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1 INTRODUCTION

1.1 Main results

The Birch–Swinnerton–Dyer conjecture predicts that the Mordell–Weil rank of an abelian variety
𝐴 over a number field 𝐾 is given by the order of vanishing of the 𝐿-function 𝐿(𝐴∕𝐾, 𝑠) at 𝑠=
1. Despite being more than half a century old, there has been little theoretical evidence for the
conjecture beyond the case of elliptic curves. The aim of the present article is to show that it
correctly predicts the parity of the rank of abelian surfaces, at least if one is willing to assume the
finiteness of Tate–Shafarevich groups.
Recall that the functional equation for 𝐿(𝐴∕𝐾, 𝑠) says that this function is essentially either

symmetric or antisymmetric around the central point 𝑠=1, and, consequently, the sign in the
functional equation determines the parity of the order of the zero there. Of course, neither the
analytic continuation of the 𝐿-function nor its functional equation have been proved. However,
part of the conjectural framework specifies that the sign is given by the global root number𝑤𝐴∕𝐾 ∈
{±1}, an invariant that is defined independently of any conjectures. One thus expects that the root
number controls the parity of the rank of 𝐴∕𝐾:

Conjecture 1.1 (Parity conjecture). For every abelian variety 𝐴 over a number field 𝐾,

(−1)rk(𝐴∕𝐾) = 𝑤𝐴∕𝐾.

Our main result is the following:

Theorem 1.2 (=Theorem 13.5). The parity conjecture holds for principally polarised abelian sur-
faces over number fields 𝐴∕𝐾 such thatX𝐴∕𝐾(𝐴[2]) has finite 2-, 3- and 5-primary part that are

∙ Jacobians of semistable genus 2 curves with good ordinary reduction at primes above 2, or
∙ semistable, and not isomorphic to the Jacobian of a genus 2 curve.

We note that the hypothesis at primes above 2 requires the underlying curve, and not merely
the Jacobian itself, to have good reduction. By a curve with ‘ordinary’ reduction, we mean one
whose Jacobian has ordinary reduction.
There is a range of results on the parity conjecture in the context of elliptic curves, but the

progress for higher dimensional abelian varieties has been rather limited. Previous results only
apply to sparse families, for example, [8] requires the abelian variety to admit a suitable𝐾-rational
isogeny of degree 𝑝dim𝐴, and [26] addresses Jacobians of hyperelliptic curves that have been base-
changed from a subfield of index 2.
The proof of the above theorem has two main ingredients. The first is the following reduction

step that applies to abelian varieties of arbitrary dimension. Its proof is based on the method of
regulator constants of [11, 12] and will be explained in Appendix B.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 3

Theorem 1.3. Let 𝐹∕𝐾 be a Galois extension of number fields with Galois group 𝐺. Let 𝐴∕𝐾 be
a semistable principally polarised abelian variety such thatX𝐴∕𝐹 is finite. If the parity conjecture
holds for 𝐴∕𝐹𝐻 for all 2-groups𝐻 ⩽ 𝐺, then it holds for 𝐴∕𝐾.

The second ingredient is a proof of Theorem 1.2 under the assumption that the degree of the
field extension generated by𝐴[2] is a power of 2. More precisely, we establish the ‘2-parity conjec-
ture’ in this case. Without some assumption on the Tate–Shafarevich group, the parity conjecture
currently appears to be completely out of reach— indeed, it would give an elementary criterion for
predicting the existence of points of infinite order, something that seems to be impossibly difficult
already for elliptic curves. However, the version for Selmer groups is more tractable. We will write
rk𝑝(𝐴∕𝐾) for the 𝑝∞-Selmer rank of 𝐴, that is, rk𝑝(𝐴∕𝐾)=rk(𝐴∕𝐾) + 𝛿𝑝, where 𝛿𝑝 is the mul-
tiplicity of ℚ𝑝∕ℤ𝑝 in the decomposition X𝐴∕𝐾[𝑝

∞] ≃ (ℚ𝑝∕ℤ𝑝)
𝛿𝑝×(finite) and is conjecturally

always 0.

Conjecture 1.4 (𝑝-Parity conjecture). For every abelian variety 𝐴 over a number field 𝐾 and for a
prime number 𝑝,

(−1)rk𝑝(𝐴∕𝐾) = 𝑤𝐴∕𝐾.

Theorem 1.5 (=Theorem 13.3). The 2-parity conjecture holds for all principally polarised abelian
surfaces over number fields 𝐴∕𝐾 such that Gal(𝐾(𝐴[2])∕𝐾) is a 2-group that are

∙ Jacobians of semistable genus 2 curves with good ordinary reduction at primes above 2, or
∙ not isomorphic to the Jacobian of a genus 2 curve.

Assuming the finiteness of Tate–Shafarevich groups, the 𝑝-parity conjecture clearly implies
the parity conjecture. In particular, Theorem 1.2 is a direct consequence of Theorems 1.5 and 1.3
applied to 𝐹=𝐾(𝐴[2]).
The proof of Theorem 1.5 consists of two parts, outlined in more detail in §1.2 and §1.3 below.

The first expresses the parity of the 2∞-Selmer rank of 𝐴∕𝐾 as a product of some local terms
𝜆𝐴∕𝐾𝑣 ,

(−1)rk2 𝐴∕𝐾 =
∏
𝑣

𝜆𝐴∕𝐾𝑣 ,

analogously to the formula for the global root number as a product of local root numbers𝑤𝐴∕𝐾 =∏
𝑤𝐴∕𝐾𝑣 , the products taken over all the places of𝐾. This makes crucial use of a Richelot isogeny

on 𝐴 whose existence is guaranteed by the restriction on Gal(𝐾(𝐴[2])∕𝐾).
The second part is the proof that this expression for the parity of the rank is compatible with

root numbers. In other words, that 𝜆𝐴∕𝐾𝑣𝑤𝐴∕𝐾𝑣 satisfies the product formula∏
𝑣

𝜆𝐴∕𝐾𝑣𝑤𝐴∕𝐾𝑣 = 1,

which leads to the desired expression (−1)rk2 𝐴∕𝐾 =𝑤𝐴∕𝐾 . This product formula is more deli-
cate than one might expect, because one often has 𝜆𝐴∕𝐾𝑣 ≠𝑤𝐴∕𝐾𝑣 . However, rather miraculously,
𝜆𝐴∕𝐾𝑣 ∈ {±1} always differs from 𝑤𝐴∕𝐾𝑣 ∈ {±1} at an even number of places 𝑣. Conjecture 1.14
below gives an explanation for this phenomenon, by describing an explicit relation between the
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4 DOKCHITSER and MAISTRET

two local invariants. The key point of the conjecture is that it reduces the global problem of con-
trolling the parity of 2-Selmer ranks to the purely local one of proving an identity between various
invariants of genus 2 curves defined over local fields. We prove this conjecture for all semistable
curves with good ordinary reduction at primes above 2 (see Theorem 1.16), which let us deduce
the 2-parity result of Theorem 1.5 and hence Theorem 1.2 (see Theorem 1.15). The proof relies on
explicit formulas and the study of genus 2 curves over local fields, and occupies a substantial part
of the present paper.
We note that recently Docking has managed to prove an analogue of the parity formula

(−1)rk2 𝐴∕𝐾 =
∏
𝜆𝐴∕𝐾𝑣 for Jacobians of curves of genus 3 with Gal(𝐾(𝐴[2])∕𝐾) a 2-group, see

[9, Thm. 1.5]. A proof of the product formula
∏
𝑣 𝜆𝐴∕𝐾𝑣𝑤𝐴∕𝐾𝑣 = 1 in his setting, combined with

Theorem 1.3 above, would give an analogue of Theorem 1.2 for Jacobians of curves of genus 3.

1.2 Parity of 𝟐∞-Selmer ranks of Jacobians of C2D4 curves

The main part of the paper deals with the 2-parity conjecture for principally polarised abelian
surfaces 𝐴 that have 𝐺 = Gal(𝐾(𝐴[2])∕𝐾) a 2-group. Generically, these surfaces are Jacobians of
genus 2 curves 𝐶 ∶ 𝑦2=𝑓(𝑥) for polynomials 𝑓(𝑥) of degree 6. Moreover,𝐺 is preciselyGal(𝑓(𝑥)),
so the 2-group condition can be phrased as Gal(𝑓(𝑥)) ⩽ 𝐶2×𝐷4, where 𝐷4 denotes the dihedral
group of order 8. We will refer to these as C2D4 curves.

Definition 1.6. A C2D4 curve 𝐶 over a field 𝐾 is a genus 2 curve 𝐶 ∶ 𝑦2=𝑐𝑓(𝑥)with 𝑐 ∈ 𝐾× and
𝑓(𝑥)monic of degree 6, together with an embedding Gal(𝑓(𝑥)) ⊆ 𝐶2×𝐷4 as a permutation group
on six roots (where 𝐶2 and 𝐷4 act separately on two and four roots in their natural ways).

We can control the parity of the 2∞-Selmer rank of Jacobians of C2D4 curves using purely local
data as follows. The Jacobian 𝐽 = Jac 𝐶∕𝐾 of a C2D4 curve 𝐶 admits a canonical Richelot isogeny
𝜙 ∶𝐽→𝐽 to the Jacobian 𝐽 of another C2D4 curve 𝐶 (Richelot dual curve), at least if we ignore an
exceptional case when a certain invariant Δ = Δ(𝐶) vanishes (Definitions 2.1 and 1.12).

Definition 1.7. For a C2D4 curve 𝐶 over a local field 𝐾, let

𝜆𝐶∕𝐾 = 𝜇𝐶∕𝐾𝜇𝐶∕𝐾 ⋅ (−1)dim𝔽2
ker 𝜙|𝐾−dim𝔽2

coker 𝜙|𝐾 .
Here 𝜙 is the associated Richelot isogeny, 𝐶 is the Richelot dual curve, ker 𝜙|𝐾 = 𝐽(𝐾)[𝜙] and
coker 𝜙|𝐾 = 𝐽(𝐾)∕𝜙(𝐽(𝐾)) for the two Jacobians 𝐽, 𝐽 and 𝜇𝐶∕𝐾 is ±1 depending on whether 𝐶∕𝐾
is deficient (−1) or not (+1); see Definition 2.3.

Theorem1.8 (See Theorem3.2).Let𝐾 be anumber field. For everyC2D4 curve𝐶∕𝐾withΔ(𝐶) ≠ 0,

(−1)rk2 Jac 𝐶∕𝐾 =
∏
𝑣

𝜆𝐶∕𝐾𝑣 ,

the product taken over all places of 𝐾.

Assuming analytic continuation and the functional equation of 𝐿(𝐽∕𝐾, 𝑠), the decomposition
of the global root number as a product of local root numbers, 𝑤𝐽∕𝐾 =

∏
𝑣 𝑤𝐽∕𝐾𝑣 , shows that the
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 5

analytic rank of the Jacobian satisfies

(−1)rkan 𝐽∕𝐾 =
∏
𝑣

𝑤𝐽∕𝐾𝑣 .

Thus, the above result can be viewed as a 2∞-Selmer group analogue of the root number formula
for parity of the analytic rank given by the functional equation.
The key point is that 𝜆𝐶∕𝐾𝑣 is a purely local invariant. It is usually computable for any given

curve (seeRemark 3.6). ByTheorem 1.8, it can be used to determine the parity of the rank assuming
finiteness ofX[2∞], without worrying about its compatibility with the Birch–Swinnerton–Dyer
conjecture. Such expressions also have direct consequences for arithmetic, as follows.

Example 1.9. For everyC2D4 curve𝐶∕ℚ, the 2∞-Selmer rank of Jac 𝐶∕𝐹 is even over the field𝐹=
ℚ(𝑖,

√
17). Indeed, every rational prime splits in 𝐹∕ℚ, so each term in the product in Theorem 1.8

appears an even number of times. Here 𝐹∕ℚ can, of course, be replaced by any Galois extension
of number fields in which every prime splits into an even number of primes.

Remark 1.10. Theorem 1.8 in fact holds for all genus 2 curves whose Jacobians admit a Richelot
isogeny and, more generally, for Jacobians of curves that admit an isogeny 𝜙 to another Jacobian
that satisfies 𝜙𝜙𝑡 = [2], see Theorem 3.2.

1.3 2-parity conjecture for C2D4 curves

In view of the parity conjecture, Theorem 1.8 and the root number formula 𝑤𝐽∕𝐾 =
∏
𝑣 𝑤𝐽∕𝐾𝑣 for

the Jacobian 𝐽, it is tempting to hope that 𝜆𝐶∕𝐾𝑣 = 𝑤𝐽∕𝐾𝑣 . This is false! However, whenever 𝐶 is a
C2D4 curve over a number field, one finds that 𝜆𝐶∕𝐾𝑣 always differs from𝑤𝐽∕𝐾𝑣 at an even number
of places. Finding a purely local explanation for this phenomenon was the most difficult task of
the present project.

Definition 1.11. Let 𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥) be a C2D4 curve over a field 𝐾 of characteristic 0. The
embedding Gal(𝑓(𝑥)) ⊂ 𝐶2×𝐷4 gives a factorisation of 𝑓(𝑥) into monic quadratics

𝑓(𝑥) = 𝑟(𝑥)𝑠(𝑥)𝑡(𝑥),

where 𝑟(𝑥) ∈ 𝐾[𝑥] and Gal(𝐾̄∕𝐾) preserves {𝑠(𝑥), 𝑡(𝑥)}. We write the roots as 𝛼𝑖, 𝛽𝑖 ∈ 𝐾̄, with

𝑟(𝑥) = (𝑥 − 𝛼1)(𝑥 − 𝛽1), 𝑠(𝑥) = (𝑥 − 𝛼2)(𝑥 − 𝛽2), 𝑡(𝑥) = (𝑥 − 𝛼3)(𝑥 − 𝛽3).

We will refer to this data or, equivalently, to the choice of embedding Gal(𝑓(𝑥)) ⊂ 𝐶2×𝐷4, as a
C2D4 structure on a genus 2 curve 𝑦2 = 𝑐𝑓(𝑥). A C2D4 curve is centred if 𝛽1 = −𝛼1. Note that any
C2D4 curve is isomorphic to a centred one by the substitution 𝑥 ↦ 𝑥 −

𝛼1+𝛽1
2

.

Definition 1.12. To a centred C2D4 curve, we assign the following quantities:

Δ = 𝑐(−𝛼2
1
(𝛼2+𝛽2−𝛼3−𝛽3) + 𝛼2𝛽2(𝛼3+𝛽3) − 𝛼3𝛽3(𝛼2+𝛽2)),

𝜉 = 2((𝛼2+𝛼1)(𝛽2+𝛼1)(𝛼3+𝛼1)(𝛽3+𝛼1) + (𝛼2−𝛼1)(𝛽2−𝛼1)(𝛼3−𝛼1)(𝛽3−𝛼1)),
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6 DOKCHITSER and MAISTRET

𝓁1 = 𝛼2+𝛽2−𝛼3−𝛽3 𝜂1 = (𝛼2−𝛼3)(𝛽2−𝛽3) + (𝛽2−𝛼3)(𝛼2−𝛽3),

𝓁2 = 𝛼3+𝛽3 𝜂2 = (𝛼2−𝛼1)(𝛼2+𝛼1) + (𝛽2−𝛼1)(𝛽2+𝛼1),

𝓁3 = 𝛼2+𝛽2 𝜂3 = (𝛼3−𝛼1)(𝛼3+𝛼1) + (𝛽3−𝛼1)(𝛽3+𝛼1),

𝛿1 = 𝛼
2
1

𝛿̂1 =
1

Δ2
(𝛼2−𝛽3)(𝛼2−𝛼3)(𝛽2−𝛼3)(𝛽2−𝛽3),

𝛿2 = (𝛼2−𝛽2)
2 𝛿̂2 = 4(𝛼3+𝛼1)(𝛼3−𝛼1)(𝛽3+𝛼1)(𝛽3−𝛼1),

𝛿3 = (𝛼3−𝛽3)
2 𝛿̂3 = 4(𝛼2+𝛼1)(𝛼2−𝛼1)(𝛽2+𝛼1)(𝛽2−𝛼1).

If 𝐶 is not centred and 𝐶′ is the centred curve corresponding to it by shifting the 𝑥-coordinate, we
define these quantities for 𝐶 as being those for 𝐶′, that is, Δ(𝐶) = Δ(𝐶′), and so on.
We will also use  = 𝓁1𝓁2𝓁3𝜂2𝜂3𝜉(𝛿2+𝛿3)(𝛿2𝜂2+𝛿3𝜂3)(𝛿̂2𝜂3+𝛿̂3𝜂2), for the purposes of the

shorthand expression ‘ ≠ 0’; note that 𝛿𝑖 and 𝛿̂𝑖 are always non-zero. Note also that in general
the invariants Δ,𝓁1,𝓁2,𝓁3, 𝛿2, 𝛿3, 𝜂2, 𝜂3, 𝛿̂2 and 𝛿̂3 are not necessarily 𝐾-rational.

Definition 1.13. For a C2D4 curve 𝐶 over a local field 𝐾 of characteristic 0 with  , Δ ≠ 0, we
define 𝐸𝐶∕𝐾 as the following product of Hilbert symbols

𝐸𝐶∕𝐾 = (𝛿2+𝛿3, −𝓁
2
1
𝛿2𝛿3)(𝛿2𝜂2+𝛿3𝜂3, −𝓁

2
1
𝜂2𝜂3𝛿2𝛿3)(𝛿̂2𝜂3+𝛿̂3𝜂2, −𝓁

2
1
𝜂2𝜂3𝛿̂2𝛿̂3)

(𝜉, −𝛿1𝛿̂2𝛿̂3)(𝜂2𝜂3, −𝛿2𝛿3𝛿̂2𝛿̂3)(𝑐, 𝛿1𝛿2𝛿3𝛿̂2𝛿̂3) ⋅
{
(𝜂1,−𝛿2𝛿3Δ

2𝛿̂1) if 𝜂1≠0

1 if 𝜂1=0

(𝛿̂1, −
𝓁1
Δ
)(𝓁2

1
, −𝓁2𝓁3)(2, −𝓁

2
1
)(𝛿̂2𝛿̂3, −2).

We remark that all individual terms 𝛿1, 𝛿̂1, Δ2,
𝓁1
Δ
, 𝓁2

1
, 𝜂1, 𝓁2𝓁3, 𝜂2𝜂3, 𝜉, 𝛿2+𝛿3, 𝛿2𝜂2+𝛿3𝜂3,

𝛿̂2𝜂3 + 𝛿̂3𝜂2, 𝛿2𝛿3 and 𝛿̂2𝛿̂3 lie in 𝐾 as they are preserved by 𝐶2 × 𝐷4.

Conjecture 1.14. For a C2D4 curve 𝐶∕𝐾 over a local field of characteristic 0 with  , Δ ≠ 0,

𝑤Jac𝐶∕𝐾 = 𝜆𝐶∕𝐾 ⋅ 𝐸𝐶∕𝐾.

The essential property of this description is that it explains why𝑤 and 𝜆 always differ at an even
number of places, since, by the product formula for Hilbert symbols,

∏
𝑣 𝐸𝐶∕𝐾𝑣 =1.

Theorem 1.15. Let𝐾 be a number field. The 2-parity conjecture holds for all C2D4 curves𝐶∕𝐾 with
 , Δ ≠ 0 for which Conjecture 1.14 holds for 𝐶∕𝐾𝑣 for all places 𝑣 of 𝐾.

Proof. Take the product over all places 𝑣 of the formula in Conjecture 1.14. The result follows from
the root number formula 𝑤Jac𝐶∕𝐾 =

∏
𝑣 𝑤Jac𝐶∕𝐾𝑣 , Theorem 1.8 and the product formula. □

We will prove this local formula in a large number of cases:

Theorem 1.16 (=Theorem 12.5). Conjecture 1.14 holds for all C2D4 curves with  , Δ ≠ 0 over
Archimedean local fields, all semistable C2D4 curves with  , Δ ≠ 0 over finite extensions of ℚ𝑝 for
odd primes 𝑝 and all C2D4 curves with  , Δ ≠ 0 and good ordinary reduction over finite extensions
of ℚ2.

Note that Theorem 1.5 now follows from Theorems 1.15 and 1.16, at least provided  , Δ ≠ 0. We
will also show that the strange formula of Conjecture 1.14 must hold in the non-semistable case
too, in that a counterexample would lead to a counterexample to the parity conjecture:
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 7

Theorem 1.17 (=Theorem 13.6). If the 2-parity conjecture is true for all Jacobians of C2D4 curves
over number fields, then Conjecture 1.14 holds for all C2D4 curves with  , Δ ≠ 0 over local fields of
characteristic 0.

Remark 1.18. It would be very interesting to have a conceptual interpretation for 𝐸𝐶∕𝐾 . The anal-
ogous problem appears to be difficult even in the significantly simpler setting of elliptic curves,
see [10, Thm. 4] and [13, Thm. 5.8]. One could probably extend the definition of 𝐸𝐶∕𝐾 to  = 0.
However, this seems to require a lengthy case by case analysis which we chose to avoid by picking
a good model for 𝐶 that has  ≠ 0 (Lemma 11.17). The case 𝜂1 = 0 has to be treated separately as
this condition is model independent.
Manipulating formal algebraic expressions such as 𝐸𝐶̂∕𝐾 with a computer is not practical: these

expressions are enormous and computers cannot simplify Hilbert symbols. However, we made
extensive use of computational data to find the expression for 𝐸𝐶∕𝐾 . Once one finds the right
list of invariants 𝐼𝑖 , it is not difficult to produce the product expression of 𝐸𝐶∕𝐾 : one compiles
a large list of C2D4 curves and for each curve, one computes 𝑤Jac𝐶∕𝐾 , 𝜆𝐶∕𝐾 and all possible
Hilbert symbols (𝐼𝑖, 𝐼𝑗). One then uses linear algebra to find an expression for 𝑤Jac𝐶∕𝐾𝜆𝐶∕𝐾 in
terms of these Hilbert symbols. The difficulty is then to find this list of invariants in the first
place, the main issue being that Hilbert symbols do not behave sensibly under addition. Classical
invariants such as Igusa invariants are not sensitive to Richelot isogenies and some of the local
data that determine 𝑤Jac𝐶∕𝐾𝜆𝐶∕𝐾 . Our invariants carry this information, for example, see proof
of Theorem 5.2 and §9.1.
In principle, 𝑤Jac𝐶∕𝐾𝜆𝐶∕𝐾 only depends on the Richelot isogeny; in terms of Definition 1.11, it

means that it is symmetric in 𝑟, 𝑠 and 𝑡. However, there appears to be a barrier to finding a Hilbert
symbol expression for 𝑤Jac𝐶∕𝐾𝜆𝐶∕𝐾 without breaking this symmetry or the symmetry between 𝐶
and 𝐶̂.
We have numerically verified Conjecture 1.14 on all 40441 genus 2 curves currently in the

LMFDB whose simplified model is given by a degree 6 polynomial, for all odd primes of tame
reduction and for each possible C2D4 structure for which  , Δ ≠ 0 (excluding the small number
of cases when Magma failed to return a regular model for 𝐶̂). In theory, one might be able to
prove this conjecture over a specific local field by numerically checking a finite list of curves in
the vein of Halberstadt’s work on root numbers ([20]). However, the length of the list is likely to
be unreasonable.

1.4 Overview

In §2, we review background material, including the construction of the Richelot dual curve and
the theory of clusters of [15], which will allow us to control local invariants of genus 2 curves over
completions 𝐾𝑣 for primes 𝑣 of odd residue characteristic.
In §3, we explain how to control the parity of the 2∞-Selmer rank for Jacobians of curves that

admit a suitable isogeny, and prove a general version of Theorem 1.8 (see Theorem 3.2). We also
prove a formula for 𝜆𝐶∕𝐾 , which converts the kernel-cokernel into Tamagawa numbers and other
standard quantities (Theorem 3.2); for example, for curves over finite extension ofℚ𝑝 with 𝑝 odd,
it reads 𝜆𝐶∕𝐾 = 𝜇𝐶𝜇𝐶(−1)

ord2 𝑐𝐽∕𝐾∕𝑐𝐽∕𝐾 , where 𝐽 and 𝐽 are the two Jacobians.
Sections §4–12 focus onC2D4 curves and form the technical heart of the proof of Theorem 1.5 on

the 2-parity conjecture and Theorem 1.16 on Conjecture 1.14, which compares local root numbers
to the 𝜆-terms. Roughly, the idea is the following.
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8 DOKCHITSER and MAISTRET

First of all, we can work out certain cases by making all the terms in Conjecture 1.14 totally
explicit. For example, suppose that 𝐶∕ℚ𝑝 is a C2D4 curve for 𝑝 ≠ 2, given by 𝑦2 = 𝑓(𝑥) with
𝑓(𝑥) ∈ ℤ𝑝[𝑥] monic, and that 𝑓(𝑥) mod 𝑝 has four simple roots 𝛼̄2, 𝛽2, 𝛼̄3, 𝛽3, and a double root
𝛼̄1 = 𝛽1. The reduced curve has a node, and, analogously to multiplicative reduction on an ellip-
tic curve, the Jacobian has local Tamagawa number 𝑣(𝛼1 − 𝛽1)2 = 𝑣(𝛿1) if the node is split, and
1 or 2 (depending on whether 𝑣(𝛿1) is odd or even) if the node is non-split. Whether the node is
split or non-split turns out to be precisely measured by whether or not 𝜉 is a square in ℚ𝑝. An
explicit computation of the Richelot dual curve shows that, generically (if 𝑣(Δ)=0), its reduction
also has a node and its Jacobian’s Tamagawa number is 2𝑣(𝛿1) or 2 depending again on whether
𝜉 is a square (split node) or not (non-split node). Neither curve here is deficient, so we obtain
𝜆𝐶∕𝐾 = −1 unless 𝜉 is a non-square and 𝑣(𝛿1) is even, in which case it is +1. As for multiplicative
reduction on elliptic curves, the local root number in this case is 𝑤Jac𝐶∕ℚ𝑝 = ±1 depending on
whether the node is split (−1) or non-split (+1). Finally, generically (!) all the terms apart from
𝛿1 in the expression for 𝐸𝐶∕ℚ𝑝 are units, so that all the Hilbert symbols are (unit,unit)= 1, except
for one remaining term (𝜉, 𝛿1). The latter is−1 precisely when 𝜉 is a non-square (non-split node!)
and 𝑣(𝛿1) is odd. This magically combines to 𝑤 = 𝜆 ⋅ 𝐸, as required.
Wewill work out a number of cases by a similar brute force approach (§8–10); this is often rather

more delicate than described above, as we have brushed the non-generic cases (when certain
quantities becomenon-units) under the rug. Unfortunately, there is amyriad of possible reduction
types that one would need to address to prove the formula 𝑤 = 𝜆 ⋅ 𝐸 in general. Instead, we will
use a global-to-local trick to cut down the number of cases to a manageable list (from 938 to 48, in
the description used in Theorem 7.1). This is based on the following lemma, which follows directly
from Theorem 1.8 and the product formula for Hilbert symbols.

Lemma 1.19. Let 𝐾 be a number field and 𝐶∕𝐾 a C2D4 curve with  , Δ ≠ 0 for which the 2-parity
conjecture holds. If Conjecture 1.14 holds for 𝐶∕𝐾𝑣 for all places 𝑣 of 𝐾 except possibly one place 𝑤,
then it also holds for 𝐶∕𝐾𝑤 .

Thus, to prove the formula 𝑤 = 𝜆 ⋅ 𝐸 of Conjecture 1.14 for 𝐶 over a local field, we can try to
deform it to a suitable curve over a number field. The main difficulty, of course, is that we do
not a priori have a supply of C2D4 curves over number fields for which we know the 2-parity
conjecture! However, we can bootstrap ourselves by making use of the cases for which we have
worked out Conjecture 1.14 using the brute force approach outlined above, and which give us a
supply of C2D4 curves over number fields for which the 2-parity conjecture holds. Observe also
that the truth of the 2-parity conjecture for a C2D4 curve 𝐶 is

∙ independent of the choice of model for 𝐶 and
∙ independent of the choice of the C2D4 structure.

This will let us show that Conjecture 1.14 is also independent of the choice ofmodel and the choice
of C2D4 structure for curves over local fields.
To make this method work, we need to understand how various quantities behave under a

change of model (§6), and to have a way to approximate C2D4 curves over local fields by C2D4
curves over number fields that, moreover, behave well at all other places (§11). In §12, we justify
that these tools are enough to prove Conjecture 1.14 in all the cases we claim in Theorem 1.16.
In §13, we tie these results together, deal with the exceptional cases when  = 0, Δ = 0 or the

abelian surface is not a Jacobian and prove Theorems 1.2 and 1.5.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 9

Appendix A (by A. Morgan) provides a formula for 𝜆 for curves with good ordinary reduction
over 2-adic fields. Appendix B (by T. Dokchitser and V. Dokchitser) deals with regulator constants
and Theorem 1.3.

2 NOTATION AND BACKGROUND

2.1 General notation

Throughout the paper, rk𝑝(𝐴∕𝐾)will denote the 𝑝∞-Selmer rank of𝐴∕𝐾 (see Conjecture 1.4) and
𝜙𝑡 the dual of a given isogeny 𝜙.
For a local field 𝐾 with residue field 𝑘, a curve 𝐶∕𝐾 and an abelian variety 𝐴∕𝐾, we write

𝜋𝐾 uniformiser of a local non-archimedean field 𝐾
𝑣(𝑥) valuation of 𝑥 ∈ 𝐾̄, normalised so that 𝑣(𝜋𝐾) = 1|𝑥|𝐾 normalised absolute value of 𝑥 so that |𝜋𝐾|𝐾 = 1|𝑘|
𝐼𝐾 inertia subgroup of Gal(𝐾̄∕𝐾)
Frob𝐾 a Frobenius element in Gal(𝐾̄∕𝐾)
𝐾𝑛𝑟 maximal unramified extension of 𝐾
𝑐𝐴∕𝐾 Tamagawa number for 𝐴∕𝐾
𝜔◦
𝐴∕𝐾

Néron exterior form for 𝐴∕𝐾
𝜔

𝜔′
scalar 𝜅 ∈ 𝐾 with 𝜔 = 𝜅𝜔′ for exterior forms 𝜔, 𝜔′

𝑤𝐴∕𝐾 , 𝑤𝐶∕𝐾 local root number of 𝐴∕𝐾 and of Jac 𝐶∕𝐾
𝑛𝐴∕ℝ, 𝑛𝐶∕ℝ number of components of 𝐴(ℝ) and 𝐶(ℝ)
𝜇𝐶∕𝐾 1 if 𝐶 is not deficient, −1 if 𝐶 is deficient (see Definition 2.3)
□ a non-zero square element in 𝐾

We will almost always deal with genus 2 curves 𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥), where 𝑓(𝑥) is monic. For
convenience of the reader, we list where some of the definitions associated to 𝐶 may be found
(numbering refers to Definitions and Notations):

C2D4 curve 1.11
𝜆𝐶∕𝐾 1.7
𝐸𝐶∕𝐾 1.13
 ,𝐶2𝐷4 explicit 2-adic families of genus 2 curves, 10.4
𝐶 Richelot dual curve of 𝐶, 2.1
𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥) factorisation of 𝑓(𝑥), 1.11
𝛼𝑖, 𝛽𝑖 roots of 𝑓(𝑥), 1.11
𝛼̂𝑖 , 𝛽𝑖 roots of defining polynomial of 𝐶, 2.1
𝛿𝑖, 𝛿̂𝑖 , 𝜂𝑖 , 𝜉, Δ, 𝓁𝑖 ,  terms entering 𝐸𝐶∕𝐾 , 1.12

𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛼3, 𝛽3 and a general root, 2.4, 2.5, 2.7
𝐶𝑚, 𝐶𝑡 models for 𝐶 for𝑚 ∈ GL2(𝐾) and 𝑡 ∈ 𝐾, 6.1, 6.3
𝑀𝑡 matrix and Möbius map to obtain 𝐶𝑡 , 6.3
𝐶 close to 𝐶′ 11.1

We will write 𝛼𝑖(𝐶), Δ(𝐶), and so on, if we wish to stress which curve we are referring to.
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10 DOKCHITSER and MAISTRET

We write 𝐷4 for the dihedral group of order 8 and 𝑉4 for the Klein subgroup of 𝑆4.
Every point on Jac 𝐶 can be represented by the divisor [𝑃, 𝑄] = 𝑃 + 𝑄 −∞+ −∞−, where

𝑃,𝑄 ∈ 𝐶(𝐾̄) and ∞± are the points at infinity of 𝐶. 2-torsion points are of the form
[(𝛼𝑖, 0), (𝛽𝑖, 0)].

2.2 Richelot isogenies

Definition 2.1 (Richelot dual curve, see [6] Ch. 10, [3] §4, [31] Ch. 8). For a C2D4 curve
𝐶 ∶ 𝑦2 = 𝑐𝑟(𝑥)𝑠(𝑥)𝑡(𝑥) as in Definition 1.11, with 𝓁1,𝓁2,𝓁3, Δ ≠ 0, itsRichelot dual curve𝐶 is given
by

𝐶 ∶ 𝑦2 =
𝓁1𝓁2𝓁3
Δ

𝑟(𝑥)𝑠(𝑥)𝑡(𝑥),

where (writing 𝑟′(𝑥) for the derivative of 𝑟(𝑥), etc.)

𝑟(𝑥) =
𝑡(𝑥)𝑠′(𝑥) − 𝑠(𝑥)𝑡′(𝑥)

𝓁1
, 𝑠(𝑥) =

𝑟(𝑥)𝑡′(𝑥) − 𝑡(𝑥)𝑟′(𝑥)

𝓁2
, 𝑡(𝑥) =

𝑟(𝑥)𝑠′(𝑥) − 𝑠(𝑥)𝑟′(𝑥)

𝓁3
.

The curve 𝐶 is a C2D4 curve; 𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥) are monic quadratics with discriminants 4Δ2𝛿̂1∕𝓁21 ,
𝛿̂2∕𝓁

2
2
and 𝛿̂3∕𝓁23 .We denote the roots of 𝑟(𝑥) (respectively, 𝑠(𝑥), 𝑡(𝑥)) by 𝛼̂1, 𝛽1 (respectively, 𝛼̂2, 𝛽2

and 𝛼̂3, 𝛽3).
There is an isogeny 𝜙 ∶ Jac 𝐶 → Jac𝐶 of degree 4 whose kernel is totally isotropic with respect

to the Weil pairing and consists of 0 and the 2-torsion points [(𝛼𝑖, 0), (𝛽𝑖, 0)]. The isogeny satisfies
𝜙𝜙𝑡 = [2].

Remark 2.2. When 𝓁1,𝓁2 or 𝓁3 = 0, one can define the Richelot dual curve by the same
construction by cancelling the offending terms in the equation for 𝐶 and the expressions
for 𝑟, 𝑠, 𝑡.

2.3 Deficiency

Definition 2.3 (Deficiency, [27, Corollary 12]). A curve𝐶 of genus g over a local field𝐾 is deficient
if it has no𝐾-rational divisor of degree g−1. For a genus 2 curve𝐶∕𝐾, being deficient is equivalent
to 𝐶 not having any 𝐿-rational points over all extensions 𝐿∕𝐾 of odd degree.

2.4 Pictorial representation of roots

Notation 2.4. For a C2D4 curve 𝐶 ∶ 𝑦2=𝑐𝑟(𝑥)𝑠(𝑥)𝑡(𝑥), we pictorially represent the roots 𝛼1, 𝛽1
of 𝑟(𝑥) as ruby circles ( ), roots 𝛼2, 𝛽2 of 𝑠(𝑥) as sapphire hexagons ( ) and roots 𝛼3, 𝛽3 of 𝑡(𝑥)
as turquoise diamonds ( ). We will sometimes refer to them as ruby, sapphire and turquoise
roots, respectively.
Note that the Galois group ⩽ 𝐶2×𝐷4 preserves the set of ruby roots and either preserves the set

of sapphire roots and the set of turquoise roots, or swaps these two sets around.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 11

Notation 2.5. For a C2D4 curve 𝐶∕ℝ, it will turn out that most of the local data that we are
interested in are encoded in the arrangement of the real roots of the defining polynomial on the
real line. We will depict this information by drawing the real roots in the order that they appear in
ℝ and connect two roots 𝑟, 𝑟′ if the points (𝑟, 0) and (𝑟′, 0) are on the same connected component
of 𝐶(ℝ). Thus, for example, a curve with 𝛼1 < 𝛽1 < 𝛼2 < 𝛽2 < 𝛼3 < 𝛽3 and 𝑐 < 0 will be depicted
by .

2.5 Clusters: Curves over local fields with odd residue characteristic

To keep track of the arithmetic of genus 2 curves over 𝑝-adic fields with 𝑝 odd, we will use the
machinery of ‘clusters’ of [15].

Definition 2.6 (Clusters). Let 𝐾 be a finite extension of ℚ𝑝 and 𝐶∶𝑦2=𝑐𝑓(𝑥) a genus 2 curve,
where 𝑓(𝑥) ∈ 𝐾[𝑥] is monic of degree 6 with set of roots . A cluster is a non-empty sub-
set 𝔰 ⊂  of the form 𝔰 = 𝐷 ∩ for some disc 𝐷 = {𝑥∈𝐾̄ ∣ 𝑣(𝑥 − 𝑧)⩾𝑑} for some 𝑧 ∈ 𝐾̄ and
𝑑 ∈ ℚ.
For a cluster 𝔰 of size > 1, its depth 𝑑𝔰 is the maximal 𝑑 for which 𝔰 is cut out by such a disc,

that is, 𝑑𝔰=min𝑟,𝑟′∈𝔰 𝑣(𝑟−𝑟′). If moreover 𝔰 ≠ , then its relative depth is 𝛿𝔰=𝑑𝔰−𝑑𝑃(𝔰), where
𝑃(𝔰) is the smallest cluster with 𝔰 ⊊ 𝑃(𝑠) (the ‘parent’ cluster).
We refer to this data as the cluster picture of 𝐶.
For C2D4 curves, we will often specify which roots are ruby, sapphire and turquoise: we will

refer to this data as the colouring of the cluster picture.

Notation 2.7. We draw cluster pictures by drawing roots 𝑟 ∈  as , or as in Notation 2.4 if we
wish to specify which root is which, and draw ovals around roots to represent clusters (of size
> 1), such as:

2 2 1 0
or 2 2 1 0

The subscript on the largest cluster is its depth; on the other clusters, it is their relative depth.

Definition 2.8 (Twins). A twin is a cluster of size 2.

Definition 2.9 (Balanced). A cluster picture of a genus 2 curve is balanced if || = 6, 𝑑 = 0,
there are no clusters of size 4 or 5, and there are either no clusters of size 3 or there are two
of them, in which case they have equal depth. A curve 𝐶 is balanced if its cluster picture
is.

Theorem 2.10. Let 𝐾 be a finite extension of ℚ𝑝 for an odd prime 𝑝 with residue field 𝑘
of size |𝑘| > 5. Then every semistable 𝐶∕𝐾 of genus 2 admits a model whose cluster picture is
balanced.

Proof. [15, Cor. 15.3]. □
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12 DOKCHITSER and MAISTRET

Lemma 2.11. Let 𝐾 be a finite extension of ℚ𝑝 for an odd prime 𝑝. If 𝐶∕𝐾 is a balanced
centred C2D4 curve, then 𝑣(𝛼𝑖), 𝑣(𝛽𝑖) ⩾ 0 for 𝑖 = 1, 2, 3. Moreover, if 𝑣(𝓁𝑖) = 0 for some 𝑖, then
𝑣(𝛼̂𝑖), 𝑣(𝛽𝑖) ⩾ 0.

Proof. Since the curve is balanced and centred,𝛼1 = −𝛽1 and the depth of the top cluster is 0. Thus,
𝑣(𝛼1) = 𝑣(

1

2
(𝛼1 − 𝛽1)) ⩾ 0. The first claim follows as 𝑣(𝛼1 − 𝑟) ⩾ 0 for each root 𝑟. The second

claim follows directly fromDefinition 2.1, as 𝛼̂𝑖 , 𝛽𝑖 are roots of a monic quadratic polynomial with
integral coefficients. □

Roughly speaking, the proof of the formula 𝜆 = 𝑤𝐸 of Conjecture 1.14 will require a separate
computation for each balanced cluster picture.

2.6 Local invariants of semistable curves of genus 2

Let 𝐶∕𝐾 be a curve of genus 2 over a finite extension of ℚ𝑝 for an odd prime 𝑝. We record some
results of [15] that will let us control the arithmetic invariants of 𝐶∕𝐾 in terms of its cluster
picture.

Theorem 2.12 (Semistability criterion, [15, Thm. 1.8]). Let 𝐶∕𝐾 be a curve of genus 2 over a finite
extension ofℚ𝑝 for an oddprime𝑝, given by𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥) for some 𝑐 ∈ 𝐾× andmonic𝑓(𝑥) ∈ 𝐾[𝑥]
of degree 6. Then 𝐶∕𝐾 is semistable if and only if the following conditions hold:

(1) The extension 𝐾()∕𝐾 has ramification degree at most 2.
(2) Every cluster 𝔰 with |𝔰| ≠ 1 is 𝐼𝐾-invariant.
(3) Every principal cluster 𝔰 has 𝑑𝔰∈ℤ and 𝑣(𝑐)+|𝔰|𝑑𝔰+∑𝑟∉𝔰 𝑣(𝑟 − 𝑟𝔰)∈2ℤ, for any (equivalently

every) root 𝑟𝔰 ∈ 𝔰. Here a cluster 𝔰 is principal if |𝔰| ⩾ 3, 𝔰 does not properly contain a cluster of
size 4, and 𝔰 is not a disjoint union of two clusters of size 3 or of sizes 5 and 1.

We will need to keep track of the analogue of the split/non-split dichotomy for elliptic curves
with multiplicative reduction. This is done by keeping track of the Galois action on clusters and
associating signs± to certain clusters of even size, see [15, Definition 1.13]. We will only need their
explicit expressions for balanced pictures:

Definition 2.13 (Sign and 𝜃𝔰). Suppose that 𝐶 is semistable and balanced.

(1) If is a union of three twins, the sign of is + if 𝑐 ∈ 𝐾×2 and − if 𝑐 ∉ 𝐾×2.
(2) Otherwise, for each twin 𝔰 = {𝑟1, 𝑟2}, pick a square root 𝜃𝔰 =

√
𝑐
∏
𝑟∉𝔰(

𝑟1+𝑟2
2

− 𝑟) and define

its sign ± through the formula Frob𝐾(𝜃𝔰)

𝜃Frob𝐾(𝔰)
≡ ±1 in the residue field.

Note that the signs depend on the choices of square roots in (2).

Remark 2.14. When 𝐶 is semistable and 𝔰 is a twin as in Definition 2.13(2), 𝑣(𝜃2
𝔰
) is always even,

equivalently 𝐾(𝜃𝔰)∕𝐾 is unramified (by Theorem 2.12(3) for 𝑃(𝔰)).

Notation 2.15. If we wish to keep track of the signs of clusters in our pictures of Notation 2.7,
these will be written as superscripts to the ovals. If we wish to keep track of the Frobenius action,
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 13

then lines joining clusters (of size > 1) will indicate that Frobenius permutes them. We refer to
cluster pictures with this extra data as cluster picture with Frobenius action.

Example 2.16. Let 𝑓(𝑥) = 𝑥(𝑥−1)(𝑥−𝑖)(𝑥−𝑖+3)(𝑥+𝑖)(𝑥+𝑖−3) overℚ3, where 𝑖 is a square root
of −1. Then there are two clusters of size 2, 𝔰 = {𝑖, 𝑖+3} and 𝔰′ = {−𝑖, −𝑖+3}, which are clearly
swapped by Frobenius. Here 𝜃𝔰 =

5

4

√
1 − 8𝑖 and 𝜃𝔰′ =

5

4

√
1 + 8𝑖. Since 25

16
(1 − 8𝑖) is not a square

in the quadratic unramified extension ofℚ3, the two signs are+ and− in some order. The cluster
picture with Frobenius action is +

1
−
1 0

.

Theorem 2.17 [15, §18, Thms. 18.7, 18.8]. Let 𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝, 𝐶∕𝐾
a semistable genus 2 curve and 𝐽 its Jacobian. Then the cluster picture with Frobenius action of 𝐶 is
one of the ones given in the table below for some integers 𝑛,𝑚, 𝑘, 𝑟>0. The Tamagawa number 𝑐𝐽∕𝐾 ,
deficiency 𝜇𝐶∕𝐾 and local root number 𝑤𝐶∕𝐾 are as given in the table. Isomorphic curves have the
same type.

Type 𝜖 𝛿 𝑐𝐽∕𝐾 𝜇𝐶∕𝐾 𝑤𝐶∕𝐾

2 1 1 1

1×
𝑟
1

2𝑟 𝑡 2𝑟−𝑡 2𝑟
1 1 1

1 ∼×
𝑟
1

𝑟
1 (−1)𝑟 1

1𝜖

𝑛
𝜖
𝑛

2

𝜖
𝑛

2
𝑛

2 −𝑡 𝑡

𝜖 𝜖
𝑛

2

𝜖
𝑛

2

+
−

𝑛

𝑛̃

1
1

−1
1

1×
𝑟
I
𝜖

𝑛

𝑡
𝜖
𝑛

2 2𝑟−𝑡
2𝑟

𝜖

𝑛

2
𝑛

2 −𝑡 2𝑟 𝑡

𝜖 𝜖
𝑛

2 2𝑟

𝜖
𝑛

2 2𝑟
𝜖
𝑛

2 2𝑟
2𝑟

𝜖

𝑛

2

𝜖
𝑛

2 2𝑟

+
−

𝑛

𝑛̃

1
1

−1
1

I
𝜖,𝛿

𝑛,𝑚
𝜖
𝑛

2

𝛿
𝑚

2

𝜖
𝑛

2

𝛿

𝑚

2

𝑚

2 −𝑡
𝜖
𝑛

2 𝑡

𝛿
𝜖
𝑛

2

𝛿
𝑚

2

𝜖
𝑛

2

𝛿

𝑚

2

+ +
+ −
− −

𝑛𝑚

𝑛𝑚̃

𝑛̃𝑚̃

1
1
1

1
−1
1

I
𝜖

𝑛∼𝑛
𝜂 𝜖𝜂

𝑛

2

𝜂 𝜖𝜂
𝑛

2

+
−

𝑛

𝑛̃

1
1

−1
1

U
𝜖

𝑛,𝑚,𝑘
𝑛

2
𝑚

2
𝑘

2

𝜖
𝑛

2
𝑚

2

𝜖

𝑘

2

𝑘

2 −𝑡
𝑛

2
𝑚

2 𝑡

𝜖
𝑛

2
𝑚

2

𝜖

𝑘

2

+
−

𝑁

𝑁̃

𝑀
⋅𝑀

1
(−1)𝑛𝑚𝑘 1

U
𝜖

𝑛∼𝑛,𝑘
𝑛

2
𝑘

2

𝜖
𝑛

2

𝜖

𝑘

2

𝑘

2 −𝑡
𝑛

2 𝑡

𝜖
𝑛

2

𝜖

𝑘

2

+
−

𝑛 + 2𝑘
𝑛

1
(−1)𝑘

−1
−1

U
𝜖

𝑛∼𝑛∼𝑛
𝑛

2

𝜖 +
−

3
1

1
(−1)𝑛

1
1

I
𝜖

𝑛×𝑟
I
𝛿

𝑚

𝜖
𝑛

2 𝑡

𝛿
𝑚

2 2𝑟−𝑡

𝜖
𝑛

2 2𝑟

𝛿

𝑚

2

𝑛

2 −𝑡
𝛿
𝑚

2 2𝑟 𝑡

𝜖
𝜖
𝑛

2

𝛿
𝑚

2 2𝑟

𝜖
𝑛

2

𝛿
𝑚

2 2𝑟

𝜖
𝑛

2 2𝑟

𝛿

𝑚

2

+ +
+ −
− −

𝑛𝑚

𝑛𝑚̃

𝑛̃𝑚̃

1
1
1

1
−1
1

I
𝜖

𝑛
∼×
𝑟
I𝑛

𝜂 𝜖𝜂
𝑛

2 𝑟

+
−

𝑛

𝑛̃

(−1)𝑟
(−1)𝑟

−1
1

Notation: Clusters of size 5 and 6 have arbitrary integer depths, 𝜂 ∈ {±1} and 𝑡 ∈ ℤ are arbitrary. 𝑁 = 𝑛𝑚 + 𝑛𝑘 + 𝑘𝑚,𝑀 =

gcd(𝑛,𝑚, 𝑘), 𝑥̃ = 2 if 2|𝑥 and 𝑥̃ = 1 if 2 ∤ 𝑥.
Wewill mostly use this table for balanced curves, that is, the first column of the cluster pictures.

Note that type I𝜖,𝛿𝑛,𝑚 is the same as I𝛿,𝜖𝑚,𝑛. Similarly, I𝜖𝑛 ×𝑟 I
𝛿
𝑚 is the same as I𝛿𝑚 ×𝑟 I

𝜖
𝑛, and U

𝜖
𝑛,𝑚,𝑘

is
unchanged by any permutation of the indices.
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14 DOKCHITSER and MAISTRET

Remark 2.18. We will use a little more information about the types I𝑛,𝑚 and I𝑛 × I𝑚. Suppose
that 𝐶 has type I𝜖,𝛿𝑛,𝑚 or I𝜖𝑛 × I

𝛿
𝑚. Write 𝐶+

𝑘
and 𝐶−

𝑘
for the cyclic group 𝐶𝑘 on which Frobenius

acts trivially and by multiplication by −1, respectively. By [15, Thm. 1.15 and Lemma 2.22], the
Néron component group of Jac 𝐶∕𝐾𝑛𝑟 is Φ𝐶 = 𝐶𝜖𝑛 × 𝐶

𝛿
𝑚. Note also that if 𝐶 has type 𝐼+,−𝑛,𝑚 and

Φ𝐶 = 𝐶
+
𝑘
× 𝐶−

𝑙
, for some even 𝑘 and 𝑙, then necessarily 𝑛 = 𝑘 and 𝑚 = 𝑙. Indeed, if 𝐶+

𝑘
× 𝐶−

𝑙
≃

𝐶+
𝑘′
× 𝐶−

𝑙′
, then 𝑘 = 𝑘′ and 𝑙 = 𝑙′, since the groups have 2𝑘 = 2𝑘′ Frobenius-invariant elements,

and 2𝑙 = 2𝑙′ elements on which Frobenius acts by −1.

3 PARITY OF 𝟐∞-SELMER RANK OF JACOBIANSWITH A
𝟐g -ISOGENY

In this section, we discuss how to control the parity of the 2∞-Selmer ranks for Jacobians of curves
that admit a suitable isogeny.

Definition 3.1. Let 𝐶 and 𝐶′ be curves over a local field 𝐾 whose Jacobians admit an isogeny
𝜙 ∶ Jac 𝐶 → Jac𝐶′ with 𝜙𝜙𝑡 = [2] (equivalently, an isogeny whose kernel is a maximal isotropic
subspace of Jac 𝐶[2] with respect to the Weil pairing). We write

𝜆𝐶∕𝐾,𝜙 = 𝜇𝐶∕𝐾𝜇𝐶′∕𝐾 ⋅ (−1)dim𝔽2
ker 𝜙|𝐾−dim𝔽2

coker 𝜙|𝐾 ,
where ker 𝜙|𝐾 = Jac𝐶(𝐾)[𝜙] and coker 𝜙|𝐾 = Jac𝐶′(𝐾)∕𝜙(Jac 𝐶(𝐾)).
For a C2D4 curve 𝐶∕𝐾, this is 𝜆𝐶∕𝐾 of Definition 1.7.

3.1 Parity theorem

Theorem 3.2. Let 𝐶 and 𝐶′ be curves over a number field 𝐾 whose Jacobians admit an isogeny
𝜙 ∶ Jac 𝐶 → Jac𝐶′ with 𝜙𝜙𝑡 = [2]. Then

(−1)rk2 Jac 𝐶∕𝐾 =
∏
𝑣

𝜆𝐶∕𝐾𝑣,𝜙,

the product taken over all places of 𝐾.

Proof. Write 𝐴 = Jac𝐶 and 𝐴′ = Jac 𝐶′. As in the proof of Thm. 4.3 in [12]

2rk2 𝐴∕𝐾 = □ ⋅
|Xnd

𝐴∕𝐾
[2∞]|

|Xnd
𝐴′∕𝐾

[2∞]| ⋅∏𝑣
| coker 𝜙|𝐾𝑣 || ker 𝜙|𝐾𝑣 | ,

whereXnd
𝐴∕𝐾

denotesX𝐴∕𝐾 modulo its divisible part. By a result of Poonen and Stoll ([27, Thm. 8,
Cor. 12]), the order of |Xnd

𝐴∕𝐾
| is a square if and only if 𝐶 is deficient at an even number of places,

and is twice a square otherwise (and similarly for 𝐴′). Hence,

2rk2 𝐴∕𝐾 = □ ⋅
∏
𝑣

𝜇𝑣
𝜇′𝑣

⋅
| coker 𝜙|𝐾𝑣 || ker 𝜙|𝐾𝑣 | ,
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 15

where 𝜇𝑣 =2 if 𝐶∕𝐾𝑣 is deficient and 𝜇𝑣 =1 otherwise; and similarly for 𝜇′𝑣. By definition of 𝜆, the
2-adic valuation of the term at 𝑣 is even if and only if 𝜆𝐶∕𝐾𝑣,𝜙 = 1. The result follows. □

3.2 Kernel/cokernel on local points

Notation 3.3. For a curve 𝐶∕ℝ with Jacobian 𝐴, we write 𝑛𝐶∕ℝ for the number of connected
components of𝐶(ℝ).Wewrite𝐴(ℝ)◦ for the connected component of the identity of𝐴 and𝑛𝐴∕ℝ =|𝐴(ℝ)∕𝐴(ℝ)◦| for the number of connected components.
Recall from §2 that when 𝐾∕ℚ𝑝 is a finite extension, 𝑐𝐴∕𝐾 and 𝜔◦

𝐴∕𝐾
denote the Tamagawa

number and Néron exterior form for 𝐴∕𝐾.

Lemma3.4. Let𝐶 and𝐶′ be curves of genus g over a local field𝐾 of characteristic 0,whose Jacobians
𝐴 and 𝐴′ admit an isogeny 𝜙 ∶ 𝐴 → 𝐴′ with 𝜙𝜙𝑡 = [2]. Then

| ker 𝜙|𝐾|| coker 𝜙|𝐾| =
⎧⎪⎪⎨⎪⎪⎩

2g if 𝐾 ≃ ℂ,||𝐴(𝐾)◦[𝜙]|| ⋅ 𝑛𝐴∕𝐾∕𝑛𝐴′∕𝐾 if 𝐾 ≃ ℝ,
𝑐𝐴∕𝐾∕𝑐𝐴′∕𝐾 if 𝐾∕ℚ𝑝 finite, 𝑝 odd,

𝑐𝐴∕𝐾∕𝑐𝐴′∕𝐾 ⋅
|||||
𝜙∗𝜔◦

𝐴′∕𝐾

𝜔◦
𝐴∕𝐾

|||||𝐾 if 𝐾∕ℚ2 finite.

Proof. The result if clear for 𝐾 ≃ ℂ. For 𝐾 ≃ ℝ, consider the commutative diagram

0 xxxxxx→ 𝐴(𝐾)◦ xxxxxx→ 𝐴(𝐾) xxxxxx→ 𝐴(𝐾)∕𝐴(𝐾)◦ xxxxxx→ 0
⏐⏐⏐⏐⏐⏐⏐
↓
𝜙

⏐⏐⏐⏐⏐⏐⏐
↓
𝜙

⏐⏐⏐⏐⏐⏐⏐
↓
𝜙

0 xxxxxx→ 𝐴′(𝐾)◦ xxxxxx→ 𝐴′(𝐾) xxxxxx→ 𝐴′(𝐾)∕𝐴′(𝐾)◦ xxxxxx→ 0

The kernels and cokernels of the vertical maps are finite, so, by the snake lemma,

| ker 𝜙|𝐾|| coker 𝜙|𝐾| = | ker 𝜙|𝐴(𝐾)◦ ||𝐴′(𝐾)◦∕𝜙(𝐴(𝐾)◦)| ⋅ | ker 𝜙|𝐴(𝐾)∕𝐴(𝐾)◦ ||(𝐴′(𝐾)∕𝐴′(𝐾)◦)∕𝜙(𝐴(𝐾)∕𝐴(𝐾)◦)| .
The map on the connected component of the identity is surjective (as 𝐾 ≃ ℝ), and the groups of
connected components are both finite, so this simplifies to the expression claimed.
The case of non-archimedean 𝐾 is similar, with 𝐴(𝐾)◦ replaced by 𝐴1(𝐾), the kernel of the

reduction on the Néron model of 𝐴, see, for example, Lemma 3.8 in [29]. □

Lemma 3.5 [18, Prop. 3.2.2 and 3.3]. For a smooth projective curve 𝐶 over ℝ

𝑛Jac𝐶∕ℝ =

⎧⎪⎨⎪⎩
2𝑛𝐶∕ℝ−1 if 𝑛𝐶∕ℝ > 0,
1 if 𝑛𝐶∕ℝ = 0 and 𝐶 has even genus,
2 if 𝑛𝐶∕ℝ = 0 and 𝐶 has odd genus.

Remark 3.6. For Jacobians of genus 2 curves over ℚ, one can compute Tamagawa numbers using
van Bommel’s algorithm [32, §4.4] and | ker 𝜙|ℝ|| coker 𝜙|ℝ| is obtained using Lemmata 3.4 and 3.5. Let 𝜔◦
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16 DOKCHITSER and MAISTRET

and 𝜔̂◦ be Néron exterior forms at 𝑝=2 for 𝐽=Jac𝐶 and 𝐽=Jac 𝐶. The absolute value |𝜙∗𝜔̂◦
𝜔◦

|2
can be computed as follows. Let 𝜔 = 𝑑𝑥

𝑦
∧ 𝑥𝑑𝑥

𝑦
be an exterior form on 𝐽 and similarly for 𝐽. One

has |𝜙∗𝜔̂
𝜔

| = Ω𝐽,𝜔̂
Ω𝐽,𝜔

| ker 𝜙|ℝ|| coker 𝜙|ℝ| (as in [14, Lemma 7.4]), where the periods Ω can be computed using

Magma [2] and | ker || coker | using Lemma 3.4. Using Magma, we compute {𝜔1, 𝜔2} a basis of integral
differentials at 𝑝 = 2. Then a minimal Néron exterior form for 𝐽 is given by 𝜔◦ = 𝜔1 ∧ 𝜔2 ([32,
§3.2]), which lets us determine 𝜔

𝜔◦
, and similarly for 𝐽. Now use

𝜙∗𝜔̂◦

𝜔◦ =
𝜔

𝜔◦ ⋅
𝜙∗𝜔̂

𝜔
⋅
𝜙∗𝜔̂◦

𝜙∗𝜔̂
=
𝜔

𝜔◦ ⋅
𝜙∗𝜔̂

𝜔
⋅
𝜔̂◦

𝜔̂
.

3.3 Odd degree base change

Finally, we record a basic observation regarding the behaviour of Conjecture 1.14 in odd degree
unramified extensions.

Lemma 3.7. Let 𝐾 be a finite extension of ℚ𝑝 and 𝐹∕𝐾 an unramified extension of odd degree. Let
𝐶∕𝐾 be a C2D4 curve with  , Δ ≠ 0 and let 𝐴 = Jac𝐶. Then

(1) 𝑐𝐴∕𝐹 = 𝑛2𝑐𝐴∕𝐾 for some 𝑛 ∈ ℤ, with 𝑛=1 if [𝐹 ∶𝐾] is a sufficiently large prime;
(2) 𝑤𝐴∕𝐹 = 𝑤𝐴∕𝐾 ;
(3) 𝐶∕𝐾 is deficient if and only if 𝐶∕𝐹 is deficient;
(4) 𝐸𝐶∕𝐹 = 𝐸𝐶∕𝐾 ;
(5) Conjecture 1.14 holds for 𝐶∕𝐾 if and only if it holds for 𝐶∕𝐹.

Proof.

(1) LetΦ be the group of connected components of the special fibre of the Néron model of𝐴∕𝐾
with itsGal(𝐾𝑛𝑟∕𝐾)-action, so that 𝑐𝐴∕𝐾 = |ΦFrob𝐾 | and 𝑐𝐴∕𝐹 = |ΦFrob𝐹 |. The groupΦ carries
a perfect symmetric Frob𝐾-invariant pairingΦ × Φ → ℚ∕ℤ (see [5, 19, Thm. 2.3]). Since Frob𝐹
is an odd power of Frob𝐾 , this forcesΦFrob𝐾 to have a square index inΦFrob𝐹 (see, e.g. [4, Thm.
2.4.1(ii)] with 𝑓 = [𝐹 ∶ 𝐾] and 𝐶𝑘 the finite quotient ofGal(𝐾𝑛𝑟∕𝐾) through which the action
on Φ factors).

(2) See, for example, [7, Prop. 4.3]. (3) Clear from the definition (see Definition 2.3).
(4) Hilbert symbols are clearly unchanged, and hence, so is 𝐸𝐶∕𝐾 .
(5) By (1, 2, 3, 4), the root number, deficiency, 𝐸, and the parity of the 2-adic valuation of the Tam-

agawa numbers are unchanged. Finally, minimal exterior forms are unchanged in unramified

extensions, so for 2-adic primes, |𝜙∗𝜔◦𝐴′∕𝐾
𝜔◦
𝐴∕𝐾

|𝐹 = |𝜙∗𝜔◦𝐴′∕𝐾
𝜔◦
𝐴∕𝐾

|[𝐹∶𝐾]
𝐾

is also unchanged up to squares.

The result thus follows from Lemma 3.4. □

4 MAIN LOCAL THEOREM: BASE CASES

We now turn to the proof of Conjecture 1.14, which relates local root numbers to the local
term 𝜆𝐶∕𝐾 . As outlined in §1.4, we begin by proving a number of cases through explicit
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 17

computation, summarised in Theorem 4.1. The proof will occupy §4–§10. In §11–12, we will
deduce the conjecture for the general class of C2D4 curves in Theorem 1.16 by deforming them
to number fields and using a global-to-local trick. Recall from §2.4, 2.5 that we draw pictures to
indicate the distribution of the roots of 𝑓(𝑥) in ℝ or ℚ𝑝.

Theorem 4.1. Let 𝐶∕𝐾 be a C2D4 curve over a local field of characteristic 0, with  , Δ, 𝜂1≠0.
Conjecture 1.14 holds for 𝐶∕𝐾 if either

(1) 𝐾 ≅ ℂ, or
(2) 𝐾 ≅ ℝ, and the picture of 𝐶 is either

∙ or or or or , or
∙ and 𝛼1=𝛽1, or
∙ and 𝛼1=𝛽1, 𝛼3=𝛽3, or
∙ 𝛼𝑖 =𝛽𝑖 for 𝑖=1, 2, 3, or

(3) 𝐾∕ℚ2 is a finite extension and either
∙ 𝐶∈𝐶2𝐷4 (see Notation 10.4), or
∙ 𝐶∕𝐾 has good ordinary reduction, cluster picture 0with depth of each twin equal

to 𝑣(4), 𝑓(𝑥) ∈ 𝐾[𝑥] with roots in 𝐾𝑛𝑟, and
𝛿2+𝛿3
16

,
𝛿2𝜂2+𝛿3𝜂3

32
,
𝛿̂2𝜂3+𝛿̂3𝜂2

8
∈ ×

𝐾
, or

(4) 𝐾∕ℚ𝑝 is a finite extension for odd 𝑝 and 𝐶 is semistable with cluster picture either
∙ , ,

0
,

0
, 0, or

∙ 𝑡 𝑡 0 with 𝑣(𝓁1) = 𝑡, or
∙

0
or

0
with 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0, or

∙
0, with 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 0, or

∙ 𝑛 𝑚 0
with 𝑣(𝓁1) = min(𝑛,𝑚), 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0.

Proof.

(1,2) This follows from Theorems 5.1 and 5.2.
(3) This follows from Theorems 10.5 and 10.3.
(4) A substitution 𝑥 ↦ 𝜋𝑎

𝐾
𝑥, 𝑦 ↦ 𝜋3𝑎

𝐾
𝑦 scales the roots by 𝜋𝑎

𝐾
without changing the cluster pic-

ture or the leading term 𝑐. This does not change any of the Hilbert symbols in 𝐸𝐶∕𝐾 (𝛿𝑖, 𝜂𝑖 …
all have even degree) nor 𝜆𝐶∕𝐾 . Thus, we may assume that the depth of the maximal clus-
ter is 0. We may also assume that the C2D4 curve is centred, as a shift in the 𝑥-coordinate
does not change any of the invariants.
Theorem 7.1 exhausts all possible Frobenius actions on these cluster pictures (after

possibly recolouring ↔ ). By the semistability criterion (Theorem 2.12), 𝑑𝔰 ∈ ℤ for
every cluster 𝔰 of size ⩾ 3 and 𝑑𝔱 ∈

1

2
ℤ for all twins 𝔱. Moreover, for the cluster pictures

and , the depth of the twin lies in ℤ because 𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥) ∈
𝐾𝑛𝑟[𝑥]. The result follows from Theorem 7.1. □

5 ARCHIMEDEAN PLACES

Theorem 5.1. Conjecture 1.14 holds for all C2D4 curves over ℂ with  , Δ ≠ 0.
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18 DOKCHITSER and MAISTRET

Proof. Here 𝑤𝐶∕ℂ = 1 as 𝐶 has genus 2, and clearly, 𝐸𝐶∕𝐾 =1 and 𝜆𝐶∕ℂ=(−1)2=1. □

For curves over ℝ, we shall, for the moment, only prove Conjecture 1.14 in a restricted number
of cases. The direct proof below can be extended to all cases (cf. [23]), but we will obtain the
remaining ones for free using our methods in §11–12 (see Theorem 12.5).

Theorem 5.2. Let 𝐶∕ℝ be a C2D4 curve with  , Δ, 𝜂1 ≠ 0, with Richelot dual curve 𝐶, Richelot
isogeny 𝜙 and 𝐽 and 𝐽 the Jacobians of 𝐶 and 𝐶. The table below gives the values of 𝑛𝐽∕ℝ, 𝑛𝐽∕ℝ,|𝐽(ℝ)◦[𝜙]|, 𝜇𝐶∕ℝ, 𝜇𝐶∕ℝ, 𝜆𝐶∕ℝ, 𝑤𝐶∕ℝ and 𝐸𝐶∕ℝ, depending on the roots associated to 𝐶 and the sign
of 𝑐. Conjecture 1.14 holds for all curves described in the table.

Roots 𝑛𝐽∕ℝ 𝑛
𝐽∕ℝ |𝐽 (ℝ)◦[𝜙]| 𝜇𝐶∕ℝ 𝜇

𝐶∕ℝ 𝜆𝐶∕ℝ 𝑤𝐶∕ℝ 𝐸𝐶∕ℝ

1 𝛼1 =𝛽1, 𝛼2 =𝛽2, 𝛼3 =𝛽3, 𝑐 > 0 1 4 4 1 1 1 1 1
2 𝛼1 =𝛽1, 𝛼2 =𝛽2, 𝛼3 =𝛽3, 𝑐 < 0 1 4 4 −1 1 −1 1 −1
3 𝛼1 =𝛽1, 𝛼3 =𝛽3 1 4 4 1 1 1 1 1
4 𝛼1 =𝛽1 2 4 4 1 1 −1 1 −1
5 4 4 4 1 1 1 1 1
6 4 4 4 1 1 1 1 1
7 4 4 4 1 1 1 1 1
8 4 2 2 1 1 1 1 1
9 4 4 2 1 1 −1 1 −1

Proof. Write 𝐶 as 𝑦2 = 𝑐𝑟(𝑥)𝑠(𝑥)𝑡(𝑥) as in Definition 1.11. Note that in cases (3)–(9), the picture
indicates that 𝑐 < 0. We find that the number of components of 𝐶(ℝ) is 0 in case (2), 1 in cases (1,
3), 2 in case (4) and 3 in cases (5)–(9). This gives the values of 𝑛𝐽∕ℝ (Lemma 3.5) and 𝜇𝐶∕ℝ (a curve
𝐶 of genus 2 is deficient over ℝ if and only if 𝐶(ℝ) = ∅, see Definition 2.3).
Recall that 𝐶 is also a C2D4 curve with equation 𝑦2 = 𝓁1𝓁2𝓁3

Δ
𝑟(𝑥)𝑠(𝑥)𝑡(𝑥). FromDefinitions 1.12

and 2.1, we see that as 𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥) all have ℝ-coefficients in all the above cases, so do
𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥). In particular, whether 𝛼̂𝑖 , 𝛽𝑖 are real is determined by the sign of the discrimi-
nant of the corresponding quadratic. The discriminants of 𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥) are 4Δ

2

𝓁2
1

𝛿1,
1

𝓁2
2

𝛿2 and
1

𝓁2
3

𝛿3

(Definition 2.1). Explicitly,

(𝛼̂1 − 𝛽1)
2 =

4(𝛼2 − 𝛼3)(𝛼2 − 𝛽3)(𝛽2 − 𝛼3)(𝛽2 − 𝛽3)

(𝛼2 + 𝛽2 − 𝛼3 − 𝛽3)
2

,

with similar expressions for (𝛼̂2 − 𝛽2)2 and (𝛼̂3 − 𝛽3)2, obtained by permuting the indices 1–3.
If𝛼2, 𝛽2, 𝛼3, 𝛽3 ∈ ℝ, the above discriminant is positive if and only if the roots of the two quadrat-

ics are not interlaced (they are ‘interlaced’ if ∙2<∙3<∙2<∙3 or vice versa). If either 𝛼2 = 𝛽2 or
𝛼3 = 𝛽3, the discriminant is always positive, being of the form

𝑧𝑧̄

𝑤2
for𝑤 ∈ ℝ. An identical analysis

applies to (𝛼̂2 − 𝛽2)2 and (𝛼̂3 − 𝛽3)2.
Putting this information together and considering the sign of the leading term,we deduce that 𝐶̂

has three real components in all cases above, except for case (8), when it has two real components.
This gives the values for 𝑛𝐽∕ℝ and 𝜇𝐶∕ℝ as above for 𝐶.
Now consider 𝜙-torsion on the connected component of the identity of the Jacobian,

𝐽(ℝ)◦[𝜙]. The non-trivial 𝜙-torsion points are represented by the divisors [(𝛼𝑖, 0), (𝛽𝑖, 0)], and the
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 19

identity by all pairs of the form [(𝑥, 𝑦), (𝑥, −𝑦)]. If 𝛽𝑖 = 𝛼̄𝑖 , then there is a path on 𝐽(ℝ) of the form
[(𝑤, 𝑧), (𝑤̄, 𝑧̄)] from [(𝛼𝑖, 0), (𝛽𝑖, 0)] to the identity (take a path to any 𝑤 ∈ ℝ). If 𝛼𝑖, 𝛽𝑖 ∈ ℝ and
(𝛼𝑖, 0) and (𝛽𝑖, 0) lie on the same component of 𝐶(ℝ), then moving (𝛽𝑖, 0) to (𝛼𝑖, 0) along 𝐶(ℝ)
gives a path from [(𝛼𝑖, 0), (𝛽𝑖, 0)] to the identity. However, if 𝛼𝑖, 𝛽𝑖 ∈ ℝ and (𝛼𝑖, 0) and (𝛽𝑖, 0) do
not lie on the same component of 𝐶(ℝ), then no such path exist: both points have to remain in
𝐶(ℝ) on the path as the 𝑥-coordinates will never have the same real part and hence will never be
complex conjugate. This fully determines the order of 𝐽(ℝ)◦[𝜙].
The formula for 𝜆𝐶∕𝐾 now follows from Lemma 3.4.
As 𝐶 has genus 2, the Jacobian is 2-dimensional and 𝑤𝐽∕ℝ = (−1)dim 𝐽 = 1. Conjecture 1.14 for

all the cases in the table will thus follow once we justify the formula for 𝐸𝐶∕ℝ.
We finally turn to 𝐸𝐶∕ℝ. This will be done by a case-by-case analysis of Hilbert symbols. For

convenience, we may assume that the curve is centred, that is, 𝛼1 = −𝛽1, as (by definition) this
does not affect any of the Hilbert symbols defining 𝐸𝐶∕ℝ.
Cases 1,2. From their definitions 𝓁2

1
, 𝜂1, 𝛿̂1, 𝛿̂2, 𝛿̂3 > 0 and 𝛿1, 𝛿2, 𝛿3 < 0. Thus, it follows that

𝐸𝐶∕ℝ = −(𝛿2𝜂2 + 𝛿3𝜂3, −𝜂2𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2, −𝜂2𝜂3) ⋅ (𝜂2𝜂3, −1)(𝑐, −1). In this case, 𝜂2, 𝜂3 ∈ ℝ. If
𝜂2𝜂3 < 0, then 𝐸𝐶∕ℝ = (𝑐, −1). If 𝜂2, 𝜂3 > 0, then 𝛿2𝜂2 + 𝛿3𝜂3 < 0 and 𝛿̂2𝜂3 + 𝛿̂3𝜂2 > 0 which
yields 𝐸𝐶∕ℝ = (𝑐, −1). Finally, if 𝜂2, 𝜂3 < 0, then 𝛿2𝜂2 + 𝛿3𝜂3 > 0 and 𝛿̂2𝜂3 + 𝛿̂3𝜂2 < 0 and 𝐸𝐶∕ℝ =
(𝑐, −1). Thus, we always have 𝐸𝐶∕ℝ = sign(𝑐), as claimed.
Case 3. Here 𝓁2

1
, Δ2, 𝜂2, 𝛿2, 𝛿̂1, 𝛿̂2, 𝛿̂3 > 0 and 𝑐, 𝛿1, 𝛿3 < 0. Hence, 𝐸𝐶∕ℝ = (𝛿2𝜂2 + 𝛿3𝜂3, 𝜂2𝜂3)⋅

⋅(𝛿̂2𝜂3 + 𝛿̂3𝜂2, −𝜂2𝜂3). Either 𝜂3 > 0 and 𝛿̂2𝜂3+𝛿̂3𝜂2>0 so that 𝐸𝐶∕ℝ = 1, or 𝜂3 < 0 and
𝛿2𝜂2+𝛿3𝜂3 > 0, so that 𝐸𝐶∕ℝ = 1.
Case 4. Here 𝓁2

1
, Δ2, 𝛿2, 𝛿3, 𝜂1, 𝜂2, 𝜂3, 𝛿̂1, 𝛿̂2, 𝛿̂3 > 0 and 𝑐, 𝛿1 < 0, so that 𝐸𝐶∕ℝ=(𝛿1, 𝑐)=−1.

In the remaining cases 𝑐 < 0 and all roots are real, so 𝛿1, 𝛿2, 𝛿3,𝓁21, Δ
2>0, and 𝐸𝐶∕ℝ =

(𝛿2𝜂2 + 𝛿3𝜂3, −𝜂2𝜂3) ⋅ (𝛿̂2𝜂3 + 𝛿̂3𝜂2, −𝜂2𝜂3𝛿̂2𝛿̂3)(𝜉𝜂2𝜂3, −𝛿̂2𝛿̂3) ⋅ (−𝑐, 𝛿̂2𝛿̂3)(𝜂1, −𝛿̂1)(𝛿̂1, −
𝓁1
Δ
).

Cases 5,6,7. Here 𝜂1, 𝜂2, 𝜂3, 𝜉, 𝛿̂1, 𝛿̂2, 𝛿̂3 > 0, so that 𝐸𝐶∕ℝ = 1.
Case 8. Here 𝜂2, 𝜂3, 𝜉, 𝛿̂2, 𝛿̂3 >0 and 𝛿̂1,𝓁1 <0, so that 𝐸𝐶∕ℝ=(−1,−

𝓁1
Δ
). Noting that Δ =

−𝑐((𝛼1+𝛽2)(𝛼1−𝛽2)(𝛼2−𝛼3) + (𝛽3−𝛽2)((𝛽2−𝛼1)(𝛼3−𝛼2) + (𝛼2+𝛼1)(𝛼3−𝛼1))), it follows that
Δ>0 so that 𝓁1

Δ
<0 and 𝐸𝐶∕ℝ=1.

Case 9. Here 𝜂2, 𝜂3, 𝜉, 𝛿̂1, 𝛿̂2, 𝛿̂3 > 0 and 𝜂1 < 0, so that 𝐸𝐶∕ℝ = −1. □

6 CHANGING THEMODEL BYMÖBIUS TRANSFORMATIONS

For the proof of our main results on Conjecture 1.14, it will often be useful to be able to change the
model of a C2D4 curve. This does not change the classical arithmetic invariants, but it does affect
the terms Δ, 𝜉, … that enter 𝐸𝐶∕𝐾 and hence Conjecture 1.14. In this section, we discuss possible
changes of model and their effect on these terms.

6.1 𝐆𝐋𝟐 action on models

Definition 6.1. Let 𝐶 be a C2D4 curve over a field 𝐾 of characteristic 0,

𝐶 ∶ 𝑦2 = 𝑐

3∏
𝑖=1

(𝑥 − 𝛼𝑖)(𝑥 − 𝛽𝑖),
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20 DOKCHITSER and MAISTRET

and𝑚=( 𝐚 𝐛𝐜 𝐝 )∈GL2(𝐾) such that the associated Möbius map𝑚(𝑧)=
𝐚𝑧+𝐛

𝐜𝑧+𝐝
has𝑚(𝛼𝑖),𝑚(𝛽𝑖)≠∞.

We define the model 𝐶𝑚 of 𝐶 by

𝐶𝑚 ∶ 𝑦
2
𝑚 = 𝑐𝑚

3∏
𝑖=1

(𝑥𝑚 − 𝛼
′
𝑖 )(𝑥𝑚 − 𝛽

′
𝑖 ),

with 𝛼′
𝑖
=𝑚(𝛼𝑖), 𝛽′𝑖 =𝑚(𝛽𝑖), 𝑐𝑚=𝑐

∏3
𝑖=1(𝐜𝛼𝑖+𝐝)(𝐜𝛽𝑖+𝐝), via the transformation 𝑥𝑚 =

𝐚𝑥+𝐛

𝐜𝑥+𝐝
and

𝑦𝑚 = 𝑦 ⋅
(𝐚𝐝−𝐛𝐜)3

(𝐜𝑥+𝐝)3
. One can check that this construction satisfies (𝐶𝑚)𝑚′ = 𝐶𝑚′𝑚.

Remark 6.2 (See also [22, §2]). If a genus 2 curve over 𝐾 admits two hyperelliptic models
𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥) and 𝐶′ ∶ 𝑦2

2
= 𝑐2𝑓2(𝑥2), then the 𝑥-coordinates are always related by a Möbius

map 𝑥2 = 𝑚(𝑥) =
𝐚𝑥+𝐛

𝐜𝑥+𝐝
for some 𝐚, 𝐛, 𝐜, 𝐝 ∈ 𝐾 (because these are the only transformations on ℙ1

that is the quotient of the curve by the hyperelliptic involution). If both equations have degree 6,
the model 𝐶′ then agrees with 𝐶𝑚 up to scaling the 𝑦-coordinate by a suitable constant, 𝑦2 = 𝜆𝑦𝑚
for some 𝜆 ∈ 𝐾.

It will be particularly convenient to have a one-parameter family of models.

Definition 6.3. Let 𝐾 be a field of characteristic 0 and 𝛼2
1
∈ 𝐾. For 𝑡 ∈ 𝐾 ⧵ { 1

𝛼1
, − 1

𝛼1
}, define

𝑀𝑡 = (
1 𝑡𝛼2

1
𝑡 1 )with the correspondingMöbiusmap over𝐾 given by𝑀𝑡(𝑧) =

𝑧+𝑡𝛼2
1

𝑡𝑧+1
.Write also𝑀∞ =

( 0 𝛼
2
1

1 0 ) and𝑀∞(𝑧) =
𝛼2
1

𝑧
.

We will use the shorthand notation 𝐶𝑡 =𝐶𝑚 for centred curves 𝐶∶𝑦2= 𝑐
∏3
𝑖=1(𝑥 − 𝛼𝑖)(𝑥 − 𝛽𝑖).

Note that𝑀𝑡(𝛼1) = 𝛼1 and𝑀𝑡(−𝛼1) = −𝛼1, so that 𝐶𝑡 is also centred.

Lemma 6.4. Let𝑀 be aMöbiusmap defined over a field𝐾. Suppose that 𝛼2
1
∈ 𝐾 and that𝑀(𝛼1) =

−𝑀(−𝛼1). Then𝑀 = 𝑟◦𝑀𝑡 for some 𝑡 ∈ 𝐾 ∪ {∞}, where 𝑟(𝑧) =
𝑀(𝛼1)

𝛼1
𝑧.

Proof. First note that 𝑀(𝛼1)
𝛼1

∈ 𝐾. Hence, 𝑟−1◦𝑀 is defined over𝐾 and fixes 𝛼1 and−𝛼1. Nowwrite

𝑟−1◦𝑀(𝑧) = 𝐚𝑧+𝐛

𝐜𝑧+𝐝
. Since 𝑟−1◦𝑀(𝛼1) = 𝛼1 and 𝑟−1◦𝑀(−𝛼1) = −𝛼1, we have 𝐚 = 𝐝 and 𝐛 = 𝐜𝛼21 . If

𝐚 ≠ 0, the map is of the required form. If 𝐚 = 0, then 𝑟−1◦𝑀(𝑧) =
𝛼2
1

𝑧
, so𝑀(𝑧) = 𝑟◦𝑀∞(𝑧). □

6.2 Rebalancing

Theorem 6.5. Let 𝐾 be a finite extension of ℚ𝑝 for an odd prime 𝑝, with residue field 𝑘 of size|𝑘| > 5, and 𝐶∕𝐾 a semistable C2D4 curve. There is𝑚 ∈ GL2(𝐾) such that 𝐶𝑚 is balanced.

Proof. Theorem 2.10 and Remark 6.2. □

Theorem 6.6. Let 𝐾 be a finite extension of ℚ𝑝 for an odd prime 𝑝, with residue field 𝑘 of size|𝑘| ⩾ 23. Let 𝐶∕𝐾 be a centred balanced semistable C2D4 curve. Then there is a 𝑡0 ∈ 𝐾 such that
for all 𝑡 ∈ 𝐾 with 𝑣(𝑡 − 𝑡0)>0, the cluster picture of 𝐶𝑡 with signs and Frobenius action on proper
clusters, its colouring, 𝑣(𝑐) and 𝑣(Δ) are the same as that of 𝐶 and
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 21

∙ if the cluster picture of 𝐶𝑡 is , , , or
then 𝐶𝑡 has 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0;

∙ if the cluster picture of 𝐶𝑡 is or then 𝐶𝑡 has 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) =
0;

∙ if the cluster picture of 𝐶𝑡 is 𝑛 𝑚 then 𝐶𝑡 has 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0 and
𝑣(𝓁1) = min(𝑛,𝑚);

∙ if the cluster picture of 𝐶𝑡 is 𝑗 𝑗 then 𝐶𝑡 has 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑗.

Proof. Since 𝐶 is centred and balanced, all the roots are necessarily integral (Lemma 2.11).
One readily checks that

𝑀𝑡(𝑟1) − 𝑀𝑡(𝑟2) = (𝑟1 − 𝑟2) ⋅
(1 − 𝑡2𝛼2

1
)

(𝑡𝑟1 + 1)(𝑡𝑟2 + 1)
.

In particular, so long as 𝑡 ≢ −1∕𝑟1, −1∕𝑟2, 1∕𝛼1, −1∕𝛼1 in 𝑘, one necessarily has 𝑣(𝑟1 − 𝑟2) =
𝑣(𝑀𝑡(𝑟1) − 𝑀𝑡(𝑟2)). Thus, if 𝑡 ≢ −1∕𝑟 in 𝑘 for any root 𝑟, then 𝐶𝑡 has the same cluster picture
as 𝐶, with the same colouring. The Galois action on proper clusters and the signs of clusters is the
same by Lemma 6.7 below. Moreover, the same condition on 𝑡 ensures that the valuation of the
leading term 𝑐 and of Δ∕𝑐 remain unchanged (cf. Definition 6.1, Lemma 6.8(i) below).
Recall that (for 𝐶) 𝓁3 = 𝛼2 + 𝛽2. Now

𝑀𝑡(𝛼2) + 𝑀𝑡(𝛽2) =
𝑡2𝛼2

1
(𝛼2 + 𝛽2) + 2𝑡(𝛼

2
1
+ 𝛼2𝛽2) + (𝛼2 + 𝛽2)

(𝑡𝛼2 + 1)(𝑡𝛽2 + 1)
.

Observe that the numerator is the zero polynomial in 𝑘(𝑡) if and only if 𝛼2 ≡ −𝛽2 and 𝛼22 ≡ 𝛼
2
1
in

𝑘. This is equivalent to 𝛼2 ≡ ±𝛼1 and 𝛽2 ≡ ∓𝛼1, which would mean that there is a cluster of depth
> 0 containing𝛼2 and±𝛼1 and one containing 𝛽2 and∓𝛼1. This is not the case for the listed cluster
pictures, except for 𝑗 𝑗 , so the numerator is not the zero polynomial in 𝑘(𝑡) for these. It
follows that, so long as 𝑡 avoids the roots of the polynomial in 𝑘 and the residues of−1∕𝛼2, −1∕𝛽2,
the expression𝑀𝑡(𝛼2) + 𝑀𝑡(𝛽2) will have valuation 0 in 𝐾̄. Repeating a similar argument for 𝓁2
shows that 𝐶𝑡 has 𝑣(𝓁2) = 𝑣(𝓁3) = 0 so long as 𝑡 avoids a specific list of residue classes of 𝑘. For
the exceptional cluster picture 𝑗 𝑗 , the coefficients of the numerator all have valuation
⩾ 𝑗, and one similarly checks that at least one has valuation exactly 𝑗, so that a suitable choice of
𝑡 makes 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑗.
The arguments for 𝓁1 and 𝜂2, 𝜂3 are similar. Recall that (for 𝐶), 𝓁1 = 𝛼2 + 𝛽2 − 𝛼3 − 𝛽3. Writ-

ing 𝐚 = 𝛼2+𝛽2−𝛼3−𝛽3, 𝐛 = 𝛼2𝛽2−𝛼3𝛽3 and 𝐜 = 𝛼2𝛽2𝛼3−𝛼2𝛼3𝛽3+𝛼2𝛽2𝛽3−𝛼3𝛽2𝛽3, one checks
that

𝓁1(𝐶𝑡) =
𝐚 + 2𝐛𝑡 + (−𝛼2

1
𝐚+𝐜)𝑡2 − 2𝛼2

1
𝐛𝑡3 − 𝛼2

1
𝐜𝑡4

(𝑡𝛼2+1)(𝑡𝛽2+1)(𝑡𝛼3+1)(𝑡𝛽3+1)
,

and that if the numerator reduces to the zero polynomial in 𝑘(𝑡), then {𝛼̄2, 𝛽2} = {𝛼̄3, 𝛽3}. This
is not the case in the listed cluster pictures, except for 𝑛 𝑚 and 𝑗 𝑗 , and
picking 𝑡 that avoids the residue classes that make the numerator or denominator 0 in 𝑘 makes
𝑣(𝓁1(𝐶𝑡)) = 0. For the two exceptional cluster pictures, each coefficient has valuation⩾ min(𝑛,𝑚)
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22 DOKCHITSER and MAISTRET

(respectively, ⩾ 𝑗), and one easily checks that either 𝐚 or 𝐛 must have precisely this valuation.
Picking 𝑡 similarly gives 𝑣(𝓁1(𝐶𝑡)) = min(𝑛,𝑚) (respectively, = 𝑗).
For 𝜂2, one finds that

𝜂2(𝐶𝑡) =
(𝛼2
2
+𝛽2

2
−2𝛼2

1
) + 2𝑡𝐛 + 2𝑡2𝐜 − 2𝑡3𝛼2

1
𝐛 + 𝑡4𝛼2

1
(𝛼2
1
𝛼2
2
+𝛼2

1
𝛽2
2
−2𝛼2

2
𝛽2
2
)

(𝑡𝛼2 + 1)
2(𝑡𝛽2 + 1)

2
,

where 𝐛 = (𝛼2𝛽2−𝛼21)(𝛼2+𝛽2) and 𝐜 = (𝛼
2
1
−𝛼2

2
)(𝛼2

1
−𝛽2

2
). Here the numerator reduces to zero in

𝑘(𝑡) only if 𝛼2
1
≡ 𝛼2

2
≡ 𝛽2

2
in 𝑘, equivalently only if 𝛼2 ≡ ±𝛼1 and 𝛽2 ≡ ±𝛼1 (and similarly for 𝜂3).

This only happens for and of the listed cluster pictures, which make
no claim for 𝜂2, 𝜂3. Thus, 𝐶𝑡 will have 𝑣(𝜂2) = 𝑣(𝜂3) = 0, so long as 𝑡 avoids the residue classes
that make either the numerators or denominators of 𝜂2(𝐶𝑡), 𝜂3(𝐶𝑡) reduce to 0 in 𝑘.
The total number of residue classes 𝑡 has to avoid is at most 6 (of the form −1∕𝑟 for a root 𝑟,

that account for all the denominators) plus 2 + 2 (for 𝓁2,𝓁3) plus 4 (for 𝓁1) plus 4 + 4 (for 𝜂2, 𝜂3),
that is, 22. □

Lemma 6.7. Let𝐾 be a finite extension ofℚ𝑝 for an odd prime 𝑝 and𝑚=(
𝐚 𝐛
𝐜 𝐝 )∈GL2(𝐾). Suppose

that 𝐶 and 𝐶𝑚 are semistable, balanced C2D4 curves over 𝐾, and that 𝑟 ↦ 𝑚(𝑟) induces a bijection
between the sets of twins and preserves their relative depths. Then 𝑟 ↦ 𝑚(𝑟) also commutes with the
Galois action on twins and preserves the signs of clusters of even size (after possibly suitably choosing
signs of 𝜃𝑚(𝔰) for twins 𝔰 of 𝐶).

Proof. Since 𝐚, 𝐛, 𝐜, 𝐝 ∈ 𝐾, the Galois action on the roots for 𝐶 is the same as on the roots on 𝐶𝑚,
and so, the map respects the Galois action on twins. It remains to check that it respects signs.
Suppose that 𝐶 has exactly one twin, 𝔰1. As the two curves are isomorphic, Theorem 2.17 tells

us that the sign must be the same for 𝔰1 and𝑚(𝔰1) (see types I𝜖𝑛 and 1 × I
𝜖
𝑛).

Suppose that 𝐶 has two twins, 𝔰1 and 𝔰2. If these are swapped by Frobenius, then choosing the
signs of 𝜃𝑚(𝔰𝑖) appropriately guarantees that the sign of 𝔰1 agrees with that of 𝑚(𝔰1); by Theo-
rem 2.17, the signs of 𝔰2 and 𝑚(𝔰2)must then also agree (see types I𝜖𝑛∼𝑛 and I

𝜖
𝑛×̃I𝑛). If the twins

are not swapped but have the same sign, then the result again follows by Theorem 2.17 (types I+,+𝑛,𝑚,
I−,−𝑛,𝑚, I+𝑛 × I

+
𝑚, I

−
𝑛 × I

−
𝑚). If the twins are not swapped and have different signs and different rela-

tive depths, the result follows from the structure of the Néron component group by Remark 2.18,
after possibly passing to a quadratic ramified extension (types I+,−𝑛,𝑚, I+𝑛 × I

−
𝑚 with 𝑛 ≠ 𝑚). If the

twins are not swapped by Frobenius and have different signs (say,+ for 𝔰1 and− for 𝔰2) and equal
relative depths (say 𝛿𝔰𝑖 = 𝑛), we unfortunately need to use the explicit description of the minimal
regular models and the reduction map to the special fibre (see [15, Thm. 8.5 and §5.6]): passing
to a quadratic ramified extension if necessary so that 𝑛 is even, the special fibre of the minimal
regular model of 𝐶 is
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 23

and Frobenius fixes the components on the left 2𝑛-gon and acts as a reflection on the right 2𝑛-
gon. The two Weierstrass points of 𝐶 that correspond to the roots in the twin 𝔰1 reduce to the
component in the left 2𝑛-gon that is furthest away from the central chain, corresponding to the
fact that the sign of 𝔰1 is+, and the twoWeierstrass points for 𝔰2 reduce to the corresponding com-
ponent in the right 2𝑛-gon. As this description is model-independent, it follows that the Möbius
transformation must preserve signs of the twins.
Finally, when 𝐶 and 𝐶𝑚 have three twins each, the only signs are those of the full sets of roots.

These agree by Theorem 2.17 (types U𝜖∗). □

6.3 Change of invariants

Lemma 6.8. Let 𝐶 be a C2D4 curve over a field 𝐾 of characteristic 0.

(i) For 𝑡 ∈ 𝐾 ⧵ { 1
𝛼1
, − 1

𝛼1
},

Δ(𝐶𝑡)∕𝑐(𝐶𝑡) =
(1 + 𝛼1𝑡)

2(1 − 𝛼1𝑡)
2

(1 + 𝛼2𝑡)(1 + 𝛽2𝑡)(1 + 𝛼3𝑡)(1 + 𝛽3𝑡)
⋅ Δ(𝐶)∕𝑐(𝐶).

(ii) For𝑚(𝑧) = 1∕𝑧,

Δ(𝐶𝑚)∕𝑐(𝐶𝑚) =
1

𝛼2
1
𝛼2𝛽2𝛼3𝛽3

⋅ Δ(𝐶)∕𝑐(𝐶).

(ii) For𝑚(𝑧) = 𝜆𝑧,

Δ(𝐶𝑚)∕𝑐(𝐶𝑚) = 𝜆
3 ⋅ Δ(𝐶)∕𝑐(𝐶).

Proof. Direct computation. □

Lemma 6.9. Let𝐾∕ℚ𝑝 be a finite extension with 𝑝 an odd prime, and let𝐶∕𝐾 be a C2D4 curve with
cluster picture 𝑛 0

. Then

𝑣

(
Δ(𝐶)

𝑐(𝐶)

)
= 2𝑛 + 𝑣

(
Δ(𝐶𝑚)

𝑐(𝐶𝑚)

)
,

for any𝑚 ∈ GL2(𝐾) such that 𝐶𝑚∕𝐾 is balanced.

Proof. Enlarging 𝐾 if necessary, we may pick 𝑧 ∈ 𝐾 which has 𝑣(𝑧 − 𝑟) = 𝑛 for the roots inside
the cluster of size 5 of 𝐶 and 𝑣(𝑧 − 𝑟) = 0 for the remaining root. One checks that apply-
ing the following Möbius transformation yields a model 𝐶𝑚 with a balanced cluster picture:
𝑚 ∶ 𝑥 ↦ 𝑥 − 𝑧 ↦ 1

𝑥−𝑧
↦

𝜋𝑛
𝐾

𝑥−𝑧
. By Lemma 6.8, 𝑣(Δ(𝐶𝑚)) − 𝑣(𝑐(𝐶𝑚)) = 𝑣(Δ) − 𝑣(𝑐) − 5𝑛 + 3𝑛.

It remains to show that if 𝐶 and 𝐶𝑚 are both balanced models, then 𝑣(Δ(𝐶)) = 𝑣(Δ(𝐶𝑚)).
As Δ is invariant under shifts of the 𝑥-coordinate, we may assume that both 𝐶 and 𝐶𝑚
are centred; in particular, 𝛼1(𝐶) and 𝛼1(𝐶𝑚) are both units. By Lemma 6.4, the associate
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24 DOKCHITSER and MAISTRET

Möbius transformation is of the form 𝑚 = 𝑟◦𝑀𝑡 for some 𝑡, where 𝑟(𝑧) = 𝜆𝑧 and 𝜆 =
𝛼1(𝐶𝑚)

𝛼1(𝐶)
∈ 𝐾𝑛𝑟. As the roots are integral with distinct images in the residue field for both curves,

we find that 𝑡≢±𝛼−1
1
, 𝛼−1
2
, −𝛽−1

2
, 𝛼−1
3
, −𝛽−1

3
in the residue field. The result now follows from

Lemma 6.8(i). □

Lemma 6.10. For a C2D4 curve 𝐶 over a field 𝐾 of characteristic 0 and𝑚 ∈ GL2(𝐾),

𝛿̂1(𝐶) = 𝛿̂1(𝐶𝑚) ⋅ □.

Proof. As 𝛿̂1 is invariant under shifts of the 𝑥-coordinate, we may assume that both 𝐶 and 𝐶𝑚 are
centred. By Lemma 6.4, the associate Möbius transformation is of the form 𝑚 = 𝑟◦𝑀𝑡 for some
𝑡 ∈ 𝐾 ∪ {∞}, where 𝑟(𝑧) = 𝜆𝑧 and 𝜆 = 𝛼1(𝐶𝑚)

𝛼1(𝐶)
∈ 𝐾. As 𝑐2𝛿̂1 is a homogeneous rational function

of even degree in the roots, 𝛿̂1(𝐶𝑡) = 𝛿̂1(𝐶𝑚) ⋅ □. As 𝛿̂1 = (
𝓁1
2Δ
)2(𝛼̂1 − 𝛽1)

2 (see Definition 2.1)
and 𝓁1∕Δ ∈ 𝐾, it suffices to check that (𝛼̂1(𝐶) − 𝛽1(𝐶))2 = (𝛼̂1(𝐶𝑡) − 𝛽1(𝐶𝑡))2 ⋅ □. Explicit
computation shows that

(𝛼̂1(𝐶𝑡) − 𝛽1(𝐶𝑡))
2

= (𝛼̂1(𝐶) − 𝛽1(𝐶))
2

(−1 + 𝛼2
1
𝑡2)2 ⋅ (𝛼2 − 𝛼3 + 𝛽2 − 𝛽3)

2

(𝓁1(𝐶) + (2𝛼2𝛽2 − 2𝛼3𝛽3)𝑡 + (𝛼2𝛼3𝛽2 − 𝛼2𝛼3𝛽3 + 𝛼2𝛽2𝛽3 − 𝛼3𝛽2𝛽3)𝑡2)2
,

with the natural extension of the formula to 𝑡=∞. □

7 ODD PLACES

Here, we state an analogue of Theorem 5.2 for C2D4 curves over finite extensions of ℚ𝑝 for
odd primes 𝑝. Its proof will occupy §8 and §9. We will remove the constraints on valuations in
Theorem 12.2 and extend it to all semistable curves in Theorem 12.5.

Theorem7.1. Let𝐾∕ℚ𝑝 be a finite extension for an oddprime𝑝 and𝐶∕𝐾 a centred semistableC2D4
curve with 𝓁1,𝓁2,𝓁3, Δ ≠ 0 whose cluster picture with Frobenius action is one of the cases described
in the table below. Let 𝐽 and 𝐽 be the Jacobians of 𝐶 and 𝐶.
Then 𝑐𝐽∕𝐾 , 𝜇𝐶∕𝐾 , 𝑐𝐽∕𝐾 , 𝜇𝐶∕𝐾 , 𝜆𝐶∕𝐾 and𝑤𝐶∕𝐾 are given by the corresponding columns in the table.

If the residue field has size |𝑘| ⩾ 23, then 𝐶 admits a model whose cluster picture with Frobenius
action is given in the 𝐶 column. 𝐸𝐶∕𝐾 is as given in the table provided  , 𝜂1 ≠ 0 and:

∙ 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0 in cases 1𝜖𝑛(𝑎, 𝑏), 1
𝜖
2𝑛
(𝑐, 𝑑) and 1 ×𝑡 I𝜖𝑛(𝑎),

∙ 𝑣(𝓁1)=𝑣(𝓁2)=𝑣(𝓁3)=0 in cases I
𝜖,𝛿
𝑛,𝑚(𝑎), I𝜖𝑛∼𝑛(𝑎),

∙ 𝑣(𝓁1) = 𝑡 in cases 1×𝑡1(𝑏, 𝑐) and 1×̃𝑡1(𝑏, 𝑐) and
∙ 𝑣(𝓁1) =

𝑛

2
, 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0 in cases I

𝜖,𝛿
𝑛,𝑚(𝑏) and I𝜖𝑛∼𝑛(𝑏).

In the table 𝑘, 𝑙,𝑚, 𝑛, 𝑡 ∈ ℤ>0 are parameters and 𝑟 ∈ ℤ is defined by the column of 𝑣(Δ∕𝑐). In the 𝐶
column, a cluster of size 3 with index 0 means that the roots in it do not form a cluster, for example,

𝑟 𝑟 0
with 𝑟 = 0means 0.
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𝑛
∕2

𝑛
∕2

𝑙∕
2
+ 0

𝑛
𝑛

𝑙

+ 0
𝑛
+
2𝑙

1
2𝑛

+
4𝑙

1
-1

-1
1

U
− 𝑛
∼
𝑛
,𝑙
(𝑎
)

𝑛
∕2

𝑛
∕2

𝑙∕
2
− 0

𝑛
𝑛

𝑙

− 0
𝑛

(-1
)𝑙

2𝑛
1

(-1
)𝑙+

1
-1

(-1
)𝑙

N
ot
at
io
n:
𝑥
=
2
if
2|𝑥a

nd
𝑥
=
1
if
2
∤
𝑥
,𝐷

=
g
𝑐𝑑
(𝑛
,
𝑚
−
𝑛

2
),
𝑁
=
𝑛
𝑚
+
𝑛
𝑙+
𝑚
𝑙,
𝑀
=

g
𝑐𝑑
(𝑛
,𝑚
,𝑙
).
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28 DOKCHITSER and MAISTRET

Remark 7.2. In the cases I𝜖,𝛿𝑛,𝑚(𝑏), the semistability criterion (Theorem 2.12) and the C2D4 structure
on 𝐶 ensure that 𝑛 ≡ 𝑚mod 2. Indeed, 𝑛 is odd if and only if inertia permutes the roots in the
corresponding twin. The C2D4 structure then forces inertia to permute the roots in the twin of
depth𝑚∕2.

8 ODD PLACES: CHANGE OF INVARIANTS UNDER ISOGENY

In this section, we prove the claim of Theorem 7.1 regarding Tamagawa numbers and deficiency
and the cluster picture of 𝐶 when 𝐾 has odd residue characteristic.

Theorem 8.1. Let 𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝. Let 𝐶∕𝐾 be a semistable C2D4
curve with 𝓁1,𝓁2,𝓁3, Δ ≠ 0whose cluster picture with Frobenius action is one of the cases in the table
of Theorem 7.1. Let 𝐽 and 𝐽 be the Jacobians of 𝐶 and 𝐶. Then

(1) 𝑐𝐽∕𝐾 , 𝜇𝐶∕𝐾 , 𝑐𝐽∕𝐾 , 𝜇𝐶∕𝐾 , 𝜆𝐶∕𝐾 and 𝑤𝐶∕𝐾 are as given in the table.
(2) If the residue field has size |𝑘| ⩾ 23, then 𝐶 admits a model whose cluster picture with Frobenius

action is given in the 𝐶 column of the table.

Proof.

(2) ⇒ (1). The formulae for 𝑐𝐽∕𝐾, 𝜇𝐶∕𝐾 and 𝑤𝐶∕𝐾 follow directly from Theorem 2.17. To determine
𝑐𝐽∕𝐾 and 𝜇𝐽∕𝐾 , we may first pass to an unramified extension of sufficiently large degree so
that |𝑘| ⩾ 23 (Lemma 3.7). As these invariants are independent of the choice of model, we can
change the model of 𝐶 using (2) to one with the specified cluster picture; the values for 𝑐𝐽∕𝐾
and 𝜇𝐶∕𝐾 then follow from Theorem 2.17. By Lemma 3.4, 𝜆𝐽∕𝐾 = 𝜇𝐶∕𝐾𝜇𝐶∕𝐾(−1)

ord2(𝑐𝐽∕𝐾∕𝑐𝐽∕𝐾),
which gives the required values for 𝜆.

(2) First, note that if 𝐶′ is a different model for 𝐶 obtained by a Möbius transformation on the
𝑥-coordinate (as in Definition 6.1), there is an isomorphism between Jac 𝐶 and Jac 𝐶′ that pre-
serves the kernel of the corresponding isogeny. So, Jac 𝐶 and Jac 𝐶′ are isomorphic as abelian
varieties with a principal polarisation, and hence, 𝐶′ is isomorphic to 𝐶 by Torelli’s theorem
(see [25, Cor. 12.2]). We may therefore change the model of 𝐶 to ensure that it is centred and
balanced (Theorem 6.5) and that it satisfies the conclusions of Theorem 6.6. This change of
model does not change whether 𝛿̂1 ∈ 𝐾×2 (Lemma 6.10) or the definition of 𝑟 (Lemma 6.9
for cases 2(a–f)). In particular, cases 2(b,c,e,f) will follow from cases 2(a,d). Note also that the
cluster picture of 𝐶 depends on the choice of Richelot isogeny on 𝐶, but not on the particular
choice of C2D4 structure, so that cases 1𝜖𝑛(b,d) will follow from cases 1𝜖𝑛(a,c).
By changing the model, it will thus suffice to establish the result for the following list

of cases with the given simplifying hypotheses granted by Theorem 6.6; here 𝜖, 𝛿 = ± are
independent signs. These are proved in the sections indicated:
∙ 2(a,d), 1×𝑡1(a) and 1×̃𝑡1(a) with 𝑣(𝓁𝑖) = 0 for 𝑖 = 1, 2, 3, (§8.2),
∙ 1×𝑡1(b,c) and 1×̃𝑡1(b,c) with 𝑣(𝓁𝑖) = 𝑡 for 𝑖 = 1, 2, 3, (§8.2),
∙ 1𝜖𝑛(a,c) and 1×𝑡 I

𝜖
𝑛(a) with 𝑣(𝓁𝑖) = 0 for 𝑖 = 1, 2, 3, (§8.3),

∙ I𝜖,𝛿𝑛,𝑚(a), I𝜖𝑛∼𝑛(a), I
𝜖
𝑛×𝑡I

𝛿
𝑚(a), I

𝜖
𝑛×̃𝑡I𝑛(a), U

𝜖
𝑛,𝑚,𝑙

(a), U𝜖
𝑛∼𝑛,𝑙

(a) with 𝑣(𝓁𝑖)=0 for 𝑖=1, 2, 3, (§8.4),
∙ I𝜖,𝛿𝑛,𝑚(b) and I𝜖𝑛∼𝑛(b) with 𝑣(𝓁1) =

𝑛

2
, 𝑣(𝓁2) = 𝑣(𝓁3) = 0 (§8.4). □
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 29

We will use without further mention that in all of the above cases, the roots of 𝐶 and of 𝐶 are
integral, that is, 𝑣(𝛼𝑖), 𝑣(𝛽𝑖), 𝑣(𝛼̂𝑖), 𝑣(𝛽𝑖) ⩾ 0. This follows fromLemma 2.11 and, in cases 1×𝑡1(b,c),
1×̃𝑡1(b,c), I

𝜖,𝛿
𝑛,𝑚(b) and I𝜖𝑛∼𝑛(b), from the explicit formula in Lemma 8.3 below.

Notation 8.2. Throughout this section, for drawing cluster pictures, we will use the convention
as in Theorem 7.1, that a cluster (other than) with an index 0 means that the roots in it do not
form a cluster. For example, when 𝑎 = 0, the cluster picture 𝑎 𝑏 0

means 𝑏 0
.

8.1 Preliminary results

To control the cluster picture of 𝐶, we will extensively use the following observations.

Lemma 8.3. For a C2D4 curve with 𝓁1,𝓁2,𝓁3 ≠ 0, the roots of the Richelot dual curve are

𝛼̂1, 𝛽1 =
1

𝓁1

(
𝛼2𝛽2 − 𝛼3𝛽3 ±

√
(𝛼2 − 𝛼3)(𝛼2 − 𝛽3)(𝛽2 − 𝛼3)(𝛽2 − 𝛽3)

)
,

𝛼̂2, 𝛽2 =
1

𝓁2

(
𝛼3𝛽3 − 𝛼1𝛽1 ±

√
(𝛼3 − 𝛼1)(𝛼3 − 𝛽1)(𝛽3 − 𝛼1)(𝛽3 − 𝛽1)

)
,

𝛼̂3, 𝛽3 =
1

𝓁3

(
𝛼2𝛽2 − 𝛼1𝛽1 ±

√
(𝛼2 − 𝛼1)(𝛼2 − 𝛽1)(𝛽2 − 𝛼1)(𝛽2 − 𝛽1)

)
.

Proof. This follows by solving the defining quadratic polynomials 𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥). □

Proposition 8.4. For a C2D4 curve 𝐶 with Δ,𝓁1,𝓁2,𝓁3 ≠ 0,

(1) 𝓁2
1
(𝛼̂1 − 𝛽1)

2 = 4 (𝛼2 − 𝛼3)(𝛼2 − 𝛽3)(𝛽2 − 𝛼3)(𝛽2 − 𝛽3),
(2) 𝓁2

2
(𝛼̂2 − 𝛽2)

2 = 4 (𝛼3 − 𝛼1)(𝛼3 − 𝛽1)(𝛽3 − 𝛼1)(𝛽3 − 𝛽1),
(3) 𝓁2

3
(𝛼̂3 − 𝛽3)

2 = 4 (𝛼2 − 𝛼1)(𝛼2 − 𝛽1)(𝛽2 − 𝛼1)(𝛽2 − 𝛽1),

(4) (𝛼1 − 𝛽1)
2 =

𝑐2𝓁2
2
𝓁2
3

Δ2
(𝛼̂2 − 𝛼̂3)(𝛼̂2 − 𝛽3)(𝛽2 − 𝛼̂3)(𝛽2 − 𝛽3),

(5) (𝛼2 − 𝛽2)
2 =

𝑐2𝓁2
1
𝓁2
3

Δ2
(𝛼̂3 − 𝛼̂1)(𝛼̂3 − 𝛽1)(𝛽3 − 𝛼̂1)(𝛽3 − 𝛽1),

(6) (𝛼3 − 𝛽3)
2 =

𝑐2𝓁2
1
𝓁2
2

Δ2
(𝛼̂1 − 𝛼̂2)(𝛼̂1 − 𝛽2)(𝛽1 − 𝛼̂2)(𝛽1 − 𝛽2),

(7) Δ(𝐶) = 2

𝑐2
Δ(𝐶).

Proof. These are purely algebraic identities that can be verified using Lemma 8.3. □

Lemma8.5. Let𝐾∕ℚ𝑝 be a finite extension for an oddprime𝑝. Suppose that𝐶 and𝐶′ are semistable
curves of genus 2 over𝐾, whose Jacobians are isogenous. Then both curves are in the same list of types
given below (in the sense of Theorem 2.17, possibly with different parameters):

(1) Types 2, 1×1, 1×̃1;
(2) Types 1+𝑛 , 1×I+𝑛 ;
(3) Types 1−𝑛 , 1×I−𝑛 ;
(4) Types I+,+𝑛,𝑚, U+𝑛,𝑚,𝑘 , I

+
𝑛 ×I

+
𝑚;
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30 DOKCHITSER and MAISTRET

(5) Types I+,−𝑛,𝑚, I−,+𝑛,𝑚, I+𝑛∼𝑛, U+
𝑛∼𝑛,𝑘

, U−
𝑛∼𝑛,𝑘

, I+𝑛 ×I
−
𝑚, I−𝑛 ×I

+
𝑚, I+𝑛 ×̃I𝑛;

(6) Types I−,−𝑛,𝑚, U−
𝑛,𝑚,𝑘

, I−𝑛 ×I
−
𝑚;

(7) TypeU+𝑛∼𝑛∼𝑛;
(8) TypeU−𝑛∼𝑛∼𝑛;
(9) Types I−𝑛∼𝑛, I−𝑛 ×̃I𝑛.

Proof. Since the isogeny induces an isomorphism on Galois representations, the eigenvalues of
Frobenius on the toric part of the Galois representation (equivalently, on the homology of the
dual graph of the special fibre of the minimal regular model) for the two curves must be the
same. By [15, Thm. 18.8], the nine lists given correspond to eigenvalues (with multiplicity) being
∅, {1}, {−1}, {1, 1}, {1, −1}, {−1, −1}, {𝜁3, 𝜁

−1
3
}, {𝜁6, 𝜁

−1
6
}, {𝜁4, 𝜁

−1
4
}, where 𝜁𝑛 denotes a primitive 𝑛th

root of unity. □

Lemma 8.6. Let 𝐾∕ℚ𝑝 be a finite extension and 𝐶∕𝐾 a C2D4 curve with 𝑣(𝛼𝑖), 𝑣(𝛽𝑖) ⩾ 0.

(1) If the cluster picture of 𝐶 is either
0
,

0
,

0
,

0
,

0
,

0
or

0
, then 𝑣(Δ∕𝑐) = 0.

(2) If 𝑝 is odd and the cluster picture of 𝐶 is
0
, then 𝑣(Δ∕𝑐) = 0.

(3) If 𝐶 has a cluster of positive depth 𝑑 that contains a root of each colour, then 𝑣(Δ∕𝑐) ⩾ 𝑑.

Proof.

(1, 3) Suppose that there is a cluster of depth 𝑑 that contains two roots of different colour: with-
out loss of generality 𝛼2 and 𝛼3. Then substituting 𝛼2 ≡ 𝛼3 mod 𝜋𝑑𝐾 into the expression for
Δ gives Δ∕𝑐 ≡ (𝛽2 − 𝛽3)(𝛼1 − 𝛼2)(𝛽1 − 𝛼2)mod 𝜋𝑑𝐾 . For the pictures in (1), each term is a
unit, so Δ∕𝑐 is a unit. For (3), either 𝛼1 or 𝛽1 is in the same cluster as 𝛼2 and 𝛼3, so the
corresponding term is ≡ 0mod 𝜋𝑑

𝐾
, and hence so is Δ∕𝑐.

(2) In this case Δ∕𝑐 ≡ 2(𝛼1 − 𝛼2)(𝛼3 − 𝛼1)(𝛼3 − 𝛼2) in the residue field, which is a unit. □

Lemma 8.7. Let 𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 with residue field of size |𝑘| > 3.
Let 𝐶∕𝐾 be a semistable C2D4 curve whose cluster picture has two clusters 𝔰, 𝔰′ of size 3 with relative
depth 𝛿𝔰 = 2𝑟 − 𝑧 and 𝛿𝔰′ = 𝑧 for some integers 0 ⩽ 𝑧 ⩽ 𝑟; we allow for the case 𝑧=0 when 𝔰′ is not
a cluster and 𝔰 is a cluster that is not contained in a cluster of size 4 or 5. Then 𝐶 admits another
model with an identical cluster picture except for which 𝛿𝔰 = 𝛿𝔰′ = 𝑟 (and all colours, clusters, signs,
Frobenius action on proper clusters, other relative depths and the depth of the full set of roots the
same as for 𝐶).

Proof. This is essentially [15, Prop. 14.6(4)]. Write for the set of roots for 𝐶.
If Galois swaps the two clusters, then they necessarily have the same depth, so there is nothing

to prove. We may thus assume that 𝔰 is Galois stable.
Pick 𝑧𝔰 ∈ 𝐾 such that 𝑣(𝑟 − 𝑧𝔰) ⩾ 𝑑𝔰 for 𝑟 ∈ 𝔰, and similarly 𝑧𝔰′ for 𝔰′. (This exists by [15,

Lemma B.1 and Thm. 2.12], which ensures that 𝐾()∕𝐾 is tame; if 𝑝 ≠ 3, one may simply take
𝑧𝔰 to be the average of the roots in 𝔰.) Since 𝑧𝔰, 𝑧𝔰′ ∈ 𝐾, it follows that 𝑣(𝑧𝔰 − 𝑧𝔰′) ∈ ℤ and hence
𝑑 ∈ ℤ. Applying a Möbius transformation of the form 𝑥 ↦ 𝜋𝑛

𝐾
𝑥, we may assume that 𝑑 = 0.

Applying a further Möbius transformation of the form 𝑥 ↦ 𝑥 − 𝑧𝔰 + 𝑢𝜋
𝑟−𝑧
𝐾

for a suitable unit 𝑢,
we may assume that 𝑣(𝑟) = 𝑟 − 𝑧 for roots 𝑟 ∈ 𝔰 and 𝑣(𝑟) = 0 for 𝑟 ∈ 𝔰′.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 31

Now observe that for roots 𝑟, 𝑟′,

𝑣

(
𝜋𝑛
𝐾

𝑟
−
𝜋𝑛
𝐾

𝑟′

)
= 𝑣(𝑟 − 𝑟′) + 𝑛 − 𝑣(𝑟) − 𝑣(𝑟′).

Thus, applying the Möbius transformation 𝑥 ↦ 𝜋𝑟−𝑧
𝐾

𝑥
now gives a model for 𝐶 with the desired

cluster picture. The colouring and Frobenius action on proper clusters are clearly preserved. The
signs of twins (these are the only clusters with signs here) are preserved by Lemma 6.7. □

8.2 Proof of Theorem 8.1: Toric dimension 0

Consider cases 2(a,d), 1×1(a,b,c) and 1×̃1(a,b,c). By Lemma 8.5, 𝐶 has Type 2, 1×1 or 1×̃1, and,
in particular, its cluster picture has no clusters of size 2 or 4 (Theorem 2.17).
Cases 2(a,d), 𝟏×𝒕𝟏(b,c) and 𝟏×̃𝒕𝟏(b,c). Here 𝑣(Δ∕𝑐) = 2𝑡 + 𝑟, with 𝑡 = 0 for cases 2(a,d).

Proposition 8.4(1,2,3) gives 𝑣(𝛼̂1 − 𝛽1) = 𝑣(𝛼̂2 − 𝛽2) = 𝑣(𝛼̂3 − 𝛽3) = 0, so the cluster picture of 𝐶
is either 0, 0

or
0
. Proposition 8.4(4) gives

𝑣((𝛼̂2 − 𝛼̂3)(𝛼̂2 − 𝛽3)(𝛽2 − 𝛼̂3)(𝛽2 − 𝛽3)) = 2𝑟,

so the cluster picture is 2𝑟-𝑘 𝑘 for some 0 ⩽ 𝑘 ⩽ 2𝑟.
An automorphism 𝜎 ∈ Gal(𝐾̄∕𝐾) swaps the two clusters of size 3 if and only if it swaps 𝛼̂1

and 𝛽1. Since Δ∕𝓁1 ∈ 𝐾, Proposition 8.4(1) and the definition of 𝛿̂1 show that this is equivalent to

𝜎(

√
𝛿̂1) = −

√
𝛿̂1. Lemma 8.7 gives the required model for 𝐶.

Cases 1×𝑡1(a) and 1×̃𝑡1(a). By Lemma 8.6, 𝑣(Δ∕𝑐) = 0. Proposition 8.4(1,4) gives

𝑣(𝛼̂1 − 𝛽1) = 0, 𝑣((𝛼̂2 − 𝛼̂3)(𝛼̂2 − 𝛽3)(𝛽2 − 𝛼̂3)(𝛽2 − 𝛽3)) = 0,

which force the cluster picture of 𝐶 to be 𝑎 𝑏 0
, for some 𝑎, 𝑏 ⩾ 0. Proposition 8.4(2,3)

gives 𝑣(𝛼̂2 − 𝛽2) = 𝑣(𝛼̂3 − 𝛽3) = 𝑡, so that 𝑎 = 𝑏 = 𝑡.
The expression on the right-hand side of Proposition 8.4(1) is 𝐾-rational and a perfect square

in the residue field. Hence, a Galois element swaps the two clusters of 𝐶 if and only if it swaps 𝛼̂1
and 𝛽1, if and only if it maps 𝓁1 to −𝓁1, if and only if it swaps the two clusters of 𝐶.

8.3 Proof of Theorem 8.1: Toric dimension 1

Consider cases 1𝜖𝑛(a), 1
𝜖
2𝑛
(c) and 1×𝑡 I𝜖𝑛(𝑎). By Lemma 8.5, 𝐶 will have either type 1𝜖∗ or 1×∗I

𝜖
∗ for

some suitable ∗s. In particular, its cluster picture will have a cluster of size 2 or 4, but will not have
two clusters of size 2 (Theorem 2.17).
𝐂𝐚𝐬𝐞 1𝜖𝑛 (a). Here 𝑟 = 𝑣(Δ∕𝑐) ⩾ 0. Proposition 8.4(1,2,3) and the cluster picture of 𝐶 yield

𝑣(𝛼̂𝑖 − 𝛽𝑖)
2 = 0 for 𝑖 = 1, 2, 3. Hence, the cluster picture of 𝐶 has no cluster of size ⩾ 4, so that it is

either
0
,

0
,

0
or

0
. Relabelling 𝛼̂𝑖 ↔ 𝛽𝑖 if necessary,

we may assume that 𝛼̂1, 𝛼̂2, 𝛼̂3 are the three leftmost roots in these pictures, so that 𝑣(𝛼̂𝑖 − 𝛽𝑗) = 0
for all 𝑖, 𝑗. Proposition 8.4(4,5,6) then gives

𝑣((𝛼̂2 − 𝛼̂3)(𝛽2 − 𝛽3)) = 2𝑟 + 𝑛, 𝑣((𝛼̂3 − 𝛼̂1)(𝛽3 − 𝛽1)) = 𝑣((𝛼̂1 − 𝛼̂2)(𝛽1 − 𝛽2)) = 2𝑟.
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32 DOKCHITSER and MAISTRET

It follows that the cluster picture of 𝐶 with Frobenius action is 𝜖
𝑛 𝑧 2𝑘-𝑧

0
for some

0 ⩽ 𝑧 ⩽ 2𝑟. Lemma 8.7 gives the required model for 𝐶.
𝐂𝐚𝐬𝐞𝐬 1𝜖

2𝑛
(c). By Lemma 8.6, 𝑣(Δ∕𝑐)=0, so by Proposition 8.4, 𝑣(𝛼̂1 − 𝛽1)=

𝑛

2
, and

𝑣(𝑟1 − 𝑟2) = 0 for any other pair of roots 𝑟1, 𝑟2 for 𝐶. The cluster picture with Frobenius action
of 𝐶 is therefore 𝜖

𝑛∕2
0
.

𝐂𝐚𝐬𝐞 1×𝑡 I
𝜖
𝑛 (a). By Lemma 8.6, 𝑣(Δ∕𝑐) = 0. By Propostion 8.4(2,5),

𝑣(𝛼̂2 − 𝛽2) = 𝑣((𝛼̂3 − 𝛼̂1)(𝛼̂3 − 𝛽1)(𝛽3 − 𝛼̂1)(𝛽3 − 𝛽1)) = 0.

Thus, there is no cluster that contains both the sapphire roots, or both a ruby and a turquoise root.
In particular, there are no clusters of size 4 or 5 and the cluster picture of 𝐶 is either 𝑤 𝑦 𝑧

0

or 𝑤 𝑦 𝑧
0
for some 𝑤 > 0 and 𝑦, 𝑧 ⩾ 0. Proposition 8.4 also gives

𝑣(𝛼̂1 − 𝛽1) = 𝑣(𝛼̂3 − 𝛽3) = 𝑡,

𝑣((𝛼̂2 − 𝛼̂3)(𝛼̂2 − 𝛽3)(𝛽2 − 𝛼̂3)(𝛽2 − 𝛽3)) = 𝑛 + 2𝑡,

𝑣((𝛼̂1 − 𝛼̂2)(𝛼̂1 − 𝛽2)(𝛽1 − 𝛼̂2)(𝛽1 − 𝛽2))=2𝑡,

so the cluster picture with Frobenius action must be 𝜖
𝑛 𝑡 𝑡

0
.

8.4 Proof of Theorem 8.1: Toric dimension 2

Consider cases I𝜖,𝛿𝑛,𝑚(a,b), I𝜖𝑛∼𝑛(a,b), I
𝜖
𝑛×I

𝛿
𝑚, I

𝜖
𝑛×̃I𝑛,U

𝜖
𝑛,𝑚,𝑙

andU𝜖
𝑛∼𝑛,𝑙

. By Lemma 8.5,𝐶 will have type
I∗,∗, I∗×I∗, I∗×̃I∗ orU∗∗∗, with some subscripts and signs. In particular, its cluster picturewill have
at least two clusters of size 2 or 4 (Theorem 2.17).

Lemma 8.8. Suppose that𝐶 has Type 𝐼𝜖,𝛿𝑛,𝑚 or 𝐼𝜖𝑛 × 𝐼
𝛿
𝑚, and that𝐶 has Type 𝐼

𝜖′,𝛿′

2𝑛,2𝑚
or 𝐼𝜖′

2𝑛
× 𝐼𝛿

′

2𝑚
. Then

𝜖 = 𝜖′ and 𝛿 = 𝛿′.

Proof. Write 𝐶+
𝑘
and 𝐶−

𝑘
for the cyclic group 𝐶𝑘 on which Frobenius acts trivially and by mul-

tiplication by −1, respectively. The Néron component group of Jac 𝐶∕𝐾𝑛𝑟 is Φ𝐶 = 𝐶𝜖𝑛 × 𝐶
𝛿
𝑚, and

similarly for 𝐶 (see Remark 2.18). Passing to a quadratic ramified extension if necessary, we may
assume that 𝑛 and𝑚 are even.
The Richelot isogeny and its dual induce Frobenius-equivariant maps 𝑓 ∶ Φ𝐶 → Φ𝐶 and

g ∶ Φ𝐶 → Φ𝐶 such that both 𝑓◦g and g◦𝑓 are multiplication-by-2 maps. As |Φ𝐶| = 4|Φ𝐶|, this
forces 𝑓 to be injective and g surjective with kernel 𝐶2 × 𝐶2. Hence,Φ𝐶 ≃ (𝐶𝜖

′

2𝑛
× 𝐶𝛿

′

2𝑚
)∕𝐶2 × 𝐶2 ≃

𝐶𝜖
′

𝑛 × 𝐶
𝛿′

𝑚 . By Remark 2.18, 𝜖 = 𝜖
′ and 𝛿 = 𝛿′. □

𝐂𝐚𝐬𝐞𝐬 I𝜖,𝛿𝑛,𝑚 (a) and I𝜖𝑛∼𝑛 (a). Here 𝑣(Δ∕𝑐) = 𝑟 ⩾ 0. Proposition 8.4(1,2,3) gives 𝑣(𝛼̂𝑖 − 𝛽𝑖) = 0 for
all 𝑖. In particular, there is no cluster of size ⩾ 4 and no two roots of the same colour lie in
one cluster. It follows that the cluster picture of 𝐶 must be either

0
,

0
,

0
or

0
. The latter cannot in fact occur: otherwise, by Lemma 8.6 and
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 33

Proposition 8.4(7), we would have 0 = 𝑣(Δ(𝐶)
𝑐(𝐶)

) = 𝑣( Δ(𝐶)

𝓁1𝓁2𝓁3∕Δ(𝐶)
) = 𝑣(Δ(𝐶)

2

𝑐2
) = 2𝑟, at which point

Proposition 8.4(4) forces 𝑣(𝑠 − 𝑡) = 0 for each sapphire root 𝑠 and turquoise root 𝑡, so that there is
no sapphire–turquoise twin.
We may now relabel the roots 𝛼̂𝑖 ↔ 𝛽𝑖 , so that the three leftmost roots in the given pictures are

𝛼̂1, 𝛼̂2 and 𝛼̂3, in some order, so that 𝑣(𝛼̂𝑖 − 𝛽𝑗) = 0 for all 𝑖, 𝑗. Proposition 8.4(4,5,6) gives

𝑣((𝛼̂2 − 𝛼̂3)(𝛽2 − 𝛽3)) = 2𝑟, 𝑣((𝛼̂3 − 𝛼̂1)(𝛽3 − 𝛽1)) = 2𝑟 + 𝑛,

𝑣((𝛼̂1 − 𝛼̂2)(𝛽1 − 𝛽2)) = 2𝑟 + 𝑚.

Hence, the cluster picture must be 𝑛 2𝑟-𝑧 𝑚 𝑧 0
for some integer 0 ⩽ 𝑧 ⩽ 2𝑟.

If 𝐶 has type I𝜖,𝛿𝑛,𝑚, Galois preserves {𝛼2, 𝛽2} and {𝛼3, 𝛽3}, so that 𝓁1 ∈ 𝐾 (see Definition 1.12). By
Proposition 8.4(1) (𝛼̂1 − 𝛽1)2 =

1

4𝓁2
1

(𝛼2 − 𝛼3)(𝛼2 − 𝛽3)(𝛽2 − 𝛼3)(𝛽2 − 𝛽3), which is Galois-stable, a

unit and a perfect square in the residue field, so 𝛼̂1 − 𝛽1 ∈ 𝐾 and the two possible clusters of size
3 for 𝐶 are not interchanged by Galois. It follows from Lemma 8.8 that 𝐶 has cluster picture with
Frobenius action 𝜖

𝑛 2𝑟-𝑧
𝛿
𝑚 𝑧 0

. Lemma 8.7 gives the required model for 𝐶.
Conversely, if 𝐶 has type I𝜖𝑛∼𝑛, then Frobenius swaps {𝛼2, 𝛽2} and {𝛼3, 𝛽3}, so Frob(𝓁1) = −𝓁1,

and hence Frob(𝛼̂1 − 𝛽1) = 𝛽1 − 𝛼̂1, as above. Thus, 𝐶 has type I𝜖
2𝑛∼2𝑛

or I𝜖
2𝑛
×̃𝑟I2𝑛 by Lemma 8.5,

and cluster picture with Frobenius action +
𝑛 𝑟

𝜖
𝑛 𝑟 0

.

𝐂𝐚𝐬𝐞𝐬 I𝜖,𝛿𝑛,𝑚 (b) and I𝜖𝑛∼𝑛(b). In these cases, 𝑣(Δ∕𝑐) = 𝑟 +
𝑛

2
and 𝑣(𝓁1) =

𝑛

2
. Proposition 8.4 gives

𝑣(𝛼̂1 − 𝛽1) =
𝑚−𝑛

4
, 𝑣(𝛼̂𝑖 − 𝛽𝑖) = 0 for 𝑖 = 2, 3, and

𝑣((𝛼̂2 − 𝛼̂3)(𝛼̂2 − 𝛽3)(𝛽2 − 𝛼̂3)(𝛽2 − 𝛽3)) = 𝑛 + 2𝑟,

𝑣((𝛼̂3 − 𝛼̂1)(𝛼̂3 − 𝛽1)(𝛽3 − 𝛼̂1)(𝛽3 − 𝛽1)) = 2𝑟,

𝑣((𝛼̂1 − 𝛼̂2)(𝛼̂1 − 𝛽2)(𝛽1 − 𝛼̂2)(𝛽1 − 𝛽2)) = 2𝑟.

First suppose that 𝐶 is of type I𝜖,𝛿𝑛,𝑚 for some 𝑛 < 𝑚. Without loss of generality, 𝛼2 ≡
𝛼3 mod 𝜋

𝑚∕2
𝐾

. This gives Δ∕𝑐 ≡ (𝛽2 − 𝛽3)(𝛼1 − 𝛼2)(𝛽1 − 𝛼2)mod 𝜋
𝑚∕2
𝐾

, so that Δ has valuation
exactly 𝑛∕2 and hence 𝑟 = 0. The above expressions and the restriction on the type then force the
cluster picture of 𝐶 to be (𝑚-𝑛)∕4

0
. Moreover, the sum of the depths of the sapphire–

turquoise twins is 𝑛, and the explicit description of the roots in Lemma 8.3 shows that each depth
is at least 𝑛∕2, so that each must be exactly 𝑛∕2.
By Lemma 8.5, if 𝜖 = 𝛿, then 𝐶 has type U𝜖𝑚−𝑛

2
,𝑛,𝑛

and hence cluster picture with Frobenius

action (𝑚-𝑛)∕4 𝑛∕2 𝑛∕2
𝜖

0
; and if 𝜖 ≠ 𝛿, then 𝐶 either has type U𝜖𝑚−𝑛

2
,𝑛∼𝑛

or U𝛿𝑚−𝑛
2
,𝑛∼𝑛

. In the

latter case, the sign is determined by whether 𝓁1𝓁2𝓁3
Δ

∈ 𝐾×2 or not (see Definition 2.13). Working

modulo 𝜋𝑚∕2
𝐾

, we have 𝓁1 ≡ 𝛽2 − 𝛽3, 𝓁2 ≡ 𝛼2 + 𝛽3, 𝓁3 ≡ 𝛼2 + 𝛽2,

Δ∕𝑐 ≡ (𝛽2 − 𝛽3)(𝛼2 − 𝛼1)(𝛼2 − 𝛽1), 𝜃2
{𝛼2,𝛼3}

≡ 𝑐(𝛼2 − 𝛼1)(𝛼2 − 𝛽1)(𝛼2 − 𝛽2)(𝛼2 − 𝛽3).
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34 DOKCHITSER and MAISTRET

All of the factors in these expressions are units except for 𝛽2 − 𝛽3, which has valuation exactly
𝑛

2

(as it is smaller than 𝑚

2
). Dividing through by 𝛽2 − 𝛽3 and then working modulo 𝜋

min(𝑚−𝑛
2
, 𝑛
2
)

𝐾
(so

that also 𝛽2 ≡ 𝛽3), we get

Δ

𝑐𝓁1𝓁2𝓁3
≡
(𝛼2 − 𝛼1)(𝛼2 − 𝛽1)

𝑐(𝛼2 + 𝛽2)
2

≡

𝜃2
{𝛼2,𝛼3}

𝑐2(𝛼2 − 𝛽2)
2(𝛼2 + 𝛽2)

2
.

Hence, Δ

𝑐𝓁1𝓁2𝓁3
= □ ⋅ 𝜃2

{𝛼2,𝛼3}
in 𝐾×2. Thus, the sign is the same as of the cluster {𝛼2, 𝛼3} for 𝐶, and

𝐶 has cluster picture with Frobenius action (𝑚-𝑛)∕4 𝑛∕2 𝑛∕2
𝛿

0
.

Now suppose that the type is I𝜖,𝛿𝑛,𝑛 or I𝜖𝑛∼𝑛. As 𝑣(𝛼̂𝑖 − 𝛽𝑖) = 0, the same argument as for case
I𝜖,𝛿𝑛,𝑚(a) shows that the cluster picture of 𝐶 is 0

,
0
or

0
, in which

the three leftmost roots have different colours, and similarly for the rightmost three (the fourth
picture again cannot occur as it would yield 0 = 2𝑣(Δ) − 𝑣(𝓁1) = 2𝑟 +

𝑛

2
> 0). The average valu-

ation of - (i.e. of a sapphire minus a turquoise root) is higher than that of - , so at least
one of the twins must consist of a sapphire and a turquoise root. The average valuation of -
is the same as that of - , so both twins must be sapphire-turquoise, and the cluster picture is

𝑢 2𝑟-𝑘 𝑣 𝑘 0
for some 0 ⩽ 𝑘 ⩽ 2𝑟 and some 𝑢, 𝑣 > 0. For the two twins, from the valuations,

we know that 𝑢 + 𝑣 = 𝑛. By Theorem 2.17, the Tamagawa numbers satisfy 𝑐Jac𝐶∕𝐾𝑛𝑟 = 𝑢𝑣 and
𝑐Jac𝐶∕𝐾𝑛𝑟 = 𝑛

2∕4, so that as the Richelot isogeny has degree 4, we necessarily have 𝑢𝑣 = 2𝑗𝑛2 for
some 𝑗 ∈ ℤ (Lemma 3.4). A little exercise in elementary number theory shows that as 𝑢

𝑛
+ 𝑣

𝑛
= 1

and 𝑢

𝑛
⋅ 𝑣
𝑛
= 2𝑗 , it follows that 𝑢 = 𝑣 = 𝑛

2
.

Frobenius will swap the two twins (and hence the two clusters of size 3) if and only if it swaps
the residues of 𝛼̂2 and 𝛽2. Working in the residue field, Proposition 8.4(2), Definition 2.13 and the
cluster picture of 𝐶 tell us that

(𝛼̂2 − 𝛽2)
2 ≡

(𝛼3−𝛼1)(𝛼3−𝛽1)(𝛽3−𝛼1)(𝛽3−𝛽1)

(𝛼3+𝛽3)
2

≡

𝜃2
{𝛼2,𝛽2}

𝜃2
{𝛼3,𝛽3}

𝑐2(𝛼3+𝛽3)
2(𝛼3−𝛽3)

4
≡ □ ⋅ 𝜃2

{𝛼2,𝛽2}
𝜃2
{𝛼3,𝛽3}

.

Thus, Frobenius preserves the two twins of 𝐶 when 𝐶 has type I+,+𝑛,𝑛 , I
−,−
𝑛,𝑛 or I+𝑛∼𝑛, and swaps them

for types I+,−𝑛,𝑛 and I−𝑛∼𝑛. Together with Lemmata 8.5 and 8.7, this gives a model for 𝐶 with the
desired cluster picture.
𝐂𝐚𝐬𝐞𝐬 U𝜖

𝑛,𝑚,𝑙
(a) and U𝜖

𝑛∼𝑛,𝑙
(a). By Lemma 8.6(2), 𝑣(Δ∕𝑐) = 0. Also by Proposition 8.4(1,2,3)

𝑣(𝛼̂𝑖 − 𝛽𝑖) = 0 for all 𝑖, so, in particular, there is no cluster of size ⩾ 4 and a cluster of size 3
cannot contain two roots of the same colour. By Lemma 8.6(3) and Proposition 8.4(7), it fol-
lows that there is no cluster of size 3 either, since 𝑣(Δ(𝐶)

𝑐(𝐶)
) = 𝑣( Δ(𝐶)

𝓁1𝓁2𝓁3∕Δ(𝐶)
) = 𝑣(Δ(𝐶)

2

𝑐2
) = 0. By

Proposition 8.4(4,5,6),

𝑣((𝛼̂2 − 𝛼̂3)(𝛼̂2 − 𝛽3)(𝛽2 − 𝛼̂3)(𝛽2 − 𝛽3)) = 𝑛,

𝑣((𝛼̂3 − 𝛼̂1)(𝛼̂3 − 𝛽1)(𝛽3 − 𝛼̂1)(𝛽3 − 𝛽1))=𝑚,

𝑣((𝛼̂1 − 𝛼̂2)(𝛼̂1 − 𝛽2)(𝛽1 − 𝛼̂2)(𝛽1 − 𝛽2))=𝑙.

It follows that the cluster picture of 𝐶 is 𝑛 𝑚 𝑙 0
.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 35

The only twins that can be swapped by Frobenius are the ones containing the ruby roots. This
happens if and only if Frob(𝛼̂1 − 𝛽1) = 𝛽1 − 𝛼̂1, which, by Proposition 8.4(1), is equivalent to
Frob(𝓁1) = −𝓁1. It follows that the two twins for 𝐶 are swapped when 𝐶 is in case U𝜖

𝑛∼𝑛,𝑙
(𝑎),

and not swapped in case U𝜖
𝑛,𝑚,𝑙

(𝑎). The sign for 𝐶 is determined by whether 𝓁1𝓁2𝓁3
Δ

is a square (see

Definition 2.13). As 𝛼1 ≡ 0, 𝛼2 ≡ 𝛽2 and 𝛼3 ≡ 𝛽3, we have that
𝓁1𝓁2𝓁3
Δ

≡
8(𝛼2−𝛼3)𝛼2𝛼3
𝑐(2𝛼2

2
𝛼3−2𝛼

2
3
𝛼2)

≡
4

𝑐
in the

residue field, so this is the same as the sign for 𝐶.
𝐂𝐚𝐬𝐞𝐬 I𝜖𝑛 ×𝑡 I

𝛿
𝑚(a) and I

𝜖
𝑛 ×̃𝑡 I𝑛 (a). By Lemma 8.6 𝑣(Δ∕𝑐) = 0. Also Proposition 8.4(1,4) gives

𝑣(𝛼̂1 − 𝛽1) = 𝑣((𝛼̂2 − 𝛼̂3)(𝛼̂2 − 𝛽3)(𝛽2 − 𝛼̂3)(𝛽2 − 𝛽3)) = 0, so, in particular, there can be no clus-
ter of size ⩾ 4. Moreover, Proposition 8.4(2,3) gives 𝑣(𝛼̂2 − 𝛽2) = 𝑣(𝛼̂3 − 𝛽3) = 𝑡, so the two
sapphire roots lie in a non-trivial cluster, as do the two turquoise roots, and hence, 𝐶 cannot have
three twins. Thus, the possible cluster pictures for𝐶 are

0
,

0
,

0

and
0
, where the three leftmost roots are the two sapphire ones and a ruby one, in some

order. Proposition 8.4(5,6) gives

𝑣((𝛼̂3−𝛼̂1)(𝛼̂3−𝛽1)(𝛽3−𝛼̂1)(𝛽3−𝛽1))=𝑛 + 2𝑡,

𝑣((𝛼̂1 − 𝛼̂2)(𝛼̂1 − 𝛽2)(𝛽1 − 𝛼̂2)(𝛽1 − 𝛽2))=𝑚 + 2𝑡,

which forces the cluster picture of 𝐶 to be 𝑛 𝑡 𝑚 𝑡 0
.

The same argument as in cases I𝜖,𝛿𝑛,𝑚 and I𝜖𝑛∼𝑛, shows that for case I
∗
2𝑛
×𝑡 I

∗
2𝑚
, the cluster picture

with Frobenius action of 𝐶 is
𝜖
𝑛 𝑡

𝛿
𝑚 𝑡 0

, and for case I𝜖𝑛×̃𝑡I𝑛, it is
+
𝑛 𝑡

𝜖
𝑛 𝑡 0

.
This completes the proof of Theorem 8.1.

9 ODD PLACES: 𝝀𝑪∕𝑲𝒘𝑪∕𝑲 = 𝑬𝑪∕𝑲

In this section, we will complete the proof of Theorem 7.1 by justifying the values it gives
for 𝐸𝐶∕𝐾 and showing that 𝜆𝐶∕𝐾𝑤𝐶∕𝐾 = 𝐸𝐶∕𝐾 . Throughout we will use the division into cases
as in Theorem 7.1.

Theorem 9.1. Let 𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 and 𝐶∕𝐾 a centred semistable
C2D4 curve with  , Δ, 𝜂1 ≠ 0. Suppose that the cluster picture with Frobenius action of 𝐶 is one of
the cases in Theorem 7.1 and that

∙ 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0 in cases 1𝜖𝑛(𝑎, 𝑏), 1
𝜖
2𝑛
(𝑐, 𝑑) and 1 ×𝑡 I𝜖𝑛(𝑎),

∙ 𝑣(𝓁1)=𝑣(𝓁2)=𝑣(𝓁3)=0 in cases I
𝜖,𝛿
𝑛,𝑚(𝑎), I𝜖𝑛∼𝑛(𝑎),

∙ 𝑣(𝓁1) = 𝑡 in cases 1×𝑡1(𝑏, 𝑐) and 1×̃𝑡1(𝑏, 𝑐), and
∙ 𝑣(𝓁1) =

𝑛

2
, 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0 in cases I

𝜖,𝛿
𝑛,𝑚(𝑏) and I𝜖𝑛∼𝑛(𝑏).

Then 𝐸𝐶∕𝐾 is as given in Theorem 7.1, and 𝐸𝐶∕𝐾 = 𝜆𝐶∕𝐾𝑤𝐶∕𝐾 .

Proof. Combine Lemmata 9.4, 9.5, 9.6, 9.7, 9.10, 9.11 and 9.12 below. □

The remainder of this section is devoted to the proof of this result. Throughout the section,
𝐾∕ℚ𝑝 will be a finite extension for an odd prime 𝑝 and 𝐶∕𝐾 will be a centred semistable C2D4
curve with  , Δ, 𝜂1 ≠ 0.
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36 DOKCHITSER and MAISTRET

9.1 The value of 𝝀𝑪∕𝑲𝒘𝑪∕𝑲

Here we convert 𝜆𝐶∕𝐾𝑤𝐶∕𝐾 into Hilbert symbols. As both 𝜆𝐶∕𝐾 and𝑤𝐶∕𝐾 are sensitive to the signs
of twins, we first express these signs (defined via 𝜃2

𝔱
, see Definition 2.13) in terms of our standard

invariants from Definition 1.12.

Lemma 9.2. Let𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 and𝐶∕𝐾 a centred semistable C2D4
curve with  , 𝜂1, Δ ≠ 0. For a twin cluster 𝔱, 𝜃2

𝔱
satisfies the following equalities:

(1) In case 1𝜖𝑛(𝑎) (
𝜖
𝑛∕2

0
): 𝜃2

𝔱
= 𝑐𝜉□.

(2) In case 1𝑛(𝑏) ( 𝜖
𝑛∕2

0
): 𝜃2

𝔱
= 𝑐𝜂1𝜂2□.

(3) In case 12𝑛(𝑐) ( 𝜖
𝑛 0

): 𝜃2
𝔱
= −

𝓁1
Δ
𝜂1□.

(4) In case 12𝑛(𝑑) ( 𝜖
𝑛 0

): 𝜃2
𝔱
= −2𝑐𝜉𝛿̂2𝜂2□.

(5) In case I𝜖,𝛿𝑛,𝑚(𝑎) ( 𝜖
𝑛∕2

𝛿
𝑚∕2

0
): 𝜃2

𝔱2
= 2𝑐𝜂2□ and 𝜃2

𝔱3
= 2𝑐𝜂3□.

(6) In case I𝜖𝑛∼𝑛(𝑎) (
+
𝑛∕2

𝜖
𝑛∕2

0
): 𝜃2

𝔱2
𝜃2
𝔱3
= 𝜂2𝜂3□.

(7) In cases I𝜖,𝛿𝑛,𝑚(𝑏) ( 𝜖
𝑛∕2

𝛿
𝑚∕2

0
) and I𝜖𝑛∼𝑛(b) (

+
𝑛∕2

𝜖
𝑛∕2

0
):

if 𝑛 < 𝑚, then 𝜃2
𝔱𝛽
=

𝓁1
Δ
□,

for any 𝑛,𝑚, 𝜃2
𝔱𝛼
𝜃2
𝔱𝛽
= −𝜂1(𝛿2𝜂2 + 𝛿3𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2)□.

(8) In case 1×𝑡I𝑛(𝑎) (
𝜖
𝑛∕2

𝑡
𝑡
0
): 𝜃2

𝔱
= 𝑐𝜉□.

(9) In case I𝜖𝑛×𝑡I
𝛿
𝑚(𝑎) (

𝜖
𝑛∕2

𝑡

𝛿
𝑚∕2

𝑡 0
M): 𝜃2

𝔱2
= 2𝑐𝜂2□ and 𝜃2

𝔱3
= 2𝑐𝜂3□.

(10) In case I𝜖𝑛×̃𝑡I𝑛(𝑎) (
+
𝑛∕2

𝑡

𝜖
𝑛∕2

𝑡 0
): 𝜃2

𝔱2
𝜃2
𝔱3
= 𝜂2𝜂3□.

Here in (5), (6), (9), (10), 𝔱2 = {𝛼2, 𝛽2} and 𝔱3 = {𝛼3, 𝛽3}, and in (7), 𝔱𝛼 = {𝛼2, 𝛼3} is the left twin and
𝔱𝛽 = {𝛽2, 𝛽3} is the right twin.

Proof. We will write 𝑘 for the residue field of 𝐾, 𝑥 → 𝑥̄ for the reduction map to 𝑘̄, and ≡ for
equality in the residue field (unless specified otherwise). In each case, we will show that, after a
suitable scaling to make both sides units, the claimed identities hold over the residue field. The
result then follows by Hensel’s lemma.

(1) Here 𝛼1 ≡ −𝛼1 ≡ 0, and
4

𝑐
𝜃2
𝔱
≡ 4𝛼2𝛽2𝛼3𝛽3 ≡ 𝜉 are units; also 𝜉, 𝜃2𝔱 ∈ 𝐾.

(2) Here 4

𝑐
𝜃2
𝔱
≡ 4(𝛼2−𝛼1)(𝛼2+𝛼1)(𝛼2−𝛼3)(𝛼2−𝛽3) ≡ 𝜂1𝜂2 are units, and 𝜂1, 𝜂2, 𝜃2𝔱 ∈ 𝐾.

(3) Let 𝔱 = {𝛼2, 𝛼3}. Then 1

𝑐
𝜃2
𝔱
≡ (𝛼2−𝛼1)(𝛼2+𝛼1)(𝛼2−𝛽2)(𝛼2−𝛽3), 𝓁1 ≡ 𝛽2 − 𝛽3, 𝜂1 ≡

(𝛽2 − 𝛼2)(𝛼2 − 𝛽3) and Δ∕𝑐 ≡ (𝛽2−𝛽3)(𝛼2−𝛼1)(𝛼2+𝛼1). Hence
1

𝑐
𝜃2
𝔱
≡ −

𝓁1
Δ∕𝑐
𝜂1(𝛼2 − 𝛼1)

2

(𝛼2 + 𝛼1)
2 are units, which gives the result as 𝜃2

𝔱
,
𝓁1
Δ
, 𝜂1 ∈ 𝐾 and (𝛼̄2 − 𝛼̄1)(𝛼̄2 + 𝛼̄1) ∈ 𝑘×.

(4) Let 𝔱 = {𝛼1, 𝛼2}. Then 1

𝑐
𝜃2
𝔱
≡ 2𝛼1(𝛼1−𝛽2)(𝛼1−𝛼3)(𝛼1−𝛽3), 𝛿̂2 ≡ 4(𝛼3+𝛼1)(𝛼3−𝛼1) ⋅

(𝛽3+𝛼1)(𝛽3−𝛼1), 𝜉 ≡ 4𝛼1(𝛼1+𝛽2)(𝛼1+𝛼3)(𝛼1+𝛽3) and 𝜂2 ≡ (𝛽2 − 𝛼1)(𝛽2 + 𝛼1). Hence
16

𝑐
𝜃2
𝔱
(𝛼1+𝛽2)

2(𝛼1+𝛼3)
2(𝛼1+𝛽3)

2 ≡ −2𝜉𝛿̂2𝜂2, which gives the results as 𝜃2
𝔱
, 𝜉, 𝛿̂2, 𝜂2 ∈ 𝐾

and (𝛼̄1+𝛽2), (𝛼̄1+𝛼̄3)(𝛼̄1+𝛽3) ∈ 𝑘×.
(5, 6) Here 4

𝑐
𝜃2
𝔱2
≡ 4(𝛼2−𝛼1)(𝛼2+𝛼1)(𝛼2−𝛼3)

2 ≡ 2𝜂2(𝛼2 − 𝛼3)
2 are units. For (5), 𝜃2

𝔱2
, 𝜂2 ∈ 𝐾

and (𝛼̄2 − 𝛼̄3) ∈ 𝑘
×. The argument for 𝔱3 is similar. For (6), we obtain 4

𝑐2
𝜃2
𝔱2
𝜃2
𝔱3
≡

4(𝛼2−𝛼1)(𝛼2+𝛼1)(𝛼3−𝛼1)(𝛼3+𝛼1)(𝛼2−𝛼3)
4 ≡ 𝜂2𝜂3(𝛼2 − 𝛼3)

4 units, with 𝜃2
𝔱2
𝜃2
𝔱3
, 𝜂2𝜂3 ∈𝐾

and (𝛼̄2−𝛼̄3)2 ∈ 𝑘×.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 37

(7) Here 1

𝑐
𝜃2
𝔱𝛽

≡ (𝛽2−𝛼1)(𝛽2+𝛼1)(𝛽2−𝛼2)
2. Also 𝓁1 ≡ 𝛼2 − 𝛼3 mod 𝜋

𝑚∕2
𝐾

and Δ∕𝑐 ≡

(𝛼2 − 𝛼3)(𝛽2 − 𝛼1)(𝛽2 + 𝛼1) mod 𝜋
𝑚∕2
𝐾

.
If 𝑛 < 𝑚, then 𝑣(𝓁1) = 𝑣(Δ∕𝑐) =

𝑛

2
and Δ

𝑐𝓁1
≡ (𝛽2 − 𝛼1)(𝛽2 + 𝛼1). Thus,

1

𝑐
𝜃2
𝔱𝛽

≡
Δ

𝑐𝓁1
⋅

(𝛽2 − 𝛼2)
2 are units with 𝜃2

𝔱𝛽
, Δ
𝓁1
∈ 𝐾 and (𝛽2 − 𝛼̄2) ∈ 𝑘×.

In general, 4

𝑐2
𝜃2
𝔱𝛼
𝜃2
𝔱𝛽
(𝛼2 − 𝛽2)

4 ≡ 4(𝛼2−𝛼1)(𝛼2+𝛼1)(𝛽2−𝛼1)(𝛽2+𝛼1)(𝛼2−𝛽2)
8 ≡

−𝜂1(𝛿2𝜂2 + 𝛿3𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2). This gives the second claim as 𝜃2
𝔱𝛼
𝜃2
𝔱𝛽
, 𝜂1,

(𝛿2𝜂2 + 𝛿3𝜂3), (𝛿̂2𝜂3 + 𝛿̂3𝜂2) ∈ 𝐾 and (𝛼̄2 − 𝛽2)2 ∈ 𝑘×.

(8) Here 𝛼1 ≡ −𝛼1 ≡ 0 mod 𝜋
𝑡+𝑛

2

𝐾
, so that 4

𝑐
𝜃2
𝔱
≡ 4𝛼2𝛽2𝛼3𝛽3 ≡ 𝜉 mod 𝜋

𝑡+𝑛
2

𝐾
. As 𝑣(𝛽2) =

𝑣(𝛼3) = 𝑣(𝛽3) = 0 and 𝑣(𝛼2) = 𝑡, it follows that
4𝜃2
𝔱

𝑐𝜉
≡ 1, which gives the result as 𝜃2

𝔱
, 𝜉 ∈ 𝐾.

(9, 10) Here 1

𝑐
𝜃2
𝔱2
≡ (𝛼2−𝛼1)(𝛼2+𝛼1)(𝛼2−𝛼3)(𝛼2−𝛽3) mod 𝜋

𝑡+𝑛
2

𝐾
and 𝜂2 ≡ 2(𝛼2−𝛼1) ⋅

(𝛼2+𝛼1) mod 𝜋
𝑡+𝑛

2

𝐾
. As 𝑣(𝛼2 − 𝛼1) = 𝑡, the other factors are units and −𝛼1 ≡ 𝛼3 ≡ 𝛽3

we obtain 2

𝑐(𝛼2−𝛼1)
𝜃2
𝔱2
≡ 2(𝛼2 + 𝛼1)

3 ≡
𝜂2

(𝛼2−𝛼1)
(𝛼2 + 𝛼1)

2 are units, and hence
2

𝑐𝜂2
𝜃2
𝔱2
≡ (𝛼2 + 𝛼1)

2. This gives the result for (9) as 𝜃2
𝔱2
, 𝜂2 ∈ 𝐾 and (𝛼̄2 + 𝛼̄1) ∈ 𝑘×, with

a similar proof for 𝜃2
𝔱3
. For (10), we obtain 4

𝑐2𝜂2𝜂3
𝜃2
𝔱2
𝜃2
𝔱3
≡ (𝛼2 + 𝛼1)

4 with 𝜃2
𝔱2
𝜃2
𝔱3
, 𝜂2𝜂3 ∈ 𝐾

and (𝛼̄2 + 𝛼̄1)2 ∈ 𝑘×. □

Lemma 9.3. Let𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 and𝐶∕𝐾 a centred semistable C2D4
curve with 𝓁1,𝓁2,𝓁3, Δ ≠ 0. Then

∙ 𝛿̂1 ∈ 𝐾
×2 if and only if (𝛼̂1 − 𝛽1)2 ∈ 𝐾×2,

∙ 𝛿̂1 ∉ 𝐾
×2 in case 1×̃1(𝑎),

∙ 𝛿̂1 ∉ 𝐾
×2 in case I𝜖𝑛×̃𝑡I𝑛(𝑎),

∙ 𝛿̂1 ∈ 𝐾
×2 if and only if 𝜖𝛿 = + in case I𝜖,𝛿𝑛,𝑛(𝑏),

∙ 𝛿̂1 ∈ 𝐾
×2 if and only if 𝜖 = + in case I𝜖𝑛∼𝑛(𝑏).

Moreover, in the last four cases, 𝛿̂1 has even valuation.

Proof. Taking an odd degree unramified extension, we may assume that |𝑘| ⩾ 23. By Proposi-
tion 8.4(1), 𝛿̂1 =

𝓁2
1

Δ2
(𝛼̂1 − 𝛽1)

2 = □(𝛼̂1 − 𝛽1)
2 = □𝛿1(𝐶) since

𝓁1
Δ
∈ 𝐾. By Theorem 8.1, 𝐶 admits

a model 𝐶′ whose cluster picture is the one given in the table of Theorem 7.1. By Remark 6.2, we
can write 𝐶′ = 𝐶𝑚 for a Möbius transformation 𝑚(𝑥) = 𝐚𝑥+𝐛

𝐜𝑥+𝐝
as in Definition 6.1. We explicitly

compute 𝛿1(𝐶𝑚) =
(𝛼̂1−𝛽1)

2(𝐚𝐝−𝐛𝐜)2

(𝐜𝛼̂1+𝐝)
2(𝐜𝛽1+𝐝)

2
= (𝛼̂1 − 𝛽1)

2□ = 𝛿1(𝐶)□. Therefore, it is sufficient to check

the valuation of 𝛼̂1 − 𝛽1 and whether 𝛼̂1 − 𝛽1 is preserved by the action of Galois on the picture
of 𝐶 in the table of Theorem 7.1. □

Lemma 9.4. Let 𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 and 𝐶∕𝐾 a centred semistable
C2D4 curve with  , 𝜂1, Δ ≠ 0. Suppose that the cluster picture of 𝐶 is 0 (cases 2(𝑎, 𝑑)),
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38 DOKCHITSER and MAISTRET

𝑘 0
(cases 2(𝑏, 𝑒)), or 𝑘 0

(cases 2(𝑐, 𝑓)). Then

𝜆𝐶∕𝐾𝑤𝐶∕𝐾 =

{
1 𝑖𝑓 𝛿̂1 = □

(−1)𝑟 𝑖𝑓 𝛿̂1 ≠ □

}
=

{
(𝛿̂1, −

𝓁1
Δ
) 𝑐𝑎𝑠𝑒𝑠 2 (𝑎, 𝑏, 𝑑, 𝑒),

(𝛿̂1, −𝑐
𝓁1
Δ
) 𝑐𝑎𝑠𝑒𝑠 2 (𝑐, 𝑓).

Proof. The first equality follows from Theorem 7.1. The second equality is clear in cases 2(a,b,c),
so suppose that 𝐶 is as in cases 2(d,e,f). Note that 𝛿̂1 =

1

Δ2
(𝛼2 − 𝛽3)(𝛼2 − 𝛼3)(𝛽2 − 𝛼3)(𝛽2 − 𝛽3)

has even valuation, so it will suffice to show that 𝑣(𝓁1
Δ
) ≡ 𝑟 mod 2 in cases 2(d,e) and 𝑣(𝓁1

Δ
) ≡

𝑟 + 𝑣(𝑐)mod 2 in case 2(f).
Since 𝛿̂1 ≠ □, someGalois element swaps 𝛼̂1 and 𝛽1 by Lemma 9.3. It follows fromTheorems 7.1

and 2.17 that 𝐶 has cluster picture with Frobenius action 𝑟 if 𝑟 > 0 and 𝑚 for
some𝑚 ⩾ 0 if 𝑟 = 0 (with𝑚 = 0 if and only if the five roots do not form a cluster).
Let 𝐷 = Σ𝑥,𝑥′𝑣(𝑥−𝑥′), the sum taken over 𝑥 ∈ {𝛼̂1, 𝛽1} and 𝑥′ ∈ {𝛼̂2, 𝛽2, 𝛼̂3, 𝛽3}; it follows from

the cluster pictures that 𝐷 = 6𝑚 if 𝑟 = 0 and 𝐷 = 4𝑟 if 𝑟 > 0. The result follows by combining the
following equalities:

∙ 𝑣(
𝓁1
Δ
) + 𝑣(𝓁2𝓁3) = 𝑣(

𝓁1𝓁2𝓁3
Δ

) ≡ 𝑟 +

{
𝑚 if 𝑟=0

0 if 𝑟>0
mod 2 (Theorem 2.12(3) for 𝐶),

∙ 𝑣(𝛿2𝛿3) = 𝑣(
𝑐4𝓁4

1

Δ4
𝓁2
2
𝓁2
3
) + 𝐷 ≡ 2𝑣(𝓁2𝓁3) +

{
2𝑚 if 𝑟=0

0 if 𝑟>0
mod 4 (Proposition 8.4(5,6)),

∙ 𝑣(𝛿2𝛿3) ≡

{
0 cases 2(d,e)

2𝑘 case 2(f)
mod 4 (Definition 1.12),

∙ 𝑣(𝑐) ≡ 𝑘 mod 2 (Theorem 2.12(3) for 𝐶).

□

Lemma 9.5. Let𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 and𝐶∕𝐾 a centred semistable C2D4
curve with  , 𝜂1, Δ ≠ 0. Suppose that the cluster picture with Frobenius action of 𝐶 is 𝑡 𝑡 0

(case 1×𝑡1(𝑎)), 𝑡 𝑡 0
(case 1×̃𝑡 1(𝑎)), 𝑡 𝑡 0

(cases 1×𝑡1(𝑏, 𝑐)) or 𝑡 𝑡 0

(cases 1×̃𝑡1(𝑏, 𝑐)). Suppose moreover that 𝑣(𝓁1) = 𝑡 in cases 1×𝑡1(𝑏, 𝑐) and 1×̃𝑡1(𝑏, 𝑐). Then

𝜆𝐶∕𝐾𝑤𝐶∕𝐾 =

⎧⎪⎪⎨⎪⎪⎩

1 𝑐𝑎𝑠𝑒𝑠 1 ×𝑡 1(𝑎, 𝑏) 𝑎𝑛𝑑 1×̃𝑡1(𝑎)

(−1)𝑟 𝑐𝑎𝑠𝑒𝑠 1 ×𝑡 1(𝑐)

(−1)𝑡 𝑐𝑎𝑠𝑒𝑠 1×̃𝑡1(𝑏)

(−1)𝑡+𝑟 𝑐𝑎𝑠𝑒𝑠 1×̃𝑡1(𝑐)

⎫⎪⎪⎬⎪⎪⎭
= (𝑐, 𝛿1)

(
𝛿̂1, −

𝓁1
Δ

)
.

Proof. The first equality follows from Theorem 7.1.
Case 1×𝑡1 (a). Galois fixes 𝛼1 and does not permute colours, so 𝛼1, Δ ∈ 𝐾 and 𝛿1, 𝛿̂1 ∈ 𝐾×2.
Case 1×̃𝑡1 (𝑎). Here 𝛿1, 𝛿̂1 ∉ 𝐾×2 and both have even valuation by Lemma 9.3, so 𝛿̂1 = 𝛿1 ⋅ □.

Moreover, here 𝑣(𝓁1) = 0 and 𝑣(Δ∕𝑐) = 0 by Lemma 8.6(1), so (𝑐, 𝛿1)(−
𝓁1
Δ
, 𝛿̂1) = (𝑐𝓁1∕Δ, 𝛿1) = 1,

as both terms have even valuation.
Cases 1×𝑡1 (b,c) and 1×̃𝑡1 (b,c). Note that 𝑣(𝑐) ≡ 𝑡 mod 2 by Theorem 2.12(3). As 𝑣(𝛿1) is even,

(𝑐, 𝛿1) =

{
1 𝛿1∈𝐾

×2

(−1)𝑡 𝛿1∉𝐾
×2
=

{
1 case 1×𝑡1(𝑏,𝑐)

(−1)𝑡 case 1×̃𝑡1(𝑏,𝑐)
.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 39

Similarly, as 𝑣(𝛿̂1) is even and 𝑣(𝓁1∕Δ)=𝑣(𝓁1)−𝑣(Δ∕𝑐)+𝑣(𝑐)≡ 𝑡−(2𝑡+𝑟)+𝑡≡𝑟 mod 2,

(𝛿̂1, −𝓁1∕Δ) =
{
1 𝛿̂1∈𝐾

×2

(−1)𝑣(𝓁1∕Δ) 𝛿̂1∉𝐾
×2
=

{
1 cases 1×𝑡1(𝑏),1×̃𝑡1(𝑏)

(−1)𝑟 cases 1×𝑡1(𝑐),1×̃𝑡1(𝑐)
. □

Lemma 9.6. Let𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 and𝐶∕𝐾 a centred semistable C2D4
curve with , 𝜂1, Δ ≠ 0. Suppose that the cluster picture with Frobenius action of 𝐶 is 𝜖

𝑛∕2
0

(case 1𝜖𝑛(𝑎)),
𝜖
𝑛∕2

𝑡
𝑡
0
(case 1×𝑡 I𝜖𝑛(𝑎)),

𝜖
𝑛∕2

0
(case 1𝜖𝑛(𝑏)), 𝜖

𝑛 0
(case

1𝜖
2𝑛
(𝑐)), or 𝜖

𝑛 0
(case 1𝜖

2𝑛
(𝑑)). Then

𝜆𝐶∕𝐾𝑤𝐶∕𝐾 = (±1)
𝑛 =

⎧⎪⎪⎨⎪⎪⎩

(𝛿1, 𝑐𝜉) cases 1±𝑛 (𝑎), 1×𝑡 I
±
𝑛 (𝑎),

(𝛿2, 𝑐𝜂1𝜂2) cases 1±𝑛 (𝑏),
(𝛿̂1, −

𝓁1
Δ
𝜂1) cases 1±

2𝑛
(𝑐),

(𝛿̂3, −2𝑐𝜉𝛿̂2𝜂2) cases 1±
2𝑛
(𝑑).

Proof. The first equality follows from Theorem 7.1.
In case 1±𝑛 (a), the cluster picture shows that 𝑛=𝑣(𝛿1), and Lemma 9.2(1) that the sign ±

is determined by whether 𝜃2
{𝛼1,−𝛼1}

= 𝑐𝜉□ is a square in 𝐾. As 𝜃2
{𝛼1,−𝛼1}

has even valuation
(Remark 2.14), it follows that (±1)𝑛 = (𝛿1, 𝑐𝜉), as required. The other cases follow similarly,
observing that 𝑛 = 𝑣(𝛿2), 𝑣(𝛿̂1)−2𝑣(Δ), 𝑣(𝛿̂3) or 𝑣(𝛿1)−2𝑡, and that the sign is determined by
whether 𝑐𝜂1𝜂2, −

𝓁1
Δ
𝜂1, −2𝑐𝜉𝛿̂2𝜂2 or 𝑐𝜉 is a square in𝐾 for cases 1±𝑛 (b), 1

±
2𝑛
(c), 1±

2𝑛
(d) and 1×𝑡 I±𝑛 (a),

respectively. (For 1±
2𝑛
(c), 𝑣(Δ) ∈ ℤ as 𝑣(Δ∕𝑐) = 0 by Lemma 8.6.) □

Lemma 9.7. Let 𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 and 𝐶∕𝐾 a centred semistable
C2D4 curve with  , 𝜂1, Δ ≠ 0. Suppose that the cluster picture with Frobenius action of 𝐶 is

𝜖
𝑛∕2

𝛿
𝑚∕2

0
(case I𝜖,𝛿𝑛,𝑚(𝑎)),

𝜖
𝑛∕2

𝑡

𝛿
𝑚∕2

𝑡 0
(case I𝜖𝑛 ×𝑡 I

𝛿
𝑚(𝑎)),

+
𝑛∕2

𝜖
𝑛∕2

0
(case I𝜖𝑛∼𝑛(𝑎)),

+
𝑛∕2

𝑡

𝜖
𝑛∕2

𝑡 0
(I𝜖𝑛×̃𝑡I𝑛(𝑎)),

𝜖
𝑛∕2

𝛿
𝑚∕2

0
(case I𝜖,𝛿𝑛,𝑚(𝑏)),

+
𝑛∕2

𝜖
𝑛∕2

0
(case I𝜖𝑛∼𝑛(𝑏)),

𝑛∕2 𝑚∕2 𝑙∕2
𝜖

0
(case U𝜖

𝑛,𝑚,𝑙
(𝑎)) or 𝑛∕2 𝑛∕2 𝑙∕2

𝜖

0
(case U𝜖

𝑛∼𝑛,𝑙
(𝑎)). Moreover, suppose that

𝑣(𝓁1) =
𝑛

2
in cases I𝜖,𝛿𝑛,𝑚(𝑏) and I𝜖𝑛∼𝑛(𝑏). Then

𝜆𝐶∕𝐾𝑤𝐶∕𝐾 =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜖𝑛𝛿𝑚

𝜖𝑛𝛿𝑚

𝜖𝑛(−1)𝑟

𝜖𝑛

𝜖𝑛+𝑟𝛿
𝑚+𝑛
2
+𝑟

𝜖𝑛+𝑟(−1)𝑛

𝜖𝑛+𝑚+𝑙

𝜖𝑙

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝛿2, 2𝑐𝜂2)(𝛿3, 2𝑐𝜂3) case I𝜖,𝛿𝑛,𝑚(𝑎),
(𝛿2, 2𝑐𝜂2)(𝛿3, 2𝑐𝜂3) case I𝜖𝑛 ×𝑡 I

𝛿
𝑚(𝑎),

(𝜋𝑟
𝐾
, 𝛿̂1)(𝜋

𝑛
𝐾
, 𝜂2𝜂3) case I𝜖𝑛∼𝑛(𝑎),

(𝜋𝑛
𝐾
, 𝜂2𝜂3) case I𝜖𝑛×̃𝑡I𝑛(𝑎),

(𝜋𝑛
𝐾
, −2𝜂1(𝛿2 + 𝛿3)(𝛿2𝜂2 + 𝛿3𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2))(𝛿̂1,

𝓁1
Δ
) case I𝜖,𝛿𝑛,𝑚(𝑏),

(𝜋𝑛
𝐾
, −2𝜂1(𝛿2 + 𝛿3)(𝛿2𝜂2 + 𝛿3𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2))(𝛿̂1,

𝓁1
Δ
) case I𝜖𝑛∼𝑛(𝑏),

(𝛿1𝛿2𝛿3, 𝑐) caseU𝜖
𝑛,𝑚,𝑙

(𝑎),

(𝛿1, 𝑐) caseU𝜖
𝑛∼𝑛,𝑙

(𝑎).

Proof. The first equality follows from Theorem 7.1.
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40 DOKCHITSER and MAISTRET

Cases I𝜖,𝛿𝑛,𝑚(𝑎), I
𝜖
𝑛 ×𝑡 I

𝛿
𝑚(𝑎): here 𝑣(𝛿2) = 𝑛 + 2𝑡 and 𝑣(𝛿3) = 𝑚 + 2𝑡 (with 𝑡 = 0 for I𝜖,𝛿𝑛,𝑚(𝑎)). Also

𝜖 = + if and only if 𝜃2
{𝛼2,𝛽2}

= 2𝑐𝜂2□ ∈ 𝐾×2, by Lemma 9.2(5). Similarly, 𝛿 = + if and only if
𝜃2
{𝛼3,𝛽3}

= 2𝑐𝜂3□ ∈ 𝐾×2, by Lemma 9.2(5). The results follows since 𝜃2
{𝛼2,𝛽2}

and 𝜃2
{𝛼3,𝛽3}

have even
valuations by Remark 2.14.
Case I𝜖𝑛∼𝑛(a): here 𝜖 = + if and only if 𝜃2

{𝛼2,𝛽2}
𝜃2
{𝛼3,𝛽3}

= 𝜂2𝜂3□ ∈ 𝐾×2, by Lemma 9.2(6). Also

𝛿̂1 ∉ 𝐾
×2 by Lemma 9.3. The result follows as 𝑣(𝛿̂1) = 0 and 𝜃2

{𝛼2,𝛽2}
and 𝜃2

{𝛼3,𝛽3}
have even

valuations by Remark 2.14.
Case I𝜖𝑛×̃𝑡I𝑛(a): here 𝜖 = + if and only if 𝜃2

{𝛼2,𝛽2}
𝜃2
{𝛼3,𝛽3}

= 𝜂2𝜂3□ ∈ 𝐾×2, by Lemma 9.2(10).

Cases I𝜖,𝛿𝑛,𝑚(b) and I
𝜖
𝑛∼𝑛(b): write the right-hand side as (𝜋

𝑛
𝐾
, 2(𝛿2 + 𝛿3)) ⋅ (𝜋

𝑛
𝐾
, −𝜂1(𝛿2𝜂2 + 𝛿3𝜂3) ⋅

(𝛿̂2𝜂3 + 𝛿̂3𝜂2))(𝛿̂1,
𝓁1
Δ
). From the cluster picture 2(𝛿2 + 𝛿3) is a square in the first case, and a non-

square unit in the second case. So, (𝜋𝑛
𝐾
, 2(𝛿2 + 𝛿3)) = 1 for I

𝜖,𝛿
𝑛,𝑚(𝑏), and (𝜋𝑛𝐾, 2(𝛿2 + 𝛿3)) = (−1)

𝑛

for I𝜖𝑛∼𝑛(b). By Lemma 9.2(7), 𝜃
2
{𝛼2,𝛼3}

𝜃2
{𝛽2,𝛽3}

= −𝜂1(𝛿2𝜂2 + 𝛿3𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2)□ is a square if and
only if 𝜖𝛿 = + in the first case, and if and only if 𝜖 = + in the second case. In summary,

(𝜋𝑛𝐾, −2𝜂1(𝛿2 + 𝛿3)(𝛿2𝜂2 + 𝛿3𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2)) =

{
𝜖𝑛𝛿𝑛 case I𝜖,𝛿𝑛,𝑚(b)

𝜖𝑛(−1)𝑛 case I𝜖𝑛∼𝑛(b).

Also 𝑣(Δ) = 𝑣(𝑐) + 𝑛

2
+ 𝑟 ≡ 𝑛

2
+ 𝑟mod 2 by the semistability criterion (Theorem 2.12), so that

𝑣(
𝓁1
Δ
) ≡ 𝑟 mod 2 and 𝑣(𝛿̂1) = 𝑣(Δ2𝛿̂1) − 2𝑣(Δ) ≡

𝑚−𝑛

2
mod 2 (with 𝑛 = 𝑚 in the case I𝜖𝑛∼𝑛(b)).

If 𝑛 < 𝑚, without loss of generality 𝛼2 ≡ 𝛼3 mod 𝜋
𝑚∕2
𝐾

. This gives Δ∕𝑐 ≡ (𝛽2 − 𝛽3)(𝛼1 − 𝛼2) ⋅
(𝛽1 − 𝛼2)mod 𝜋

𝑚∕2
𝐾

, so that Δ has valuation exactly 𝑛∕2 and hence 𝑟 = 0 so (𝛿̂1,
𝓁1
Δ
) =

(𝜋
𝑚−𝑛
2

𝐾
,
𝓁1
Δ
) = 𝛿

𝑚−𝑛
2 by Lemma 9.2(7). Conversely if 𝑛 = 𝑚, then (𝛿̂1,

𝓁1
Δ
) = (𝜋𝑟

𝐾
, 𝛿̂1). By Lemma 9.3,

𝛿̂1 is a square if and only if 𝜖𝛿 = + in the case I𝜖,𝛿𝑛,𝑚(b), and if and only if 𝜖 = + in the case I𝜖𝑛∼𝑛(b)
which proves the result.
Cases U𝜖

𝑛,𝑚,𝑙
(a) andU𝜖

𝑛∼𝑛,𝑙
(a): here 𝑣(𝑐) is even by the semistability criterion (Theorem 2.12),

𝑣(𝛿1) = 𝑙, 𝑣(𝛿2) = 𝑛 and 𝑣(𝛿3) = 𝑚. By definition 𝜖 = + if and only if 𝑐 ∈ 𝐾×2 (see Defini-
tion 2.13). □

9.2 The value of 𝑬𝑪∕𝑲

We now turn to the value of 𝐸𝐶∕𝐾 and show that 𝜆𝐶∕𝐾𝑤𝐶∕𝐾 = 𝐸𝐶∕𝐾 in all cases of Theorem 9.1.
For convenience, we first recall some basic properties of Hilbert symbols. Recall that (𝐴, 𝐵) = 1

if 𝐴 or 𝐵 is a square and whenever 𝐴, 𝐵 are both units for odd places.

Lemma 9.8. Let 𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝, and 𝐴, 𝐵, 𝐶 ∈ 𝐾×. Then

(1) (𝐴 + 𝐵,−𝐴𝐵) = (𝐴, 𝐵), whenever 𝐴 + 𝐵 ∈ 𝐾×.
(2) (𝐴,−𝐵𝐶) = (𝜋𝑣(𝐵)∕2

𝐾
, −𝐵𝐶), whenever 𝐴2 = 𝐵 + 𝐶 with 𝑣(𝐵) and 𝑣(𝐶) even, and with

𝑣(𝐵) ⩽ 𝑣(𝐶) (equivalently 𝑣(𝐵) ⩽ 𝑣(𝐴2)). If, moreover, 4|𝑣(𝐵) or 2|𝑣(𝐴), then (𝐴,−𝐵𝐶) = 1.
Proof.

(1) By [30, Ch. 3 Prop. 2(ii)], (𝑥, 1 − 𝑥) = (𝑥, −𝑥) = 1, whenever 𝑥, 1 − 𝑥 ∈ 𝐾×. Using this, we
have (𝐴 + 𝐵,−𝐴𝐵) = (𝐴 + 𝐵,−𝐴

𝐵
) = (1 + 𝐴

𝐵
, −𝐴

𝐵
)(𝐵, −𝐴

𝐵
) = 1 × (𝐵,−𝐴𝐵) = (𝐵,𝐴).
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 41

(2) If 𝑣(𝐴2) > 𝑣(𝐵) = 𝑣(𝐶), then 𝐵 ≡ −𝐶 mod 𝜋2𝑣(𝐴)
𝐾

hence −𝐵𝐶 is a square. If 𝑣(𝐶) ⩾ 𝑣(𝐵) =
𝑣(𝐴2), then (𝐴,−𝐵𝐶) = (𝜋𝑣(𝐴)

𝐾
, −𝐵𝐶) = (𝜋

𝑣(𝐵)∕2
𝐾

, −𝐵𝐶).

The second statement is then clear as either𝜋
𝑣( 𝐵
2
)

𝐾
is a square, or both𝐴 and−𝐵𝐶 have even

valuation. □

We will also make extensive use of the following identities in conjunction with Lemma 9.8(2).

Lemma 9.9. Let 𝐾 be a field and 𝐶∕𝐾 a centred C2D4 curve with 𝓁1 ≠ 0. Then

(1) ( 1
2
(𝛿2 + 𝛿3))

2 = 𝛿2𝛿3 + 𝓁2
1
𝑧2, where 𝑧 = (𝛼2−𝛽2−𝛼3+𝛽3)(𝛼2−𝛽2+𝛼3−𝛽3)

2𝓁1
∈ 𝐾,

(2) 𝜂2
1
= 4Δ2𝛿̂1 + 𝛿2𝛿3,

(3) 𝜉2 = 𝛿̂2𝛿̂3 + 𝛿1(
𝜉𝑝−𝜉𝑚

𝛼1
)2, where 𝜉𝑝−𝜉𝑚

𝛼1
∈ 𝐾, 𝜉𝑝 = 2(𝛼2 + 𝛼1)(𝛽2 + 𝛼1)(𝛼3 + 𝛼1)(𝛽3 + 𝛼1) and

𝜉𝑚 = 2(𝛼2 − 𝛼1)(𝛽2 − 𝛼1)(𝛼3 − 𝛼1)(𝛽3 − 𝛼1),
(4) (a) 𝜂2

2
= 𝛿̂3 + 𝛿2(𝛼2 + 𝛽2)

2,
(b) 𝜂2

3
= 𝛿̂2 + 𝛿3(𝛼3 + 𝛽3)

2,
(5) (𝛿2𝜂2 + 𝛿3𝜂3)2 = 4𝜂2𝜂3𝛿2𝛿3 + 𝓁2

1
(
𝛿2𝜂2−𝛿3𝜂3

𝓁1
)2, where 𝛿2𝜂2−𝛿3𝜂3

𝓁1
∈ 𝐾

(6) (𝛿̂2𝜂3 + 𝛿̂3𝜂2)2 = 4𝜂2𝜂3𝛿̂2𝛿̂3 + 𝓁2
1
(
𝛿̂2𝜂3−𝛿̂3𝜂2

𝓁1
)2, where 𝛿̂2𝜂3−𝛿̂3𝜂2

𝓁1
∈ 𝐾.

(7) −Δ𝓁1
𝑐
= Δ2𝛿̂1 + 𝓁2

1
𝛿1 − (𝛼2𝛽2 − 𝛼3𝛽3)

2.

Proof. Follows from direct computations using Definition 1.12. □

Lemma 9.10. Let 𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 and 𝐶∕𝐾 a centred semistable
C2D4 curve with  , 𝜂1, Δ ≠ 0. Suppose that the cluster picture with Frobenius action of 𝐶 is

0
(cases 2(𝑎, 𝑑)), 𝑘 0

(cases 2(𝑏, 𝑒)), 𝑘 0
(cases 2(𝑐, 𝑓)), 𝑡 𝑡 0

(case 1×𝑡1(𝑎)), 𝑡 𝑡 0
(case 1×̃𝑡1(𝑎)), 𝑡 𝑡 0

(cases 1×𝑡1(𝑏, 𝑐)) or 𝑡 𝑡 0

(cases 1×̃𝑡1(𝑏, 𝑐)). Then

𝐸𝐶∕𝐾 =

⎧⎪⎨⎪⎩
(𝛿̂1, −

𝓁1
Δ
) cases 2(𝑎, 𝑏, 𝑑, 𝑒),

(𝛿̂1, −𝑐
𝓁1
Δ
) cases 2(𝑐, 𝑓),

(𝑐, 𝛿1)(𝛿̂1, −
𝓁1
Δ
) cases 1×𝑡1(𝑎, 𝑏, 𝑐), 1×̃𝑡1(𝑎, 𝑏, 𝑐).

Proof. We will abbreviate cases 1×𝑡1(a,b,c) as 1abc, 1×̃𝑡1(a,b,c) as 1̃abc and 2(a,b,c) as 2abc. We
set 𝑘 = 𝑡 for these cases, as the two parameters will play an identical role. We also set 𝑘 = 0 for
the cases 2(a,d).
From the cluster picture of 𝐶, we find that

∙ in cases 2abde 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 2𝑘, 𝑣(Δ2𝛿̂1) = 4𝑘, 𝑣(𝜉) ⩾ 2𝑘, 𝑣(𝜂2), 𝑣(𝜂3) ⩾ 𝑘,
∙ in cases 2cf 𝑣(𝛿2) = 0, 𝑣(𝛿3) = 2𝑘, 𝑣(𝛿̂2) = 4𝑘, 𝑣(𝛿̂3) = 2𝑘, 𝑣(Δ2𝛿̂1) = 2𝑘, 𝑣(𝜉) ⩾ 3𝑘, 𝑣(𝜂1) ⩾ 𝑘,
𝑣(𝜂2) = 0, 𝑣(𝜂3) ⩾ 2𝑘,

∙ in cases 1a, 1̃a 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 2𝑘, 𝑣(𝛿1) = 𝑣(Δ
2𝛿̂1) = 0, 𝑣(𝜉) ⩾ 2𝑘,

𝑣(𝜂2), 𝑣(𝜂3) ⩾ 𝑘,

By Theorem 2.12(3), 𝑣(𝑐) ≡ 𝑘 mod 2.
The result follows by combining the following (see below for proof of †). We write ‘both even’

to mean (𝐴, 𝐵) = 1 because 𝑣(𝐴) and 𝑣(𝐵) are even.
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42 DOKCHITSER and MAISTRET

∙ ( 1
2
(𝛿2+𝛿3), −𝓁

2
1
𝛿2𝛿3)=1 (both even for 2cf; 9.9(1) and 9.8(2) for all others),

∙ (2, 𝛿2𝛿3) = 1 (both even),

† (𝛿2𝜂2+𝛿3𝜂3, −𝓁
2
1
𝛿2𝛿3𝜂2𝜂3)(𝛿̂2𝜂3+𝛿̂3𝜂2, −𝓁

2
1
𝛿̂2𝛿̂3𝜂2𝜂3)(𝜂2𝜂3, −𝛿2𝛿3𝛿̂2𝛿̂3)

=

{
1 cases 2cf

(𝜋𝑘
𝐾
,𝛿2𝛿3𝛿̂2𝛿̂3) all other cases

,

∙ (𝛿̂2𝛿̂3, −2) = 1 (both even),

∙ (𝜉, −𝛿1𝛿̂2𝛿̂3) =

{
(𝜋3𝑘
𝐾
,−𝛿1𝛿̂2𝛿̂3) cases 2cf

1 all other cases
(9.9(3) and 9.8(2)),

∙ (𝜂1, −Δ
2𝛿̂1𝛿2𝛿3) =

{
(𝜋𝑘
𝐾
,−Δ2𝛿̂1𝛿2𝛿3) cases 2cf

1 all other cases
(9.9(2) and 9.8(2)),

∙ (𝓁2
1
, −𝓁2𝓁3) = 1 (if 𝓁1 ∉ 𝐾, thenGalois swaps 𝓁2 and 𝓁3, so 𝑣(𝓁21), 𝑣(𝓁2𝓁3) ∈ 2ℤ),

∙ (𝑐, Δ2𝛿̂1𝛿̂2𝛿̂3𝛿1𝛿2𝛿3)=(𝜋
𝑘
𝐾
, Δ2𝛿̂1𝛿̂2𝛿̂3𝛿1𝛿2𝛿3) for 2cf (𝑣(𝑐) ≡ 𝑘 mod 2, 𝑣(Δ2𝛿̂1𝛿̂2𝛿̂3𝛿1𝛿2𝛿3) ∈ 2ℤ),

∙ (𝑐, Δ2) = 1 for 2cf (Δ ∈ 𝐾),
∙ (𝑐, 𝛿̂2𝛿̂3𝛿2𝛿3) = (𝜋

𝑘
𝐾
, 𝛿̂2𝛿̂3𝛿2𝛿3) for 2abde, 1abc, 1̃abc (𝑣(𝑐) ≡ 𝑘 mod 2, 𝑣(𝛿̂2𝛿̂3𝛿2𝛿3) ∈ 2ℤ),

∙ (𝑐, 𝛿1) = 1 for cases 2abde (both even for 2ad; 𝛿1 ∈ 𝐾×2 for 2be).

□

Proof of †. If Galois does not swap sapphire roots with turquoise roots, then
𝓁1, 𝛿2, 𝛿3, 𝛿̂2, 𝛿̂3, 𝜂2, 𝜂3 ∈ 𝐾, and the claim follows from:

∙ (𝛿2𝜂2+𝛿3𝜂3, −𝓁
2
1
𝛿2𝛿3𝜂2𝜂3) = (𝛿2𝜂2, 𝛿3𝜂3) (9.8(1), 𝓁2

1
∈ 𝐾×2),

∙ (𝛿̂2𝜂3+𝛿̂3𝜂2, −𝓁
2
1
𝛿̂2𝛿̂3𝜂2𝜂3) = (𝛿̂2𝜂3, 𝛿̂3𝜂2) (9.8(1), 𝓁2

1
∈ 𝐾×2),

∙ (𝜂2, −𝛿2𝛿̂3) =

{
1 cases 2cf

(𝜋𝑘
𝐾
,−𝛿2𝛿̂3) all other cases

(both even for 2cf; 9.9(4a) and 9.8(2) for all others),

∙ (𝜂3, −𝛿3𝛿̂2) =

{
1 cases 2cf

(𝜋𝑘
𝐾
,−𝛿3𝛿̂2) all other cases

(9.9(4b) and 9.8(2)),

∙ (𝛿2, 𝛿3) = 1 (both even),
∙ (𝛿̂2, 𝛿̂3) = 1 (both even),

If Galois does swap the sapphire roots with the turquoise roots, then we are not in cases
2cf; moreover, 𝑣(𝜂2) = 𝑣(𝜂3) = 𝑛, say, as 𝜂2 and 𝜂3 are Galois conjugate. Recall that 𝑛 ⩾
𝑘 in all these cases, and note that if 𝑛 ≠ 𝑘, then 1

𝜋2𝑘
𝐾

𝛿̂3 ≡ −
1

𝜋2𝑘
𝐾

𝛿2(𝛼2 + 𝛽2)
2 and 1

𝜋2𝑘
𝐾

𝛿̂2 ≡

− 1

𝜋2𝑘
𝐾

𝛿3(𝛼3 + 𝛽3)
2 in the residue field by Lemma 9.9(4), so that 𝛿2𝛿3𝛿̂2𝛿̂3 ∈ 𝐾×2. The result follows

from:

∙ (𝛿2𝜂2+𝛿3𝜂3, −𝓁
2
1
𝛿2𝛿3𝜂2𝜂3) = (𝜋

𝑛
𝐾
, −𝓁2

1
𝛿2𝛿3𝜂2𝜂3) (9.9(7) and 9.8(2)),

∙ (𝛿̂2𝜂3+𝛿̂3𝜂2, −𝓁
2
1
𝛿̂2𝛿̂3𝜂2𝜂3) = (𝜋

𝑛
𝐾
, −𝓁2

1
𝛿̂2𝛿̂3𝜂2𝜂3) (9.9(6) and 9.8(2)),

∙ (𝜂2𝜂3, −𝛿2𝛿3𝛿̂2𝛿̂3) = 1 (both even),
∙ (𝜋𝑛

𝐾
, 𝛿̂2𝛿̂3𝛿2𝛿3) = (𝜋

𝑘
𝐾
, 𝛿̂2𝛿̂3𝛿2𝛿3) (either 𝑛 = 𝑘 or 𝛿̂2𝛿̂3𝛿2𝛿3 = □).

□

Lemma9.11. Let𝐾∕ℚ𝑝 be a finite extension for an odd prime𝑝 and𝐶∕𝐾 a centred semistable C2D4
curve with , 𝜂1, Δ ≠ 0. Suppose that the cluster picture with Frobenius action of 𝐶 is 𝜖

𝑛∕2
0

(case 1𝜖𝑛(𝑎)),
𝜖
𝑛∕2

𝑡
𝑡
0
(case 1×𝑡 I𝜖𝑛(𝑎)),

𝜖
𝑛∕2

0
(case 1𝜖𝑛(𝑏)),

𝜖
𝑛 0

(case
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 43

1𝜖
2𝑛
(𝑐)) or 𝜖

𝑛 0
(case 1𝜖

2𝑛
(𝑑)). Suppose moreover that 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) =

𝑣(𝜂3) = 0. Then

𝐸𝐶∕𝐾 =

⎧⎪⎪⎨⎪⎪⎩

(𝛿1, 𝑐𝜉) cases 1±𝑛 (𝑎), 1×𝑡 I
±
𝑛 (𝑎),

(𝛿2, 𝑐𝜂1𝜂2) cases 1±𝑛 (𝑏),
(𝛿̂1, −

𝓁1
Δ
𝜂1) cases 1±

2𝑛
(𝑐),

(𝛿̂3, −2𝑐𝜉𝛿̂2𝜂2) cases 1±
2𝑛
(𝑑).

Proof. Note that if Galois does not swap sapphire and turquoise roots, then necessarily 𝓁1, Δ, 𝛿2,
𝛿3, 𝛿̂2, 𝛿̂3, 𝜂2, 𝜂3 ∈ 𝐾. From the cluster picture of 𝐶, we read off the following basic properties
depending on the case:

∙ 1±𝑛 (a): 𝑣(𝛿1) = 𝑛, 𝑣(Δ
2𝛿̂1) = 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 𝑣(𝜉) = 0, 𝑣(𝑐) ≡ 0 mod 2 (Theo-

rem 2.12(3)),
∙ 1±𝑛 (b): 𝑣(𝛿2) = 𝑛, 𝑣(Δ

2𝛿̂1) = 𝑣(𝛿1) = 𝑣(𝛿3) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 𝑣(𝜂1) = 0, 𝑣(𝑐) ≡ 0 mod 2 (Theo-
rem 2.12(3)), 𝓁1, Δ, 𝛿2, 𝛿3, 𝛿̂2, 𝛿̂3, 𝜂2, 𝜂3 ∈ 𝐾, 𝛿̂1 ∈ 𝐾×2,

∙ 1±𝑛 (c): 𝑣(Δ
2𝛿̂1) = 𝑛, 𝑣(𝛿1) = 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 𝑣(𝜂1) = 0, 𝑣(Δ) = 𝑣(𝑐) ≡ 0 mod 2

(Theorem 2.12(3) and Lemma 8.6(1)),
∙ 1±𝑛 (d): 𝑣(𝛿̂3) = 𝑛, 𝑣(Δ

2𝛿̂1) = 𝑣(𝛿1) = 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑣(𝛿̂2) = 𝑣(𝜉) = 0, 𝑣(Δ) = 𝑣(𝑐) ≡ 0 mod 2
(Theorem 2.12(3) and Lemma 8.6(1)), 𝓁1, Δ, 𝛿2, 𝛿3, 𝛿̂2, 𝛿̂3, 𝜂2, 𝜂3 ∈ 𝐾,

∙ 1×𝑡 I
±
𝑛 (a): 𝑣(𝛿1) = 2𝑡+𝑛, 𝑣(𝛿2) = 𝑣(𝛿̂2) = 0, 𝑣(𝛿3) = 𝑣(Δ

2𝛿̂1) = 𝑣(𝛿̂3) = 2𝑡, 𝑣(𝜉) = 𝑡, 𝑣(Δ) =
𝑣(𝑐) ≡ 𝑡 mod 2 (Theorem 2.12(3) and Lemma 8.6(1)), Δ2 ∈ 𝐾×2.

Recall also that, by hypothesis, 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0 in all cases.
We now simplify theHilbert symbols in the expression for𝐸𝐶∕𝐾 according to the case, as shown

below. These are obtained simply by cancelling expressions of the form (𝐴, 𝐵) where both 𝐴 and
𝐵 have even valuation or where 𝐴 is a perfect square, or by using the identities of Lemma 9.9
together with the Hilbert symbol result for expressions of the form 𝐴2 = 𝐵 + 𝐶 of Lemma 9.8(2)
as indicated in the final column (the letters in brackets refer to the cases, with ‘e’ referring to
1×I±𝑛 (𝑎)). The proof of the entry (∗) is given below. The result follows by taking the product of the
Hilbert symbols.

Symbol 1±
𝑛
(𝑎) 1±

𝑛
(𝑏) 1±

2𝑛
(𝑐) 1±

2𝑛
(𝑑) 1 ×𝑡 I

±
𝑛
(𝑎) Proof

( 1
2
(𝛿2+𝛿3), −𝓁

2
1
𝛿2𝛿3) 1 ( 1

2
𝛿3, 𝛿2) 1 1 1 9.9(1), 9.8(2)[𝑎𝑐𝑑]

(2, −𝓁2
1
𝛿2𝛿3) 1 (2, 𝛿2) 1 1 1

(𝛿2𝜂2+𝛿3𝜂3, −𝓁
2
1
𝜂2𝜂3𝛿2𝛿3) 1 (𝛿3𝜂3, 𝛿2) 1 1 1 9.9(7), 9.8(2)[𝑎𝑐𝑑]

(𝛿̂2𝜂3+𝛿̂3𝜂2, −𝓁
2
1
𝜂2𝜂3𝛿̂2𝛿̂3) 1 1 1 (𝛿̂2𝜂3, 𝛿̂3) 1 9.9(6), 9.8(2)[𝑎𝑏𝑐]

(𝜉, −𝛿1𝛿̂2𝛿̂3) (𝜉, 𝛿1) 1 1 (𝜉, 𝛿̂3) (𝜉, 𝛿1)(𝜋
𝑡
𝐾
, −𝛿̂2𝛿̂3) 9.9(3), 9.8(2)[𝑏𝑐]

(𝜂2𝜂3, 𝛿2𝛿3𝛿̂2𝛿̂3) 1 (𝜂2𝜂3, 𝛿2) 1 (𝜂2𝜂3, 𝛿̂3) 1

(𝑐, 𝛿1𝛿2𝛿3𝛿̂2𝛿̂3) (𝑐, 𝛿1) (𝑐, 𝛿2) 1 (𝑐, 𝛿̂3) (𝑐, 𝛿1)(𝜋
𝑡
𝐾
, 𝛿2𝛿3𝛿̂2𝛿̂3)

(𝜂1, −Δ
2𝛿̂1𝛿2𝛿3) 1 (𝜂1, 𝛿2) (𝜂1, 𝛿̂1) 1 (𝜋𝑡

𝐾
, −𝛿̂1𝛿2𝛿3) 9.9(2), 9.8(2)[𝑎𝑑𝑒]

(𝛿̂1, −𝓁1∕Δ) 1 (∗) 1 (𝛿̂1, −𝓁1∕Δ) 1 (𝜋𝑡
𝐾
, 𝛿̂1)

(𝓁2
1
, −𝓁2𝓁3) 1 1 1 1 1

(2, −𝓁2
1
) 1 1 1 1 1

(−2, 𝛿̂2𝛿̂3) 1 1 1 (−2, 𝛿̂3) 1
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44 DOKCHITSER and MAISTRET

Proof of (∗): In case 1±𝑛 (a), 𝑣(Δ
2𝛿̂1) = 𝑣(𝓁1) = 0, so if 𝑣(Δ) = 0, then clearly (𝛿̂1, −𝓁1∕Δ) = 1. Sup-

pose 𝑣(Δ) > 0 with 𝑣(Δ∕𝑐) > 0. By Lemma 9.9(7), Δ2𝛿̂1 ≡ (𝛼2𝛽2 − 𝛼3𝛽3)2 in the residue field. As
𝛼2𝛽2−𝛼3𝛽3

𝓁1
is fixed by Galois, it is𝐾-rational. Thus, Δ

2

𝓁2
1

𝛿̂1 ∈ 𝐾
×2, and, asΔ∕𝓁1 ∈ 𝐾, also 𝛿̂1 ∈ 𝐾×2. If

𝑣(Δ) > 0 with 𝑣(Δ∕𝑐) = 0, then 𝑣(Δ) = −𝑣(𝑐). By the semistability criterion (Theorem 2.12), 𝑣(𝑐)
is even. Thus, 𝑣(Δ) is even and (𝛿̂1, −𝓁1∕Δ) = 1. □

Lemma 9.12. Let 𝐾∕ℚ𝑝 be a finite extension for an odd prime 𝑝 and 𝐶∕𝐾 a centred semistable
C2D4 curve with  , 𝜂1, Δ ≠ 0. Suppose that the cluster picture with Frobenius action of 𝐶 is

𝜖
𝑛∕2

𝛿
𝑚∕2

0
(case I𝜖,𝛿𝑛,𝑚(𝑎)),

𝜖
𝑛∕2

𝑡

𝛿
𝑚∕2

𝑡 0
(case I𝜖𝑛 ×𝑡 I

𝛿
𝑚(𝑎)),

+
𝑛∕2

𝜖
𝑛∕2

0 (case

I𝜖𝑛∼𝑛(𝑎)),
+
𝑛∕2

𝑡

𝜖
𝑛∕2

𝑡 0
(I𝜖𝑛×̃𝑡I𝑛(𝑎)),

𝜖
𝑛∕2

𝛿
𝑚∕2

0
(case I𝜖,𝛿𝑛,𝑚(𝑏)),

+
𝑛∕2

𝜖
𝑛∕2

0

(case I𝜖𝑛∼𝑛(𝑏)), 𝑛∕2 𝑚∕2 𝑙∕2
𝜖

0
(case U𝜖

𝑛,𝑚,𝑙
(𝑎),), 𝑛∕2 𝑛∕2 𝑙∕2

𝜖

0
(case U𝜖

𝑛∼𝑛,𝑙
(𝑎)). More-

over, suppose that

∙ in cases I𝜖,𝛿𝑛,𝑚(𝑎) and I𝜖𝑛∼𝑛(𝑎), 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 0,
∙ in cases I𝜖,𝛿𝑛,𝑚(𝑏) and I𝜖𝑛∼𝑛(𝑏), 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0, 𝑣(𝓁1) =

𝑛

2
.

Then

𝐸𝐶∕𝐾 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝛿2, 2𝑐𝜂2)(𝛿3, 2𝑐𝜂3) case I𝜖,𝛿𝑛,𝑚(𝑎),
(𝛿2, 2𝑐𝜂2)(𝛿3, 2𝑐𝜂3) case I𝜖𝑛×𝑡 I

𝛿
𝑚(𝑎),

(𝜋𝑟
𝐾
, 𝛿̂1)(𝜋

𝑛
𝐾
, 𝜂2𝜂3) case I𝜖𝑛∼𝑛(𝑎),

(𝜋𝑛
𝐾
, 𝜂2𝜂3) case I𝜖𝑛×̃𝑡I𝑛(𝑎),

(𝜋𝑛
𝐾
, −2𝜂1(𝛿2 + 𝛿3)(𝛿2𝜂2 + 𝛿3𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2))(𝛿̂1,

𝓁1
Δ
) case I𝜖,𝛿𝑛,𝑚(𝑏),

(𝜋𝑛
𝐾
, −2𝜂1(𝛿2 + 𝛿3)(𝛿2𝜂2 + 𝛿3𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2))(𝛿̂1,

𝓁1
Δ
) case I𝜖𝑛∼𝑛(𝑏),

(𝛿1𝛿2𝛿3, 𝑐) caseU𝜖
𝑛,𝑚,𝑙

(𝑎),

(𝛿1, 𝑐) caseU𝜖
𝑛∼𝑛,𝑙

(𝑎).

Proof. We first record basic properties of the quantities appearing in the Hilbert symbols in
the statement. These follow directly from the definitions and the cluster picture of 𝐶, along
with the semistability criterion (Theorem 2.12) to control the parity of 𝑣(𝑐) and occasionally
Hensel’s lemma to show that certain quantities are squares in 𝐾 when they are squares over the
residue field.
We then simplify the Hilbert symbols defining 𝐸𝐶∕𝐾 according to the cluster picture of 𝐶. Here

we cancel expressions of the form (𝐴, 𝐵)where both 𝐴 and 𝐵 have even valuation or where 𝐴 is a
perfect square, and occasionally use the identity (𝐴 + 𝐵,−𝐴𝐵) = (𝐴, 𝐵) (Lemma 9.8(1), indicated
by a ∗) or the Hilbert symbol expression of Lemma 9.8(2) together with the appropriate identity
from Lemma 9.9 (indicated by a †). The simplified expressions are displayed in the tables below.
The result follows by taking the product of the Hilbert symbols.

I𝜖,𝛿𝑛,𝑚(a): 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝛿1) = 𝑣(Δ2𝛿̂1) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 0,
𝑣(𝜉) ⩾ 0, 𝑣(𝑐) ≡ 0 mod 2, 𝓁1, Δ, 𝛿2, 𝛿3, 𝜂2, 𝜂3 ∈ 𝐾×, 𝜂1 = 2□, 𝛿̂1 = □;

I𝜖𝑛×𝑡 I
𝛿
𝑚(a): 𝑣(Δ

2𝛿̂1) = 0, 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 2𝑡, 𝑣(𝜉) ⩾ 2𝑡, 𝓁1, Δ, 𝛿2, 𝛿3, 𝛿̂2, 𝛿̂3, 𝜂2, 𝜂3 ∈ 𝐾×, 𝛿1 = □,
𝜂1 = 2□, 𝛿̂1 = □, 𝛿̂2 = □, 𝛿̂3 = □;

I𝜖𝑛∼𝑛(a): 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝛿1) = 𝑣(Δ
2𝛿̂1) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 𝑣(𝜂1) = 𝑣(𝜂2) =

𝑣(𝜂3) = 0, 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑛, 𝑣(𝜉) ⩾ 0, 𝑣(𝑐) ≡ 0 mod 2, 𝑣(Δ) = 𝑣(𝑐) + 𝑟 ≡ 𝑟 mod 2;
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 45

I𝜖𝑛×̃𝑡I𝑛(a): 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝛿1) = 𝑣(Δ
2𝛿̂1) = 𝑣(𝜂1) = 0, 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 2𝑡,

𝑣(𝜂2) = 𝑣(𝜂3) = 𝑡, 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑛+2𝑡, 𝑣(𝜉) ⩾ 2𝑡, 𝑣(Δ) = 𝑣(𝑐) ≡ 𝑡 mod 2 (The-
orem 2.12(3), Lemma 8.6), 𝛿̂1 = 𝛿1□ (as 𝑣(𝛿1) = 0, 𝛿1 ≠ □ and, by Lemma 9.3
𝑣(𝛿̂1) ∈ 2ℤ, 𝛿̂1 ≠ □).

Symbol I𝜖,𝛿𝑛,𝑚(a), I𝜖𝑛×𝑡 I
𝛿
𝑚
(a) I𝜖

𝑛∼𝑛
(a) I𝜖

𝑛
×̃𝑡I𝑛(a)

( 1
2
(𝛿2+𝛿3), −𝓁

2
1
𝛿2𝛿3) (𝛿2, 𝛿3)(2, 𝛿2𝛿3) ∗ (𝜋𝑛

𝐾
, −𝓁2

1
𝛿2𝛿3) † (𝜋𝑛

𝐾
, −𝓁2

1
𝛿2𝛿3) †

(2, −𝓁2
1
𝛿2𝛿3) (2, 𝛿2𝛿3) 1 1

(𝛿2𝜂2+𝛿3𝜂3, −𝓁
2
1
𝜂2𝜂3𝛿2𝛿3) (𝛿2𝜂2, 𝛿3𝜂3) ∗ (𝜋𝑛

𝐾
, −𝓁2

1
𝜂2𝜂3𝛿2𝛿3) † (𝜋𝑛+𝑡

𝐾
, −𝓁2

1
𝜂2𝜂3𝛿2𝛿3) †

(𝛿̂2𝜂3+𝛿̂3𝜂2, −𝓁
2
1
𝜂2𝜂3𝛿̂2𝛿̂3) (𝜂2, 𝜂3) ∗ 1 † (𝜋𝑡

𝐾
, −𝓁2

1
𝜂2𝜂3𝛿̂2𝛿̂3) †

(𝜉, −𝛿1𝛿̂2𝛿̂3) 1 † 1 † 1 †

(𝜂2𝜂3, 𝛿2𝛿3𝛿̂2𝛿̂3) (𝜂2𝜂3, 𝛿2𝛿3) 1 1

(𝑐, 𝛿1𝛿2𝛿3𝛿̂2𝛿̂3) (𝑐, 𝛿2𝛿3) 1 (𝜋𝑡
𝐾
, 𝛿1𝛿2𝛿3𝛿̂2𝛿̂3)

(𝜂1, −Δ
2𝛿̂1𝛿2𝛿3) (2, 𝛿2𝛿3) 1 1

(𝛿̂1, −𝓁1∕Δ) 1 (𝛿̂1, 𝜋
𝑟
𝐾
) (𝛿1, 𝜋

𝑡
𝐾
)

(𝓁2
1
, −𝓁2𝓁3) 1 1 1

(2, −𝓁2
1
) 1 1 1

(−2, 𝛿̂2𝛿̂3) 1 1 1

I𝜖,𝛿𝑛,𝑚(b): 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 𝑣(𝛿1) = 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 𝑣(𝜂1) = 0,
𝑣(𝓁1) =

𝑛

2
, 𝑣(𝜉) ⩾ 0, 𝑣(𝑐) ≡ 0 mod 2, 𝑣(Δ2) = 𝑛+2𝑟+2𝑣(𝑐) ≡ 𝑛 mod 2, 𝓁2𝓁3 = □,

𝜂1 = −□, 𝑣(𝛿2 + 𝛿3) = 𝑣(𝛿2𝜂2 + 𝛿3𝜂3) = 𝑣(𝛿̂2𝜂3 + 𝛿̂3𝜂2) = 0 (because 𝛿2 ≡ 𝛿3,
𝜂2 ≡ 𝜂3, 𝛿̂2 ≡ 𝛿̂3 in the residue field);

I𝜖𝑛∼𝑛(b): 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝜂2) = 𝑣(𝜂3) = 𝑣(𝛿1) = 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 𝑣(𝜂1) = 0,
𝑣(𝓁1) =

𝑛

2
, 𝑣(𝛿̂1Δ

2) = 𝑛, 𝑣(𝜉) ⩾ 0, 𝑣(𝑐) ≡ 0 mod 2, 𝑣(𝛿̂1) ≡ 𝑣(𝛿̂1Δ
2) − 𝑣(Δ2∕𝑐2) ≡

0 mod 2, 𝓁2𝓁3 = □, 𝑣(𝛿2 + 𝛿3) = 𝑣(𝛿2𝜂2 + 𝛿3𝜂3) = 𝑣(𝛿̂2𝜂3 + 𝛿̂3𝜂2) = 0 (because
𝛿2 ≡ 𝛿3, 𝜂2 ≡ 𝜂3, 𝛿̂2 ≡ 𝛿̂3 in the residue field);

U𝜖
𝑛,𝑚,𝑙

(a): 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝛿̂1Δ2) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 𝑣(𝜂1) = 𝑣(𝜂2) = 𝑣(𝜂3) =
𝑣(𝜉) = 0, 𝑣(Δ) ≡ 𝑣(𝑐) ≡ 0 mod 2 (Theorem 2.12(3), Lemma 8.6), 𝑣(𝛿̂1) ≡ 0 mod 2,
𝛿2, 𝛿3, 𝜂2, 𝜂3 ∈ 𝐾, 𝜂1, 𝜂2, 𝜂3 = 2□;

U𝜖
𝑛∼𝑛,𝑙

(a): 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(𝛿̂1Δ2) = 𝑣(𝛿̂2) = 𝑣(𝛿̂3) = 𝑣(𝜂1) = 𝑣(𝜂2) = 𝑣(𝜂3) = 𝑣(𝜉) =
0, 𝑣(𝛿2) = 𝑣(𝛿3) = 𝑛, 𝑣(Δ) ≡ 𝑣(𝑐) ≡ 0 mod 2 (Theorem 2.12(3), Lemma 8.6),
𝑣(𝛿̂1) ≡ 0 mod 2𝜂2𝜂3 = □.

Symbol I𝜖,𝛿𝑛,𝑚(b) I𝜖𝑛∼𝑛(b) U𝜖
𝑛,𝑚,𝑙

(a) U𝜖
𝑛∼𝑛,𝑙

(a)

( 1
2
(𝛿2+𝛿3), −𝓁

2
1
𝛿2𝛿3) (2(𝛿2+𝛿3), 𝜋

𝑛
𝐾
) (2(𝛿2+𝛿3), 𝜋

𝑛
𝐾
) (𝛿2, 𝛿3)(2, −𝓁

2
1
𝛿2𝛿3) ∗ (𝜋𝑛

𝐾
, −𝓁2

1
𝛿2𝛿3) †

(2, −𝓁2
1
𝛿2𝛿3) (2,𝓁2

1
) (2,𝓁2

1
) (2, −𝓁2

1
𝛿2𝛿3) 1

(𝛿2𝜂2+𝛿3𝜂3, −𝓁
2
1
𝜂2𝜂3𝛿2𝛿3) (𝛿2𝜂2+𝛿3𝜂3, 𝜋

𝑛
𝐾
) (𝛿2𝜂2+𝛿3𝜂3, 𝜋

𝑛
𝐾
) (2𝛿2, 2𝛿3) ∗ (𝜋𝑛

𝐾
, −𝓁2

1
𝛿2𝛿3) †

(𝛿̂2𝜂3+𝛿̂3𝜂2, −𝓁
2
1
𝜂2𝜂3𝛿̂2𝛿̂3) (𝛿̂2𝜂3+𝛿̂3𝜂2, 𝜋

𝑛
𝐾
) (𝛿̂2𝜂3+𝛿̂3𝜂2, 𝜋

𝑛
𝐾
) 1 † 1 †

(𝜉, −𝛿1𝛿̂2𝛿̂3) 1 † 1 † 1 † 1 †

(𝜂2𝜂3, 𝛿2𝛿3𝛿̂2𝛿̂3) 1 1 1 1

(𝑐, 𝛿1𝛿2𝛿3𝛿̂2𝛿̂3) 1 1 (𝑐, 𝛿1𝛿2𝛿3) (𝑐, 𝛿1)

(𝜂1, −Δ
2𝛿̂1𝛿2𝛿3) (𝜂1, 𝜋

𝑛
𝐾
)(𝛿̂1, −1) (𝜂1, 𝜋

𝑛
𝐾
) (2, 𝛿2𝛿3) 1

(𝛿̂1, −𝓁1∕Δ) (𝛿̂1, −𝓁1∕Δ) (𝛿̂1,𝓁1∕Δ) 1 1

(𝓁2
1
, −𝓁2𝓁3) (𝜋𝑛

𝐾
, −1) (𝜋𝑛

𝐾
, −1) 1 1

(2, −𝓁2
1
) (2,𝓁2

1
) (2,𝓁2

1
) 1 1

(−2, 𝛿̂2𝛿̂3) 1 1 1 1

□
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46 DOKCHITSER and MAISTRET

10 EVEN PLACES

In this section, we look at C2D4 curves with good ordinary reduction over 2-adic fields. Such
curves admit a nicemodel— essentially, curves with good ordinary reduction turn out to be those
with cluster picture with depth of each twin precisely 𝑣(4). Theorem 10.3 then shows
that Conjecture 1.14 holds for curves with this model and a specific Richelot isogeny. In the next
section, we will show that the conjecture is independent of the choice of model and independent
of the choice of the isogeny, and hence, that it holds for all curves with good ordinary reduction
at 2-adic primes.
We begin with a preliminary lemma about 2-adic fields and Hilbert symbols.

Lemma 10.1. Let 𝐾∕ℚ2 be a finite extension. Then

(i) 𝐾(
√
𝑥)∕𝐾 is unramified if and only if 𝑥 = □ ⋅ (1 + 4𝑡) for some 𝑡 ∈ 𝐾 .

(ii) If 𝑥 = □ ⋅ (1 + 4𝑡) for some 𝑡 ∈ 𝐾 , then

(𝑥, 𝑢) = 1 for all 𝑢 ∈ ×𝐾.

(iii) If 𝐹 = 𝐾(
√
𝐿) is the quadratic unramified extension and 𝑥 ∈ 𝐹 such that 𝑥2 + Frob𝐹∕𝐾 𝑥2 is a

unit, then

(𝑥2 + Frob𝐹∕𝐾 𝑥
2, −1) = (2, 𝐿).

Proof.

(i) Fix a set of representatives 𝑆 ⊇ {0, 1} of 𝐾∕(𝜋𝐾) and consider the equation

(𝑎0 + 𝑎1𝜋𝐾 + 𝑎2𝜋
2
𝐾 +⋯)2 ≡ 1 + 4𝑡 mod 4𝜋𝐾, 𝑎𝑖 ∈ 𝑆,

for a given 𝑡 ∈ 𝐾 . Equating the coefficients of powers of𝜋𝐾 , wemust necessarily have𝑎0 = 1
and 𝑎1 = ⋯ = 𝑎𝑛−1 = 0 for 𝑛 = 𝑣(2). The equation is then soluble if and only if 𝑎2𝑛 + 𝑎𝑛 ≡

𝑡 mod 𝜋𝐾 is soluble. Hence, it is always soluble in the quadratic unramified extension of 𝐾,
but not in 𝐾 for a suitable choice of 𝑡.
It follows that elements of the form 𝑥 = □ ⋅ (1 + 4𝑡) with 𝑡 ∈ 𝐾 are squares in the

quadratic unramified extension of𝐾, and that some of these elements have𝐾(
√
𝑥) ≠ 𝐾. The

set of such elements is a subgroup of𝐾× that properly contains𝐾×2, and hence, must contain
all the elements 𝑥 ∈ 𝐾 such that 𝐾(

√
𝑥)∕𝐾 is unramified.

(ii) Follows from (i) and the fact that all units in 𝐾 are norms from any unramified extension.
(iii) Write 𝑥 = 𝑎 + 𝑏

√
𝐿 for some 𝑎, 𝑏 ∈ 𝐾. Then 𝑥2 + Frob𝐹∕𝐾 𝑥2 = 2𝑎2 + 2𝐿𝑏2, so that

(𝑥2 + Frob𝐹∕𝐾 𝑥
2, −𝐿) = (2, −𝐿) = (2, 𝐿),

as (𝑎2 + 𝐿𝑏2) = (𝑎 + 𝑏
√
−𝐿)(𝑎 − 𝑏

√
−𝐿) is a norm from 𝐾(

√
−𝐿), and (2, −1) = 1. Also

(𝑥2 + Frob𝐹∕𝐾 𝑥
2, 𝐿) = 1,

because 𝑥2 + Frob𝐹∕𝐾 𝑥2 is a unit by hypothesis, and hence a norm from the unramified
extension 𝐾(

√
𝐿)∕𝐾. The result follows. □

We now turn to models of genus 2 curves with ordinary reduction.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 47

Proposition 10.2. Let 𝐾∕ℚ2 be a finite extension with residue field 𝑘 of size |𝑘| ⩾ 4, and let 𝐶∕𝐾
be a genus 2 curve with good reduction.

(i) 𝐶∕𝐾 has ordinary reduction if and only if it admits a model of the form

𝑦2 = 𝑐𝑓(𝑥)

with 𝑐 ≡ 1 mod 4, and with 𝑓(𝑥) ∈ 𝐾[𝑥]monic whose roots can be labelled 𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛼3,
𝛽3 so that for all 𝑖 ≠ 𝑗

(𝑥−𝛼𝑖)(𝑥−𝛽𝑖)∈𝐾
𝑛𝑟[𝑥], 𝑣(𝛼𝑖−𝛽𝑖)=𝑣(4), 𝑣(𝛼𝑖−𝛼𝑗)=𝑣(𝛽𝑖−𝛽𝑗)=𝑣(𝛼𝑖−𝛽𝑗)=0.

For this model, the kernel of the reduction map on the 2-torsion points of Jac 𝐶∕𝐾 consists of
0, [(𝛼1, 0), (𝛽1, 0)], [(𝛼2, 0), (𝛽2, 0)] and [(𝛼3, 0), (𝛽3, 0)].

(ii) If 𝐶∕𝐾 has ordinary reduction and 𝜙 is the Richelot isogeny whose kernel is precisely the 2-
torsion points in the kernel of the reduction map, then the Richelot dual curve 𝐶 also has good
ordinary reduction.

(iii) If 𝐶∕𝐾 is a C2D4 curve with ordinary reduction, such that the kernel of the associated Richelot
isogeny agrees with the kernel of the reductionmap on 2-torsion points, and if |𝑘| ⩾ 32, then the
model in (i) can be further taken to have the C2D4 structure defined by the 𝛼𝑖 , 𝛽𝑖 and

𝛿2 + 𝛿3
16

,
𝛿2𝜂2 + 𝛿3𝜂3

32
,

𝛿̂2𝜂3 + 𝛿̂3𝜂2
8

∈ ×𝐾.

Proof. (i) This is [16, Theorem 1.2 and Proposition 1.16].
(ii) Take the model 𝑦2 = 𝑐𝑓(𝑥) for 𝐶∕𝐾 given by (i). We will show that 𝐶 has a similar model,

and hence also has good ordinary reduction by (i).
Using the fact that 𝛼𝑖, 𝛽𝑖 have non-negative valuations (they satisfy a polynomial with unit lead-

ing term and integral coefficients) and the valuations of their pairwise differences, one readily
checks that:

∙ 𝑣(𝓁1) = 𝑣(𝓁2) = 𝑣(𝓁3) = 𝑣(2),
∙ 𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥) ∈ 𝑛𝑟

𝐾
[𝑥], so that 𝑣(𝛼̂𝑖), 𝑣(𝛽𝑖) ⩾ 0 (see Definition 2.1),

∙ Δ∕𝑐 ≡ 2(𝛼1 − 𝛼2)(𝛼3 − 𝛼1)(𝛼3 − 𝛼2) mod 4, so that 𝑣(Δ) = 𝑣(2).

By Proposition 8.4(1,2,3), we deduce that 𝑣(𝛼̂𝑖−𝛽𝑖) = 0 for 𝑖 = 1, 2, 3, so no cluster of 𝐶 of size
< 6 can contain two roots of the same colour. Also, there cannot be such a cluster that contains
roots of all three colours: otherwise, Lemma 8.6(3) would imply that 𝑣

(Δ(𝐶)
𝑐(𝐶)

)
>0, but by Proposi-

tion 8.4(7) 𝑣
(Δ(𝐶)
𝑐(𝐶)

)
= 𝑣

( 2Δ(𝐶)∕𝑐2

𝓁1𝓁2𝓁2∕Δ(𝐶)

)
= 0. Thus, the only possible clusters are twins that contain

roots of different colours.
By Proposition 8.4(4,5,6),

𝑣(𝛼̂2−𝛼̂3) + 𝑣(𝛼̂2−𝛽3) + 𝑣(𝛽2−𝛼̂3) + 𝑣(𝛽2−𝛽3) = 𝑣(4),

and similarly for the indices 1,2 and 1,3. It follows that the cluster picture of 𝐶 must be
0
, with the depth of each twin exactly 𝑣(4). Since 𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥) ∈ 𝐾𝑛𝑟[𝑥], the

polynomials 𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥) also have coefficients in 𝐾𝑛𝑟.
To deduce that 𝐶 has good ordinary reduction using (i), it remains to show that the leading

term 𝑐(𝐶) =
𝓁1𝓁2𝓁3
Δ

is of the form□ ⋅ (1 + 4𝑧) for some 𝑧 ∈ 𝐾 . Note that the quadratic twist 𝐶′
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48 DOKCHITSER and MAISTRET

of 𝐶 by 𝑐(𝐶) does have good ordinary reduction by (i), and hence, its Jacobian has good reduction.

The Jacobian of 𝐶 also has good reduction, being isogenous to Jac 𝐶∕𝐾. Thus, 𝐾(
√
𝑐(𝐶))∕𝐾 must

be unramified, and hence, 𝑐(𝐶) is of the required form by Lemma 10.1(i).
(iii) Take the model for 𝐶∕𝐾 given by (i). Relabelling the roots if necessary, by (ii), we may

assume that the C2D4 structure is given by the 𝛼𝑖 , 𝛽𝑖 . We now need to adjust the model so that
the claimed invariants are units.
As 𝑣(𝛼1 − 𝛽1) ⩾ 𝑣(4), the term

𝛼1+𝛽1
2

lies in 𝐾 . Applying the translation to the 𝑥-coordinate
𝑥 ↦ 𝑥 +

𝛼1+𝛽1
2

, we may thus assume that the C2D4 model is centred, that is, 𝛼1 = −𝛽1.
Recall from Definition 6.3 that for 𝑡 ∈ 𝐾 {

1

𝛼1
, −

1

𝛼1
}, we have a Möbius transformation 𝑀𝑡 and

model 𝐶𝑡. We now proceed as in the proof of Theorem 6.6 to pick a suitable value for 𝑡 ∈ 𝐾

that gives a model with the required properties.
By construction, the roots 𝛼𝑖(𝐶𝑡) = 𝑀𝑡(𝛼𝑖) and 𝛽𝑖(𝐶𝑡) = 𝑀𝑡(𝛽𝑖) for the model 𝐶𝑡 satisfy

(𝑥−𝛼𝑖(𝐶𝑡))(𝑥−𝛽𝑖(𝐶𝑡)) ∈ 𝐾
𝑛𝑟[𝑥]. As in the first paragraph of the proof of Theorem 6.6, if 𝑡 ≢

−1∕𝛼𝑖, −1∕𝛽𝑖 in 𝑘 for any 𝑖, then the model 𝐶𝑡 will also have 𝑣(𝛼𝑖(𝐶𝑡)), 𝑣(𝛽𝑖(𝐶𝑡)) ⩾ 0, 𝑣(𝛼𝑖(𝐶𝑡) −
𝛽𝑖(𝐶𝑡)) = 𝑣(4) and 𝑣(𝑟 − 𝑟′) = 0 for all other pairs of roots. As in the last paragraph of the proof
of (ii), 𝑐(𝐶𝑡) is necessarily of the form □ ⋅ (1 + 4𝑧) for some 𝑧 ∈ 𝐾 . It remains to ensure that
𝛿2+𝛿3
16
,
𝛿2𝜂2+𝛿3𝜂3

32
and 𝛿̂2𝜂3+𝛿̂3𝜂2

8
are units for the 𝐶𝑡 model.

Write 𝛼𝑖 = 𝛽𝑖 + 4𝑢𝑖 , so that 𝑣(𝑢𝑖) = 0. A direct computation shows that

𝛿2(𝐶𝑡)+𝛿3(𝐶𝑡)

16
=

𝐹1(𝑡)

(1+𝛼2𝑡)
2(1+𝛽2𝑡)

2(1+𝛼3𝑡)
2(1+𝛽3𝑡)

2 ,

𝛿2(𝐶𝑡)𝜂2(𝐶𝑡)+𝛿3(𝐶𝑡)𝜂3(𝐶𝑡)

32
=

𝐹2(𝑡)

(1+𝛼2𝑡)
4(1+𝛽2𝑡)

4(1+𝛼3𝑡)
4(1+𝛽3𝑡)

4 ,

𝛿̂2(𝐶𝑡)𝜂3(𝐶𝑡)+𝛿̂3(𝐶𝑡)𝜂2(𝐶𝑡)

8
=

𝐹3(𝑡)

(1+𝛼2𝑡)
4(1+𝛽2𝑡)

4(1+𝛼3𝑡)
4(1+𝛽3𝑡)

4 ,

where 𝐹1(𝑡), 𝐹2(𝑡), 𝐹3(𝑡) are polynomials in 𝐾[𝑡] that reduce in 𝑘[𝑡] to

𝐹1(𝑡) ≡ (𝛽4
3
𝑢2
2
+ 𝛽4

2
𝑢2
3
)𝑡4 + (𝑢2

2
+ 𝑢2

3
),

𝐹2(𝑡) ≡ (𝛽4
2
𝛽8
3
𝑢2
2
+ 𝛽4

3
𝛽8
2
𝑢2
3
)𝑡10 + (𝛽2

2
𝛽8
3
𝑢2
2
+ 𝛽2

3
𝛽8
2
𝑢2
3
)𝑡8+

+(𝛽4
2
𝑢2
2
+ 𝛽4

3
𝑢2
3
)𝑡2 + (𝛽2

2
𝑢2
2
+ 𝛽2

3
𝑢2
3
),

𝐹3(𝑡) ≡ (𝛽8
2
𝛽6
3
+ 𝛽8

3
𝛽6
2
)𝑡8 + (𝛽8

2
+ 𝛽8

3
)𝑡2 + (𝛽6

2
+ 𝛽6

3
).

None of these is the zero polynomial in 𝑘(𝑡), as we now explain. Since 𝛽2 ≢ 𝛽3 and 𝑧 ↦ 𝑧2 is an
automorphism of 𝑘, we deduce that 𝛽2

2
≢ 𝛽2

3
, 𝛽4
2
≢ 𝛽4

3
and 𝛽8

2
≢ 𝛽8

3
; this deals with𝐹3(𝑡). Moreover,

if 𝑢2
2
≡ 𝑢2

3
, then 𝛽4

3
𝑢2
2
≢ 𝛽4

2
𝑢2
3
, so 𝐹1(𝑡) is not zero. Finally, if 𝛽22𝑢

2
2
≡ 𝛽2

3
𝑢2
3
, then 𝛽2

2
𝛽8
3
𝑢2
2
≢ 𝛽2

3
𝛽8
2
𝑢2
3
,

so 𝐹2(𝑡) is not zero.
Thus, so long as 𝑡 ∈ 𝐾 avoids the residues of the 𝑘̄-roots of 𝐹1(𝑡), 𝐹2(𝑡) and 𝐹3(𝑡) (at most 22

such) and the residues of−1∕𝛼𝑖, −1∕𝛽𝑖 (atmost 6 such), the required expressionswill be units. □

Theorem 10.3. Let𝐾∕ℚ2 be a finite extension and𝐶∕𝐾 aC2D4 curve with good ordinary reduction
given by 𝑦2 = 𝑐𝑓(𝑥) with 𝑓(𝑥) ∈ 𝐾[𝑥] monic, satisfying (𝑥−𝛼𝑖)(𝑥−𝛽𝑖)∈𝐾𝑛𝑟[𝑥] and 𝑣(𝛼𝑖−𝛽𝑖) =
𝑣(4) for all 𝑖, and 𝑣(𝑟−𝑟′) = 0 for all other pairs of roots 𝑟, 𝑟′. Suppose moreover that  , Δ ≠ 0 and
that 𝛿2+𝛿3

16
,
𝛿2𝜂2+𝛿3𝜂3

32
,
𝛿̂2𝜂3+𝛿̂3𝜂2

8
∈ ×

𝐾
. Then Conjecture 1.14 holds for C/K.

Proof. As Jac 𝐶∕𝐾 has good reduction, 𝑤Jac𝐶∕𝐾 = 1.

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12545 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [31/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 49

By Proposition 10.2(ii), 𝐶∕𝐾 also has good ordinary reduction, so that neither 𝐶∕𝐾 nor 𝐶∕𝐾
are deficient. Since the kernel of the reduction map on 2-torsion points coincides with the kernel
of the Richelot isogeny 𝜙 on Jac 𝐶∕𝐾, Lemma 3.4 and Theorem A.1 show that 𝜆𝐶∕𝐾,𝜙 = 1 ⋅ 1 ⋅
(−1)[𝐾∶ℚ2]⋅2 = 1. It remains to prove that the product of Hilbert symbols is also trivial, that is,
𝐸𝐶∕𝐾 = 1.
Since 𝛼1, 𝛽1 are integral, 𝛼1+𝛽1 ∈ 𝐾 and 4|(𝛼1−𝛽1), it follows that 𝛼1+𝛽12

∈ 𝐾 . The change
of variables 𝑥 ↦ 𝑥+

𝛼1+𝛽1
2

does not change any of the hypotheses on 𝐶 in the statement,
including that 𝑓(𝑥) ∈ 𝐾[𝑥]. We may (and will) therefore assume that 𝐶 is centred, that is,
𝛼1 = −𝛽1.
Let 𝛾𝑖 =

𝛼𝑖+𝛽𝑖
2

, so that {𝛾1, 𝛾2, 𝛾3} is preserved byGalois. Note that 𝛾𝑖 ≡ 𝛼𝑖 ≡ 𝛽𝑖 mod 2, 𝛾2𝑖 ≡ 𝛼
2
𝑖
≡

𝛽2
𝑖
mod 4 and 𝛾4

𝑖
≡ 𝛼4

𝑖
≡ 𝛽4

𝑖
mod 8. As 𝐶 is centred, 𝛾1 ≡ 0 mod 2, and 𝑣(𝛾2) = 𝑣(𝛾3) = 0.

Explicit computation shows that

∙ Δ2𝛿̂1 ≡ (𝛾2 − 𝛾3)
4 mod 8, so that Δ2𝛿̂1 = □,

∙ 1

2
𝜂2 ≡ 𝛾

2
2
mod 4, 1

2
𝜂3 ≡ 𝛾

2
3
mod 4, so 𝜂2𝜂3 = □(1 + 4𝑧),

∙ 1

4
𝛿̂2 ≡ 𝛾

4
3
mod 8, 1

4
𝛿̂3 ≡ 𝛾

4
2
mod 8, so 𝛿̂2𝛿̂3 = □,

∙ 1

4
𝜉 ≡ 𝛾2

2
𝛾2
3
mod 4, so that 𝜉 = □(1 + 4𝑧′),

∙ 1

2
𝜂1 ≡ (𝛾2 − 𝛾3)

2 ≡
1

4
𝓁2
1
mod 4, so that 𝜂1 = 2𝓁21□(1 + 4𝑧

′′)

for some 𝑧, 𝑧′, 𝑧′′ ∈ 𝐾 . Moreover,

∙ 𝓁2
1
= □(1 + 4𝑧) for some 𝑧 ∈ 𝐾 by Lemma 10.1(i), and

∙ 𝓁1𝓁2𝓁3
Δ

=□(1+4𝑧) for some 𝑧 ∈ 𝐾 by the final paragraph of the proof of Proposition 10.2(ii).

Recall from Lemma 10.1(ii) that if 𝑎 = 1 + 4𝑧 for 𝑧 ∈ 𝐾 and 𝑏 ∈ 𝐾× has even valuation, then
(𝑎, 𝑏) = 1. We can thus simplify the Hilbert symbols defining 𝐸𝐶∕𝐾 as follows:

(𝜉, −𝛿1𝛿̂2𝛿̂3) = 1,

(𝜂2𝜂3, −𝛿2𝛿3𝛿̂2𝛿̂3) = 1,

(𝑐, 𝛿1𝛿2𝛿3𝛿̂2𝛿̂3) = 1,

(𝛿̂2𝛿̂3, −2) = 1,

(𝜂1, −𝛿2𝛿3𝛿̂2𝛿̂3) = (2𝓁2
1
, −𝛿2𝛿3) = (2, −𝛿2𝛿3),

(𝛿̂1, −
𝓁1
Δ
)(𝓁2

1
, −𝓁2𝓁3) = (𝓁

2
1
𝛿̂1, −

𝓁1
Δ
)(𝓁2

1
,
𝓁1𝓁2𝓁3
Δ

) = (
(𝓁1
Δ

)2
𝛿̂1Δ

2, −
𝓁1
Δ
) = 1.

Hence,

𝐸𝐶∕𝐾 = (2,𝓁
2
1𝛿2𝛿3)(𝛿2 + 𝛿3, −𝓁

2
1𝛿2𝛿3)(𝛿2𝜂2 + 𝛿3𝜂3, −𝓁

2
1𝜂2𝜂3𝛿2𝛿3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2, −𝓁

2
1𝛿̂2𝛿̂3𝜂2𝜂3).

Suppose thatFrob𝐾 does not swap the sets {𝛼2, 𝛽2} and {𝛼3, 𝛽3}. In particular,𝓁1 ∈ 𝐾, so𝓁21 = □.
Also 𝛾𝑖, 𝛿𝑖, 𝜂𝑖, 𝛿̂𝑖 ∈ 𝐾, as they are all fixed by Frob𝐾 . By Lemma 9.8(1),

(𝛿2 + 𝛿3, −𝛿2𝛿3) = (𝛿2, 𝛿3),

(𝛿2𝜂2 + 𝛿3𝜂3, −𝛿2𝛿3𝜂2𝜂3) = (𝛿2𝜂2, 𝛿3𝜂3),

(𝛿̂2𝜂3 + 𝛿̂3𝜂2, −𝛿̂2𝛿̂3𝜂2𝜂3) = (𝛿̂2𝜂2, 𝛿̂3𝜂3).

As 1
4
𝛿̂2 ≡ 𝛾

4
3
mod 8, we have 𝛿̂2 = □, and as 1

2
𝜂2 ≡ 𝛾

2
2
mod 4, we have 𝜂2 = 2□(1 + 4𝑧) for some

𝑧 ∈ 𝐾 , and similarly, for 𝛿̂3 and 𝜂3. Thus,
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50 DOKCHITSER and MAISTRET

𝐸𝐶∕𝐾 = (2, 𝛿2𝛿3)(𝛿2, 𝛿3)(𝛿2𝜂2, 𝛿3𝜂3)(𝜂2, 𝜂3) = (2, 𝛿2𝛿3)(𝛿2, 𝜂3)(𝛿3, 𝜂2)

= (2, 𝛿2𝛿3)(𝛿2, 2)(𝛿3, 2) = 1.

Suppose now that Frob𝐾 swaps the sets {𝛼2, 𝛽2} and {𝛼3, 𝛽3}, so that it interchanges
𝛿2 ↔ 𝛿3, 𝜂2 ↔ 𝜂3, 𝛿̂2 ↔ 𝛿̂3. Since 𝓁1, (𝛼2−𝛽2)(𝛼3−𝛽3) ∈ 𝐾

𝑛𝑟 and all units are norms from
quadratic unramified extensions, (𝓁2

1
, 𝑢) = (𝛿2𝛿3, 𝑢) = 1 for all 𝑢 ∈ ×

𝐾
. Recall that by hypothesis

𝛿2+𝛿3
16

, 𝛿2𝜂2+𝛿3𝜂3
32

,
𝛿̂2𝜂3+𝛿̂3𝜂2

8
∈ ×

𝐾
, and that 𝛿̂2𝛿̂3 = □, which simplifies the expression for 𝐸𝐶∕𝐾 :

𝐸𝐶∕𝐾 = (2,𝓁
2
1𝛿2𝛿3)

(
𝛿2+𝛿3
16

, −𝓁21𝛿2𝛿3

)(
𝛿2𝜂2+𝛿3𝜂3

32
, −𝛿2𝛿3𝜂2𝜂3

)
⋅

⋅ (2, −𝛿2𝛿3𝜂2𝜂3)

(
𝛿̂2𝜂3+𝛿̂3𝜂2

8
, −𝜂2𝜂3

)
(2, −𝜂2𝜂3)

= (2,𝓁21)

(
𝛿2 + 𝛿3
16

⋅
𝛿2𝜂2 + 𝛿3𝜂3

32
⋅
𝛿̂2𝜂3 + 𝛿̂3𝜂2

8
, −1

)
.

Write 𝛼2 − 𝛽2 = 4𝑢2 and 𝛼3 − 𝛽3 = 4𝑢3, so that 𝑣(𝑢2) = 𝑣(𝑢3) = 0 and Frob𝐾 inter-
changes 𝑢2

2
↔ 𝑢2

3
. Then 1

16
(𝛿2 + 𝛿3) = 𝑢

2
2
+ 𝑢2

3
, 1

32
(𝛿2𝜂2 + 𝛿3𝜂3) ≡ 𝑢

2
2
𝛾2
2
+ 𝑢2

3
𝛾2
3
mod 4 and

1

8
(𝛿̂2𝜂3 + 𝛿̂3𝜂2) ≡ 𝛾

6
2
+ 𝛾6

3
mod 4, and all three are units. By Lemma 10.1(ii), (1 + 4𝑧, −1) = 1 for

all 𝑧 ∈ 𝐾 , so

𝐸𝐶∕𝐾 = (2,𝓁
2
1)((𝑢

2
2 + 𝑢

2
3)(𝑢

2
2𝛾
2
2 + 𝑢

2
3𝛾
2
3)(𝛾

6
2 + 𝛾

6
3), −1).

By Lemma 10.1(iii), (𝛾6
2
+ 𝛾6

3
, −1) = (2,𝓁2

1
), as 𝛾3

2
lies in the quadratic unramified extension 𝐾(𝓁1)

of 𝐾. If Frob2𝐾 𝑢2 = 𝑢2, then similarly (𝑢
2
2
+ 𝑢2

3
, −1) = (2,𝓁2

1
) and (𝑢2

2
𝛾2
2
+ 𝑢2

3
𝛾2
3
, −1) = (2,𝓁2

1
), so

that 𝐸𝐶∕𝐾 = 1. Otherwise Frob𝐾(𝑢2𝑢3(𝛾2 − 𝛾3)) = 𝑢3(−𝑢2)(𝛾3 − 𝛾2) = 𝑢2𝑢3(𝛾2 − 𝛾3), so that

(𝑢22𝛾
2
2 + 𝑢

2
3𝛾
2
3)(𝑢

2
2 + 𝑢

2
3) = (𝑢

2
2𝛾2 + 𝑢

2
3𝛾3)

2 + 𝑢22𝑢
2
3(𝛾2 − 𝛾3)

2

is a sum of two 𝐾-rational squares and hence a norm from 𝐾(
√
−1). This again implies that

((𝑢2
2
𝛾2
2
+ 𝑢2

3
𝛾2
3
)(𝑢2

2
+ 𝑢2

3
), −1) = 1, so that 𝐸𝐶∕𝐾 = 1. □

10.1 Special families  , 𝑪𝟐𝑫𝟒

It will be convenient to have a family of curves defined overℚ2 with good ordinary reduction and
all roots defined over ℚ2. Theorem 10.3 excludes these.

Notation 10.4. For a finite extension 𝐾∕ℚ2, we write  for the family of genus 2 curves 𝐶 ∶ 𝑦2=
𝑐𝑓(𝑥) with 𝑐≡−1 mod 23 and for which 𝑓(𝑥) factors as

∏
(𝑥 − 𝛼𝑖)(𝑥 − 𝛽𝑖) with

𝛼1 ≡ −5, 𝛽1 ≡ 5, 𝛼2 ≡ −4, 𝛽2 ≡ −12, 𝛼3 ≡ 2, 𝛽3 ≡ −6,

the congruences taken modulo 28.
Wewrite𝐶2𝐷4 for the family of C2D4 curves that satisfy these congruenceswith respect to their

given C2D4 structure. (In other words, 𝐶 satisfies the above congruences ‘with its given ordering
of roots’.)
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 51

Theorem 10.5. Let 𝐾∕ℚ2 be a finite extension and 𝐶 ∈ 𝐶2𝐷4 a C2D4 curve. Then

(1) 𝐶∕𝐾 has good ordinary reduction,
(2) the Richelot dual curve 𝐶 has good reduction,
(3) the kernel of the Richelot isogeny is contained in the kernel of reduction on Jac 𝐶(𝐾̄),
(4) 𝐸𝐶∕𝐾 = 1,
(5) Conjecture 1.14 holds for 𝐶∕𝐾.

Proof.

(1) The transformation 𝑥2 =
𝑥

2
, 𝑦2 =

𝑦

8
+ 𝑥2

8
+ 𝑥

4
gives amodel𝐶′ whose reduction is 𝑦2

2
+ 𝑥2

2
𝑦2 +

𝑥2𝑦2 = 𝑥
6
2
+ 𝑥4

2
+ 1. Over 𝔽2, this curve is smooth with local polynomial 1 − 𝑇2 + 4𝑇4, and is

therefore good ordinary over every extension of 𝔽2.
(2) Computing the model for 𝐶 as in Definition 2.1 and applying the substitutions 𝑥2=

𝑥

2
and

𝑦2=
𝑦

16
+ 𝑥2

8
+ 𝑥

4
gives a model that reduces to 𝑦2

2
+𝑥2

2
𝑦2+𝑦2𝑥2=𝑥

5
2
+𝑥3

2
+𝑥2

2
+𝑥2.

(3) Using the change of variables in the proof of (1), one checks that the 2-torsion points on Jac 𝐶
given by [(𝛼𝑖, 0), (𝛽𝑖, 0)]map to points on Jac 𝐶′ that reduce to 0.

(4) Direct computation shows that, up to multiplying by elements that are 1 mod 8, 𝐶 has
Δ=84, 𝓁1=−12, 𝓁2=−4, 𝓁3=−16, 𝛿1=25, 𝛿2=64, 𝛿3=64, 𝛿̂1 =−

1

7
, 𝛿̂2 =−924, 𝛿̂3 =−4284,

𝜂1=8, 𝜂2=110, 𝜂3=−10, 𝜉=10 196, 𝛿2+𝛿3=128, 𝛿2𝜂2+𝛿3𝜂3=6400, 𝛿̂2𝜂3+𝛿̂3𝜂2=−419 160.
As elements that are 1 mod 8 are squares, this gives 𝐸𝐶∕𝐾 = 1.

(5) 𝐶 and 𝐶′ are not deficient by (1, 2), so by Theorem A.1, 𝜆𝐶∕𝐾 = 1. By (1) 𝑤𝐶∕𝐾 = 1, and by (4)
𝐸𝐶∕𝐾 = 1, which proves the result. □

11 DEFORMING C2D4 CURVES

As explained in §1.4, we will not attempt to prove other cases of Conjecture 1.14 by direct compu-
tation, as there are several hundred possible cluster pictures corresponding to semistable C2D4
curves. Instead, we will exploit the fact that we already have a good supply of C2D4 curves over
number fields for whichwe have proved the 2-parity conjecture (throughConjecture 1.14 and The-
orem 1.15) and use Lemma 1.19. For this, we will need to be able to approximate C2D4 curves over
local fields by curves over number fields, which are well behaved at all other places. In this sec-
tion, we prove two results that will let us do this (see Theorems 11.15 and 11.16). Roughly speaking,
they say that:

∙ a C2D4 curve 𝐶∕𝐾𝑣 can be approximated by a curve 𝐶′∕𝐾 such that Conjecture 1.14 holds for
𝐶∕𝐾𝑣 if and only if it holds for 𝐶′∕𝐾𝑣, and moreover, holds for 𝐶′∕𝐾𝑤 for all 𝑣 ≠ 𝑤;

∙ a curve with two C2D4 structures 𝐶∕𝐾𝑣 can be similarly approximated by 𝐶∕𝐾 admitting two
C2D4 structures.

In §12, this will let us show that Conjecture 1.14 is independent of the choice of C2D4 model
for a curve 𝐶, and moreover, it holds with respect to one C2D4 structure if and only if it holds
with respect to another (Theorems 12.1 and 12.3). These, in turn, will let us complete our proof
of Theorem 1.16 on Conjecture 1.14 and deduce our main results on the 2-parity and parity
conjectures in §13.
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52 DOKCHITSER and MAISTRET

11.1 Continuity of local invariants

Definition 11.1. Let 𝐶, 𝐶′ be two C2D4 curves over a local field of characteristic 0. We will say
that 𝐶 and 𝐶′ are 𝜖-close if the leading coefficients and roots of their defining polynomials satisfy|𝛼𝑖 − 𝛼′𝑖 |, |𝛽𝑖 − 𝛽′𝑖 |, |𝑐 − 𝑐′| < 𝜖 for 𝑖 = 1, 2, 3.
For curves with  , Δ, 𝜂1,

′, Δ′, 𝜂′
1
≠ 0, we will say that they are arithmetically close if

𝑤𝐶∕𝐾 = 𝑤𝐶′∕𝐾, 𝜆𝐶∕𝐾 = 𝜆𝐶′∕𝐾

and

𝛿1
𝛿′
1

≡
𝛿2𝛿3

𝛿′
2
𝛿′
3

≡
𝛿2+𝛿3

𝛿′
2
+𝛿′

3

≡
𝜂2𝜂3

𝜂′
2
𝜂′
3

≡
𝛿̂2𝛿̂3

𝛿̂′
2
𝛿̂′
3

≡
𝜂1
𝜂′
1

≡
𝜉

𝜉′
≡

𝓁2
1

𝓁′2
1

≡
𝓁1∕Δ

𝓁′
1
∕Δ′

≡

≡
𝑐

𝑐′
≡
𝛿2𝜂2+𝛿3𝜂3

𝛿′
2
𝜂′
2
+𝛿′

3
𝜂′
3

≡
𝛿̂2𝜂3+𝛿̂3𝜂2

𝛿̂′
2
𝜂′
3
+𝛿̂′

3
𝜂′
2

≡ 1 mod 𝜋𝐾

for𝐾∕ℚ𝑝 finitewith𝑝 odd; the congruence takenmod 4𝜋𝐾 instead for𝑝=2; for𝐾 ≅ ℝ, we require
that all these ratios are positive, and have no requirement for 𝐾 ≅ ℂ.

Lemma 11.2. For C2D4 curves 𝐶 over a local field 𝐾 of characteristic 0, the invariants 𝛿1, 𝛿2, 𝛿3,
𝜂1, 𝜂2, 𝜂3, 𝛿̂2, 𝛿̂3, 𝜉, 𝓁21 , Δ and𝑤𝐶∕𝐾 are continuous in the roots 𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛼3, 𝛽3, and the leading
coefficient 𝑐. If Δ ≠ 0, so are 𝓁1

Δ
and 𝜆𝐶∕𝐾 .

Proof. This is clear for all the invariants except possibly 𝑤 and 𝜆, as they are rational functions
in the roots and the leading coefficient 𝑐. For archimedean 𝐾, 𝑤=1, while 𝜆 is a locally constant
function in the roots and 𝑐 by Lemmata 3.4 and 3.5 and the first paragraph of the proof of Theo-
rem 5.2. For 𝐾 non-archimedean, the special fibre of the minimal regular model of 𝐶∕𝐾𝑛𝑟 (with
Frobenius action) is locally constant, and hence, so is the deficiency term 𝜇𝐶∕𝐾 (cf. [15, Lemma
12.3]) and the local Tamagawa number 𝑐Jac𝐶∕𝐾 (cf. [5, Thm. 2.3]); the coefficients of the equation of
the dual curve 𝐶 are continuous in the roots and in 𝑐, so 𝜆 is also locally constant. The Galois rep-
resentation 𝑇𝓁(Jac 𝐶) ≅ 𝐻1𝑒𝑡(𝐶∕𝐾,ℤ𝓁)(1) is also locally constant ([21, p.569]), and hence so is the
root number 𝑤𝐶∕𝐾 . □

Lemma 11.3. Let 𝐶 be a C2D4 curve over a local field of characteristic 0 with  , Δ, 𝜂1 ≠ 0. Then
there exists 𝜖 > 0 such that every C2D4 curve that is 𝜖-close to 𝐶 is arithmetically close to 𝐶.

Proof. Clear from Lemma 11.2. □

Lemma 11.4. Let𝐶, 𝐶′ be arithmetically close C2D4 curves over a local field of characteristic 0 with
 , Δ, 𝜂1,  ′, Δ′, 𝜂′1 ≠ 0. Then Conjecture 1.14 holds for C if and only if it holds for 𝐶

′.

Proof. Clear as 𝜆 and 𝑤 are the same, and the terms in the Hilbert symbols in 𝐸𝐶∕𝐾 change by
squares. □
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 53

Remark 11.5. If 𝑡 is sufficiently close to 0, then𝐶𝑡 is 𝜖-close to𝐶.More generally, if the coefficients of
𝑚(𝑧) = 𝐚𝑧+𝐛

𝐜𝑧+𝐝
are sufficiently close to 𝐚=𝐝=1, 𝐛=𝐜=0, then𝐶𝑚 is 𝜖-close to 𝐶 (see Definitions 6.1

and 6.3).

11.2 D4 quartics

To approximate C2D4 curves over 𝑝-adic fields by curves over number fields 𝑦2 = 𝑐𝑓(𝑥), we must
ensure that the Galois group of 𝑓(𝑥) does not become too large. We will also want to ensure that
the new curve is well behaved at all other primes.

Lemma 11.6. A separable monic quartic polynomial 𝑞(𝑥) over a field𝐾 hasGal(𝑞(𝑥)) ⊆ 𝐷4 if and
only if its roots are of the form

𝑟1 = 𝑧1 + 𝑧2
√
𝑎 + 𝑧3

√
𝑏+𝑑

√
𝑎 + 𝑧4

√
𝑎

√
𝑏+𝑑

√
𝑎,

𝑟2 = 𝑧1 + 𝑧2
√
𝑎 − 𝑧3

√
𝑏+𝑑

√
𝑎 − 𝑧4

√
𝑎

√
𝑏+𝑑

√
𝑎,

𝑟3 = 𝑧1 − 𝑧2
√
𝑎 − 𝑧3

√
𝑏−𝑑

√
𝑎 + 𝑧4

√
𝑎

√
𝑏−𝑑

√
𝑎,

𝑟4 = 𝑧1 − 𝑧2
√
𝑎 + 𝑧3

√
𝑏−𝑑

√
𝑎 − 𝑧4

√
𝑎

√
𝑏−𝑑

√
𝑎,

for some 𝑎 ∈ 𝐾× and 𝑏, 𝑑, 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ 𝐾.

Proof. Clearly, a quartic with such roots has Galois group ⊆ 𝐷4. For the converse, if the Galois
group contains a 4-cycle, the result is clear. If it is contained in the Klein group 𝑉4, the result fol-
lows from Lemma 11.10 below by taking 𝑑 = 0. If it is either trivial or 𝐶2 acting by a transposition,
the result follows by taking 𝑎 = 1 and 𝑑 = 𝑏 − 1. □

Lemma 11.7. Let 𝐾 be a local field of odd residue characteristic and 𝑞(𝑥) as in Lemma 11.6. If
𝑎, 𝑏, 𝑑, 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ 𝐾 and either 16(𝑏2 − 𝑎𝑑2)(𝑧23 − 𝑎𝑧

2
4
)2 or 2𝑎𝑧2

2
− 𝑏𝑧2

3
− 2𝑎𝑑𝑧3𝑧4 − 𝑎𝑏𝑧

2
4
is a

unit, then 𝑞̄(𝑥) does not have roots of multiplicity ⩾ 3.

Proof. One checks that (𝑟1 − 𝑟2)2(𝑟3 − 𝑟4)2 = 16(𝑏2 − 𝑎𝑑2)(𝑧23 − 𝑎𝑧
2
4
)2 and

1

4
(𝑟1 − 𝑟2)

2(𝑟3 − 𝑟4)
2 + (𝑟1 − 𝑟3)(𝑟1 − 𝑟4)(𝑟2 − 𝑟3)(𝑟2 − 𝑟4) = 4(2𝑎𝑧

2
2 − 𝑏𝑧

2
3 − 2𝑎𝑑𝑧3𝑧4 − 𝑎𝑏𝑧

2
4)
2.

□

Remark 11.8. (𝑟1 − 𝑟3)(𝑟2 − 𝑟4) + (𝑟2 − 𝑟3)(𝑟1 − 𝑟4) = 4(2𝑎𝑧22 − 𝑏𝑧
2
3
− 2𝑎𝑑𝑧3𝑧4 − 𝑎𝑏𝑧

2
4
).

Lemma 11.9. Let 𝐾 be a number field and 𝑆 a finite set of places of 𝐾 including all primes above 2,
but excluding at least one infinite place. For each 𝑣 ∈ 𝑆, let 𝑞𝑣(𝑥) ∈ 𝐾𝑣

[𝑥] (or ∈ 𝐾𝑣[𝑥] for 𝑣|∞) be
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54 DOKCHITSER and MAISTRET

a monic quartic with Gal(𝑞𝑣(𝑥)) ⊆ 𝐷4. There exists a monic quartic 𝑞(𝑥) ∈ 𝐾[𝑥] with Gal(𝑞(𝑥))
⊆ 𝐷4 such that

(i) for each 𝑣 ∈ 𝑆, the roots of 𝑞(𝑥) are arbitrarily close to those of 𝑞𝑣(𝑥) (with respect to an ordering
that respects the 𝐷4-action),

(ii) for all 𝑣 ∉ 𝑆, 𝑞(𝑥) mod 𝑣 has no roots of multiplicity ⩾ 3.

Proof. For each 𝑣 ∈ 𝑆, write the roots of 𝑞𝑣 as in Lemma 11.6 with parameters 𝑎𝑣, 𝑏𝑣, 𝑑𝑣, 𝑧1,𝑣, 𝑧2,𝑣,
𝑧3,𝑣, 𝑧4,𝑣 ∈ 𝐾𝑣. Note that any monic polynomial 𝑞(𝑥) ∈ 𝐾[𝑥] in the form of Lemma 11.6 whose
parameters are 𝑣-adically close to those of 𝑞𝑣(𝑥) satisfies (i).
Use strong approximation (and the infinite place outside 𝑆) to choose 𝑎, 𝑏, 𝑑, 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ 𝐾

that lie in 𝐾𝑣
for primes 𝑣 ∉ 𝑆 as follows. First choose any 𝑏, 𝑑, 𝑧1, 𝑧3, 𝑧4 that are 𝑣-adically

close to 𝑏𝑣, 𝑑𝑣, 𝑧1,𝑣, 𝑧3,𝑣, 𝑧4,𝑣 for 𝑣 ∈ 𝑆. Now choose 𝑎 that is 𝑣-adically close to 𝑎𝑣 for 𝑣 ∈ 𝑆 with
gcd(𝑎, 𝑏𝑧3) supported on 𝑆; this ensures that if a prime 𝑤 ∉ 𝑆 divides (𝑏2 − 𝑎𝑑2)(𝑧23 − 𝑎𝑧

2
4
) then

𝑤 ∤ 𝑎. Finally, choose 𝑧2 that is 𝑣-adically close to 𝑧2,𝑣 for 𝑣 ∈ 𝑆 such that for primes 𝑤 ∉ 𝑆
that divide (𝑏2 − 𝑎𝑑2)(𝑧2

3
− 𝑎𝑧2

4
), the expression 2𝑎𝑧2

2
− 𝑏𝑧2

3
− 2𝑎𝑧3𝑧4 − 𝑎𝑏𝑧

2
4
is a 𝑤-adic unit. By

Lemma 11.7, 𝑞(𝑥) now satisfies (ii).
Finally, note that as 𝑞(𝑋) lies in 𝐾𝑣

[𝑥] both for 𝑣 ∈ 𝑆 (by (i)) and 𝑣 ∉ 𝑆 (by construction), it
lies in 𝐾[𝑥]. □

11.3 V4 quartics

We will need a similar result for quartics with Galois group 𝑉4. Recall that for us 𝑉4 consists of
double transpositions.

Lemma 11.10. A separable monic quartic polynomial 𝑞(𝑥) over a field 𝐾 has Gal(𝑞(𝑥)) ⊆ 𝑉4 if
and only if its roots are of the form

𝑟1 = 𝑧1 + 𝑧2
√
𝑎 + 𝑧3

√
𝑏 + 𝑧4

√
𝑎𝑏, 𝑟2 = 𝑧1 − 𝑧2

√
𝑎 + 𝑧3

√
𝑏 − 𝑧4

√
𝑎𝑏,

𝑟3 = 𝑧1 + 𝑧2
√
𝑎 − 𝑧3

√
𝑏 − 𝑧4

√
𝑎𝑏, 𝑟4 = 𝑧1 − 𝑧2

√
𝑎 − 𝑧3

√
𝑏 + 𝑧4

√
𝑎𝑏,

for some 𝑎, 𝑏 ∈ 𝐾× and 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ 𝐾.

Proof. Clearly, a quartic with such roots has Galois group ⊆ 𝑉4. Conversely, the splitting field of
a quartic with Gal 𝑞(𝑥) ⊆ 𝑉4 is of the form 𝐾(

√
𝑎,
√
𝑏) for some 𝑎, 𝑏 ∈ 𝐾×; the 𝑧𝑖 are then found

by solving the given linear system of equations for the 𝑟𝑖 . □

Lemma 11.11. Let 𝐾 be a local field of odd residue characteristic and 𝑞(𝑥) as in Lemma 11.10. If
𝑎, 𝑏, 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ 𝐾 and either 𝑎(𝑧22 − 𝑏𝑧

2
4
) or 𝑏(𝑧2

3
− 𝑏𝑧2

4
) is a unit, then 𝑞̄(𝑥) does not have roots

of multiplicity ⩾ 3.

Proof. One checks that (𝑟1−𝑟2)(𝑟3−𝑟4) = 4𝑎(𝑧22−𝑏𝑧
2
4
) and (𝑟1−𝑟3)(𝑟2−𝑟4) = 4𝑏(𝑧23−𝑎𝑧

2
4
). □

Lemma 11.12. Let 𝐾 be a number field and 𝑆 a finite set of places of 𝐾 including all primes above
2, but excluding at least one infinite place. For each 𝑣 ∈ 𝑆, let 𝑞𝑣(𝑥) ∈ 𝐾𝑣

[𝑥] (or ∈ 𝐾𝑣[𝑥] for 𝑣|∞)
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 55

be amonic quartic withGal(𝑞𝑣(𝑥)) ⊆ 𝑉4. There exists amonic quartic 𝑞(𝑥) ∈ 𝐾[𝑥]withGal(𝑞(𝑥))
⊆ 𝑉4 such that

(i) for each 𝑣 ∈ 𝑆, the roots of 𝑞(𝑥) are arbitrarily close to those of 𝑞𝑣(𝑥),
(ii) for all 𝑣 ∉ 𝑆, 𝑞(𝑥) mod 𝑣 has no roots of multiplicity ⩾ 3.

Proof. The proof is the same as for Lemma 11.9, except that the parameters 𝑎, 𝑏, 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ 𝐾
(lying in𝐾𝑣 for 𝑣 ∉ 𝑆) are chosen as follows. First choose 𝑧1 and𝑎 to be 𝑣-adically close to 𝑧1,𝑣 and
𝑎𝑣 for 𝑣 ∈ 𝑆. Choose 𝑧3 and 𝑏 to be 𝑣-adically close to 𝑧3,𝑣 and 𝑏𝑣 for 𝑣 ∈ 𝑆 such that gcd(𝑎, 𝑏𝑧3)
is supported on 𝑆— this ensures that for primes 𝑣 ∉ 𝑆 that divide 𝑎, 𝑏(𝑧2

3
− 𝑎𝑧2

4
) is a unit. Choose

𝑧2 to be 𝑣-adically close to 𝑧2,𝑣 for 𝑣 ∈ 𝑆 such that gcd(𝑏, 𝑧2) is supported on 𝑆 and 𝑎𝑧22 ≠ 𝑏𝑧
2
3
—

in particular, this ensures that for primes 𝑣 ∉ 𝑆 that divide 𝑏, 𝑎(𝑧2
2
− 𝑏𝑧2

4
) is a unit. Finally, choose

𝑧4 to be 𝑣-adically close to 𝑧4,𝑣 for 𝑣 ∈ 𝑆 such that gcd(𝑎𝑧22 − 𝑏𝑧
2
3
, 𝑧4) is supported on 𝑆 — this

ensures that for primes 𝑣 ∉ 𝑆 that do not divide 𝑎𝑏 either (𝑧2
2
− 𝑏𝑧2

4
) or (𝑧2

3
− 𝑎𝑧2

4
) is a unit. By

Lemma 11.11, 𝑞(𝑥) now satisfies (ii). □

11.4 Glueing a quadratic to a polynomial

Lemma 11.13. Let 𝐾 be a number field and 𝑞(𝑥) ∈ 𝐾[𝑥] be a separable monic polynomial. Let 𝑆
be a finite set of places of 𝐾 including all primes above 2 and all primes with residue field of size less
than deg 𝑞(𝑥) + 2, but excluding at least one infinite place. For each 𝑣 ∈ 𝑆, let ℎ𝑣(𝑥) ∈ 𝐾𝑣

[𝑥] (or
∈ 𝐾𝑣[𝑥] for 𝑣|∞) be a monic quadratic. There exists a monic quadratic ℎ(𝑥) ∈ 𝐾[𝑥] such that

(1) for each 𝑣 ∈ 𝑆, the coefficients of ℎ(𝑥) are arbitrarily close to those of ℎ𝑣(𝑥), and
(2) for each prime 𝑣 ∉ 𝑆, ℎ(𝑥)𝑞(𝑥) mod 𝑣 has either (a) no repeated roots or exactly one double root

in the residue field 𝔽𝑣 , or (b) all its repeated roots coming from those of 𝑞(𝑥) mod 𝑣.

Proof. Write ℎ𝑣(𝑥) = 𝑥2 + 𝑎𝑣𝑥 + 𝑏𝑣. Using strong approximation (and the infinite place outside of
𝑆), pick 𝑎 ∈ 𝐾 that is 𝑣-adically close to the 𝑎𝑣 for all 𝑣 ∈ 𝑆 and such that 𝑃 =

∏
(𝑎 + 𝑟 + 𝑟′) ≠ 0,

the product taken over all pairs of roots of 𝑞(𝑥) (including repeats).
Let 𝑇 be the set of primes outside 𝑆 that divide 𝑃⋅ Disc(𝑞(𝑥)).
Using strong approximation now pick 𝑏 ∈ 𝐾 so that

(i) 𝑏 is 𝑣-adically close to 𝑏𝑣 for all 𝑣 ∈ 𝑆, and
(ii) 𝑥2+𝑎𝑥+𝑏 mod 𝑣 is separable and coprime to 𝑞(𝑥) mod 𝑣 for all 𝑣 ∈ 𝑇.

The fact that the residue field at 𝑣 ∉ 𝑆 has size at least deg 𝑞(𝑥) + 2 ensures that for each 𝑎 mod 𝑣,
there is always a polynomial over 𝔽𝑣 that satisfies (ii).
We can now take 𝑡(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏. Indeed, condition (ii) ensures that

∙ if 𝑞(𝑥) mod 𝑣 has a double root, then the roots of ℎ(𝑥) mod 𝑣 are distinct from each other and
from the roots of 𝑞(𝑥) mod 𝑣;

∙ the roots of ℎ(𝑥) mod 𝑣 cannot both coincidewith roots of 𝑞(𝑥) mod 𝑣 for any 𝑣 ∉ 𝑆: otherwise,
we would have 𝑃 ≡ 0 mod 𝑣, so that 𝑣 ∈ 𝑇, which contradicts (ii);

∙ if ℎ(𝑥) mod 𝑣 has a double root (this would then be ≡ −𝑎∕2 mod 𝑣) for 𝑣 ∉ 𝑆, then it does not
coincide with a root of 𝑞(𝑥) mod 𝑣. □

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12545 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [31/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



56 DOKCHITSER and MAISTRET

11.5 Approximating a curve

Lemma11.14. Let𝐾 be a finite extension ofℚ𝑝 for an odd prime𝑝. There are polynomials𝑓1(𝑥) and
𝑓2(𝑥) of the form 𝑓(𝑥) = 𝑟(𝑥)𝑠(𝑥)𝑡(𝑥)with 𝑟(𝑥), 𝑠(𝑥), 𝑡(𝑥) ∈ 𝐾[𝑥]monic quadratic andGal(𝐾̄∕𝐾)
acting on the roots of 𝑠(𝑥)𝑡(𝑥) as a subgroup of 𝑉4, such that

(1) 𝑓1(𝑥) has cluster picture 0, and
(2) 𝑓2(𝑥) has cluster picture 1 1 0

and 𝑣(𝛼2+𝛽2−𝛼3−𝛽3) = 1,

where , (𝛼2, 𝛽2) and (𝛼3, 𝛽3) denote the roots of 𝑟, 𝑠 and 𝑡, respectively.

Proof. Since 𝑠(𝑥), 𝑡(𝑥) ∈ 𝐾[𝑥], the constraint onGal(𝐾̄∕𝐾)means that its elements will either act
trivially on the roots of 𝑠(𝑥)𝑡(𝑥) or simultaneously swap the roots of 𝑠(𝑥) and of 𝑡(𝑥).

(1) Take 𝑟(𝑥) = 𝑥(𝑥 − 1) and 𝑠(𝑥), 𝑡(𝑥) quadratics whose images over the residue field 𝑘(𝑥) are
distinct and irreducible (these exist even when 𝑘 = 𝔽3).

(2) Take 𝑟(𝑥) = 𝑥(𝑥 − 1), 𝑠(𝑥) = (𝑥 − 𝜋)(𝑥 − 𝜋 − 1), 𝑡(𝑥) = (𝑥 + 𝜋)(𝑥 + 𝜋 − 1), where 𝜋 = 𝜋𝐾 is
a uniformiser. □

Theorem 11.15. Let 𝐾 be a number field. Let 𝑣 be a place of 𝐾 and 𝐶𝑣∕𝐾𝑣 be a C2D4 curve with
 , Δ, 𝜂1 ≠ 0. Let 𝑣′ ≠ 𝑣 be an archimedean place of 𝐾.
For every 𝜖 > 0, there is a C2D4 curve 𝐶∕𝐾 with  , Δ, 𝜂1 ≠ 0 such that

(i) 𝐶∕𝐾𝑣 and 𝐶𝑣∕𝐾𝑣 are 𝜖-close,
(ii) for each prime 𝑤≠𝑣 with 𝑤|2, the C2D4 curve 𝐶∕𝐾𝑤 lies in 𝐶2𝐷4;
(iii) for each prime 𝑤≠𝑣 with 𝑤 ∤ 2, the curve 𝐶∕𝐾𝑤 is semistable with cluster picture

∙ or , or
∙ 1 1 0

with ord𝑤(𝓁1) = 1, or
∙ 0

with ord𝑤(𝓁1) = ord𝑤(𝓁2) = ord𝑤(𝓁3) = ord𝑤(𝜂2) = ord𝑤(𝜂3) = 0, or
∙

0
with ord𝑤(𝓁1) = ord𝑤(𝓁2) = ord𝑤(𝓁3) = 0, or

∙ 𝑛 𝑚 0

with ord𝑤(𝓁1)=min(𝑛,𝑚), ord𝑤(𝓁2)=ord𝑤(𝓁3)=ord𝑤(𝜂2)=ord𝑤(𝜂3)=0;
(iv) for each real place 𝑤 ≠ 𝑣, 𝑣′, the curve 𝐶∕𝐾𝑤 has picture .

Proof. Note that being 𝜖-close to 𝐶𝑣∕𝐾𝑣 for sufficiently small 𝜖 guarantees that  , Δ, 𝜂1 ≠ 0
(Lemma 11.2), so this condition will be automatic.
Write 𝐶𝑣∕𝐾𝑣 as 𝑦2 = 𝑐𝑣 ⋅ ℎ𝑣(𝑥)𝑞𝑣(𝑥) with ℎ𝑣(𝑥) a monic quadratic and 𝑞𝑣(𝑥) a monic quartic

withGal(𝑞𝑣(𝑥)) ⩽ 𝐷4 given by the C2D4 structure. In the case that 𝑣 is non-archimedean, wemay
assume that ℎ𝑣(𝑥), 𝑞𝑣(𝑥) ∈ 𝐾𝑣

[𝑥]: otherwise scale 𝑥 by a suitable totally positive element of 𝐾
whose only prime factor is 𝑣 (this exists as 𝑣 has finite order in the class group).
Let 𝑆 be the set consisting of 𝑣, all real places other than 𝑣′, primes above 2 and all primes with

residue field of size< 23. For𝑤 ∈ 𝑆 ⧵ {𝑣}, define C2D4 curves 𝐶𝑠𝑝𝑐𝑤 ∶ 𝑦2 = 𝑐𝑤ℎ𝑤(𝑥)𝑞𝑤(𝑥) over𝐾𝑤
for quadratic ℎ𝑤(𝑥) and quartic 𝑞𝑤(𝑥) as follows:

∙ For 𝑤|∞, let 𝑐𝑤 = −1 and ℎ𝑤(𝑥) = 𝑥(𝑥 − 1), 𝑞𝑤(𝑥) =
∏5
𝑖=2(𝑥 − 𝑖), so 𝐶

𝑠𝑝𝑐
𝑤 has picture

.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 57

∙ For 𝑤|2, let 𝑐𝑤 = 1 and ℎ𝑤(𝑥) = 𝑟(𝑥), 𝑞𝑤(𝑥) = 𝑠(𝑥)𝑡(𝑥) for 𝑟, 𝑠, 𝑡 given by the roots in
Definition 10.4, so 𝐶𝑠𝑝𝑐𝑤 ∈ 𝐶2𝐷4.

∙ For𝑤 ∤ 2∞, let 𝑐𝑤 = 1 and ℎ𝑤(𝑥) = 𝑟(𝑥), 𝑞𝑤(𝑥) = 𝑠(𝑥)𝑡(𝑥) for 𝑟, 𝑠, 𝑡 given by Lemma 11.14(i); in
particular, 𝐶𝑠𝑝𝑐𝑤 has picture 0.

Pick 𝑐∈𝐾 such that 𝑐=𝑐𝑤 ⋅□ ∈ 𝐾×𝑤 for all 𝑤∈𝑆. Let 𝑆′ be the set of primes 𝑤∉𝑆 such that
ord𝑤(𝑐) is odd. For these primes, define 𝐶

𝑠𝑝𝑐
𝑤 ∶ 𝑦2=𝑐ℎ𝑤(𝑥)𝑞𝑤(𝑥) by setting ℎ𝑤(𝑥)=𝑟(𝑥) and

𝑞𝑤(𝑥)=𝑠(𝑥)𝑡(𝑥) for 𝑟, 𝑠, 𝑡 given in Lemma 11.14(ii); these curves have cluster picture 1 1 0

with ord𝑤(𝓁1) = 1.
Using Lemmata 11.9 and 11.13, construct a monic 𝐷4 quartic 𝑞(𝑥) ∈ 𝐾[𝑥] and monic 𝐶2

quadratic ℎ(𝑥) ∈ 𝐾[𝑥] such that the C2D4 curve 𝐶 ∶ 𝑦2 = 𝑐ℎ(𝑥)𝑞(𝑥)

(1) is 𝜖
2
-close to 𝐶𝑣∕𝐾𝑣,

(2) is close to 𝐶𝑠𝑝𝑐𝑤 ∕𝐾𝑤 for 𝑤 ∈ 𝑆 ∪ 𝑆′ ⧵ {𝑣},
(3) has picture

0
,

0
,

0
or

0
for 𝑤∉𝑆∪𝑆′.

By the semistability criterion (Theorem 2.12), 𝐶∕𝐾𝑤 is semistable at all 𝑤 ≠ 𝑣 with 𝑤 ∤ 2.
It remains to ensure that the invariants listed under (iii) are units. Centre the curve 𝐶 by a

substitution 𝑥 ↦ 𝑥+𝜆 to give a curve𝐶′. Using strong approximation andTheorem6.6, pick 𝑡 ∈ 𝐾
such that (a) for 𝑤 ∈ 𝑆, 𝑡 is 𝑤-adically close to 0, and (b) for finite 𝑤 ∉ 𝑆 where 𝐶 has cluster
picture or or or , 𝐶𝑡 has the same cluster picture
and the invariants of 𝐶𝑡 specified in (iii) are units. Note that at all other places 𝐶𝑡 will have cluster
picture or by Theorem 2.17. Finally, shifting 𝐶𝑡 back by 𝑥 ↦ 𝑥−𝜆 gives the
required curve 𝐶′′. □

11.6 Approximating a curve with two isogenies

Theorem 11.16. Let 𝐾 be a number field and 𝑣 a place of 𝐾. Let 𝐶𝑣 ∶ 𝑦2 = 𝑐𝑣𝑓𝑣(𝑥) be a curve over
𝐾𝑣 that admits two C2D4 structures, 𝐶

(1)
𝑣 and 𝐶(2)𝑣 , each of which has  , Δ, 𝜂1 ≠ 0. Let 𝑣′ ≠ 𝑣 be an

archimedean place of 𝐾. Suppose that one of the following two conditions holds:

(1) ∙ the second colouring is obtained from the first by relabelling colours, and
∙ Gal(𝑓𝑣) preserves colours; or

(2) ∙ both colourings have the same ruby roots, and
∙ Gal(𝑓𝑣) acts on the sapphire and turquoise roots as a subgroup of 𝑉4.

Then for every 𝜖 > 0, there is a curve 𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥) over 𝐾 that admits two C2D4 structures, 𝐶(1)
and 𝐶(2), such that

(i) 𝐶(1)∕𝐾𝑣 and 𝐶
(1)
𝑣 ∕𝐾𝑣 are 𝜖-close, and 𝐶(2)∕𝐾𝑣 and 𝐶

(2)
𝑣 ∕𝐾𝑣 are 𝜖-close,

(ii) for each prime 𝑤 ≠ 𝑣 with 𝑤|2, the curve 𝐶∕𝐾𝑤 lies in  ,
(iii) for each prime 𝑤 ≠ 𝑣 with 𝑤 ∤ 2, the curve 𝐶∕𝐾𝑤 is semistable and, with respect to each

of the two colourings, has cluster picture , ,
0
,

0
or

0
.

(iv) for each real place 𝑤 ≠ 𝑣, 𝑣′, the curve 𝐶∕𝐾𝑤 has picture , , ,
or , with respect to both colourings.

Proof. The condition on the colourings and the Galois action in (1) is equivalent to saying that
𝑓𝑣(𝑥) factorises into three quadratics 𝑎𝑣(𝑥)𝑏𝑣(𝑥)𝑑𝑣(𝑥) over𝐾𝑣 and that (for both C2D4 structures)
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58 DOKCHITSER and MAISTRET

the roots of each quadratic aremonochromatic. The condition in (2) is equivalent to a factorisation
into a quadratic 𝑟𝑣(𝑥) with the ruby roots and a quartic 𝑞𝑣(𝑥) whose Galois group is contained in
𝑉4. Thus, to prove the theorem, it will suffice to construct 𝐶∕𝐾 so that

∙ it satisfies (ii), (iv) and (iii), avoiding the cluster picture in case (1), and
∙ in case (1), 𝑓(𝑥) admits a factorisation into three quadratics 𝑎(𝑥)𝑏(𝑥)𝑑(𝑥) over 𝐾 and 𝑐, 𝑎(𝑥),
𝑏(𝑥), 𝑑(𝑥) are 𝑣-adically close to 𝑐𝑣, 𝑎𝑣(𝑥), 𝑏𝑣(𝑥), 𝑑𝑣(𝑥),

∙ in case (2), 𝑓(𝑥) admits a factorisation over 𝐾 into a quadratic 𝑟(𝑥) and a quartic 𝑞(𝑥) with
Galois group inside 𝑉4, and 𝑐, 𝑟(𝑥), 𝑞(𝑥) are 𝑣-adically close to 𝑐𝑣, 𝑟𝑣(𝑥), 𝑞𝑣(𝑥).

Indeed, such a curve will automatically admit two C2D4 structures that satisfy (i).
The construction of 𝐶∕𝐾 follows exactly as in the proof of Theorem 11.15, except that the

use of Lemmata 11.9 and 11.13 in the penultimate paragraph is replaced by two applications of
Lemma 11.13 in case (1) and by Lemmata 11.12 and 11.13 in case (2), and that the step in the final
paragraph is not relevant here. □

11.7 Making the terms  , 𝜼𝟏, 𝚫 ≠ 𝟎

Recall that we will eventually need to address the special cases when  , 𝜂1, or Δ is 0. Here we
record themethods tomake small perturbations to the givenC2D4model tomake these invariants
non-zero.

Lemma 11.17. Let 𝐾 be a local field of characteristic 0 and 𝐶∕𝐾 a centred C2D4 curve. Then there
is a 𝑡0 ∈ 𝐾 arbitrarily close to 0 such that for all 𝑡 ∈ 𝐾 sufficiently close to 𝑡0 the model 𝐶𝑡 has ≠ 0.

Proof. It suffices to find one value of 𝑡0 close to 0 such that 𝐶𝑡0 has  ≠ 0, since (𝐶𝑡) is continu-
ous as a function of 𝑡. By definition  = 𝓁1𝓁2𝓁3𝜂2𝜂3𝜉(𝛿2 + 𝛿3)(𝛿2𝜂2 + 𝛿3𝜂3)(𝛿̂2𝜂3 + 𝛿̂3𝜂2). As the
individual factors are rational functions in 𝑡, it suffices to prove that none of them are identically
zero for 𝑡 ∈ 𝐾̄.
Consider a Möbius transformation of the form𝑚 ∶ 𝑧 ↦ 𝐜( 1

𝑧−𝐚
− 𝐛), where 𝐛 and 𝐜 are chosen

so that 𝑚(𝛼1) = 𝛼1 and 𝑚(−𝛼1) = −𝛼1. By Lemma 6.4, 𝑚 = 𝑀𝑡 for some 𝑡 ∈ 𝐾̄. If 𝐚 is chosen to
be sufficiently close but not equal to 𝛼2, then |𝑀𝑡(𝛼2)| >> |𝑀𝑡(±𝛼1)|, |𝑀𝑡(𝛼3)|, |𝑀𝑡(𝛽2)|, |𝑀𝑡(𝛽3)|.
This guarantees that 𝓁1,𝓁3, 𝜂2, 𝛿2 + 𝛿3, 𝛿2𝜂2 + 𝛿3𝜂3 ≠ 0 for 𝐶𝑡. Note also that taking 𝐚 close to
𝛼2 keeps

1

𝐜
(𝑀𝑡(𝛽2) ± 𝑀𝑡(𝛼1)) =

±𝛼1−𝛽2
(±𝛼1−𝐚)(𝛽2−𝐚)

away from 0, which ensures that 𝛿̂2𝜂3 + 𝛿̂3𝜂2 =
𝛼4
2
(𝛽2 − 𝛼1)(𝛽2 + 𝛼1) + (𝛼3

2
) also becomes non-zero for 𝐶𝑡.

Similarly, picking 𝐚 close to 𝛼3 shows that one can make 𝓁2, 𝜂3 ≠ 0.
Finally, for 𝜉 embed 𝐾 ⊂ ℂ and take 𝐚 ≈ 𝛼1: this makes 𝜉(𝐶𝑡) arbitrarily close to −32𝛼41 in ℂ,

and hence non-zero. □

Remark 11.18. One cannot similarly change the model to make either 𝜂1 or Δ non-zero. A com-
putation shows that if 𝜂1(𝐶) = 0, then 𝜂1(𝐶𝑡) = 0 for all 𝑡. Moreover, Δ(𝐶) = 0 if and only if
Δ(𝐶𝑚) = 0 for every 𝑚 ∈ GL2(𝐾), so, by Remark 6.2, the condition ‘Δ=0’ is independent of the
choice of model.

Lemma 11.19. Let 𝐾 be a local field of characteristic 0, and 𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥) a C2D4 curve over 𝐾
with  , Δ ≠ 0.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 59

(i) For every 𝜖 > 0, there exists another 𝐶2𝐷4 curve 𝐶′ ∶ 𝑦2 = 𝑐g(𝑥) over 𝐾 whose roots satisfy|𝛼𝑖−𝛼′𝑖 |, |𝛽𝑖−𝛽′𝑖 | < 𝜖 and which has 𝜂1(𝐶′) ≠ 0.
(ii) There is a 𝛿 > 0 such that for every 𝐶2𝐷4 curve 𝐶′ ∶ 𝑦2 = 𝑐′g(𝑥) over 𝐾 with |𝑐−𝑐′|, |𝛼𝑖−𝛼′𝑖 |,|𝛽𝑖−𝛽′𝑖 | < 𝛿, Conjecture 1.14 holds for 𝐶∕𝐾 if and only if it holds for 𝐶′∕𝐾.

Proof.

(i) The definition of 𝜂1 only depends on the roots of the quartic in 𝑓(𝑥). Write these as
in Lemma 11.6 (with 𝛼2=𝑟1, 𝛽2=𝑟3, 𝛼3=𝑟2, 𝛽3=𝑟4 to get the Galois action right). By
Remark 11.8, 𝜂1 = 4(2𝑎𝑧22 − 𝑏𝑧

2
3
− 2𝑎𝑑𝑧3𝑧4 − 𝑎𝑏𝑧

2
4
). One checks that since 𝑎 ≠ 0 and at least

one of 𝑧2, 𝑧3, 𝑧4 is not 0, not all partial derivatives with respect to the parameters are simul-
taneously 0. Changing the corresponding parameter by a sufficiently small amount gives the
required g(𝑥).

(ii) If 𝛿 is sufficiently small, then the two curves have the same invariants up to squares (other
than 𝜂1), the same local root number and 𝜆𝐶∕𝐾 = 𝜆𝐶′∕𝐾 (Lemma 11.2), and 𝜂1(𝐶′) is arbitrarily
close to 𝜂1(𝐶). If either 𝜂1(𝐶) ≠ 0 or 𝜂1(𝐶) = 𝜂1(𝐶′) = 0, then the result follows directly, as
each Hilbert symbol in Conjecture 1.14 is the same for 𝐶 and 𝐶′.
Suppose 𝜂1(𝐶)=0 and 𝜂1(𝐶′)≠0. By Lemma 9.9(2), the invariants of 𝐶′ satisfy 𝛿2𝛿3=

−4Δ2𝛿̂1+𝜂
2
1
. If 𝛿 is sufficiently small, then 𝜂1 will be close to 0, so that−𝛿2𝛿3Δ2𝛿̂1 is a perfect

square in 𝐾. Hence (𝜂1, −𝛿2𝛿3Δ2𝛿̂1) = 1 for 𝐶′∕𝐾, which proves that all the Hilbert symbols
for 𝐶 and 𝐶′ agree in this case too. □

Lemma 11.20. Let 𝐾 be a local field of characteristic 0, and 𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥) a C2D4 curve
over 𝐾. For every 𝜖 > 0, there exists another 𝐶2𝐷4 curve 𝐶′ ∶ 𝑦2 = 𝑐g(𝑥) over 𝐾 whose roots satisfy|𝛼𝑖 − 𝛼′𝑖 |, |𝛽𝑖 − 𝛽′𝑖 | < 𝜖 and which has Δ(𝐶′) ≠ 0.
Proof. We may assume that the curve is centred. If Δ(𝐶) ≠ 0, the result is clear, so suppose

Δ(𝐶) = −𝑐(𝛼21𝓁1 − 𝛼2𝛽2(𝛼3 + 𝛽3) + 𝛼3𝛽3(𝛼2 + 𝛽2)) = 0.

If 𝓁1 ≠ 0, we can obtain a suitable 𝐶′ by a small perturbation to 𝛼21 , so suppose 𝓁1 = 0, that is,
𝛼2 + 𝛽2 = 𝛼3 + 𝛽3. We cannot moreover have 𝛼2𝛽2 = 𝛼3𝛽3 as then 𝛼2, 𝛽2 would be the roots of the
same quadratic as 𝛼3, 𝛽3 and 𝐶 would be singular. Thus, the above equation for Δ forces 𝛼2 = −𝛽2
and 𝛼3 = −𝛽3.
To obtain a suitable 𝐶′, take 𝛼′

1
= 𝛼1 and shift the other roots by a small 𝑡 ∈ 𝐾, that is, take 𝛼′𝑖 =

𝛼𝑖 + 𝑡, 𝛽′𝑖 = 𝛽𝑖 + 𝑡 for 𝑖 = 2, 3. This preserves the Galois action on roots, so g(𝑥) ∈ 𝐾[𝑥]. Moreover,
𝓁′
1
= 𝓁1 = 0, but now 𝛼′2 + 𝛽

′
2
≠ 0, and so Δ(𝐶′) ≠ 0, as required. □

Lemma 11.21. Let 𝐾 be a local field of characteristic 0 and 𝐶∕𝐾 a curve that admits two C2D4
structures, 𝐶(1) and 𝐶(2), such that  , Δ ≠ 0 for 𝐶(1). Then for every 𝜖 > 0, there is a C2D4 curve
𝐶2∕𝐾 that admits two C2D4 structures, 𝐶(1)

2
and 𝐶(2)

2
, such that 𝐶(1)

2
is arithmetically and 𝜖-close to

𝐶(1) and such that 𝐶(2)
2

has  , Δ ≠ 0.

Proof. Note that a shift of the𝑥-coordinate𝑥 ↦ 𝑥 + 𝜆 does not change for either C2D4 structure.
Thus, we can take 𝑚 = 𝑠−1◦𝑀◦𝑠, where 𝑠 is the shift that centres 𝐶(2) and𝑀 ∈ GL2(𝐾) close to
the identity that then makes (𝐶(2)

𝑀𝑠
) ≠ 0 from Lemma 11.17. Now apply Lemma 11.20 to 𝐶𝑠−1𝑀𝑠 to

obtain 𝐶2. □
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60 DOKCHITSER and MAISTRET

12 MAIN LOCAL THEOREM: GENERAL CASE

We now return to the proof of Conjecture 1.14.

12.1 Changing the model

Theorem12.1. Let𝐾 be a local field of characteristic 0. Let𝐶∕𝐾 be aC2D4 curvewith , Δ ≠ 0. Sup-
pose that 𝐶∕𝐾 admits another C2D4 model 𝐶′∕𝐾 for which Conjecture 1.14 holds. Then Conjecture
1.14 holds for 𝐶∕𝐾.

Proof. Write 𝐾 = 𝐹𝑣 as the completion of some number field 𝐹 at a place 𝑣, which also has a
complex place 𝑣′ ≠ 𝑣.
We may change the C2D4 model by scaling the 𝑦-coordinate (this changes the leading term 𝑐

by a square), as this does not affect any of the Hilbert symbols in 𝐸𝐶∕𝐾 and hence the validity of
Conjecture 1.14 for 𝐶∕𝐾. By Remark 6.2, we may therefore assume that the model 𝐶′ is 𝐶𝑚 for
some𝑚 ∈ GL2(𝐾). Since𝑚 and𝑚−1 are continuous, by Lemma 11.19, we may moreover assume
that 𝜂1 ≠ 0 for both 𝐶 and 𝐶′.
By Theorems 11.15 and 4.1, there is a C2D4 curve 𝐶̃𝑚 defined over 𝐹 which is arithmetically

close to 𝐶𝑚 over 𝐹𝑣 and for which Conjecture 1.14 holds at all places of 𝐹. Moreover, by continuity
of 𝑚−1, we can pick it to be 𝑣-adically sufficiently close to 𝐶𝑚 so that (𝐶̃𝑚)𝑚−1 is arithmetically
close to 𝐶.
Now use continuity (Lemmata 11.3 and 11.4) and strong approximation to pick 𝑚′ ∈ GL2(𝐹)

such that (i)𝑚′ is 𝑣-adically close to𝑚−1, so that 𝐶̃ = (𝐶̃𝑚)𝑚′ is arithmetically close to 𝐶, and (ii)
𝑚′ is 𝑤-adically close to the identity at all places 𝑤 ≠ 𝑣, 𝑣′ that are either archimedean or where
𝐶̃𝑚 has bad reduction, so that 𝐶̃ is arithmetically close to (𝐶̃𝑚) at these places.
To summarise, we have now replaced the pair of curves 𝐶, 𝐶𝑚 defined over 𝐾 by a pair 𝐶̃, 𝐶̃𝑚

defined over 𝐹 such that

∙ 𝐶 and 𝐶̃ are arithmetically close over 𝐹𝑣,
∙ 𝐶𝑚 and 𝐶̃𝑚 are arithmetically close over 𝐹𝑣,
∙ Conjecture 1.14 holds for 𝐶̃𝑚 at all places of 𝐹,
∙ Conjecture 1.14 holds for 𝐶̃ at all places 𝑤 ≠ 𝑣, 𝑣′ of 𝐹 that are archimedean or where 𝐶𝑚 has
bad reduction, and hence by Theorem 4.1 at all places 𝑤 ≠ 𝑣 of 𝐹.

By Theorem 1.15, the 2-parity conjecture holds for 𝐶̃𝑚∕𝐹. Since 𝐶̃ is another model for 𝐶̃𝑚, the
2-parity conjecture also holds for 𝐶̃∕𝐹. By Lemma 1.19, it follows that Conjecture 1.14 must also
hold for 𝐶̃ at the remaining place 𝑣. Since this curve is arithmetically close to 𝐶 over 𝐾 = 𝐹𝑣, the
conjecture also holds for 𝐶∕𝐾, as required. □

12.2 Finite places

Theorem 12.2. Let 𝐾 be a finite extension of ℚ𝑝 and 𝐶∕𝐾 a C2D4 curve with  , Δ ≠ 0. Then
Conjecture 1.14 holds for 𝐶∕𝐾 if either

(1) 𝑝 is odd and 𝐶∕𝐾 is semistable with cluster picture , , ,
, , , or , or
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 61

(2) 𝑝 = 2, 𝐶∕𝐾 has good ordinary reduction and the kernel of the associated Richelot isogeny on the
Jacobian is precisely the kernel of the reduction map on 2-torsion points.

Proof. We consider the cases of odd and even residue characteristic independently. By
Lemma 11.19, we may assume that 𝜂1 ≠ 0. By Lemma 3.7, we may assume that the residue field of
𝐾 is sufficiently large. The result now follows from Theorems 4.1, 6.6 and 12.1 for 𝑝 odd, and from
Proposition 10.2 and Theorems 10.3 and 12.1 for 𝑝 = 2. □

12.3 Changing the isogeny

Theorem 12.3. Let 𝐾 be a non-archimedean local field of characteristic 0. Let 𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥) be a
curve over 𝐾 that admits two C2D4 structures, 𝐶(1) and 𝐶(2), both of which have  , Δ ≠ 0 and such
that Conjecture 1.14 holds for 𝐶(1). Suppose that one of the following two conditions holds:

(1) ∙ the second colouring is obtained from the first by relabelling colours, and
∙ Gal(𝑓) preserves colours; or

(2) ∙ both colouring have the same ruby roots, and
∙ Gal(𝑓) acts on the sapphire and turquoise roots as a subgroup of 𝑉4.

Then Conjecture 1.14 holds for 𝐶(2).

Proof for 𝐾 a finite extension of ℚ2. Since the validity of Conjecture 1.14 is unchanged by going to
an unramified extension of odd degree (Lemma 3.7), we may assume that [𝐾 ∶ ℚ2] > 1.
Pick a number field 𝐹 that has a prime 𝑣 above 2 with completion 𝐹𝑣 ≃ 𝐾, and such that 𝐹 has

no other primes above 2 and has a complex place. (To see that such a field exists, pick a primitive
generator 𝜃 for𝐾∕ℚ2 and approximate its minimal polynomial by a polynomial𝑚(𝑥) ∈ ℚ[𝑥] that
has at least two complex roots; then 𝐹 = ℚ[𝑥]∕𝑚(𝑥) has the required property.)
Over local fields, a small perturbation to the coefficients of a separable polynomial does not

change its Galois group, so by Lemma 11.19, we may assume that both curves have 𝜂1 ≠ 0. By
Theorems 11.16 and 4.1, there is a curve 𝐶̃∕𝐹 that admits two C2D4 structures 𝐶̃(1) and 𝐶̃(2) such
that 𝐶̃(𝑖) is close to𝐶(𝑖) and such that Conjecture 1.14 holds for both 𝐶̃(1) and 𝐶̃(2) at all places𝑤 ≠ 𝑣.
In particular, Conjecture 1.14 holds for 𝐶̃(1) at all places of 𝐹, and hence, the 2-parity conjecture
holds for 𝐶̃ (Theorem 1.15). It thus also holds for 𝐶̃(2), and thus, by Lemma 1.19, it follows that
Conjecture 1.14 must hold for 𝐶̃(2)∕𝐹𝑣, and hence for 𝐶(2)∕𝐾. □

12.4 2-adic places

Theorem 12.4. Let 𝐾 be a finite extension of ℚ2. Suppose that 𝐶∕𝐾 lies in  . Then Conjecture 1.14
holds for every C2D4 structure on 𝐶∕𝐾 with  , Δ≠0.

Proof. The curve 𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥) has all its Weierstrass points defined over 𝐾. As Gal(𝑓) is
trivial, we can repeatedly apply Theorem 12.3 (and Lemma 11.21) to the given C2D4 structure
𝐶(1) to change it to the standard C2D4 structure 𝐶(0) ∈ 𝐶2𝐷4. Conjecture 1.14 holds for 𝐶(0)
(Theorem 10.5), and hence for 𝐶(1) as well. □
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62 DOKCHITSER and MAISTRET

12.5 Changing the isogeny (continued)

Proof of Theorem 12.3 for 𝐾 archimedean or a finite extension ofℚ𝑝, 𝑝 odd. Let 𝐹 be a number field
with a prime 𝑣 such that 𝐹𝑣 ≃ 𝐾 and 𝐹 has a complex place 𝑣′ ≠ 𝑣. By Theorem 12.4, Conjecture
1.14 holds for all curves over 2-adic fields that lie in  , irrespectively of the choice of the C2D4
structure. The proof now follows verbatim as the third paragraph of the proof of the case when 𝐾
is an extension of ℚ2. □

12.6 Proof of Theorem 1.16

Theorem 12.5 (=Theorem 1.16). Conjecture 1.14 holds for all C2D4 curves with  , Δ ≠ 0 over
archimedean local fields, all semistable C2D4 curves with  , Δ ≠ 0 over finite extensions of ℚ𝑝 for
odd primes 𝑝 and all C2D4 curves with  , Δ ≠ 0 and good ordinary reduction over finite extensions
of ℚ2.

Proof. Write the curve as 𝐶 ∶ 𝑦2 = 𝑐𝑓(𝑥) and consider the colouring of the roots of 𝑓(𝑥) given by
the C2D4 structure, 𝐶(1). Observe that

(1) if Gal(𝑓) preserves colours, then 𝐶 admits two other C2D4 structures obtained from the
original one by relabelling the colours; and

(2) if Gal(𝑓) acts as a subgroup of 𝑉4 on the sapphire and turquoise roots, then 𝐶 admits two
other C2D4 structures obtained from the original one by changing the colouring of sapphire
and turquoise roots.

Let𝐶(2) be any one of these structures. By Lemma 11.21, wemay assume that𝐶(2) also has , Δ ≠ 0.
By Theorem 12.3, it then suffices to prove the result for 𝐶(2).
We now show that through repeated use of (1) and (2), we can reduce the problem to one already

covered by Theorems 4.1 and 12.2.
Complex places: The result is covered by Theorem 4.1.
Real places:Wemay assume that if 𝑓(𝑥) has a real root, then 𝑐 < 0: indeed, by Theorem 12.1, we

can use a change ofmodel given by𝑥 ↦ 1

𝑥−𝑡
for a suitable 𝑡 ∈ ℝ tomake the leading termnegative.

If 𝑓(𝑥) has six real roots, then a repeated use of (1) and (2) brings it to the picture .
If 𝑓(𝑥) has four real roots, then by (1), we may assume that the complex roots are ruby, and

then, by (2) that the picture is with 𝛼1 = 𝛽1.
If 𝑓(𝑥) has two real roots, then by (1), we may assume that these are ruby, and then by (2) that

the picture is with 𝛼2 = 𝛽2 and 𝛼3 = 𝛽3, and then by (1) again that the picture is instead
with 𝛼1 = 𝛽1 and 𝛼3 = 𝛽3.
If 𝑓(𝑥) has no real roots, then the ruby roots are necessarily complex conjugate, and by (2), we

can make 𝛼𝑖 = 𝛽𝑖 for 𝑖 = 1, 2, 3.
Odd primes: By Theorems 6.5 and 12.1, we may assume that the cluster picture of 𝐶∕𝐾 is bal-

anced (using Lemma 3.7(5) to enlarge |𝑘| if necessary). If the reduction has type 2 or 1𝑛 (in the
sense of Theorem 2.17), the result follows from Theorem 12.2. Otherwise, its cluster picture is one
of the ones given below. Applying steps (1) and (2) as indicated above the arrows reduces the
problem to one covered by Theorem 12.2.
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 63

Type U𝑛,𝑚,𝑙

2
xxxxxx→

1
xxxxxx→

2
xxxxxx→

Type 1×𝑡 1
1

xxxxxx→ OR

Type I𝑛,𝑚
1

xxxxxx→
2

xxxxxx→
1

xxxxxx→

1
xxxxxx→

2
xxxxxx→

1
xxxxxx→

Type 1×𝑡 I𝑛
1

xxxxxx→
1

xxxxxx→
2

xxxxxx→
⏐⏐⏐⏐⏐⏐⏐
↓1

1
xxxxxx→

2
xxxxxx→

1
xxxxxx→

Type I𝑛×𝑡 I𝑚
1

←xxxxxx
1

←xxxxxx
⏐⏐⏐⏐⏐⏐⏐
↓2

↑⏐⏐⏐⏐⏐⏐⏐
2

⏐⏐⏐⏐⏐⏐⏐
↓1

⏐⏐⏐⏐⏐⏐⏐
↓1

⏐⏐⏐⏐⏐⏐⏐
↓2

2
←xxxxxx

1
←xxxxxx

2
←xxxxxx

2-adic primes: By Proposition 10.2(i) and Theorem 12.1, we may assume that the cluster pic-
ture of 𝐶 has three twins of depth 𝑣(4), and that the depth of the cluster containing all six roots
is 0 (using Lemma 3.7(5) to first enlarge |𝑘| if necessary). The result follows as for the case of
Type U𝑛,𝑚,𝑙 above. □

13 GLOBAL RESULTS

We now complete the proofs of the theorems given in the introduction.

Proposition 13.1. The 2-parity conjecture holds for abelian varieties over number fields 𝐴∕𝐾 with
Gal(𝐾(𝐴[2])∕𝐾) a 2-group that are either products of elliptic curves, or the Weil restriction of an
elliptic curve from a field extension.

Proof. If𝐴 ≃
∏
𝐸𝑖 or≃ Res𝐹∕𝐾 𝐸, then the condition on the 2-torsion field ensures that the elliptic

curves 𝐸𝑖∕𝐾 or 𝐸∕𝐹 all admit a 2-isogeny. By [13, Thm. 5.8], the 2-parity conjecture holds for
𝐸𝑖∕𝐾 (respectively, 𝐸∕𝐹). As the 2-parity conjecture is compatible with products and with Weil
restriction of scalars (as both root numbers and 𝑝∞-Selmer ranks are), it also holds for 𝐴∕𝐾. □

Theorem 13.2. The 2-parity conjecture holds for all C2D4 curves over number fields 𝐶∕𝐾 with
Δ = 0.
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64 DOKCHITSER and MAISTRET

Proof. By [31, Def. 8.2.4 and Prop. 8.3.1], 𝐴 = Jac𝐶 has an isogeny of degree 4 to an abelian
variety 𝐵 that is either a product of two elliptic curves or the Weil restriction of an elliptic
curve from a quadratic extension. By hypothesis, Gal(𝐾(𝐴[2])∕𝐾) is a 2-group, and hence so is
Gal(𝐾(𝐴[2𝑛])∕𝐾). It follows that Gal(𝐾(𝐵[2])∕𝐾) is also a 2-group. The result now follows by
Proposition 13.1, since the 2-parity conjecture is compatible with isogenies (as both root numbers
and 𝑝∞-Selmer ranks are invariant under isogenies). □

Theorem 13.3. The 2-parity conjecture holds for all principally polarised abelian surfaces over
number fields 𝐴∕𝐾 such that Gal(𝐾(𝐴[2])∕𝐾) is a 2-group that are either

∙ the Jacobian of a semistable genus 2 curve with good ordinary reduction at primes above 2, or
∙ not isomorphic to the Jacobian of a genus 2 curve.

Proof. By [17, Thm. 3.1],𝐴 is either a product of two elliptic curves, theWeil restriction of an elliptic
curve fromaquadratic field extension or is the Jacobian of a genus 2 curve𝐶∕𝐾. By Proposition 13.1
and the hypothesis on the 2-torsion field, we may assume that 𝐴 = Jac𝐶 for a C2D4 curve 𝐶∕𝐾.
By Theorem 13.2 and Lemma 11.17, wemay also assume that , Δ ≠ 0. The result now follows from
Theorems 1.15 and 12.5. □

Corollary 13.4. The 2-parity conjecture holds for all semistable C2D4 curves over number fields
𝐶∕𝐾 that have good ordinary reduction at the primes above 2.

Theorem 13.5. The parity conjecture holds for all principally polarised abelian surfaces over
number fields 𝐴∕𝐾 such thatX𝐴∕𝐾(𝐴[2]) has finite 2-, 3- and 5-primary part that are either

∙ the Jacobian of a semistable genus 2 curve with good ordinary reduction at primes above 2, or
∙ semistable, and not isomorphic to the Jacobian of a genus 2 curve.

Proof. This now follows from Theorems 13.3 and B.1. □

Theorem 13.6. If the 2-parity conjecture is true for all Jacobians of C2D4 curves over number fields,
then Conjecture 1.14 holds for all C2D4 curves over local fields of characteristic 0 with  , Δ ≠ 0.

Proof. Let𝐶∕𝐾 be a C2D4 curve over a local field of characteristic 0 with ≠ 0. Let𝐹 be a number
field with a place 𝑣, such that 𝐹𝑣 ≅ 𝐾, and some other place 𝑣′ that is archimedean.
By Lemma 11.19, we may assume that 𝜂1 ≠ 0. By Theorems 11.15 and 12.5, we can find a C2D4

curve 𝐶′ over 𝐹 such that 𝐶 and 𝐶′ are arithmetically close over 𝐹𝑣 and such that Conjecture 1.14
holds for 𝐶∕𝐹𝑤 for all places 𝑤 ≠ 𝑣. By assumption, the 2-parity conjecture holds for 𝐶′∕𝐹, so by
Lemma 1.19, Conjecture 1.14 holds for 𝐶∕𝐹𝑣. It follows by Lemma 11.4 that Conjecture 1.14 also
holds for 𝐶∕𝐾. □

APPENDIX A: ISOGENIES BETWEEN ABELIAN VARIETIESWITH GOOD ORDINARY
REDUCTION by AdamMorgan

A.1 Statement of the result

Let 𝐾 be a finite extension of ℚ2 and 𝐴∕𝐾 a principally polarised abelian variety of dimension
g , with good ordinary reduction. Let 𝑊 be a maximal isotropic subspace of 𝐴[2] (for the Weil
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 65

pairing associated to the principal polarisation), stable under the action of the absolute Galois
group Gal(𝐾̄∕𝐾). Let 𝜙 ∶ 𝐴 → 𝐵 be the𝐾-isogenywith kernel𝑊, so that 𝐵 is principally polarised
also, has good ordinary reduction, and (after identifying𝐴 and𝐵with their duals) the dual isogeny
𝜙̂ ∶ 𝐵 → 𝐴 satisfies

𝜙◦𝜙̂ = 𝜙̂◦𝜙 = [2].

Let 𝐴1(𝐾̄) denote the kernel of reduction on 𝐴.
The aim of the Appendix is to prove the following result, whose proof we give in §A.3 after

reviewing endomorphisms of the formal multiplicative group.

Theorem A.1. With the notation above we have||𝐵(𝐾)∕𝜙(𝐴(𝐾))||||𝐴(𝐾)[𝜙]|| = 2[𝐾∶ℚ2] dim𝔽2
(𝐴1(𝐾̄)[2]∩𝐴(𝐾̄)[𝜙]).

A.2 Endomorphisms of the formal multiplicative group

Again, let𝐾 be a finite extension ofℚ2, and let𝑇 denote the completion of themaximal unramified
extension of 𝐾. Let  be the ring of integers of 𝑇, so that  is a complete discrete valuation ring,
whose normalised valuation restricts to that of 𝐾. Let 𝔾̂𝑚 denote the formal multiplicative group
over. In general, given formal group laws and  over of dimension g , and a homomorphism
𝜙 from  to , we denote by 𝐷(𝜙) the Jacobian of 𝜙. That is, 𝜙 is an 𝑛-tuple of power series in g
variables 𝑋 = (𝑥1, … , 𝑥g ), coefficients in , and 𝐷(𝜙) ∈ Mg () is an g × g matrix such that

𝜙(𝑋) ≡ 𝐷(𝜙)𝑋 (mod deg 2).

The homomorphism 𝜙 is an isomorphism if and only if 𝐷(𝜙) is invertible in Mg ().

Lemma A.2. For each g ⩾ 1, the map 𝜙 ↦ 𝐷(𝜙) gives an isomorphism of rings

End(𝔾̂
g
𝑚)

∼
⟶Mg (ℤ2).

Proof. The result for general g follows formally from the case g = 1, which is standard, although
we provide the proof for convenience. The formal logarithm gives an isomorphism from 𝔾̂𝑚 to the
formal additive group 𝔾̂𝑎 over 𝑇, and the endomorphisms of the latter are given by 𝜙(𝑋) = 𝑎𝑋 for
𝑎 ∈ 𝑇. Thus, one sees that the endomorphisms of 𝔾̂𝑚 over  are exactly those of the form

𝜙𝑎(𝑋) = 𝑎𝑋 + 𝑎(𝑎 − 1)𝑋
2∕2 + 𝑎(𝑎 − 1)(𝑎 − 2)𝑥3∕3! +⋯

for those 𝑎 ∈ 𝑇 such that each coefficient of 𝜙𝑎(𝑋) is in . Considering the coefficients of 𝑥2𝑛 for
varying 𝑛, one sees easily that this is equivalent to 𝑎 ∈ ℤ2, from which the result follows. □

Now let𝔪 denote themaximal ideal in. Letting𝑈1(𝑇) denote the group of units in reducing
to 1 in the residue field ∕𝔪, the map

(𝑥1, … , 𝑥g ) ↦ (𝑥1 − 1,… , 𝑥g − 1)

gives an isomorphism from 𝑈1(𝑇)g to 𝔪g with the group structure on the latter coming from
the formal group law 𝔾̂

g
𝑚. Any endomorphism 𝜙 ∈ End(𝔾̂

g
𝑚) induces via this isomorphism an

endomorphism of 𝑈1(𝑇)g . We denote by 𝑈1(𝑇)g [𝜙] the kernel of this map.
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66 DOKCHITSER and MAISTRET

LemmaA.3. Let𝜙 ∈ End(𝔾̂
g
𝑚)and suppose that there is𝜓 ∈ End(𝔾̂

g
𝑚) such that𝜙◦𝜓 = [2] (here

[2] denotes the multiplication-by-2 map on 𝔾̂g
𝑚). Then 𝑈1(𝑇)g [𝜙], being contained in 𝑈1(𝑇)g [2] =

{±1}g , is a finite-dimensional 𝔽2-vector space and we have

dim𝔽2
𝑈1(𝑇)g [𝜙] = ord2 det𝐷(𝜙).

Proof. Let 𝑀 = 𝐷(𝜙) ∈ 𝑀g (ℤ2). By properties of Smith Normal Form, we can find invertible
matrices 𝑉 and𝑊 in 𝑀g (ℤ2) such that 𝑀 = 𝑉𝑁𝑊 where 𝑁 is a diagonal matrix whose entries
are powers of 2. On the other hand, 𝐷(𝜙)𝐷(𝜓) is twice the identity matrix. Thus,

2𝑉−1 = 𝑁𝑊𝐷(𝜓).

In particular, each coefficient of𝑁𝑊𝐷(𝜓) is divisible by 2, yet 1
2
𝑁𝑊𝐷(𝜓) has determinant a 2-adic

unit. If one of the entries of 𝑁 was divisible by 4, then 2 would divide each entry of some row of
1

2
𝑁𝑊𝐷(𝜓), and hence its determinant, a contradiction. We deduce that each entry of𝑁 is either 1

or 2. Moreover, thematrices𝑉 and𝑊 correspond to automorphisms of 𝔾̂g
𝑚 under LemmaA.2 and

sincewe are only interested in the size of the kernel of𝜙, wemay replace𝜙with the endomorphism
corresponding to 𝑁 (by construction, we also have ord2 det𝐷(𝜙) = ord2 det𝑁). However, as 𝑁 is
diagonal with entries either 1 or 2, the endomorphism of𝑈1(𝑇)g induced by𝑁 is just the identity
on each factor where𝑁 has a 1 on the diagonal, and the map 𝑥 ↦ 𝑥2 on each factor where𝑁 has
a 2 on the diagonal. The 𝔽2-dimension of the kernel of this map is just the number of diagonal
entries of 𝑁 equal to 2, which is equal to ord2 det𝑁. □

A.3 Proof of Theorem A.1

We keep the notation of §𝐴.1 and §𝐴.2, so that, in particular, let 𝐴∕𝐾 be a principally polarised
abelian variety of dimension g with good ordinary reduction, let 𝐵∕𝐾 be isogenous to𝐴 via 𝜙, and
consider the auxiliary isogeny𝜓 ∶ 𝐵 → 𝐴 such that 𝜙◦𝜓 = [2]. Let 𝑣𝑇 be the normalised valuation
on𝑇 (which extends that on𝐾), 𝑘 denote the residue field of𝐾, and let 𝑒(𝐾∕ℚ2) be the ramification
index of 𝐾 over ℚ2. Let 𝐴 and 𝐵 be the dimension g formal group laws over the ring of integers
𝐾 of𝐾 associated to𝐴 and 𝐵, respectively. Then 𝜙 induces an element of Hom𝐾

(𝐴,𝐵)which,
by an abuse of notation, we also denote by 𝜙. Similarly, we obtain 𝜓 ∈ Hom𝐾

(𝐵,𝐴) and we
have 𝜙◦𝜓 = [2]. Since 𝐴 and 𝐵 have good ordinary reduction, over  (the ring of integers of 𝑇),
there is an isomorphism 𝛼 from 𝐴 to 𝔾̂

g
𝑚, and similarly an isomorphism 𝛽 from 𝐵 to 𝔾̂

g
𝑚 (see

[24, Lemma 4.27] for more details). We thus obtain elements 𝜙′ ∶= 𝛽𝜙𝛼−1 and 𝜓′ ∶= 𝛼𝜓𝛽−1 of
End(𝔾̂

g
𝑚) whose composition is multiplication by 2. Moreover, since 𝛼 and 𝛽 are isomorphisms,

𝐷(𝛼) and𝐷(𝛽) are invertible matrices in𝑀𝑛(). In particular, the determinants of𝐷(𝛼) and𝐷(𝛽)
are units in . Thus,

𝑣𝐾(det𝐷(𝜙)) = 𝑣𝑇(det𝐷(𝜙′)) = 𝑒(𝐾∕ℚ2) ord2 det𝐷(𝜙′).

Applying Lemma A.3, we obtain

𝑣𝐾(det𝐷(𝜙)) = 𝑒(𝐾∕ℚ2) dim𝔽2
𝑈1(𝑇)g [𝜙′].

Let 𝐾̄ be an algebraic closure of 𝐾 and let 𝐴1(𝐾̄)[2] denote the points in 𝐴(𝐾̄)[2] reducing
to the identity under the reduction map into 𝑘̄ (the algebraic closure of 𝑘). Then since 𝐴 has
good ordinary reduction,𝐴1(𝐾̄)[2] has size 2g . On the other hand, the points in𝐴1(𝑇) correspond
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 67

isomorphically under 𝛼 to the points of𝑈1(𝑇)g , and there are 2g such 2-torsion points in this latter
group, namely the points {±1}g . In particular, we deduce that

dim𝔽2
𝑈1(𝑇)[𝜙′] = dim𝔽2

(𝐴1(𝐾̄)[2] ∩ 𝐴(𝐾̄)[𝜙]).

We thus have

ord2
(|det𝐷(𝜙)|−1𝐾 )

= [𝐾 ∶ ℚ2] dim𝔽2
(𝐴1(𝐾̄)[2] ∩ 𝐴(𝐾̄)[𝜙]).

On the other hand, since the Néron component groups of𝐴 and 𝐵 are both trivial, the left-hand
side of the above equality is equal to

ord2
||𝐵(𝐾)∕𝜙(𝐴(𝐾))||||𝐴(𝐾)[𝜙]|| ,

as follows from [29, Lemma 3.8].

APPENDIX B: PARITY REDUCTION TO 2-SYLOW
by T. Dokchitser and V. Dokchitser

Recall that the parity conjecture (Conjecture 1.1) relates the parity of the Mordell–Weil rank of a
principally polarised abelian variety 𝐴 over a number field 𝐾 to the global root number,

(−1)rk𝐴∕𝐾 = 𝑤(𝐴∕𝐾).

In this appendix, we show that, assuming finiteness ofX (and amild restriction on the reduction
of𝐴), the conjecture follows from its special case when𝐴 admits a suitable 2-power isogeny. This
special case was proved for elliptic curves in [10] and this reduction approach was proved in [12]
to deduce the general case for elliptic curves. The present article deals with the case of abelian
surfaces. Ironically, [8] establishes the analogous result for a 𝑝-power isogeny when 𝑝 is odd.

Theorem B.1. Let 𝐹∕𝐾 be a Galois extension of number fields with Galois group 𝐺, and 𝐴∕𝐾 a
principally polarised abelian variety. Suppose

(1) X(𝐴∕𝐹) has finite 𝑝-primary part for every odd prime 𝑝 that divides |𝐺|,
(2) all primes of unstable reduction of 𝐴 have cyclic decomposition groups in 𝐺.

If the parity conjecture holds for 𝐴∕𝐹𝐻 for all𝐻 ⩽ 𝐺 of 2-power order, then it holds for 𝐴∕𝐾.

Corollary B.2. Let 𝐾 be a number field, 𝐴∕𝐾 a principally polarised abelian variety, and write
𝐹 = 𝐾(𝐴[2]). Suppose that

(1) X(𝐴∕𝐹) has finite 𝑝-primary part for every odd prime 𝑝 | [𝐹 ∶𝐾],
(2) all primes of unstable reduction of 𝐴 have cyclic decomposition groups in 𝐹∕𝐾,
(3) the parity conjecture holds for 𝐴∕𝐿 for subfields 𝐾 ⊂ 𝐿 ⊂ 𝐹 over which 𝐴 admits an isogeny

𝜙 ∶ 𝐴 → 𝐴′ with 𝜙𝜙𝑡 = [2].

Then the parity conjecture holds for 𝐴∕𝐾.

Note the assumption (2) in B.1 and B.2 holds when 𝐴∕𝐾 is semistable. We now turn to the
proofs.

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12545 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [31/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



68 DOKCHITSER and MAISTRET

Lemma B.3. Let 𝐺 be a finite group. Then

𝟏𝐺 =
∑

𝑛𝑖 Ind
𝐺
𝐻𝑖
𝟏𝐻𝑖

for some 𝑛𝑖 ∈ ℤ, and where each𝐻𝑖 is one of the following types of subgroups of 𝐺:

(1) 𝐻𝑖 has 2-power order; or
(2) there is 𝑈 ⊲𝐻 with 𝐻∕𝑈 ≅ 𝐶𝑝 ⋊ 𝐶2𝑘 for 𝑝 an odd prime, 𝑘 ⩾ 0, and 𝐶2𝑘 acting faithfully

on 𝐶𝑝 .

Proof. We proceed by induction on |𝐺|. Solomon’s induction theorem expresses 𝟏𝐺 as an integral
linear combination of Ind𝐺𝐻𝑖 𝟏𝐻𝑖 for some hyperelementary𝐻𝑖 < 𝐺. As induction is transitive, we
may assume that 𝐺 is hyperelementary. (Recall that a group 𝐺 is hyperelementary if 𝐺 ≃ 𝐶 ⋊ 𝑃

for a 𝑝-group 𝑃 and a cyclic group 𝐶 of order prime to 𝑝.)
If 𝐺 has a non-trivial odd order quotient, then it has a 𝐶𝑝-quotient for some odd prime 𝑝, and

we are done by (2). Otherwise, 𝐺 = 𝐶𝑛 ⋊ 𝑃 for some odd 𝑛 and a 2-group 𝑃. If 𝑛 = 1, we are done
by (1). By passing to a quotient if necessary, we may assume that 𝑛 is prime and, moreover, that 𝑃
acts faithfully. Then we are done by (2). □

Recall that for a prime 𝑙, we define the dual 𝑙∞-Selmer group,

𝑋𝑙(𝐴∕𝐾) = (Pontryagin dual of the 𝑙∞-Selmer group of 𝐴∕𝐾) ⊗ ℚ𝑙.

This is a ℚ𝑙-vector space whose dimension is the Mordell–Weil rank of 𝐴∕𝐾 plus the number of
copies of ℚ𝑙∕ℤ𝑙 inX(𝐴∕𝐾).

Conjecture B.4 (𝑙-Parity conjecture = Conjecture 1.4).

(−1)dim𝑋𝑙(𝐴∕𝐾) = 𝑤(𝐴∕𝐾).

IfX is finite, this is equivalent to the parity conjecture.

Lemma B.5. Let 𝐹∕𝐾 be a Galois extension of number fields with Galois group 𝐺 = 𝐶𝑝 ⋊ 𝐶2𝑘 with
𝑝 an odd prime, 𝑘 ⩾ 0, and 𝐶2𝑘 acting faithfully on 𝐶𝑝 . Let 𝐴∕𝐾 be a principally polarised abelian
variety and 𝑙 a prime. Suppose either

(1) 𝑘 = 0; or
(2) 0<𝑘<ord2(𝑝 − 1), and either 𝑙 = 𝑝 or the 2-part of the order of 𝑙 ∈ 𝔽×𝑝 is > 𝑘; or
(3) 𝑘 = ord2(𝑝 − 1), 𝑙 = 𝑝 and all primes of unstable reduction of 𝐴 have cyclic decomposition

groups in 𝐺.

If the 𝑙-parity conjecture holds for 𝐴∕𝐿 for all 𝐾 ⊊ 𝐿 ⊂ 𝐹, then it holds for 𝐴∕𝐾.

Proof.

(1) 𝑙-parity is invariant under odd degree Galois extensions, see, for example, [11, Cor. A.3(3)].
(2) The (absolutely) irreducible representations of 𝐺 are 1-dimensionals that factor through

𝐶2𝑘 and 2𝑘-dimensionals of the form 𝜌𝜓 = Ind
𝐺
𝐶𝑝
𝜓 for faithful 1-dimensional 𝜓. The field

generated by the character of 𝜓 is ℚ(𝜁𝑝), so the number of Gal(ℚ̄𝑙∕ℚ𝑙)-conjugates of 𝜓 is
[ℚ𝑙(𝜁𝑝)∶ℚ𝑙], which is the order of 𝑙 in 𝔽×𝑝 . In particular, under the assumption on 𝑙, 𝜌𝜓 has an
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ON THE PARITY CONJECTURE FOR ABELIAN SURFACES 69

even number of images under Gal(ℚ̄𝑙∕ℚ𝑙), so that each irreducible ℚ𝑙-representation has an
even number of absolutely irreducible constituents. Thus,

rk𝑙 𝐴∕𝐹
𝐶
2𝑘 = dim𝑋

𝐶
2𝑘

𝑙
= ⟨𝑋𝑙, Ind𝐺𝐶

2𝑘
𝟏⟩ = ⟨𝑋𝑙, 𝟏 ⊕⨁

𝜌𝜓

𝜌𝜓⟩
≡ ⟨𝑋𝑙, 𝟏⟩ = rk𝑙 𝐴∕𝐾 mod 2,

where the direct sum ranges over absolutely irreducible non-one-dimensional representations
of 𝐺. Also, by [28, Thm. 1] (or [11, Prop. A.2(5)]), twists of 𝐴 by Galois conjugate orthogonal
characters have the same root number, so 𝑤(𝐴, 𝜌𝜓) = 𝑤(𝐴, 𝜌′𝜓) for all 𝜓, 𝜓

′ ≠ 𝟏, and

𝑤(𝐴∕𝐹𝐶2𝑘 ) = 𝑤(𝐴, 𝟏 ⊕
⨁
𝜌𝜓

𝜌𝜓) = 𝑤(𝐴∕𝐾).

Therefore, 𝑙-parity over 𝐹𝐶2𝑘 implies 𝑙-parity over 𝐾, as claimed.
(3) We invoke the regulator constant machinery of [11, 12] that proves special cases of the parity

conjecture by exploiting Brauer relations inGalois groups. There is a Brauer relation in𝐺 (see,
e.g. [1, Ex. 2.3])

Θ = 𝐶1 − 𝐶𝑝 − 2
𝑘𝐶2𝑘 + 2

𝑘𝐺.

Write 𝜖 for the order 2 character of 𝐶2𝑘 , and 𝜓𝑖 for its other non-trivial characters. Then the
irreducible self-dualℚ𝑝𝐺-representations are 𝟏, 𝜖,𝜓𝑖 ⊕ 𝜓−1

𝑖
and 𝜌 = Ind𝐺𝐶

2𝑘
⊖𝟏. The regulator

constants (overℚ𝑝) Θ(𝜓𝑖 ⊕ 𝜓−1
𝑖
) are 1 by [11, Cor. 2.25(3)]. We can compute the others using,

for example, [11, Ex. 2.19], and we find

Θ(𝟏) = Θ(𝜖) = Θ(𝜌) = 𝑝.

(This is done in [11, Ex. 2.20] when 𝑘 = 1.)
By [11, Thm. 1.6b], the 𝑙-parity conjecture holds for the twist of 𝐴∕𝐾 by any self-dual ℚ̄𝑝𝐺-

representation 𝜏 such that

⟨𝜏, 𝟏⟩ = ⟨𝜏, 𝜖⟩ = ⟨𝜏, 𝜌⟩ ≡ 1mod 2.
Since ⟨𝜌, 𝜌⟩ = 𝑝−1

2𝑘
is odd, we can take

𝜏 = Ind𝐺𝐶
2𝑘
𝟏 + Ind𝐺𝐶𝑝

𝟏 + 𝟏.

Since 𝑙-parity holds over 𝐹𝐶2𝑘 and over 𝐹𝐶𝑝 by assumption, it holds for the twists of 𝐴 by
Ind𝐺𝐶

2𝑘
𝟏 and by Ind𝐺𝐶𝑝 𝟏 (see [11, Cor. A.3(2)]), and therefore, for 𝐴∕𝐾. □

Proof of Theorem B.1. We proceed by induction on |𝐺|. Write 𝟏 =
∑
𝑛𝑖 Ind

𝐺
𝐻𝑖
𝟏 as in Lemma B.3.

Then

rk𝐴∕𝐾 = ⟨𝐴(𝐹)⊗ℤ ℂ, 𝟏⟩ =∑
𝑖

⟨𝐴(𝐹)⊗ℤ ℂ, 𝑛𝑖 Ind
𝐺
𝐻𝑖
𝟏⟩

=
∑
𝑖

𝑛𝑖⟨𝐴(𝐹)⊗ℤ ℂ, 𝟏⟩𝐻𝑖 =∑
𝑖

𝑛𝑖 rk𝐴∕𝐹
𝐻𝑖 .
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70 DOKCHITSER and MAISTRET

Similarly, by Artin formalism for root numbers,

𝑤(𝐴∕𝐾) =
∏
𝑖

𝑤(𝐴∕𝐹𝐻𝑖 )𝑛𝑖 .

Therefore, it suffices to prove parity for 𝐴∕𝐹𝐻𝑖 for all 𝑖. If𝐻𝑖 has 2-power order, then parity holds
by assumption. If 𝐻𝑖 is as in Lemma B.3(2), it holds by Lemma B.5 and the inductive hypothesis,
noting that the assumptions (1) and (2) hold in all intermediate Galois extensions 𝐹′∕𝐾′ inside
𝐹∕𝐾; for (1), see, for example, [12, Remark 2.10]. □

Lemma B.6. Let 𝑉 be a symplectic 𝔽2-vector space of dimension 2𝑛. Then the 2-Sylow subgroup𝐻
of Sp(𝑉) stabilises an 𝑛-dimensional totally isotropic subspace.

Proof. We construct a totally isotropic 𝐻-invariant subspace𝑊𝑚 of dimension 𝑚 for 0 ⩽ 𝑚 ⩽ 𝑛

by induction. Take𝑊0 = {0}. For𝑚 > 0, let 𝑋 = 𝑊⟂
𝑚−1

𝑊𝑚−1

{0}, pick an𝐻-invariant vector 𝑣 ∈ 𝑋 and set
𝑊𝑚 to be the span of𝑊𝑚−1 and any lift of 𝑣 to 𝑉. Such a 𝑣 exists because 𝑋 ≠ ∅ (as 𝑚 ⩽ 𝑛), and
a 2-group acting on a set of odd order has a fixed point. □

Proof of Theorem B.2. Write 𝐺 = Gal(𝐹∕𝐾). Suppose 𝐻 < 𝐺 has 2-power order. By the above
lemma, 𝐴[2] has an 𝐻-invariant totally isotropic subspace. It is a standard fact that 𝐴∕𝐹𝐻 there-
fore admits an isogeny 𝜙 ∶ 𝐴 → 𝐴′ with 𝜙𝜙𝑡 = [2]. By hypothesis, the parity conjecture holds for
𝐴∕𝐹𝐻 . The result follows by Theorem B.1. □
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