed back from the SISO

decoder as [14]

ξ(ci) =

∑
x′∈X (ci=1)

[
exp(−||y′ − x′G||2/ν2)

∏
k 6=i π(ck)

]
∑

x∈X

[
exp(−||y′ − xG||2/ν2)

∏
k 6=i π(ck)

] , (35)

where ci is the i-th bit of codeword c and X has cardinality 2sb. In fact, due to the diagonal

structure of the FA channel matrix G, only symbols that are space-time rotated are jointly

demodulated, while unrotated symbols are demodulated individually. This considerably reduces

the demodulation complexity as compared to conventional multiple-antenna demodulation, in

which the cardinality of the received vector is 2sbNt , Nt being the number of transmit antennas.

Across the iterations, the probabilities on the coded bits computed at both the SISO demodulator

and decoder become more reliable, and near-maximum likelihood (ML) performance is achieved

under ideal convergence. In the sequel, we consider that the a priori probabilities π(ck) fed

back from the SISO decoder are perfect (the genie condition [14]), i.e. π(ck) ∈ {0, 1}, so that

the distribution at the output of the demodulator only depends on the channel likelihood, i.e.

exp(−||y′ − x′G||2/ν2).

B. Diversity Order Bounds

The block-fading channel with one conventional antenna at the transmitter and one FA at the

receiver can be seen as a correlated block-fading channel. However, as described in Appendix
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Fig. 4: Singleton bound on the diversity versus coding rate for an 8-port FA block-fading channel.

A, by conditioning on h1 = |g1|2, the squared magnitudes hn = |gn|2, n > 1 are independent

non-central chi-square distributed random variables with two degrees of freedom.

In order to ensure code diversity and optimal coding gain, we assume that an ideal interleaver

is used [14], i.e., for any pair of codewords (c, c′), the ω non-zero bits of c⊕c′ are transmitted in

different fading blocks. In the iterative receiver of Fig. 3, the maximum channel diversity of the

FA channel (i.e. equal to N ) can be collected at the output of the demodulator, but this implies

that the N transmitted symbols should be space-time rotated, thus resulting in a complexity in

(35) that increases as 2sb. Thus, the lowest complexity solution for achieving full diversity N

would be to first collect the maximum diversity through the SISO decoder and then recover the

remaining diversity at the demodulator.

Proposition 3. The diversity order Gd of coded modulations transmitted over an N -port FA

block-fading channel under ideal interleaving is upper-bounded as

Gd ≤ min

{
s̄

⌊
N

s̄
(1−Rc) + 1

⌋
;N ; bs̄dHc

}
, (36)

where s̄ is the average number of rotated modulated symbols within the length-N vector and

the first term of the min function represents the Singleton bound on diversity.

Proof. See Appendix F.

The bound in (36) provides, given a coding rate Rc and maximum diversity N , the minimum

value of s̄ that allows the receiver to collect the maximum diversity at a minimum complexity.

Fig. 4 shows the achievable diversity of an 8-port FA for different values of s̄. It is shown
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that the larger the s̄, the larger the coding rate that could achieve maximum diversity, however

the larger the demodulator complexity will become. In case no rotation is used, the maximum

rate that achieves maximum diversity is Rc = 1/N , and if all the symbols are rotated (i.e.

s = N ), diversity is attained with uncoded transmission (i.e. 1 s = 8 rotation). Other rotation

configurations allow to achieve full diversity for 1/N < Rc ≤ 1. Examples of such rotations are

given in Appendix G.

C. Average WER of Coded Modulations

We provide a tight upper bound on the average WER of space-time rotated FA block-fading

channels based on the PEP. A general upper bound on the average WER of a linear code is

derived based on the union bound as [18]

PWER ≤
∑

c∈C\{0}

P{0→ c}, (37)

where P{0 → c} denotes the PEP between the all-zero codeword {0} and codeword c. Under

ideal interleaving, the bits of an error event are placed on different channel realizations to achieve

code diversity, as explained above. By assuming the all-zero codeword is transmitted, we have

an error if the decoder gives codeword c with Hamming weight w(c) > 0. We now set wk(c)

as the partial Hamming weight that is transmitted on fading block k, with
∑B

k=1 wk(c) = w(c),

where B is the total number of fading blocks [28]. To achieve diversity, if dH ≥ B we should

have wk(c) > 0, ∀k, and the w(c) non-zero bits should be equally distributed over the k fading

blocks to ensure high coding gains; these two conditions are ensured by the ideal interleavers.

If no rotation is used, the fading blocks are represented by the gk coefficients (i.e. B = N ). If

a rotation is used, a block is defined as a group of s rotated channel coefficients.

Proposition 4. The conditional PEP under ML decoding of space-time rotated N -port FA

block-fading channels with ideal interleaving, codeword Hamming weight w(c) = i, 2b-QAM

modulation, and Gray mapping is approximated by

P{0→ c |S,G} ≈ δQ


√√√√√Rcη̄

ζ ψ/s∑
j=1

wj(c)
s∑

k=1

κkh(j−1)s+k + ζ ′
N∑

j=ψ+1

wj(c)hj


 , (38)

where η̄ is the SNR per bit, δ = [4/(s̄b)](
√

2s̄b−1)/
√

2s̄b, ζ = 3b/(2b−1), ζ ′ = 3sb/(2sb−1), ψ

denotes the number of symbols out of the N that are space-time rotated, and the κk are functions

of the space-time rotation matrix entries.
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Proof. See Appendix H.

The argument of the Q-function in (38) shows that space-time rotations, apart from achieving

higher diversity orders with higher coding rates, increase the coding gain. As an example,

consider a code C with dH = 5 transmitted on a 2-port FA block-fading channel. Without

rotation, the interleaver gives w1(c) = 2 that multiplies h1 and w2(c) = 3 that multiplies h2. By

using a rotation with s = 2, we get w1(c) = dH = 5 that multiplies
∑s

`=1 h`, which increases

the argument of the Q-function, thus decreases the PEP.

Corollary 3. For high SNR, we obtain

lim
η̄→∞

P{0→ c} ≤
(

1

Rcη̄

)N
δζ−ψ(ζ ′)ψ−N

2w1(c)κ1

∏N
j=ψ+1(1− ρ2

j)wj(c)
∏ψ/s

j=1

∏s
k=1(1− ρ2

(j−1)s+k)wj(c)κk
,

(39)

for (j − 1)s+ k 6= 1.

Proof. See Appendix I.

The asymptotic expression of the PEP of (39) shows that maximum coded diversity of order

N is attained, as the PEP is inversely proportional to η̄N .

Proposition 5. A tight upper bound on the average WER of space-time rotated N -port FA

block-fading channels is given by

PWER ≤ 1−
∫
G

[1−min{1,WiP{0→ c |S,G}}]L p(G)dG, (40)

where p(G) denotes the distribution of G, and Wi denotes the number of codewords with

Hamming weight w(c) = i.

Proof. The upper bound is obtained by replacing P{0→ c |S,G} from (38) in the upper bound

on the WER expression from [26].

It is important to point out that the value Wi can be obtained in a straightforward manner

for trellis codes, while it might be more difficult to obtain for block codes. Moreover, for high

SNR, we can almost surely state that Wi limη̄→∞ P{0→ c} < 1. Therefore, we can write

lim
η̄→∞

PWER ≤ L
∞∑

i=dH

WiP{0→ c}, (41)

which results from (1− x)a ≈ 1− ax for x ≈ 0 and P{0→ c} is given by Corollary 3.
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Fig. 5: Outage probability with estimated channels; lines and markers correspond to theoretical

and simulation results, respectively.

V. NUMERICAL RESULTS

We now validate our theoretical analysis with computer simulations. We will start with the

performance of the port selection (Section III). For the sake of presentation and, unless otherwise

stated, we consider θ = 2 bps, m = 2, f = 100 Hz [24], τe = 1/(10f) s, τd = 1/(100f) s [24],

and l = 1.

Fig. 5 illustrates the outage probability achieved by the three topologies in terms of the SNR

for N = 5, 30 and W = 0.2, 0.8. As shown in Corollary 1, the FA realizes full diversity gains

irrespective of the topology’s size and shape. On the other hand, the “shift” towards the y-axis

(i.e. the outage gain), differs due to the fact that it depends on the spatial correlation. Specifically,

for a small FA size (W = 0.2), the spatial correlation is relatively larger. The circular topology

outperforms the other two as its circular shape provides longer distances between ports. The

wheel topology however has the worst performance, since the correlation between the first and

any other port remains equal. The linear architecture achieves a balance between the two. These

observations change for a larger FA size (W = 0.8). Indeed, the wheel topology has the best

performance albeit by a small margin. However, as can be seen, this margin increases with N .

Finally, our analytical expressions (lines) perfectly match the simulation results (markers), which

validates our theoretical methodology.

In Fig. 6, the outage probability versus the SNR is depicted for the outdated scenario. For
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Fig. 6: Outage probability with outdated and predicted channels; lines and markers correspond

to theoretical and simulation results, respectively.

comparison purposes, we also illustrate the performance of the actual estimated channels. It can

be observed that the remarks stated for Fig. 5 are no longer valid. Firstly, the channel diversity

has been lost and the achieved diversity here is m = 2. Moreover, the linear architecture generally

outperforms the other two in all scenarios as it provides the lowest delays between estimating

and activating a port. Essentially, the linear architecture, due to its simplified structure, provides

a good balance between spatial correlation and delays. In contrast, the liquid displacement in

the other two architectures is subject to longer delays. This also explains the fact that a smaller

number of ports achieves a better performance with the wheel-shaped topology. In Fig. 6, we

also show the performance achieved by the prediction scheme using the linear topology with

D = 4 and l = 1. It is clear that the prediction scheme performs as well as the estimated case

and thus attains full channel diversity. As before, the analysis (lines) matches the simulations

(markers) for the outdated case, which validates the accuracy of our analysis.

Fig. 7 shows the outage performance with respect to the number of ports for the linear

topology. The figure also depicts as benchmark the performance with random selection (upper

bound) and the scenario where the channels are independent (lower bound). As expected, as W

increases, the performance gets closer to the independent case. Moreover, with W = 0.2, the

outdated channels do not affect the performance. Nevertheless, with W = 0.8, the performance

gap between estimated and outdated increases with the number of ports. Finally, the prediction
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Fig. 7: Outage probability versus the number of ports; lines and markers correspond to theoretical

and simulation results, respectively; η̄ = 0 dB.

scheme performs very well for both values of W . In the case D = 2, the performance loss is

relatively small and it actually outperforms the outdated scenario for large values of N . On the

other hand, using more resource blocks (D = 3), attains the best possible performance.

Next, we present the performance of the coded modulation design for FAs (Section IV).

Throughout the simulations, non-recursive non-systematic convolutional (NRNSC) codes with

different constraint length L and free distance dfree are used for different coding rates, as shown

in Table I [30]. The codeword length is L = 1024 bits and optimal interleavers from [14] are

implemented. Moreover, SISO decoding of the convolutional code is performed through the

“Forward-Backward” algorithm [31]. The space-time rotations employed in the simulations are

given in Appendix G for different sizes and value of the combining factor s. Finally, we use

as a benchmark the Gaussian input outage probability of the N -port FA block-fading channel

given as

P{log2 det(IN + η̄GG†) < Nθ} = P{det(IN + η̄GG†) < 2Nθ}, (42)

where θ = bRc is the target information rate during one channel use and η̄ is the SNR per

symbol.
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Fig. 9: WER of the Rc = 1/2 (133, 171)8

NRNSC code, BPSK modulation.

TABLE I: NRNSC codes used in the simulations.

L Rc Generator (base 8) dfree

7 1/2 (133, 171) 10

5 1/3 (25, 33, 37) 12

4 1/4 (13, 15, 15, 17) 13

In Fig. ??, results for a 4-port receive FA are shown for a transmission rate of R = 1 bit/s/Hz,

which means that a QAM with b bits per symbol is used with a code of rate Rc = 1/b. This

justifies using codes with increasing free distances (see Table I) in a goal to compensate for

the loss in performance resulting from higher order modulations. As shown in the green curve,

the rate-1/2 code achieves a diversity Gd = 3 < N without rotation, as given in (36). When

adding two space-time rotations with s = 2 or one rotation with s = 4, full diversity is achieved,

however a smaller s induces a lower demodulation complexity. On the other hand, the rate-1/3

code requires only one rotation with s = 2 to achieve full diversity, and the rate-1/4 code achieves

Gd = N = 4 without rotation. It is worth mentioning that the additional coding gain provided

by a space-time rotation comes at the expense of more iterations needed for convergence (up to

four iterations between the SISO demodulator and decoder, as compared to one in the absence

of a rotation). In Fig. ??, WER results are shown together with the bounds on the WER from

sub-section IV-C. When no rotation is employed, the bound is tight for all the SNR range. In the
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Fig. 10: Port Selection vs Port Combining.

presence of space-time rotations, the bound is tight for high SNR values. Finally, we compare

the two schemes in Fig. 10. For a fair comparison, we set the information rate threshold for both

schemes to Nθ, as in (42). In other words, the threshold should take into account the total rate of

the transmission. We can observe that both scheme attain the same diversity but the combining

scheme outperforms the selection significantly, in particular for a larger number of ports.

VI. CONCLUSIONS

In this paper, we focused on the diversity and coded modulation design of FA systems. We

firstly studied the outage probability of FA systems under general Nakagami fading channels

and analytical expressions were provided for the performance with and without post-scheduling

errors. It was shown that despite FAs achieving maximum channel diversity, equal to the number

of ports, this diversity was dispossessed due to scheduling delays. Therefore, we proposed

a linear prediction scheme, which overcomes this limitation and can achieve full diversity.

Moreover, we designed space-time coded modulations that attain optimal performance over

block-fading channels, by combining space-time rotations with code diversity. We analytically

derived the pairwise error probability and provided tight bounds for the WER. The proposed

coded modulations achieve maximum diversity and require low-complexity implementation at

the receiver. Our result exhibit the potentials of FA in communication systems but also propose

solutions for their limitations.
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APPENDIX

A. Proof of Theorem 1

By conditioning on both x1,k and y1,k and by scaling the variances of xn,k and yn,k to one,

we can re-write (5) as

gn,k =

√
1− ρ2

n

2
(x̃n,k + ỹn,k), (43)

where x̃n,k
∣∣x1,k ∼ N

(√
2

1−ρ2
n
ρnx1,k, 1

)
and ỹn,k

∣∣ y1,k ∼ N
(√

2
1−ρ2

n
ρny1,k, 1

)
. Then, from (6),

the estimated ĥn is given by

ĥn =
m∑
k=1

|gn,k|2 =
1− ρ2

n

2

m∑
k=1

(x̃2
n,k + ỹ2

n,k) ,
1− ρ2

n

2
h̃n, (44)

where, due to the condition on x1,k and y1,k, h̃n are mutually independent non-central chi-

square random variables with 2m degrees of freedom and non-centrality parameter 2zρ2
n

1−ρ2
n

with

z ,
∑m

k=1(x2
1,k + y2

1,k). Therefore, the CDF of ĥn given z, denoted by φn(z, x), is

φn(z, x) = Fĥn|z(x|z) = P{ĥn < x|z} = 1−Qm

(√
2zρ2

n

1− ρ2
n

,

√
2x

1− ρ2
n

)
. (45)

Now, since ĥ2, ĥ3, . . . , ĥN are independent, their joint CDF given z is written as

Fĥ2,ĥ3,...,ĥN |z(x|z) =
N∏
n=2

φn(z, x), (46)

where φn(z, x) is given by (45). Then, the CDF of the maximum estimated ĥ is given by

Fĥ(x) = Ez
{
Fĥ2,ĥ3,...,ĥN |z(x|z)

}
=

1

Γ(m)

∫ x

0

exp(−z)zm−1

N∏
n=2

φn(z, x)dz, (47)

which follows from the fact that z is a central chi-square random variable with 2m degrees of

freedom.

B. Proof of Proposition 1

In order to simplify (9), we use the following series representation of the Marcum-Q function

Qm(a, b) = 1− exp

(
−a

2

2

) ∞∑
k=0

1

k!

γ(m+ k, b2/2)

Γ(m+ k)

(
a2

2

)k
. (48)

Therefore, we can write

Fĥ(x) =
1

Γ(m)

∫ x

0

exp(−z)zm−1

N∏
n=2

exp

(
− zρ2

n

1− ρ2
n

) ∞∑
k=0

1

k!

γ
(
m+ k, x

1−ρ2
n

)
Γ(m+ k)

(
zρ2

n

1− ρ2
n

)k
dz
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=
1

Γ(m)

∫ x

0

exp (−Sz) zm−1

N∏
n=2

∞∑
k=0

1

k!

γ
(
m+ k, x

1−ρ2
n

)
Γ(m+ k)

(
zρ2

n

1− ρ2
n

)k
dz, (49)

where S has been defined in (11). The above expression involves the Cauchy product of N − 1

power series. Hence, it follows that

Fĥ(x) =
1

Γ(m)

∫ x

0

exp (−Sz) zm−1

∞∑
k=0

ckz
kdz =

1

Γ(m)

∞∑
k=0

ck

∫ x

0

exp (−Sz) zk+m−1dz, (50)

where the coefficients ck are given by (13). Finally, the proposition is proven by using the

transformation z → S/t and the fact that
∫ b

0
exp(−t)ta−1dt = γ(a, b) [15].

C. Proof of Corollary 1

By using (12), we can write the outage probability, defined in (17), as

Po(θ) =
1

Γ(m)

∞∑
k=0

ck
Sm+k

γ

(
m+ k,

m

η̄
(2θ − 1)S

)
. (51)

Thus, for η̄ →∞,

lim
η̄→∞

Po(θ)→ 1

Γ(m)

∞∑
k=0

ck
(m+ k)Sm+k

(
m

η̄
(2θ − 1)S

)m+k

, (52)

which follows from the fact that γ(a, b) → ba/a for x → 0. In this case, the term k = 0

dominates and so

lim
η̄→∞

Po(θ)→ 1

Γ(m)

c0

m

(
m

η̄
(2θ − 1)

)m
, (53)

with

c0 =
N∏
n=2

1

mΓ(m)

(
m(2θ − 1)

η̄(1− ρ2
n)

)m
. (54)

As mΓ(m) = Γ(m+ 1), the result follows after several algebraic manipulations.

D. Proof of Proposition 2

We start by deriving the conditional CDF Fĥn|En(x|En). Therefore, the CDF given that the

first port is selected is given by

Fĥ1|E1
(x|E1) = P{h1 < x|h1 > max{h2, . . . , hN}} = P{h1 < x|h1 > h2, . . . , h1 > hN}. (55)

By fixing h1, the events above are independent and so we can write

Fĥ1|E1
(x|E1) = Eh1

{
N∏
n=2

P{hn < h1|h1}
∣∣∣∣h1 < x

}
= Eh1

{
N∏
n=2

φn(h1, h1)

∣∣∣∣h1 < x

}
,
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=
1

Γ(m)

∫ x

0

exp(−z)zm−1

N∏
k=2

φk(z, z)dz, (56)

which follows as h1 is a central chi-square random variable with 2m degrees of freedom.

Similarly, for the n-th port, 1 < n ≤ N , we have

Fĥn|En(x|En) = P{hn < x|hn > h1, . . . , hn > hn−1, hn > hn+1, . . . , hn > hN}. (57)

In this case, conditioning on both h1 and hn, we get

Fĥn|En(x|En) = Eh1,hn


N∏
k=2
k 6=n

φk(h1, hn)

∣∣∣∣∣ h1 < hn < x


=

∫ x

0

∫ y

0

fh1,hn(z, y)
N∏
k=2
k 6=n

φk(z, y)dzdy, (58)

where fh1,hn(·, ·) is the joint PDF of h1 and hn, which can be obtained with Bayes’s rule as

fh1,hn(z, y) = fhn|h1(z|y)fh1(y) (59)

=
1

Γ(m)(1− ρ2
n)

exp

(
− y + z

1− ρ2
n

)(
yz

ρ2
n

)m−1
2

Im−1

(
2
√
yzρ2

n

1− ρ2
n

)
, (60)

where fhn|h1(z|y) is the conditional PDF of a non-central chi-square random variable and fh1(y)

is the PDF of a central chi-square random, both of 2m degrees of freedom. Then, we can write

Fĥn|En(x|En) =
1

Γ(m)(1− ρ2
n)

∫ x

0

∫ y

0

exp

(
− y + z

1− ρ2
n

)(
yz

ρ2
n

)m−1
2

Im−1

(
2
√
yzρ2

n

1− ρ2
n

)

×
N∏
k=2
k 6=n

φk(z, y)dzdy. (61)

Finally, the proposition is proven by taking the derivative of the CDFs with respect to x.

E. Proof of Corollary 2

To assist with the simplification of the outage probability, we first apply the transformation

y → mt/η̄ to (29). In other words, we obtain the CDF in terms of SNRs. Therefore, we can

simplify the PDF fĥn|En(y|En), n 6= 1 (Eq. (26)), as follows

lim
η̄→∞

ft|En(t|En)
(a)
≈ m2

Γ(m+ 1)N
∏N

k=2(1− ρ2
k)
m

exp

(
− mt

η̄(1− ρ2
n)

)(
m

η̄
t

)mN−m−1

×
∫ m

η̄
t

0

zm−1 exp(−Sz)dz
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(b)
=

m2

Γ(m+ 1)N
∏N

k=2(1− ρ2
k)
m

exp

(
− mt

η̄(1− ρ2
n)

)(
m

η̄
t

)mN−m−1

× 1

Sm
γ

(
m,

mS

η̄
t

)
, (62)

where (a) follows by using (48) and keeping the sum’s first term as well as from the fact

Im(x) ≈ (x/2)2/Γ(m+ 1) for x ≈ 0; (b) follows from
∫ b

0
exp(−t)ta−1dt = γ(a, b) [15]. Finally,

as γ(a, b) ≈ ba/a for x ≈ 0, we end up with

lim
η̄→∞

ft|En(t|En) ≈ m

Γ(m+ 1)N
∏N

k=2(1− ρ2
k)
m

exp

(
− mt

η̄(1− ρ2
n)

)(
m

η̄
t

)mN−1

. (63)

The approximation for n = 1 (Eq. (25)) can be derived in a similar manner. Then, by approxi-

mating the Marcum-Q function in (29) as before and substituting the PDFs, the final expression

follows after several algebraic operations.

F. Proof of Proposition 3

At the SISO demodulator, the interleaving, modulation, and transmission over the FA block-

fading channel convert the codewords c and c′ onto points E and E ′ in a Euclidean space. For

a given channel, performance is governed by the squared Euclidean distance |E − E ′|2, that is

expressed as a sum of ω squared Euclidean distances associated to the ω non-zero bits of c− c′

[14]. For each ω squared distance, an equivalent channel model corresponding to the transmission

of a BPSK modulation over one among N channel realizations. By assuming s divides ψ, we

can write

|E − E ′|2 =

ψ/s∑
k=1

f 2
k +

N−ψ+1∑
j=ψ/s+1

`2
j , (64)

where ψ denotes the number of symbols out of the N that are space-time rotated, and hence

N − ψ are the remaining unrotated symbols. The parameters `2
j are linearly dependent on hj ,

which means they follow a non-central chi-square distribution with two degrees of freedom,

conditioned on h1. The parameters f 2
k are linearly dependent on ||Hk||2, where Hk is the s× s

matrix defined as

Hk = Skdiag(gk+s(k−1), . . . , gk+sk−1), (65)

with Sk the s × s sub-part of S that rotates s symbols. Hence, the parameters f 2
k follow a

non-central chi-square distribution with 2s degrees of freedom, conditioned on h1. Although

correlation exists between FA ports, the diversity order at the output of the demodulator only
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depends on the degrees of freedom of the chi-square distributions. The average amount of

diversity that can thus be recovered at the output of the SISO demodulator is s̄ = N/(ψ
s

+N−ψ).

At the output of the demodulator, there are B = bN
s̄
c non-central chi-square distribution laws on

average (representing the B fading blocks). Now if we group L/B bits into one nonbinary symbol,

the code C becomes a length-B code constructed from an alphabet of size 2L/B. The minimum

Hamming distance of the nonbinary code thus represents the diversity order the underlying binary

code can achieve over the N -port FA block-fading channel. On the other hand, the minimum

distance d∗ of an error correcting code with dimension K and length L is upper bounded by the

Singleton bound as d∗ ≤ L −K + 1. By applying this to the nonbinary code described above,

we obtain the modified Singleton bound [26], [27] on the diversity order as the first term in the

min function of (36). The term bs̄dHc is due to the fact that the minimum Hamming distance of

the code defines the minimum Hamming weight of any pair of codewords, thus these bits are

a limiting diversity factor in that, under ideal interleaving, they can see at most bs̄dHc fading

realizations. To avoid this situation, a code with a large minimum distance is usually selected

for transmission.

G. Examples of Space-Time Rotations

Rotations for different values of the average space-time combining factor s̄ are now presented.

For the case where s̄ = N = 2, the real 2× 2 cyclotomic rotation is used given by [32]

S1 =

 cos(χ) sin(χ)

sin(χ) − cos(χ)

 , (66)

with χ = 4.15881461. We now consider the case N = 4 and Rc = 1/2. We thus need s̄ = 2 to

achieve maximum diversity four, and matrix S2 below is used

S2 =

 S1 0

0 S1

 .
However, if Rc = 1/3 for the same channel, s̄ = 4/3 is needed, matrix S3 is used

S3 =

 S1 0

0 I2

 .
Now if Rc = 3/4 and N = 4, all the symbols need to be combined as s̄ = 4. In this case, the

4× 4 Krüskemper rotation [32] with normalized minimum product distance of 0.438993 can be

used.
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H. Proof of Proposition 4

We first consider the case where no space-time rotation is used, meaning a different modulated

symbol is transmitted per FA port. The conditional PEP under ML decoding and Gray mapping,

given the fading coefficients, can be approximated as [28]

P{0→ c |G} ≈ δQ


√√√√ζRcη̄

N∑
k=1

wk(c)hk

 , (67)

where η̄ is the SNR per bit at the receiver, δ = (4/b)(
√

2b − 1)/
√

2b and ζ = 3b/(2b − 1) for

2b-QAM. This approximation, accurate for high SNR, is suitable for the analysis of diversity

and coding gain. Next, we assume now that groups of s modulated symbols out of the N are

fed to an N × N space-time rotation S (s divides N ). By assuming the same rotation is used

across the N symbols, the power channel gain seen by partial Hamming weight wj(c) is given

by ||HkH
†
k|| =

∑s
k=1 κkh(j−1)s+k. The conditional PEP can now be written as

P{0→ c |S,G} ≈ δ′Q


√√√√ζ ′Rcη̄

N/s∑
j=1

wj(c)
s∑

k=1

κkh(j−1)s+k

 . (68)

Although the constellation resulting from the rotation of s 2b-QAM is not exactly an 2sb-QAM,

we assume that δ′ = [4/(sb)](
√

2sb − 1)/
√

2sb and ζ ′ = 3sb/(2sb − 1), as the rotation does not

affect the energy of the modulated symbols. Finally, if we assume that the first ψ symbols out

of the N are space-time rotated, and the remaining N − ψ are not, a combination of (67) and

(68) gives the expression in (38).

I. Proof of Corollary 3

By using Q(x) ≤ 1
2

exp(−x2

2
) and by conditioning on h1, we can upper-bound (38) as

P{0→ c |S, h1} ≤
δ

2
Eh2,...,hN

{
exp

(
−Rcη̄

(
ζ

ψ/s∑
j=1

wj(c)
s∑

k=1

κkh(j−1)s+k + ζ ′
N∑

j=ψ+1

wj(c)hj

))}

=
δ

2
Eh2,...,hN

{
ψ/s∏
j=1

s∏
k=1

exp(−Rcη̄ζwj(c)κkh(j−1)s+k)
N∏

j=ψ+1

exp(−Rcη̄ζ
′wj(c)hj)

}

=
δ

2
exp(−Rcη̄ζw1(c)κ1h1)

N∏
j=ψ+1

1

1 + (1− ρ2
j)Rcη̄ζ ′wj(c)

exp

(
−

ρ2
jh1Rcη̄ζ

′wj(c)

1 + (1− ρ2
j)Rcη̄ζ ′wj(c)

)

×
ψ/s∏
j=1

s∏
k=1

1

1 + (1− ρ2
(j−1)s+k)Rcη̄ζwj(c)κk

exp

(
−

ρ2
(j−1)s+kh1Rcη̄ζwj(c)

1 + (1− ρ2
(j−1)s+k)Rcη̄ζwj(c)

)
, (69)
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which follows from the moment generating function of a non-central chi-square distributed

random variable with two degrees of freedom and non-centrality parameter
2h1ρ2

(j−1)s+k

1−ρ2
(j−1)s+k

; note that

(j − 1)s+ k 6= 1. Then, for high SNRs, we can write

lim
η̄→∞

P{0→ c |S, h1} ≤
δ

2
exp(−Rcη̄ζw1(c)κ1h1)

N∏
j=ψ+1

1

(1− ρ2
j)Rcη̄ζ ′wj(c)

exp

(
−
ρ2
jh1

1− ρ2
j

)

×
ψ/s∏
j=1

s∏
k=1

1

(1− ρ2
(j−1)s+k)Rcη̄ζwj(c)κk

exp

(
−
ρ2

(j−1)s+kh1

1− ρ2
(j−1)s+k

)

=
δ

2
exp(−Rcη̄ζw1(c)κ1h1)

(Rcη̄ζ
′)ψ−N∏N

j=ψ+1(1− ρ2
j)wj(c)

exp

(
−

N∑
j=ψ+1

ρ2
jh1

1− ρ2
j

)

× (Rcη̄ζ)1−ψ∏ψ/s
j=1

∏s
k=1(1− ρ2

(j−1)s+k)wj(c)κk
exp

(
−

ψ∑
j=2

ρ2
jh1

1− ρ2
j

)
. (70)

Then, by averaging out h1, we end up with (39).
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