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Abstract—Combining simultaneous wireless information and
power transfer (SWIPT) and an intelligent reflecting surface
(IRS) is a feasible scheme to enhance energy efficiency (EE)
performance. In this paper, we investigate a multiuser IRS-aided
multiple-input single-output (MISO) system with SWIPT. For
the purpose of maximizing the EE of the system, we jointly
optimize the base station (BS) transmit beamforming vectors,
the IRS reflective beamforming vector, and the power splitting
(PS) ratios, while considering the maximum transmit power
budget, the IRS reflection constraints, and the quality of service
(QoS) requirements containing the minimum data rate and the
minimum harvested energy of each user. The formulated EE
maximization problem is non-convex and extremely complex. To
tackle it, we develop an efficient alternating optimization (AO)
algorithm by decoupling the original nonconvex problem into
three subproblems, which are solved iteratively by using the
Dinkelbach method. In particular, we apply the successive convex
approximation (SCA) as well as the semi-definite relaxation
(SDR) techniques to solve the non-convex transmit beamforming
and reflective beamforming optimization subproblems. Simula-
tion results verify the effectiveness of the AO algorithm as well
as the benefit of deploying IRS for enhancing the EE performance
compared with the benchmark schemes.

Index Terms—Energy efficiency (EE), intelligent reflecting
surface (IRS), simultaneous wireless information and power
transfer (SWIPT), power splitting (PS).
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DUE to the device proliferation and dramatic traffic explo-
sion in the Internet-of-Things (IoT) era, wireless commu-

nication systems need to meet a variety of quality of service
(QoS) requirements, including high spectral efficiency (SE)
and high demanding data rate [1], [2]. Meanwhile, in order
to achieve green and sustainable wireless communication,
energy efficiency (EE) has been viewed as a key indicator
for designing wireless communication systems. Recently, an
intelligent reflecting surface (IRS) has been considered to
be another effective technology to support energy-efficient
wireless communication for B5G/6G wireless communication
networks [3], [4]. In practice, an IRS is composed of nu-
merous low-cost reconfigurable reflecting units. With an IRS
controller, those reflecting units can intelligently and indepen-
dently steer the amplitude and phase of the incident signal
to facilitate the transmission of wireless signals, and thus the
wireless signal propagation can be collaboratively altered to
enhance the desirable signals and suppress the undesirable
interfering signals. In short, with reduced hardware cost and
energy consumption, an IRS can efficiently improve wireless
communication quality.

Based on the above benefits, using an IRS has been exten-
sively investigated in diverse wireless communication systems
[5]–[15]. The authors in [5] optimized the transmit beamform-
ing and the reflect beamforming of an IRS-aided multiple-
input single-output (MISO) system with the aim to minimize
the total transmit power. Furthermore, the authors in [6] and
[7] investigated an IRS-aided multiple-input multiple-output
(MIMO) system. Specifically, in [6], the fundamental capacity
limit was characterized in a point-to-point MIMO communi-
cation network. Additionally, the authors in [7] maximized
the weighted sum rate (WSR) in a multicell MIMO system
by utilizing the block coordinate descent (BCD) algorithm. In
addition, an IRS-aided millimeter wave (mmWave) system has
also been widely studied. For example, the authors in [8] max-
imized the network throughput under the deep reinforcement
learning (DRL)-based design, and the authors in [9] applied an
alternating manifold optimization algorithm to maximize the
WSR, respectively. In addition, an IRS has been employed in
other application scenarios such as in heterogeneous networks
[10], [11], TeraHertz (THz) communication systems [12], [13],
and unmanned aerial vehicle (UAV) systems [14], [15].

On the other hand, to achieve energy-efficient wireless
communication, simultaneous wireless information and power
transfer (SWIPT) is also seen as a significant approach due
to its capability of transmitting data and providing power
simultaneously. In a SWIPT wireless communication system,
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there are generally two feasible approaches for the receiver
named time switching (TS) and power splitting (PS) to realize
information decoding (ID) and energy harvesting (EH) [16]–
[21]. For the TS scheme, the authors in [16] jointly optimized
the TS factors and the transmit covariance matrices in a
two-user SWIPT MISO system employing the TS scheme to
investigate the achievable rate region. Additionally, the authors
in [17] studied a TS-based NOMA system with SWIPT and
developed a dual-layer algorithm to maximize the EE by
reasonably designing the TS factors and power allocation. For
the PS scheme, the authors in [18] studied a SWIPT-enabled
MIMO system, in which the transmit beamformers, receive
filters, as well as the power splitters were designed to minimize
the total transmit power. In [19], by optimizing PS ratios and
transmit power, a PS-based SWIPT distributed antenna system
has been investigated to maximize the EE considering both
cases of single or multiple IoT devices. In addition, the authors
in [20] and [21] considered both the TS and PS approaches in
the SWIPT system. Especially, the authors in [20] investigated
the outage performance, and the authors in [21] analyzed the
throughput performance and outage probability. In general,
the performance comparison between the TS scheme and the
PS scheme is not deterministic, which depends on actual
application scenarios, the optimization objective, and so on.

With the immense potential of an IRS and SWIPT to
improve energy efficiency, there have been several significant
works on the combination of these two techniques [22]–
[28]. The authors in [22] first studied the IRS-aided SWIPT
system for the purpose of maximizing the weighted sum power
of the EH receivers. In [23], the total BS transmit power
of an IRS-aided MISO system with SWIPT was minimized
under perfect and imperfect CSI. Furthermore, the authors
in [24] employed the difference of convex functions (DC)
programming, majorization-minimization (MM) approach, and
manifold optimization to maximize the EE indicator of an IRS-
aided MISO system with SWIPT, while considering the maxi-
mum transmit power budget and IRS unit-modulus constraints.
On the other hand, there have been other significant studies
for IRS-aided SWIPT systems focusing on transmit power
minimization [25], weighted sum rate maximization [26], and
EE maximization problems in the systems with two different
user categories, i.e. information users and energy users [27],
[28]. To our best knowledge, the EE maximization problem for
an IRS-aided PS-based SWIPT system considering the QoS
constraints has not been studied yet. On the other hand, PS
theoretically achieves better rate-energy tradeoffs than TS [29],
thus motivating this paper.

Motivated by the above research, we investigate a PS-based
SWIPT system, where the IRS is positioned between the BS
and the users to improve the communication environment
with the aim to maximize the EE. To efficiently tackle the
EE optimization issue, we develop an alternating optimization
(AO) algorithm by jointly optimizing the transmit beamform-
ing vectors, the reflective beamforming vector, and the PS
ratios separately in an alternating manner. The following are
our main contributions:
• We investigate a multiuser MISO IRS-aided system with

SWIPT, where we apply the PS scheme to all the

users. The BS transmit beamforming, the IRS reflective
beamforming, as well as the power distribution for each
user are mathematically modeled such that they can be
synthetically designed to enhance the EE performance
while satisfying the maximum transmit power budget, the
IRS reflection constraint, as well as the QoS constraints
at the users. However, the EE maximization problem
becomes extremely complicated because of the coupling
of all the optimization variables, and thus is difficult to
solve.

• To efficiently deal with the EE maximization problem,
we propose an AO algorithm by decoupling the original
problem into three subproblems, i.e., transmit beamform-
ing optimization, reflective beamforming optimization,
and PS ratios optimization. For each subproblem, the
Dinkelbach method is applied to deal with the non-
convex fractional programming issue. Particularly, for the
transmit and reflective beamforming optimization sub-
problems, the successive convex approximation (SCA), as
well as the semi-definite relaxation (SDR) techniques are
applied to convert the non-convex problems into convex
problems, allowing us to solve them using the standard
convex optimization solver CVX [30].

• The effectiveness and the superiority of the AO algo-
rithm are demonstrated by simulation results. Further-
more, compared with benchmark schemes with random
reflective beamforming or without the IRS, the benefit of
deploying IRS for enhancing the EE performance can be
demonstrated by our findings.

Organization: We organize the remaining part of this paper
as follows. In Section II, we present the multiuser MISO
IRS-aided SWIPT system model and formulate the EE max-
imization problem. In Section III, an efficient AO algorithm
is proposed to tackle the non-convex and extremely complex
EE optimization problem. Subsequently, we provide the sim-
ulation results in Section IV. Finally, we give the conclusions
of our work in Section V.

Notations: Boldface upper letters, boldface lower letters,
and lower letters represent matrices, vectors, and scalars,
respectively. For a square matrix Q, the notations QT , QH ,
rank(Q) and Tr(Q) represent its transpose, hermitian conju-
gate transpose, rank, and trace. Q � 0 and Q � 0 indicate Q
is negative or positive semidefinite, respectively. 0 and IM
denote the all-zero matrix and an M × M identity matrix.
Cx×y denotes an x × y dimensional complex matrices and
diag(a1, ..., aN ) indicates a diagonal matrix, respectively. In
addition, |a| represents the magnitude of a complex number
a and ‖b‖ represents the Euclidean norm of vector b. Let
CN (µ,C) indicate the distribution of a circularly symmetric
complex Gaussian (CSCG) random vector with mean µ and
covariance matrix C.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A. System Description

As illustrated in Fig.1, we investigate a multiuser IRS-aided
MISO system with SWIPT, which contains one BS equipped
with M transmit antennas, one IRS composed of N passive
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Fig. 1. Illustration of a multiuser IRS-aided MISO system with SWIPT.

reflecting units, and K single-antenna users. Specially, we
denote the set of passive reflecting units and the set of all
users as N ∆

= {1, . . . , N} and K ∆
= {1, . . . ,K}. Furthermore,

we assume that each user is equipped with an EH rectification
circuit and a conventional ID circuit.

The quasi-static flat-fading model is taken into account for
all the channels. Furthermore, it is assumed that both the
BS and IRS controller are capable of obtaining the perfect
channel state information (CSI). 1 Let G ∈ CN×M, fk ∈ CN×1

and hk ∈ CM×1 represent the channel matrix of the BS-IRS
link and the channel vectors of the IRS-user k and BS-user
k link, respectively. For user k, let sk ∼ CN (0,1) and wk
∈ CM×1 denote the intended message with unit-power and
the corresponding transmit beamforming vector, respectively.
Accordingly, we can formulate the transmitted signal as

x =

K∑
k=1

wksk. (1)

To guarantee that the transmit power does not exceed the
maximum value PT , the optimization problem is limited by

E(‖x‖2) =

K∑
k=1

‖wk‖2 ≤ PT . (2)

As for IRS, we denote the reflection-coefficients matrix as
Φ = diag

(
γ1e

jφ1 , . . . , γNe
jφN
)
, where φn ∈ [0, 2π) and

γn ∈ [0, 1] are the phase shift and the reflection amplitude
of the n-th reflecting unit, respectively. In addition, let v =[
γ1e

jφ1 , . . . , γNe
jφN
]H

represent the reflective beamforming
vector, in which |vn| =

∣∣γnejφn
∣∣ ≤ 1,∀n ∈ N . Therefore,

the combined BS-user k reflective channel can be written as
fHk ΦG = vHΨk, where Ψk = diag

(
fHk
)

G.
Based on the PS scheme, the signals received by each user

are split into two power streams: one stream is used for EH,
and the other stream is used for ID. For user k, let ρk(0 <
ρk < 1) denote the part of the received signal power for ID,
and the 1−ρk part is for EH. Under this setup, by combining

1Though the perfect CSI is an ideal assumption, it is still meaningful for
us to characterize the EE performance of the IRS-aided SWIPT system. In
general, to acquire the CSI, there are a series of channel estimation schemes
for IRS-aided MISO systems based on signal processing techniques such as
deep learning, compressed sensing, alternating least squares, and so on [31],
[32].

reflected signals and the directly transmitted signals, the signal
received at user k can be expressed as

yIDk =
√
ρk

K∑
i=1

(vHΨk + hHk )wisi + nk, (3)

where nk ∼ CN (0, σ2
k) denotes the additive white Gaussian

noise (AWGN).
Furthermore, we treat the interference of the system as

noise, thus formulating the achievable data rate for user k as

RIDk = log2

1 +
ρk

∣∣∣(vHΨk + hHk
)

wk
∣∣∣2

ρk
K∑

i=1,i6=k

∣∣∣(vHΨk + hHk
)

wi
∣∣∣2 + σ2

k

 .

(4)
Hence, we can express the total achievable rate of the

proposed system as

Rtotal =

K∑
k=1

RIDk

=

K∑
k=1

log2

1+
ρk

∣∣∣(vHΨk+hHk
)

wk
∣∣∣2

ρk
K∑

i=1,i6=k

∣∣∣(vHΨk+hHk
)

wi
∣∣∣2+σ2

k

.
(5)

In addition, the energy harvested by user k can be expressed
as

ek = η(1− ρk)

K∑
i=1

∣∣∣(vHΨk + hHk )wi
∣∣∣2, (6)

where 0 < η ≤ 1 denotes the energy conversion efficiency. In
general, it is more practical to consider a nonlinear EH model,
but the input power is typically small in SWIPT system due
to the signal attenuation [33]. For low input power, SWIPT
systems work in the linear region of the nonlinear model, and
the nonlinear EH model can be approximated by a linear model
[34].

Therefore, we can write the total harvested energy as

E =
K∑
k=1

ek =

K∑
k=1

η(1− ρk)

K∑
i=1

∣∣∣(vHΨk + hHk )wi
∣∣∣2. (7)

In general, the harvested energy at all the users can com-
pensate for part of the power consumption in a SWIPT system
[17]. As a result, the total power consumption is given by

Ptotal =ζ

K∑
k=1

‖wk‖2 +MPM +NPn(b) + PC − E, (8)

where ζ = κ−1 with κ being the transmit power amplifier
drain efficiency [35], PM is the power consumption of each
transmit antenna, Pn(b) is the power consumption per reflect-
ing unit of the IRS having b-bit resolution [35] and PC is the
circuit power consumption.

Define the EE of the communication system as the ratio
of the total achievable rate and the total power consumption.
Hence, we can formulate the EE of the proposed system with
PS scheme as equation (9).
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λEE
∆
=
Rtotal
Ptotal

=

K∑
k=1

RIDk

ζ
K∑
k=1

‖wk‖2 + PC +MPM +NPn(b)− E

=

K∑
k=1

log2

1 +
ρk|(vHΨk+hH

k )wk|2

ρk
K∑

i=1,i 6=k
|(vHΨk+hH

k )wi|2+σ2
k


ζ
K∑
k=1

‖wk‖2 + PC +MPm +NPn(b)−
K∑
k=1

η(1− ρk)
K∑
i=1

∣∣∣(vHΨk + hHk )wi
∣∣∣2

(9)

B. Problem Formulation

In this paper, our goal is to maximize the EE of the
proposed multiuser IRS-aided MISO system with SWIPT by
jointly optimizing the BS transmit beamforming vectors{wk},
the IRS reflective beamforming vector v and the PS ratios
{ρk}. Particularly, the EE maximization problem is limited
by considering the maximum transmit power budget, the IRS
reflection constraints, and the QoS requirements dictating the
minimum data rate and the minimum harvested energy per
user. Mathematically, we can formulate the complete optimiza-
tion problem as

(P1) max
{wk},v,{ρk}

λEE (10)

s.t. log2

1 +
ρk

∣∣∣(vHΨk + hHk
)

wk
∣∣∣2

ρk
K∑

i=1,i6=k

∣∣∣(vHΨk + hHk
)

wi
∣∣∣2 + σ2

k


≥ Rmin,∀k ∈ K,

(11)

η(1− ρk)

K∑
i=1

∣∣∣(vHΨk + hHk )wi
∣∣∣2 ≥ Emin,∀k ∈ K, (12)

K∑
k=1

‖wk‖2 ≤ PT , (13)

0 < ρk < 1,∀k ∈ K, (14)
|vn| ≤ 1,∀n ∈ N . (15)

where inequalities (11) and (12) correspond to the QoS
requirements per user. Specifically, equation (11) guarantees
the minimum data rate constraint, in which Rmin is the mini-
mum rate requirement. Equation (12) guarantees the minimum
harvested energy constraint, in which Emin is the minimum
harvested energy target.

Since the objective function (10) is an extremely compli-
cated fraction, problem (P1) is non-convex. In addition, the
problem consists of three intricately coupled sets of variables,
i.e., {wk}, v, and {ρk}, which makes the problem (P1)
intractable and cannot be solved directly.

III. THE PROPOSED AO ALGORITHM

In this section, we develop an AO algorithm to tackle
the complex EE maximization problem (P1) by decoupling

problem (P1) into three subproblems, which are solved alterna-
tively. Specifically, we first optimize the transmit beamforming
vectors {wk} to obtain a better transmit beam pattern design.
Subsequently, based on the fixed {wk}, we optimize the
reflective beamforming vector v to obtain higher channel gain.
Finally, the PS ratio {ρk} is optimized to enhance the EE
performance.
A. Transmit Beamforming Optimization

We first optimize the transmit beamforming vectors {wk}
with the fixed reflective beamforming vector v and the PS
ratios {ρk}. We define ak = ΨH

k v+hk as the effective channel
of the BS-user k link, ∀k ∈ K for notational convenience.
Furthermore, we set Ak = akaHk and Wk = wkwHk with Wk

� 0 and rank(Wk) ≤ 1,∀k ∈ K. Therefore, RIDk and ek can
be reformulated as

RIDk
′

= log2


ρk

K∑
i=1

Tr(AkWi) + σ2
k

ρk
K∑

i=1,i6=k
Tr(AkWi) + σ2

k

 , (16)

e
′

k = η(1− ρk)

K∑
i=1

Tr(AkWi). (17)

Accordingly, we can express the transmit beamforming
optimization problem as

(P2) max
{Wk}

λ′EE
∆
=
R
′

total

P
′
total

=

K∑
k=1

RIDk
′

ζ
K∑
k=1

Tr(Wk) + PC +MPM +NPn(b)−
K∑
k=1

e
′
k

(18)

s.t. R
′

k ≥ Rmin,∀k ∈ K, (19)

e
′

k ≥ Emin,∀k ∈ K, (20)
K∑
k=1

Tr(Wk) ≤ PT , (21)

Wk � 0,∀k ∈ K, (22)
rank(Wk) ≤ 1,∀k ∈ K. (23)

Since the objective function (18) is a fraction, problem (P2)
is neither convex nor linear. Referring to previous works, the
Dinkelbach method [36] is widely used to tackle the fractional
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optimization problem; thus we apply it to convert function (18)
into a subtractive form. By introducing a parameter q, we can
formulate the objective function of problem (P2) as

H(q) = max
{Wk}

R
′

total − qP
′

total (24)

However, function (24) is still non-convex. To turn problem
(P2) into convex form, we introduce new variables as follows,

epk = ρk

K∑
i=1

Tr(AkWi) + σ2
k,∀k ∈ K, (25)

eqk = ρk

K∑
i=1,i6=k

Tr(AkWi) + σ2
k,∀k ∈ K. (26)

Then, we have

K∑
k=1

log2


ρk

K∑
i=1

Tr(AkWi) + σ2
k

ρk
K∑

i=1,i6=k
Tr(AkWi) + σ2

k


=

K∑
k=1

log2(e(pk−qk)) =

K∑
k=1

(pk − qk)log2(e).

(27)

Accordingly, we can further reformulate problem (P2) as

(P2.1) max
{Wk},{pk},{qk}

K∑
k=1

(pk − qk)log2(e)− qP
′

total (28)

s.t. ρk

K∑
i=1

Tr(AkWi) + σ2
k ≥ epk ,∀k ∈ K, (29)

ρk

K∑
i=1,i6=k

Tr(AkWi) + σ2
k ≤ eqk ,∀k ∈ K, (30)

(pk − qk)log2(e) ≥ Rmin,∀k ∈ K, (31)

(20), (21), (22), and (23).
However, problem (P2.1) still can not be directly solved

because of the non-convex constraint (23) and (30). Here we
use the SCA technique to tackle this issue. The first-order
Taylor expansion of eqk at the point q̄k is eq̄k + eq̄k(qk − q̄k),
where q̄k is feasible to the problem (P2.1). Therefore, we can
rewrite the constraint (30) as

ρk

K∑
i=1,i6=k

Tr(AkWi)+σ2
k ≤ eq̄k +eq̄k(qk−q̄k),∀k ∈ K. (32)

Furthermore, we apply the SDR technique to relax the non-
convex rank-one constraint (23), thus reformulating problem
(P2.1) as

(P2.2) max
{Wk},{pk},{qk}

K∑
k=1

(pk − qk)log2(e)− qP
′

total (33)

s.t. ρk

K∑
i=1

Tr(AkWi) + σ2
k ≥ epk ,∀k ∈ K, (34)

Algorithm 1 the optimization algorithm for transmit beam-
forming optimization

0: INITIALIZE: q(0) = 0, q(0) = 0. Set iteration number m
= 0, n = 0 and ε>0 as the accuracy threshold.

0: REPEAT:
0: For a given q(n−1)

0: REPEAT:
0: For a given q̄(m−1), solve problem (P2.2) to obtain
{Wk}(m) and q(m)

0: Set q̄(m) = q(m), m = m + 1
0: UNTIL the objective value in problem (P2.2) con-

verges;
0: Calculate the objective value (10) and (33), which are

denoted by λ(n)
EE and f (n)

1

0: Set q(n) = λ
(n)
EE , n = n+ 1

0: UNTIL converge, i.e. f (n)
1 ≤ ε

0: OUTPUT: Obtain q∗1 and the beamforming vectors {w∗k}
by eigenvalue decomposition.

ρk

K∑
i=1,i6=k

Tr(AkWi)+σ
2
k ≤ eq̄k + eq̄k(qk − q̄k),∀k ∈ K,

(35)
(pk − qk)log2(e) ≥Rmin,∀k ∈ K, (36)

(20), (21), and (22).
For a fixed parameter q, it is obvious that problem (P2.2)

is a standard semi-definite programming (SDP), which can
be efficiently solved by using CVX. Morever, we denote
the optimal solution of problem (P2.2) as {W∗k}, then the
following proposition can be obtained.

Proposition 1: {W∗k} satisfies rank(W∗k) = 1,∀k ∈ K.
Proof: The detailed proof is presented in Appendix A. �
Hence, we can apply eigenvalue decomposition to acquire

the beamforming vectors {w∗k}. Algorithm 1 provides the
optimization algorithm for transmit beamforming.

B. Reflective Beamforming Optimization

Similar to Section III-A, we use the SCA and SDR tech-
niques as well as the Dinkelbach method to optimize the
reflective beamforming vector v with the fixed transmit beam-
forming vectors {wk} and the PS ratios {ρk}. Therefore, we
define ck,i = Φkwi and dk,i = hHk wi,∀k ∈ K, i ∈ K. Then,
we have∣∣∣(vHΦk + hHk

)
wi
∣∣∣2 = vHCk,iv + 2Re

{
vHuk,i

}
+ |dk,i|2,

(37)

where Ck,i = ck,icHk,i, uk,i = ck,idHk,i. Moreover, we

define
∣∣∣(vHΦk + hHk

)
wi
∣∣∣2 = v̄HRk,iv̄ + |dk,i|2, where

Rk,i =

[
Ck,i uk,i
uHk,i 0

]
and v̄ =

[
v
1

]
. In addition, we set

V = v̄v̄H with V � 0 and rank(V) ≤ 1. Therefore, Rk and
ek can be reformulated as
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RIDk
′′

=log2


ρk

K∑
i=1

(Tr (Rk,iV) +|dk,i|2) + σ2
k

ρk
K∑

i=1,i6=k
(Tr (Rk,iV) +|dk,i|2) + σ2

k

,
(38)

e′′k = η(1− ρk)

K∑
i=1

(Tr (Rk,iV) +|dk,i|2). (39)

Next, the Dinkelbach method is applied to reformulate the
reflective beamforming optimization problem as

(P3) max
V

R
′′

total − qP
′′

total =

K∑
k=1

RIDk
′′

−q(ζ
K∑
k=1

‖wk‖2+PC+MPM +NPn(b)−
K∑
k=1

e′′k)

(40)

s.t. RIDk
′′

≥ Rmin,∀k ∈ K, (41)
e′′k ≥ Emin,∀k ∈ K, (42)
V � 0, (43)
rank(V) ≤ 1, (44)
Vn,n ≤ 1,∀n ∈ N , (45)
VN+1,N+1 = 1. (46)

Subsequently, we introduce two sets of new variables
i.e.{sk} and {tk} as

esk = ρk

K∑
i=1

(Tr (Rk,iV) +|dk,i|2) + σ2
k,∀k ∈ K, (47)

etk = ρk

K∑
i=1,i6=k

(Tr (Rk,iV) +|dk,i|2) + σ2
k,∀k ∈ K. (48)

The first-order Taylor expansion of etk at the point t̄k is
et̄k + et̄k(tk − t̄k). By using the SCA technique and relaxing
the non-convex constraint (44), we can further reformulate
problem (P3) as

(P3.1) max
V,{sk},{tk}

K∑
k=1

(sk − tk)log2(e)− qP
′′

total, (49)

s.t. ρk

K∑
i=1

(Tr (Rk,iV) +|dk,i|2) + σ2
k ≥ esk ,∀k ∈ K, (50)

ρk

K∑
i=1,i6=k

(Tr (Rk,iV)+|dk,i|2)+σ2
k ≤ et̄k +et̄k(tk− t̄k),∀k ∈ K,

(51)
(sk − tk)log2(e) ≥ Rmin,∀k ∈ K, (52)

(42), (43), (45), and (46).
For a fixed parameter q, it is obvious that problem (P3.1)

is strictly concave in v, {sk}, {tk}, ∀k ∈ K, and thus we
can solve it efficiently by using CVX and obtain the optimal
solution to problem (P3.1) denoted by V∗. Particularly, if
rank (V∗) ≤ 1, then we can use the eigenvalue decomposi-
tion to obtain reflective beamforming vector v∗. However, if
rank (V∗) > 1, then the Gaussian randomization procedure

Algorithm 2 the optimization algorithm for the reflective
beamforming vector optimization

0: INITIALIZE: q(0) = q∗1 , t(0) = 0. Set iteration number
m = 0, n = 0 and ε>0 as the accuracy threshold.

0: REPEAT:
0: For a given q(n−1)

0: REPEAT:
0: For a given t̄(m−1), solve (P3.2) to obtain {V}(m)

and t(m)

0: Set t̄(m)
= t(m), m = m + 1

0: UNTIL the objective value in (P3.2) converges;
0: Calculate the objective value (10) and (49), which is

denoted by λ(n)
EE and f (n)

2

0: Set q(n) = λ
(n)
EE , n = n+ 1

0: UNTIL converge, i.e. f (n)
2 ≤ ε

0: OUTPUT: Obtain q∗2 and the reflective beamforming
vector v∗ by eigenvalue decomposition if rank (V∗) ≤ 1,
otherwise use the Gaussian randomization procedure to
obtain a solution that satisfies constraint (44).

[37] needs to be applied to obtain the solution that satisfies
constraint (44). Specifically, we assume that the eigenvalue
decomposition of V∗ is V∗ = FΛFH . We denote v̂ = FΛ

1
2 z,

in which z ∼ CN (0, I) is the Gaussian random vector. Under
this setup, we can obtain a feasible solution v̄ to problem (P3),
which can be expressed as v̄n = ejarg(v̂n/v̂N+1), where v̄n
and v̂n are the n-th element of v̄ and v̂. With a large number
of the randomizations, we can select the best solution among
them to obtain the near-optimal solution to problem (P3). The
optimization algorithm for the reflective beamforming vector
optimization is summarized in Algorithm 2.

C. PS Ratios Optimization

By applying the Dinkelbach method to (P1) and fixing
the transmit beamforming vectors {wk} and the reflective
beamforming vector v, we can reformulate problem (P1) as

(P4) max
{ρk}

R(ρ)=

K∑
k=1

RIDk −

q(ζ

K∑
k=1

‖wk‖2+PC+MPM+NPn(b)−
K∑
k=1

ek)

(53)

s.t. RIDk ≥ Rmin,∀k ∈ K, (54)

ek ≥ Emin,∀k ∈ K, (55)
0 < ρk < 1,∀k ∈ K. (56)

Proposition 2: The objective function (53) is strictly con-
cave in ρk,∀k ∈ K with a fixed parameter q.

Proof:The detailed proof is presented in Appendix B. �
Consequently, the objective function can be reformulated as

R(ρ) =

K∑
k=1

Rk, (57)

where
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Algorithm 3 the optimization algorithm for the PS ratios
optimization

0: INITIALIZE: q(0) = q∗2 . Set iteration number n = 0 and
ε>0 as the accuracy threshold.

0: REPEAT:
0: For a given q(n−1)

0: Solve the problem (P4.1) to obtain ρ∗

0: Calculate the objective value (10) and (59), which are
denoted by λ(n)

EE and f (n)
3

0: Set q(n) = λ
(n)
EE , n = n+ 1

0: UNTIL converge, i.e. f (n)
3 ≤ ε

0: OUTPUT: q∗3 and ρ∗;

Rk=RIDk − qζ‖wk‖
2 − q

K
(PC +MPM+NPn(b)) + qek.

(58)
From Proposition 2, we can obtain d2R(ρ)

dρidρj
= 0,∀i 6= j,

which means the PS ratio of each user is independent of each
other. Thus the maximization problem of R(ρ) is equivalent
to the maximization problems of Rk for each user. Hence, we
can divide problem (P4) into K non-interfering subproblems.
In general, we can formulate the subproblems of (P4) as

(P4.1) max
{ρk}

Rk(ρk) (59)

s.t. RIDk ≥ Rmin,∀k ∈ K, (60)
ek ≥ Emin,∀k ∈ K, (61)
0 < ρk < 1,∀k ∈ K. (62)

Here we individually maximize Rk(ρk) and then obtain
a solution set from all the subproblems. According to the
constraints (60)-(62), ρk should be limited as

ρmin
k ≤ ρk ≤ ρmax

k (63)

where ρmin
k =

(2Rmin−1)σ2
k

|(vHΦk+hH
k )wk|2−(2Rmin−1)

K∑
i=1,i 6=k

|(vHΦk+hH
k )wi|2

> 0 ensures that the minimum data rate constraint of user k
can be satisfied, and ρmax

k = 1 − Emin

η
K∑

i=1
|(vHΦk+hH

k )wi|2
< 1

ensures the minimum harvested energy constraint of user k
can be satisfied. Furthermore, since d2R(ρ)

dρ2k
< 0,∀k ∈ K, Rk

is strictly concave in ρk. Hence, we can obtain a unique root
to the equation dR(ρk)

dρk
= 0 denoted by ρ̂ to maximize Rk.

In general, the optimal PS ratio of user k can be obtained
as follows,

ρ∗k =

 ρmin
k , ρ̂k < ρmin

k

ρ̂k, ρmin
k ≤ ρ̂k ≤ ρmax

k

ρmax
k , ρ̂k > ρmax

k

(64)

Consequently, we can obtain the optimal PS ratios
{ρ∗1, ρ∗2, ..., ρ∗K} of problem (P4). Algorithm 3 provides the
optimization algorithm for the PS ratios.

D. Alternating Optimization of the Optimize Variables {wk},
v, and {ρk}

Based on the aforementioned three algorithms for solving
subproblems, the key steps of the complete AO algorithm flow

Algorithm 4 The Complete AO Algorithm

0: INITIALIZE:
(
{wk}(0)

, v(0), {ρk}(0)
)

. Set iteration
number t = 0 and ε>0 as the accuracy threshold.

0: REPEAT:
0: For given

(
v(t−1), {ρk}(t−1)

)
, solve problem (P2) ac-

cording to Algorithm 1 in Section III-A and obtain the
solution denoted by {wk}(t)

0: For given
(
{wk}(t), {ρk}(t−1)

)
, solve problem (P3)

according to Algorithm 2 in Section III-B and obtain the
solution denoted by v(t)

0: For given
(
{wk}(t), v(t)

)
, solve problem (P4) according

to Algorithm 3 in Section III-C and obtain the solution
denoted by {ρk}(t)

0: Calculate the objective value (10) denoted by λ(t)
EE

0: Set t = t + 1
0: UNTIL converge, i.e.

∣∣∣λ(t)
EE − λ

(t−1)
EE

∣∣∣2 ≤ ε
for tackling the original problem (P1) can be summarized in
Algorithm 4.

It is worth noting that the strict convergence of the overall
AO algorithm can not be guaranteed due to the Gaussian
randomization procedure. However, it has been mathematically
and numerically proved that a good approximation of the
optimal solution can be obtained by the SDR technique fol-
lowed by Gaussian randomization [see [38] and the references
therein]. Therefore, the convergence can be improved by
increasing the number of Gaussian randomizations.

E. Computational Complexity Analysis

First, we denote the iteration numbers of the SCA tech-
nique for solving problems (P2.2) and (P3.1) as Is1 and
Is2, and the iteration numbers of the Dinkelbach method
for solving problems (P2.2), (P3.1) and (P4.1) as Id1, Id2

and Id3, respectively. Note that we can solve Problems
(P2.2) and (P3.1) using the interior-point algorithm which
is implemented in CVX. According to [39], for an SDP
problem containing an x × x positive semi-definite matrix
and y SDP constraints, the computational complexity can
be formulated as O(

√
xlog( 1

τ )(yx3 + x2y2 + y3)), where τ
denotes the solution accuracy. Therefore, we can obtain the
approximate computational complexity for solving (P2.2) and
P(3.1) as O1 = O(log( 1

τ )(4K + 1)(M3.5 + 4KM2.5)) and
O2 = O(log( 1

τ )(3K + 1)(N3.5 + 3KN2.5)). Since we can
directly calculate the PS ratios from (64) to solve problem
(P4.1), the involved complexity is O3 = O(K). Above
all, the computational complexity of the AO algorithm is
O(Is1Id1O1 + Is2Id2O2 + Id3O3).

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results to validate the
superiority and the effectiveness of our proposed algorithm in
a multiuser IRS-aided MISO system with SWIPT illustrated in
Fig. 2, with one BS located at (0,0), one IRS located at (5m,
0) and 3 users (K = 3) located at (5m, -1m), (5m, 1m), (6m,
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Fig. 2. The simulated multiuser IRS-aided MISO system with SWIPT.
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Fig. 3. Convergence performance of the AO algorithm.

0), respectively. Furthermore, the distance-dependent path loss
model [40] can be written as

PL = C0

(
d

d0

)−α
, (65)

where α is the path-loss exponents, which are set to be
3.6, 2, and 2.5 for the BS-user, BS-IRS, and IRS-user links,
respectively. Additionally, the reference path loss at d0 = 1m
is C0 = −30dB.

Referring to [41], we suppose that the BS-user link follows
Rayleigh fading denoted by hk, whereas the IRS-aided links
follow Rician fading. Furthermore, the IRS and BS are both
assumed to be equipped with several half-wavelength uniform
linear array (ULA) antenna elements. Accordingly, we can
model G, fk, and hk as

hk = PL1k
hk, (66)

G = PL2(

√
τ

τ + 1
aN (ϑ)aM (ψ)H +

√
1

τ + 1
G), (67)

fk = PL3k
(

√
τ

τ + 1
aN (ςk) +

√
1

τ + 1
fk), (68)

where PL1k
, PL2

and PL3k
represent the corresponding path-

losses, ϑ, ψ and ςk are the angular parameters, τ = 10 and
a are the Rician factor and the steering vector, respectively.
In addition, G and fk are the NLOS components. Table I

TABLE I
SIMULATION PARAMETERS

Parameters Values
Numbers of users, K 3

Numbers of antenna at the BS, M 3
Numbers of reflecting units, N 16

Received antenna noise, σ2
k -40dBm

Maximum transmit power PT 40dBm
The minimum rate target, Rmin 1.1 bits/s/Hz

The minimum harvested power requirement
constraint, Emin

1 µw

The circuit power consumption, PC 2W
Dissipated power at each transmit antenna, PM 0.1W

Dissipated power at the n-th IRS element,
Pn(b)

0.01W

The reciprocal of the transmit power amplifier
drain efficiency, ζ

1.2

The energy conversion efficiency, η 0.4
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Fig. 4. EE and PIL versus the distance between the BS and the IRS.

lists the other simulation parameters and all simulation results
are based on the average of over 100 independent channel
realizations.

Above all, we investigate the convergence performance of
the AO algorithm. As we can see in Fig. 3, with the number
of AO iterations increasing, EE can converge to a stable value,
thus validating the effectiveness and convergence of the AO
algorithm. Subsequently, we investigate the EE performance
versus the distance between the BS and the IRS which is
denoted as dr. As we can see in Fig. 4(a), EE first decreases
and then increases as dr increases, which means when the
IRS is closer to the BS or users, the value of EE is larger.
The reason is that the channel gains of the IRS-aided links
are determined by the distance-dependent path loss model,
which can be written as PIL = C0dr

−2C0(6− dr)−2.5, as
shown in Fig. 4(b). Obviously, Fig.4(a) and Fig. 4(b) have
the same trend since higher total achievable rates and larger
total harvested energy can be obtained by larger channel gain.
These results indicate that the system EE can be enhanced by
the appropriate IRS placement.

Next, the effect of the number of transmit antennas on
the EE is then investigated in different cases containing:
1) Conventional MISO SWIPT system without IRS [42], 2)
Proposed system with random IRS phase shift, 3) Proposed
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Fig. 5. EE versus the numbers of transmit antennas.

system with random PS ratios for comparison. It can be
observed in Fig. 5, EE increases rapidly when the number of
antennas is relatively small. This is because as M increases,
higher spatial diversity gain and beamforming gain can be
obtained, thus yielding higher transmission rates and harvested
energy. On the other hand, activating more transmit antennas
will result in additional energy consumption, leading to some
loss of EE. Therefore, the increase in EE becomes slower
with a relatively large number of antennas, and a saturation
will occur when the influence of the total achievable rate and
the total power consumption on EE can offset each other.
Meanwhile, when M > 11, EE achieved by the proposed
algorithm even decreases slightly. This infers that in this case,
the extra circuit power grows faster than the total achievable
rate. A similar performance trend is also reflected in [43],
[44]. It is obvious that the proposed AO algorithm can achieve
higher EE as compared to the other three schemes owing to its
capability of utilizing the transmit power effectively. In other
words, by optimizing the reflective beamforming and the PS
ratios, the AO algorithm can make the signal transmission
environment more favorable, thus outperforming the other
three schemes. In particular, the EE of the proposed system
with IRS is at least 15% larger than the one without IRS
when M = 13, which indicates the benefit of deploying IRS
for enhancing the EE performance.

In the next simulation, we gradually increase the minimum
rate constraint to investigate its effect on EE. It can be seen
in Fig. 6 that the EE achieved by all the schemes declines
as Rmin increases. This is due to the fact that when Rmin
increases, the system will assign more power to ID, thus
reducing the total harvested energy. Furthermore, for a large
value of Rmin, extra transmit power needs to be transmitted by
the BS to meet the minimum rate constraints, thus magnifying
the interference, which results in an imbalance between the
denominator (the total power consumption) and the numerator
(the total achievable rate) of the EE metric.

We next analyze the impact of the circuit power Pc to EE
by setting Pc from 1W to 3.5W. As we can see in Fig. 7, EE
declines as Pc increases for the AO algorithm and the other
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Fig. 6. EE versus minimum rate constraint per user.
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Fig. 7. EE versus circuit power of the proposed system.

three schemes. The reason is that the increase in the circuit
power will directly increase the total power consumption, but
has no effect on the total transmission rate of the system, thus
resulting in a decrease in EE. Similar to the previous results,
we can observe that the proposed AO algorithm performs
better than the other three schemes.

We further investigate the effect of the number of reflecting
units at the IRS on the EE performance versus circuit power.
As shown in Fig. 8 that for N ranging from 4 to 32, EE
gradually decreases as Pc increases. In addition, comparing
the four curves in Fig. 8, the value of EE increases with
the number of reflecting units. This is due to the fact that
the design of the reflective beamforming vectors for EE
maximization can become more flexible with a larger number
of N. That is to say, the users can obtain higher passive
beamforming gain, thus leading to a higher total transmission
rate. Otherwise, since the IRS reflecting units are passive, even
if N increases, the power consumed by the additional reflecting
units is relatively low (0.01W per reflecting unit) compared to
the total power consumption of the system. Therefore, with
a higher total transmission rate and a lightly increased total



10

1 1.5 2 2.5 3 3.5

Circuit Power (W) 

1

1.5

2

2.5

3

3.5

4
E

E
 (

b
it
s
/J

o
u

le
/H

z
)

N = 4

N = 8

N = 16

N = 32

Fig. 8. EE versus circuit power of the proposed system.
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Fig. 9. EE versus maximum transmit power.

power consumption, the EE performance can be improved
significantly.

Next, we propose two benchmark schemes marked as “DC-
w” and “ZF-w”, in which we apply the DC programming
[24] and zero-forcing (ZF) [45] to optimize the BS transmit
beamforming vectors, respectively. In addition, we also ana-
lyze the case where the SWIPT system without IRS deployed.
As we can see in Fig. 9, for our proposed AO algorithm, EE
first increases and then reaches an asymptotic value as PT
increases. The reason is that with a large value of PT , the
excessive power transmitted by the BS has no effect on EE,
which means the balance between the total power consumption
and the total achievable rate of the system is obtained. In
addition, it can be seen in Fig. 10 that the EE achieved by
all the schemes is monotonically decreasing in Emin. This
is because, for a large value of Emin, the PS ratios need to
decrease to meet the harvested energy demand. In other words,
more power is needed to be allocated to EH, and thus leads
to a decline in the achievable transmission rate. In addition,
it can be seen from Fig. 9 and Fig. 10 that the proposed
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Fig. 10. EE versus minimum energy constraint per user.

AO algorithm can achieve higher EE as compared to the
other two benchmark schemes, which reflects the superiority
of our algorithm. Furthermore, for all the schemes, the EE
performance of the proposed system with IRS outperforms
the one without IRS, which demonstrates the advantage of
deploying IRS.

V. CONCLUSION

In this paper, we maximize the EE of a multiuser IRS-aided
MISO system with SWIPT, while satisfying the BS transmit
power constraints, the IRS reflection constraint, and the QoS
constraints of each user. As the optimization variables, i.e.,
the transmit beamforming vectors, the reflective beamforming
vector, and the PS ratios are intricately coupled, the original
problem is extremely complex and non-convex. To effectively
tackle the problem, we propose an AO algorithm by decou-
pling the original problem into three subproblems. Therefore,
we apply the Dinkelbach method as well as SDR and SCA
techniques to solve the subproblems. Finally, compared with
the benchmarks, the effectiveness and the convergence of
our proposed AO algorithm and the benefit of deploying
IRS can be validated by numerical results. In addition, our
work can be extended to a more realistic case by taking
into account the imperfect CSI and the IRS hardware designs
such as holographic multiple input multiple output surface
(HMIMOS), which will be considered in our future work.

APPENDIX A
PROOF OF THEOREM 1

Since problem (P2.2) is strictly convex in {Wk} , the
Slater’s condition holds. Hence, the duality gap is zero. We
can write the Lagrangian function corresponding to problem
(P2.2) as
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L = −
K∑
k=1

(pk − qk)log2(e) + q(ζ

K∑
k=1

Tr(Wk) + PC +MPM

+NPn(b)−
K∑
k=1

η(1− ρk)

K∑
i=1

Tr(AkWi))

+

K∑
k=1

vk(epk − (ρk

K∑
i=1

Tr(AkWi) + σ2
k))

+

K∑
k=1

uk(ρk

K∑
i=1,i6=k

Tr(AkWi) + σ2
k − (eq̄k + eq̄k(qk − q̄k)))

+

K∑
k=1

λk(Rmin − (pk − qk)log2(e))

+

K∑
k=1

τk(Emin − η(1− ρk)

K∑
i=1

Tr(AkWi))

+ υ(

K∑
k=1

Tr(Wk)− PT )−
K∑
k=1

Tr(YkWk),

(69)
where {vk}, {uk}, {λk}, {τk}, υ represent the Lagrangian

multipliers, and {Yk} ∈ CM×M represents the Lagrangian
multiplier matrix.

Therefore, we can express the dual problem of (P2.2) as

max
{v∗k},{u

∗
k},{λ

∗
k},{τ

∗
k},υ∗>0,{Y∗k}

min
{Wk},{pk},{qk}

L . (70)

Let {v∗k}, {u∗k}, {λ∗k}, {τ∗k}, υ∗ and {Y∗k} denote the op-
timal Lagrangian multiplers of (70). Therefore, the Karush-
Kuhn-Tucker (KKT) condition related to {W∗k} is

K1 : {Y∗k} � 0, {v∗k}, {u∗k}, {λ∗k}, {τ∗k}, υ∗ > 0, (71)
K2 : W∗kY∗k = 0,∀k ∈ K, (72)
K3 : ∇W∗kL = 0,∀k ∈ K, (73)

where ∇W∗kL is the gradient vector of Eq. (69) with respect
to {W∗k}, which can be written as

∇W∗kL = qζIM − q
K∑
i=1

η(1− ρi)Ai −
K∑
i=1

v∗i ρiAi+

K∑
i=1,i6=k

u∗i ρiAi −
K∑
i=1

τ∗i η(1− ρi)Ai + υ∗IM − Y∗k = 0.

(74)
For brevity, we can express K3 as

Y∗k = (qζ + υ∗)IM − Zk (75)

where Zk can be given by
K∑
i=1

v∗i ρiAi −
K∑

i=1,i6=k
u∗i ρiAi +

K∑
i=1

τ∗i η(1− ρi)Ai + q
K∑
i=1

η(1− ρi)Ai,

Next, we will prove that the optimal solution W∗k of the
problem (P2.2) satisfies rank(W∗k ) = 1,∀k ∈ K by analyz-
ing the structure of Y∗k. Let ξmax represent the maximum
eigenvalue of Zk. Due to the randomness of the channel, it is
almost impossible for multiple eigenvalues to have the same

maximum value. In light of the rank property of the matrices
and K2, we obtain

rank (Y∗k) + rank (W∗k) ≤M. (76)

If ξmax > qζ + υ∗, an eigenvalue of Y∗k will be negative,
i.e., Y∗k cannot be positive semidefinite, which is contradictory
to K1. If ξmax < qζ + υ∗ , all the eigenvalues of Y∗k will
be positive, i.e.,Y∗k must be full rank and positive definite.
Furthermore, K2 informs us that W∗k can only be 0, which
contradicts the reality. Hence, ξmax = qζ + υ∗ must hold,
then rank (Y∗k) = M − 1. Therefore, rank (W∗k) = 1 must be
satisfied.

APPENDIX B
PROOF OF THEOREM 2

Above all, we introduce two sets of new variables as

Sk =

K∑
i=1

∣∣∣(vHΦk + hHk )wi
∣∣∣2,∀k ∈ K, (77)

Tk =

K∑
i=1,i6=k

∣∣∣(vHΦk + hHk
)

wi
∣∣∣2,∀k ∈ K, (78)

C = q(ζ

K∑
k=1

‖wk‖2 + PC +MPM +NPn(b)

−η
K∑
k=1

K∑
i=1

∣∣∣(vHΦk + hHk
)

wi
∣∣∣2).

(79)

Thus, (53) can be reformulated as

R(ρ) =

K∑
k=1

log2

(
ρkSk + σ2

k

ρkTk + σ2
k

)
− q

K∑
k=1

ηρkSk − C. (80)

Then we can write the first-order derivative of R(ρ) as

∂R(ρ)

∂ρm
=

1

ln 2

ρmTm + σ2
m

ρmSm + σ2
m

× Sm(ρmTm + σ2
m)− Tm(ρmSm + σ2

m)

(ρmTm + σ2
m)

2 − qηSm

=
1

ln 2

(Sm − Tm)σ2
m

(ρmSm + σ2
m)(ρmTm + σ2

m)
− qηSm.

(81)
Furthermore, the second-order derivative of R(ρ) can be

written as
∂2R(ρ)

∂ρm∂ρn

=

{
− 1

ln 2
(Sm−Tm)σ2

m(2SmTmρm+(Sm+Tm)σ2
m)

(ρmSm+σ2
m)2(ρmTm+σ2

m)2

0,m 6= n
< 0,m = n.

(82)
Therefore, we can express the Hessian matrix of R(ρ) as

∂R(ρ)

∂ρ2
=


∂R(ρ)
∂ρ21

0 · · · 0

0 ∂R(ρ)
∂ρ22

· · · 0

...
...

. . .
...

0 0 · · · ∂R(ρ)
∂ρ22

 . (83)
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It is obvious that ∂R(ρ)
∂ρ2k

< 0, which means ∂R(ρ)
∂ρ2 is a negative

semi-definite matrix. Consequently, the objective function (53)
is strictly concave in ρk,∀k ∈ K.
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