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Abstract

Neurodegenerative diseases (NDs) are progressive neurological conditions that af-
fect millions of people worldwide and yet there are few treatments that can prevent
or slow progression. Mitochondrial dysfunction is known to contribute to the patho-
genesis of an array of NDs, including Parkinson’s Disease (PD) and Alzheimer’s
disease (AD) for which the causal mechanisms, particularly in the sporadic forms,
remain elusive. Mitochondrial processes have been implicated in the pathogene-
sis of both of these diseases. For mitochondria to carry out their diverse cellular
roles, their interaction with the nucleus is essential, owing in part to the nuclear
genome encoding ~99% of the mitochondrial proteome. Although this bi-genomic
interaction is widely acknowledged, there is little understanding about how this co-

ordination may be important in NDs.

In the first instance, mitochondrial-nuclear coordination in the healthy human
brain was assayed by generating gene coexpression profiles across 12 regions, re-
vealing strong regional patterns modulated by cell type and reflecting functional
specialisation of the brain. Using an AD case-control paradigm, mitochondrial-
nuclear relationships were found to be highly perturbed in cases, particularly
through synaptic and lysosomal pathways, implicating energy balance regulation

and removal of dysfunction mitochondria in the aetiology or progression of AD.

Mitochondrial dysfunction is thought of as a core component of PD pathogen-
esis. In light of this, the subsequent aim was to characterise mitochondrial transcrip-
tional profiles in monogenic familial PD, which has known genetic causes and better
understood molecular mechanisms. Striking changes in oxidative phosphorylation

(OXPHOS) subunit gene expression were observed in PD patients compared to con-
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trols, regardless of the underlying genetic cause (monogenic or sporadic). This was
particularly marked in monogenic forms. Additionally, unsymptomatic monogenic
PD profiles were more similar to those of symptomatic PD cases than to controls.
As such, expression of OXPHOS pathway genes was found to be altered in PD,
regardless of genetic cause or clinical status. This supports the idea that changes in
mitochondrial processes may contribute to disease pathogenesis and points to these
changes arising early in the progression trajectory.

Building on these results, the final aim was to study mitochondrial transcrip-
tional control in sporadic PD. Sporadic PD is characterised by its complex ge-
netic origin and cryptic molecular mechanisms. To understand whether nuclear
genetic variation modulated mitochondrial transcriptional phenotypes in sporadic
PD, mitochondrial-nuclear expression QTLs and post-transcriptional (PT) modifi-
cation QTLs were generated. This work leveraged the case-control, multi-omic
AMP-PD consortium dataset (blood-derived RNA-Seq data from 1483 cases and
965 controls). Nuclear genetic regulation of mtDNA-encoded genes was found to
be perturbed in PD, implicating MAP3K11 and CD9 in disease pathways that also
operate through modulation of mitochondrial processes and pointing to a role for

mitochondrial-nuclear co-ordination in the pathogenesis of sporadic PD.
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Chapter 1

Introduction

Neurodegenerative diseases (NDs) are devastating progressive neurological disor-
ders that are associated with debilitating physical and mental symptoms. Collec-
tively, they affect millions of people worldwide and yet we lack treatments that
would prevent or slow their progression. To do this, we will need to first understand
the genetic and molecular drivers of disease risk, onset and progression. Mitochon-
drial dysfunction has been implicated in the aetiology of diseases across the ND
spectrum, and while efforts have been made to understand the precise mechanisms
involved, a great deal remain unclear. Core to the the varied and essential roles
carried out by mitochondria is a dependence on the nuclear genome which provides
~99% of the mitochondrial proteome. This points to an essential functional role
for the integrity of mitochondrial-nuclear coordination. As such, this thesis aims to
further understand the role of mitochondria in ND through the lens of this coordi-
nation and to explore whether pathological consequences result from the alteration

of this relationship.

1.1 Mitochondrial biology and the mitochondrial-
nuclear relationship

1.1.1 A brief history and description of the mitochondrion

The mitochondrion was at one time a free-living organism until it encountered

and was engulfed by an obligate aerobic or perhaps prokaryotic host, such are the
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two main theories, in a primordial endosymbiosis event that took place approxi-
mately ~1.5-2 billion years ago!!!l. The eukaryotic cell of the present day is the
chimeric outcome, comprising numerous mitochondria, each of which contain mul-
tiple copies of their own genome. Over evolutionary time, mitochondrial DNA
(mtDNA) encoded genes have been transferred to the nuclear genome, resulting
in a much diminished and nuclear-dependent mitochondrial genome!?!. Owing to
this, the double-stranded circular human mitochondrial genome of the present is
comprised of just 16,569 DNA base pairs, containing 37 genes, 13 of which en-
code proteins, 2 encode ribosomal RNAs (rRNAs) and 22 encode transfer RNAs
(tRNAs). The 13 protein products are components of the electron transport chain
(ETC) which are embedded in the inner mitochondrial membrane (IMM) and to-
gether with nuclear DNA (nDNA) encoded proteins, carry out oxidative phospho-
rylation (OXPHOS). In this process, adenosine triphosphate (ATP), the energy stor-
age molecule of the cell, is generated from glucose. As such, within the eukaryotic

cell reside two separate but intrinsically linked genomes.

1.1.2 The human mitochondrial transcriptome and epitran-

scriptome

Reflective of its prokaryotic origins, the human mitochondrial genome is transcribed
in a strand-specific, polycistronic manner from both the heavy and light strands >4
12 protein coding genes, 14 tRNAs, both rRNAs and a variety of non-coding RNA
species are encoded on and transcribed from the heavy strand, whereas just one
protein coding gene (M7-ND6) and one ncRNA (non-coding RNA) are transcribed
from the light strand. Although recent evidence challenges this canonical model,
highlighting the presence of small open reading frames in the mtDNA coding for
microproteins®!. Furthermore, the variety of mtDNA-encoded non-coding RNA
species is an evolving area of study and to date long non-coding, circular, double
stranded and small RNAs have been identified!®!. The displacement loop (D-loop)
in the so-called control region of the mtDNA and is a ~1100 nucleotide non-coding

span, containing regulatory elements responsible for replication and transcription,

including the light strand promoter (LSP) and heavy strand promoter (HSP). In
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humans, three main nuclear DNA (nDNA) -encoded proteins are essential for mi-
tochondrial transcription: (i) mitochondrial transcription factor A, TFAM, binds
upstream of the transcription start site (TSS), (i) TFAM recruits the mitochon-
drial RNA polymerase, POLRMT, which binds to the promoters and finally, (iii)
the mitochondrial transcription elongation factor, TEFM, increases transcriptional

processivity [7-8],

The mitochondrial ’epitranscriptome’ describes the array of mitochondrial
post-transcriptional (PT) RNA modifications which act as chemical and topolog-
ical augmentations of nucleotide bases (A, C, G and U). They are known to be
highly conserved across species, prevalent and varied!'%11.12.13] " These modifica-
tions enable dynamic fine-tuning of RNA function and as such have a central role in

transcription!'?], However, the exact function of many of these remains elusive!!!l.

In mitochondria, a large proportion of PT RNA modifications occur on mito-
chondrial tRNAs (mt-tRNAs) for which 18 types at 137 positions have been cata-
logued to date!"*. During mitochondrial translation, 22 mtDNA-encoded tRNAs
are responsible for decoding 60 codons!!#. This is in stark contrast to the >500 tR-
NAs encoded by the nuclear genome used to decode 61 codons. 22 is the biological
minimal set required and is permitted by the existence of tRNAs hosting differential
modification at the so-called *wobble position’ of the anticodon!!#]. At this position,
a lack of modification confers promiscuity of recognition to the tRNA, permitting
it to read any base at codon position three, conversely, presence of a modification
at the wobble position prevents this!'#. As such, specific PT modifications confer

expansion of the decoding capacity of the minimal tRNA set.

The downstream impact of each modification is dependent on its type and lo-
cation and as such, modifications at other positions are known to impact other as-
pects of tRNA function. The product of mitochondrial transcription, the polycistron,
is punctuated by tRNAs which are folded into secondary cloverleaf-shaped struc-
tures'!1>], Methylation (m1A/G) at the 9" position of the punctuating tRNAs —
termed 'p9’ sites — is known to be critical to the stability of the tRNA secondary

structure. This is important for PT processing functionality, such as excision of
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transcripts from the polycistron!'®!7]. In this way, PT modifications are instrumen-
tal in the observed deviation of mitochondrial actual transcript levels from the 1:1

ratio expected to arise from polycistronic transcription!,

Given the importance of PT RNA modifications to mitochondrial functional-
ity, it is unsurprising that their dysfunction has been implicated in a number of
diseases. For example, in MERRF (myoclonic epilepsy with ragged red fibres)
patients, it was found that in individuals carrying the mtDNA m.8344A>G point
mutation concurrently lacked methylation at position 58 in MT-TK ['3]. The authors
were able to recover the damaged translational phenotype through overexpression
of the methyltransferase TRMT61B, showing that the primary driver of the pathol-
ogy was indeed elimination of modification in MT-TK '8!, Additionally, Across 12
types of cancer, significant changes to m1A/G methylation levels in mt-tRNAs were
observed between normal and tumour samples!'!). More recently, a study analysing
m1A/G methylation at p9 sites in individuals diagnosed with Alzheimer’s disease
(AD), progressive supranuclear palsy (PSP) and pathological ageing found similar
methylation profiles between AD and PSP cases, pointing to a shared pathological

mitochondrial methylation profile2°],

Innovative methodology permitting the inference of mitochondrial PT methy-
lation from bulk RNA sequencing (RNA-Seq) data has enabled high-throughput
efforts seeking to characterise their variation across large numbers of healthy in-
dividuals and across multiple tissues!?!). This method relies on the principle that
mismatched bases in RNA-Seq data arising from mtDNA indicates the presence of
a methylation PT modification at that site. During library preparation, a reverse
transcriptase enzyme converts RNA to cDNA. Upon encountering a PT modifi-
cation, however, the enzyme can stall, fall off entirely, or incorporate a random
non-complementary nucleotide base at that position??!. It has been shown that this
signature of mismatched bases from the reference is a good proxy for methylation

rate, displaying replicability across independent RNA-Seq experiments21-19-22],

All considered, tools are available that permit high-throughput profiling of mi-

tochondrial PT modifications. This will be beneficial for furthering our understand-
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ing disease aetiology in general, but may be particularly relevant for diseases where

mitochondria are known to have a central role.

1.1.3 Mitochondrial copy number and heteroplasmy

An important feature of mitochondria is their quantity. Each cell contains many mi-
tochondria and each mitochondrion contains multiple copies of their own genome.
The number of copies of the mitochondrial genome per nucleated cell is known as
the mitochondrial copy number (mtDNAcn). The mtDNAcn has been found to vary

vastly not only across cell types, but temporally within a cell type!?3!.

Cell types
with high energy requirements such as neurons and cardiomyocytes can have mtD-
NAcn many orders of magnitude higher than less energy dependent cell types such
as hepatocytes, for example. Increases and decreases in mtDNAcn have both been
linked to pathology, where the former has been posited as a mechanism acting to
compensate for low cellular respiratory capacity brought about by prevailing mito-
chondrial dysfunction?42>26] Indeed, a recent study implicated mtDNAcn in ND,
finding that increased mtDNAcn in blood is associated with decreased ND risk[?”].
That this has been observed in blood, and that mtDNAcn is a readily measureable
phenotype highlights the potential utility for mtDNAcn as a marker of disease, par-
ticularly for NDs where progression begins many years prior to symptom onset.
Importantly, however, it has recently been suggested that a number of studies find-
ing associations between common diseases and blood mtDNAcn are confounded by
blood cell type composition[?3]. Wherein the findings of four such studies could be
replicated but were subsequently lost when correction for blood cell type composi-
tion was applied?®!. As such, much remains to be understood about the significance
of mtDNAcn with respect to disease states.

As there are multiple copies of the mtDNA in each cell, mtDNA variants can
exist on a spectrum across mtDNA molecules. A given variant can occur in all
copies (homoplasmy) or in a proportion of copies (heteroplasmy). Heteroplasmy
levels can differ from cell to cell within a tissue, from tissue to tissue within an
organ, from organ to organ and from person to person!?®!. Pathogenic variants in

the mtDNA have been identified in the protein, tRNA and rRNA coding genes.
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Severe variants are not tolerated in the homoplasmic state, but rather can exist in
the heteroplasmic state, causing OXPHOS dysfunction when a tolerance threshold
is exceeded in the cell?3-391. This threshold is variant and cell type specific, but for
certain mtDNA deletions this has been found to be ~50-60% 23311,

Severe maternally inherited pathogenic variants in mtDNA are known to cause
respiratory chain dysfunction and the associated conditions are referred to as pri-
mary mitochondrial diseases, wherein the mtDNA variant is essential for the disease
to manifest. These diseases are heterogeneous both in their clinical presentation
and genetic underpinnings!®®!. They can be caused by different combinations of
plasmies and variant types, ranging from small effect homoplasmic mtDNA point
mutations to large effect heteroplasmic mtDNA deletions, where the level of hetero-
plasmy has been found to correlate with the severity of the clinical phenotype?®!. In
contrast to these inherited variants of large effect, small effect somatic mtDNA vari-
ants have been implicated in common complex diseases. As the somatic mutational
burden increases, this has been shown to result in mitochondrial dysfunction®?!,
At the level of the tissue, if many cells are mitochondrially non-functional, this can
contribute to pathology. In Parkinson’s disease (PD) for example, high levels of
mtDNA deletions have been identified as a component of impaired cellular respira-

tion and selective neuronal loss in the substantia nigra!33-34].

1.1.4 The diverse roles of mitochondria

The canonical role of mitochondria is as the generator of cellular energy via the
metabolism of glucose. However, it is now known that the mitochondria fulfil
other vital and interlinked roles. Several studies have suggested that the mitochon-
dria have a role in local and cytoplasmic calcium ion (Ca?*) homeostasis. Recent
thought posits that this is heavily dependent on the cell type, the presence of other

Ca* removal mechanisms and mitochondrial positioning (3!,

The importance of
the latter was found to be particularly marked in neurons, underscoring not only the
cell type specificity of the mitochondrial role in Ca>* homeostasis but also point-
ing to the importance of cell type specific mitochondrial function!®3-*¢1. Linked to

the mitochondrial role in Ca?* homeostasis is their role in apoptosis, also known as
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the cell death pathway. Triggered by a number of effectors, of which one is Ca*,
mitochondrial permeability increases, releasing cytochrome c into the cytosol. This
in turn activates caspases which cause mass proteolysis, leading to cell death33-37],
Further to this, mitochondria are also known to have a role in triggering cascades
involved in the innate immune response, of which apoptosis is one component. This
is thought to be achieved through mitochondrial stress signalling in response to en-
vironmental insults such as toxicity or pathogen infection*®]. The cellular roles for
mitochondria go beyond those mentioned here, however, it is clear that mitochon-
dria have complex and diverse functionality in the cell and it is likely that a number

of these remain elusive.

1.1.5 Mitochondrial specialisation

Mitochondrial morphology, function and distribution are heterogeneous across cell
types, and even within sub-compartments of the same cell 34041l Mitochondria
form interconnected networks within the cell, which are regulated and transported
by microtubules and are capable of undergoing fission and fusion events, leading to
the formation of diverse structures such as tubular, rod-like, and spherical forms [42],
A remarkable study focusing on brain cell types utilised MITO-Tag mice expressing
an outer mitochondrial membrane (OMM) -targeted green fluorescent protein per-
mitting purification of whole mitochondria from specific cell types'*!3*1. Through
this approach, Misgeld and colleagues compared the mitochondrial proteomes of in-
hibitory neurons, excitatory neurons and glia extracted from an adult mouse brain.
~15% of the mitochondrial proteome was found to be differentially regulated be-
tween these cell types. Interestingly, they observed an enrichment of peroxisomal
proteins in mitochondria extracted from astrocytes, reflecting astrocytic fatty acid
consumption (!l As such, the authors demonstrate cell type specific functionality

(411 Intra- and inter-cellular hetero-

and adaptations amongst these mitochondria
geneity of mitochondria has significant implications for diseases of the brain that
involve mitochondrial dysfunction, particularly for conditions where selective vul-

nerability of neuronal populations is a contributing factor such as certain NDs.
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1.1.6 Mitochondrial-nuclear coordination

Given the mitochondrion’s evolutionary past, its varied and complex cellular
roles and dependence on the nucleus, it stands to reason that mechanisms for
mitochondrial-nuclear coordination have arisen at multiple levels of organisation.
The central — and most well understood — purpose of mitochondrial-nuclear co-
ordination is to quickly and flexibly manage cellular bioenergetic demand!*3!. This

coordination operates in both directions.

One element of this coordination is mitochondrial retrograde signalling, pro-
viding information to the nucleus about their bioenergetic status, primarily encoded
through molecular and biochemical signals. For example, reduced mitochondrial
electron transport decreases mitochondrial membrane potential, resulting in the re-
lease of cytochrome c into the intermembrane space and then into the cytoplasm,
triggering a nuclear apoptotic response!*>#4. Another example of this is when the
cellular AMP:ATP ratio increases — indicating slower ATP generation — this is
known to activate PGC-1a, the nuclear-encoded stimulator of mitochondrial bio-

s3], These examples demonstrate the nuclear response to mitochondrial

genesi
retrograde signalling, involving the activation of nuclear processes, namely mito-
chondrial quality control which encompasses numerous complex cascades such as

biogenesis, mtDNA repair and mitophagy.

Although this is the canonical view, mitochondrial-nuclear coordination does
not exist simply as an anterograde-retrograde signalling loop. Recent work has
pointed to the involvement of double localisation of mitochondrial-nuclear tran-
scription factors*>7!. Indeed, regulators of nuclear gene transcription have been
found to bind mtDNA, pointing to the involvement of general cellular expression
regulators in mtDNA gene expression and raising the possibility that a portion of
these are involved in coordination of mitochondrial-nuclear expression . In addi-
tion to colocalised regulatory factors, another level at which coordination operates
— though notably not through physical colocalisation — is highlighted by the exis-
tence of the nuclear-encoded master-regulator of mitochondrial function, PGC-1a,

which regulates transcription of nDNA-encoded OXPHOS components 43
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Around this core structure of coordination exist further nuanced and complex
mitochondrial-nuclear interactions. Indeed, recent work has uncovered nuclear ge-
netic variants significantly associated with changes in mitochondrial expression 401,
mitochondrial PT modification rate *®), mtDNA abundance?®! and mtDNA hetero-

plasmy (28],

Within this, it is important to acknowledge the challenges that exist in under-
standing the mitochondrial-nuclear relationship, particularly with respect to assess-
ing the mitochondrial transcriptome. As discussed in section 1.1.3, mitochondria
are heterogeneous organelles. The mitochondrial genome can vary between human
populations (through mitochondrial haplogroups), between individuals (through
mtDNA variants) and between tissues within an individual (mtDNA homoplasmy,
mtDNA heteroplasmy and mtDNAcn). These sources of heterogeneity have the
potential to confound the interpretation of mtDNA-derived expression data if not
appropriately controlled for. For example, cell type is a large driver of variation
with respect to mtDNAcn, and as such, in bulk RNA-Seq data, correcting for inter-
individual differences in cell type proportions has been shown to control for mtD-
NAcn by proxy!?®. To control for ancestry-driven mitochondrial genetic differ-
ences, one may consider utilising a cohort with homogeneous ancestry, or if this is

not possible, including population substructure covariates in the downstream model.

Taken together, much remains to be discovered with respect mitochondrial-
nuclear coordination, how it operates across different tissues and cell types, and its
relevance to NDs. Future studies should aim to address these gaps — along with
carefully considering potential confounders of the data — to improve our under-
standing of this fundamental process and its potential implications in human health

and disease.

1.2 Neurodegenerative disease

According to global population figures published by the the UN, in 2019 1 in 11
people were aged 65 or over, however, by 2050, this is predicted to be 1 in 6. As

the population ages, the prevalence of adult neurodegenerative disease (ND) such
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as AD and PD is rising!4’l. This thesis will consider AD and PD, the two most

prevalent NDs.

1.2.1 Alzheimer’s disease

AD is the most common cause of dementia, affecting over 6 million people in the
United States alone (Alzheimer’s Association, 2023). Two thirds of individuals di-
agnosed with AD are female and the majority of AD occurs in individuals over
the age of 65. The latter is referred to as late-onset AD (LOAD) and constitutes
~98% of cases, while the remaining ~1-2% of cases are considered early-onset
AD (EOAD)8. EOAD is associated with autosomal dominant inheritance of a
large effect variant in a single gene and is characterised by rapid disease progres-
sion, while LOAD is generally sporadic or idiopathic and associated with protracted
progression. In typical AD cases learning and memory deficits occur early on, fol-
lowed by impaired attention, executive function, speech and language, movement,
motor planning, recognition and behavioural changes %,

Until recently, disease modifying treatments for AD remained elusive, how-
ever, a next-generation anti- amyloid-beta (Af}) antibody, lecanemab, recently
showed appreciable efficacy with respect to clinical outcomes!*®>°!. In the study
participants, cognitive decline in those given lecanemab was found to decrease by

27% compared to a placebo 4]

. In January of 2023, this drug was approved for
use in the United States by the FDA. However, concerns remain about whether
the observed drug-placebo difference of 0.45 on the 18-point Clinical Dementia
Rating-Sum of Boxes (CDR-SB) scale is clinically meaningful*’!. Previous work
has estimated minimal clinical importance to be a change of 0.98 to 1.63, depen-
dent on the level of cognitive impairment[°]. Additionally, it has been suggested
that this drug and related anti-Af antibody -based drugs may cause accelerated
brain volume loss>!!. However, this trial represents a potentially promising devel-
opment and ongoing trials will reveal the ability of this drug to affect disease onset
in addition to progression(*’l. Given this, a deeper understanding of AD aetiology

will be important for elucidating further targets that may permit improvement and

development of disease modifying drugs. In parallel, this will facilitate the identifi-
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cation of individuals that may benefit from such interventions and the improvement

of diagnostic accuracy®?! through biomarker discovery.

1.2.1.1 The genetic architecture of Alzheimer’s disease

Genetic architecture is a term that encompasses the characteristics of the genetic
variation which confer heritability to a trait, where heritability defines the propor-
tion of variance in the trait attributable to genetic variation. Broad-sense heritability
estimates for AD are reported to be 59-78%, whereas narrow-sense heritability es-
timates are study-variable, but reported to be 3-31% 1231, A recent review by An-
drews and colleagues included an elegant visualisation of AD genetic architecture,
which is also included here (see Figure 1.1), conceptualising it as a two-dimensional
space defined by minor allele frequency and effect size. At the extreme left of the
allele frequency axis sit the rare monogenic gene variants with high penetrance,
namely those found in PSENI, PSEN2 and APP. The remainder of AD causal vari-
ants are common, with higher minor allele frequencies and low effect sizes, but

cumulatively contribute substantially to disease susceptibility or risk >4,
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Figure 1.1: The genetic architecture of AD taken from a recent review by Andrews et al.,
2023. This figure reports odds ratios on the absolute scale, where the triangles
indicate directionality for APOE genotypes and labelled loci indicate candidate
causal genes from Bellenguez et al., 2022
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1.2.1.2 Alzheimer’s disease pathways and mechanisms

The discovery of the amyloid precursor protein (APP), presenilin 1 (PSENI), and
presenilin 2 (PSEN2) variants as causal for AD combined with the identification
of the epsilon-4 allele of the APOE4 gene as a risk factor allowed the first major

insights into AD pathology [>°!

. Variants in APP prevent its proper proteolysis by
secretases, giving rise to populations of AP peptide lengths that are more prone
to aggregation. These longer peptides are found in A plaques in the brains of
individuals with AD. Similarly, variants in PSENI and PSEN2, components of the
secretase complex, affect Af3 cleavage leading to accumulation-prone Af3 peptide
length ratios!>!. The epsilon-4 allele of APOE reduces the efficiency of APOE-Af3
binding and A aggregation clearance. As such, discovering and understanding
these variants and affected processes implicated A3 and the amyloidogenic pathway

in AD pathogenesis, leading to the key theory positing neuronal amyloid plaque

formation as central to neurodegeneration in AD.

Increasingly powerful GWA studies have been permitted by improvements in
sequencing technology and the availability of increasingly large case/control co-
horts, discovering many more loci associated with sporadic AD. Two recent AD
GWA studies, released just six months apart, together identified 90 independent
variants, implicating 75 loci in AD, 42 of which were novel P*3%371_ Efforts to pri-
oritise candidate genes arising from these studies found that ~50% of AD loci con-
tained genes involved in myeloid function®*. Other processes implicated through
GWAS findings include lipid transport, inflammation, innate immunity and endo-
cytosis3, Interestingly, multiple lines of evidence point to a role for mitochondria
as mediators, drivers or as contributors to AD pathogenesis!*®!. Current hypothe-
ses posit mitochondrial dysfunction as a consequence of AD pathology, primary
agents whose bioenergetic failure sets the stage for downstream pathologies, or as
secondary enhancers of primary amyloid pathology®8!. In light of this, further un-
derstanding mitochondrial biology and the alterations of mitochondria in disease

states may help shed light on its role in AD pathology.
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1.2.2 Parkinson’s disease

PD is the second most prevalent ND, affecting ~1 million people in the US alone
(Parkinson’s Foundation, 2023). Rare monogenic forms of PD (~5-10% of cases)
are associated with an earlier age of onset, whereas the common sporadic form
(~90-95% of cases) is associated with an age of onset approximately of over 60
(Parkinson’s Foundation, 2023). Interestingly, PD is twice as common in men, and
its incidence appears to vary across populations with respect to genetic ancestry and
environment, although it is unclear whether unidentified factors are confounding
this[>®!. Additionally, environmental factors, independent of genetic predisposition,
are thought to modulate PD risk, such as, smoking, alcohol intake, diet and pesticide
exposure 7],

First identified by James Parkinson in 1817, the most characteristic diagnostic
features of PD are motor symptoms, namely tremor, rigidity and akinesial®®!. The
non-motor symptoms can also be very severe, however, and can present during the
long prodromal phase. These include cognitive impairment, sleep disorder, depres-
sion, anosmia and dysfunction of the autonomic nervous system®°!. PD is patho-
logically characterised by a loss of dopaminergic neurons in the substantia nigra
(SN) pars compacta commonly accompanied by the presence of a-synuclein con-
taining protein aggregates known as Lewy bodies in the midbrain(!!. The dopamine
agonist, levodopa, remains the central treatment for PD 2!, Levodopa is converted
to dopamine in the peripheral and central nervous systems, activating dopamine
receptors, and acting to control motor symptoms!%?l. However, it is fraught with
issues such as side-effects and low bioavailability and notably does nothing to mod-

62]

ify disease progression(®?!. Indeed, no disease modifying drugs for PD have been

identified at present.

1.2.2.1 The genetic architecture of Parkinson’s disease

PD is a genetically heterogeneous disease whose genetic landscape can be thought
of as a continuum, similar to that set out for AD in figure 1.1. Rare, highly pene-
trant, variants of large effect exist at one end of the continuum and at the other are

common variants of small effect which contribute to disease risk 03!,
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Family pedigrees allowed the elucidation of rare PD causing variants, the first
of which was the G209A missense variant in SNCA identified in 199754, Since
then, rare variants in 20 genes have been found to be causative for PD, though not
all have been verified through functional studies'®!l. Although the rare monogenic
familial forms are traditionally characterised by a single causal variant, it is likely
that on an individual level, the disease is influenced by other genetic and non-genetic
factors!®!l. This is evidenced by the existence of highly penetrant variants which do
not consistently manifest in the disease and within disease pathogenesis where pa-
tients display heterogeneity of symptom onset, progression and symptom severity,

pointing to the contribution of factors beyond the single inherited variant[6!].

Individuals with sporadic PD are those who do not possess a monogenic famil-
ial variant. Since the advent of the GWA study paradigm in 2005, a multitude of PD
GWA studies have yielded increasing numbers of genetic risk loci. Indeed, the most
recent GWAS meta-analysis detected 90 independent risk signals, of which 38 were
novel1:6%1 The portion of disease risk attributable to genetics — the heritability
— of PD is estimated to be ~22%, and it is thought that a portion of this can be
explained by currently identified GWAS loci!®!. As such, a portion of the heritabil-
ity of PD remains to be elucidated, and to this end, future GWA studies will likely
leverage larger sample sizes and efforts to interpret the biology underlying GWAS

associations will be vital.

It is, however, important to acknowledge the distinct challenges that still re-
main in this arena, the largest of which is biological interpretation, which is com-
pounded by a number of factors 0!, Firstly, GWAS signals often identify genomic
regions that are non-coding or regulatory. As such, making biological interpreta-
tions of these is complex and requires integration of additional data types such as
RNA-Seq and chromatin contact (Hi-C) data which aid in the elucidation of func-
tional mechanisms. Secondly, it has been shown that GWAS-identified variants
individually explain very small proportions of total trait variation, are associated
with multiple traits and are often proximal and in linkage disequilibrium (LD) with

[66]

a large number of other variants'®'. As such, determining the causal variant and
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identifying the candidate gene or mechanism can be highly challenging. Thirdly,
GWAS-detected associations may be heterogeneous across human populations with
different ancestries which may be a confounding factor, particularly in GWA stud-
ies that leverage large participant cohorts or meta-analyses. Future studies will aim
to address these challenges through mutli-omic data integration and improvement
of statistical frameworks for fine-mapping. In addition, non-European ancestral
groups must be studied as opposed or removed from cohorts, or their heterogene-
ity corrected for, as they may reveal novel biology. To this end, new efforts are
being made by consortia such as The Global Parkinson’s Genetics Program (GP2)
which aims to leverage diverse human populations to further understand the genetic

architecture of PD.

1.2.2.2 Parkinson’s disease pathways and mechanisms

To date, a number of key pathways in PD have been implicated through monogenic
familial PD genes. For example, DJ-1, PRKN and PINK1 are known to have roles in
mitochondrial pathways, namely mitophagy. Likewise, lysosomal function has been
implicated through GBA, LRRK?2 and VPS35. Despite this, work is still underway
to characterise the complex molecular mechanisms that connect pathogenic genetic
variation and clinical manifestations. A key application of this is to understand
whether any of the mechanisms discovered here have relevance to sporadic PD,
whose aetiology remains comparatively cryptic. The detection of familial PD -
associated loci in sporadic PD GWA studies indicates overlap in gene perturbation
between the forms, indicating potentially common pathways to disease!63.

A major interest and focus in PD is mitochondrial dysfunction. The link be-
tween PD and mitochondria was first established when Langston and colleagues
observed that MPTP exposure resulted in chronic PD due in part to its role in
mitochondrial complex I activity inhibition[®”]. Since this discovery, many more
links have emerged, firmly implicating mitochondrial dysfunction in PD pathogen-
esis. Defective mitochondrial respiration has been observed in PD disease states,
mtDNA variants have been found to cause OXPHOS defects in the substantia nigra

and a-synuclein accumulation in mitochondria has been found to impair complex I



1.3. Thesis context and aims 37

function(68:6%-341 Fyrthermore MitoPark murine models which have depleted mito-
chondria transcription factor A develop defective OXPHOS of the substantia nigra
dopaminergic neurons!’?). These and many other studies point to mitochondrial
dysfunction as central to PD pathogenesis, however the mechanisms underlying

this are far from clear and much work remains to elucidate these.

1.3 Thesis context and aims

It is clear that ND is a major societal problem within which mitochondrial dysfunc-
tion is heavily implicated. Further understanding of a key dynamic of mitochon-
drial function — mitochondrial-nuclear coordination — may be important to gain a
full understanding of mitochondrial dysfunction in this context. This thesis aims to
achieve this through through leveraging transcriptomic data, taking advantage of the
large RNA-seq datasets emerging in the field of ND. Mitochondrial-nuclear cross-
talk has been studied previously, but in a limited array of tissues, often in healthy
control individuals only, utilising small sample numbers and not in a ND context.
As such, the broad aims of this thesis are 3-fold:

(i) To characterise mitochondrial-nuclear cross-talk across the healthy human
CNS;

(i1) To study mitochondrial-nuclear cross-talk perturbation in AD and PD;

(ii1) To use monogenic PD participant data to gain insights into the role of
mitochondrial transcription in PD pathogenesis, across different forms of PD and at

different stages of disease.



Chapter 2

Assaying mitochondrial-nuclear
co-ordination using expression

correlation in brain tissue

2.1 Introduction

The central nervous system (CNS) and its composite cell types possess a distinct
metabolic and physical architecture, making its mitochondrial-nuclear relationship
of potential importance to further understanding CNS pathologies. Tissues of the
CNS are not only highly energetically demanding, consuming 20% of the body’s
total energy supply!’!, but heterogeneous in their requirements, with wide varia-
tion in energy demands across their constituent cell types!’%73]. To meet this energy
demand, cells of the CNS are highly dependent on mitochondria. However, mito-
chondria cannot fulfil this role independently of the nucleus. Although mitochon-
dria have their own compact genomes encoding sub-units of the electron transport
chain (ETC) (13 genes), ~99% of the proteins required for normal mitochondrial
function are encoded in the nucleus (1136 nuclear genes as per MitoCarta3.0, an in-
ventory of mitochondrial proteins)!’#731. Translation of these nuclear components
is carried out by cytoplasmic ribosomes, and protein products are imported into mi-
tochondria. Owing to their association with the nucleus, the mitochondria are fully

resourced for their role in energy production, as well as for their other key functions
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761 Thus, we can see

such as calcium buffering, cellular signalling and apoptosis!|
that the efficacy of this bi-genomic system depends on continual coordination of

transcriptional activity across the mitochondrial and nuclear genomes.

Certain features of neurons make this coordination challenging, with three that
stand out as being most relevant in this context. The first is that neurons are simulta-
neously highly OXPHOS (oxidative phosphorylation) -dependent, and particularly
vulnerable to oxidative stress due to their low anti-oxidant capabilities!’”-"8]. Intrin-
sically coupled to the OXPHOS rate is the rate of reactive oxygen species (ROS)
production!”®!. This is caused by electron leakage from the ETC and manifests as
an abundance of toxic hydrogen peroxide and hydroxyl radicals®1. To manage lev-
els of ROS, the mitochondria utilise a 'ROS defense system’ (RDS), composed of
ROS-extinguishing enzymes such as isocitrate dehydrogenase, malic enzyme, and
transhydrogenase 31, Failure of this system is thought to damage the mitochondrial
DNA (mtDNA), and in turn contribute to accelerated ageing, and by extension, in-

creased risk of neurodegenerative disease (ND) [82],

The second feature is that neurons are terminally differentiated cells, and so
their integrity must be maintained for an entire lifespan. As a result, they are highly
reliant on autophagic processes for removal of dysfunctional organelles as well
as misfolded and aggregated proteins!®3!. Maintenance of mitochondrial fidelity
requires the autophagic process of mitophagy. The importance of mitophagy is
most clearly demonstrated by work showing that key genes in the pathway, includ-
ing PINK1 and PARK?2 which encode proteins that tag damaged mitochondria for
mitophagic removal, when mutated cause familial Parkinson’s disease (PD)[348].
Again, this demonstrates a high dependence on nuclear transcription and import

for an essential mitochondrial process, and one that is inseparable from neuronal

maintenance.

The third important feature of neurons is that they have a unique and highly
specialised architecture. Neurons require mitochondrial distribution to satisfy het-
erogeneous local energy demands used for restoration of ion gradients and axonal

transport, as well as for other important mitochondrial roles such as calcium buffer-
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ing, neurotransmitter metabolism and ROS generation 86871 As well as mitochon-
drial mobility, it is also necessary for the cell to restrict their movement. Electron
microscopy experiments have been able to observe that mitochondria are tethered
to sites of high energy requirement, such as vesicle release sites at synapses!8.
Linked to this, there is evidence to suggest that localised protein synthesis occurs in
neurons, requiring transport of nuclear DNA (nDNA) -encoded mitochondrial gene
transcripts to distal mitochondrial locales'®”). We therefore see a requirement for
a dynamic mitochondrial distribution system, where it is necessary for mitochon-
dria to be synthesised and transported, but also a requirement for local coordination

of cellular components and mitochondria. This points to an equally dynamic and

complex nuclear-mitochondrial coordination system as key to upholding this.

Given the intricacy and scale of mitochondrial-nuclear coordination required
in human brain tissue, there is ample opportunity for dysfunction. In neurons, fail-
ure of coordinated mitochondrial clearance and biosynthesis contributes to disease
pathogenesis. This can be seen in the aetiology of PD, where variants in PINK] and
PARK? are associated with autosomal-recessive PD and their protein products have
been implicated not only in mitophagy, but also mitochondrial biogenesis %11,
However, pathology of the mitochondrial biogenesis and quality control pathways
is not unique to PD. Analyses of brain samples from individuals with Alzheimer’s
disease (AD) have shown that levels of the mitochondrial biogenesis transcriptional
‘master-regulator’ PGC-1a in hippocampal tissues are reduced relative to control
tissue, suggesting that disruption of PGC-1a-dependent pathways contributes to

pathogenesis*?!. Collectively, this evidence points to a role for dysfunction of the

mitochondrial-nuclear relationship in NDs.

Despite this, the analysis of mitochondrial-nuclear cross-talk at scale largely

focuses on either on a small number of features, a small number of samples 931 in
vivo work involving single gene knockdown!®*! or indirectly analysing mitochon-
drial function by measuring metabolite output(®>!. Larger studies that have looked
at cross-talk in multiple tissues include a population-level analysis of expression

quantitative trait loci (eQTLs) associated with the expression of mtDNA-encoded
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genes, and a multi-tissue analysis of nDNA and mtDNA gene expression corre-
lations (4691 These studies support the complexity and functional relevance of
mitochondrial-nuclear relationships in the brain but lack CNS-specificity and anal-
ysis of potential processes and pathways most relevant to mitochondrial-nuclear
coordination.

To further interrogate mitochondrial-nuclear regulation, this work takes a
genome-wide view, surveying all potential nuclear-mitochondrial relationships and
assaying the relationship using mtDNA-nDNA gene coexpression as a proxy for in-
teraction. Coexpression is a useful metric with which to assess this relationship as it
is well established that gene expression correlation can robustly predict gene func-
tion, and that genes which share biological processes are often co-regulated?7-98-991,
Coupled with this, the breadth of CNS tissues and sample abundance present in the
GTEX project transcriptomic data provides an excellent opportunity for systematic
evaluation of coexpression between the nuclear and mitochondrial genomes. The
GTEXx project is publicly available resource providing whole genome sequencing
(WGS), RNA-Seq and whole exome sequencing (WES) data for many individuals
across 53 body tissues!!19%-191] - Additionally, an AD case-control RNA-Seq dataset
was leveraged to understand whether mitochondrial-nuclear coexpression changes
between AD cases and healthy controls.

Specifically, this chapter generates and analyses mitochondrial-nuclear gene
expression correlations, focuses on CNS tissues and gains power by leveraging
RNA-Seq data from a large number of individuals across multiple studies. Ro-
bustness of mitochondrial-nuclear expression correlations is assessed by replicat-
ing results across two independent data sets. Finally, the contribution of the
mitochondrial-nuclear relationship to neurodegeneration is interrogated by first
analysing the association of causal ND genes with the mitochondrial genome, and

then by analysing coexpression changes in an AD case-control dataset.

2.1.1 Aims

In light of this, this chapter’s aims are two-fold. Firstly, it aims to set the ground-

work for this thesis by characterising profiles of mitochondrial-nuclear correlations
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in healthy CNS tissue. Secondly, it aims to understand whether mitochondrial-

nuclear relationships are perturbed in ND, and whether these can be identified in

CNS tissue.
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Figure 2.1: Workflow diagram to summarise the data and methods utilised in chapter 1.

2.2.1 Data

2.2.1.1 GTEx data

Raw RNA-Seq data from 12 histologically normal CNS regions were obtained from

GTEX (V6p) 1%l Alignment and data processing was carried out by Aminah T Ali

as per Ali et al. (2019). Briefly, adapter sequences, low-quality terminal bases and

poly-A tails (>4) were trimmed and subsequently aligned to the 1000G GRCh37
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reference genome using STAR. Strict filtering was applied to avoid misalignment
of nuclear mitochondrial DNA segments (NUMTs) -derived sequences, and to re-
tain only properly paired and uniquely mapped reads. Post-mapping processing
included exclusion of samples with: <10K reads mapping to the mitochondrial
genome, <5 million total mapped reads, >30% of reads mapping to intergenic re-
gions, >1% total mismatches or >30% reads mapping to ribosomal RNA using
custom scripts as well as RNAseQC. HTseq was used to quantify transcripts, before
converting raw counts to transcript per million (TPM) values, therefore normalising
for library size and gene length, using version 19 of the Gencode gene annotation.

The final per-region sample numbers are shown in table 2.1.

GTEX tissue Sample number (N)
Anterior cingulate cortex 80
Caudate basal ganglia 111
Cortex 104
Cerebellum 109
Cerebellar hemisphere 96
Frontal cortex 96
Hippocampus 88
Hypothalamus 85
Nucleus accumbens basal ganglia 100
Putamen basal ganglia 86
Spinal cord (cervical c1) 58
Substantia nigra 60

Table 2.1: GTEx (V6p) CNS per-tissue RNA-Seq sample numbers.

2.2.1.2 ROSMAP data

The ROSMAP dataset is composed of dorsolateral prefrontal cortex samples derived
from autopsied individuals from the Religious Orders Study (ROS) and the Rush
Memory and Aging Project (MAP)!!192], Data were obtained through application to
the data access committee, permitting access to pre-mapped fragments per kilobase
of transcript per million (FPKM) data (for sequencing, mapping and QC details
see the Synapse Knowledge Portal, ID: syn3388564). Each ROSMAP sample is
associated with a cognitive diagnosis. Samples included in the analyses were those

labelled ‘AD’ (n=254) and ‘no cognitive impairment’ (n=201), referred to as ‘case’
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and ‘control’, respectively. Samples with missing metadata or had duplicates were
removed, reducing the number of cases to 251. Prior to further processing, FPKMs

were converted to TPMs.

2.2.2 Generating mitochondrial-nuclear correlation matrices

For both datasets, the same custom pipeline was applied to generate mitochondrial-
nuclear gene expression correlation matrices from gene counts. First, TPM matrices
were filtered, retaining the set of genes with non-zero expression across all samples
and all CNS regions. TPMs were then logl0 and median normalised. Expression
outliers, defined as TPM values three interquartile ranges below the lower quartile

or above the upper quartile for a gene, were masked.

Following this, multiple linear regression was applied to regress out covariates
(see section 2.2.2.1 for covariate selection steps). TPM values were included as pre-
dictor variables and covariates as response variables in a linear model. The model
was fitted, generating predicted TPMs, then residuals were calculated by subtract-
ing predicted from observed, yielding residual TPMs. To generate mitochondrial-
nuclear correlation matrices, Spearman correlation coefficients were calculated be-
tween protein-coding mtDNA-encoded genes (13) and nDNA-encoded genes (for
GTEx: 15,001 genes expressed across all CNS tissues; for ROSMAP all nuclear

genes expressed).

2.2.2.1 Selection of covariates

Covariates for data correction were selected by correlating axes of variation with
known covariates. Known covariates were selected from the available metadata for
being: a key attribute of the donor (i.e. age, sex), a key attribute of the sample,
or an attribute likely to produce a batch effect. This selection was informed by ex-
ploratory analyses, and by established covariate selection strategies in the literature.
To determine axes of variation in the expression data, principal component analysis
(PCA) was performed on the expression matrices. Spearman correlations between
the largest axes of variation (first 10 principle components, capturing 98.41% of

the variation for GTEx and 99.43% for ROSMAP) and known covariates were cal-
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culated (Figure 2.2). Covariates that correlated highly with large axes of variation
were selected. For ROSMAP, this was: PMI (post-mortem interval), RIN (RNA
integrity number), library batch, race, sex, study (whether subject was derived from
the ROS or MAP cohorts of the dataset), age at death, age at last visit. For GTEx,
this was: RIN, four batch variables (type of nucleic acid isolation batch, nucleic
acid isolation batch ID, genotype or expression batch ID, date of genotype or ex-
pression batch), centre (location of tissue collection and processing), age, gender

and cause of death.
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Figure 2.2: Steps taken to decided on the covariate correction strategy for ROSMAP and
GTEX project -derived gene expression data. Here, colour bars represent the
Spearman correlation coefficient and tile annotations give the P-value. A.
Heatmap to show Spearman correlations between GTEX frontal cortex expres-
sion principle components (10) and known sample attributes (10) supplied
by the GTEX project. B. Heatmap to show Spearman correlations between
ROSMAP expression principle components (10) and known sample attributes
(20) supplied by the ROSMAP project. C. Percent variance in the GTEx ex-
pression data explained by principle component 1-10. D. Percent variance in
the ROSMAP expression data explained by principle component 1-10.
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2.2.3 Analysing mitochondrial-nuclear correlation variance
across CNS regions

To understand the extent to which the relationships between mitochondrial-nuclear
gene pairs vary across the CNS, 12 GTEx CNS regions were leveraged, calculating
the cross-CNS variance of correlation coefficients for each mitochondrial-nuclear
gene pair. The variance of the 12 coefficients was then calculated as a measure of
variation in the relationship between the expression of these two genes across CNS
regions. This was repeated for all mitochondrial-nuclear gene pairs. Nuclear genes
expressed in all 12 CNS regions were used, equating to 15,001 nuclear genes and
195,013 mitochondrial-nuclear pairs. To reduce redundancy of the dataset, aggre-
gation of mtDNA-encoded genes was performed, the intuition being that the corre-
lation of a nuclear gene with the 13 mtDNA-encoded genes was found to be largely
consistent. Figure 2.3 shows that expression of each mtDNA-encoded gene is con-
sistent across GTEx CNS regions (a), correlation of expression between mtDNA-
encoded genes was high except for in the *Cortex’ tissue (b, ¢) and variance across
the 13 mitochondrial-nuclear correlations for each nuclear gene was low (d). Thus
the median cross-CNS variance of 13 mtDNA-encoded genes was taken as the rep-

resentative value for each nuclear gene.

To determine processes enriched in gene pairs in different variance groups -
i.e. those that vary across CNS tissues and those that do not - four gene sets were
defined. The ‘high variance set’ (highest 5% of variances, n=750), and the ‘low
variance set” (lowest 5% of variances, n=750). These two groups were then further
split into positive and negative sub-groups, dependent on the majority correlation
directionality. This yielded the following gene sets: high variance positive, n=605;
high variance negative, n=145; low variance positive, n=363; low variance negative,
n=387.

To determine the processes and pathways enriched in these gene sets, the R
package gProfiler2 was used(!%3. Enrichments were tested against a custom back-
ground of genes expressed in all GTEx CNS regions (n=15,001). The queries were

ordered by correlation magnitude, and for multiple test correction, the ‘g:SCS’
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method was applied. To obtain a more granular ontology analysis of the synap-
tic enrichment observed in the high variance negative group, this list was used as
input to the online tool SynGO!"%#!. The same background list was used for SynGO

as for gProfiler2.

2.2.4 EWCE analysis

Expression Weighted cell type Enrichment (EWCE)!'%] was used to determine
whether nuclear gene sets had higher expression within particular CNS cell types
than would be expected by chance. EWCE leverages single-nuclear RNA-seq
(snRNA-Seq) data in the form of specificity matrices. Specificity matrices give,
for each gene and each cell type, the expression specificity a gene has in a cell type

compared with all other cell types. Using this information, EWCE statistically eval-
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uates whether genes in a target list have a higher cell type specificity than would be
expected by chance (i.e. than the random distributions drawn from the background).

Inputs to EWCE were target gene lists, a background gene set and a specificity
matrix. Aggregation over mtDNA genes was then performed to obtain a single con-
sensus ranking for each nuclear gene. The target gene lists used were generated by
ranking mitochondrial-nuclear gene correlation values for each GTEx CNS region
with the largest positive and negative values ranked separately. For each CNS re-
gion, the top 5% of positively correlated nuclear genes and top 5% of negatively
correlated nuclear genes were then taken as region-specific target gene sets. The
numbers of genes per region are given in table 2.2. The background gene set was
genes expressed in all GTEx CNS regions (n=15,001). The specificity matrices
were generated by Regina H Reynolds as in Mencacci et al., (2020) by estimating
the specificity of each gene to each cell type. The specificity score represents the
proportion of the total expression of a gene found in one cell type compared to all
cell types. Data used to generate specificity matrices for this work were derived
from two brain snRNA-seq experiments. (1) The Allen Brain Atlas: a dataset com-
prising 15,928 nuclei from the middle temporal gyrus of 8 human tissue donors
ranging in age from 24 to 66 years!!%%1. (2) Habib et al., (2017): a dataset com-
prising 19,550 nuclei from the hippocampus (4 samples) and prefrontal cortex (3
samples) from five donors.

The EWCE analysis was run with 10,000 bootstrap lists. Transcript length and
GC-content biases were controlled for by selecting bootstrap lists with equivalent
properties to the target list. P-values were corrected for multiple testing (using the
Benjamini-Hochberg method) over all cell types and gene lists tested. The analysis
was performed using the following major cell type classes: ‘GABAergic’, ‘gluta-

matergic’, ‘astrocyte’, ‘microglia’, ‘oligodendrocyte’, ‘endothelial cell’.

2.2.5 Cell type correction analysis

To further evaluate the contribution of cell type to the heterogeneity of
mitochondrial-nuclear correlation distributions in the CNS, published deconvolution-

derived GTEx cell type proportion estimates from Donovan et al., (2020) were
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GTEX tissue No. of nuclear genes (+p and -p)
Anterior cingulate cortex 470
Caudate basal ganglia 503
Cortex 340
Cerebellum 277
Cerebellar hemisphere 399
Frontal cortex 533
Hippocampus 426
Hypothalamus 268
Nucleus accumbens basal ganglia 487
Putamen basal ganglia 492
Spinal cord (cervical c1) 336
Substantia nigra 312

Table 2.2: Numbers of unique nuclear genes in the top 5% positive and top 5% negative
mitochondrial-nuclear gene Spearman p, for each GTEx CNS tissue.

used'%7l. The aim was to understand whether correcting the GTEx expression
data for the effect of cell type proportions would result in more homogeneous
mitochondrial-nuclear correlation profiles across the CNS. To do this, the effect on
mitochondrial-nuclear correlation distributions was compared between two correc-
tion strategies, one which does not correct for cell type, and one which does. These
were defined as follows: (i) standard correction (covariates: RIN, four batch vari-
ables (type of nucleic acid isolation batch, nucleic acid isolation batch ID, genotype
or expression batch ID, date of genotype or expression batch), centre, age, gender
and cause of death), (ii) standard & cell type correction (covariates: as in (i) as
well as cell type proportions for the following cell types: astrocyte of the cerebral
cortex, Bergmann glial cell, brain pericyte, endothelial cell, neuron, oligodendro-
cyte and oligodendrocyte precursor cell). The sample set used for the calculation
of mitochondrial-nuclear correlations differed slightly to those used for the other
analyses presented in the chapter due to availability of cell type proportion data (see
table 2.3. Following filtration for these samples, the pipeline as described in 2.2.2,
was run, producing mitochondrial-nuclear correlation matrices for both correction

strategies.

This analysis relied on the assumption that the cell type proportions were rep-
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GTEX tissue Sample number (N)
Anterior cingulate cortex 65
Caudate basal ganglia 86
Cortex 78
Cerebellum 89
Cerebellar hemisphere 69
Frontal cortex 76
Hippocampus 67
Hypothalamus 62
Nucleus accumbens basal ganglia 74
Putamen basal ganglia 64
Spinal cord (cervical c1) 49
Substantia nigra 43

Table 2.3: Sample numbers input to GTEx cell type correction analysis, resulting from
samples available for each GTEx tissue which also had available cell type pro-
portion data (as derived from Donovan et al., (2020)).

resentative of the cellular composition of GTEx CNS regions. However, several
factors affected the accuracy of the proportion estimates. Firstly, they were derived
using murine brain scRNA-Seq data, representing a species mismatch. Secondly,
technical factors such as the dissection protocol (excision order and resulting RNA
degradation), the size of each target region and the accuracy of tissue excision. In
the Donovan et al., (2020) scRNA-Seq data, cell type proportions were assigned to
the GTEX spinal cord tissue, which was not in fact dissected from the mice, as per
the author’s dissection protocol 7). However, proportions for the spinal cord were
indeed present in the cell type proportion data. As such, these proportions cannot
be considered to accurately represent the cell type composition of the spinal cord.
Considering these factors, a subset of GTEx CNS regions that were most accurately
represented by the available cell type proportion estimates were selected. To ro-
bustly select these, 20 axes of variation were calculated from GTEx CNS RNAseq
data (using PEER v1.05211981) on all samples, obtaining 20 PEER factors for each
region. These were correlated with the cell type proportion estimates to under-
stand whether the cell type proportions represented the cell type composition of
each GTEx CNS region. The underlying logic here was that larger axes of variation

would correlate strongly with the cell type proportion estimates, but only if those
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estimates accurately represented the tissue.

Five CNS regions (anterior cingulate cortex, cortex, frontal cortex, hippocam-
pus, caudate basal ganglia) were identified for which top PEER factors (explaining
most variance in the data) were correlated with cell type proportions. In these re-
gions there were fewer spurious correlations with cell types across the 20 PEER
factors, and PEER factors explaining most variance (PEER 1 and 2) were highly
correlated (p >0.6) with cell types, indicating better representation of these re-
gions by the cell type proportion data. To obtain a measure for cross-CNS vari-
ation of mitochondrial-nuclear relationships, variances were calculated for each
mitochondrial-nuclear gene pair across these five regions. This was done for corre-
lation values produced by both correction strategies. Finally, to understand whether
the cell type influenced cross-CNS variation in mitochondrial-nuclear correlation
distributions, a two-sample Wilcoxon signed rank test was performed. The null
hypothesis was that the true location shift from standard to standard and cell type
correction -derived distributions was <0 (i.e. a negative shift in variance, closer to
a median of zero in the latter). One-sample Wilcoxon tests were also performed for
each correction strategy to test the null hypothesis that the median of the distribution

of variances was equal to zero.

2.2.6 Testing disease-relevant gene lists against a random back-

ground

The aim of this analysis was to determine whether specific disease-relevant gene
sets had more extreme distributions of mitochondrial-nuclear gene expression cor-
relations than a random, equally sized, set of genes. To this end, four gene sets
were analysed (sets 1, 2, 5 and 6 below). The analysis was subsequently expanded
to incorporate seven gene sets in order to validate emerging findings and further test
the hypothesis with smaller, more specialised sub-lists of disease genes. The total
catalogue of the seven sets used is as follows: (1) A set of 35 AD-associated genes
of interest were derived from a recent AD GWAS!!%1. This study analysed SNPs
in clinically diagnosed cases (71.88K) and controls (383.378K), identifying >20

AD-associated loci. (2) A set of 62 PD-associated genes of interest were selected
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on the basis of eQTL data from a recent PD GWAS %!, This study analysed 7.8M
SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases, and 1.4M controls, identi-
fying 90 signals at genome-wide significance. The Genomics England PanelApp
tool gives sets of clinically curated genes associated with disease through rare high
effect variants!!1%. The following panels were downloaded from this resource: (3)
Early onset dementia (28 genes). (4) PD and complex PD list (43 genes). This
panel contains genes associated with early onset and familial Parkinson’s disease
as well as complex Parkinsonism. (5) Adult onset ND disorders (110 genes). This
panel is a super-set, including the early onset dementia and PD PanelApp panels as
well as genes from other ND-related panels wherein variants are known to cause
ND. (6) Intracerebral calcification disorders (21 genes) used as a negative control
because the pathogenesis of these disorders is distinct from AD and PD. (7) A set
of genes curated by OMIM (Online Mendelian Inheritance in Man) including genes
associated with PD phenotypes (24 genes, OMIM accession: #PS168600).

For each GTEx CNS region, r, and each gene set, /, the median mitochondrial-
nuclear correlation value of [ for r was calculated.  The distribution of
mitochondrial-nuclear pairs was inclusive of all mitochondrial correlations for
each nuclear gene, making the size of the distribution (length of /)*13. To generate
empirical distributions, a random sample of nuclear genes of matching biotype and
length, /, was selected from the set of genes expressed in all GTEx CNS regions
(15,001) and all correlations with mtDNA genes were included.

A two-tailed test was carried out to determine whether / had a more extreme
median mitochondrial-nuclear correlation value than could be expected by chance.
To this end, the median of / was compared to the medians of 10,000 randomly
selected gene sets. P-values were calculated as follows, where k is the number of
randomly selected sets, and 7 is the number of correlations more extreme than the

median of [:
P=(k+n)/k

A series of significance thresholds of increasing stringency were calculated

to reflect the number of tests performed, taking into consideration the num-
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ber of tissues and the number of gene sets analysed. The significance of re-
sults was assessed against the following Bonferroni multiple-test corrected P
value thresholds: 0.05/12<P<0.05; 0.05/12*(number of gene sets)<P<0.05/12;
P<0.05/12*(number of gene sets).

2.2.7 Case-control analysis of ROSMAP data

To identify mitochondrial-nuclear gene pairs that are modulated in disease states,
the ROSMAP case-control AD dataset was used. Due to cell type proportion
changes related to disease pathogenesis in AD brain tissue, correction for cell type
proportion was carried out (additional to the covariates listed in section 2.2.2.1)
using deconvolution-derived cell type proportions! ! 1121131 "The cell type propor-
tion distributions for the case and control ROSMAP data are shown in figure 2.4. To
quantify changes in mitochondrial-nuclear coexpression, aggregation over mtDNA-
encoded genes was carried out for the case and control data separately by taking the
median Spearman’s p value for each nuclear gene. The difference between these
values was then calculated (Pconsror - Pease) for each gene pair, giving case-control
delta values, Ap.

To identify pathways enriched in high Ap values (i.e. pairs with large case-
control disparities), the GSEA method was applied using the fGSEA R pack-
age''#1 The inputs into f{GSEA were gene lists ranked by Ap and split by di-
rectionality. With a separate positive and negative correlation list, the sign of the
Ap in each case relates to whether a gene pair’s correlation magnitude has increased
or decreased in case in comparison to control. As such, any enrichments are inter-
pretable as being related to case-control shifts. The fGSEA parameters used were
as follows: ’GQO’ as the annotation source; minimum and maximum size of terms
set to 15 and 2000 respectively. fGSEA was run using the fgseaMultilevel function

and output was visualised using the plotGseaTable function.

2.3 Results

Since mitochondrial processes are important in CNS tissue and their perturbation is

thought to have a role in several NDs, the aim was to identify whether relationships
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Figure 2.4: Distributions of ROSMAP cell type proportions derived by Donovan et al.,
(2020) for control samples (blue), and AD case samples (red).

between expression levels of mtDNA and nDNA -encoded genes vary across CNS
regions, cell types and ND status. To do this, Spearman correlation coefficients were
calculated between all mtDNA and nDNA -encoded gene pairs, after regressing out
covariates (see section 2.2.2.1). RNA-Seq was leveraged from 12 CNS tissues de-
rived from the GTEX project for analyses in healthy tissue, and frontal cortex tissue

from the ROSMAP project AD dataset for analyses in a case-control paradigm.

2.3.1 Mitochondrial-nuclear correlations across the human
CNS

In order to investigate correlations in mitochondrial-nuclear gene expression across
all CNS regions, Spearman correlation coefficients were calculated for each pair
of nDNA and mtDNA -encoded genes (15,001 and 13 genes respectively, mak-
ing a total of 195,013 comparisons) in each of the 12 GTEx CNS regions. Dis-
tributions of the correlation values for each CNS region were visualised as den-

sity plots to facilitate cross-CNS comparison (Figure 2.5a). CNS regions were ob-
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Figure 2.5: Distributions of mitochondrial-nuclear expression correlation coefficients
(Spearman p) for each GTEx CNS region. A. Mitochondrial-nuclear p dis-
tributions for 12 GTEx CNS regions. B. Panel to show p distributions of the
putamen basal ganglia and caudate basal ganglia regions. C. Panel to show
distributions of the cerebellar hemisphere, hypothalamus, and substantia nigra
regions.

served to have distinct and variable mitochondrial-nuclear correlation distributions.
While some regions showed Gaussian-like distributions (cerebellar hemisphere, hy-
pothalamus, substantia nigra) (Figure 2.5¢), others showed dispersed distributions,
containing more high magnitude relationships, and fewer neutral correlations (cau-
date basal ganglia, putamen basal ganglia) (Figure 2.5b). Qualitative analysis re-
vealed mitochondrial-nuclear distribution similarity within GTEx CNS tissues de-
rived from the same broad regional classification (fore-brain, mid-brain and hind-
brain). To confirm this quantitatively, unsupervised Euclidean clustering of regional
correlation coefficients across all CNS tissues was performed (Figure 2.6). This
identified biologically meaningful clusters, whereby cortical regions and distinct re-

gions of the basal ganglia (putamen, nucleus accumbens and caudate) were grouped
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Figure 2.6: Euclidean clustering of 12 GTEx CNS regions, where clustering was performed
across tissues based on tissue-tissue correlation coefficients (indicated on each
tile, Spearman p).

together, which appears to reflect functional specialisation in the human brain.

2.3.2 The contribution of cell type composition to mitochondrial-

nuclear correlations

To understand the patterns observed in figure 2.5, the following hypothesis was
formed: regional differences in cell type composition contribute to regional differ-
ences in mitochondrial-nuclear correlation profiles. To test this, it was considered
whether cell type markers were enriched at the positive and negative extremes of

the correlation coefficient distributions. This analysis was performed for each GTEx
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Figure 2.7: EWCE-derived cell type enrichments for 12 GTEx CNS regions. The left-hand
y-axis refers to the GTEx CNS region, while the right-hand facet labelling
refers to the cell type. For each cell type in each region, the metric for en-
richment is shown as the number of standard deviations from the bootstrapped
mean (SD from mean, indicated by the colour bar). The x-axis indicates which
scRNA-seq dataset the underlying cell type specificity matrix was derived from.
For each association, the following asterisks are overlaid to indicate the mul-
tiple test correction threshold passed: *0.05/12 <P< 0.05; **0.05/12*6<P<
0.05/12; ***P<0.05/12*6.
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CNS region using the Expression Weighted Cell Type Enrichment (EWCE) method,
which tests whether a given set of genes is expressed more highly in a cell type of
interest than might be expected by chance!%]. Cell type specificity data were de-
rived from two human brain snRNA-Seq experiments, the first of which used middle
temporal gyrus nucleil! 13!, and the second used hippocampus and prefrontal cortex
nuclei!!'®). The input to this method was nDNA-encoded genes derived from gene
pairs in the highest 5% of positive correlations and highest 5% of negative correla-

tions for each region.

Genes with a high specificity for neuronal cell types (GABAergic and glu-
tamatergic) were significantly enriched (P<0.05, Bonferroni-corrected for regions
and gene sets) in negative mitochondrial-nuclear gene pairs across CNS regions
(Figure 2.7). In contrast, genes with a high specificity for non-neuronal cell
types (astrocytes, microglia) were significantly enriched in positive mitochondrial-
nuclear gene pairs (P<0.05 in 6/12 regions for astrocytes; P<0.05 in 5/12 regions
for microglia, Bonferroni-corrected for regions and gene sets), the exception to this
being oligodendrocytes (Figure 2.7). A strong cross-CNS signal for oligodendro-
cyte marker enrichment was observed in negatively correlated pairs (P<0.05 in
10/12 regions, Bonferroni-corrected for regions and gene sets), coupled with no
significant enrichment detected in positively correlated pairs. For astrocytes and
microglia, a trend towards marker enrichment in positive pairs over negative pairs
across the CNS was observed. Reassuringly, related regions displayed similar cell
type enrichment profiles, indicative of biological functionality being reflected in
these enrichments. For example, GTEx-defined 1% technical sample replicates (the
cortex and frontal cortex, and cerebellum and cerebellar hemisphere) as well as re-
gions closely biologically associated such as the basal ganglia (putamen, nucleus

accumbens and caudate), demonstrated consistent patterns of cell type enrichment.

To further test the posited hypothesis, published cell type proportion esti-
mates!!%7) were leveraged to determine whether correcting GTExX expression data
for the effect of cell type proportions would result in more homogeneous cross-CNS

mitochondrial-nuclear correlation profiles. To this end, five GTEx regions (see sec-
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Figure 2.8: Demonstrating the effect of cell type correction on mitochondrial-nuclear cor-
relation distributions in GTEx data. A. Heatmap to show correlations between
PEER factors (generated from TPM values) and estimated cell type proportions
for five GTEx CNS regions selected to be best represented by these estimated
cell type proportions. Annotations correspond to Spearman’s p values. B. A
barplot to summarise part A, the median PEER cell type correlation value for
each PEER factor is shown for the same five CNS regions. C. Distribution
of gene-pair (195000 mitochondrial-nuclear pairs) variances across the five
GTEx CNS regions for both correction strategies (standard and standard-cell
type). A Wilcoxon signed rank test was carried out to test the null hypoth-
esis that the median of the cell type -standard corrected correlation data was
not less than that of the standard corrected data (P<2.2e-16). Boxplots display
the median, upper quartile (Q3) and lower quartile (Q1), with whiskers ex-
tending to Q3+1.5*IQR and Q1-1.5*IQR. Diamond points represent outliers
above Q3+1.5*IQR or below Q1-1.5¥*IQR. D. Density plot for the five se-
lected CNS tissues, faceted by correction, showing the distribution of nuclear-
mitochondrial correlation values under each correction strategy.
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tion 2.2.5) were included for which the cell type proportions were determined to
be most representative (Figure 2.8a and b). Distributions of cross-regional Spear-
man correlation variances per mitochondrial-nuclear gene pair were compared with
and without correction for cell type proportions. Applying this approach, distribu-
tions of variances were found to be significantly different to each other (two-sample
Wilcoxon signed rank test, P<2.2e-16), but the medians of both distributions were
also significantly higher than O (one-sample Wilcoxon signed rank test, P<2.2e-
16 for mitochondrial-nuclear distributions derived from both correction strategies)
(Figure 2.8c and d). Thus, cell type proportion was been found to be a modulator
of cross-CNS variation in mitochondrial-nuclear correlations. However, it is impor-
tant to note that regional specialisations still existed after correcting for cell type

proportions.

2.3.3 Cross-CNS variability of mitochondrial-nuclear correla-

tions

Having established the importance of cell type composition in driving variation
mitochondrial-nuclear correlation profiles variation across the CNS, the aim was
to identify biological processes associated with this variation. To find out which
mitochondrial-nuclear gene pairs varied across the CNS, the variance of correla-
tions for each mitochondrial-nuclear gene pair across the CNS was calculated. To
reduce redundancy, aggregation of mtDNA-encoded genes was performed, taking
the median cross-CNS variance of 13 mtDNA genes as the representative value for
each nDNA gene (validity of this demonstrated in Figure 2.3, where homogeneity
of mitochondrial-nuclear correlation across mtDNA genes can be observed). A cor-
relation directionality was then assigned to each pair (see example in Figure 2.9a).
Using this methodology, four gene sets were defined: (1) ‘high variance positive’:
top 5% nDNA genes with the most variable relationships with the mitochondrial
genome across brain regions (N=605); (2) ‘high variance negative’: top 5% nuclear
genes with the most variable relationships with the mitochondrial genome across
brain regions (N=145); (3) ‘low variance positive’ (N=387); (4) ‘low variance nega-

tive’ (N=387). These gene sets were used as input for the gene ontology enrichment
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Figure 2.9: Visualisation of cross-CNS gene pair correlation variances in GTEx data and
the processes enriched in four variance-defined gene sets. A. Schematic to
visualise generation of cross-CNS variances. For each mitochondrial-nuclear
gene pair, a variance is taken of its per-tissue Spearman’s p values. The pair
is assigned a directionality (sign) based on the majority directionality of its p
values. B. Density plot of the distribution of cross-CNS mitochondrial-nuclear
gene pair variances. The left-hand dotted line enclosing the shaded red area is
the cut-off for ‘low variance’ gene pairs, the right-hand dotted line enclosing
the blue shaded area is the cut-off for ‘high variance’ gene pairs. C. SynGO
(synaptic gene ontology) output showing the top five enrichments for the high
variance negative nuclear gene set. P-values are FDR-adjusted. D. gProfiler2-
derived enrichments for four nuclear gene sets: high variance negative, high
variance positive, low variance negative and low variance positive. The dot-
ted line indicates a 5% significance cut-off. P-values were corrected using the
gProfiler g:SCS method, optimised for enrichment analysis P value correction.

Overall, the distribution of variances was highly skewed towards zero, demon-
strating that the vast majority of mitochondrial-nuclear pairs are stably correlated

across all CNS regions (Figure 2.9¢). In gene pairs that showed consistency across
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CNS regions, enrichment was observed for VEGF ligand-receptor interactions in
the positive correlation set (set 3 above, P=8.12e-04, corrected for multiple tests),
whereas RNA processing (set 4 above, P=7.72e-3, corrected for multiple tests) was
enriched in the negative correlation set (Figure 2.9d). Amongst the nuclear genes
with the most variable relationships to the mitochondrial genome across brain re-
gions, enrichment of phosphodiesterases in neuronal function as the only significant
term for the positive (set 1) and synaptic terms in the negative set (set 2), with the
most significant term being glutamatergic synapse (P=1.42e-06, corrected for multi-
ple tests) (Figure 2.9d). To explore this enrichment further, SynGO!"%4, a specialist
synapse ontology enrichment tool, was leveraged and found significant enrichment
in the high variance negative list only. This set was highly significantly enriched
for postsynaptic terms (P=3.4558e-20, FDR-corrected) with 3/5 of the most signif-
icant terms relating to this structure (Figure 2.9b). Of the 28 significant terms, 13
related to ‘postsynaptic’ structures or processes and 5 related to ‘presynaptic’ (see
table A.1 in Appendix A for all significant terms). Overall, this analysis identified
sub-cellular specificity in mitochondrial-nuclear correlations across the CNS. More
specifically, variable mitochondrial-nuclear relationships highlighted genes associ-

ated with postsynaptic processes.

2.3.4 Replicating correlations in independent data

To determine whether the patterns of mitochondrial-nuclear correlation observed
in GTEx brain data were robust, neurological control samples from the ROSMAP
dataset were utilised. Since ROSMAP data are derived from dorsolateral prefrontal
cortex tissue, the findings were compared to those generated from the GTEx frontal
cortex tissue only, utilising the same pipeline was used for the GTEx data.

Overall, Spearman’s p values for all mitochondrial-nuclear gene pairs showed
high correlations between GTEx and ROSMAP data (Spearman’s p=0.59, P<2e-
16, for 13,640 nDNA genes that were expressed in both datasets), highlighting the
consistency of mitochondrial-nuclear relationships in CNS tissue (Figure 2.10a).
Inspection of correlation distributions across the two datasets revealed greater simi-

larity at high Spearman’s p magnitudes, likely due to the greater certainty associated
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with those correlations (Figure 2.10a). Next, the replicability of the top 5% (ranked
by Spearman correlation magnitude) positively and negatively correlated gene pairs
was analysed. This found that 817 nuclear genes were in the top 5% of negative
pairs for both datasets, and 588 nuclear genes were found in the top 5% of positive
pairs for both datasets (Figure 2.10b). As such, 36% (top 5% positive) and 52%
(top 5% negative) of the GTEx-derived gene sets are composed of the same genes
when derived from ROSMAP data.

Given these findings, replication analyses were subsequently extended to un-
derstand whether cell type -specific enrichments identified in GTEx frontal cor-
tex were robust across datasets. Repeating the EWCE analysis (see section 2.2.4)
using the top 5% positive and negative gene lists generated from the ROSMAP
control data (Figure 2.10c), highly similar patterns of cell type enrichment can
be observed across datasets. There was significant enrichment of genes with high
neuronal specificity in negatively correlated mitochondrial-nuclear pairs (P<0.05,
Bonferroni-corrected for regions and gene sets) (Figure 2.10c). Additionally, there
was significant enrichment of genes with high specificity to astrocytes (P<0.05,
Bonferroni-corrected for regions) and microglia (P<0.05, Bonferroni-corrected for
regions and gene sets) amongst positively correlated mitochondrial-nuclear pairs.
Enrichment of oligodendrocyte marker genes in negative pairs was also replicated
in the ROSMAP frontal cortex data (P<0.05, Bonferroni-corrected for regions and
gene sets) (Figure 2.10c). Thus, robust replication of EWCE cell type enrichments
in the ROSMAP data was achieved. Specifically, neuronal enrichment in the neg-
ative mitochondrial-nuclear space, and glial enrichment in the positive space were

found to be highly reproducible.

2.3.5 Examining mitochondrial-nuclear correlations for genes

implicated in neurodegenerative disease

Given the robust nature of mitochondrial-nuclear relationships and their associa-
tion with specific cell types in CNS tissue, the aim was to investigate whether
genomic cross-talk is relevant to the aetiology of NDs. To this end, the analysis

tested whether mitochondrial-nuclear correlation distributions for genes implicated
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Figure 2.10: Replication of the mitochondrial-nuclear correlation values and cell type en-

richments discovered in GTEx frontal cortex in an independent frontal cor-
tex dataset (ROSMAP control samples). A. Density-contour plot to show
all mitochondrial-nuclear gene pairs commonly expressed in both datasets
(177,320). ROSMAP p values are plotted on the x-axis, and GTEx p values
are plotted on the y-axis. The Spearman correlation for the overall bi-dataset
correlation and corresponding P-value for the p statistic is given in the top
right of the plot (Spearman’s p=0.59, P<2e-16). B. Upset plots to show num-
bers of unique nuclear genes found in the top 5% positive (left-hand plot) and
top 5% negative correlations in the two datasets, and the overlap size of these
gene sets. 817 nuclear genes were found in the top 5% of negative pairs for
both datasets, and 588 nuclear genes were found in the top 5% of positive
pairs for both datasets. Thus, 52% and 36% of unique nuclear genes from
negative and positive mitochondrial-nuclear pairs discovered in GTEx repli-
cate in the ROSMAP control dataset. C. EWCE-derived cell type enrichments
for GTExX frontal cortex and ROSMAP frontal cortex. The y-axis denotes the
RNA-seq source. For each association, the following asterisks are overlaid
to indicate the multiple test correction threshold passed: *0.05/12<P<0.05;
*%0.05/12*6<P<0.05/12; ***P<(0.05/12*6.
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in NDs were significantly different to distributions generated using random sets of

genes (Figure 2.11).

Four gene sets were tested in the first instance: two sets derived from AD[10]
and PD![%] GWA studies respectively (implicating genes through analyses of com-
mon variants), a gene set from the Genomics England Panel App containing genes
implicated in rare Mendelian forms of adult onset ND, and a second PanelApp list,
intracerebral calcification disorders!'!%1, as a negative control. These were largely
independent sets, with minimal overlap in the genes included (for visualisation of
gene set overlaps, see upset plot in Figure 2.12). Genes associated with AD through
GWA studies were found to have mitochondrial-nuclear correlations which were
nominally different (did not pass multiple test correction) from random gene sets
in cortex (P=0.0206) and substantia nigra tissues (P=0.0273) (Figure 2.11a). Simi-
larly, a nominally significant distribution shift was observed in hypothalamus tissue
using the gene set implicated in sporadic PD (P=0.0163). In contrast to this, genes
associated with adult onset ND displayed highly significant shifts in the majority of

CNS regions (P<0.05, Bonferroni-corrected for regions and gene sets).

To test whether these findings were specific to a subset of NDs, mitochondrial-
nuclear correlations among genes implicated in intracerebral calcification disor-
ders (ICDs) were utilised as a negative control. Unlike AD and PD, ICD-induced
neurodegeneration is caused by calcium deposition in the brain’s vasculature or
parenchyma. No significant difference was found between this gene set and empir-

ical distributions in any CNS tissues.

The PanelApp adult onset ND gene set is an umbrella set, incorporating genes
in the smaller and more specific ‘early onset dementia’ and ‘PD and complex PD’
Panel App gene sets (for visualisation of overlaps, see upset plot in Figure 2.12b). As
such, it was asked whether these more specific disease-related subsets also had sig-
nificant relationships to the mitochondrial genome. The analysis was subsequently
expanded to include these gene sets, and set more stringent significance cut-offs to
consider the increased number of tests. Genes implicated in Mendelian forms of PD

(PanelApp ‘PD and complex PD’) showed significant differences in mitochondrial-
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Figure 2.11: Visualisation of ND gene set associations with the mitochondrial genome.

A. Heatmap to show P-values associated with the median of four ND-
related gene sets being more extreme than that of 10,000 random gene
sets in 12 GTEx CNS regions. Raw P-values (below P<0.05) are repre-
sented by the colour scale, with the following asterisks overlaid to indi-
cate which multiple test correction thresholds are passed: *0.05/12<P<0.05;
**0.05/12*4<P<0.05/12; ***P<0.05/12*4. Grey squares indicate associa-
tions for which P>0.05. B. Visualisation of the results in part A, for the AOD
target set only. The target gene set distribution is shown in blue and the distri-
butions of 10,000 random size-matched gene sets are shown in green. Vertical
dotted lines represent the medians of the target gene set (blue) and the central
median of the 10,000 bootstrap sets (green). This figure was produced using
the MitoNuclearCOEXPlorer tool [!17,
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nuclear correlations in 7/12 brain regions (P<0.05, Bonferroni-corrected for re-
gions and gene sets), including the basal ganglia (P<0.05 for putamen, caudate and
nucleus accumbens basal ganglia, Bonferroni-corrected for regions and gene sets)
which are among the most disease-relevant tissues (Figure 2.12c). Similarly, genes
associated with early onset dementia were found to have significant differences in
mitochondrial-nuclear correlations in the majority of regions (P<0.05, Bonferroni-
corrected for regions and gene sets).

Notably, in all cases, the ND-associated nuclear genes had more negative cor-
relations with mtDNA gene expression than would be expected by chance. Inter-
estingly, among the ND-implicated genes with the strongest mitochondrial-nuclear
correlations was APP (in the top 1%, ranked 54/5898 of the negative mitochondrial-
nuclear pairs), which encodes the precursor protein whose proteolysis generates
amyloid beta (Af), the primary component of amyloid plaques. As well as
this, highly significant mitochondrial-nuclear relationships were observed for some
genes confidently associated with complex PD!6>], such as PSAP (Figure 2.13). In-
terestingly, in PSAP knockout iPSC lines ROS production was seen to increase com-
pared to controls!!!8]. As such, this analysis identifies high mitochondrial-PSAP
association, lending support to this gene being important in core mitochondrial pro-
cesses such as ROS-production.

Taken together, expression levels of genes causally implicated in a sub-
set of NDs show stronger relationships with mtDNA gene expression than ex-
pected by chance. This analysis can be performed with a user-specified gene
list using the accompanying tool available at the following URL: ainefairbrother-

browne.shinyapps.io/MitoNuclearCOEXPlorer/.

2.3.6 Analysis of mitochondrial-nuclear correlations in Alzheimer’s

disease brain tissue

Finally, mitochondrial-nuclear correlations were analysed in post-mortem brain
samples originating from individuals with AD and from matched neurological con-
trols. The data were covariate corrected in the same way as for the GTEx data, but

with the addition of Scaden-derived cell type proportions to account for disease-
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Figure 2.12: Determining whether ND-related gene sets have non-random associations
with the mitochondrial genome. A. UpSet plot to show the overlap between
the four gene sets included in the ‘primary’ disease gene analysis (see section
2.2.6 for gene set details). B. UpSet plot to show the overlap between gene
sets included in the ‘secondary’ disease gene analysis (see section 2.2.6 for
gene set details). C. Heatmap to show P-values associated with the median of
11 ND-related gene sets being more extreme than that of 10,000 random gene
sets in 12 GTEx CNS regions (*0.05/12<P<0.05; **0.05/12*7<P<0.05/7;
*#4P<0.05/12%7).
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*0.01¢p<0.05, ** 0.001<p<0.01, *** p<0.001
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Figure 2.13: PSAP mitochondrial-nuclear correlations across GTEx tissues and in AD
and control samples. A. MitoNuclearCOEXPlorer-generated visualisation of
PSAP-mitochondria correlations across GTEX tissues. B. PSAP-mitochondria
correlations derived from the ROSMAP dataset. Where Ctrl_r represents cor-
relations (13 data points) in control samples, and Case_r represents correla-
tions (13 data points) in control samples.
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induced changes in cell type density. The difference in the correlation values be-

tween cases and controls for each mitochondrial-nuclear gene pair was calculated,

resulting in case-control delta scores (Ap) (Figure 2.14a).
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High levels of consistency between case and control mitochondrial-nuclear

correlation values were observed, with 76% of pairs displaying a Ap of <0.1 (Fig-

ure 2.14b). However, the presence of gene pairs displaying high delta scores was

noted. In these pairs, coexpression had shifted in AD samples relative to controls

(Figure 2.14b). Given that changes in cell type proportions had been corrected
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for, these shifts likely represent disease-associated disruptions in mitochondrial-
nuclear coexpression that have the potential to drive to AD pathogenesis. To un-
derstand whether nuclear genes involved in specific biological processes were rep-
resented amongst mitochondrial-nuclear gene pairs with high delta scores, Gene
Set Enrichment Analysis (GSEA) was applied. First, gene pairs were split by their
mitochondrial-nuclear correlation directionality, with the intuition that positive and
negative correlations are representative of distinct transcriptional control mecha-
nisms. 1.1% of significant shifts were observed among genes that switched direc-
tionality (Figure 2.14a) — these were excluded from the analysis. This yielded two
gene sets (-Ap and +Ap scores), which were then ranked by their absolute Ap score

(Figure 2.14a).

In the negative correlation set, f{GSEA detected 55 significant enrichments.
The three most significant terms were synapse (P=3.5e-04, Bonferroni-Hochberg
(BH) corrected), neuron to neuron synapse (P=4.6e-03, BH-corrected) and cell pro-
jection organisation (P=4.6e-03, BH-corrected), detected among gene pairs that dis-
play stronger relationships in case samples compared with controls. Three of the 55
enrichments (vacuolar lumen, and lysosomal lumen and lipoprotein metabolic pro-
cess) were detected among gene pairs with negative mitochondrial-nuclear correla-
tions that show weaker association in AD samples compared with controls. Within
these sets, individual genes of specific interest for AD showed particularly large
absolute Ap scores. First, MTLN (rank 69/14,327 gene pairs with mean corre-
lation taken across 13 mtDNA genes, ranked in the top 0.5% of Ap values) en-
codes a protein product that is known to localise to the mitochondrial inner mem-
brane, where it influences protein complex assembly and modulates respiratory ef-
ficiency, impacting on respiration rate, Ca2+ retention capacity and ROS 1191201,
making it of particular interest in a disease context. Second, PSAP (max Ap=0.13,
mean Ap=549/4653 ranked in the top 12% of decreasing -Ap values) is a leading-
edge gene for the lysosomal lumen enrichment and also displays highly significant
mitochondrial-nuclear relationships across brain regions (Figure 2.13). This gene

is of interest in the context of AD due to its known anti-inflammatory and neuro-
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protective roles!12!1 as well as its identification as a biomarker of preclinical AD
cases, enabling discrimination from control samples!!??]. No enrichments reaching

BH significance were detected in the positive correlation list.

2.3.7 The MitoNuclearCOEXPlorer tool

Alongside the publication containing this work!!17], a tool was released enabling
analyses performed in the publication to be performed with a user-specified gene
list (Figure 2.15). The tool allows for: (i) single gene querying of the corre-
lation data, (i1) assessment of association with mtDNA gene expression with a
gene list (as in Figure 2.11), (ii1) generation of publication-quality visualisations
for all analyses and download of processed data. The MitoNuclearCOEXPlorer
tool can be found at the following URL: ainefairbrotherbrowne.shinyapps.io/
MitoNuclearCOEXPlorer. The accompanying source code can be found at

github.com/ainefairbrother/MitoNuclearCOEXPlorer.

MitoNuclearCOEXPlorer ~ Weicome  Explore data with gene  Explore data with gene set  Download
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Figure 2.15: Screen captures demonstrating the MitoNuclearCOEXPlorer web application.
The top left pane is a screen capture of the home page, which gives aims,
methods and usage examples for each analysis available within the tool. The
bottom left pane shows the interface for analysis (i) described above. The
right-hand pane shows the interface for analysis (ii) described above.
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2.4 Discussion

This work aims to understand mitochondrial-nuclear coordination patterns across
the human CNS. CNS regional cell type composition was found to contribute
to regional variation in coexpression, reflecting functional specialisation, specifi-
cally at synapses. Using an independent frontal cortex dataset, high replicability
of mitochondrial-nuclear correlation distributions and cell type-specific correlation
profiles was demonstrated. Nuclear genes causally implicated in PD and AD were
found to have much stronger relationships with the mitochondrial genome than ex-
pected by chance. Finally, mitochondrial-nuclear relationships were found to be
highly perturbed in AD cases, particularly those involving synaptic and lysosomal

genes.

A key finding of this study was the identification of cell type as a contributor
to the distinct patterns of mitochondrial-nuclear coexpression across CNS regions.
Neuronal markers were enriched in negative mitochondrial-nuclear correlations, in
contrast to glial (astrocytic and microglial) markers which were enriched in positive
correlations. Additionally, a reduction of cross-CNS variation in mitochondrial-
nuclear correlations was observed when correcting for cell type proportions, indi-
cating that depletion of cell type -specific signals reduces the regional specificity of
mitochondrial-nuclear relationships. Notably, correction for cell type significantly,
but not entirely, depleted cross-regional variation, indicating that although cell type
is a significant contributor, there are additional drivers of cross-regional variation in

mitochondrial-nuclear relationships.

The finding that cell type significantly contributes to regional variation in
mitochondrial-nuclear association could be explained by cell type-specific mito-
chondrial specialisation. These analyses assay a proxy for the nuclear associa-
tion with ATP synthesis, and so capture a single aspect of mitochondrial function.
In fact, mitochondria have many other important roles in cells, such as calcium
buffering, which may vary across different cell types. As such, the division of
mitochondrial-nuclear correlation directionality between cell types could be the re-

sult of divergent functionality among the mitochondria of these cell types. This is a
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view supported by proteomic cell type -specific profiling of brain mitochondria. Re-
cent work has revealed notable molecular and functional diversity of mitochondria
across cell types, with astrocytic mitochondria found to perform the core cellular
functions of long-chain fatty acid metabolism and calcium buffering with greater
efficiency than mitochondria in neural cell types[*!!. Another linked explanation for
cell type -specific correlation directionality is that it is driven by core differences in
energy management strategies between cell types. In energetically demanding cell
types such as neurons, anti-correlation could reflect the need for tighter OXPHOS
regulation to protect against excessive ROS production, with post-transcriptional
processes perhaps being used to manage local, flexible regulation of energy supply.
Interestingly, oligodendrocytes were the exception among the glial cell types, dis-
playing neuron-like enrichment in negative mitochondrial-nuclear correlations. In
this context, it is worth noting that while oligodendrocyte metabolism is poorly un-
derstood, their central role in myelin sheath production is highly energy intensive,
mirroring the high energy requirements of neurons!123:1241,

The synapse is the site of greatest energy expenditure in the neuron!!?>!. To
match energy supply and demand, the mitochondria in synaptic compartments dis-

[125].

play structural, biochemical and spatial plasticity To achieve this necessi-

tates equally flexible maintenance of the mitochondrial proteome, the exact mech-

anisms of which are not known 23],

The analysis set out in this chapter reveals
variable mitochondrial-nuclear relationships being highly significantly enriched for
synaptic marker genes, meaning that nuclear-encoded synaptic gene expression
and mitochondrial-encoded gene expression are differentially associated across the
CNS. The possibility was considered that this is simply tagging variability in re-
gional mtDNA expression; however, residual TPM values for the 13 mtDNA genes
demonstrate consistent cross-CNS expression (Figure 2.8a), suggesting that this is
not a core driver of the regional specificity of mitochondrial-nuclear correlation
profiles. It could be that this represents mitochondrial plasticity, where neuronal

subtype-specific variation in nuclear and mitochondrial expression is being cap-

tured. It is known that neuronal subtypes are energetically specialised, and that
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CNS tissues have differential neuronal subtype compositions!!26:127:128] - Syb-cell
type -specific expression modulation as a mechanism to manage local energy re-
quirements at synapses is supported by work finding that heterogenous energy re-
quirements across CNS regions and cell types may necessitate bespoke mitochon-
drial proteomes[125]. Further to this, molecular evidence shows that several nuclear-
encoded mitochondrial genes involved in processes key to mitochondrial plasticity
(mitochondrial transcription, fission and trafficking) have been found to exhibit dis-
tinct patterns of expression in neuronal subtypes!!?). Recent work using engineered
MitoTag mice coupled with an isolation approach to profile tagged mitochondria
from defined cell types has demonstrated profound cell type-specific mitochondrial
biology serving homoeostatic needs to preserve essential functions in cells*!!. And
yet, without directional information and cell type or sub-cell type -specific data, it
is difficult to make a firm assertion as to whether the underlying mechanism is an-
terograde modulation of the mitochondrial genome from the nucleus, or retrograde
modulation of the nuclear genome by the mitochondria, or perhaps a feedback loop

involving both.

Uniquely to the field of mitochondrial-nuclear cross-talk, this chapter looks at
its genome-wide relevance with respect to a range of NDs. Testing the associa-
tion of ND-implicated genes with the mitochondrial genome demonstrated signifi-
cant non-random correlations between mtDNA gene expression and ND-implicated
nuclear genes. While genes implicated in PD and AD through GWAS analyses
showed nominally significant associations with the mitochondrial genome, it should
be noted that as well as potential inaccuracies in variant-gene assignments within
these sets, the effect sizes of the variants nominating the genes is likely to be small,
weakening the analysis. Interestingly, this view is supported by high confidence en-
richments of mitochondrial-nuclear association in nuclear gene sets associated with
Mendelian forms of the same diseases. Mendelian AD and PD genes displayed
highly significant shifts from random, all of which were towards higher negative
correlation magnitudes, and highlighted particularly strong correlations among im-

portant ND genes. In fact, APP, the first gene to be causally implicated in AD,
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ranked in the top 1% of all pairs with negative associations.

Given these findings, the hypothesis was that analysing changes in
mitochondrial-nuclear correlations in the context of AD would provide impor-
tant disease insights. To look at this, the AD case-control ROSMAP dataset was
leveraged. After correcting for cell type proportion, an enrichment of synaptic
terms among nuclear genes which were negatively correlated with mtDNA gene
expression was observed. These genes had stronger relationships in the context
of AD than in control samples (i.e. high case-control correlation difference, Ap,
gene pairs). Given the close relationship between synapses and mitochondria, with
multiple lines of evidence pointing not only to synaptic function being dependent
on mitochondria, but to mitochondrial regulation of synaptic plasticity, the tight-
ening coexpression here could represent a drive to recover energetic homoeostasis

at damaged synapses and increase their efficiency!130:131-1321,

In support of this,
mitochondrial efficiency enhancing gene MTLN31 was in the top 1% of increasing
negative associations. In particular the MTLN-MTCYB gene pair displayed a strik-
ing Ap. In control samples the pair had a non-significant correlation (p=-0.008,

P=0.93), but shifted to a highly significant association with a considerably higher

negative magnitude in case samples (p=-0.27, P=3.01e-05).

Interestingly, enrichment of lysosome-related terms (lysosomal lumen, vacuo-
lar lumen) was observed in negatively correlated gene pairs that weaken in case
samples relative to controls (Figure 2.14d). Lysosomes are essential for the removal
of dysfunctional mitochondria as well as other organelles and proteins, and there is
growing evidence to suggest that lysosomal dysfunction contributes to the patho-

genesis of AD, as well as PD133:134.133]

. Perhaps decoupling of nuclear genes in
these pathways from mtDNA gene expression represents a reduction in the efficacy

of dysfunctional mitochondria clearance, thus augmenting the pathology.

While this study yielded a number of robust findings, it is important to ac-
knowledge its limitations. One potential concern is the confounding effect of an-
cestry composition in the datasets used. Although both GTEx and ROSMAP are

largely comprised of individuals of European ancestry, some stratification does ex-



2.4. Discussion 77

ist, wherein both datasets contain non-trivial numbers of African American donors
and small proportions of donors with other ancestries!!3%-1901 Population stratifica-
tion has the potential to introduce systematic biases into transcriptomic studies, and
is particularly important with respect to studies of the mitochondrial transcriptome.
This is due to the fact that human populations can contain distinct mitochondrial
haplogroups whose mtDNA variants can impact levels of mtDNA-encoded tran-
scripts. To control for population substructure whilst retaining the full power of
the dataset, a common approach is to utilise genome sequencing data to calculate
genetic principle components (gPCs). These are eigenvectors that each explain a
proportion of inter-individual genetic variation in the dataset and gPCs can be cor-
rected for in the same manner as other covariates. However, this approach relies
on the presence of paired DNA and RNA sequencing for all participants, which is

unfortunately not the case for the cohorts utilised in this study.

A second potential limitation that is important to consider is the normalisation
strategy utilised. In this study, read counts were converted to TPMs to control for
gene length and library size. TPMs were then median normalised to improve inter-
sample comparison and logl0 transformed to remove skewness. Although this is
a standard approach utilised throughout the transcriptomic literature and in studies
similar to the present onel*6% future studies may consider a more tailored ap-
proach, as normalisation methods are known to have a large impact on downstream
interpretation of results. For example, an assumption of TPM normalisation is that

library composition is consistent across samples!!37]

. However, the percentage of
mtDNA-encoded reads is known to be variable between samples, even in the same
tissue. As such, in some samples, mitochondrial reads may constitute a large pro-
portion of the library, and in others they may constitute a smaller proportion!37],
Thus, in the former, nDNA-encoded transcripts would constitute a small proportion
of the library and in the latter a larger proportion. In this way, correlations derived
from mtDNA and nDNA -encoded transcript counts that are TPM normalised have

[137].

the potential to be confounded by library composition Given this, in-depth

assessment and subsequent use of normalisation methods that consider library com-
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position among other factors may improve the accuracy of downstream correlation
coefficients in future studies of mitochondrial-nuclear transcriptomic coordination.

This work surveys the mitochondrial-nuclear relationship broadly, across CNS
tissues and clinical states, providing further evidence for the role of mitochondrial-
nuclear co-ordination in ND. This chapter begins to examine disruption of the
nuclear-mitochondrial relationship in AD, the most common ND, for which a sub-
stantial post-mortem brain RNA-Seq dataset is available (ROSMAP). Leveraging
this, this work identifies, in the disease-relevant tissue, pathways and processes that
may be relevant to AD aetiology and could represent routes to dysfunction of that
are of particular importance for the development of disease modifying treatments.
However, as is the consensus in the literature, and is supported by these results,
it is PD, the second-most common ND, for which mitochondrial dysfunction is
thought to be a more central component. As such, understanding the involvement
of the mitochondrial-nuclear relationship may be particularly pertinent. Thus, in
the chapters that follow, the focus will shift to surveying the mitochondrial-nuclear
relationship in PD, utilising the Accelerating Medicines Partnership for Parkinson’s
(AMP-PD) project dataset!!38]. This project harmonises clinical and sequencing
data across individual PD cohort studies, resulting in the availability of high quality,
deeply sequenced, whole blood RNA-Seq data across many clinically profiled indi-
viduals and at multiple time-points for PD cases and healthy controls. As such, this
is a highly valuable dataset within which to interrogate the mitochondrial-nuclear
relationship in a pre-mortem tissue. The statistical power available through this
dataset permits expanding beyond looking at the mitochondrial-nuclear relation-
ship through the lens of coexpression, allows scrutiny of mitochondrial transcrip-
tional control across several forms of PD and makes it possible to study nuclear
genetic effects on mitochondrial expression, adding a directionality to the study of

this relationship.



Chapter 3

Understanding mitochondrial
transcription in monogenic and

sporadic Parkinson’s Disease

3.1 Introduction

Monogenic PD is caused by variation in a single gene and is characterised by
marked familial inheritance patterns. In contrast, sporadic (or idiopathic) PD is
associated with variants that collectively increase an individual’s risk, in addition
to environmental and environment-by-gene interaction contributions. Interestingly,
the two forms are generally clinically indistinguishable!!3! and genome wide as-
sociation studies (GWAS) focused on characterising the genetic component of spo-
radic PD have uncovered genes associated with monogenic PD[49. This suggests
the existence of shared pathogenic mechanisms, pointing to the idea that a deeper
understanding of the aetiology of monogenic forms could yield insights into those

of the sporadic form.

Despite ongoing research efforts, however, the underlying causes of sporadic
PD remain largely unknown. Equally, the mechanisms linking the variant to the
phenotype remain unclear in monogenic forms. Notably, there are currently no
effective treatments that can prevent or intervene in PD progression, making un-

derstanding disease mechanisms and identifying druggable targets crucial. Increas-
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ing evidence points to mitochondrial dysfunction as playing an integral role in the
pathogenesis of both monogenic and sporadic PD, including known roles for mono-
genic PD genes in mitochondrial processes (PINKI, PARK2, PARK7, CHCHD?2,
and VPS13C have roles in mitochondrial quality control)[!#!]. However, consider-
able work remains to fully define the mechanisms underlying the pathogenic influ-
ence of mitochondrial processes both in monogenic and sporadic forms !4/, Three
essential aspects remain unclear, firstly, the degree to which mitochondrial dysfunc-
tion contributes to PD pathogenesis and in which patients. Secondly, whether it does
so early or late in the disease, and thirdly, whether mitochondrial dysfunction is an
important pathophysiological process in all patients or only a subset. Currently,
even symptomatic treatments have high variability across patients both in terms of

[143]

efficacy and off-target effects . It is thought that the existence of clinical sub-

types arising from divergent pathogenesis may be a factor here 1441,

Consequently, a more precise understanding of the role of mitochondrial dys-
function has implications for the development of biomarkers and the identification
of novel drug targets, two key areas of interest in PD research at present(®!]. Novel
biomarkers indicative of molecular or progression status will enable better coun-
selling, care and treatment of patients/®!l. Their development is also important to
clinical trial design by informing participant inclusion and enabling the selection of
individuals most likely to respond to the putative disease modifying drug!'**1. In
turn, this has the potential to permit a more accurate assessment of drug efficacy in
clinical trials and to generate more favourable outcomes for patients. As such, bet-
ter understanding of not only the contribution, but also the timing of mitochondrial

dysfunction bridges an important knowledge gap and has practical applications.

The approach taken in this chapter was to compare transcriptomic profiles
across participant groups defined by PD form (sporadic or monogenic) and symp-
tomatic status (asymptomatic or symptomatic). The transcriptomic profiles con-
sisted of mtDNA and nDNA -encoded OXPHOS gene expression. OXPHOS is a
core mitochondrial process which has previously been linked to PD, as such this was

seen as a useful way to assess the function of an important mitochondrial process in
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the context of PD.

The AMP-PD dataset[!38] is an ideal resource in which to explore the ques-
tions posed in this chapter for several reasons. Firstly, it is comprised of whole
blood -derived ’omics data, providing a number of advantages over often favoured
post-mortem brain tissue data. Blood samples are relatively noninvasive, making
it easier to generate a resource that contains large sample numbers. Secondly, and
coupled with this, the samples are obtained from living individuals, avoiding many
of the issues associated with post-mortem tissue such heterogeneity of sample qual-
ity and RNA degradation. Biologically speaking, the body-first model of PD im-
plicates body tissues such as the gut and immune cells in PD pathogenesis!'*3].
As such, it is expected that blood, through its interaction with these affected cells,
would capture signals of PD. Thirdly, the participants in the AMP-PD dataset fall
into four clinically defined groups, which is useful for testing a range of hypotheses.
The main groups of interest in this study are healthy controls, sporadic PD, symp-
tomatic monogenic PD (LRRK2, GBA, and SNCA), and asymptomatic monogenic
PD (LRRK2, GBA, and SNCA). This structure is particularly useful for three main
reasons; (1) the presence of both monogenic and sporadic forms of PD provides an
opportunity for the comparison of monogenics forms (with known genetic causality
and inferred molecular mechanisms) with the sporadic form whose pathogenesis re-
mains unclear, (i) the availability of multiple "unified’ cohorts (processed using the
same pipeline) within one dataset allows for intra-dataset discovery and replication
and, (iii) the asymptomatic and symptomatic monogenic PD participants provides a
paradigm within which to explore questions around disease-stage and the timing of

aspects of pathogenesis.

To answer the questions raised in this context, two main aims were established;
(i) to study the role of mitochondrial transcription in PD pathogenesis and, (ii) to
determine whether mitochondrial transcriptomic profiles change in disease, whether
they are able to distinguish between sporadic PD cases, monogenic PD cases and
healthy controls. Then, if changes are observed, to understand at what point in the

disease trajectory these arise. Overall, this chapter aimed to capitalise on the unique
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opportunities provided by the AMP-PD dataset to better understand the molecular
mechanisms underlying PD. By exploring the transcriptional profiles of mtDNA
and nDNA -encoded genes across monogenic and sporadic PD patients, it is hoped
that new insights into the mitochondrial component of PD pathogenesis can guide

the development of novel treatments for the disease.

3.2 Methods
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Figure 3.1: Workflow diagram to summarise the data and methods utilised in chapter 2.

3.2.1 The AMP-PD dataset

The AMP-PD datal!38] utilised throughout this chapter and the next were accessed
through a request to the Broad Institute for ’Clinical’ level access, which permits
access to the genomic, transcriptomic and clinical data. Data were either directly
analysed on the Broad Institute’s cloud platform, Terra (https://app.terra.bio/), or
downloaded from the AMP-PD Google Cloud storage bucket and analysed locally.
The data release used was the 2019 V1 release, the latest available when analysis
commenced.

The Accelerating Medicines Partnership (AMP) program is a public-private
partnership between the National Institutes of Health (NIH) and other industrial
partners, aiming to identify promising druggable targets. A major disease of focus
is PD, for which ’omics data for thousands of patients and healthy controls are
collated in the AMP-PD project, which is leveraged in this chapter and the next.
The specific goals of the AMP-PD project include molecular characterisation of the

disease and longitudinal profiling of PD patients, seeking to identify biomarkers,
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dissect new targets, identify disease subtypes and predict disease progression. To
this end, the project has collected and harmonised the data of several separate PD
studies. Starting at the level of the blood sample, consistent laboratory and data
processing pipelines were applied to collect Whole Genome Sequencing (WGS)
data and RNA-Seq data. Clinical information was also collected in a consistent

manner.

In this work two cohorts from the 1.0 release of the AMP-PD dataset were con-
sidered - Parkinson’s Progression Markers Initiative (PPMI)!'46! and Parkinson’s
Disease Biomarkers Program (PDBP)[147]. For these cohorts, clinical, RNA-Seq
and WGS data was available for a large number of participants across multiple time-
points, meaning that these cohorts, of all AMP-PD cohorts, had the greatest power
for downstream analyses (total participant numbers: PPMI=1478, PDBP=1467). It
was important to consider the composition of these datasets to inform experimental
design and as such, the original aims of the PPMI and PDBP studies, structure and

inclusion criteria are detailed in the sections that follow - 3.2.1.1 and 3.2.1.2.

3.2.1.1 General outline of the PDBP cohort

The PDBP cohort!'47! was originally curated by National Institute of Neurological
Disorders and Stroke (NINDS), and was focused on discovery of new biomarkers
for PD (https://pdbp.ninds.nih.gov/). The general inclusion criteria for this study re-
quired that the participant must be a male or female ages 21 years or older. General
participant exclusion criteria included the following: on anti-coagulants, a history of
neuroleptic use, a history of schizophrenia or the use of investigational drugs within
60 days prior to the baseline visit (first clinical visit of the study). Specifically for
individuals to be considered as controls, they must not have a ’current or clinically
significant neurological disorder’ as per the assessing clinician and must not have a
family history of ND in a first or second degree blood relative. For individuals to be
included as having PD they must have had a primary diagnosis of PD at the time of

recruitment (table A.2 in Appendix A).
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3.2.1.2 General outline of the PPMI cohort

The PPMI cohort!!46! data is derived from a Micheal J. Fox foundation and in-
dustrial partner -sponsored project launched in 2010 (https://www.ppmi-info.org/).
This longitudinal observational study has collected genetic and clinical data from
participants over a time period spanning between 5 and 13 years, utilising 33 clini-
cal sites around the world. The primary focus is to identify biomarkers of PD pro-
gression for use in clinical trials and to develop disease-modifying therapies. The
PPMI dataset has a more complex structure than the PDBP dataset, containing seven
different categories of participant: PD, healthy control, ’SWEDD’ (scans without
evidence for dopaminergic deficit), ’Prodromal’, genetic cohort affected, genetic
cohort unaffected and ’Genetic Registry’. For each category, specific inclusion and
exclusion criteria apply (a detailed breakdown of the criteria for each participant
category can be found in table A.2 in Appendix A). To briefly summarise this infor-
mation, the PD category contains sporadic, early stage, symptomatic PD cases that
are not on any PD medication. The healthy control category contains neurologically
healthy individuals with no instances of PD in a first degree relative. The ’SWEDD’
category is a sub-set of the PD category, requiring participants to have no evidence
of dopamine transporter deficit on a SPECT scan. The ’Prodromal’ category is also
a sub-set of the PD category, but requires the participants to be older than 60, and to
have a rapid eye movement (REM) sleep disorder. The genetic cohort affected cat-
egory includes mid- to late- stage symptomatic participants aged 18 years or older
who have a variant in LRRK2, GBA or SNCA. Contrastingly, the genetic cohort un-
affected category contains individuals 45 years or older who have a LRRK2 or GBA
variant, or 30 or older with an SNCA variant. Importantly, genetic cohort unaffected
individuals have no clinical diagnosis of PD. Finally, the Genetic Registry’ cate-
gory contains participants that have, or have a first degree relative with, a LRRK?2,

GBA or SNCA variant — AMP-PD listed no exclusion criteria for this category.

3.2.1.3 Participant composition in the PPMI and PDBP cohorts

The AMP-PD project has performed cross-cohort harmonisation across all included

studies, yet there are essential differences between PDBP and PPMI participants.
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These were important to note when considering their joint usage in downstream
analyses. The most basic difference is that PDBP consists only of PD, healthy
control and *Disease Control’ participants, whereas PPMI does not contain ’Disease
Control’ and additionally contains Genetic, ’Prodromal’ and ’'SWEDD’ participants
(Fig. 3.2c). In terms of tracking participants over time, PDBP records data at
baseline (MO) through M6, M12, M18 and M24, whereas PPMI records data at
MO, M6, M12, M24 and M36. PPMI tracks a maximum of three years for each
participant which is higher than PDBP which tracks a maximum of two years, but
at a marginally higher resolution due to data collection at visit M18 (Fig. 3.2c). It
is important to note, however, that the timepoints do not carry the same meaning
across cohorts. This is best illustrated by the medication data, wherein PD cases
are recruited to PPMI within 6 months of a diagnosis. In the PDBP cohort however,
all participants are already on medication, reflecting a slightly later disease stage.

Hence, at "MO0’, PDBP and PPMI participants will be at differing disease stages.

Age and sex are known to be important with regard to PD risk and progres-
sion, so it was salient to note the distributions of these in the two cohorts. In the
PD category, the median age of the PDBP cohort was 62 (range=34-87) whereas for
PPMI it was 58.5 (range=34-85) (Fig. 3.2a). For the healthy control participants
the median age of the PDBP cohort was 57 (range=23-86), and the median age of
the PPMI cohort was 59.5 (range=31-84) (Fig. 3.2a). As such, the age profiles of
the two cohorts are well matched for PD and healthy control participants. The sex
ratios are similar across cohorts for PD participants, where these are 37% female
for PDBP, and 35% female for PPMI (Fig. 3.2b). For the healthy control partici-
pants, 57% of participants are females for PDBP, whilst for PPMI this figure is 35%
(Fig. 3.2b). Thus, the sex ratios are well matched within PPMI across cases and
controls, but not as well matched within PDBP. Across the cohorts, sex ratios are

well matched for cases, but not as well matched for controls.

Another important aspect of the data is the distribution of medication use, as
the medication usage itself may influence the underlying biological and transcrip-

tional state of an individual with disease. Four categories of medication usage are
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recorded in the PPMI and PDBP datasets. These are: *Dopamine agonist’, ’Lev-
odopa’, ’Other PD medication’ and ’None’ (Fig. 3.2¢). In some cases, participants
are assigned 'NA’ values, a label which is intuitive for control participants, but is
seemingly ambiguous for cases. In the PDBP cohort, all PD participants are on
medication, with the prevailing medication being Levodopa. A small proportion of
participants are on dopamine agonists, and a smaller proportion still are on ’Other
PD medication’. The ratio of participants on each medication is approximately con-
sistent across visits in the PDBP cohort (Fig. 3.2¢). In the PPMI cohort, medication
usage is variable across participant categories and across visits (Fig. 3.2c). Across
visits, PD case participants shift from predominantly no medication in M6 to the
majority taking Levodopa by M36. Additionally, a non-trivial proportion of PPMI
participants are on dopamine agonists by M12.

All in all, the PDBP and PPMI cohorts display differences in their essential
compositions, including in the participant categories, sex ratios, timecourse struc-
tures and medication usage. There are, however, comparable subsets of the cohorts.
For example, the healthy control category is relatively consistent between PPMI and
PDBP at both the M12 and M24 timepoints. As well as this, participant medication
profiles are similar between PDBP MO and PPMI M36.

3.2.1.4 PPMI participant selection strategy

Due to the complexity of participant disease classifications in the PPMI dataset, the
data was systematically filtered to select appropriate samples for downstream anal-
yses. In this chapter, the analyses focus on PD cases and healthy controls at a single
timepoint. Month 12 (M12) was selected as it was the most complete timepoint
(Fig. 3.3d). The largest number of participants had data at M12, including those
in the genetic cohort, PD and healthy control categories. To gain power across par-
ticipant categories, and in particular the PD category, the M12 participants were
combined with ’"M24 orphan’ participants. These are participants for which data
was collected at M24 but not at M12. The dataset generated using M12 plus M24
orphans is shown in figure 3.3b, demonstrating a total addition of 143 participants

across all participant categories. The assumption here is that these timepoints are
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Figure 3.2: Comparison of participant composition of the AMP-PD -derived PPMI and

PDBP cohorts. A. Distributions of participant ages, stratified by participant
category, and coloured by cohort, where PDBP is shown in red and PPMI in
blue. The ’'SWEDD’ category is only present in the PPMI dataset and contains
participants that have ’scans without evidence of dopaminergic deficit’. The
’PD’ category contains participants diagnosed with sporadic PD. The ’Genetic
Cohort’ category (unaffected, PD) participants have WGS-confirmed genetic
PD mutations in LRRK2, SNCA or GBA. The ’Genetic Registry’ category (un-
affected, PD) participants have s first or second degree relative with a WGS-
confirmed mutation. B. Proportions of female participants in the PPMI and
PDBP datasets, stratified by participant category. C. Sample counts, coloured
by medication status, by participant category (on the x-axis, as described in A),
timepoint (where "M’ indicates month and "MO’ indicates the first sample taken
from an individual) and cohort (PDBP and PPMI).
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only 1 year apart and so the relatively slow progression of PD means they can be
considered equivalent. In addition, in the AMP-PD data, timepoints (visits) repre-
sent disease progression of the individual, but this may not be generalisable across
participants. For example, the Genetic Cohort criteria stipulate a Hoehn and Yahr
stage of less than IV at baseline. Hypothetically, this could mean that at MO, one
participant is at stage I1I, where another is at stage 1. Both participants are thus as-
signed "MO’ at different points in their respective disease trajectories. In light of
this, combining across M12 and M24 was seen as a reasonable strategy for increas-

ing sample number, and by extension, statistical power, for downstream analyses.

Participant filtering was also carried out to remove those with conflicting la-
bels as follows: participants labelled Case’ in the case_control_other_latest vari-
able, and healthy control in the study_arm (participant category) variable, partic-
ipants labelled *Control’ in the case_control_other_latest variable, and PD in the
study_arm variable or had a known PD variant. Finally, participants labelled PD
in the study_arm and had a known variant were filtered out to ensure the PD cat-
egory contains purely sporadic cases. This sample selection strategy resulted in a
final dataset of 614 unique participants, including 108 genetic cohort PD (GBA=16,
LRRK2=80, SNCA=12), 170 healthy control and 336 sporadic PD participants.

3.2.1.5 PDBP participant selection strategy

Full details of the PDBP participant selection strategy are supplied in section
4.2.1.1. However, to summarise, of 1467 total PDBP participants available, after
filtering, 1291 remained, including 507 in the “Healthy Control” group and 784 in
the “PD” (sporadic PD) group.

3.2.2 RNA-Seq data processing

The analyses in this chapter and the next leveraged two mitochondrial transcrip-
tional phenotypes, both derived from AMP-PD RNA-Seq data: expression levels
of 15 mtDNA-encoded genes and post-transcriptional (PT) modification rates at 21
sites. The workflow diagram in figure 3.1 gives a broad overview of the steps taken.

Additionally, the detailed participant and time-point selection rationale is outlined
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Figure 3.3: Participant composition of the AMP-PD -derived PPMI dataset. A. Barplot to
show the of participants assigned >1 PD variant. B. Barplot to show, for each
participant category, the number of participants with data at timepoint M12
(red), and the numbers gained by adding those with data at M24 but not M12
(blue). Exact numbers shown on labels. C. Barplot to show participant numbers
in each category, coloured by case/control/other status. D. Same as in C, but
stratified by timepoint.

in section 3.2.1, resulting in the selection of PPMI-M12 and PDBP-MO participants
to take forward in downstream analyses. The particulars of the data generation, pro-
curement, filtration, correction and analysis methods are outlined in the following

sections.

3.2.2.1 Gene expression data

The AMP-PD project provides raw data as well as data processed using various
standard bioinformatic tools. AMP-PD RNA-Seq data was sequenced on the II-
lumina NovaSeq 6000 platform, generating 100M paired reads per sample with
150nt read lengths. Alignment was performed using STAR and the GRCh38 hu-
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man genome build. STAR was run using the following options, as per the AMP-PD

trancriptomics workflow [1381:

STAR —--genomeDir STARREF --runMode alignReads
—-—twopassMode Basic\

—-—outFileNamePrefix SAMPLEID --readFilesCommand zcat\
—-—readFilesIn FASTQL1l FASTQLZ2

—-—outSAMtype BAM SortedByCoordinate\

——outFilterType BySJout —-—outFilterMultimapNmax 20\
——outFilterMismatchNmax 999
——outFilterMismatchNoverLmax 0.1\

——alignIntronMax 1000000 —--alignMatesGapMax 1000000\
-—alignSJoverhangMin 8 --alignSJDBoverhangMin 1\
——chimOutType WithinBAM --chimSegmentMin 15\
—-—chimJunctionOverhangMin 15 —-runThreadN 16\
——outSAMstrandField intronMotif

——out SAMunmapped Within\

——-outSAMattrRGline RGTAGLIST

The available processed data included featureCounts!!*8! files generated by
counting aligned reads from the STAR-generated BAM files. It is important to
note that featureCounts by default only counts reads that are properly paired and
uniquely mapped, minimising the chance of signal arising from nuclear-encoded
fragments of mitochondrial DNA (NUMTs) and mtDNA cross-mapping. feature-
Counts (v1.6.2) was run using the following options, as per the AMP-PD trancrip-

tomics workflow 138!

-—T 2 -p -t exon —-g gene_id
—-—a gencode.vl9.annotation.patched_contigs.gtf

--s 2

Read quantification files generated by the featureCounts tool were downloaded

from the AMP-PD Google Cloud bucket. All processing and analyses concerning
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the count data were carried out using R (v4) on a local server thereafter. Tran-
scripts per million (TPM) values were calculated from the read counts to nor-
malise for sequencing depth and gene length. TPMs were then log10 transformed
(log10(TPM + 1)) to allow for more accurate comparison of transcript abundance
between samples. logl0 TPMs were split into separate matrices by cohort (PP-
MI/ PDBP, see section 3.2.1 for a description of the cohorts), timepoint and di-
agnosis ("Case’ or *Control’, as defined by the case_control other_latest variable).
Principle components (PCs) were calculated to capture hidden confounders and
the largest 8 were used for covariate correction, as these significantly correlated
with known covariates derived from the metadata such as ’RIN’, ’'Box’ and ’Plate’.
Logl0 TPMs were covariate corrected using a linear model with the formula:

tpm ~ age + sex + medication_status + PC1 + PC2+ ... 4+ PC8.

It was important to include age, sex and medication status in addition to PC
axes because although the PC axes captured RIN well, high PCs did not capture
age and sex as strongly. In this work it was important to ensure that these were ac-
counted for because age and sex are known to affect PD pathogenesis. In addition,
it was important to ensure cell type proportions were captured by the PCs included
in the model as differential proportions between PD cases and healthy controls aris-
ing as a result of the disease state could otherwise confound results. Unfortunately,
haematological data was not collected for PDBP cohort, however, for the PPMI co-
hort it was collected for 88% of PPMI participants at the baseline visit (M0). Thus
it was not possible to confirm that PCs captured cell type proportions for the exact
data being utilised in the present analyses (PDBP-MO and PPMI-M36). However,
this could be confirmed for PPMI-MO, which contains the majority of the same
participants sampled at PPMI-M36. Figure 3.4 presents the heatmap for PPMI-MO
healthy control participants showing Spearman correlation coefficients between the
proportions of five cell types and the first 10 principle components. PCs four and
five in particular capture neutrophils and lymphocytes, the most prevalent cell types
providing assurance that cell type proportions are being captured by large PCs. Fol-

lowing fitting of the linear model, residuals were extracted and utilised in down-
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stream analyses.
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Figure 3.4: Principal component and cell-type proportion correlations for PPMI-MO
healthy control participants

3.2.2.2 Mitochondrial post-transcriptional modification data

Mitochondrial PT modifications were inferred from the RNA-Seq data using be-
spoke software developed by Alan Hodgkinson[?!:1%221 " This inference is based
on strand termination events resulting from the physical interference of the reverse
transcriptase (RT) enzyme during the cDNA synthesis step in library preparation by
the modification which generate random nucleotide incorporation, manifesting as
mismatches to the reference genome in the resultant sequencing data. Although the
ratio of these mismatch events is not a perfect match to true PT modification rates,
the two are highly correlated[!°].

To determine mismatch rates from the RNA-Seq data, first, samtools v1.4.1
was used to retain only properly paired and uniquely mapped reads. This was a
quality control strategy to ensure that truly mtDNA originating reads were being
considered in this step, as opposed to reads arising from NUMTs. Next, allele
counts at each mitochondrial position were derived using samtools mpileup, con-
sidering only sites with a nucleotide quality score > Phred 30 and >20x coverage.
The software was configured to utilise a genome reference file corresponding to

build B37, and this was not changed to B38 as the mitochondrial genome remains
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unchanged between versions!'°!. The pileup files were then used as input into the
mismatch proportion calculation step. The proportion of nucleotide mismatches
compared to the reference was calculated for each mitochondrial genomic position,
calling the presence of a modification if all four nucleotide bases were present
in equal proportions for that site, with the rationale that this was indicative of a
modification-induced reverse-transcription error being made at this position dur-
ing the creation and amplification of cDNA. To enable running of this pipeline
across all PPMI and PDBP samples using Google Cloud computation via the
Broad Institute’s Terra platform, a WDL (a language developed for the Broad
Institute’s genomic analysis pipelines) workflow for these scripts was developed
by me (https://api.firecloud.org/gadgh/v1/tools/aine_fb__
ucl:calculate_mismatch_proportion_workflow/versions/14/
plain-WDL/descriptor). This workflow is publicly available and is con-
figured to run on Terra using a docker image which is also publicly available on

DockerHub (ainefairbrotherbrowne/terra_dockers:b5).

The per-sample mismatch proportion files were subsequently downloaded to
the local server and aggregated into a sample-by-position matrix in R. Mismatch
proportion data did not undergo covariate correction, unlike the expression data.
The reasons for this were four-fold. Firstly, the dependent variable in this case is a
ratio, which makes it difficult to accurately model using a linear model -based co-
variate correction strategy. Secondly, there is missing data, reducing the likelihood
of accurately modelling mismatch proportion with respect to multiple covariates.
Thirdly, obtaining axes of variation using PCA would be impossible without dealing
with the missing data through omission or imputation. A common omission strat-
egy is to perform list-wise deletion, but in this case would result in a large reduction
of power resulting from a high sample or mitochondrial position exclusion rate.
This would render analyses of smaller sub-groups, in particular, under-powered.
Another canonical approach is imputation, but robustly imputing this modification
data is potentially very challenging particularly as it is an inferred phenotype with-

out an available gold standard with which to assess the robustness of the output.


https://api.firecloud.org/ga4gh/v1/tools/aine_fb_ucl:calculate_mismatch_proportion_workflow/versions/14/plain-WDL/descriptor
https://api.firecloud.org/ga4gh/v1/tools/aine_fb_ucl:calculate_mismatch_proportion_workflow/versions/14/plain-WDL/descriptor
https://api.firecloud.org/ga4gh/v1/tools/aine_fb_ucl:calculate_mismatch_proportion_workflow/versions/14/plain-WDL/descriptor
ainefairbrotherbrowne/terra_dockers:5
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Finally, analyses carried out using raw versus covariate corrected expression data
resulted in only subtle case-control comparison P-value changes, with distributions
and inter-group differences being retained. As such, the modification rates were

analysed as raw log10 transformed values (log10(mismatchratio+ 1)).

3.2.2.3 Metadata

Metadata pertaining to samples and participants is stored in AMP-PD Google Cloud
storage in category-, sample ID- (the ID assigned to the biological sample) and par-
ticipant ID- (the ID assigned to the individual) specific tables. As such, download-
ing a cohesive metadata table necessitated performing a number of SQL queries to
obtain and aggregate the target variables. SQL queries were performed by Ana-
Luisa Gil Martinez in a Jupyter Notebook, and run on the Terra platform. The
package ’bigrquery’ was utilised for integration of Python and BigQuery (Big-
Query is a Google data storage *warehouse’ that supports SQL queries). Seven SQL
queries were performed to obtain information pertaining to case-control status, de-
mographic, enrolment status, clinically reported genetic status, genetic variants, PD
medical history, sample (e.g. visit month) and participant (e.g. age and sex). The
output tables yielded were joined by sample ID or participant ID and downloaded to
the local server. This metadata was subsequently utilised for dissecting the AMP-
PD structure, participant selection, covariate correction, case-control designation

and other downstream analyses.

3.2.3 Mean comparisons

Mean comparisons for log10 residual TPMs and log10 mismatch proportions were
performed in R. For the expression data which was approximately Gaussian, a two-
way student’s T-test was applied. For the modification data which was negatively
skewed, the non-parametric equivalent, a Wilcoxon signed-rank test, was used. All
P-values were Bonferroni corrected, and added to the violin-boxplot visualisations

to aid interpretation of inter-group distribution differences.
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3.2.4 PCA clustering

Principal component analysis was carried out on expression data derived from 15
mtDNA-encoded OXPHOS genes and 148 nDNA-encoded OXPHOS genes. Partic-
ipants were then projected onto PC space to observe clustering and uncover hidden
patterns in the data not observable through mean comparisons or simple distribu-
tion visualisation. The nDNA-encoded OXPHOS gene list was obtained from the
Broad Institute MitoCarta3.0 MitoPathways database, called "OXPHOS”. PCA was
performed in R using the ’stats::prcomp’ function. All P-values were Bonferroni

corrected.

3.3 Results

3.3.1 Exploring mitochondrial transcriptional profiles in the

AMP-PD cohorts

The overarching aim of this chapter is to understand whether the disease state mod-
ulates or is driven by changes in the mitochondrial transcriptome. Specifically, this
chapter explores whether observable changes exist: (1) Between PD cases (sporadic
and monogenic) and healthy controls and, (ii) Between monogenic symptomatic
carriers and asymptomatic carriers. The central question of this work considers
whether mtDNA gene expression changes across forms of PD, and whether these
changes are likely to be part of the underlying disease aetiology or are in fact a
consequence of the disease state itself. To look at this, two mitochondrial transcrip-
tional features were analysed: mtDNA encoded gene expression and PT modifica-
tion of mitochondrial RNA. These two types of feature are interconnected, with PT
modifications influencing mitochondrial expression levels in both an upstream and
downstream manner. The following sections describe these transcriptional features

in detail (sections 3.3.1.1 and 3.3.1.2).
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3.3.1.1 Transcriptional feature I: post-transcriptional modifica-
tion

Mitochondrial transcription (as detailed in section 1.1.2) results in two main (heavy
and light chain -derived) near-genome length polycistrons. Post-transcriptional
(PT) modification of the 9th position of tRNAs (p9 sites) on the polycistron con-
fers transcriptional flexibility, allowing divergence from the 1:1 processed mRNA
ratio that might be expected to arise from polycistronic transcription. Certain N1-
methyladenosine (m1A) and N1-methylguanine (m1G) modifications are readily
detected in RNA-Seq data (see section 1.1.2 for further details) and as such, 21
m1A/G modification sites of known functional importance derived from Hodgkin-
son et al., (2014) were considered in the first instance (see table 3.1 for details of the
21 sites) (221 Of these 21 sites, 19 were tRNA p9 sites, and the remaining two were
in MT-RNR2 and MT-ND5. Considering modifications at tRNA p9 sites, ribosomal
gene sites and respiratory chain gene sites allowed surveillance of modifications as-
sociated with a variety of downstream consequences, including tRNA stability and

altered mitoribosome interaction.

Using the AMP-PD data, inference of modification rates at 21 sites was per-
formed for each cohort (PPMI and PDBP) at all timepoints, yielding modification
rates for between 470-1448 participants per-timepoint in PDBP and 540-873 par-
ticipants per-timepoint in PPMI. It was important to consider the sparsity of the
modification data which is inherently limited by the methodology used to detect the
modifications from RNA-seq data. For further details of the modification inference
pipeline see section 3.2.2.2, but in brief, a minimum coverage of 20 reads is required
to call the presence or absence of a modification, and as such, "NA’ values are used
to mask out data points with insufficient coverage. Additionally, although modi-
fications have previously been observed at each of the 21 sites analysed, in many
cases, sites have a zero value assigned to them, indicating that no modification was
detected in that individual. There are a few possible explanations for this. There
may be genuinely no modification for this individual at this site, in which case a

zero value confers valuable information. Within this, it may be that no modifica-
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mtDNA position (bp) Gene Description

585 MT-TF Oth position of tRNA
1610 MT-TV 9th position of tRNA
3238 MT-TL1 9th position of tRNA
4271 MT-TI 9th position of tRNA
4392 MT-TQ Oth position of tRNA
5520 MT-TW Oth position of tRNA
5647 MT-TA Oth position of tRNA
5721 MT-TN 9th position of tRNA
5818 MT-TC 9th position of tRNA
5883 MT-TY 9th position of tRNA
7526 MT-TD 9th position of tRNA
8303 MT-TK Oth position of tRNA
9999 MT-TG 9th position of tRNA
10413 MT-TR 9th position of tRNA
12146 MT-TH 9th position of tRNA
12274 MT-TL2 9th position of tRNA
14734 MT-TE Oth position of tRNA
15896 MT-TT 9th position of tRNA
15948 MT-TP 9th position of tRNA
2617 MT-RNR2 MT-RNR2 gene
13710 MT-ND5 MT-NDS gene

Table 3.1: Table describing the 21 mitochondrial modifications initially considered in this
study.

tion was present in the temporal state captured at the point of RNA extraction, or
perhaps the modification is tissue-specific, and as such it is not possible to detect it
in blood. However, zero values may also be non-informative, indicating low cov-
erage over the site. High levels of zeroes and missingness would limit statistical
power downstream, and as such it was necessary to evaluate both the missingness
and information content at each site and to decide which sites could be included in
downstream analyses.

Figure 3.5a shows, for each position, ‘missingness’, defined as % of samples
with a non- "NA’ modification rate plotted against ’information’. ’Information’ is
defined on the y-axis as % of samples with modification rate above zero, and is rep-
resented as the median modification rate and visualised by point size. Site 2617 has
high information and no missingness, wherein 0% of samples have missing data and
100% of samples have non-zero values, coupled with a high cross-sample median
modification rate (PDBP, mean=0.405, min=0.32, max=0.837; PPMI, mean=0.444,

min=0.114, max=0.857). This is consistent with previous work which found
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that the inferred methylation at 2617 in CARTaGENE whole blood samples was
between 0.48 and 0.72[211, In contrast, site 3238 has low information (PDBP,
mean=0.000390, min=0, max=0.037; PPMI, mean=0.000614, min=0, max=0.05)
and missingness of approximately 80% across cohorts. Again, this is in line with
previous work showing low modification rates (mean of 0.009 across multiple body

tissues) at this position 2!,

To balance surveying a range of mitochondrial modification sites and retaining
sites with sufficient statistical power, a cut-off of 25% was applied for missing-
ness and information. To be carried forward, a site had to have >25% of samples
with a modification rate >0 and not 'NA’, and had to satisfy these criteria in both
PPMI and PDBP cohorts. The seven sites satisfying this (2617, 5647, 5721, 5818,
5883, 7526, 9999) are coloured blue in figure 3.5a. Their positions in the con-
text of the mitochondrial genome are shown in figure 3.5b, where 2617 is in an
mtDNA-encoded ribosomal gene (M7-RNR2) and the other six are at p9 sites. In
this study, missingness was surveyed across cohorts only for simplicity. However, it
is important to acknowledge that missingness levels may also differ between cases
and controls and that this may be biologically meaningful. As such, the assessment
here could be improved by surveying missingness not only across cohorts, but also
across cases and controls to ensure that bias is not being introduced into the anal-
ysis by selecting methylation sites with lower missingness in controls compared to

cases, for example.

For each of the seven positions selected, the log10-transformed distributions
of their modification rates are shown in figure 3.5c. Overall, distributions of mod-
ification rates were highly negatively skewed and bimodal, wherein a large peak at
zero was followed by a smaller peak at a higher rate. This was true across cohorts
and timepoints for all sites except the MT-RNR?2 site 2617. 2617 appeared to have a
biomodal distribution, particularly in the PPMI cohort, but never had a rate of 0 and
was consistently modified at a higher frequency than all other sites across cohorts
and timepoints. The other six sites grouped approximately by genomic proximity,

where sites 5647, 5721, 5818 and 5883 displayed similar modification frequency
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Figure 3.5: Exploration and selection of 21 mitochondrial modification sites. A. Cohort-
faceted dot-plot to show, for 21 mitochondrial modification sites, *missingness’
(% of samples with modification rate of "NA’) against "information’ (% of sam-
ples with modification rate >0). Point size represents the median modification
rate across all partipants and all timepoints. B. Schematic showing the mito-
chondrial genome, where tRNA genes are indicated in green, ribosomal genes
in orange and respiratory chain components in blue. Black lines labelled with
their base positions indicate the seven modifications sites forward for further
analyses. C. LoglO transformed modification rates, faceted by position and
timepoint for the PPMI (blue) and PDBP (red) cohorts.
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profiles across cohorts and timepoints, as did sites 7526 and 9999.

3.3.1.2 Transcriptional feature II: gene expression

The second mitochondrial transcription feature analysed was expression arising
from all 15 mtDNA-encoded genes: MT-ND1, MT-ND2, MT-ND3, MT-ND4L, MT-
ND4, MT-ND5, MT-ND6, MT-CO2, MT-CO3, MT-ATP8, MT-CYB, MT-CO1, MT-
ATP6, MT-RNRI and MT-RNR?2. In contrast with the modification rate data, these
data were complete due to the very high expression levels of mtDNA genes. As such
no missing data management protocol was required and all 15 genes were included

in downstream analyses.

For each of the 15 genes, the log10-transformed distributions of residual TPM
values are shown in figure 3.6. MT-COI displayed the highest median expression
of all the mtDNA genes, whilst MT-ND6 had the lowest median expression, but,
uniquely, had a long tail containing higher expression values. Expression distribu-
tions across all genes, cohorts and timepoints approximated the normal distribution.
In general, genes had similar distributions between PPMI and PDBP, with the ex-
ception of the mitochondrial ribosomal genes, MT-RNRI and MT-RNR2, where for
both genes, median expression was markedly higher in the PDBP cohort than in the

PPMI cohort.

3.3.1.3 Case-control differences in mitochondrial transcrip-
tional signatures

In studying transcriptional profiles across forms of PD, this work did not consider
how these profiles changed or progressed across clinical visits. As such, the data
was made static by selecting a single timepoint, thus utilising unique participants,
making comparisons within-timepoint and removing any timepoint-specific effects.
Both mitochondrial expression (Fig. 3.6) and modification rate (Fig. 3.5¢) dis-
played relative consistency across timepoints, and as such, for timepoint selection,
sample number and cross-cohort participant profile matching were considered the
primary selection criteria. For PDBP, the most optimal timepoint was MO because

considerably more participants were sampled at MO than at any other timepoint, of-
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tion and timepoint for the PPMI (blue) and PDBP (red) cohorts. Vertical dotted
lines represent the median.
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fering maximum statistical power (Fig. 3.2¢). For PPMI, the most optimal timepoint
was less evident due to inconsistent participant category (Fig. 3.3c) and medication
status (Fig. 3.2d) composition across timepoints. Most important for downstream
analyses was the availability of Genetic’ and healthy control participants, for which
MO and M6 were unsuitable due to lacking healthy control participants. M36 had
very few ’Genetic’ participants, leaving M24 and M 12 which were both reasonable
matches for the participant composition (category and medication -wise) of PBDP
MO. M12 was selected due to its marginally larger numbers of healthy control and
"Genetic’ participants. Matching timepoints between cohorts was initially consid-
ered, but cohort-specific recruitment criteria meant that timepoints, with respect
to age and disease stage, were non-comparable across cohorts. For these reasons,
work in this chapter and the next will largely consider PDBP-MO and PPMI-M12

participants.

The first aim was to understand whether transcriptional phenotypes differed be-
tween PD cases and controls. To this end, for each phenotype (expression from 15
mtDNA-encoded genes and modification rate at seven mitochondrial sites), distri-
bution differences between healthy control, genetic cohort (available only in PPMI)
and sporadic PD participant categories were assessed. Expression values were cor-
rected for the effects of age, sex, medication status and hidden confounders using
linear regression (see section 3.2.2.1 for methodological details). Modification rates
were not corrected for covariates but were instead analysed as log10 transformed

raw values (see section 3.2.2.2 for methodological details).

Using a non-parametric test to assess case-control differences in the negatively
skewed modification rate distributions, no significant differences between healthy
control and sporadic PD participants were observed at any modification sites (P-
adjusted>0.6 across all sites). This was the case for both PPMI and PDBP co-
horts (Fig. 3.7). However, highly significant modification rate differences were
observed between healthy control and genetic cohort PD participants in the PPMI
cohort at sites 2617 (P-adjusted=6.06e-21), 5721 (P-adjusted=1.12e-03) and 7526
(P-adjusted=3.36e-05) (Fig. 3.7). At all three sites, the genetic cohort PD partici-
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pants displayed lower modification rates than the healthy control participants.

2617 5647 5721 5818 5883 7526 9999
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Figure 3.7: Distributions of log10 transformed modification rates at 7 mitochondrial sites
in: A. The PDBP cohort and B. The PPMI cohort.

Using a parametric test to assess case-control differences in expression rate, no
significant differences were found between healthy control participants and sporadic
PD participants in the PDBP cohort (Fig. 3.9). In the PPMI cohort, however, signif-
icant differences between healthy control participants and sporadic PD participants
were detected for 10 genes. For all 10 genes, expression in sporadic PD participants
was higher than in healthy control participants. Differences were more striking,
however, between genetic cohort and healthy control participants (in PPMI), with
highly significant differences detected in the expression of 12 genes. For 11/12
genes, expression in genetic cohort participants was higher than in healthy control
participants, however for 1/12 (MT-CO3), the pattern was reversed.

The central trend was that genetic cohort PD participants had significantly

higher mtDNA-encoded gene expression than healthy control participants across
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Distributions of gene expression (log10 TPMs) for 15 mtDNA-encoded genes

in the PPMI cohort (visit month 12). P-value annotations are the output of t-
tests between healthy control participants and all other groups. All P-values
have been Bonferroni corrected.
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the mitochondrial genome. Coupled with this, 3/7 mitochondrial genomic sites dis-
played lower methylation rates in genetic cohort PD compared with healthy control
participants. The sporadic PD participants also showed significantly higher mito-
chondrial expression than healthy control participants, but only in the PPMI cohort.
This could not be replicated in the PDBP cohort. Additionally, no changes in mito-
chondrial modification could be observed in sporadic PD participants, a pattern that

was consistent across both cohorts.

Although these findings were interesting and provided a broad overview of
case-control differences in mitochondrial transcriptional phenotypes, this analysis
assessed inter-category differences using simple mean comparisons and did not con-
sider the presence of sub-groups of participants. To more robustly assess differences
in case-control transcriptional signatures, four key improvements were made. The
first improvement was to utilise a dimensionality reduction method. Principal com-
ponent analysis (PCA) is a non-parametric method wherein, the dimensionality of
the data is reduced, allowing inter-group differences and similarities to be assessed
across multiple variables simultaneously. This method is well-suited for a com-
plex dataset such as this, which has multiple dimensions (e.g. multiple phenotypes,
groups, participants) and may have hidden structure that is not readily apparent us-
ing simpler statistical and visualisation methods. Employing PCA, the aim was to
uncover hidden structure and further understand grouping and relationships within
the data. The second improvement was to advance the analysis by interrogating
transcriptional profile differences between sub-groups of the genetic cohort PD par-
ticipants as defined by gene variants. This was of interest because is not currently
known how mitochondrial transcriptional profiles differ between PD cases asso-
ciated with differential molecular aetiologies. This has potential implications for
understanding the underlying mechanisms of PD. To this end, the genetic cohort
PD group was split into three groups according to the monogenic variants carried:
SNCA, GBA and LRRK?2. The third improvement was to increase sample numbers
in PPMI participant sub-groups by adding M24 orphan participants. In brief, these

were participants with data collected at M24 but not M 12, and as such were added
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to the timepoint M 12 participants (see section 3.2.1.4 for further details and figure
3.3b to see where participant number gains were made). The fourth improvement
was to include the complete set of 163 OXPHOS genes — mtDNA and nDNA -
encoded — as opposed to mtDNA-encoded genes only. This was firstly to assay a
coherent mitochondrial process and secondly to provide power for dimensionality
reduction.

Finally, it is important to note that the modification rate data was excluded
from the following analyses due to the presence of missing data (see methods sec-
tion 3.2.2.2 for further details). As such, the dimensionality reduction analyses as

described in section 3.3.1.4 were performed using the expression data only.

3.3.1.4 Clustering AMP-PD participants on mitochondrial ex-

pression levels

Clustering was performed to observe hidden patterns and clusters that may exist
among participants in terms of OXPHOS expression profiles. PCA was performed
on the expression values of 15 mtDNA-encoded genes in addition to expression val-
ues of 148 nDNA-encoded OXPHOS sub-unit genes. A gene list for the latter was
downloaded from the Broad Institute’s MitoPathways3.0 resource!”>). The nDNA
genes encode the complementary proteins that, together with the mtDNA-encoded
genes, encode all core components of the OXPHOS pathway.

Figure 3.10a through 3.10i show the projection of participants onto PC space,
where the first 10 PC axes together explain 82.7% of the variance in the expression
data (3.10j). Nine two-dimensional spaces generated by sequential combinations of
these PC axes have been visualised here.

The most obvious separation of participants occurs at PC7 (explaining 3.95%
of total variance), which generates a cluster of genetic cohort samples of all three
gene sub-groups that is clearly separate from the sporadic PD and healthy con-
trol participants. This observation was supported empirically by correlations be-
tween PC eigenvectors and PD gene status, yielding a highly significant Spearman’s
p of 0.51 (P-adjusted=3.975e-45) between LRRK?2 status and PC7 (Fig. 3.10k).
SNCA (p=0.18, P-adjusted=3.590e-06) and GBA (p=0.14, P-adjusted=1.155e-03)
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Figure 3.10: PCA clustering of PPMI participants on OXPHOS expression. A-I. Scatter
plots to show PPMI participants (GBA: n=16, LRRK2: n=80, SNCA: n=12,
sporadic PD: n=336, healthy control: n=170) projected onto PC space, where
PCs were calculated using the expression of OXPHOS genes. J. Scree plot to
show the percent of total variance explained by each PC. K. Heatmap to show
the correlation between participant diagnoses and each PC. The colour scale
and labels on cells indicate the Spearman correlation coefficient (p).

status were also significantly correlated with PC7. Healthy control (p=-0.06, P-
adjusted=6.350e-07) and PD (p=-0.38, P-adjusted=3.435e-10) status were signif-
icantly correlated with PC7, but with opposite directionality, confirming the vi-
sually observed separation of GBA, LRRK2 and SNCA participants from healthy
control and sporadic PD in PC space. Evidence of separation between sporadic
PD and healthy control participants was observed at PC9 (Fig. 3.10h-1), which
is significantly associated, though with opposing directionality, with both healthy
control status (p=0.18, P-adjusted=5.98e-05) and sporadic PD status (p=-0.12, P-
adjusted=8.71e-03). While the visual separation between the sporadic PD and
healthy control participants is difficult to discern, the statistical assessment points
to separation of these groups.

The sporadic PD and healthy control participant separation observed in the
PPMI cohort was replicated in the PDBP cohort (Fig. 3.11). Healthy control (p=-
0.22, P-adjusted=1.656e-13) and sporadic PD (p=-0.22, P-adjusted=1.656e-13) sta-

tus were significantly correlated with PC2 and with opposite directionality of cor-
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Figure 3.11: PCA clustering of PDBP participants on OXPHOS expression. A-I. Scat-
ter plots to show PDBP participants (sporadic PD: n=688, healthy control:
n=492) projected onto PC space, where PCs were calculated using the expres-
sion of OXPHOS genes. J. Scree plot to show the percent of total variance
explained by each PC. K. Heatmap to show the correlation between partici-
pant diagnoses and each PC. The colour scale and labels on cells indicate the
Spearman correlation coefficient (p).

relation coefficients, thus confirming the visually observed separation of healthy
control and sporadic PD participants. Replication of the genetic cohort participant
clustering was not possible in the PDBP dataset, as it only contains sporadic PD and
healthy control participants.

In summary, changes in OXPHOS gene expression were observed in PD par-
ticipants compared to healthy controls, regardless of the underlying genetic cause
(i.e. monogenic or sporadic), though this was particularly striking in the mono-
genic forms. As such, it was found that the expression of genes comprising a key
mitochondrial process, OXPHOS, was altered in the disease state.

In the PPMI dataset, in addition to the genetic cohort PD participant category
— comprised of symptomatic individuals with confirmed pathogenic variants in
LRRK?2, GBA or SNCA — there exists a "genetic cohort unaffected’ category. These
are asymptomatic PD variant carriers, meaning that they have not yet developed,
or may not develop, PD symptoms. The presence of monogenic symptomatic and

asymptomatic participants presented a unique opportunity within which to compare
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the transcriptional profiles between two defined disease stages. Here, the aim was
to utilise these groups to provide insights into the timing of the shifts that have
been observed between cases and controls. To this end, clustering was performed
on OXPHOS gene expression in the same way as previously described, but using
three participant groups: ’Genetic diagnosis - affected” (n=111), ’Genetic diagnosis
- unaffected’ (n=87) and healthy control (n=170) (Fig. 3.12). PC6 clearly separated
the healthy control participants from the ’Genetic diagnosis - affected’ and *Genetic
diagnosis - unaffected’ participants with the latter two groups remaining clustered
together (Fig. 3.12e and f). Healthy control status (p=0.66, P-adjusted=3.180e-46),
’Genetic diagnosis - affected’ status, (p=-0.54, P-adjusted=9.990e-28) and *Genetic
diagnosis - unaffected’ status (p=-0.19, P-adjusted=5.670e-03) were significantly
correlated with PC6 (Fig. 3.12k). Crucially, ’Genetic diagnosis - affected’ and
"Genetic diagnosis - unaffected’ status had opposing directionality of correlation
coefficients with PC6 (positive) compared to healthy control status (negative), con-
firming the visually observed separation of healthy control and sporadic PD in PC
space. The clustering of affected and unaffected monogenic PD cases and separa-
tion from healthy controls suggests that the observed shifts in OXPHOS expression
are present in asymptomatic cases as well as symptomatic cases. This provides
a novel insight, pointing to the idea that changes in mitochondrial processes may

actually occur before symptom onset.

3.3.1.5 Validating PCA clustering

To test whether the OXPHOS gene set was exerting a gene set -specific effect par-
ticipant separation and that separation was not occuring by chance, comparison to
a null distribution was performed. This distribution was generated by running 5000
iterations of PCA, each time selecting a random gene set from the set of all genes ex-
pressed, matching the set size to that of the OXPHOS gene set (163). The first 10 PC
axes were extracted from each iteration, correlating each with participant diagnosis
and yielding a Spearman’s p and corresponding P-value. For each PC-diagnosis
pair, the null distributions (5000 PC-diagnosis Spearman’s p and P-values) were vi-

sualised, superimposing the real value generated using the OXPHOS gene set. An
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Figure 3.12: PCA clustering of PPMI participants (symptomatic/ asymptomatic/ healthy
control) on OXPHOS expression. A-I. Scatter plots to show PPMI partici-
pants (Genetic diagnosis - affected’: n=111; *Genetic diagnosis - unaffected’:
n=87; healthy control: n=170) projected onto PC space, where PCs were cal-
culated using the expression of OXPHOS genes. J. Scree plot to show the
percent of total variance explained by each PC. K. Heatmap to show the corre-
lation between participant diagnoses and each PC. The colour scale and labels
on cells indicate the Spearman correlation coefficient (p).

real value more extreme than the null distribution indicated that that the OXPHOS

gene set separated the participants more often than would be expected by chance.

Figure 3.13 shows the output of this bootstraping analysis for the clustering
of SNCA, LRRK?2, GBA, sporadic PD and healthy control participants (shown in
Fig. 3.10), displaying Spearman’s p P-values in 3.13a) and Spearman’s p values
in(3.13b). It is clear that the correlations with PC7 for all diagnoses (bar healthy
control) are markedly more extreme than the null distribution. There is also evi-
dence for the opposing correlation directionality of healthy control and sporadic PD
diagnosis with PC9 being more extreme than the null distribution, though this is
more subtle. This points to the 163 mtDNA and nDNA -encoded OXPHOS gene
set as exerting a specific and likely biological meaningful effect on the clustering of

participants.



3.3. Results 112

PC1 PC2 PC3

-
o
=
-
o
o
0
o
@
o
o
&
o
Q
@
]
Q
©

PC10

50004 1

40004

30004 !
I
I

vao

20004
1000

5000
40004
30004
20001
1000

[———
= -

|0J3U0o AUNeaH

5000
40004
30004
2000
10004

%-F-F-%__ﬁ——

50004
40004
30004
20004
1000

olpelods—ad

L
|

010203040 0 102030 40 0 102030 40 0 1020 30 40 O 10 20 30 40 o 102030 40 0 1020 30 40 0 10 20 30 40 0 1020 30 40 0 10 20 30 40
-log10(P)

50009
40004
30004
20004
10004

VONS

u

p—
E—-’i—-—i“'?’"ﬁ—--
i—-}i-—-fﬁ'--'iﬁ“i_"

i_'

P
E——li'———’i‘"’%'——~i__
%—?-F—-Lﬁ——‘i“'

B

PC2 PC3

B}
Q
b

PC5 PC10

5000 9
40004

PC1
I
30004
20001
10001
04
|

van

5000
40004
30004
20004
10001

|Jonuoo~AyyesH

50009
40004
30004
20004
10004

eyl

5000 o
40004
30004
20001
1000

olpelods—ad

5000
40004
30004
20001
10001

0

=====1
FERF R
S====1

===z2=1

VONS

Pkt
FERRE

S

=55

1005000510100500051010050005101005000510100500051010050005101005000510100500051010050005101005000510
Spearman correlation coefficient

Figure 3.13: Validating participant clustering of SNCA, LRRK2, GBA, sporadic PD and
healthy control participants using PCA bootstrapping. A. Null distributions
for each PC-diagnosis pair containing 5000 Spearman’s p P-values that were
generated using random gene sets. B. Null distributions for each PC-diagnosis
pair containing 5000 Spearman’s p that were generated using random gene
sets.
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3.4 Discussion

The aetiology of PD is not fully understood, but mitochondrial abnormalities have
long been postulated to contribute to disease pathogenesis. Indeed, in their es-
sential role in energy production makes normal mitochondrial function key to the
integrity of dopaminergic neurons. Pathogenic variants in several monogenic PD-
related genes have been found to be involved in mitochondrial dysfunction through
a variety of mechanisms. This work focuses on LRRK2, SNCA and GBA due to

availability of sizeable variant carrier cohorts via the AMP-PD project.

Although work to date on monogenic PD offers a nuanced and detailed mecha-
nistic understanding of certain aspects of pathogenesis, it largely utilises non-human
disease models such as mice!'>?! and zebrafish!!3! or human in vitro cell models
such as induced pluripotent cell (iPSC) lines!!3?! and fibroblast cell lines 1331341531,
While these studies are essential for unpicking disease mechanisms, they are rarely
suitably powered for population-level analyses seeking to reveal overall patterns,
prevalence and distribution of disease features. Indeed, understanding these over-
all patterns may provide insight into currently lesser understood mechanisms of
sporadic PD. This is highly relevant in the context of present research focuses in
PD which seek to understand the phenotypic heterogeneity within PD thought to

be a manifestation of disease subtypes!!44].

Understanding the contribution and
relevance of different molecular mechanisms to subgroups of PD patients has im-

plications for biomarker identification, drug development and patient management.

This research aimed to bridge this gap in current knowledge by performing
a large-scale, dual-phenotype, direct comparison of mitochondrial transcriptional
profiles between monogenic PD cases (with LRRK2, GBA, and SNCA variants),
sporadic PD cases and healthy controls. Two central questions were posed. The
first asked whether differences in the mitochondrial transcriptome can be observed
between monogenic PD cases, sporadic PD cases and healthy control individuals.
The second asked whether any differences detected were present prior to, or after
symptom onset. Overall, these questions aimed to further understand the role of

mitochondrial dysfunction in the pathophysiology of PD.
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3.4.1 PD case-control mtDNA-encoded gene expression changes

Marked differences in mitochondrial transcription were detected between mono-
genic PD cases and healthy controls, including significant expression differences in
12/15 mtDNA genes (Fig. 3.8). Surprisingly, consistently higher expression was
observed in monogenic PD participants (symptomatic) compared with healthy con-
trol participants across all 12 genes. This was supported by the clustering results,
which revealed that monogenic PD participants (symptomatic) clustered separately
in principle component space from healthy control participants (Fig. 3.8). Very little
quantification of mtDNA-encoded gene expression has previously been performed
in a PD case-control paradigm, and none in whole blood from human PD patients.
As such there is little opportunity for direct replication of these results. However, a

number of possible mechanisms for these observations are discussed henceforth.

Firstly, there is the potential that differential cell type composition between
the disease and control state (i.e. varying leukocyte count) could be stochastically

1561 However, this is unlikely as a covariate correction

confounding these results
strategy was applied that included PCs to capture hidden confounders, such as cell
type. Although cell type proportion information was only available for a propor-
tion of "MO0’ samples and not the samples utilised in the present analyses, PCs were
assessed against these nonetheless (see methods section 3.2.2.1 for details and vi-
sualisation). It was found that the PCs included in the model did capture cell type
proportions (in the MO data) and as such, making it unlikely that cell type propor-

tions would be driving the patterns observed here.

Secondly, mitochondrial biogenesis — the process by which new mitochondria
are synthesised — triggered by an accumulation of dysfunctional mitochondria may
be contributing to higher mitochondrial expression in the disease state. A possible
route to this is through increased dysfunction of the mitochondrial population lead-
ing to impairment of overall ATP synthesis and reduced ATP availability. In this sce-
nario, an increase in AMP/ATP ratios may enhance the activity of AMP-activated
protein kinase (AMPK), a biosensor known to promote mitochondrial biogenesis

through the transcriptional regulation of relevant genes!!37-1381 " Although there is
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limited data on mtDNA gene expression in the blood of PD patients, one study ob-
served that peripheral blood mononucleate cells (PBMCs) of individuals diagnosed
with PD displayed increased respiratory capacity and elevated ATP production !>,
Interestingly, in a rodent in vitro cell model of a-synucleinopathy, it was shown
that over-expression of PGC-1a, the so-called *master regulator’ of mitochondrial
function, resulted in the up-regulation of nDNA-encoded OXPHOS subunits and
that this alleviated a-synucleinopathy neurotoxicity and suppressed dopaminergic
neuron loss 1991 Although the Zheng et al., (2010) study deals with nDNA-encoded
OXPHOS components only, these results, and those of the present study may point
to a mitochondrial biogenesis response %1, Whether this is arising from pathogenic
changes in nuclear-encoded regulatory mechanisms, or perhaps acting in a compen-

satory manner in response to bioenergetic deficiencies is not clear.

A third potential route to the mtDNA gene expression changes observed in
PD cases may be through increased mtDNA content resulting from increased mi-
tochondrial copy number (mtDNAcn). Although, previous work has shown that
reduced mtDNAcn in blood is a hallmark of PD, a finding that has been replicated
in other NDs for which mitochondrial dysfunction has been implicated[!6'. As
such, it is unlikely that mtDNAcn changes are producing the increase in expression
observed here. Additionally, as previously discussed, the expression data was cor-
rected for a number of covariates, including PCs which were shown to correlate to
blood cell type proportions. mtDNA copy nunber is known to vary according to
cell type!162:163.1641 "and as such it is likely that at least a proportion of variation in
mtDNAcn was captured and corrected for using this method. However, this postu-
altion does highlight a potential interesting direction for future work involving the

estimation and analysis of mtDNAcn in the AMP-PD data %3],

A fourth explanation may involve an increase in mtRNA content (without ac-
companying raise in mtDNA content) through increased transcriptional rate. In-
deed, a mechanism resulting in increased mtDNA expression has been identified,
albeit in a non-neurological context. A 2019 study!!%®! screening for proteins in-

volved in the expression of mtDNA under stress conditions identified Mitochon-
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drial Transcription Rescue Factor 1 (MTRES1). MTRES1 was found to be elevated
in cells under stress conditions, preventing mtDNA-encoded transcript loss by in-
creasing mtDNA transcription[1%®), The authors surmised that this was a protective
mechanism against mtDNAcn decline, working to oppose mtRNA loss under con-

ditions of cellular stress!100]

. This study presents convincing evidence for mech-
anisms responsible for modulating the mitochondrial transcriptional rate, pointing
to the possibility that this mechanism may explain the PD case expression increase

observed in the present study.

Finally, the results observed here might be explained by impaired mitophagy.
Variants in all three monogenic PD genes (GBA, LRRK2 and SNCA) have been
associated with dysregulated mitophagy, the process by which dysfunctional mito-
chondria are destroyed!167-154168,152,169] - Additionally, loss-of-function variants in
the PINKI and PRKN genes - encoding key regulators of mitophagy - are known to
cause early onset PD. These facts make a compelling case for the role of defective
mitophagy in PD pathogenesis. As such, it is important to consider whether the
results of the present study are capturing this process. The present analysis includes
SNCA, GBA and LRRK?2 variant carriers, for which evidence to date suggests that
the precise route towards defective mitophagy may differ. For example, in SNCA
variant carriers, accumulation of ¢-synuclein within mitochondria has been found
to increase the rate of mitophagy, likely driven by damage to complex I, mitochon-

n(17017L1721 = Given that mitochondrial

drial fragmentation and energy deprivatio
homeostasis relies on coordinating the removal of damaged mitochondria and gen-
erating new mitochondria, perhaps increased mitophagy is driving a matched in-
crease in the expression of mtDNA genes, which may be captured in the present
study. However, in LRRK?2 variant (G2019S) carriers, basal mitophagy was seen
to decrease rather than increase!!73!. In the brains of LRRK2 (G2019S) mice, ex-
pression levels of mitochondrial biogenesis regulators PGC-18 and PGC-1a were
increased compared to wild-type (WT) mice, which the authors suggest as indica-

tive of mitochondrial biogenesis activation. Similarly, in PD patients carrying the

L444P GBA variant, inhibition of mitophagy has been observed alongside increased
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mitochondrial content and mitochondrial stress[168!

. Taken together, evidence for
the differential effects on mitophagy of PD variants points to the idea that dysfunc-
tional mitophagy, regardless of directionality may trigger cellular changes aiming
to restore homeostasis. As such, the increased expression observed in monogenic

PD cases here may capturing this.

3.4.2 Clustering of participants on (nDNA and mtDNA -

encoded) OXPHOS gene expression

The clustering experiments revealed clustering of SNCA, GBA and LRRK?2 variant
carriers, meaning that regardless of the specific gene variant, OXPHOS expression
profiles were similar between participants. While this could point to a common
increase in OXPHOS expression across all forms of monogenic PD, it might be
that a higher resolution approach would reveal differences in OXPHOS expression
profiles between groups. This would require increased statistical power through
an expansion of participant numbers which is challenging. In fact there is already
some evidence to support the view that genetic cohort PD participants with SNCA,
LRRK? and GBA variants have a shared mitochondrial dysfunction. Previous work
has suggested that LRRK2 and o-synuclein converge on mechanisms that lead to
neuronal death specifically through their effects on the autophagy-lysosomal path-
way!1741751 " Given established roles for all three genes in mitophagy, dysfunction
of this pathway triggering compensation may be a strong candidate route for pro-
ducing the rise in expression across monogenic PD cases.

In addition to studying mitochondrial expression profiles in monogenic PD, a
parallel aim was to understand how these profiles presented in the sporadic form.
Sporadic PD accounts for more than 90% of all PD cases. Several monogenic PD
loci have been associated with mitochondrial processes, pointing to mitochondrial
dysfunction as integral to PD more generally. However, the mechanisms of mito-
chondrial dysfunction in sporadic PD have not been fully characterised. To date,
no work has been done to characterise mitochondrial expression profiles between
sporadic PD cases and controls in a large cohort. As such, the aim here is to fill this

gap using whole blood data, meaning that larger sample sizes can be leveraged. In
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addition, this study compares these profiles between sporadic and monogenic cases,
which may provide evidence towards understanding the extent that mechanisms for
mitochondrial dysfunction in monogenic cases can be extrapolated to sporadic PD.
Using simple mean comparisons, significant differences between sporadic PD cases
and healthy controls could not be reliably observed between the PPMI and PDBP
cohorts. Moderately higher expression could be observed in PPMI sporadic PD
cases, and no differences could be observed in the PDBP dataset. However, using
PCA revealed the existence of subtle hidden structure, namely significant separa-
tion of sporadic PD participants and healthy control participants in both cohorts,

supporting a role for bioenergetic modulation in sporadic PD.

The second set of transcriptional information analysed in this chapter was mi-
tochondrial PT modification. Significantly decreased modification rates in mono-
genic PD cases compared to healthy controls were observed at sites 2617 (MT-
RNR2), 5721 (p9 tRNA, between MT-CO1 and MT-ND?2) and 7526 (p9 tRNA, be-
tween MT-CO2 and MT-COI) (Fig. 3.7). The decrease observed in monogenic
PD participants is particularly marked at site 2617 (P-adjusted=1.98e-08), which
is located within the MT-RNR2 gene (Fig. 3.5b). Interestingly, the expression in-
crease in genetic cohort PD participants at M7T-RNR2 was also particularly striking
(P-adjusted=4.26e-59). Methylation at this site is thought to provide stable interac-
tions to mature mitoribosomes and decreased methylation at this site has been linked
to impaired mitochondrial protein synthesis'!7®]. As such, intuitively one may think
that decreased methylation may lead to decreased expression. A potential explana-
tion for the observations here is that reduced protein levels may be driven in part by
dysfunctional methylation processes, thus inducing a compensation via increased
expression of mtDNA genes. However, further investigation is necessary to test

such a model.

One of the key research questions looked at whether mitochondrial transcrip-
tional profiles differed between monogenic PD cases before and after symptom on-
set. This was aimed at addressing the hypothesis that mitochondrial dysfunction

is a core part of disease pathogenesis, rather than a consequence of disease. Di-
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mensionality reduction revealed clustering of participants with genetic diagnoses
together, regardless of symptomatic status and away from healthy controls (Fig.
3.12). This suggested that the OXPHOS expression profiles of asymptomatic PD
participants were more similar to those of symptomatic PD participants than they
were to healthy control participants. Recent work leveraged post-mortem brain tis-

sue to study mitochondrial dysfunction in sporadic PD patients!!7"].

Stratifying
across disease severity, the authors reported that mitochondrial dysfunction was de-
tectable before neuronal loss and o-synuclein fibril deposition and state that it is
likely that mitochondrial dysfunction is one of the key drivers of early sporadic
PD!!771All in all, the results presented here support the view that mitochondrial
dysfunction is likely to be a hallmark of early PD pathogenesis and find that this is

detectable in whole blood using expression derived from only 163 OXPHOS genes.

3.4.3 Conclusions and future directions

This chapter addressed two main research questions. The first question aimed to
understand whether changes in the mitochondrial transcriptome could be picked up
in blood and if so, were changes distinct between monogenic PD cases, sporadic PD
cases, and those of healthy control individuals. It was found that mitochondrial tran-
scription profiles (expression and PT modification) of monogenic PD participants
were highly distinct compared to healthy controls and that subtle but significant dif-
ferences between sporadic PD and healthy control participants could be revealed by
clustering. The second question aimed to understand whether changes in the mi-
tochondrial transcriptome differed between symptomatic and asymptomatic mono-
genic PD cases, finding similarities between the mitochondrial expression profiles
of symptomatic and asymptomatic cases. In conclusion, this study does observe mi-
tochondrial transcriptional changes in PD cases compared to healthy controls, and
these are distinct between monogenic, sporadic and healthy controls, but not distinct
between symptomatic and asymptomatic monogenic PD cases. Crucially, these ob-
servations were derived from blood samples, and are based on the expression of
only 163 genes and modification rates at seven mitochondrial genomic positions.

Thus, these findings also contribute to an understanding of mitochondrial transcrip-
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tional processes in the disease state across different forms of PD, but further work
will be needed to unpick disease causes from consequences.

Cause versus consequence is a challenging concept in ND research, and one
which the following chapter attempts to address through application of the trans-
QTL study paradigm. This method permits a more direct assessment of causality
and directionality of effect by exploring whether nuclear genetic variation can ex-
plain a proportion of the observed variation in the mitochondrial phenotype. In this
way, the following chapter seeks to further understand the role of mitochondrial

dysfunction in sporadic PD.



Chapter 4

Understanding mitochondrial
transcriptional control in sporadic

Parkinson’s Disease

4.1 Introduction

Sporadic (or idiopathic) Parkinson’s Disease (PD) accounts for 80-90% of PD
cases, and yet the underlying disease mechanisms are not well understood, owing to

y[178] " A number of efforts to un-

its clinical, pathological and genetic heterogeneit
derstand the biology underlying PD have been made, particularly through genome
wide association studies (GWAS) that aim to identify genetic loci associated with
sporadic PD. Through these studies, a number of genes, processes and pathways
influencing PD risk[®, onset!!” and progression!'8%131] have been elucidated.
Collectively, these studies and others have generated major insights into the cryp-
tic biology of sporadic PD, identifying roles for a number of pathways with strong
evidence supporting the contribution of the endolysosomal, immunological and mi-

tochondrial pathways!!82].

The role of mitochondria in PD was identified in the 1980s when chemical in-
terference with mitochondrial complex I gave rise to canonical PD symptoms!!33].
Later, genes discovered to be causative for Mendelian forms of PD (e.g. PRKN,

PINK1, LRRK2, DJ1, ATP13A2 and SCNA) firmly placed mitochondrial pathways
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as part of the aetiology of the disease. In sporadic PD, genes involved in mito-
chondrial pathways have been implicated through GWAS, where common vari-
ants within mitochondrial pathways have been found to be associated with sporadic
PD status!!#!], dysregulation of mitochondrial pathways has been observed in spo-
radic PD monocytes!'®* and lymphocytes from individuals with PD were found
to have enhanced mitochondrial respiratory activity[!8%). As such, mounting evi-
dence points to mitochondrial dysfunction as an important component of sporadic

PD aetiology, making this a compelling area for further study.

Despite these important inroads, much remains to be understood. On a gran-
ular level, there are many ways in which GWA studies may have missed impor-
tant genes and biology, for example, many assign gene-to-variant using the 'nearest
gene’ strategy, which could bias against longer genes!!3]. The largest PD GWAS
meta-analysis to date identified 90 risk loci including 38 novel independent risk
signals, together explaining 22% (range 16-36%) of the heritability of the disease,
meaning that a portion of the remaining heritability of the disease is still *missing’

as described by Ohnmacht et al., 2020 and Nalls et al., 2019.

One method commonly used to interpret genotype-phenotype associations de-
tected through GWA studies is to integrate Quantitative Trait Loci (QTL) data, the
aim of which is to explain the mechanism underlying the GWAS association. One
commonly used QTL is the expression QTL (eQTL). In this case, the variant is
thought to be modulating expression of a gene, which could be in cis (<1Mb away),
or in trans (>5Mb away). In the case of the latter, this could be on the same or a
different chromosome. Theoretical work has proposed that ~70% of heritability
is driven by small-effect trans-acting variants, likely mediated through proximal

S[187,188]

gene . This suggests that identification of these associations has potential

for elucidating some of the missing heritabilty of sporadic PD.

The existence of two distinct genomes in the majority of human cells and the
necessity for their coordination points to the existence of biologically important
trans-acting long-range associations. Mitochondria require ~1136 nuclear DNA

(nDNA) -encoded proteins to function and previous studies have demonstrated cor-
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relation of mitochondrial and nuclear gene expression, supporting an association be-
tween the two genomes!7>117:9631 Indeed, recent work has identified trans-genome
acting nuclear variants associated with mitochondrial DNA (mtDNA) -encoded ex-

[21.46] * Nevertheless, the

pression and post-transcriptional (PT) modification rates
contribution of trans-genome mitochondrial-nuclear associations to neurodegener-

ative disease (ND) has not been widely investigated.

The missing heritability of PD, compounded with evidence pointing to a role
for mitochondrial dysfunction in its aetiology makes mitochondrial-nuclear coor-
dination an exciting avenue for further understanding sporadic PD. However, no
studies have yet looked at the potential role for mitochondrial-nuclear trans-acting
associations in sporadic PD. In this study, we aim to look at nuclear associations
with two mitochondrial transcriptional readouts; mtDNA gene expression and mi-

tochondrial PT modification.

While mtDNA-encoded gene expression is the obvious read out of the mi-
tochondrial transcriptome, mitochondrial PT RNA modification is less commonly
examined. PT RNA modifications are changes to nucleic acids in the RNA af-
ter transcription. The majority of these are found on transfer RNAs (tRNAs), and
they have been confirmed to confer diverse biological functionality?11%. In the
case of mitochondria, once the mtDNA has undergone polycistronic transcription,
modifications are applied to particular nucleic acids of the intermediate and mature
RNA. A common PT modification of mitochondrial RNAs (mtRNAs) is methyla-
tion (m1A/G) at the 9™ position of tRNAs (known as p9 sites) which are known to
impact the stability of the secondary structure and affect downstream mtRNA quan-
tities 211891 As such, mitochondrial PT modifications are known to have an impact
on levels of processed mitochondrial mtRNA, and in this way constitute an impor-
tant component of mitochondrial transcription. Although limited work has focused
on the potential role for mitochondrial PT modifications in disease, a recent study
looked at p9 methylation in subjects diagnosed with NDs, where the authors report
hyper-methylation at p9 sites detected in cerebellar tissue from subjects diagnosed

with Alzheimer’s disease (AD) and progressive supranuclear palsy (PSP)[?%1. This
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is encouraging, and supports the utility for understanding the role of p9 methylation
in other NDs. Insofar as I am aware, however, mitochondrial PT modification has
not been studied in the context of PD.

As such, the central aim of this study was to interrogate nuclear genetic mod-
ulation of mitochondrial transcriptional phenotypes and to discern whether differ-
ences could be observed between sporadic PD and healthy control participants. This
may offer insights into sporadic PD aetiology and the involvement of mitochondria.
To this end, mitochondrial-nuclear trans-eQTLs and trans-meQTLs (methylation
QTLs), which will be referred to collectively as trans-xQTLs, were calculated from
transcriptomic data for 784 sporadic PD and 507 healthy control participants, de-
rived from the multi-cohort whole blood AMP-PD dataset. Additionally, this study
aimed to focus on variant-to-gene assignation, utilising newly available high fidelity
HiC chromatin capture data with the aim of robust candidate gene identification,

aiming to identify novel biology highly relevant to sporadic PD.

4.2 Methods

L [ [

X
gPCs

[bigsnpr]

PEER axes
[PEER]

I 1

Convert to N Transform to e aiTES
Q TPMs log10 TPM
m m Transcript-
omics X
« _J Filter BAM Count alleles Gtz MT
BAM files files et ateach MT m:"e':‘:: h%?p methylation
\W_/ (phred>30) position T
WepoBp | ——
(4 — I Filter: MAF, Nuclear
rkinson's  \— > —{|| VCFfiles |t»{ missing,
Iniiative

*>| Metadata

Generate
trans-xQTLs

Genomics variants
HWE

ign e

~

Figure 4.1: Workflow diagram showing the analysis pipeline followed in chapter 3.

4.2.1 Data

Data from the Accelerating Medicines Partnership (AMP) for Parkinson’s (PD) -
derived cohorts, Parkinson’s Progression Markers Initiative (PPMI) and Parkinson’s
Disease Biomarkers Program (PDBP) cohorts were obtained by access request as

described in section 3.2.1. The analyses in this chapter, as illustrated in figure 4.1
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leveraged transcriptomic, genomic and metadata from the PPMI and PDBP cohorts.
Other than cohort-specific sample selection protocols, an identical pipeline was ap-

plied across cohorts (Fig. 4.1).

4.2.1.1 PBDP participant selection strategy

To maximise participant numbers, PDBP was used as the discovery dataset for the
analyses in this chapter as it comprised the largest number of sporadic PD diag-
nosed participants of all AMP-PD cohorts. From this cohort, to obtain a static
dataset containing unique participants only, “visit_month” 0 was selected for the
trans-xQTL analysis as the largest number of participants were measured at this
timepoint (see Fig. 3.2c for cohort structure details). Non-standard controls as well
as some case participants with ambiguous assignations were present in the dataset,
and as such sporadic PD cases and healthy controls were selected from the MO data
using the “study_arm” variable available in the clinical metadata, where sporadic PD
cases were indicated with “PD” and healthy controls with “Healthy Control”. In the
same vein, 12 participants were filtered out as they had “case_control_other_latest”
recorded as “Other” which represented an ambiguous diagnosis. Additionally,
participants with conflicting assignations were removed, which included those
recorded with “study_arm” as “Healthy Control” and “case_control _other_latest” as
“Case” and vice-versa. This left a total participant number of 507 in the healthy

control group and 784 in the sporadic PD group.

4.2.1.2 Genetic data

Blood samples collected at clinics on a cohort-specific basis were the starting point
for the harmonised sequencing and processing workflow implemented by AMP-
PD. DNA extracted from participant whole blood specimens was sequenced using
the Illumina HiSeq X Ten platform!!®. Paired-end 300-400bp reads were pro-
cessed according to the harmonisation pipeline outlined by Regier et al., (2018)
at the Broad Institute!!°!. Alignment and variant calling were performed against
reference genome GRCh38!?1. Per-chromosome variant call files (VCFs) were
downloaded from the AMP-PD Google Cloud bucket to a local server using the

gsutil tool. These were then split into per-chromosome, per-participant files before
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merging to per-participant files using VCFtools (v0.1.16). To ensure that only high
quality, common variants were analysed, the VCF files were filtered using vcftools
for minor allele frequency (MAF) >1%, missing data <1% and a Hardy-Weinberg
Equilibrium P-value of >0.001192]. This resulted in a total of 5,815,014 variants

carried forward for downstream analyses.

4.2.1.3 Mitochondrial phenotype data

Both mtDNA gene expression data and PT modification data underwent near identi-
cal processing as outlined in section 3.2.2.1 and section 3.2.2.2. However, crucially,
correction was not directly applied to the data, instead, covariate files were supplied
to MatrixEQTL for generation of trans-xQTLs. Additionally, the modification rate
data was not transformed in any way prior to running MatrixEQTL, as was done for

the distribution-type analyses in chapter 3.

4.2.1.4 Metadata

Sample and participant -level metadata were aggregated and downloaded as per

section 3.2.2.3.

4.2.1.5 Covariates

Covariates were supplied to MatrixEQTL and were comprised of key metadata vari-
ables, genetic principle components (gPCs) and axes of variation generated using
probabilistic estimation of expression residuals (PEER factors). From the meta-
data, age and sex were included in the covariate file supplied to MatrixEQTL, as
discussed in section 3.2.2.1. PEER has previously been shown to improve eQTL
discovery power in bulk RNA-seq data, and is widely used for these analyses[!08].
As such, PEER was used here to capture hidden confounders such as cell type com-
position and batch effects. The standalone command line PEER tool (version 1.3)
was run on the TPM matrices with 1000 iterations. The first 10 PEER factors were
included in the MatrixEQTL covariate file as per Ali et al., 2020. The same 10
PEER factors were utilised for mapping both eQTLs and meQTLs. To capture pop-

ulation substructure, gPCs were calculated using the bigsnpr R package!!®3l. The

input file for this was a browser extensible data (BED) format file generated from
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the VCF file using plink2. Missing values are not tolerated by the “snp_autoSVD”
function and as such, imputation was performed using the “snp_fastimputeSimple”
function, setting the “method” argument to “random”. The “snp_autoSVD” func-
tion was then run setting thr.r as 0.2 (this is the default recommended value and
allows MAF-based SNP clumping which removes long-range LD regions) and k as
10 (number of PCs to calculate). The first 5 gPCs (as per Ali et al., 2020) were

included in the MatrixEQTL covariate file.

4.2.2 xQTL mapping

To generate xQTLs, the MatrixEQTL R package was used which takes pheno-
type, genotype and covariate matrices (generation described above) as input!!%4].
MatrixEQTL was run in two modes, the first using a simple linear regression
model was applied to sporadic PD case data and to healthy control data separately.
This was achieved by setting the “useModel” argument in the main function “Ma-
trix_eQTL_engine” to “modelLINEAR”. The formula for “modelLINEAR” was as

follows:

phenotype = o + Z Bi - covariatey + v - genotype_additive 4.1)
k

The second mode used a special case of a linear regression model and was
applied to combined sporadic PD case and healthy control data files in order to
test for the significance of the interaction between the genotype and the last co-
variate. Associations generated using this model are referred to in this chapter
as interaction term xQTLs, or DxG xQTLs. As such, the input files were simi-
lar to those required by the first mode, but here all participants were included in
the same input files and the covariate file had one additional variable, which was
a dummy variable indicating the grouping (i.e. a 1 for sporadic PD cases, and a 0
for healthy controls). This model was applied by setting the “useModel” argument
in the main function “Matrix_eQTL _engine” to “modelLINEAR_CROSS”. The for-
mula for “modelLINEAR_CROSS” was as follows:
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phenotype = o+ Z Bi - covariate;+7y- genotype_additive+ 8 - genotype_additive - covariatey
‘ 4.2)

Other arguments supplied to “Matrix_eQTL_engine” were “noFDRsaveMem-
ory” set to “FALSE”, so that a false discovery rate (FDR) adjusted P-value was
included in the output files. Additionally, “pvalue.hist” was set to “qqplot” to out-
put a qgplot for each run, allowing quality control checking of the output data.

MatrixEQTL was run in a per-phenotype per-model fashion, generating an
xQTL file for each phenotype-model combination. For example, to generate eQTLs
for phenotype MT-ND6 gene expression, a MatrixXEQTL run was performed for
sporadic PD cases (under model 4.1), for healthy controls (under model 4.1) and
including all participants and a grouping variable to obtain the interaction effect
(under model 4.2).

Lead (peak) SNPs were defined as those with the lowest P-value in a 1
megabase (Mb) block. These were determined using a custom function. First, the
“hclust” function from the base R “stats” package clustered all variant positions
within a chromosome, generating a distance tree representing the distance between
all variant pairs. The distance tree was then cut using the stats “cutree” function
into clusters each spanning 1Mb. An ID could then be assigned to each xQTL as-
sociation representing the chromosome and Mb block it belonged to. All xQTL
associations were then grouped by their ID, and the association with the minimum
P-value in the group was selected as the peak SNP.

The final hits given in table 4.1 were determined by using an FDR cut-off of
0.05 for those observed under the standard linear model (4.1) and a less stringent
cut-off of 0.1 for those observed under the DxG model (4.2), as disease-associated

trans-xQTLs are challenging to observe.

4.2.3 xQTL replication

Significant associations were replicated in a second AMP-PD cohort, PPMI. The

M36 timepoint was selected, the logic for which is outlined in section 4.2.1.1 and
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an identical pipeline was run as for PDBP timepoint 0 (PDBP-MO0). Following
this, associations identified in healthy individuals from PDBP were replicated in
independent healthy control datasets derived from Ali et al., 2020 for eQTLs and
from Ali et al., 2019 for meQTLs. In these studies, human genome build 37 was
used, whereas AMP-PD used build 38. As such, genomic co-ordinate lift-over was
performed using the “convert_rs_to_loc” function from the colochelpR package!'%3].
For all replication, the identical variant or the closest variant in high LD with the
identical variant was considered as representative of the signal. To get variants in
LD with a target variant, a bespoke, and now publicly available software package
was developed, ensemblQueryR. The “ensemblQueryLDwithSNPIlist” function was
used, setting both the minimum R2 and D’ to 0.8. This R package can be found at

the following URL: github.com/ainefairbrother/ensemblQueryR.

4.2.4 Downstream analyses

4.2.4.1 Annotation

To annotate the xQTLs with a candidate causal gene (nearest gene, V2G-nominated
gene), most severe consequence and other relevant information, a custom wrapper
was written utilising the Open Targets API to automate the process of pulling down
Open Targets information on a variant ID basis. This code was made publicly avail-
able and can be accessed at the following URL: github.com/ainefairbrother/useful-

bioinformatics-functions/blob/main/helper-funs-to-query-api-opentargets-gh.R.

4.2.4.2 Mediation analysis

Mediation analysis was run with the purpose of understanding whether, for a given
xQTL, the variant was acting by mediating the expression of a gene in cis to modu-
late the mitochondrial phenotype (Fig. 4.2 shows a schematic of this model). This
was done using custom code which leveraged the latent variable modelling R pack-

age, Lavaan [196]

. The mediation analysis model included three variables: the nu-
clear variant, the cis nuclear gene and the trans mitochondrial phenotype. Accord-
ingly, the model was set up to include 3 paths: path “A” was the effect of the variant

on the cis gene, path “B” the effect of the cis gene on the trans phenotype and path
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Figure 4.2: Schematic to show the scenario tested using mediation analysis. In this exam-
ple, a nuclear SNP is modulating mtDNA gene expression in trans through a
nuclear gene in cis.

“C” the direct effect of the variant on the trans gene. A further model term was
included to capture the indirect effect of the variant on the trans gene via the cis

gene. This model was defined in the Lavaan syntax as follows:

# Path C

trans_gene ~ cxvariant

# Path A

cis_gene ~ axvariant

# Path B

trans_gene ~ bxcis_gene

ab := a=xb

This model was then fitted to the underlying data for each target xQTL. For

example, for a given eQTL, this would comprise a data frame with three columns: 1.
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genotype, 2. cis gene expression and 3. mtDNA gene expression (trans phenotype).
The model fit was then performed on this data using the Lavaan “sem” function,
setting the “se” argument to “bootstrap”, which selects the bootstrap function and
the “bootstrap” argument to 5000, which represents a reasonable balance between
speed and robustness. The bootstrap method draws random samples from the data,
running the analysis on sequential subsets. This is particularly useful for input data
that is not normally distributed. Once the model fit was performed, a second Lavaan
function, “parameterEstimates”, was used to estimate the parameters of the model,
generating P-values and test statistics for each path included in the model. To assess
whether mediation was likely to explain an XxQTL, the P-value and test statistic
corresponding to the “ab” model parameter were extracted. Statistical significance
for mediation was then assessed at two levels, nominal (P<0.05) and multiple test

corrected Bonferroni (P<<(0.05/no. of tests)).

4.2.4.3 Chromatin contact analysis

To improve the accuracy of candidate casual gene assignments, HiC chromatin con-
tact data was levaraged. HiC can indicate whether a variant is in a region of high
chromatin contact for the cis candidate gene, as such, even if a variant is linearly
distal, in the true 3D structure of the genome, the variant may be closer, and as
such may be able to modulate the gene in cis. In light of this, data from a re-
cent study that generated high-density chromatin contact maps was leveraged %7
Hi-C data was downloaded on a per-gene basis from the following repository:
https://gillisweb.cshl.edu/HiC/. The data was then plotted using a custom R script,
and relevant variant and cis gene positions were overlaid for interpretation of the

target xQTLs.

4.3 Results

Genes linked to mitochondrial processes have been identified to be causal for mono-
genic familial PD, and have been implicated in sporadic PD. However, the extent to
which this is causal and which specific processes might be involved are not currently

understood. To consider this we study two functional readouts of the mitochondrial
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genome (expression and PT modification) and test whether the genetic regulation
of these processes by the nuclear genome is different in sporadic PD patients versus

healthy controls.

4.3.1 Discovery of mitochondrial-nuclear trans-xQTLs

Sporadic
PD cases

Healthy
controls

' ' f——

. ) Linear cross o + X Pycovariatey +
. i Linear model Linear model
a + 3 Bicovariatey + model -y-genotype_additive +

. .. [MatrixEQTL] [MatrixEQTL] X
Y'genotype_additive MatrixEQrL] d-genotype_additive-covariateyg

Sporadic PD Sporadic PD Healthy Healthy
case case control control
trans-eQTLs trans-meQTLs trans-eQTLs trans-meQTLs

Sporadic Healthy
PD cases controls

DxG DxG
trans-eQTLs  trans-meQTLs

Figure 4.3: Diagram to show the experimental design for the trans-xQTL analysis. Formu-
lae show the two models (adapted from Shabalin et al., 2021 1°4!), implemented
using MatrixEQTL, that were utilised for the analyses in this study, as well as
the the input and output data.

In order to identify expression Quantitative Trait Loci (eQTLs) and methyla-
tion Quantitative Trait Loci (meQTLs) - collectively termed xQTLs - the PDBP
cohort (at timepoint “MO0”, see section 4.2.1.1) was analysed using MatrixEQTL.
A simple additive linear model was run separately on cases (n=784) and controls
(n=507) (Fig. 4.3). The same model was run on cases and controls together includ-
ing a genotype-by-disease (GxD) interaction term to detect sporadic PD -specific
effects. A significant GxD interaction term association between a SNP-gene pair
indicates that the effect of genotype on expression is significantly different in spo-
radic PD compared to healthy controls. Biologically, this formal analysis frame-
work can therefore detect: 1. xQTLs significant in healthy control participants but
not significant in sporadic PD participants, 2. xQTLs significant in sporadic PD
participants but not in healthy control participants, 3. xXQTLs with opposing direc-
tions of effect in healthy control participants compared to PD, and 4. xQTLs whose

effects in healthy control participants and sporadic PD participants have the same di-
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rectionality but have significantly different magnitudes. The interaction term in the
genotype-expression regression is used to determine whether there is a statistically
significant difference in the slope of the regression line between healthy control in-
dividuals and individuals with sporadic PD. Specifically, this term assesses whether
the effect size of a unit change in allele dose on the phenotype is significantly dif-
ferent between sporadic PD participants and healthy control participants.
Therefore, this study seeks to identify nuclear genetic regulation of mitochon-
drial processes in sporadic PD cases, healthy controls and those specific to sporadic
PD disease (GxD) for two mitochondrial transcriptional phenotypes: mtDNA gene
expression (15 mtDNA-encoded genes) and rate of PT modification (methylation)
of mtDNA-encoded RNA (at 6 functionally important positions). After performing
these analyses, in total for expression from mtDNA-encoded genes, 8 GxD inter-
action term associations were detected (FDR 10%, table 4.1). Furthermore, two
sporadic PD associations and one healthy control association were detected (FDR
5%, table 4.1). For modification at mitochondrial genomic positions, 18 GxD inter-
action term associations (FDR 10%, table 4.1) were detected. Additionally, no spo-
radic PD associations and 10 healthy control associations were detected (FDR 5%,
table 4.1). In all cases, these associations represent significant interactions between
peak nuclear encoded genetic variants, and unique mitochondrial RNA phenotypes

(or interaction terms).
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4.3.2 Replication of trans-xQTLs

All peak associations passing FDR<0.05 under the standard linear model or
FDR<0.1 under the G xD model detected in PDBP (as listed in table 4.1) were con-
sidered for replication in an independent data set. Replication was performed first
in a pair of entirely independent healthy control eQTL and meQTL datasets derived
respectively from Ali et al., (2019)146 and Ali et al., (2020)!?!1, which although
permits replication of healthy control xQTLs only, provides independence of sam-
ple collection, processing, sequencing and downstream analysis. Following this,
replication was carried out in a second AMP-PD cohort (PPMI, timepoint “M367),
allowing replication of all xQTL categories (sporadic PD case, healthy control and

G xD interaction term associations).

First, replication was performed using independent xQTL data. As no datasets
containing PD nuclear-mitochondria trans-eQTLs or trans-meQTLs have previ-
ously been generated, to my knowledge, healthy control participant data sets
were utilised for replication, limiting the scope of replication to healthy control
xQTLs only. Two datasets, one containing eQTLs, one containing meQTLs are
meta-analyses which each aggregate associations from from 4 separate data sets.
First looking at eQTL replication, the single healthy control association replicated
strongly (Prepiicarion=6.71€-18). Next, looking at meQTL replication, the present
study detects healthy control associations with modification rates at two different
mitochondrial genomic sites, 5883 and 7526. However, the replication meQTL
dataset only includes associations for 7526, so only healthy control signals from
this site can be considered for replication. Under a Bonferroni adjusted P-value
correcting for the total number of peak associations being tested (P<0.05/6, where
6 is the overlap between healthy control xQTL phenotype associations detected
and phenotypes available in the replication data), 0/5 healthy control associations
replicated. Equally, using a nominal P-value cut-off (P<0.05), 0/5 healthy control

associations replicated.

Next, replication was performed in the PPMI dataset, for which xQTLs were

generated using the same pipeline as for the PDBP (discovery) xQTLs. First look-
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ing at eQTL replication, 11/11 associations were also generated in the PPMI data.
Under a Bonferroni adjusted P-value correcting for the total number of peak associ-
ations being tested (P<0.05/11), 0/8 G xD interaction term associations, 1/1 healthy
control associations and 0/2 sporadic PD case associations replicated in PPMI. Us-
ing a nominal P-value cut-off (P<0.05), 2/8 GxD interaction term associations,
1/1 healthy control associations and 0/2 sporadic PD case associations replicated
in PPMI. Next, looking at meQTL replication, 21/28 of associations were also de-
tected in the PPMI data. Under a Bonferroni adjusted P-value correcting for the
total number of peak associations being tested (P<0.05/21), 0/21 GxD interaction
term associations and 1/7 healthy control associations replicated in PPMI. No spo-
radic PD case associations were detected in PDBP, and as such there were none to
replicate. Using a nominal P-value cut-off (P<0.05), 1/21 GxD interaction term

associations and 3/7 healthy control associations replicated in PPMI.

Considering that the G xD interaction term associations are each comprised of
a healthy control association and a sporadic PD case association with significantly
different beta slopes, to further interrogate the replicability of the GxD associa-
tions, their components, or “arms” were replicated. For each GxD association,
replication was performed on the case and control arms if they reached a nomi-
nal P-value (P<0.05). First, looking at eQTL GxD replication, considering the 8
G xD associations, 5 had case and control passing P<0.05 and 1 had control passing
P<0.05 and as such, 6 were considered for replication. Of the 5 with case and con-
trol passing P<<0.05 in PDBP, 2/5 had cases replicating in PPMI with one passing
Bonferroni significance (P<0.05/6) and the other nominally significant (P<0.05).
For the one association with only control passing P<0.05 in PDBP, this did not pass
P<0.05 in PPMI. As such, 2/6 (33%) of PDBP GxD expression associations had
at least one of their association arms replicating in PPMI (Fig. 4.4). Next, look-
ing at meQTL G xD replication, considering the 18 G xD associations, 8 had case
and control passing P<0.05 and 10 had one of case or control passing P<0.05. As
such, all 18 were considered for replication. 14/18 associations were detected in the

replication data, of which 3/14 (21%) of PDBP G x D modification rate associations
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had at least one of their association arms replicating in PPMI (Fig. 4.4). Here, it

is important to note that GxD associations are likely to be difficult to replicate in

PPMI due to the sample sizes available.
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Figure 4.4: Figure to show replication (in PDBP) of PPMI-discovered case and control
eQTL and meQTL associations that comprise each significant GxD associ-
ation. The top facet shows eQTLs, with the first dashed line representing
P=0.05 and the second representing Bonferroni corrected P=0.05/6. The top
facet shows meQTLs, with the first dashed line representing P=0.05 and the
second representing Bonferroni corrected P=0.05/14. Filled points indicate that
the association had a P-value of less than 0.05 (nominally significant) in the
replication dataset (PDBP), whereas empty points with a cross indicate that the
association had a P-value greater than 0.05 (non-signigficant) in the replication
dataset (PDBP). Red points are the healthy control arm of the GxD associa-

tion, whereas blue points are the sporadic PD arm of the G xD association.

Finally, to check whether top associations derived from an independent study

replicate in the present study, the 18 top “whole blood” associations from the same

independent healthy control eQTL study discussed above were checked for their

significance levels in the PDBP eQTLs. 6/18 (33%) of these associations were de-

tected at P<0.05, 5/6 of which are an association of the expression of 5 mtDNA
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genes with variant rs6973982 (1e-03<P<1.7e-08), and 1/6 is an association be-
tween MT-RNR2 and rs10165864 (3.6e-02).

It is important to note two factors that make replication challenging in this
instance. Firstly, the sample sizes of the PPMI replication dataset are considerably
smaller than the discovery dataset (135 healthy controls and 302 sporadic PD cases)
making it difficult to replicate any but the largest signals. Secondly, with respect to
the RNA-Seq data used to generated the independent replication meQTL dataset,
an RT enzyme with lower fidelity was utilised during library preparation meaning
that PT modification rates could be captured more readily in these data. As a conse-
quence, replication of PDBP-generated meQTLs in particular presented significant
challenges.

All considered, strong replication of healthy control eQTLs could be observed
in a second AMP-PD cohort and in independent meta-analyses. Independently de-
rived healthy control eQTLs were also detected as significant associations in the
PDBP-generated eQTLs. GxD interaction term associations were more replicable
than sporadic PD case associations and this was supported by replicability present
within the comprising cases and controls, even if the overall GxD P-value could not
be replicated. Generally, eQTLs were more replicable than meQTLs, which were

considerably more challenging to replicate.
4.3.3 Analysis and interpretation of trans-xQTLs

4.3.3.1 Interaction term sporadic PD -specific trans-xQTLs
To identify xQTLs that are specific for sporadic PD in a statistically robust manner,
the PDBP data was analysed using a linear model with a GxD term. A significant
GxD interaction term indicated that the effect of the genotype on the mitochon-
drial phenotype was significantly different in PD participants compared to healthy
controls.

The most significant interaction term eQTL identified under the G xD model
was the association between MT-ND6 and rs7130955 (11:65605109) (P=2.69¢-09),
characterised by a positive association in healthy control participants (P=8.9e-03,

beta=0.064) and a negative association in sporadic PD participants (P=6.97e-03,
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beta=-0.047) (Fig. 4.5a and b). Supporting its robustness, this association was
also detected in the PPMI dataset at nominal significance (P=0.0421). To further
understand the potential genes and mechanisms through which rs7130955 is asso-
ciated with expression of MT-ND6, a number of evidence streams were considered.
Firstly, it was important to note that rs7130955 is located in the intronic region of
the MAP3K11 gene. Whilst this contributes to evidence for MAP3K11 as the candi-
date gene for cis regulation by rs7130955, it does not guarantee it. Where it is often
the case that variants regulate proximal or host genes, it is also known that vari-
ants can regulate distal genes instead!'8]. As such, further interrogation of gene

candidacy for rs7130955 was performed.

In the first instance, the Open Targets Genetics variant-to-gene (V2G) algo-
rithm was leveraged. This approach seeks to assign variants to genes by integrat-
ing available evidence to generate a V2G score. Dependent on data availability
for the target variant, evidence may include the linear distance between the SNP
and transcription start site (TSS), molecular phenotype experiment data (eQTL,
splicing QTL (sQTL), protein QTL (pQTL)), chromatin interaction experiment data

1991, The highest scoring V2G gene for

and functional prediction (Ensembl VEP
rs7130955 was the ribonuclease subunit coding gene RNASEH2C (V2G=0.32), evi-
denced by linear distance to the TSS (115,709bp), sQTL data (sQTL in 19/49 GTEx
tissues, excluding whole blood) and eQTL data (eQTL in 11/126 studies, including
GTEx whole blood). Five other genes with V2G>0.25 for rs7130955 included the
novel Rab8-binding protein gene EHBPIL1 (V2G=0.29), the transcriptional repres-
sor gene OVOLI (V2G=0.29), the mitogen-activated protein kinase gene MAP3K11
(V2G=0.28), the lysine acetyltransferase gene KAT5 (V2G=0.26) and the nuclear
assembly factor BANF1 (V2G=0.26). It is important to consider that the V2G score
integrates signals arising from diverse tissues as opposed to purely whole blood
which is the focal tissue of this study. Considering the V2G scores and whole blood
eGenes, four likely candidates were taken forward: MAP3K11, RNASEH2C, KATS

and BANF'I. To understand which genes have previously been identified as eGenes

for rs7130955 in whole blood, the second stream of evidence considered only whole
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Figure 4.5: A. Manhattan plot to show all GxD associations between nuclear variants and

expression of the mtDNA gene MT-ND6. B. Genotype-by-phenotype distri-
butions, where each data point represents a study participant, underlying the
association between rs7130955 and MT-ND6 expression in sporadic PD cases
(top) and healthy controls (bottom). C-D. Plots to show Hi-C chromatin con-
tact data between a chromosome and its host gene (at a resolution of 25kbp),
where the gene location is indicated by two vertical green lines (start, end) and
a corresponding green label. The position of variant rs7130955 is indicated by
a red vertical line and corresponding red label. The zoomed area represents a
1Mbp window around the variant of interest.
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blood cis-eQTL data. The eQTLGen data is a meta-analysis of 37 whole blood
eQTL datasets, considering 11 million SNPs and identifying 16K eGenes [0,
In the eQTLGen data, the top eGene for rs7130955 was MAP3KI11 (P=3.27e-
310). BANFI (P=8.8833e-42), RNASEH2C (P=5.34e-39) and KATS5 (P=1.16e-8)
were also significant eGenes. Notably, the V2G score for MAP3K11 integrates
across 4 blood data sets (GTEXx, Lepik 2017, TwinsUK and eQTLGen), and in 3/4,
MAP3KI11 was identified as an eGene for rs7130955 (beta>0), whereas only 1/4

data sets (eQTLGen) identified BANFI and RNASEH?2 as eGenes for rs7130955.

A common mechanism by which frans-eQTLs operate is that a variant regu-
lates a gene in cis (in this case, a nuclear gene), which in turn modulates a pheno-
type in trans (in this case, mitochondrial expression). As such, mediation analysis
was carried out, testing the model that rs7130955 is acting through genes in cis to
modulate the mitochondrial phenotype. Mediation analysis was run on all genes
with a TSS less than 500kb from rs7130955 (47 genes in total). Only RNASEH2C
(P=1.97e-04) was significant at a Bonferroni adjusted P-value of P<0.05/47. How-
ever, evidence for mediation was found at a nominal P-value of P<0.05 for four

other genes, including the eQTL- and V2G- nominated MAP3K11 (P=0.018).

The final stream of evidence considered to identify the candidate gene for
rs7130955 was that of chromatin contact data. When trying to understand gene
regulation, it is important to consider the 3D structure of the genome and its role
in gene regulation. In the context of eQTLs, a recent study using chromatin con-
formation capture (Hi-C) found close spatial proximity between eQTLs and their
eGenes across multiple human tissues?°!). In light of this, further interrogation of
the rs7130955-MT-ND6 eQTL aimed to understand which gene rs7130955 is clos-
est to in the 3D structure of the genome, and as such, which gene is more likely to
be the eGene. Whilst the V2G gene dataset does utilise Hi-C data from the Javierre
et al., (2016)[292] study, the present analysis leverages the more recent deep, robust
and high-powered Hi-C Lohia et al., (2022) meta-analysis'!°’!. Lohia et al., (2022)
generated a global high-density chromatin interaction network’ by meta-analysing

3619 human Hi-C runs. For each candidate eGene, chromosome-wide contact fre-



4.3. Results 142

quencies (contact of the loci with every other genomic loci on the host chromosome)
for each were plotted, overlaying the candidate eGene bounds (green) and the vari-
ant position (red) (Fig. 4.5). In figure 4.5d, the chromosome 11 -MAP3K11 contact
map is shown, with the zoom focusing on the locus of interest. rs7130955 is within
the highest contact frequency bin (>200,000) which is not surprising given the small
linear distance between them. Comparing this to the other three candidate eGenes,
rs7130955 falls into the 75,000 contact frequency bin for RNASEH2C and KATS,
and into the <50,000 bin for BANFI. RNASEH2C, KAT5 and BANFI thus display
significant but considerably less frequent physical contact with rs7130955 than ob-
served for MAP3K11 (Fig. 4.5c-f). Taken together, these evidence streams make
for a compelling case for both RNASEH2C and MAP3K11 as candidate genes for
rs7130955. However, the mediation evidence, linear and 3D proximity and replica-
bility of MAP3K11 as a cis-eGene for rs7130955 across independent blood eQTL

data sets point to this gene as the most likely candidate.

® 2617 e 5818 7526 MT expression

5721 e 5883 @ 9999
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Figure 4.6: Plot to show eQTL signals (light blue) in a 1Mbp window around the variant
rs7130955 (11:65605109). This has been overlaid with meQTL signals for six
mitochondrial positions. Vertical line indicates the genomic position of variant
rs7130955, whilst the horizontal line indicates a P-value of 5e-08.

To further understand this eQTL hit, meQTL associations for all 6 positions

in a 1IMb window centred on rs7130955 were overlaid with the eQTL data (Fig.
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4.6). It was interesting to note that although not reaching the GxD significance
cut-off (FDR<10%), there was evidence for an association between this locus and
modification rates at position 2617 (position within MT-RNR?2). Thus, there is ev-
idence arising from a second, related, transcriptional phenotype at this locus, both
supporting the validity of the eQTL signal and pointing to post-transcriptional reg-
ulatory activity as a mechanism through which mtDNA gene expression is being

differentially modulated between sporadic PD cases and healthy controls here.

Of the meQTLs identified, all 18 passing FDR 10% under the GxD model
were associations with modification rate at mitochondrial position 5883 (Fig. 4.7a).
Of these PD-specific meQTLs, two stood out as having robust beta slopes under-
lying their case-control differences. The first was the association between mi-
tochondrial position 5883 and rs73044588 (12:6252835) (P=1.77e-08), charac-
terised by a significant positive association in healthy control participants (P=4.24e-
09, beta=2.86e-04) and a non-significant association in sporadic PD participants
(P=0.33) (Fig. 4.7c). The V2G algorithm ranks CD9 as the most likely eGene
for rs73044588, supported by distance to the CD9 TSS (53,120kbp) and eQTLGen
data where the only eGene for rs7130955 is CD9 (P=8.41e-7). Additionally, for
10/11 variants in linkage disequilibrium (LD, R2>0.8), CD9 was identified as a
significant eGene in the eQTLGen data. Mediation analysis between rs73044588,
CD9 and modification rate at position 5883 was non-significant (P=0.18). However,
leveraging the Lohia et al., (2022) chromatin contact data, rs73044588 was found
to reside in the highest contact frequency bin of the CD9 contact map (~1000000)
(Fig. 4.7b). Here, linear and 3D proximity and replicability of CD9 as a cis-eGene
for rs73044588 across independent blood eQTL data sets point to CD9 as the most
likely candidate.

The second G xD interaction term meQTL of interest was the association be-
tween mitochondrial position 5883 and rs10159481 (10:37362424) (P=3.70e-07),
characterised by a significant positive association in healthy control participants
(P=1.99¢-06, beta=1.85e-04) and a non-significant association in sporadic PD par-
ticipants (P=0.075) (Fig. 4.7d). The V2G algorithm ranks ZNF25 as the most likely
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Figure 4.7: A. Manhattan plot to show all GxD associations between nuclear variants and

methylation at mitochondrial position 5883. B. Plot to show Hi-C chromatin
contact data between chromosome 12 and CD9 (at a resolution of 25kbp),
where the gene location is indicated by two vertical green lines (start, end)
and a corresponding green label. The position of variant rs73044588 is in-
dicated by a red vertical line and corresponding red label. The zoomed area
represents a 1Mbp window around the variant of interest. C. Genotype-by-
phenotype distributions, where each data point represents a study participant,
underlying the association between rs73044588 and methylation at mitochon-
drial position 5883 in sporadic PD cases (top) and healthy controls (bottom). D.
Genotype-by-phenotype distributions, where each data point represents a study
participant, underlying the association between rs10159481 and methylation at
mitochondrial position 5883 in sporadic PD cases (top) and healthy controls
(bottom).
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eGene for rs10159481, supported by blood eqtl data from eQTLGen (P=2.57e-17).
Additionally, for 8/8 variants in LD (R2>0.8), ZNF25 was identified as a signif-
icant eGene in the eQTLGen data. No evidence of mediation via proximal genes
was found for 5883-rs1015948, additionally, 3D proximity could not be tested as
the Lohia et al., (2022) chromatin contact data did not have chromatin contact fre-
quencies for rs10159481 eGene candidates. However, biologically, Open Targets
indicates ZNF25 as being associated wth DNA methylation and other epigenetic
processes, adding to the evidence for this gene as the most likely candidate. It is
important to note that a nuclear-encoded fragment of mitochondrial DNA (NUMT)
was identified in proximity to variant rs10159481 (MTRNR2L7, 239kbp away). To
ensure that this was not generating the association signal through aberrant mapping
of NUMT sequences to the mitochondrial genome, during quality control, filtration
for properly paired and uniquely mapped reads was carried out. However, this is
only effective if the sequence similarity is low between the mtDNA-encoded gene,
and so to confirm this, sequence alignment was performed between 150bp (this was
the RNA-Seq library read length) windows (total=1588) of MTRNR2L7 and the
whole MTRNR?2 gene using the NCBI nucleotide BLAST tool, effectively aiming
to simulate whether NUMT reads would map to the mitochondrial MTRNR2 gene
(Fig. 4.8). Considering only the full length alignments generated using this method
(n=706), percentage identity (Fig. 4.8B) and number of mismatches (Fig. 4.8C)
were plotted. Low sequence identity (73-90%) and high mismatch rate (13-36%)
could be observed across all windows. This suggests that MTRNR2L7 reads were
unlikely to map to MTRNRZ2, meaning that it is unlikely that this meQTL signal was
confounded by the nearby NUMT.

4.3.3.2 Sporadic PD case trans-xQTLs

To identify xQTLs that are significant in sporadic PD cases in a statistically robust
manner, the PDBP data was analysed using a linear model. A significant associa-
tion indicated that the effect of the genotype on the mitochondrial phenotype was
significant in sporadic PD participants but without the stipulation of being signif-

icantly different in healthy controls. Two eQTLs and no meQTLs were identified
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Figure 4.8: A. Percent identity against mismatch. B. Distribution of percent identity values
across the 706 150bp windows. C. Distribution of mismatches across the 706
150bp windows.

in sporadic PD cases using an FDR cut-off of 5%. Of the two eQTLs identified
in sporadic PD cases, one was close to significance under the GxD model using a
P-value adjusted for the number of hits (P<0.05/39).

The eQTL hit identified in sporadic PD cases and trending to significance un-
der the GxD model was the association between MT-CO1 expression and the vari-
ant rs4907234 (2:96447202) (Fig. 4.9b). This trans-eQTL was characterised by
a non-significant association in healthy control participants (P=0.70), a significant
negative association in sporadic PD participants (P=1.82e-08) and a raw P-value
under the GXD model of P=4.70e-04 (Fig. 4.9b). The V2G algorithm lists 23
candidate genes for rs4907234, of which 6 were considered as more likely candi-
dates due to their status as a significant eGene for rs4907234 or V2G score of >0.1:
GPAT, ITPRIPLI, STARD7, ARID5A, TMEM127 and CIAO1. Nominally (P<0.05)
significant mediation was found for /ITPRIPLI (P=0.023) and NCAPH (P=0.048),
with ARIDS5A near-significant (P=0.058). Leveraging the Lohia et al., (2022) chro-
matin contact data to provide further evidence for gene candidacy (Fig. 4.9¢c-h), it
was observed that rs4907234 was in the highest contact frequency bin for ARID5A
(>100000) (Fig. 4.9f). In the eQTLGen dataset, ARID5A is the top eGene for
154907234 (P=1.17e-99), where TMEM 127 (P=1.38e-41) and ITPRIPLI (P=1.52e-

11) are also listed as significant eGenes. Taken together, there is good evidence for
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Figure 4.9: A. Manhattan plot to show all sporadic PD (non disease-specific) associations
between nuclear variants and expression of the mtDNA gene M7-COI. B.
Genotype-by-phenotype distributions, where each data point represents a study
participant, underlying the association between rs4907234 and MT-CO1 ex-
pression in sporadic PD cases (top) and healthy controls (bottom). C-H. Plots
to show Hi-C chromatin contact data between a chromosome and its host gene
(at a resolution of 25kbp), where the gene location is indicated by two vertical
green lines (start, end) and a corresponding green label. The position of variant
rs4907234 is indicated by a red vertical line and corresponding red label. The
zoomed area represents a 1Mbp window around the variant of interest.
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both ITPRIPLI and ARIDS5A as the candidate gene for rs4907234, and as potential
mediators of MT-CO1 expression via rs4907234. ARID5A is a particularly interest-
ing candidate, as its protein product is a regulator of immune responses involved in
regulation of inflammatory processes. Additionally, MAPK signalling is known to
regulate AridSa through phosphorylation!?%3!, This could represent further support
for the emerging link between nuclear regulation of mitochondrial processes and

MAPK signalling in sporadic PD observed in the present study.

4.3.3.3 Healthy control trans-xQTLs

To identify xQTLs that are significant in healthy controls in a statistically robust
manner, the PDBP data was analysed using a linear model. A significant associ-
ated indicated that the effect of the genotype on the mitochondrial phenotype was
significant in healthy control participants but without the stipulation of being signif-
icantly different in sporadic PD cases. One eQTL and 10 meQTLs were identified
in healthy controls using an FDR cut-off of 5%. The single control eQTL did not
trend to significance under the GxD model (P>0.05/39), but all 10 meQTLs did
trend (all P<0.05/39).

Of the 10 meQTLs that were identified in healthy control participants, all were
trending towards significance under the GxD model, including five associations
with each of position 5883 and position 7526. The single eQTL hit identified in
healthy control participants was an association between M7T-CO3 and rs4724362
(7:45121704) (Fig. 4.10a). This association is characterised by a significant neg-
ative association in healthy control participants (P=1.67e-08), a negative associa-
tion trending towards significance in sporadic PD participants (P=1.61e-05) and a
non-significant P-value under the GxD model (P=0.38-02), meaning that this as-
sociation has been detected in both healthy control and sporadic PD participants
and is not significantly different, although does display differing magnitude, be-
tween sporadic PD cases and healthy controls (Fig. 4.10b). There are a number
of candidate genes for rs4724362. The V2G algorithm lists 15 genes, of which
5 were considered as candidates due to their status as a significant eGene for

rs4907234 or have a V2G score of >0.1: CCM2, MYOIG, TBRG4, NACAD and
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Figure 4.10: A. Manhattan plot to show all healthy control associations between nuclear
variants and expression of the mtDNA gene MT-CO3. B. Genotype-by-
phenotype distributions, where each data point represents a study participant,
underlying the association between rs4724362 and MT-CO3 expression in
sporadic PD cases (top) and healthy controls (bottom). C-G. Plots to show
Hi-C chromatin contact data between a chromosome and its host gene (at
a resolution of 25kbp), where the gene location is indicated by two vertical
green lines (start, end) and a corresponding green label. The position of vari-
ant rs4724362 is indicated by a red vertical line and corresponding red label.
The zoomed area represents a 1Mbp window around the variant of interest.
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RAMP3. TBRGH4 is the nearest gene to rs4907234 has a significant negative beta
in eQTLGen (P=2.14e-43), matching the direction of effect captured in the present
study. MYO1G (P=1.24e-196) and NACAD (P=2.50e-46) also have significant pos-
itive beta values in eQTLGen, whereas CCM?2 has a strikingly significant negative
beta (P=3.27e-310). Mediation analysis for this association finds one gene pass-
ing a Bonferroni adjusted P-value cut-off of 5%, MYOI1G (P=1.56e-03), and four
other genes passing a nominal P-value cut-off of 5%, including CCM2 (P=1.02¢e-02)
and interestingly, OGDH (P=1.83e-02) encoding the mitochondrial enzyme oxog-
lutarate dehydrogenase. TBRG4 was found to be non-significant in mediation anal-
ysis (P=0.25). Unusually, the Lohia et al., (2022) chromatin contact data reveals
that rs4724362 is a regions of high chromatin contact for each of the five genes,
making it difficult to call a candidate using this information, although rs4724362
sits in marginally elevated contact regions for NACAD, MYOIG and TBRG4 (Fig.
4.10c-g). The functional annotations of these genes make it most likely that TBRG4
(FASTKD#4) is the mediating gene here, as it is known to be involved in mitochon-
drial mRNA processing, regulation and stability. This result confirms that in ad-
dition to disease-specific hits, we are additionally detecting biologically relevant
processes that are stable across both cases and controls. Interestingly, a SNP in
LD (rs2304693, r2=0.604) with rs4724362 has been associated with mtDNA copy
number, representing supporting evidence for the effect of this locus on another

mitochondrial phenotype 2041,

4.3.3.4 Integrating genome wide association data

Integrating GWAS and xQTL data can aid mechanistic understanding of GWAS
signals, wherein the GWA study associates a genomic locus with a phenotype and
the xQTLs are the association of a genomic locus with a quantitative trait (gene ex-
pression, for example). As such, colocalisation of signals can indicate that modified
expression of a gene (in cis or trans) is driving the association with the pheno-
type at the target locus. The most recent PD risk GWAS by Nalls and colleagues
was selected to test GWAS-xQTL overlap in this instance, as it is the largest and

most recent PD GWAS. The aim was to understand whether any of the variants sig-
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nificantly associated with mitochondrial transcriptional phenotypes in the present
study were also found to be significantly associated with PD risk, thus implicat-
ing GxD association variants in PD. Of the 26 DxG associations in the present
study, variants contained within 20/26 of these associations were present in the
Nalls et al. GWAS summary statistics. Of these 20, two GxD associations con-
tained variants with raw GWAS P-values below a nominal 5% cut-off. These were
associations with PT modification: 5883-rs72966766 (Pgwas=0.008735) and 5883-
159869896 (Pgwas=0.026820), neither of which had significant P-values when con-
sidering multiple tests. In line with this, performing colocalisation analysis did not
reveal any significant colocalisations between the Nalls et al. GWAS and GxD
associations detected in the present study. Given that the Nalls et al. GWAS is a
meta-analysis of PD risk GWA studies, this raises the possibility that the GxD as-
sociations detected here may be more likely to modulate progression as opposed to

influencing the incidence of the disease.

4.4 Discussion

This study aimed to further understand the role of mitochondrial processes in spo-
radic PD, and in particular, the nuclear genes and pathways that may be associated
with modulating mitochondrial phenotypes specific to the disease state. To this end,
this study leveraged genetic and RNA-seq data from the whole blood of 784 PD
participants and 507 healthy controls, identifying genetic regulation of mitochon-
drial processes in sporadic PD cases, healthy controls and specific to sporadic PD

for two mitochondrial transcriptional phenotypes.

Overall, eQTLs were more replicable than meQTLs, both across AMP-PD co-
horts and in independent data. This was true for the single healthy control eQTL,
which replicated in both datasets with high significance, and to an extent for the
G xD interaction term eQTLs, for which 25% replicated (at a nominal P-value of
5%) exactly in PPMI with 33% showing partial replication with at least one replica-
ble GxD arm. Sporadic PD case eQTLs, however, could not be replicated. Unsur-

prisingly, meQTLs replicated with a considerably lower rate, with 43% of healthy
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control meQTLs replicating in PPMI, but none of these replicating in the indepen-
dent meQTL data. GxD interaction term meQTLs also showed low to moderate
replicability, with 4.8% replicating exactly in PPMI and 21% showing partial repli-
cation with at least one replicating GxD arm. There are a number of factors con-
tributing to the moderate replication rates that we see here, particularly with respect
to replication of modification rate associations. Firstly, it is important to point out
that, compared to the discovery dataset, the replication dataset, PPMI has consider-
ably less power to detect xQTLs. PPMI has 27% (n=135) of the healthy controls that
PDBP has and 39% (n=302) of the sporadic PD cases that PDBP has, meaning that
it likely only has the power to detect very strong signals. Secondly, although efforts
were made to select a replication dataset matching the participant composition of
PDBP-MO, key participant composition differences remained between the PDBP-
MO and PPMI-M36 cohorts. For example, PD case recruitment criteria, medication
status, age distributions and sex ratios differ and it is possible that these factors
impacted on the detection and cross-cohort replicability of trans-xQTLs (see Fig.
3.2 for cohort comparison). Thirdly, it is unsurprising that the meQTLs replicated
less readily across cohorts and in independent data. The mitochondrial modifica-
tion rates are a proxy phenotype reliant on reverse transcription error, and as such
have the potential to be unstable. These proxy modification signals arise when the
reverse transcriptase (RT) enzyme is blocked by base modifications and is an event
that becomes less likely when higher fidelity RT enzymes are used. In the case of the
AMP-PD data, the RT enzyme used was Roche Kapa HiFi polymerase (https://amp-
pd.org/transcriptomics-data), which is a high fidelity RT enzyme designed to read
through modified bases. In contrast, for GTEx RNA-Seq data, one of the studies
included in the independent meta-analyses used for replication, the gold-standard
SuperScript II RT enzyme was used, which has comparatively lower fidelity. As
such, there is a high probability that the RT enzyme used in the AMP-PD library
preparation ultimately limited the use of mismatch proportion as a proxy to detect
mitochondrial genomic modifications, resulting in the low meQTL replicability ob-

served here.
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In addition to using replication to assess the robustness of the associations
detected, efforts were made to demonstrate that biologically relevant associations
were being detected in sporadic PD cases that were also detected in healthy con-
trol participants. It was shown that the most stable high-significance xQTLs were
associated with nDNA-encoded mitochondrial genes and processes. This indicates
that associations being detected in sporadic PD participants were related to normal,
healthy mitochondrial processes, suggesting that these associations were not sim-
ply a consequence of mitochondrial dysfunction. An example of this, detected at
FDR<0.05 in healthy control participants was the association between rs4724362
and MT-CO3 expression which is also detected with high but sub-threshhold signifi-
cance in cases (P=1.61e-05) and whose likely candidate gene is TBRG4 (also known
as FASTKD4). TBRG4, transforming growth factor beta regulator 4, is known to be
involved in mitochondrial mRNA processing, regulation of mitochondrial mRNA
stability and has been found to localise to the mitochondrial matrix. Thus, this
is one example of an association which is detected consistently across diagnoses
and is linked to mitochondrial biology. Notably, this association was also strongly

replicated in the independent healthy control data, supporting its validity.

The top GxD interaction term eQTL was an association between M7-ND6 ex-
pression and the nuclear variant rs7130955. This association was characterised by
a significantly different association in sporadic PD cases compared with controls,
where the association was positive in healthy control participants with a marginally
weaker negative association in sporadic PD participants (Fig. 4.5). Multiple streams
of evidence (proximity, mediation, independent whole blood cis-eQTL data, HiC
data) pointed to MAP3K11 as the cis-mediator of this association. As such, the
model proposed here is that rs7130955 has an opposing effect in healthy control
participants compared to sporadic PD case participants, for which a potential bi-
ological mechanism may be that the nuclear genetic variant contributes to disease
susceptibility or progression through a cis effect on the MAP3K11 gene. MAP3K11,
mitogen-activated protein kinase kinase kinase 11, encodes MLK3, a member of

the serine/threonine kinase family known to preferentially activate MAPKS8/JNK
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kinase and positively regulate the JNK signalling pathway which is responsible for
promotion of apoptosis 292061 Interestingly, MAP3K11 has previously been ex-
plored as a target for slowing PD progression. The MLK3 inhibitor CEP-1347 was
found to prevent motor deficits and neuronal degradation in murine MPTP (neuro-
toxic to dopaminergic neurons) models and following promising pre-clinical results,
reached phase 1I trials for PD in 2006 (n=806)207208.2091 " Explanations for trial
failure included the inability of MLK inhibitors alone to slow PD progression, off-
target effects including the inhibition of other kinases, unsuccessful accumulation
of CEP-1347 to therapeutic levels due to its biochemical characteristics and insuf-
ficient blood-brain barrier penetrance?°”. Building on this work, the Kline et al.,
(2019) study utilised murine models with MTPT-induced nigrostriatal dopaminergic
pathology, showing that a novel ’second generation’ MLLK3 inhibitor with improved
blood-brain barrier penetrance and higher specificity for MLK3, CLFB-1134, in-
hibited phosphorylation of MLK3 targets and protected against neurotoxin-induced

S [205].

nigral dopaminergic neuron los The same study concluded that inhibition

of MLK3 may be a valid target for future work investigating PD treatments (20>,
Overlapping meQTL (association with PT modification at position 2617) and eQTL
signals (Fig. 4.6) builds on confidence that association signals observed here are
genuine and robust, but untangling causal processes here is challenging given the
observation of opposite effects in cases and controls. As such, the results of the

present study may point to a mitochondrial role for MAP3K11, in particular sug-

gesting its potential relevance to sporadic PD aetiology.

Two notable GxD interaction term meQTLs identified were associations with
modification rate at position 5883, a tRNA p9 site between the protein coding genes
MT-ND2 and MT-CO1. The first is an association with variant rs73044588, for
which the candidate gene most highly supported is CD9 (TSPAN29), encoding a
member of the tetraspanin family. This is characterised by a positive association
in controls, where the variant is associated with higher modification rates. In spo-
radic PD cases, there is no significant association meaning that the variant does not

appear to confer this effect. Higher modification at 5883, a p9 site, is thought to sta-
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bilise the tRNA transcript structure, allowing for RNA cleavage and the release of
gene products, ultimately increasing the availability of OXPHOS components 391,
As such, the model presented by the GxD interaction term meQTL here is that in
controls, the variant - putatively mediated by CD9 - is associated with higher modifi-
cation of 5883, resulting in greater availability of OXPHOS components. Although
no evidence exists for a direct role for CD9 in PT modification processes, a number
of studies have uncovered a role for CD9 in mitochondrial-lysosomal pathways. In
melanoma cell lines, for example, CD9 was found to regulate mitochondrial clear-
ance and it is thought that this operates through a role in late endosome maturation
and incorporating cargo into early endosomes 2192111 Another study showed that
CD9/CD81 double knockout mice exhibited accelerated ageing, including a short-
ened lifespan, linked to reduced SIRTI expression which is a core regulator of cel-
lular senescence and inflammation pathways[>!?). Interestingly, SIRT! is known to
regulate autophagy, mitochondrial function and inhibit oxidative stress>!3]. A num-
ber of studies have also demonstrated a role for SIRT in PD, through regulation of
neuroinflammation?'3!. Thus, this study provides evidence for CD9 mediating, or
perhaps indirectly mediating via interaction with SIRT, for example, an effect on
mitochondrial transcription through PT methylation of mitochondrial RNA. It is
also possible that modification rate responds dynamically to processes driven by
CD9. Further mechanistic work is necessary to understand the precise mechanisms

driving this association.

It is important to acknowledge the limitations of this study and the resulting
models. Firstly, the tissue utilised in this study was whole blood, which is not
the tissue in which the disease primarily exerts its symptomatic effects. However,
growing evidence points to the blood as a useful tissue for the identification of PD
biomarkers, with known PD pathophysiology being detected in blood, for example
alpha synuclein species, lysosomal enzymes and amyloid and tau pathology [2!4].
Additionally, recent work has demonstrated clear transcriptomic and methylomic
shifts in whole blood samples from individuals with PD[215:216] ' Degpite this, im-

portant cell type specific associations may not be detected using blood alone. To
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remedy this, it is hoped that large sporadic PD cohorts will be generated in future.
Post-mortem brain tissue would have utility in this regard, although this too is as-
sociated with a number of issues (post-mortem interval, RNA degradation, loss of
focal cell types). Other large datasets based on data collected from iPSC experi-
ments, for example, may also allow exploration of mitochondrial-nuclear associa-
tions in specific cell types. Secondly, despite usage of a large whole-blood dataset
to gain power for the detection of trans-xQTLs, the effect sizes of these are in-
herently small, making them difficult to detect. Future expansion of whole blood
sporadic PD/ healthy control cohorts may permit the detection of additional small
effect mitochondrial-nuclear trans-xQTLs and will likely reveal sub-threshhold hits
as significant. Thirdly, despite rigorous attention to variant-to-gene assignment, us-
ing a number of strategies beyond the standardly applied ’nearest gene’, it remains
a possibility that candidate nuclear genes have been mis-identified. Furthermore,
for the associations identified, only a single cis-mediator of each association was
considered. It has been shown that trans-eQTLs are more likely than randomly se-
lected SNPs to associate with more than one cis-gene!?!”l. An interesting direction
for future work could be to move beyond the single cis-mediator assumption and to
instead look at whether nuclear variants associated with mitochondrial phenotypes
do this through multiple cis-mediator effects. This may help to identify additional
nuclear genes and pathways which act to modulate mtDNA gene expression and PT
modification. Finally, the present study is limited to the detection of statistically
significant trans-xQTLs, and while this is a crucial step for the identification of im-
portant biological contributors to sporadic PD, to further understand and unpick the
models proposed here, detailed functional work is required.

In conclusion, using QTL mapping this study finds that nuclear genetic reg-
ulation of mtDNA-encoded genes is perturbed in PD, implicating MAP3K11 and
CD9 in disease pathways that also operate through modulation of mitochondrial
processes. These represent novel molecular features with the potential to reveal

new biology and to enable development of therapeutic targets for sporadic PD.



Chapter 5

Conclusions and future directions

The prevalence of adult NDs is rising, but we still lack a full understanding of the
pathogenesis of these conditions. We also lack biomarkers that would allow early
and reliable diagnosis and there are currently limited interventions that prevent or
impede progression. To solve these problems, efforts will be multi-disciplinary, will
leverage rapidly advancing ’omics technologies including single-cell and spatial
RNA-Seq, stem cell technologies — such as induced pluripotent stem cells (iPSCs)

and organoids — and imaging techniques.

Mitochondrial dysfunction has been implicated in the pathogenesis of AD and
PD, the two most common NDs and as such, this thesis aimed to contribute to
the wider understanding of these diseases through studying one potential route to
mitochondrial dysfunction. Ample evidence points to coordination between the mi-
tochondrial and nuclear genomes being essential to normal mitochondrial function,
but formal analysis of this in specific NDs is absent from the literature. As such,

this thesis aimed to study this and did so through the lens of transcriptomics.

Each results chapter of the thesis (two, three and four) provides a discussion
of its findings, however, viewed as a whole, three main themes emerge and require
further discussion: (i) mitochondrial-nuclear coordination and cell type specificity,
(ii) altered mitochondrial-nuclear coordination and NDs and, (iii) the timing of mi-

tochondrial dysfunction in ND aetiology.
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5.0.1 Mitochondrial-nuclear coordination and cell type speci-
ficity

The first theme emerging from this body of work is that of cell type specificity. Work
in chapter two found that mitochondrial-nuclear correlation profiles were regionally
distinct in healthy CNS tissue. Hypothesising that this was driven by regional cell
type composition, cell type specificity values derived from mouse brain sScRNA-seq
data were used to estimate the enrichment of cell type markers in mitochondrial-
nuclear pairs with extreme expression correlation (high negative and high positive).
Extreme positive and extreme negative pairs being enriched for different cell types
pointed towards cell type composition as the likely driver of cross-CNS differences.
Further to this, it was observed that mitochondrial-nuclear correlations with high
cross-CNS variance were enriched for synaptic genes, pointing to synaptic path-
ways as harbouring variable mitochondrial-nuclear coordination and indicating po-
tential cell type or sub-celltype specificity. At the time of analysis (2019/20), these
results could not be followed up using single-cell RNA-seq (scRNA-seq) data be-
cause datasets of the appropriate scale, design or type (human, multiple CNS tis-

sues, AD/PD case-control) were not publicly available.

Since this time, single-cell technology has rapidly advanced. Increasingly large
and comprehensive datasets have been generated, holding promise for the interroga-
tion of cell type-specific processes. However, the prevalence of single nuclear RNA-
Seq (snRNA-Seq) over single cell RNA-Seq (scRNA-Seq) datasets is a distinct lim-
itation in terms of the present work as mtDNA-encoded RNA is not sequenced in
snRNA-Seq. As such, to study mitochondrial-nuclear coordination in human cell
types, sScCRNA-Seq data derived from human iPSCs is one potential avenue. An-
other is bulk RNA-Seq from purified cell cultures. Studying mitochondrial-nuclear
coordination in such a dataset would enable a fuller understanding of its cell type
specificity, allowing elucidation of the cell types where such coordination is most
important and ultimately identifying those that may be especially vulnerable to its

dysfunction.

Selective neuronal vulnerability is a present focus of ND research, and much
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is still to be understood. Given that clinical manifestation of NDs are often a direct
reflection of the specific cell populations that degenerate, this could be of key in-
terest>'81. An understanding of this would yield insights into the molecular mech-
anisms underlying NDs. In chapter 2, genes with variable mitochondrial-nuclear
correlation were enriched for nuclear genes involved in synaptic function. This may
reflect neuronal subtype-specific variation arising from energetic specialisation, per-
haps indicating a fine-tuning of mitochondrial-nuclear coordination. Indeed, accu-
mulating evidence points to cell type specific mitochondrial specialisation wherein
morphological differences between the mitochondria of neuronal subtypes has been
identified (211261 While the field of mitochondrial specialisation is still relatively
new, as early as 2005 it was noticed that sub-populations of isolated mitochondria
differentially adapted in response to a metabolic challenge??%!. Building on this, it
is likely that the brain and its composite cell types would be a particularly interesting
place to look at mitochondrial specialisation for a number of reasons: (i) neuronal
subtypes are known to be highly heterogeneous both functionally and morpholog-
ically[128.2211 (ii) the nuclei are often highly distal from synapses (soma-synapse
distances range from a millimetre up to a meter)*?%], and (iii) many brain cell types
are highly energetically demanding!?>3!. These features suggest that mitochondrial-
nuclear coordination might be both specifically important and specifically challeng-
ing in neuronal cells. As such, it is possible that adaptations to these challenges may
manifest as intracellular or intercellular mitochondrial specialisation. Technologies
that can sample mitochondria from subcellular regions are required to study this,
for example, nanoscale tweezers which have recently been used to successfully
extract a single mitochondrion!*?*! may elucidate heterogeneity of protein locali-
sation, morphology which could contribute to further understanding long-distance
mitochondrial-nuclear communication that occurs in CNS cell types. Ultimately,
this granularity of understanding may provide insights into the selective vulnerabil-

ity of cell types and in turn ND aetiology.



160
5.0.2 Altered mitochondrial-nuclear coordination and neurode-

generative disease

Despite the multiple paths to neurodegeneration present both within and across dis-
orders, NDs share certain cellular hallmarks, including DNA damage, oxidative
damage, impaired autophagy, dysregulated bioenergetics and mitochondrial dys-
function, which culminate in neuronal cell death and neurodegeneration [225]  This
manifests as the sensory, cognitive and movement deficits that are characteristic
of NDs??°1, In order to develop and target interventions, an understanding of the
processes underpinning the dysfunction of these hallmarks is required. This the-
sis focuses on one of these hallmarks - mitochondrial dysfunction - for which the
causality and progression of the dysfunction have not been fully characterised. To
achieve this, the complex cellular architecture in which mitochondria operate must
be understood and looking to its relationship with the nucleus — its essential func-

tional partner — is fertile ground for this.

In chapter two, mitochondrial-nuclear coordination is assayed by examining
the correlation between mitochondrial and nuclear gene expression, characterising
coordination across the healthy CNS and in the cortex of individuals diagnosed with
AD. In the AD brain, significant mitochondrial-nuclear correlation differences were
observed compared with healthy controls. Within this, gene pairs with a highly dis-
parate correlation in cases compared to controls were enriched for nuclear genes in
synaptic and post-synaptic pathways. In a set of genes relating to adult onset NDs, it
was found that there was a stronger correlation with the mitochondrial genome than
could be expected by chance, implicating NDs more generally. The correlation as-
say was supported by QTL mapping work (in chapter 4) which revealed the presence
of nuclear variants differentially modulating mitochondrial phenotypes in individ-
uals with sporadic PD compared to healthy control individuals. Chapter two then
assayed mitochondrial expression and PT modification profiles on different nuclear
mutational backgrounds. Distinct mitochondrial profiles were observed in mono-
genic PD cases versus healthy controls, pointing to a role for the nuclear genome

in mitochondrial transcriptional changes in the disease state. Taken together, the
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findings of this thesis support a role for mitochondrial-nuclear coordination in PD

and AD but also point to a role for this relationship in NDs more generally.

Mitochondrial-nuclear coordination is often referred to as ’cross-talk’, a term
attempting to capture a complex scenario where two organelles coordinate to dy-
namically respond to and manage, for example, energy demands. Cross-talk is
something that operates at many organisational levels (genetic, transcription, trans-
lation, protein, chemical) and involves bi-directional interaction (anterograde and
retrograde), feedback loops, other organelles and responses to physiological and

environmental cues 221,

One example of a process that could be better under-
stood through characterisation of mitochondrial-nuclear cross-talk involvement is
the mito-lysosomal axis. The lysosomal pathway is implicated in AD in this work
by lysosomal gene enrichment in mitochondrial-nuclear gene pairs displaying dis-
parate correlation magnitudes in individuals with AD compared to controls (chapter
two). Lysosomal dysfunction has been linked to several other NDs, including PD,
frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), suggest-
ing the existence of a common dysfunction between these diseases 226!, Lysosomes
play an essential role in mitophagy, which is a core component of mitochondrial
quality control, where they act to degrade damaged or dysfunctional mitochondria
through binding to encapsulating autophagocytes and releasing acid hydrolase en-

zymes 2?71,

Interestingly, more complex roles for lysosomes than their common
portrayal as cellular ‘rubbish bags’ have been observed recently, which may present
further avenues for understanding of their dysfunction, however, these will not be

considered here.

It has been established that lysosomal biogenesis can be induced by acute mi-
tochondrial respiratory chain stress, and that this involves the TFEB transcription
factor family, AMPK signalling and calcineurin signalling, during which, reloca-
tion of TFEB to the nucleus occurs 2281, However, the same study identified that in
murine models of chronic mitochondrial dysfunction, the transcriptional program
of lysosomal biogenesis was repressed, noting the presence of an opposite response

in acute versus chronic mitochondrial stress and finding that this was consistent
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2281 This work illuminates some intricacies of the

across multiple in vitro models!
mito-lysosomal pathway, but many aspects remain cryptic. For example, in the
chronic stress response, the mechanism by which the transcriptional triggers for
lysosomal biogenesis are deactivated is not clear. Additionally, in the acute stress
response, exactly how AMPK is activated is not understood. To elucidate these
mechanisms, understanding mitochondrial-nuclear communication may be crucial.
The nucleus is a clear mediator of the mito-lysosomal interaction, encoding all
lysosomal and the majority of mitochondrial components. Additionally, the nu-
cleus provides all components of the relevant signalling cascades, acts as the site
of TFEB localisation and is the site of lysosomal biogenesis transcriptional repres-
sion. It would seem that cross-talk between the nucleus and mitochondria is an es-
sential contributor to mito-lysosomal interaction and may go some way explaining
the missing links. Under this model, potential avenues for further interrogation of
mitochondrial-nuclear cross-talk may include further exploration of: (i) reterograde
(mitochondria to nucleus) signalling, which is known to involve chemical signals
of mitochondrial stress such as ROS, calcium and ATP/ADP ratios, (ii) anterograde
dynamic provision of nDNA-encoded proteins required mitochondrial function (e.g.
OXPHOS components, transcriptional/translational machinery, or (iii) nuclear ini-
tiation of signalling pathways that affect mitochondria (for example, initiation of
mitophagy). In the case of the mito-lysosomal pathway, it is possible that any three
of these mitochondrial-nuclear mechanisms are involved. As such, further under-
standing of this relationship may shed light on the close interactions between mi-
tochondria and lysosomes which has utility for understanding the pathogenesis of

NDs in which lysosomal dysfunction has been implicated.

The lysosomal pathway is one example where understanding mitochondrial-
nuclear coordination may provide insights, but more generally, a deeper understand-
ing of the molecular mechanisms that converge across NDs such as this could help
to explain the observed clinical and pathological similarities between them. To this
end, future directions will involve interdisciplinary work leveraging multiple estab-

lished and emerging technologies, including therapeutic target identification using
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’omics technologies paired with granular functional studies using iPSCs, organelle
isolation and CRISPRi/CRISPRa screens 220!, Particularly in NDs, for which se-
lective vulnerability is a feature, single cell ’omics may be pivotal for identifying

cell type-specific signatures.

5.0.3 The timing of mitochondrial dysfunction in Parkinson’s

disease aetiology

Until now, we have been attempting to further understand mitochondrial dysfunc-
tion through the lens of mitochondrial-nuclear coordination, and asking whether its
failure could contribute to mitochondrial dysfunction in NDs. Work in this thesis
suggests that failure of this relationship is a feature of NDs, and for PD specifically,
many studies have implicated mitochondrial failure in disease pathogenesis. How-
ever, the initial trigger for neurodegeneration has not been identified*°1. As such,
it remains unclear whether mitochondrial dysfunction is a cause or consequence of
disease, and whether it arises early or late in the disease trajectory. An understand-
ing of the order of events in NDs is crucial for the development of interventions
seeking to halt or slow progression and as such, it is of value to know when mito-
chondrial dysfunction arises. Work in chapter three highlights that in familial PD,
profiles of mitochondrial OXPHOS expression were more similar between asymp-
tomatic and symptomatic participants than healthy control participants. This finding
may point to mitochondrial dysfunction becoming established prior to symptom on-
set and consequently that arises early in the disease trajectory. Indeed recent work
in mice found that damaging complex I alone is sufficient to trigger axonal, motor
learning, fine motor and dopamine release deficits characteristic of PD, resulting

in a levodopa responsive disease (>3

. The authors state that this goes against the
current paradigm, signalling a shift in thinking towards mitochondria as a driver
of PD. Furthermore, recent work tracked the aggregation of ¢-synuclein in neu-
rons and found that oligomerisation occurred at mitochondrial membranes and that
this led to neuronal toxicity >3], However, disentangling the causes and the effects

of neurodegeneration are difficult, particularly with regard to mitochondria where

many mitochondrial pathways implicated in NDs have diverse cellular roles. There
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are many facets to mitochondrial dysfunction and levels at which it may act, poten-
tially with temporal differences: mitochondrial respiratory chain, mtDNA mutation,
mitochondrial dynamics, distribution and transport, mitophagy, biogenesis, protein
aggregation, calcium regulation and ROS production have all been highlighted (%2
Understanding more about each of these processes leveraging diverse techniques
will help us to understand how and exactly when mitochondrial dysfunction occurs,
paving the way for the targeting of interventions to the right individuals at the right

time.

5.0.4 Concluding remarks

All considered, the results presented in this thesis support evidence for the promi-
nent role of mitochondria in ND, implicating shifts or failure of the mitochondrial-
nuclear relationship in ND pathogenesis. The mitochondrial-nuclear relationship
was found to be CNS tissue specific, cell type specific and to be modulated in AD
and PD. In sporadic PD, for which the aetiology remains elusive, this work identi-
fies that one feature of mitochondrial-nuclear dysfunction may be the presence of
nuclear variants differentially modulating mitochondrial transcription in sporadic
PD compared to healthy controls. The implications of this work lie in both further-
ing our understanding of how exactly mitochondrial dysfunction occurs and further
to this, how patients can be identified, stratified and treated for PD and other NDs

for which mitochondrial dysfunction is a hallmark.



Appendix A

Supplementary tables

gene_set pvalie  termsize querysize intersection_size precision recall term_id source term_name effective_domain_size _source_order
high_var GE_pos  0.011836 40 128 5 0.039063 0.125 ‘WP:WP4222 WP Phosphodiesterases in neuronal function 14686 475
high-var GEneg  7.37E-06 528 113 25 0221239 0.047348 GO:0098916 GO:BP  anterograde trans-synaptic signaling 14686 22515
high_var GEneg 7.37E-06 528 113 25 0.221239  0.047348  GO:0007268 GO:BP  chemical synaptic transmission 14686 3194
high_var GE_neg  9.59E-06 537 113 25 0221239 0.046555 GO:0099537 GO:BP  trans-synaptic signaling 14686 22685
high_var.GEneg  1.65E-05 551 113 25 0221239 0.045372 GO:0099536 GO:BP  synaptic signaling 14686 22684
high_var GEneg  0.018093 4 67 3 0.044776  0.75 GO:0098971 GO:BP  anterograde dendritic transport of neurotransmitter receptor complex 14686 22549
high_var GE_neg  0.030041 368 80 13 01625 0.035326 GO:0050808 GO:BP  synapse organization 14686 15584
high_var GE_neg  1.42E-06 327 139 21 0.151079 006422 GO:0098978 GO:CC  glutamatergic synapse 14686 3732
high_var GEneg 2.66E-06 1109 118 36 0.305085 0.032462  GO:0045202 GO:CC  synapse 14686 2468
high_var.GEneg  0.0007 1706 96 36 0375 0021102 GO:0030054 GO:CC  cell junction 14686 1045
high_var GE_neg  0.003685 332 139 17 0122302 0.051205 GO:0099572 GO:CC  postsynaptic specialization 14686 3825
high_var GEneg  0.007746 316 139 16 0.115108  0.050633  GO:0014069 GO:CC  postsynaptic density 14686 842
high_var_ GE_neg  0.009804 321 139 16 0115108 0.049844 GO:0032279 GO:CC  asymmetric synapse 14686 1529
high-var GE_neg  0.017186 103 137 10 0.072993  0.097087 GO:0099634 GO:CC  postsynaptic specialization membrane 14686 3831
high_var GEneg  0.020715 546 92 17 0.184783  0.031136 GO:0098794 GO:CC  postsynapse 14686 3659
high_var GEneg  0.020754 85 137 9 0.065693 0.105882  GO:0098839 GO:CC  postsynaptic density membrane 14686 3681
high_var GEneg  0.023141 339 139 16 0.115108 0.047198  GO:0098984 GO:CC  neuron to neuron synapse 14686 3738
high_var GEneg  0.046917 97 118 9 0.076271  0.092784  GO:0098936 GO:CC intrinsic component of postsynaptic membrane 14686 3715
high_var GEneg  0.00192 82 129 7 0054264 0085366 KEGG:04713 KEGG  Circadian entrainment 14686 324
high_var GE_neg  0.019004 174 131 9 0.068702 0.051724 KEGG:04014 KEGG  Ras signaling pathway 14686 225
high_var GEneg  0.020951 161 72 6 0.083333  0.037267 KEGG:04360 KEGG  Axon guidance 14686 282

v 0034015 115 107 6 0056075 0052174 KEGG:04728 KEGG  Dopaminergic synapse 14686 334

0.000308 294 135 16 0.118519 0.054422 REAC:R-HSA-112316 REAC  Neuronal System 14686 1420

high_var GEneg 0.030563 84 72 5 0.069444  0.059524 REAC:R-HSA-2682334 REAC  EPH-Ephrin signaling 14686 735
high_var_ GE_neg  0.004519 149 131 9 0.068702 0.060403 WP:WP4223 WP Ras Signaling 14686 476
high_var GEneg  0.040334 30 61 3 0.04918 0.1 ‘WP:WP4875 WP Disruption of postsynaptic signalling by CNV/ 14686 591
low_var GE_pos ~ 0.000812 8 49 3 0.061224  0.375 REAC:R-HSA-195399 REAC  VEGF binds to VEGFR leading to receptor dimerization 14686 2324
low_var_GE_pos  0.000812 8§ 49 3 0061224 0375  REAC:R-HSA-194313 REAC  VEGF ligand-receptor interactions 14686 2325
low_var GE_pos  0.023974 67 303 9 0.029703  0.134328 REAC:R-HSA-216083 REAC  Integrin cell surface interactions 14686 1090
low_var GE_pos ~ 0.024101 4 46 2 0.043478 0.5 REAC:R-HSA-194306  REAC  Neurophilin interactions with VEGF and VEGFR 14686 1421
low_var_GE_pos 0018125 15 88 3 0.034091 0.2 WP:WP3967 WP miR-509-3p alteration of YAPI/ECM axis 14686 104
low_var GE_pos  0.02383 18 239 4 0.016736 0.222222 WP:WP4533 WP Transcription co-factors SKI and SKIL protein partners 14686 540
low_var.GE_neg  0.007723 850 357 50 0.140056 0.058824 GO:0006396 GO:BP  RNA processing 14686 2421
low_var GEneg  0.03344 629 357 33 0092437 0.052464 REAC:R-HSA-8953854 REAC  Metabolism of RNA 14686 1265

Table A.1: Table detailing all gProfiler enrichments for four cross-CNS variance-de-
fined gene lists. Gene lists were defined as follows: high variance positive
(high_var_GE_pos), high variance negative (high_var_GE_neg), low variance
positive (low_var_GE_pos) and low variance negative (low_var_GE _neg).

Participant category  Inclusion criteria Exclusion criteria

1. Male or female age 30 yearsor 1.  Currently taking levodopa,
older at time of PD diagnosis dopamine agonists, MAO-B in-
hibitors, amantadine or other PD

PD medication
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Participant category

Inclusion criteria

Exclusion criteria

2. At least two of: resting tremor,
bradykinesia, rigidity (must have
either resting tremor or bradykine-
sia); OR either asymmetric resting
tremor or asymmetric bradykine-
sia

3. A diagnosis of Parkinson dis-
ease for 2 years or less at Screen-

ing

4. Hoehn and Yahr stage I or II at

Baseline

5. A SPECT scan result consistent

with dopamine transporter deficit

6. Not expected to require
PD medication within at least 6

months from Baseline.

2. Has taken levodopa, dopamine
agonists, MAO-B inhibitors or
amantadine within 60 days of

Baseline

3. Has taken levodopa or
dopamine agonists prior to Base-
line for more than a total of 60
days

4. Received drugs that might in-
terfere with dopamine transporter
SPECT imaging (i.e. neurolep-
tics) within 6 months of Screening
5. Current treatment with antico-
agulants that might preclude safe
completion of the lumbar punc-
ture

6. Condition that precludes the
safe performance of routine lum-
bar puncture

7. Use of investigational drugs
or devices within 60 days prior to

Baseline

Healthy control

1. Male or female age 30 years or

older at Screening

1. Current or active clinically sig-
nificant neurological disorder
2. First degree relative with idio-

pathic PD (parent, sibling, child)
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Participant category

Inclusion criteria

Exclusion criteria

3. Montreal Cognitive Assess-
ment (MoCA) test for dementia
score <26 (i.e. non-normal)

4. Received drugs that might in-
terfere with dopamine transporter
SPECT imaging (i.e. neurolep-
tics) within 6 months of Screening
5. Current treatment with antico-
agulants that might preclude safe
completion of the lumbar punc-
ture

6. Condition that precludes the
safe performance of routine lum-
bar puncture

7. Use of investigational drugs
or devices within 60 days prior to

Baseline

SWEDD

1. All inclusion criteria for 'PD’
patients apply, except SPECT
scan must show no evidence of

dopamine transporter defecit

1. All exclusion criteria for 'PD’

patients apply

Prodromal

1. All inclusion criteria for "PD’
patients apply, expect these pa-
tients are aged 60 or older and

have a REM sleep disorder

1. All exclusion criteria for ’PD’

patients apply

Genetic cohort (affected)

1. Male or female age 18 years or

older

1. Current treatment with antico-
agulants (e.g. coumadin, heparin)
that might preclude safe comple-

tion of the lumbar puncture
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Participant category

Inclusion criteria

Exclusion criteria

2. At least two of: resting tremor,
bradykinesia, rigidity (must have
either resting tremor or bradykine-
sia); OR either asymmetric resting
tremor or asymmetric bradykine-

sia

3. A diagnosis of Parkinson dis-
ease for 7 years or less at Screen-
ing

4. Hoehn and Yahr stage <IV at
Baseline

5. Willingness to undergo genetic
testing and to be informed of ge-
netic testing results

6. Confirmation of mutation in
LRRK2, GBA or SNCA

7. For subjects taking any
drugs that might interfere with
SPECT

dopamine transporter

imaging (Neuroleptics, meto-
clopramide, alpha methyldopa,
methylphenidate, reserpine, or
amphetamine derivative) must be
willing and able from a medical
standpoint to hold the medication
for at least 5 half-lives prior to

screening DatSCANTM imaging

2. Condition that precludes the
safe performance of routine lum-
bar puncture, such as prohibitive
lumbar spinal disease, bleeding
diathesis, or clinically significant
coagulopathy or thrombocytope-

nia
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Participant category

Inclusion criteria

Exclusion criteria

1. Male or female age 45 years

or older at baseline with a LRRK?2

Genetic cohort (unaffectedy GBA mutation and/or a first

degree relative with a LRRK2 or
GBA mutation OR Male or female
age 30 years or older at baseline
with a SNCA mutation and/or a
first degree relative with a SNCA
mutation

1. Unaffected subjects at high risk
of LRRK2, GBA or SNCA mu-
tation due to first degree relative
with a LRRK2, GBA or SNCA
mutation may choose either to be
informed of the results or remain
unaware of the results

2. Unaffected subjects from an
ethnic or geographic group known
to have relatively high risk of
LRRK2, GBA or SNCA muta-
tion (such as people of Ashkenazi
Jewish or Basques descent) and
who have a family member (either
alive or deceased) who has/had
PD must be willing to be informed
of their own testing results

3. Willingness to undergo genetic

testing

1. A clinical diagnosis of PD

2. Current treatment with antico-
agulants (e.g. coumadin, heparin)
that might preclude safe comple-

tion of the lumbar puncture

3. Condition that precludes the
safe performance of routine lum-
bar puncture, such as prohibitive
lumbar spinal disease, bleeding
diathesis, or clinically significant
coagulopathy or thrombocytope-

nia
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Participant category  Inclusion criteria Exclusion criteria

4. For subjects taking any of
the following drugs that might in-
terfere with dopamine transporter
SPECT imaging (Neuroleptics,
metoclopramide, alpha methyl-
dopa, methylphenidate, reserpine,
or amphetamine derivative) must
be willing and able from a medi-
cal standpoint to hold the medica-
tion for at least 5 half-lives prior

to DatSCAN imaging

1. Male or female age 18 years or
Genetic registry older

2. Individual with a LRRK2, GBA
or SNCA mutation and/or a first
degree relative with a LRRK2,
GBA or SNCA mutation

3. Willingness to undergo genetic
testing, but may choose either to
be informed of the results or re-

main unaware of the results

Table A.2: Table detailing the inclusion and exclusion criteria for participant categories
in the AMP-PD PPMI dataset. Information adapted from amp-pd.org/unified-
cohorts/ppmi.
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