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Abstract: Papillary thyroid carcinoma (PTC) is generally considered an indolent cancer. However,
patients with cervical lymph node metastasis (LNM) have a higher risk of local recurrence. This
study evaluated and compared four machine learning (ML)-based classifiers to predict the presence
of cervical LNM in clinically node-negative (cN0) T1 and T2 PTC patients. The algorithm was
developed using clinicopathological data from 288 patients who underwent total thyroidectomy and
prophylactic central neck dissection, with sentinel lymph node biopsy performed to identify lateral
LNM. The final ML classifier was selected based on the highest specificity and the lowest degree
of overfitting while maintaining a sensitivity of 95%. Among the models evaluated, the k-Nearest
Neighbor (k-NN) classifier was found to be the best fit, with an area under the receiver operating
characteristic curve of 0.72, and sensitivity, specificity, positive and negative predictive values, F1
and F2 scores of 98%, 27%, 56%, 93%, 72%, and 85%, respectively. A web application based on
a sensitivity-optimized kNN classifier was also created to predict the potential of cervical LNM,
allowing users to explore and potentially build upon the model. These findings suggest that ML
can improve the prediction of LNM in cN0 T1 and T2 PTC patients, thereby aiding in individual
treatment planning.

Keywords: papillary thyroid carcinoma; lymph node metastasis; machine learning

1. Introduction

Papillary thyroid carcinoma (PTC) has emerged as the most common thyroid malig-
nancy over the last thirty years [1,2]. Whereas the majority of patients with PTCs generally
have an excellent prognosis, those with the cervical lymph node metastasis (LNM) may
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have an elevated rate of local recurrence [3,4]. Therefore, it is crucial to establish the cer-
vical lymph nodes’ metastatic status in order to adequately stage the disease and plan
appropriate treatment management.

In conjunction with a total thyroidectomy, therapeutic cervical lymph node dissection
(LND) is indicated when a central or lateral nodal disease is clinically evident based on
pretreatment physical examination and radiological workup [5]. Nonetheless, managing
cervical LNM in patients with small PTC (T1 or T2) who do not have clinically evident
nodal metastases (cN0) has been the subject of controversy [3,6–8]. For such PTCs, different
approaches are currently proposed across guidelines and scientific reports such as clinical
follow-up involving therapeutic neck dissection reserved in the subsequent development
of LNM, prophylactic central LND, and sentinel lymph node biopsy (SLNB) [2,9–12].
However, all these strategies have certain advantages and disadvantages, being the subject
of discussion. For instance, while offering the potential advantage of decreasing disease
recurrence, prophylactic central LND is accompanied by potential morbidity and may
worsen overall quality of life [13,14]. Conversely, although SLNB is less invasive as it
removes the need for unnecessary prophylactic neck dissection, it has not been widely
adopted due to technical issues [15,16].

Although preoperative ultrasound (US) and computed tomography (CT) are valuable
imaging techniques in diagnosing nodal metastasis, roughly 40% of cN0 patients may still
have undetected LNM [15]. Therefore, establishing PTC risk factors is beneficial to identify
those patients carrying a higher risk of nodal disease and therefore require prophylactic
LND and possible postoperative radioactive iodine (RAI) treatment [17]. At the same time,
care must be taken to avoid the morbidity of neck dissection in patients without nodal
metastasis. As opposed to the “one size fits all” approach recommended by the guidelines,
improved methods are necessary in order to choose optimal treatment based on individual
patient characteristics [2,6,9].

Several predictive models have been used to estimate the presence of LNM in patients
with PTC, including the recently introduced machine learning (ML) approach, which has
the potential to significantly advance this field [6,18]. Machine Learning (ML) is a branch
of artificial intelligence (AI) focusing on applying algorithms able to identify patterns in
historical data. These are further used to make predictions on new unseen data [19]. Since
ML is both able to recognize nonlinear relationships in the data and complex interactions
among multiple predictors, it may potentially outperform conventional statistical methods
in LNM prediction [20]. A recent study conducted by Zhu et al. (2021) demonstrated that
ML classifiers are capable of predicting lymph node metastasis in cN0 papillary thyroid
carcinoma patients based on clinicopathological parameters [6]. However, their work was
focused only on detecting central lymph node metastasis, although a significant number
of lateral LNMs may remain after surgery and present as recurrence [4]. Therefore, this
study aimed to develop, compare, and validate four ML classifiers for the prediction of
both central and lateral LNM by using simple clinical and histopathological data. We
hypothesized that the supervised ML classifier may enable more precise patient follow-up,
leading to the earlier detection of LNM and adequate postsurgical treatment.

2. Materials and Methods
2.1. Patient Selection and Data Collection

We retrospectively reviewed the medical records of thyroid cancer patients surgically
treated between January 2015 and December 2021 at the Institute for Oncology and Radiol-
ogy of Serbia (IORS). Patients were included if they had histologically confirmed PTC no
larger than 40 mm, staged as T1 or T2. All the eligible patients showed no evidence of clini-
cally palpable and radiologically confirmed lymph node metastases (cN0). We excluded
patients who had: (1) non-PTC histology, (2) clinical evidence of LNMs (cN1), (3) distant
metastasis, and (4) patients who did not undergo total thyroidectomy with prophylactic
CLND and SLNB of the lateral neck compartment. The patient selection process is shown
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in Figure 1. The study was approved by the Medical Ethics Committee of the School of
Medicine, University of Belgrade (#61206-1165/2-22).
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Figure 1. Consort diagram of the study. Abbreviations: IORS—Institute for Oncology and Radi-
ology of Serbia; T stage—the size of the tumor and any spread of cancer into nearby tissue; M
stage—presence or absence of distant metastases; PTC—papillary thyroid carcinoma; TT—total
thyroidectomy; LND—lymph node dissection; SLN—sentinel lymph node.

The demographic and clinical characteristics of interest were: age, sex, thyroid stimu-
lating hormone (TSH) value, tumor size, multifocality (number of tumor foci), bilaterality,
microscopic extrathyroidal extension (micro ETE), as well as thyroid capsular invasion
(CI) and lymphovascular invasion (LVI). The initial staging of the tumor was reevaluated
according to the 8th edition of the American Joint Committee on Cancer (AJCC) Staging
System [21]. The endpoint for this study was the presence or absence of LNM based on a
histopathologic evaluation of the cervical lymph nodes.

2.2. Surgical Procedure

All included patients have been treated with a total thyroidectomy and prophylactic
central LND. In order to identify any occult lateral LNM and determine the need for a
selective lateral LND, a sentinel lymph node biopsy of the lateral neck compartments
was conducted.

For the surgical procedure, 0.2–0.5 mL 1% methylene blue dye was injected peritu-
morally just below the thyroid capsule. The capsule was then coagulated to prevent dye
leakage. If there was a bilateral tumor, the procedure was also performed on the other
lobe. Further, the lobe containing the nodule suspicious of thyroid cancer was removed
and sent to a frozen section study (FSS) to confirm PTC. After histopathologic verification,
subsequent completion of thyroidectomy was performed along with prophylactic central
LND (level VI). The lateral neck compartments were investigated for blue-stained lymph
nodes which were defined as the sentinel lymph nodes (SLNs). If no colored lymph nodes
were located, the lymph node of the colored afferent lymphatic was considered to be the
SLN. Sentinel lymph nodes were then removed and subjected to the FSS. For metastatic
SLNs, a concurrent LND was immediately performed [22].
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2.3. Development of Machine Learning Classifiers

A total of eight variables containing both PTC patients’ demographic and clinicopatho-
logical characteristics (Table 1) were used to develop ML-based classifiers to predict LNM.
The following four ML classifiers were applied in this study: k-Nearest Neighbor (k-NN),
Support Vector Machines (SVM), Decision Tree (DT), and Logistic Regression (LR).

Due to the data being collected retrospectively, any missing data for continuous
variables were processed under median imputation, keeping only the variables with less
than 10% of missing values. The patients were randomly divided into two sets under a
70:30 distribution where the ML algorithm was trained using 70% of patients (n = 201) and
tested through the application of the remaining 30% of patients (n = 87). To avoid possible
model bias, a stratification was performed to ensure that lymph node metastases cases
were equal in frequency to those without LNM in both sets (Table S1).

The training set was used for model comparison and development. A 10-fold cross-
validation (CV) was applied in the training group in order to assess the true prediction
error and degree of overfitting. All ML classifiers were compared under the broad spec-
trum of their individual corresponding configurations (Figures S1 and S2). For the kNN
classifier, we compared 15 distance measures including Euclidean, Manhattan, Chebyshev,
Minkowski, Hamming, Canberra, Bray–Curtis, Jaccard, Matching coefficient, Dice, City-
Block, Rogers–Tanimoto, Russell–Rao, Sokal–Michener, and Sokal–Sneath. For the SVM
classifiers, we tested polynomial, radial basis function (RBF), and sigmoid kernel types. The
solvers were tested for the LR model—including the liblinear solver, the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm, and the Newton-conjugate gradi-
ent method (Newton-CG)—whose performances were then compared. Finally, we trained
a single decision tree model and increased its depth until overfitting occurred, to determine
the optimal depth for the data.

The area under the receiver operating characteristic curve (AUC), prediction error,
sensitivity, and specificity plots were assessed to select the model with the highest predictive
performance AUC, minimal error, and overfitting. The selected ML classifier with optimal
settings was then fine-tuned and applied to the entire training data set. Thereafter, the final
model’s cutoff was selected prioritizing the highest sensitivity by which patients with LNM
may be discriminated from dose without lymph node metastases. This level of cutoff was
intended to identify individuals with a high probability of LNM indicating the need for
additional treatment or more tailored, patient-orientated follow-up. The test set was then
used to assess the performance of the final ML classifier. The classifier building outline is
shown in Figure 2.
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2.4. Statistical Analysis and Software

Descriptive methods (frequencies, percent, mean, standard deviation (SD), median and
range) were used to summarize the data. For normal distribution data testing, the Shapiro–
Wilk test was used. For comparison of demographic and clinicopathological characteristics
among different patient subgroups, the Wilcoxon rank-sum, Pearson chi-square, Student’s
t-test, and Fisher exact tests were used. The two-tailed statistical significance level was set
at p < 0.05. All statistical analyses were performed with the IBM SPSS Statistics 22 software
(SPSS Inc., Chicago, IL, USA).



J. Clin. Med. 2023, 12, 3641 6 of 16

The ML algorithms were implemented using Python (version 3.9.6) and various li-
braries, including numpy (version 1.21.2), pandas (version 1.3.2), seaborn (version 0.11.2),
matplotlib (version 3.4.3), and scikit-learn (version 0.24.2). A web application was devel-
oped using the Python web framework Flask, and the final ML model was deployed using
the joblib module. The performances based on the confusion matrix were used to compare
the different models on the test set. True positive (TP), true negative (TN), false positive
(FP), and false negative (FN) rates were assessed. These parameters were further used to
obtain sensitivity, specificity, negative predictive value (NPV), positive predictive value
(PPV), accuracy, and F1 and F2 scores under the Bayes theorem based on LNM prevalence
in our cohort (p = 49%). Shapley values, which represent a feature’s contribution to the
model for a specific patient, were computed using the Python SHAP module (version
0.41.0) to explain the final model’s variable weights. Shapley values, when linear, are
equal to the weight of the feature in the model multiplied by the feature’s value. When
non-linear, Shapley values represent a feature’s contribution in relation to all other features
of the model [23].

3. Results
3.1. Descriptive Statistics

Demographic and clinicopathological characteristics of patients are provided in Table 1.
We included 288 PTC patients, of whom 72 were males (25%) and 216 females (75%) with
an average age of 47.0 ± 13.5 years. The median tumor diameter was 10 mm, ranging
from 1 mm to 40 mm. More than 50% of patients (54.2%) presented with papillary micro-
carcinomas. Cervical LNM was confirmed histopathologically in 141 cases (49%). More
specifically, 69 (24%) out of all patients had isolated central lymph node metastases. Lateral
and central LNM were simultaneously presented in 50 (17.4%) patients while 22 (7.6%)
patients were observed to have skip metastasis (presence of lateral LNM without central
lymph node involvement).

Table 1. Summary description of the original dataset.

Charasteristics Total (n = 288)

Age 47.0 ± 13.5

Sex
Male 72 (25.0)

Female 216 (75.0)

TSH value (µIU/mL) 1.70 (0.01–11.9)

Tumor size (mm) 10 (1–40)

Tumor size (categories, mm)
≤5 57 (19.8)

6–10 99 (34.4)
11–20 86 (29.9)
21–40 46 (16.0)

Multifocality
No 184 (63.9)
Yes 104 (36.1)

Number of tumor foci
1 184 (63.9)
2 62 (21.5)
≥3 42 (14.6)

Bilateral
No 212 (73.6)
Yes 76 (26.4)
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Table 1. Cont.

Charasteristics Total (n = 288)

Thyroid capsular invasion or micro ETE
No thyroid capsular invasion or micro ETE 181 (62.8)

Thyroid capsular invasion 58 (20.1)
Micro ETE 49 (17.1)

Lymphovascular invasion
No 273 (94.8)
Yes 15 (5.2)

LNM
No LNM 147 (51.0)

Central LNM only 69 (24.0)
Lateral LNM only 22 (7.6)

Central and lateral LNM 50 (17.4)
Values are presented as median (minimum–maximum), mean (standard deviation), or number (%) of patients.
Abbreviations: TSH—thyroid stimulating hormone; micro ETE—microscopic extrathyroidal extension; LNM—
lymph node metastasis.

3.2. Univariate Analyses

Univariate analyses identified LNM risk factors in patients with PTC. A comparison
of the characteristics between LNM and non-LNM patients is given in Table 2. Younger
patients were at an increased risk for lymph node metastases (p < 0.001). Patients with LNM
presented tumors larger in size compared to non-LNM patients (p < 0.001). Patients who
had no metastases most commonly presented as micro-carcinoma (73.5%). The occurrence
of LNM was also associated with multifocality and bilaterality (p < 0.05). Upon investigating
the number of tumor foci, it showed that LNM increased according to the number of tumor
foci (p = 0.004). Tumor capsular invasion and microscopic extrathyroidal extension were
found to be associated with an increased risk of LNM (p < 0.001). Lymphovascular invasion
was also correlated to LNM (p < 0.05). There was no significant difference between LNM-
positive and LNM-negative patients in terms of patient sex and preoperative TSH value.

Table 2. Comparison of patient characteristics by lymph node metastasis status.

Charasteristics
LNM− LNM+ p Value

(n = 147) (n = 141)

Age 50.7 ± 12.9 43.2 ± 13.1 <0.001

Sex
Male 35 (23.8) 37 (26.2) 0.634

Female 112 (76.2) 104 (73.8)

TSH value (µIU/mL) 1.67 (0.01–11.9) 1.80 (0.01–10.3) 0.255
Tumor size (in mm) 7 (1–40) 14 (1–40) <0.001

Tumor size (categories, mm)
≤5 46 (31.3) 11 (7.8)

6–10 62 (42.2) 37 (26.2) <0.001
11–20 30 (20.4) 56 (39.7)
21–40 9 (6.1) 37 (26.2)

Multifocality
No 103 (70.1) 81 (57.4) 0.026
Yes 44 (29.9) 60 (42.6)

Number of tumor foci
1 103 (70.1) 81 (57.4)
2 34 (23.1) 82 (19.9) 0.004
≥3 10 (6.8) 32 (22.7)
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Table 2. Cont.

Charasteristics
LNM− LNM+ p Value

(n = 147) (n = 141)

Bilateral
No 117 (79.6) 95 (67.94) 0.019
Yes 30 (20.4) 46 (32.6)

Presence of Thyroid CI or microETE
No thyroid CI or micro ETE 107 (72.8) 74 (52.5)

Thyroid CI 24 (16.3) 34 (24.1) <0.001
MicroETE 16 (10.9) 33 (23.4)

Lymphovascular invasion
No 144 (98.0) 129 (91.5) 0.014
Yes 3 (2.0) 12 (8.5)

Values are presented as median (minimum–maximum), mean (standard deviation), or number (%) of patients.
Abbreviations: −—negative; +—positive; LNM—lymph node metastasis; TSH—thyroid stimulating hormone;
micro ETE—microscopic extrathyroidal extension.

3.3. Performance Metrics for the ML Classifiers

To select the optimal ML classifier for predicting patient outcomes, we compared
the performances of four ML models (k-NN, SVM, LR, and DT) using a range of their
individual configurations.

The optimization of hyperparameters for the ML models was independently per-
formed for each model configuration using 10-fold cross-validation, with a focus on min-
imizing prediction error and maximizing AUC, while also taking into consideration the
level of overfitting (Figures S1 and S2). An example of the hyperparameter selection process
illustration is given in Figure 3.
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Thereafter, the ML models were evaluated for the various quality metrics. First, we
compared the selected ML models based on their AUC values (Figure 4). The optimal
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probability output cutoff for each model was determined to achieve a minimum target
sensitivity of 95% (Figure S3). The decision to prioritize high sensitivity was made in order
to minimize the risk of failing to identify patients who might be at a higher risk of LNM and
who later on can present in the form of recurrence if not provided with adequate treatment.
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Neighbors (KNN); (B) support vector machine (SVM); (C) logistic regression (LR); (D) decision tree
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characteristics curve.

The distribution of other performance metrics for the ML models in the training
phase is given in Table 3. During the training phase, the kNN and SVM showed the best
accuracy and F1 and F2 scores while the SVM and LR showed the best AUC. Among
the evaluated models in this study, the decision tree model had the lowest values for
every metric assessed, indicating the worst performance. To address concerns about
the generalizability of the training models, we also analyzed overfitting learning curves
(Supplementary Figures S1 and S2). Compared to kNN, our analysis revealed that the
SVM and LR models exhibited a higher degree of overfitting. A model with high AUC
but high overfitting can potentially overemphasize the noise present in the training data
rather than capturing the actual underlying patterns. As a result, the model may perform
suboptimally on new data.

Table 3. The overall performance metrics of the classifiers in the training phase.

ML Model Sensitivity Specificity NPV PPV AUC Accuracy F1 F2

KNN 0.95 0.28 0.85 0.56 0.78 0.61 0.70 0.83
SVM 0.98 0.27 0.93 0.56 0.81 0.62 0.71 0.85
LR 0.98 0.21 0.91 0.54 0.81 0.59 0.69 0.84
DT 0.95 0.09 0.67 0.50 0.76 0.51 0.66 0.81

Abbreviations: kNN—k-Nearest Neighbors; SVM—support vector machine; LR—logistic regression; DT—
decision tree; NPV—negative predictive value; PPV—predictive positive value; AUC—area under receiving
operating characteristics curve; F1 score; F2 score.
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The final ML classifier was obtained by selecting the one yielding the highest specificity
and the lowest degree of overfitting while maintaining a sensitivity of 95%. Among the
models evaluated, the kNN classifier was found to meet these criteria and was deemed the
best-performing model.

Subsequent testing on the kNN classifier on a test group of 87 patients revealed an
AUC of 0.72, a sensitivity of 0.98, and a specificity of 0.27. While the model achieved an F1
score of 0.71 based on the harmonic mean of positive predictive value and sensitivity, our
study places a greater emphasis on sensitivity. In this regard, the F2 score, which gives more
weight to sensitivity, is more important in our study. The model achieved an F2 score of
0.85, indicating strong performance in terms of sensitivity. The kNN model predicted that
74 patients had lymph node metastasis, out of which 42 (57%) were accurately identified
based on pathological confirmation. Among the 13 patients who were predicted by the
model to have no lymph node metastasis, one patient (8%) would have been incorrectly
classified as node-negative. The performance of the kNN model with the test cohort is
summarized in Figure 5A,C,D.
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To assess the variable importance, SHAP values were used and a beeswarm plot
(Figure 5B) was generated to display the SHAP values for each feature across all patients. The
analysis revealed that age and tumor size were the most important features in predicting
LNM, with younger age and larger tumor size being positively associated with LNM.

3.4. Web-Based Calculator

A decision-support web application based on a sensitivity-optimized kNN-machine
learning model was created to predict the potential of cervical LNM by inputting patients’
demographic and histopathological characteristics. The calculator can be accessed using
the following link (http://109.92.182.91:8089 (accessed on 26 April 2023)).

4. Discussion

In this study, we evaluated and compared four ML classifiers to predict central and
lateral LNM in clinically node-negative T1 and T2 PTC patients by incorporating their
clinical and histopathological characteristics. Our findings indicated that the kNN classifier
had the highest sensitivity and therefore showed the potential to be used clinically to enable
the identification of patients at a higher risk of LNM. Moreover, we developed an accessible
web-based calculator to facilitate the practical implementation of the kNN classifier by
inputting relevant clinical and histopathological characteristics of PTC patients, providing
a useful tool for predicting LNM risk.

There is currently no universally accepted surgical approach to treat clinically node-
negative PTC patients. The 2015 ATA guidelines stated that thyroidectomy without prophy-
lactic LND is sufficient for small, cN0 PTC cases [9]. Nevertheless, the likelihood of nodal
metastasis among this group is relatively high, with central LNM occurring in 16–53% of
cases while 18.6–39.5% of PTC patients may present with occult lateral LNM [4,24]. Our
data are in line with these findings, with 49% of patients having metastases in their lymph
nodes, of whom 41.4% showed evidence of central lymph node involvement and 25%
presented a lateral LNM. Such results imply a failure of preoperative diagnostics to detect
patients with LNM which may later present as a persistent or recurrent disease requiring
reoperation. Therefore, a more sensitive diagnostic method based on real clinical data is
necessary to assist physicians to perform a more patient-centered postsurgical follow-up
program. Improved LNM prediction can enable appropriate postsurgical treatment for
patients in higher risk groups while also avoiding or minimizing unnecessary treatment for
those at lower risk.

Our study considered eight clinical and histopathological characteristics as possible
indicators for cervical LNM. The pretreatment variables assessed included age, sex, and
TSH level. From our study’s results, there was a significant tendency for LNM to appear
in younger patients. This is consistent with findings from other studies that being <45
years old is associated with a higher risk of LNM [25–27]. The SHAP values obtained from
the KNN model further support this result when age was ranked first in terms of feature
importance. The univariate analysis found no significant differences in the TSH values and
sex between LNM and non-LNM patients. However, the SHAP values point to TSH being
a potential predictor of LNM. The unexpected finding of lower TSH values associated with
higher incidences of LNM might be due to confounding factors related to the unequal
distribution of TSH values between the training and test groups. This would suggest that
the impact of TSH levels is still not fully understood and further research is needed.

Our research also examined the impact of intraoperative and post-treatment character-
istics on the development of LNM through analysis of tumor size, multifocality (number
of tumor foci), bilaterality, micro ETE, thyroid CI, and LVI. Tumor size is considered to be
an important factor for LNM [6,27,28]. We showed that the cervical LNM was found to
relate positively to the primary tumor size (i.e., as the tumor increased in size, incidences
of cervical lymph node metastasis also increased). Our PTC study confirms multifocality
and bilaterality, previously reported as risk factors for lymph node metastasis, are indeed
associated with the higher incidence of LNM [6,27,29]. We further extended our research

http://109.92.182.91:8089
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to explore the association between the number of tumor foci and the incidence of LNM.
We found that an increase in the number of tumor foci had a direct correlation to the
likelihood of increase in LNM which is consistent with the results of other studies [30,31].
Our results found that microscopic ETE and thyroid CI may significantly associate with
LN metastases, consistent with previous research [25,32]. This may be explained by the
presence of rich lymphatic tissue around the thyroid which allows the direct transfer of the
tumor cells into the lymph nodes [26]. Similar to other studies, our findings demonstrated
that the presence of LVI in PTC patients is a significant predictor of LNM, as tumor cells
may disseminate through lymphovascular spaces resulting in metastases [25,33]. While
the univariate analyses suggested several variables to be significant LNM predictors, the
SHAP analysis revealed only tumor size as the important one. This may be explained by
the significance of the other variables’ effects on LNM being overshadowed by a tumor
size’s strong effect. Therefore, to evaluate the significance of multiple and diverse variables
as predictors of LNM, it is important to consider both univariate and SHAP analysis.

Preoperative evaluation and staging are most commonly based on US examination.
According to meta-analyses conducted in 2019 and 2022, US has a sensitivity ranging
from 28 to 33% for detecting central LNM, while being more sensitive in detecting lateral
LNM (70 to 73%) [24,34]. If prophylactic LND is not performed, occult LNMs often remain
undetected, leading to the classification of patients in the low or intermediate ATA risk
group, for which additional RAI therapy is generally not required. Nevertheless, improved
LNM prediction in PTC patients could lead to more personalized patient management,
potentially replacing the current universal follow-up plans with more tailored surveillance.
For instance, in the last years, additional functional imaging with a postoperative, pre-
ablation diagnostic radioiodine whole body scan (DxWBS) was recommended, allowing for
patients to be staged more precisely [35,36]. DxWBS with single-photon emission computed
tomography with a computed tomography (SPECT/CT) scan might be able to provide
detection for LNM of normal size which could not be adequately accessed on a preoperative
neck ultrasound [36]. As Figure 5C illustrates, out of the 87 patients, 71 of them (85%)
would have been predicted to have LNM and among those predicted cases, more than half
of them, 42 patients (57%), were confirmed to have pathologic LNM that had been missed
by the preoperative US examination. If we were to perform DxWBS with SPECT/CT on
patients in whom the kNN model predicted LNM, it might modify their management,
potentially resulting in additional surgery, a recommendation for RAI treatment, or changes
to the prescribed RAI dosage [36]. Moreover, due to its high sensitivity, the kNN model
prediction could be utilized as a complementary method to postoperative ultrasound,
which has notably higher specificity, enabling a more individualized follow-up in medical
centers where DxWBS with SPECT/CT is unavailable. On the other hand, among the
13 patients who were pathologically confirmed to be node-negative, the model incorrectly
classified 1 patient. This means that for more than 90% of patients in whom the model
predicted no LNM, close follow-up with DxWBS is not necessary and regular check-ups
might be sufficient for such patients. Nevertheless, as with all predictive models, the price
of increased sensitivity is a decrease in specificity. Given the above, 32 patients (42%) would
be recommended for DxWBS with SPECT/CT without any benefit for patients. However,
given the advantages of DxWBS with SPECT/CT in patients who have an occult LNM, a
minor exposure to radiation can be deemed insignificant.

To date, few ML models have been constructed to predict LNM in PTC patients. Their
results indicated that ML models have the potential to predict which patients may be
at a higher risk of LNM with some of the studies demonstrating the ability of the ML
classifiers to outperform the US in terms of predictive accuracy [18,37–39]. Although show-
ing positive results, these studies included patients already suspected of LNM detected
through preoperative assessment, while our study included only clinically node-negative
PTC patients. Comparable to our research, a study from Feng et al. demonstrated that
ML models are applicable to aid personalized predictions of central LNM in cN0 PTC
patients. The performance of ML classifiers was assessed through AUC and ranged from
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0.69 to 0.86 [28]. Nevertheless, their study encompassed a patient population with tumors
exceeding 40 mm in size who were already known to be at a higher risk for developing
LNM and for which prophylactic LND was already suggested by the guidelines. Unlike
their study, our investigation focused exclusively on a cohort of clinically node-negative T1
and T2 PTC patients, similar to the study conducted by Zhu et al. [6]. Whereas their model
only predicted central LNM, we investigated the accuracy of the ML model to predict
central and lateral LNM in the same subgroup of patients. Regarding the performance
metrics evaluated, the additional benefit of our study was that we incorporated metrics
such as F1 and F2 scores. The aim of our study was to reduce the number of FNs in order
to avoid missing patients who had LNM and who may potentially experience recurrence.
Since accuracy does not provide information on whether there are more FNs or FPs, relying
solely on this metric may not be useful for adequate diagnosis. Therefore, when inter-
preting results, it is necessary to also incorporate the F scores that more comprehensively
summarize the confusion matrix [40].

Our work has several limitations. The retrospective nature of data collection might
have resulted in selection bias and precluded the assessment of certain relevant risk factors
for the development of LNM. Moreover, the identification of lateral LNM was established
by sentinel lymph node analysis, which is limited by a relatively high false-negative
ratio. This can result in patients with metastases being falsely classified as node-negative.
Furthermore, in our study, the presence/absence of LNM was defined as the output variable
without distinguishing between central and lateral lymph nodes. Therefore, a more detailed
analysis of the factors that influence the appearance of one of these two types of LNM is
needed to enable more precise stratification. Finally, by including only patients treated
within our institution, the general applicability of the ML model may be limited.

Future Perspectives and Outlook

In order to improve the prediction of ML models, integration of additional parameters,
such as preoperative CT and US image features, will have significant role in the future. In-
corporating image data can provide more detailed information and improve the sensitivity
and specificity of the prediction models, enabling more accurate estimation of cervical LNM.
Furthermore, the incorporation of deep learning models should be explored, utilizing their
ability to learn directly from raw data, thereby potentially discovering complex patterns
and features leading to improved prediction performance. To improve the generalizability
and clinical applicability of the ML models, multicentric, external validation studies utiliz-
ing larger prospective patient cohorts should be applied. These efforts will strengthen the
reliability and practical implementation of the ML models in real-world clinical settings.

5. Conclusions

The ML classifiers demonstrate potential for application in clinical practice to predict
LNM and guide patient-oriented follow-up. Earlier detection of LNM could be crucial
for appropriate risk stratification and timely interventions such as radioactive iodine
treatment. In cases where standard diagnostic modalities yield negative results but the
classifier indicates a higher likelihood of LNM, functional imaging could be introduced and
followed by active surveillance or further treatment when necessary. Nonetheless, further
clarification and optimization, including additional imaging parameters and high-quality
data, are essential to enhance their performance and enable their full integration into clinical
decision-making.

Supplementary Materials: The following supporting information can be downloaded at: https://
zenodo.org/record/7864130#.ZEgNA85BxPY (accessed on 26 April 2023), Figure S1: Performance
comparison and fine tuning of the k-Nearest Neighbor (kNN) classifiers and their distance metrics on
the training dataset; Figure S2: Performance comparison and hyperparameter tuning of the machine
learning classifiers on the training dataset; Figure S3: Sensitivity and specificity plots for machine
learning classifiers on the training dataset; Table S1: Comparison of patients’ demographic and
clinicopathological characteristics between training and test sets.
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