- Fermi-level Shift, Electron Separation, and
- 2 Plasmon Resonance Change of Ag Nanoparticle
- Decorated TiO₂ Under UV Light Illumination

Wenhao Zhao, ^a Liping Wen, ^b Ivan P. Parkin, ^c Xiujian Zhao, ^a Baoshun Liu^a ^a State Key laboratory of silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province, P. R. China ^bSchool of Environmental & Biological Engineering, Wuhan Technology and Business University, Wuhan city, Hubei province, 430065, P. R. China ^cDepartment of Chemistry, Materials Chemistry Centre, University College London, London WC1H 0AJ, U.K.

ABSTRACT:

1

20

21

Noble metal nanoparticles are widely used as the co-catalysts for storing and separating 2 3 electrons in semiconductor photocatalysis. Determining such ability to is important and 4 meaningful to understand photocatalytic mechanism. Taken the Ag nanoparticles into 5 consideration, the present research combines in-situ photoconductances and theoretical 6 analysis to evaluate the Fermi-level (E_F) shift of the UV-illuminated Ag/TiO₂ system under 7 gaseous conditions, based on which the role of the Ag nanoparticles in storing and separating electrons was discussed. It was found that the E_F of the Ag/TiO₂ locates deeper into the gap, 8 9 and the temperature variation has less effect on the E_F of the Ag/TiO₂, as compared to the undecorated TiO₂. The analysis shows that ~ 46 electrons can be stored in 10 nm Ag 10 nanoparticles under our experimental conditions, which does not change with temperatures. 11 12 The electron traps in the TiO₂ can affect the electron distribution in the TiO₂ and Ag nanoparticles. It was seen that the localized surface plasmon resonance (LSPR) of the Ag 13 nanoparticles exhibits a blue-shift under UV light illumination, which is generally ascribed to 14 15 the electron storage in the Ag nanoparticles. However, we showed that the blue-shift should have nothing to do with the electron storage in the Ag nanoparticles, so it cannot be used as 16 an indicator for evaluating the electron storage ability. The *in-situ* XPS analysis also does not 17 support that the LSPR blue shift can connect with the reduction of the Ag₂O layer and TiO₂. 18 19

1. INTRODUCTION

1

Replacing fossil fuels is required to cut CO₂ emission and limit global temperature rise. 2 3 Heterogeneous photocatalysis is a solution as it uses solar energy to drive chemical reactions, such as hydrogen generation, 1,2 CO₂ reduction, 3-5 pollutant removals, 6,7 and chemical 4 reforming.^{8,9} TiO₂ is a typical photocatalyst that has been widely studied for several 5 decades. 10-12 However, the pristine TiO₂ suffers from fast carrier recombination and low 6 7 photocatalytic activity. Decoration with co-catalysts is the general way to increase photocatalytic activity by changing the carrier kinetics. ¹³⁻¹⁶ The co-catalysts include oxides, 8 sulfides, carbides, and metals. Metallic nanoparticles, such as Ag, ¹⁷ Au, ¹⁸ Pt, ¹⁹ Pd, ²⁰ and Ru, ²¹ 9 have been widely used in the photocatalysis of TiO₂ and other semiconductors. Transient 10 studies had shown that the photoinduced electrons in TiO₂ can transfer to metallic 11 nanoparticles in a very short time, and thus the charge carriers are effectively separated. ^{22,23} 12 The role of metallic nanoparticles in separating carriers can affect the thermodynamic 13 property of the electrons in semiconductors and metallic nanoparticles. As electron transfer 14 from TiO₂ to metallic nanoparticles is fast, the electron distribution in them and TiO₂ is at the 15 thermodynamic equilibrium under steady state. The Fermi-level (E_F) of Au + TiO₂, 24,25 Ag + 16 TiO_{2} , 26,27 and $Au + ZnO^{28}$ under UV light illumination had been determined by the Nernst 17 equation through a titration method in solutions, and the result showed that the addition of Au 18 and Ag nanoparticles could move the E_F closer to the conduction band (CB) edge of TiO₂. 19 The E_F up-shift increases the electron reduction ability and the electron density in TiO₂, and 20 21 more electrons can also be stored in metallic nanoparticles; this should be beneficial for photocatalytic reactions from the viewpoint of thermodynamics. For the plasmon metal 22

- nanoparticles, such as Ag and Au, it had also been seen that UV light illumination leads to a
- 2 blue-shift in the localized surface plasmon resonance (LSPR), which was ascribed to the
- 3 electron storage in the metal nanoparticles. ²⁵⁻²⁸ However, it had been also revealed that the
- 4 LSPR blue shift is not caused by the electron storage.²⁹
- The titration used to obtain the E_F in solutions cannot be used for gaseous conditions.
- 6 Although the E_F can also be determined from scanning Kelvin probe that detects working
- function change, 30,31 it is difficult to be integrated in the *in-situ* experimental environments.
- 8 The Ag nanoparticle decorated TiO₂ (Ag/TiO₂) materials had been used in photocatalysis and
- 9 photochromism;³²⁻³⁵ they should both rely on electron distribution between TiO₂ and Ag
- 10 nanoparticles. The current research developed a method to study the effect of Ag decoration
- on the E_F of the TiO₂ under gaseous condition and at different temperatures. The *in-situ*
- photoconductance measurements and theoretical analysis were combined to calculate the
- difference between the conduction band edge and E_F of the TiO₂ (E_{CB} - E_F) and evaluate the
- electron storage in Ag nanoparticles for the Ag/TiO₂ under UV light illumination. We
- obtained the different result for the effect of Ag nanoparticles on the E_F and their role in
- storing electrons is discussed. Furthermore, it was also clarified that the LSPR blue-shift does
- 17 not arise from the electron storage in the Ag nanoparticles, and also might not relate with the
- 18 Ag and TiO₂ reduction.
- The finding should be meaningful for understanding physiochemical properties of
- 20 plasmon/semiconductor systems under UV light illumination. The method used to study the
- E_F and electron storage is not limited for the Ag nanoparticles and TiO₂, and can be used for
- 22 the other metallic nanoparticle decorated semiconductors. In addition, heterojunction

- photocatalysis was also studied to increase photocatalytic activities through separating charge
- 2 carriers, for examples the recently studied lead-free bismuth halide perovskite nanocrystals
- 3 encapsulated in a covalent organic framework, ³⁶ Cs₄PbBr₆/TiO₂³⁷ and BiVO₄/TiO₂. ³⁸ In
- 4 principle, the method developed in the current research can be also used to study the electron
- 5 separation and storage in these heterojunction structures.

7

8

2. EXPERIMENTAL SECTION

2.1. Sample preparation

- 9 The large Ag nanoparticle modified TiO₂ was prepared through photodeposition method.^{39,40}
- 10 92.7 μL of 0.1 M AgNO₃ aqueous solution was added into the methanol aqueous solution (50
- mL, 20%, v/v), and then 0.2 g of pre-milled P25 TiO₂ powder was added. After being
- continuously stirring for 40 min in the dark, the solution was irradiated with a 500 W Xe lamp
- for 2 h under constant flow of N₂. After irradiation, the precipitate was washed with deionized
- water for several times, and then was ultrasonically dispersed in a ϕ 50 mm glass container
- with pure water, which was finally dried at 60 °C for 4 h in N₂. Undecorated TiO₂ samples for
- control experiments were also prepared according to the same procedure for the Ag/TiO₂,
- except that the AgNO₃ was not used.

18 2.2. Catalyst Characterization

- 19 X-ray diffraction (XRD) patterns was obtained on the Empyrean X-ray diffraction photometer
- (Cu K α) to identify the crystal phase. The scanning rate is 0.05° 2θ s⁻¹, and the accelerating
- voltage and current used are 15 kV and 20 mA, respectively. The specific surface area of the
- 22 powder sample was tested by N₂ adsorption on a fully automated nitrogen adsorption

- instrument model Micromeritics ASAP 2460 Version 3.01 (USA). Field-emission
- 2 transmission electron microscope (TEM; type: JEM2100F, JEOL, Tokyo, Japan) was used to
- 3 observe the morphology of the pure and Ag/TiO₂ samples. X-ray diffraction (XRD;
- 4 Empyrean, PANalytical, Almelo, Netherland) was used to check the crystal structure, with the
- 5 Cu Kα radiation being used as the X-ray source. The surface chemical composition of the
- 6 Ag/TiO₂ sample was checked with an X-ray photoelectron spectrometer (XPS; type: VG
- 7 Multilab 2000, Thermo Scientific, Waltham, U.S.A.), with an X-ray source working with the
- 8 Al Kα radiation. In addition, the XPS spectra under in-situ UV light irradiation were also
- 9 measured with a 375 nm UV laser being used to irradiate the sample surface from the XPS
- window for 15 min. The laser spot diameter is about 10 mm, which is larger than the area of
- the sample to be checked. The binding energies of the samples were calibrated with respect to
- the adventitious carbon (C1s) as a reference line at 284.8 eV. The percentage of Ag
- 13 nanoparticles supported on TiO₂ was determined using Inductively Coupled Plasma Optical
- Emission Spectroscopy (ICP-OES, Prodigy7, LEEMAN LABS); the Ag/TiO2 was dissolved
- in the HNO3 solution containing trace of HF at 60 °C. UV-Vis-NIR diffusion reflectance
- spectra were measured by a UV-Vis-NIR spectrophotometer equipped with an optical
- integrating sphere in the wavelength range of 300 nm to 1300 nm (UV-2600, Shimadzu,
- 18 Tokyo, Japan).
- 19 2.3. Photoconductance measurements
- 20 Photoconductances were measured in a self-designed device in methanol-contained N₂ flow
- 21 according to our previous work. 41,42 a 0.05 mm wide FTO strip of a 20 mm \times 20 mm FTO
- 22 glass was firstly removed by laser etching, and the pure TiO₂ and Ag/TiO₂ samples were

- coated over the FTO-removed area and then dried at 50 °C to form a sample coating for
- 2 conductance measurement. Conductances were measured using Keithley-2450 SourceMeter
- 3 with a 2 V bias voltage in two-probe mode at different temperatures. During the whole
- 4 measurement, the methanol-contained N_2 atmosphere was continuously passed though the
- 5 reaction chamber at a flow rate of 0.3 NL/min under the control of a flow meter (NL/min
- 6 means the standard flow rate at 0 °C and 1 atm; this is the labelled flow rate unit in the flow
- 7 meter, so we used this unit here). The conductance of the coatings was firstly measured in the
- 8 dark for 5 min, and then was monitored under the 375 nm laser illumination for 10 min, and
- 9 finally the measurement was continuing for 5 min after the laser illumination. A photodetector
- based on Si (843-R-USB, Newport, United states) was used to check the light intensity, which
- is 60 mW/cm₂ for all the measurements. In addition, the dependences of the dark
- conductances on temperatures were also obtained in air from 100°C to 250°C with the
- 13 ramping rate of 5°C/min.

2.4. In-situ UV-Vis-NIR absorption

- To measure the UV-Vis-NIR diffusion spectra under well-controlled conditions, we designed
- and made a closed sample cell for diffusion spectrum measurement (The detailed description
- in shown in Fig. S1). The cell was well matched to the integration sphere (Shimadzu 819M-PP-
- 18 1.0) that is equipped in the UV-Vis spectrophotometer (UV-2600, Shimadzu, Japan). It was
- used to measure the diffusion reflectance spectra of the samples before and after 375 nm laser
- 20 irradiation under well-controlled atmosphere and temperature, which were transferred to
- 21 absorption spectra by the Shimadzu software (for the UV-2600 photospectrometer). The
- 22 temperature was set at the ambient temperature and the methanol-contained N₂ was flowed

- through the cell for the whole measurement. The dark absorption spectra were obtained before
- 2 illumination. Then, the sample was firstly illuminated with the 375 nm laser for ~ 10 min, and
- 3 absorption spectrum was measured immediately. Then, the absorption spectrum was
- 4 monitored again in the dark 10 min later. After then, pure O₂ was flowed into the cell, and the
- 5 UV-Vis-NIR spectra was checked to the effect of O_2 .
- 6 In additional to the spectra, the single-wavelength diffusion reflectances were also measured
- 7 under and after the light illumination with self-designed equipment according to our previous
- 8 study. 43 Changes in diffusion reflectance at 532 nm and 1550 nm were monitored using a
- 9 Newport Si-based photodetector (1936-R, Newport, United states). A 375 nm laser was used
- as the excitation light source; a 532 nm laser and a 1550 nm laser were used as the signal
- lights for detection. The methanol-contained N₂ was continuously flowing through the
- measurement cell. The temperature was kept unchanged at 40 °C during the measurement.
- 13 The diffusion reflectance powers were firstly monitored in the dark for ~ 5 min, and then was
- continuously measured under the 375 nm laser illumination. After the switching-off of the
- laser, the reflectance power at 532 nm and 1550 nm were further measured for a while in the
- dark. Lastly, the high-purify O₂ was flowed through the measurement cell, and the
- reflectances were further monitored to see the effect of O_2 .
- For the above *in-situ* photoconductances, UV-Vis-NIR spectroscopic absorption spectra, *in-*
- 19 situ single-wavelength diffusion reflectance measurement, high-purity N₂ was flowed through
- a glass bottle containing HPLC-grade liquid methanol at a rate of 0.2 NL/min to form the
- 21 methanol-contained N₂ atmosphere. High-purity O₂ stream flowed through the sample cell at
- a speed of 0.4 NL/min was directly used as the methanol-contained O₂ atmosphere.

2

3

18

3. RESULTS AND DISCUSSION

3.1 Physical property characterization

The XRD patterns (Fig. S2) do not reveal the present the presence of the Ag materials due to 4 5 the low loaded amount, and the ICP analysis showed that the Ag amount is 0.34 wt. %. The TEM image of the Ag/TiO₂ is shown in Fig. 1(A), and it can be seen that some spherical 6 7 nanoparticles (red dash circles) are distributed among the TiO₂ nanoparticles. One spherical nanoparticle was observed by high-resolution TEM, as show in Fig. 1(B), and the (111) lattice 8 9 fringes of a silver metallic nanoparticle can be seen (right-down corner); this shows that metallic Ag nanoparticles are loaded over the TiO2 surfaces. Furthermore, the presence of the 10 Ag elements was also confirmed by EDX elemental mapping (Fig. S3). It can be seen that the 11 12 size of Ag nanoparticle of the Ag/TiO₂ is ~ 10 nm. The Ag nanoparticles tightly connect with the TiO₂ nanoparticles; this should favor a fast electron transfer between them. XPS analysis 13 (Fig. S4) shows that the binding energy of Ag 3d peak (367.6 eV) corresponds to the Ag₂O;⁴⁴ 14 15 this means that the Ag nanoparticle surfaces should be oxidized to some extent. Fig. 2 shows the UV-Vis-NIR absorption spectra of the undecorated TiO2 and Ag/TiO2, and it can be seen 16 17 that the Ag/TiO₂ exhibits clear LSPR extinction

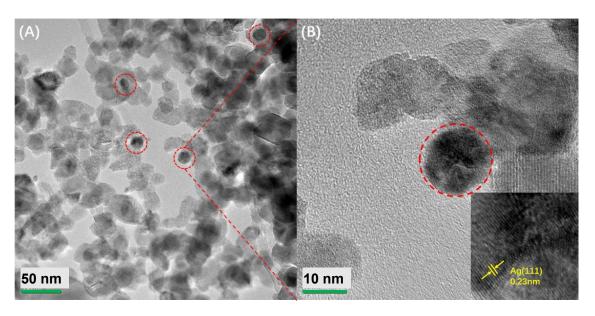


Fig. 1. TEM image (A) and high-resolution TEM image (B) of the Ag/TiO₂

2

3

4

5 6

7

8

9

10

12

TiO₂ 1.4 Ag/TiO₂ 1.2 1.0 Absorbance 8.0 0.6 0.4 0.2 0.0 1000 400 600 800 1200 Wavelength (nm)

Fig. 2 UV-Vis-NIR absorption spectra of the TiO_2 and Ag/TiO_2

3.2 The effect of the Ag decoration on the Fermi energy level (E_F s)

Fig. 3 shows the diagram of the E_F thermal equilibrium between Ag nanoparticle and TiO₂,

the difference of E_F and E_{CB} can be estimated by calculating the E_F of the TiO₂, and then the

electron storage in the Ag nanoparticles can be analyzed by analyzing the E_F relative change.

The E_{CB} of the TiO₂ is taken as the reference level ($E_{CB} = 0$ eV) for simplification, and the

difference between the E_{CB} and $E_F(E_{CB}-E_F)$ is taken as the E_F here. Conductances were used

- to evaluate the E_F according to the following manner. In the case of Ohmic contact (Fig. S5),
- 2 the conductance is proportional to the density (n_{CB}) of the free electrons in the CB of the TiO₂
- 3 through 45

$$\sigma = q\mu_e n_{CR} \tag{1}$$

- where the μ_e is the electron mobility, q is the elementary charge. For the nano-TiO₂ used in
- 6 the present research, it had been shown that the light illumination did not affect the μ_e , so the
- σ is considered to be proportional to n_{CB} .

9

Fig. 3. Diagram of the difference between E_{CB} and E_F in the Ag/TiO₂ under the quasi

10 equilibrium state

- The conductances are used to estimates the E_{CB} - E_F for the Ag/TiO₂ and the undecorated TiO₂,
- which can be calculated according the following equation in the nondegenerate case.

$$E_{CB} - E_F = k_B T \ln \frac{N_{CB}}{n_{CB}}$$
 (2)

- where N_{CB} is the effective state density of the CB, k_B is the Boltzmann constant, and T is the
- absolute temperature. The N_{CB} is related to electron effective electron mass (m_e *) by ⁴⁶

$$N_{CB} = \frac{2(2\pi m_e^* k_B T)^{\frac{3}{2}}}{h^3}$$
 (3)

- where h is Planck constant. The m_e * of anatase TiO₂ is ~ 3 m_0 (the free electron mass).⁴¹ The
- P25 also contains rutile phase that has a high m_e^* , $\sim 50 \text{ m}_0$. Thus, it is reasonable to assume
- 3 that the N_{CB} is 10^{21} cm³.
- Combined with Eqns (1) and (2), the ΔE_F before and after steady light illumination is

$$E_F^p - E_F^d = k_B T \ln \frac{\sigma_p}{\sigma_d} \tag{4}$$

- where $E_F^p(E_F^d)$ and $\sigma_p(\sigma_d)$ are the E_F and conductance under steady light illumination
- 7 (before light illumination), respectively. The σ is related with current through

$$I = \frac{U}{W} L d\sigma(t) \tag{5}$$

- 9 Fig. 4 shows the diagram for the current measurement. The W, L, and d in the eqn (5)
- correspond to the strip width, the strip length, and the thickness of the TiO_2 coating. U and I
- are the applied electric voltage across the TiO₂ coating and the measured current, respectively.
- 12 The μ_e of the CB electrons is taken as 0.1 cm² V⁻¹ s⁻¹.⁴⁸ The dark currents of the TiO₂ and
- 13 Ag/TiO₂ at 20, 40, 60, and 80 °C were obtained from an extrapolation of Arrhenius plots (Fig.
- S6). The dark n_{CB} of the TiO₂ and Ag/TiO₂ were considered to be the same, which are 1.53 ×
- 10^8 cm^{-3} , 7.8×10^8 , 3.2×10^9 , and $1.0 \times 10^{10} \text{ cm}^{-3}$ at 20, 40, 60, and 80 °C, respectively. The
- low n_{CB} of the undecorated TiO₂ and Ag/TiO₂ is ascribed to the electron depletion by O₂
- 17 surface chemisorption. 49,50

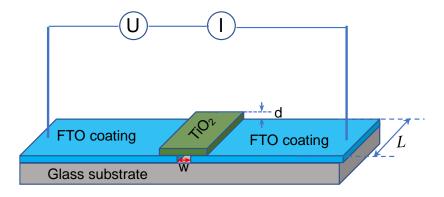
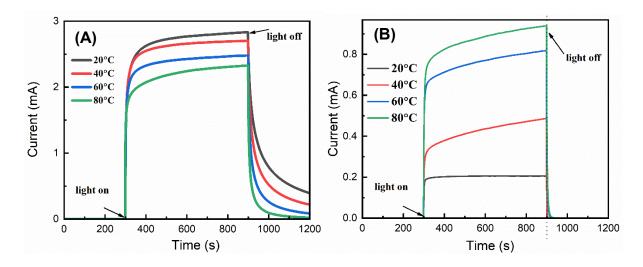



Fig. 4 Diagram of the current measurement of the TiO₂ and Ag/TiO₂

The currents of the undecorated TiO₂ and Ag/TiO₂ under and after light illumination were measured in methanol-contained N₂, as shown in Fig. 5A and B. It can be seen that the steady state photocurrents decrease and increase with the temperatures for the TiO₂ and Ag/TiO₂, respectively. Assumed that the N_{CB} of the TiO₂ is 10^{21} cm⁻³, the steady-state E_F (relative to the E_{CB}) at different temperatures under light illumination was calculated by Eqns (2) and (4), as shown in Fig. 6. The result shows that the E_F of the undecorated TiO₂ is closer to the E_{CB} of TiO₂ as compared to the Ag/TiO₂ at all temperatures. Increasing temperature from 20 °C to 80 °C leads to a decrease of the E_F for the undecorated TiO₂ from 0.23 to 0.28 eV below the E_{CB} ,

but has less effect on E_F for Ag/TiO₂.

3 under 375 nm laser excitation in the presence of methanol-containing N_2 .

E_{CB} 20 °C 40 °C 60 °C 80 °C

0.23 °C 0.296 °C 0.298 7 °C

E_F TiO₂ TiO₂/Ag TiO₂/Ag TiO₂/Ag TiO₂/Ag TiO₃/AG

Fig. 6 Diagram for the EF level positions of the TiO_2 and Ag/TiO_2 under UV light

illumination at different temperatures

In the studies performed in solution, C_{60}/C_{60} redox potential was used to obtain the equilibrated E_F .^{27,28} The undecorated TiO₂ and Au + TiO₂ mixed solutions were firstly illuminated with the UV light for a long time. Then, the light was turned off and C_{60} solution was injected to extract the stored electrons. Under the E_F equilibrium, the E_F of the TiO₂ and the Au+TiO₂ can equilibrate with the redox potential of the C_{60}/C_{60} , which could be calculated from the Nernst equation. Their results showed that the redox potential of C_{60}/C_{60} for Au + TiO₂ was more negative, based on which a conclusion was obtained that the E_F was closer to the E_{CB} as compared to the pure TiO₂. Similar results were also obtained for Au + ZnO and Ag + TiO₂ system. ^{27,31} The transfer of the stored electrons from the TiO₂ and Au + TiO₂ to C_{60} could lead to a simultaneous down-shift of the E_F of TiO₂ and Au+TiO₂, when the potential of C_{60}/C_{60} was shifted. Therefore, the real E_F should be the sum of the equilibrated redox of C_{60}/C_{60} and the E_F down-shift. However, it seems that this study did not take the E_F down-shift into consideration. Because the differential capacitance of the Au+TiO₂ is higher

- than that of the space charge region of the TiO_2 , the E_F down-shift of $Au + TiO_2$ must be
- smaller than that of the undecorated TiO_2 . By including this effect, we expected that the E_F of
- 3 the TiO₂ might be closer to the E_{CB} of TiO₂ as compared to the Au + TiO₂ in these studies;
- 4 this could agree with our result.

- 6 3.3. The electron storage and separation of the Ag nanoparticles
- 7 The ΔE_F of an Ag nanoparticle is a function of the charged electron number and the Ag
- 8 nanoparticle radius according to 51

$$\Delta E_F = \frac{(2z-1)q^2}{8\pi\varepsilon_0\varepsilon_r R} \tag{6}$$

- where ε_0 is the vacuum permittivity, ε_r is relative dielectric constant of the substance
- surrounding the Ag nanoparticle (~ 1 for air and 48 for anatase TiO₂), R is the Ag
- nanoparticle radius, and z is the charged (stored) electron number in the Ag nanoparticle.
- 13 Therefore, the electron storage in an Ag nanoparticle can be estimated based on the ΔE_F
- before and after light illumination. The porous TiO₂ is composed of air and TiO₂ phases. The
- dielectric constant of the porous TiO₂ can be estimated from the effective-medium
- approximation according to the following equation in the 2-dimensional case.⁵²

$$f_a \frac{\varepsilon_a - \varepsilon_{eff}}{\varepsilon_a + \varepsilon_{eff}} + (1 - f_a) \frac{\varepsilon_{t-} \varepsilon_{eff}}{\varepsilon_{t+} \varepsilon_{eff}} = 0$$
 (7)

- where f_a , ε_a , ε_t , and ε_{eff} are air volume fraction, air dielectric function, TiO₂ dielectric function,
- and the effective dielectric constant of porous TiO₂. The BET analysis showed that the porous
- volume in the TiO₂ is ~22% (Fig. S7). The $\varepsilon_{\rm eff}$ was calculated to be 29.5. As the E_F of the
- 21 TiO₂ and Ag nanoparticles are the same under the quasi-equilibrium approximation, the ΔE_F
- in eqn (6) corresponds to the ΔE_F of the TiO₂ before and under the steay light illumination.

- 1 The numbers of the stored electrons in an Ag nanoparticle under light illumination are
- estimated to be 46, 47, 47.4 and 47 at 20, 40, 60 and 80 °C, respectively; this shows that the
- 3 stored electrons are almost independent on temperatures, based on which the density of the
- 4 stored electrons in the TiO₂ and Ag nanoparticles can be evaluated.
- 5 The electrons in the TiO₂ CB can be directly calculated according to Eqn. (2). In addition to
- 6 the CB states, the electrons can also occupy the band tailed states. Here, the exponentially-
- 7 distributed gap states distributing below the CB edge ^{53,54}

$$g(E) = \frac{N_T}{k_B T_0} \exp{-\frac{E}{k_B T_0}}$$
 (8)

- 9 where N_T is the total trap density, k_BT_0 is the parameter determines the exponential trap depth.
- 10 The trapped electrons can be calculated according to

$$n_t(E_F) = N_T \int_{-\infty}^{E_{CB}} g(E) f(E, E_F) dE \tag{9}$$

- where $f(E, E_F)$ is Fermi-Dirac function. The n_t can be expressed in terms of the
- 13 hypergeometric function and approximated as ⁵⁵

$$n_t = N_t \left[\frac{\pi \alpha}{\sin(\pi \alpha)} \right] \exp{-\frac{E_F}{k_B T_0}} \tag{10}$$

- where α is defined as T/T_0 . Supposed the T_0 is 800 K and N_t is 10^{19} cm⁻³, the density of the
- stored electrons in the TiO₂ phase were estimated before and after the Ag nanoparticle
- decoration. The electron storage in the TiO₂ was also estimated when the traps were not
- included. The number of the Ag nanoparticles loaded over TiO_2 surface are 7.0×10^{15} cm⁻³.
- 19 The density (cm⁻³) of the electrons stored in Ag nanoparticles was also estimated. The result is
- shown in Table 1. Therefore, it can be seen whether more electrons can be stored in Ag/TiO₂
- are related with the electron traps. If the electron traps are not considered, it can be seen that
- 22 more than 90% of the stored electrons locate at the Ag nanoparticles, independent on the

temperatures. When the electron traps are considered, as the electrons can also occupy the

2 traps, so the percentages of the stored electrons in the Ag nanoparticles decreases, and more

3 than 60% electrons are stored in the Ag electrons. Therefore, the electron distribution between

4 the TiO_2 and the Ag nanoparticles is related with the electron traps.

6

8

9

10

11

12

13

14

15

16

17

5 Hirakawa et al. used thionine to titrate the electrons stored in Ag/TiO₂ and TiO₂ in methanol-

toluene solution, and their result also showed that more electrons were stored in Ag-TiO₂ as

7 compared with the pure TiO_2 .³⁰ Under their experimental condition, ~ 40 electrons can be

stored in a 3.7 nm Ag nanoparticle; this is also in good agreement with our result. The result

thus shows that the Ag nanoparticles can indeed act as the electron sink, the electrons and

holes can be separated at TiO2 and Ag nanoparticles. In the case of low trap density, the

electrons dominantly reside in the Ag nanoparticles, so the Ag nanoparticles can play the role

of the reduction sites for photocatalytic reactions. Obviously, the electron storage and

distribution in Ag nanoparticles can relates with the Ag nanoparticle size and loaded amount.

Therefore, the Ag nanoparticle can effectively separate the charge carriers; this agrees well

with our general recognition. We quantitively evaluate the separation in the current research.

Table 1. Density of the electrons residing in Ag nanoparticles and TiO₂ under light

illumination at different temperatures (unit: 10^{17} cm⁻³).

T (°C)	20		40		60		80	
	TiO ₂	Ag	TiO ₂	Ag	TiO_2	Ag	TiO ₂	Ag
Pure TiO ₂	7.4 (2.5) ^a		6.3(2.3)		4.4(1.3)		3.7(1.2)	
Ag/TiO ₂	2.1 (0.23)	3.2	2.5(0.48)	3.3	2.4 (0.44)	3.3	2.2(0.47)	3.3

- ^{a:} The data in parentheses is the density of the electrons in TiO₂ without considering the
- 2 electrons traps
- 3 3.4. Ag LSPR analysis
- In the methanol contained N₂, the TiO₂ and Ag/TiO₂ were selectively excited with a 375 nm
- 5 laser. The photoinduced holes were quickly captured by the methanol, and the electrons were
- 6 accumulated in the TiO₂. The resultant Ti³⁺ states and free CB electrons cause a wide
- 7 absorption from visible to the NIR region.⁵⁶ The electron transfer to Ag will affect the
- 8 electron storage in TiO₂, which might also affect the Ag LSPR in solutions. It is seen that the
- 9 electron accumulation in TiO₂ leads to a featureless absorption for the TiO₂ under the laser
- illumination (Fig. S8). The decrease of the absorption after light illumination is ascribed to the
- electron transfer to the residual O_2 ; the further exposure to O_2 accelerates the absorption
- 12 decrease.⁵⁷

14

15

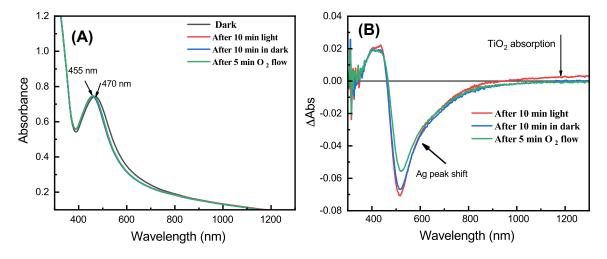


Fig. 7. (A) Absorption spectra of the Ag/TiO_2 before and after 375 nm laser irradiation in methanol contained N_2 under different conditions; (B) Differences of the absorption spectra of the Ag/TiO_2 after light illumination with the dark diffusion spectra before light illumination.

Fig. 7A shows the change of the UV-vis-NIR absorption spectra for the Ag/TiO₂ under

different conditions. It can be seen that the laser illumination shifts the Ag LSPR from 470

3 nm to 455 nm. Subsequent storage of the sample in the dark had almost no effect on the

4 LSPR, the further exposure to O₂ just leads to a very slow LSPR restoration to the initial dark

position. The differences of the absorption spectra (Fig. 7B) show that much weaker near-IR

absorption (labeled with arrows) was caused by the laser illumination as compared to the

TiO₂; this means that less electrons are stored in the TiO₂ phase after the Ag decoration; this

is in good accordance with the above conductance analysis. The absorption differences

become negative from 450 nm to 880 nm because of the Ag LSPR blue-shift; this also shows

that the LSPR almost does not change with time after the end of the laser illumination and the

exposure to O₂ has less effect. Therefore, it can be known that the LSPR blue-shift might not

arise from the electron storage in the Ag nanoparticles, because it also relates with a change in

dielectric environment that might be caused by light illumination. In methanol-toluene

solution, the 30 nm blue-shift of the Ag LSPR was observed under UV light illumination, and

was attributed to the electron storage in the Ag nanoparticles.²⁹ As the LSPR restores very

slowly after the exposure to O₂, our result cannot support that the UV-light induced LSPR

blue-shift is caused by the electron storage.

5

6

7

8

9

10

11

12

13

14

15

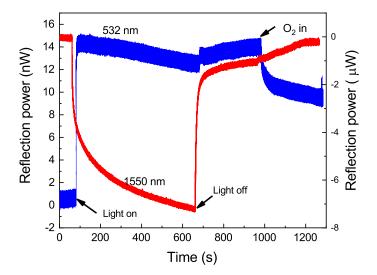
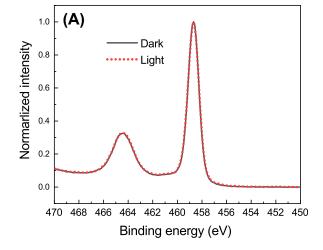


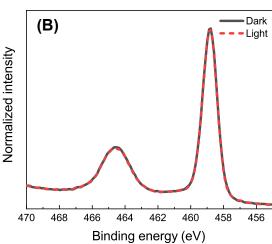
Fig. 8. Evolutions of the diffusion reflectance power at 532 nm and 1550 nm for the Ag/TiO_2 under and after the 375 nm laser illumination in methanol-contained N_2

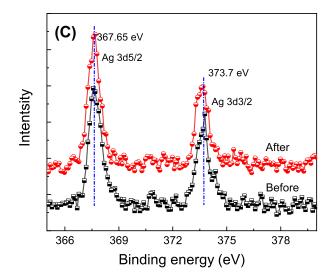
The E_F equilibrium means there is no electron flux between the Ag nanoparticles and TiO₂ under the steady state, and the E_F of them changes synchronously. As shown in Fig. 7, the change of the diffusion reflectance at 532 nm mainly arises from the LSPR shift, and that at 1550 nm is mainly caused by the electron accumulation in TiO₂. If the electron storage contributes to the LSPR blue-shift, the dynamics change of the photoinduced reflection powers at 532 nm and 1550 nm must be synchronous. Under the 375 nm laser excitation, the time dependences of the *in-situ* diffusion reflectance powers of the Ag/TiO₂ were obtained at 532 nm and 1550 nm in methanol-contained N₂, as shown in Fig. 8. It can be clearly seen that the change of the reflectance power at 532 nm cannot accord with that of 1550 nm. After the end of laser illumination, the fast increase of the reflectance power at 1550 nm means that the stored electrons in the TiO₂ can be quickly consumed and the E_F of the TiO₂ thus experiences a fast decrease, while the unchanged reflectance power at 532 nm indicates that the E_F of the Ag nanoparticles should remain unchanged if the LSPR blue-shift is caused by the electron

- storage. Obviously, the observation contradicts with the E_F thermal equilibrium. The above
- 2 asynchronous dynamics provide the evidences that the physical reason of the LSPR blue-shift
- 3 is not the electron storage in the Ag nanoparticles.
- The LSPR wavelength (λ_i) before the light illumination relates with that (λ_f) after the light
- 5 illumination through their respective electron number (n_i and n_f) by ⁵⁸

$$\frac{\lambda_f}{\lambda_i} = \sqrt{\frac{n_i}{n_f}} \tag{11}$$


- According to Fig. 7A, λ_f and λ_i are 455 nm and 470 nm. The electron number is roughly
- 8 estimated by the following equation in the case of a spherical nanoparticle.


$$n_i = \frac{4}{3}\pi R^3 \times N_b \tag{12}$$


where N_b is the bulk electron density of metallic silver, which is taken as 8.0×10^{22} cm⁻³, R is 10 the nanoparticle radius. Thus, the n_i in a 10 nm Ag nanoparticle before light illumination is 11 estimated to be ~ 4.2×10^4 , and thus the n_f is ~ 4.48×10^4 ; this means that ~ 2.8×10^3 electrons 12 are stored in an Ag nanoparticle, much higher than the above estimation. Based on Eqn. (6), 13 the ΔE_F of the Ag nanoparticle is 61. 2 eV. It was also reported that one electron charging of a 14 15 3 nm Au nanoparticle in solution will lead to a ~ 0.1 eV of ΔE_F ; this can accord with our estimation.⁵⁹ Parente et al. combined Mie scattering and Drude theory to simulate the LSPR 16 blue-shift of the Ag nanoparticles; they found that $\sim 3.5 \times 10^4$ electrons are needed to be stored 17 in an Ag@TiO₂ core-shell particle to form 5 nm LSPR blue-shift, 32 and ~ 110 eV of ΔE_F can 18 be resulted. So large E_F shift is unphysical and meaningless for the Ag nanoparticles. The 19 above conductance analysis shows that ~ 46 electrons are stored in one Ag nanoparticle, so 20 the LSPR blue shift caused by the electron storage should be too smaller to be seen according 21 to eqn. (11). Therefore, the LSPR blue shift cannot be an indicator of the electron storage in 22

- the Ag nanoparticles. Our result agrees with the conclusion obtained in the study,³² and is
- 2 different from that obtained in literatures. ^{27,29,31}
- 3 3.4. The XPS analysis under the in-situ light illumination
- 4 The study ³² showed that the reduction of 0.2 nm Ag₂O layer could lead to 5 nm blue-shift of
- 5 the Ag LSPR, which corresponds to a single-molecular chemical absorption of O₂ over the Ag
- 6 surfaces, and the reduction of TiO₂ might also have a contribution. However, the above
- 7 spectroscopic (Fig. 7) results shows that the LSPR blue-shift almost remains invariant when
- 8 the absorption corresponding the electron accumulation in the TiO₂ phase restored. Therefore,
- 9 the light induced reduction of TiO₂ should not be the reason causing the LSPR blue-shift. In
- addition, the slow blue-shift restoration after the exposure to O_2 also does not support that the
- 11 LSPR blue-shift is caused by the reduction of a thin Ag₂O layer.

13

17

2 Fig. 9. (A) Ti2p core-level high-resolution XPS spectra of the undecorated TiO2 in the dark and under 375 nm laser illumination; (B) Ti2p core-level high-resolution XPS spectra of the 3 L-Ag/TiO₂ in the dark and under 375 nm laser illumination; (C) Ag3d core-level high-4 resolution XPS spectra of the L-Ag/TiO2 in the dark and under 375 nm laser illumination 5 6 7 UV light illumination can cause electron accumulation in the Ag/TiO₂ under vacuum. They can transfer to the Ag nanoparticles and reduce the Ag₂O layer. The Ag₃d and Ti₂p XPS 8 analysis shows that the Ag and Ti surface state are Ag⁺ and Ti⁴⁺ before light illumination, 9 10 respectively. To check whether the *in-situ* UV light illumination can reduce surface Ti and Ag states, the Ti2p and Ag3d XPS spectra of the methanol pre-adsorbed TiO2 and Ag/TiO2 were 11 measured under the *in-situ* 375 nm laser illumination. Fig. 9A shows the Ti2p core-level XPS 12 spectra of the undecorated TiO₂ in the dark and under the 375 nm laser illumination, it can be 13 seen that the electron accumulation does not lead to any observable change in the Ti states. 14 Fig. 9B shows the Ti2p core-level spectra of the Ag/TiO₂ in the dark and under the laser light 15 16 illumination; this also shows that the Ti states are unaffected by the electron accumulation.

The results indicate that the Ti³⁺ state amount is much lower than the intrinsic Ti⁴⁺ state,

- which might not cause an effective change in the dielectric properties of the TiO₂ that can
- 2 affect the Ag LSPR. It is also seen from Fig. 9C that the laser illumination does not affect the
- 3 binding energy position of the Ag 3d XPS peaks. It can be also known that the long time UV
- 4 laser illumination cannot result in a surface reduction of the Ag nanoparticles in the present
- 5 research. Under the ultra-high vacuum condition during the XPS measurements, although
- 6 more electrons can be accumulated in the Ag/TiO₂, the chemical states of the Ag and TiO₂
- 7 still remain unaffected. Thus, the Ag LSPR blue-shift might not arise from the Ag and TiO₂
- 8 reduction; this is different from the conclusion obtained in literatures.³² Other effect that
- 9 remains to be discovered may have a contribution.

4. Conclusion

- 11 in-situ photoconductances and theoretical analysis were combined to study the E_F and
- electron separation in the Ag/TiO₂ under gaseous conditions. The results showed that the E_F
- of the Ag/TiO₂ locates deeper in the gap as compared to that of the TiO₂ under the UV light
- illumination. It was seen that increasing temperatures had less effect on the E_F of the
- Ag/TiO₂, while could decrease the E_F of the undecorated TiO₂. It was estimated that ~ 46
- electrons can be stored in an Ag nanoparticle under the present experimental condition, which
- was almost independent on the temperature variation. The role of the Ag nanoparticles in
- storing and separating electrons should be related to the electron traps in the TiO₂. More than
- 19 90% electrons can be stored in the Ag nanoparticles if the electron traps were not considered.
- 20 It was also revealed that the Ag LSPR blue-shift cannot be ascribed to the electron storage
- 21 and might also not related with the reduction of Ag nanoparticles and TiO₂. In principle, the
- 22 method developed in the current research can be also used to study the electron storage and

- separation for other metallic nanoparticle decoration, such as Pt, Au, Cu, and Pd. Besides
- 2 TiO₂, it is also believed that the method is also suitable for other semiconductors such as ZnO,
- 3 WO₃, and CdS. Therefore, it can be general method that can be used to analyze various
- 4 nanostructrual systems under in-situ gaseous conditions.
- 5 ASSOCIATED CONTENT
- 6 Supporting Information: Figures of diffusion spectroscopic cell, EDS of Ag/TiO₂, XRD
- 7 patterns, XPS spectrum, UV-Vis-NIR diffusion spectra, and the dark V-I curves of the TiO₂
- 8 and Ag/TiO₂
- 9 AUTHOR INFORMATION
- 10 Corresponding author: B. Liu, bshliu@whut.edu.cn
- 11 ACKNOWLEDGMENT
- B. Liu thanks the National Key research and development of China (No. 2017YFE0192600)
- and National Natural Science Foundation of China (No. 51772230). L. Wen thanks the
- Guidance Project of Hubei Provincial Department of Education for Scientific Research
- 15 (B2020246), Research Fund for the Doctoral Program of Wuhan Technology and Business
- University (D2019008) and the Special Fund of Advantageous and Characteristic Disciplines
- 17 (Group) of Hubei Province.
- 18 REFERENCES
- 19 [1] A. Naldoni, M. Altomare, G. Zoppellaro, N. Liu, Š. Kment, R. Zbořil and P. Schmuki,
- 20 Photocatalysis with Reduced TiO₂: From Black TiO₂ to Cocatalyst-Free Hydrogen Production,
- 21 *ACS Catal.*, 2019, **9**, 345–364.

- 1 [2] W. Chen, Y. Wang, S. Liu, L. Gao, L. Mao, Z. Fan, W. Shangguan and Z. Jiang, Non-noble
- 2 Metal Cu as a Cocatalyst on TiO₂ Nanorod for Highly Efficient Photocatalytic Hydrogen
- 3 Production, Appl. Surf. Sci., 2018, **445**, 527-534.
- 4 [3] S. Kreft, W. Duo, H. Jung and M. Beller, Recent Advances on TiO₂-based Photocatalytic
- 5 CO₂ Reduction, *Energy Chem*, 2020, **2**, 100044.
- 6 [4] N. G. Moustakas and J. Strunk, Photocatalytic CO₂ Reduction on TiO₂-Based Materials
- 7 under Controlled Reaction Conditions: Systematic Insights from a Literature Study, Chem.-
- 8 Euro. J., 2018, **24**, 12739-12746.
- 9 [5] L. Chen, K. Huang, Q. Xie, S. M. Lam, J. Chung Sin, T. Su, H. Ji and Z. Qin, The
- Enhancement of Photocatalytic CO₂ Reduction by the in-situ Growth of TiO₂ on Ti₃C₂ MXene,
- 11 Catal. Sci. Technol., 2021, 11, 1602-1614.
- 12 [6] X. Yang, H. Sun, G. Li, T. An and W. Choi, Fouling of TiO₂ Induced by Natural Organic
- 13 Matters During Photocatalytic Water Treatment: Mechanisms and Regeneration Strategy, *Appl.*
- 14 Catal. B: Environ., 2021, **294**, 120252.
- 15 [7] T. Xu, H. Zhao, H. Zheng and P. Zhang, Atomically Pt Implanted Nanoporous TiO₂ Film
- for Photocatalytic Degradation of Trace Organic Pollutants in Water, *Chem. Eng. J.*, 2020, **385**,
- 17 123832.
- 18 [8] D. A.Panayotov and J. R. Morris, Surface Chemistry of Au/TiO₂: Thermally and
- 19 Photolytically Activated Reactions, Surf. Sci. Rep., 2016, **71**, 77-271.
- 20 [9] S. Linic, P. Christopher, H. Xin and A. Marimuthu, Catalytic and Photocatalytic
- 21 Transformations on Metal Nanoparticles with Targeted Geometric and Plasmonic Properties,
- 22 Acc. Chem. Res., 2013, 46, 1890–1899.

- 1 [10] R. Wang, G. Che, C. Wang, C. Liu, B. Liu, B. Ohtani, Y. Liu and X. Zhang, Alcohol
- 2 Plasma Processed Surface Amorphization for Photocatalysis, ACS Catal., 2022, 12, 12206–
- 3 12216.
- 4 [11] T. L. Thompson and J. T. Yates Jr. TiO₂-based Photocatalysis: Surface Defects, Oxygen
- 5 and Charge Transfer, *Topics in Catalysis*, 2005, **35**, 197–210.
- 6 [12] K. Nakata and A. Fujishima, TiO₂ photocatalysis: Design and Applications, *J. Photochem*.
- 7 *Photobio. C: Photochem. Rev.*, 2012, **13**, 169-189.
- 8 [13] Q. Guo, C. Zhou, Z. Ma and X. Yang, Fundamentals of TiO₂ Photocatalysis: Concepts,
- 9 Mechanisms, and Challenges, *Adv. Mater.*, 2019, **31**, 1901997.
- 10 [14] S. Akel, R. Dillert, N. O. Balayeva, R. Boughaled, J. Koch, M. El Azzouzi and D. W.
- 11 Bahnemann, Ag/Ag₂O as a Co-Catalyst in TiO₂ Photocatalysis: Effect of the Co-
- 12 Catalyst/Photocatalyst Mass Ratio, *Catalysts*, 2018, **8**, 647.
- 13 [15] C. Wang, H. Fan, X. Ren, Y. Wen and W. Wang, Highly Dispersed PtO Nanodots as
- Efficient Co-catalyst for Photocatalytic Hydrogen Evolution, Appl. Surf. Sci., 2018, **462**, 423–
- 15 431.
- 16 [16] J. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du and S. Z. Qiao, Ti₃C₂ MXene Co-catalyst on
- 17 Metal Sulfide Photo-absorbers for Enhanced Visible-light Photocatalytic Hydrogen Production,
- 18 *Nat. Comm.*, 2017, **8**, 13907.
- 19 [17] S. J. P. Varapragasam, S. Mia, C. Wieting, C. Balasanthiran, M. Y. Hossan, A. Baride, R.
- 20 M. Rioux and J. D. Hoefelmeyer, Ag-TiO₂ Hybrid Nanocrystal Photocatalyst: Hydrogen
- 21 Evolution under UV Irradiation but Not under Visible-Light Irradiation, ACS Appl. Energy
- 22 *Mater.*, 2019, **2**, 8274–8282.

- 1 [18] B. Liu, H. Wu, X. Zhang, I. P. Parkin and X. Zhao, New Insight into the Role of Electron
- 2 Transfer to O₂ in Photocatalytic Oxidations of Acetone over TiO₂ and the Effect of Au
- 3 Cocatalyst, J. Phys. Chem. C, 2019, **123**, 30958–30971.
- 4 [19] C. Dessala, L. Martínez, C. Maheua, T. Len, F. Morfin, J. L. Rousset, E. Puzenat, P.
- 5 Afanasiev, M. Aouine, L. Soler, J. Llorca and L. Piccolo, Influence of Pt Particle Size and
- 6 Reaction Phase on the Photocatalytic Performances of Ultradispersed Pt/TiO₂ Catalysts for
- 7 Hydrogen Evolution, *J. Catal.*, 2019, **375**, 155-163.
- 8 [20] R. Zhang, H. Wang, S. Tang, C. Liu, F. Dong, H. Yue and B. Liang, Photocatalytic
- 9 Oxidative Dehydrogenation of Ethane Using CO₂ as a Soft Oxidant over Pd/TiO₂ Catalysts to
- 10 C₂H₄ and Syngas, ACS Catal., 2018, **8**, 10, 9280–9286
- 11 [21] J. Ivanez, P. Garcia-Munoz, A. M. Ruppert and N. Keller, UV-A Light-assisted Gas-phase
- Formic Acid Decomposition on Photo-thermo Ru/TiO₂ Catalyst, Catal. Today, 2021, **380**, 138-
- 13 146.
- 14 [22] K. Yamanaka, T. Ohwaki and T. Morikawa, Charge-Carrier Dynamics in Cu- or Fe-
- 15 Loaded Nitrogen-Doped TiO₂ Powder Studied by Femtosecond Diffuse Reflectance
- 16 Spectroscopy, J. Phys. Chem. C, 2013, **117**, 16448–16456.
- 17 [23] J. Tang, A. J. Cowan, J. R. Durrant and D. R. Klu, Mechanism of O₂ Production from
- 18 Water Splitting: Nature of Charge Carriers in Nitrogen Doped Nanocrystalline TiO₂ Films and
- 19 Factors Limiting O₂ Production, *J. Phys. Chem. C*, 2011, **115**, 3143–3150.
- 20 [274] V. Subramanian, E. E. Wolf and P. V. Kamat, Catalysis with TiO₂/Gold Nanocomposites.
- 21 Effect of Metal Particle Size on the Fermi Level Equilibration, J. Am. Chem. Soc., 2004, 126,
- 22 4943-4950.

- 1 [25] M. Jakob and H. Levanon, Charge Distribution between UV-Irradiated TiO₂ and Gold
- 2 Nanoparticles: Determination of Shift in the Fermi Level, *Nano Lett.*, 2003, **3**, 353-358.
- 3 [26] T. Hirakawa and P. V. Kamat, Charge Separation and Catalytic Activity of Ag@TiO₂
- 4 Core-Shell Composite Clusters under UV-Irradiation, J. Am. Chem. Soc., 2005, 127, 3928-3934.
- 5 [27] T. Hirakawa and P. V. Kamat, Photoinduced Electron Storage and Surface Plasmon
- 6 Modulation in Ag@TiO₂ Clusters, *Langmuir*, 2014, **20**, 5645-5647.
- 7 [28] V. Subramanian, E. E. Wolf and P. V. Kamat, Green Emission to Probe Photoinduced
- 8 Charging Events in ZnO-Au Nanoparticles. Charge Distribution and Fermi-Level Equilibration,
- 9 *J. Phys. Chem. B*, 2003, **107**, 7479-7485.
- 10 [29] M. Parente, S. Sheikholeslami, G. V. Naik, J. A. Dionne and A. Baldi, Equilibration of
- 11 Photogenerated Charge Carriers in PlasmonicCore@Shell Nanoparticles, J. Phys. Chem. C,
- 2018, **122**, 23631–23638.
- 13 [30] F. Xiao, W. Zhou, B. Sun, H. Li, P. Qiao, L. Ren, X. Zhao, and H. Fu, Engineering Oxygen
- 14 Vacancy on Rutile TiO₂ for Efficient Electron-hole Separation and High Solar-driven
- 15 Photocatalytic Hydrogen Evolution, *Sci. China Mater.*, 2018, **61**,822–830.
- 16 [31] A. Kumar, A. S. Patel, and T. Mohanty, Correlation of Photodegradation Efficiency with
- Surface Potential of Silver-TiO₂ Nanocomposite Thin Films, J. Phys. Chem. C, 2012, 116,
- 18 20404-20408.
- 19 [32] Q. Qiao, X. Zhang, Z. Lu, L. Wang, Y. Liu, X. Zhu, and J. Li, Formation of Holographic
- 20 Fringes on Photochromic Ag/TiO₂ Nanocomposite Films, Appl. Phys. Lett., 2009, **94**, 074104.
- 21 [33] R. Han, X. Zhang, L. Wang, R. Dai, and Y. Liu, Size-dependent Photochromism-based
- Holographic Storage of Ag/TiO₂ Nanocomposite Film, Appl. Phys. Lett., 2011, **98**, 221905.

- 1 [34] Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishima, Multicolour
- 2 Photochromism of TiO₂ Films Loaded with Silver Nanoparticles, *Nat. Mater.*, 2003, **2**, 29–31.
- 3 [35] K. Naoi, Y. Ohko, and T.Tatsuma, TiO₂ Films Loaded with Silver Nanoparticles: Control
- of Multicolor Photochromic Behavior, J. Am. Chem. Soc., 2004, 126, 3664–3668.
- 5 [36] Y. Zhu, Y. Liu, Q. Ai, G. Gao, L. Yuan, Q. Fang, X. Tian, X. Zhang, E. Egap, P. M. Ajayan
- and J. Lou, In Situ Synthesis of Lead-Free Halide Perovskite-COF Nanocomposites as
- 7 Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases, ACS
- 8 *Materials Lett.*, 2022, **3**, 464–471.
- 9 [37] J. Xue, S. Jiang, Z. Wang, Z. Jiang, H. Cao, X. Zhu, Q. Zhang, Y. Luo, and J. Bao,
- 10 Efficient Exciton Dissociation through the Edge Interfacial State in Metal Halide Perovskite-
- 11 Based Photocatalysts, *J. Phys. Chem. Lett.*, 2023, **6**, 1504–1511.
- 12 [38] Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, G. Xiao, BiVO4/TiO2
- 13 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly
- efficient decomposition of gaseous benzene, Appl. Catal. B: Environ. 2011,104, 30-26.
- 15 [39] Z. Hao, G. Wang, C. Da, X. Lv and J. Li, Tuning Photoelectrochemical Performances of
- Ag-TiO₂ Nanocomposites via Reduction/Oxidation of Ag. Chem. Mater., 2008, 77, 87-95.
- 17 [40] F. Zhang, N. Guan, Y. Li, J. Chen and H. Zhang, Control of Morphology of Silver Clusters
- Coated on Titanium Dioxide during Photocatalysis. *Langmuir*, 2003, **19**, 8230-8234.
- 19 [41] Z. Wu, L. Li, X. Zhou, I. P. Parkin, X. Zhao and B. Liu, A Light-heat Synergism in the
- 20 Sub-bandgap Photocatalytic Response of Pristine TiO2: A Study of In Situ Diffusion
- 21 Reflectance and Conductance, Phys. Chem. Chem. Phys., 2022, 24, 5618-5626
- 22 [42] B. Liu, J. Wang, I. P. Parkin and X. Zhao, The Effect of Cu Dopants on Electron Transfer

- to O₂ and the Connection with Acetone Photocatalytic Oxidations over Nano-TiO₂, *Phys.*
- 2 Chem. Chem. Phys., 2021, 23, 8300-8308
- 3 [43] Z. Wu, L. Li, X. Zhou, X. Zhao and B. Liu, Kinetics and Energetic Analysis of the Slow
- 4 Dispersive Electron Transfer from Nano-TiO₂ to O₂ by In Situ Diffusion Reflectance and
- 5 Laplace Transform, Phys. Chem. Chem. Phys., 2021, 23, 19901-19910
- 6 [44] L. Li, L. Yan, Z. Wu, X. Zhou, X. Zhao and B. Liu, Plasmon-assisted Facile Selective
- 7 Gaseous Isopropanol Dehydrogenation over Ag Nanocubes, Catal. Sci. Technol., 2022, 12, 94-
- 8 104.
- 9 [45] G. W. Taylor and J. G. Simmons, Basic Equations for Statitistics, Recombination,
- 10 Processes, and Photoconductivity in Amorphous Insulaotors and Semiconductors, J. Non-
- 11 *Cryst. Solids*, 192, **8-10**, 940-946.
- 12 [46] J. A. Freire and G. A. Emidio, What can Transient Absorption Spectroscopy Reveal about
- the Trap Distribution in a Semiconductor? J. Photochem. Photobio. A: Chem., 2020, 393,
- 14 112439.
- 15 [47] H. Tang, K. Prasad, R. Sanjinbs, P. E. Schmid and F. Levy, Electrical and Optical
- Properties of TiO₂ Anatase Thin Films, J. Appl. Phys., 1994, **75**, 2042
- 17 [48] B. Liu, X. Zhao, J. Yu, I. P. Parkin, A. Fujishima and K. Nakata, Intrinsic Intermediate
- 18 Gap States of TiO₂ Materials and Their Roles in Charge Carrier Kinetics, J. Photochem.
- 19 *Photobio. C: Photochem. Rev.*, 2019, **39**, 1-57.
- 20 [49] K. Sakaguchi, K. Shimakawa and Y. Hatanaka, Dynamic Responses of Photoconduction
- 21 in TiO_x Films Prepared by Radio Frequency Magnetron Sputtering, Jpn. J. Appl. Phys., 2010,
- 22 **49**, 091103.

- 1 [50] K. Sakaguchi, K. Shimakawa and Y. Hatanaka, Photoconductive Characteristics of Hydro-
- 2 Oxygenated Amorphous Titanium Oxide Films Prepared by Remote Plasma-Enhanced
- 3 Chemical Vapor Deposition, *Jpn. J. Appl. Phys.*, 2006, **45**, 4183–4186.
- 4 [51] M. D. Scanlon, P. Peljo, M. A. Mrndez, E. Smirnova and H. H. Girault, Charging and
- 5 Discharging at the Nanoscale: Fermi Level Equilibration of Metallic Nanoparticles, *Chem. Sci.*,
- 6 2015, **6**, 2705.
- 7 [52] H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh and D. H. Kim, Mid-infrared Properties of a
- 8 VO₂ Film near the Metal-insulator Transition, *Phys. Rev. B*, 1996, **54**, 4621-4628.
- 9 [53] B. Liu, Monte-Carlo Modelling of Nano-material Photocatalysis: Bridging Photocatalytic
- 10 Activity and Microscopic Charge Kinetics, Phys. Chem. Chem. Phys., 2016, 18, 11520-11527
- 11 [54] B. Liu, X. Zhao, J. Yu, A. Fujishima and K. Nakata, A Stochastic Study of Electron
- 12 Transfer Kinetics in Nano-particulate Photocatalysis: A Comparison of the Quasi-equilibrium
- 13 Approximation with a Random Walking Model, Phys. Chem. Chem. Phys., 2016, 18, 31914-
- 14 31923.
- 15 [55] M. Tachiya and K. Seki, Theory of Bulk Electron-hole Recombination in a Medium with
- 16 Energetic Disorder, *Phys. Rev. B*, 2010, **82**, 085201.
- 17 [56] T. Yoshihara, R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murata, H. Arakawa
- and M. Tachiya, Identification of Reactive Species in Photoexcited Nanocrystalline TiO₂ Films
- by Wide-Wavelength-Range (400-2500 nm) Transient Absorption Spectroscopy, J. Phys.
- 20 *Chem. B*, 2004, **108**, 3817-3823.
- 21 [57] N. M. Beekma, Effect of Oxygen Chemisorption and Photodesorption on the Conductivity
- of ZnO Powder Layer, *J. Chem. Soc., Faraday Trans*, 1978, **74**, 31-45.

- 1 [58] A. C. Templeton, J. J Pietron, R. W. Murray and P. Mulvaney, Solvent Refractive Index
- 2 and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-
- 3 Protected Gold Clusters, J. Phys. Chem. B, 2000, 104, 564
- 4 [59] S. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T.
- 5 Khoury, M. M. Alvarez and R. L. Whetten, Gold Nanoelectrodes of Varied Size: Transition to
- 6 Molecule-like Charging, *Science*, 1998, **280**, 2098.