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Abstract

This thesis presents new methodologies in the field of Econometrics and their appli-

cation to microeconomic data. In Chapter 2, I develop a framework for estimation

of optimal individualized treatment rules in the presence of partial identification. I

propose an estimation procedure that ensures Neyman-orthogonality with respect

to nuisance components and provide statistical guarantees for its performance. The

approach is illustrated using data from the Job Partnership Training Act Study to

estimate the optimal participation of workers in a job training programme. Chapter

3 presents a new instrumental variable (IV) estimator for nonlinear models with en-

dogenous covariates. This estimator formalizes the idea that the IVs should be “ex-

cluded variables” that have no direct explanatory power for the outcome, and does

not require to specify the distribution of the endogenous covariates. The theoretical

properties are explored through asymptotic theory and Monte Carlo simulations,

and the method is illustrated with two empirical applications. Chapter 4 develops

inference methods for linear regression models with many controls and clustering.

I show that commonly used cluster-robust standard errors are inconsistent when the

number of controls grows proportionally with the sample size. I then propose a new

standard error formula that allows to carry out valid inference in high-dimensional

regression models. Monte Carlo evidence supports the theoretical results and the

proposed method is illustrated with an empirical application that studies the impact

of abortion on crime.
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Impact Statement

This dissertation develops new econometric methods aimed at improving the ro-

bustness of procedures for programme evaluation and data-driven decision making.

Chapter 2 presents a novel framework for estimation of individualized treat-

ment rules. By allowing for partial identification of treatment effects, we can im-

prove the robustness of treatment decisions based on widely available observational

data, as well as experimental data suffering from noncompliance, attrition or miss-

ing observations. The proposed framework therefore enhances the opportunity for

credible data-driven decision making in public policy, medicine and industry set-

tings.

Chapter 3 proposes a new instrumental variable estimator for nonlinear models,

including binary, censored and count outcome variables. This estimator leads to a

statistical test of relevance of the endogenous regressor which does not rely on para-

metric assumptions for the distribution of endogenous variables, which are typically

not justified by economic theory. Furthermore, it will typically correctly estimate

the sign of the coefficient on the endogenous variable. The proposed method there-

fore provides a useful tool for programme evaluation, where it is often a primary

concern whether the effect of an endogenous treatment is different from zero, and

what the sign of such effect is.

Chapter 4 provides a new tool for cluster-robust inference in linear regression

models with many controls. The proposed methodology will find fruitful applica-

tion in programme evaluation, where linear regression is routinely used to estimate

the effect of a treatment of interest. Researchers often include a large set of covari-

ates to control for observed and unobserved confounders. As a result, the proposed
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method can be used for empirical economic research, where cluster-robust standard

errors are routinely used to account for potential dependence across units.
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Chapter 1

Introduction

Econometrics plays a crucial role in empirical research by providing rigorous meth-

ods for estimating causal relationships and making evidence-based policy recom-

mendations. In particular, the “credibility revolution” in empirical economics has

lead to the increasing popularity of econometric methods for programme evaluation

with observational data. However, the validity of such methods typically relies on

strong identification and/or functional-form assumptions, which are often not justi-

fied by economic theory. This thesis proposes new methodologies to improve the

robustness of econometric procedures for programme evaluation and data-driven

decision making with observational data.

Chapter 2 studies the problem of choosing an optimal treatment assignment

using data. Existing methods often rely on the assumption of point identification

of treatment effects, which is not always justifiable in many empirical settings. In

this chapter, I extend the framework of empirical welfare maximization (EWM) to

handle partial identification of treatment effects. I first introduce ambiguity-robust

policies that provide a notion of optimal treatment assignment under partial iden-

tification, accommodating different attitudes towards ambiguity. I then propose a

procedure for estimating the ambiguity-robust optimal policy and provide theoret-

ical guarantees on its statistical performance. The proposed methodology accom-

modates the use of machine learning algorithms for estimation of nuisance compo-

nents, and achieves fast rates of convergence thanks to Neyman-orthogonalization.

Finally, I apply the method to experimental data from the Job Training Partnership
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Act study to estimate the optimal participation of workers in a job-training pro-

gramme in the presence of non-compliance.

Chapter 3, co-authored with Martin Weidner and Frank Windmeijer, focuses

on instrumental variables (IVs), a powerful tool for estimating causal relationships

in models with endogeneity. We introduce the auxiliary IV (AIV) estimator, which

generalizes the classical IV estimation approach to models with nonlinear relation-

ships between the outcome and covariates, such as the probit regression model.

The AIV estimator is obtained through maximum likelihood estimation by includ-

ing the instruments as auxiliary regressors. Despite its potential inconsistency, we

demonstrate the usefulness of the AIV estimator for carrying out inference on the

presence of treatment effects (and their sign) under minimal assumptions on the

data-generating process for the endogenous regressors. We provide formal results

on the properties of the AIV estimator through asymptotic theory and illustrate its

use with two empirical applications.

In Chapter 4, I study the problem of inference on treatment effects in linear

regression models with many controls and clustering. In particular, I show that the

conventional cluster-robust standard errors by Liang and Zeger (1986) are gener-

ally invalid when the number of controls is a non-negligible fraction of the sample

size. I then propose a new clustered standard errors formula which is robust to

the inclusion of many controls, enabling valid inference in high-dimensional linear

regression models, including fixed effects panel data models and the semiparamet-

ric partially linear model. The theoretical results are supported by Monte Carlo

simulations, illustrating the favourable performance of the proposed standard er-

rors formula in finite samples. Finally, I illustrate the proposed method through an

empirical application that re-examines Donohue and Levitt’s (2001) study of the

impact of abortion on crime.



Chapter 2

Orthogonal Policy Learning Under

Ambiguity

The problem of choosing an optimal treatment assignment based on data is ubiqui-

tous in economics and other fields, including medicine and marketing. Individuals

often display heterogeneous responses to the same treatment. Decision-makers in

policy and industry are therefore interested in leveraging the growing availability

of rich granular data to tailor treatment assignment to individuals based on their

characteristics. As a result, a fast-growing literature has emerged focused on devel-

oping procedures for estimation of individualized treatment rules. While a variety

of approaches have been recently established, these typically assume that the avail-

able data allow to provide credible point estimates for the effect of the treatment,

that is treatment effects are point identified. While of important stylized value,

this assumption is often hard to justify in many empirical settings. For example,

economists have long been aware that popular quasi-experimental and observational

research designs, such as instrumental variables (IVs), allow to point identify treat-

ment effects only for specific sub-populations (Imbens and Angrist, 1994). Even

in randomized control trials, point identification of the treatment effects is often

precluded due to non-random attrition, e.g. when participants dropout from a pro-

gram or the researcher is denied information on the outcome variable (Lee, 2009).

In such settings, the data may only provide partial knowledge about the treatment

response in the form of credible bounds, i.e. the treatment effects are partially iden-
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tified. As a result, the decision-maker may have ambiguous evidence on whether a

candidate policy should be preferred to another, so that only a partial ordering of

policies can be deduced in general. While informative from a scientific perspective,

a partial ordering of policies is unsatisfying when the ultimate goal of the analysis

is to select a single policy to be implemented in the real world. In this scenario, a

decision-maker has to confront two sources of ambiguity. The first source concerns

ambiguous knowledge of the treatment response τ conditional on knowledge of dis-

tribution of the data P , due to partial identification. The second source is the lack

of knowledge of the distribution P , which must be estimated from the data.

In this chapter, we develop methods to handle both sources of ambiguity within

the framework of “empirical welfare maximization” (Kitagawa and Tetenov, 2018),

also referred to as “policy learning” (Athey and Wager, 2021). This approach con-

siders treatment policies that are exogenously constrained to have low complexity

in terms of Vapnik-Chervonenkis (VC) dimension. This encompasses many prac-

tical settings of interest, as policies often have to satisfy requirements imposed for

institutional or practical reasons, such as fairness, budget or interpretability. The

empirical welfare maximization (EWM) method selects the optimal policy as the

maximizer of the empirical analogue of the population welfare, formulated as the

average of the individual outcomes in the target population. The EWM estimation

procedure has the convenient structure of an empirical risk minimization problem,

which is exploited by Kitagawa and Tetenov (2018) and Athey and Wager (2021)

to study its statistical properties.

We extend the EWM framework to settings with partial identification by mak-

ing several contributions. First, we study the problem of assigning treatment under

partial identification at the population level (i.e. where the distribution of the data

P is known) from a general perspective. In particular, we show how classic op-

timality criteria for decision under ambiguity, such as minimax risk and minimax

regret, can be applied in the context of welfare maximization. Our unified frame-

work accommodates different attitudes towards ambiguity and a wide range of pop-

ular identification assumptions, including Manski (1990) and Manski and Pepper
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(2000) bounds. Our analysis delivers several notions of optimal treatment policies,

which we refer to as ambiguity-robust: they are “robust” in the sense that each of

them delivers a notion of single optimal policy in the presence of partial identifica-

tion, while they all reduce to the same optimal treatment assignment in the special

case of point-identification. As part of this analysis, we establish general conditions

on the identification sets under which the treatment assignment problem can be ex-

pressed in a simplified form, leading to computationally tractable sample analogues.

In particular, we show that all ambiguity-robust policies can be represented as max-

imizers of a “surrogate” welfare, in which identification bounds are combined to

form a proxy for the partially identified CATE. The surrogate welfare depends on

several nuisance components, and its specific form is determined by the identifica-

tion assumptions and attitude towards ambiguity held by the decision-maker.

We then propose an algorithm for computing the estimated ambiguity-robust

policy and provide statistical guarantees on its performance in terms of the regret

convergence of the surrogate welfare. Similarly to Athey and Wager (2021) and

Foster and Syrgkanis (2019), our procedure leverages insights from the literature

on double/de-biased machine learning (Chernozhukov et al., 2022) by making use

of Neyman-orthogonalized estimates of the surrogate welfare. This, coupled with

sample-splitting, allows us to guarantee fast rates of convergence for the estimated

ambiguity-robust optimal policy while imposing minimal requirements on the es-

timation of the nuisance components. One unique feature of the partially identi-

fied setting studied in this chapter is the restricted degree of smoothness enjoyed

by the welfare criterion. In particular, we show that popular choices of identifi-

cation assumptions and optimality criteria for choice under ambiguity lead to sur-

rogate welfare criteria that are only directionally differentiable with respect to the

data-generating process. We highlight the importance of this feature for the prob-

lem at hand and develop new theoretical results showing how the extent of non-

differentiability in the data-generating process affects the statistical properties of

the learning procedure. To the best of our knowledge, we are the first to investigate

the role of non-differentiabilities in the context of semiparametric statistical learn-
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ing problems. Our results are therefore of independent interest and may be relevant

beyond the treatment assignment problem presented here.

Finally, we apply the proposed method to experimental data from the Job

Training Partnership Act study, a dataset that has been extensively used to study the

effect of subsidized job training on labor market outcomes. We study the optimal

participation of workers into the job training programme based on their education

and previous earnings, and show that allowing for partial identification delivers sub-

stantially different programme participation policies compared to existing methods

that assume point-identification.

2.0.1 Related literature

The results of this chapter contribute to the recent literature on EWM methods,

e.g. Kitagawa and Tetenov (2018), Athey and Wager (2021), Mbakop and Tabord-

Meehan (2021), Viviano (2019), Sun (2021), and more broadly to the literature

studying statistical treatment choice, including Manski (2004), Dehejia (2005),

Hirano and Porter (2009), Stoye (2009), Chamberlain (2011), Christensen et al.

(2022), Kitagawa et al. (2022).1

Kitagawa and Tetenov (2018) introduced the EWM method and provided the-

oretical results showing its optimality when implemented with experimental data.

Athey and Wager (2021) leverage insights from the recent literature on orthogonal

machine learning (Chernozhukov et al., 2022) and propose doubly-robust estima-

tion of the treatment effect which leads to optimal learning rates even with observa-

tional data. We build on their work by adopting Neyman-orthogonal estimates while

we relax the fundamental assumption that treatment effects are point identified. Cui

and Tchetgen (2021) also develop procedures for learning optimal treatments rules

with instrumental variables but consider unconstrained policy classes. Similarly to

Athey and Wager (2021), they ensure point-identification of treatment response by

restricting their analysis to the effect on compliers.

Kasy (2016), Han (2019) and Byambadalai (2022) provide methods for com-

paring policies in the presence of covariates and partial identification of treatment

1See also Hirano and Porter (2020) and referenes therein.
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effects. The focus of their work is on characterizing the partial ordering of poli-

cies in terms of their associated welfare rather than resolving the ambiguity and

estimating an optimal treatment rule.

In a series of papers, Manski (2009, 2010, 2011) studies the problem of a so-

cial planner who must choose treatment for a population under partial knowledge of

the treatment response in the absence of covariates. He shows that when the sign of

the treatment effect is ambiguous, the minimax regret criterion leads to policies that

randomize treatment in the population. While our study of the population problem

is inspired by Manski’s work in this area, the focus of our analysis is on determin-

istic rules assigning individualized treatment, i.e. based on (potentially continuous)

covariates. Stoye (2012), Ishihara and Kitagawa (2021) and Yata (2021) consider

treatment assignment under partial identification from a finite-sample minimax per-

spective, while Christensen et al. (2022) adopt a local-asymptotic approach. How-

ever, these works do not consider individualization of the treatment assignment.

More closely related to our work is Kallus and Zhou (2018), who extend the

EWM framework to learn an optimal policy in the presence of partially identified

treatment effects under violations of unconfoundedness. In particular, they target

welfare improvement with respect to a baseline pre-existing policy and consider

partial-identification of the welfare criterion within Rosenbaum’s sensitivity model

(Rosenbaum, 1987). Adjaho and Christensen (2022) and Kido (2022) examine poli-

cies with maximin welfare guarantees when the target population lies in a Wasser-

stein neighborhood of the experimental population. The identification assumptions

(and associated estimation procedures) considered in these papers are distinct and

do not nest those covered by our framework. As a result, our contributions are

complementary to these works.

Russell (2020) considers estimation of the optimal policy under partial iden-

tification within a “probably approximately correct” learning framework (Valiant,

1984). His proposed procedure has the advantage of side-stepping direct estimation

of the identified set, and can be applied in the context of incomplete models for

which the identification bounds cannot typically be obtained in closed form. How-
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ever, in the context of the identification assumptions considered in this chapter (e.g.

Manski bounds), the theoretical results in Russell (2020) require that the covariates

have discrete support. On the other hand, our proposed procedure requires com-

putation of the identification bounds in closed form but accommodates continuous

covariates.

In independent work, Pu and Zhang (2021) study policy learning under am-

biguity from a classification perspective and derive an optimal policy which co-

incides with one notion of ambiguity-robust policy studied in this chapter. How-

ever, our estimation procedure crucially differs from theirs for the use of Neyman-

orthogonalization which, combined with a refined proof-strategy that accounts for

the lack of full-differentiability in the welfare criterion, allows us to guarantee con-

siderably faster rates of convergence. In this sense, our results extend and improve

those in Pu and Zhang (2021).

Finally, we contribute to a body of literature dealing with estimation and in-

ference for directionally-differentiable functionals. Hirano and Porter (2012) show

that if a target estimand is not differentiable in the parameters of the data distri-

butions, then no asymptotically unbiased or regular estimator exists. Ponomarev

(2022) studies efficient estimation of directionally differentiable functionals from

a local minimax perspective. Fang and Santos (2018) and Kitagawa et al. (2020)

provide inference results for directionally differentiable functions from a frequen-

tist and Bayesian perspective, respectively. Also motivated by partial identifica-

tion, Christensen et al. (2022) consider estimation of non-individualized decision

rules when the welfare criterion is only directionally differentiable with respect to a

finite-dimensional parameter. Our framework instead involves infinite-dimensional

nuisance components and therefore our analysis must account for the lack of dif-

ferentiability with novel theoretical results that complement those in Christensen

et al. (2022). Our approach also differs from Christensen et al. (2022) in that we

evaluate the statistical properties of estimation procedures in terms of maximum re-

gret over (τ, P ), while they consider maximum regret over the partially identified τ
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conditional on P then averaged over the posterior distribution for P .2

The rest of this chapter is organized as follows. Section 2.1 introduces the

setup. Section 2.2 presents several notions of ambiguity-robust optimal policies.

Section 2.3 presents the proposed estimation procedure for the ambiguity-robust

optimal policy. Section 2.4 provides statistical guarantees for the estimated optimal

policy. Section 2.5 presents an empirical illustration based on the Job Training

Partnership Act Study. Section 2.6 concludes. Proofs and extensions are given in

the Appendix.

Notation. Throughout the chapter, for d ∈ N, let Rd denote the Euclidean space,

with ∥ · ∥p and ⟨·, ·⟩ being the usual ℓp-norm and inner product, respectively. For

two vectors x ∈ Rp and y ∈ Rq, x ⊂ y means that x is a sub-vector of y. For

a symmetric matrix A, λmax(A) denotes its largest eigenvalue. Unless otherwise

stated, the expectation E[·], probability P(·), and variance Var(·) operators will be

taken with respect to the underlying distribution of observables P . Given a random

variableZ ∈ Z with Z ⊆ Rd, the associated probability measure PZ , and a function

f : Z → W with W ⊆ Rq, we define ∥f∥Lp(PZ) =
(
EPZ

[
∥f(Z)∥pp

])1/p for

p ∈ (0∞). We extend this definition to p = ∞ in the natural way. For a sequence

of real numbers xn and yn, xn = o(yn) and xn = O(yn) mean, respectively, that

xn/yn → 0 and xn ≤ Cyn for some constant C as n → ∞. For real numbers

a, b, a ≲ b means that there exists a constant C such that a ≤ Cb. For a positive

real number a, ⌊a⌋ denotes its nearest smallest integer. The notation →p denotes

convergence in probability.

2.1 Setup
Let Yi ∈ R be an outcome measuring utility, Di ∈ {0, 1} a binary treatment,

Xi ∈ X ⊆ Rkx a set of pre-treatment covariates for an individual i from an i.i.d.

population of interest. We use standard notation to define the potential outcomes

2A key advantage of Christensen et al.’s (2022) asymmetric treatment of the ambiguity in τ and
P is the additional tractability, which allows them to characterize (asymptotically) optimal decision
rules. On the other hand, our fully minimax approach with respect to (τ, P ) typically only allows to
characterize worst-case rates of convergence for specific estimation procedures.
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Yi(0), Yi(1). The conditional average treatment effect (CATE) τ : X → R is then

defined as

τ(x) = y1(x)− y0(x), yd(x) = E[Yi(d)|Xi = x], d = 0, 1,

where the expectation is taken with respect to the distribution of the population,

and we will henceforth suppress the i-subscript for convenience. The decision-

maker (DM) is interested in choosing a deterministic treatment assignment rule (or

policy) π : X → {0, 1}, which maps from the support of individual pre-treatment

covariates to the binary decision “treat” (π(x) = 1) or “do not treat” (π(x) = 0).

Following Manski (2004), we define the utilitarian social welfare associated with a

policy π and a given configuration of the expected potential outcomes y0(·), y1(·) as

Wy0,y1(π) = EPX
[y1(X) · π(X) + y0(X) · (1− π(X))]

= EPX
[π(X) · τ(X)]︸ ︷︷ ︸

=:Iτ (π)

+EPX
[y0(X)] , (2.1)

where Iτ (π) represents the average impact of policy π. The optimal policy for a

given configuration of the CATE function is the one that maximizes the associated

welfare:

π∗ = argmax
π∈Π

Wy0,y1(π) = argmax
π∈Π

Iτ (π), (2.2)

where Π is a family of candidate policies.3 The DM has knowledge of the

CATE through the distribution P ∈ P of observable random variables W , where

(Y,D,X) ⊆ W . In particular, we denote T (P ) the set of plausible CATE functions

associated with a certain distribution of observables. When the DM has perfect

knowledge of P and T (P ) is a singleton, i.e. τ is point-identified, she can obtain

π∗ by solving (2.2).

Suppose now that T (P ) is a non-singleton set, i.e. τ is partially identified. In

3We will assume throughout that the maximization problem in (2.2) has at least one solution. If
multiple solutions exist, the DM is assumed to arbitrarily pick π∗ from the set of maximizers.



2.1. SETUP 27

that case, even under perfect knowledge of P , there exists a set of plausible values

for the impact Iτ (π) of a candidate policy π. Notice that partial identification of

the CATE does not necessarily imply that the DM cannot obtain the optimal policy

π∗. In particular, it is easy to see that under point-identification of the CATE one

has π∗(x) = 1{τ(x) ≥ 0} when the class of candidate policies Π is unrestricted,

so that identification of the sign of the CATE is sufficient to obtain the optimal pol-

icy.4 However, the unrestricted policy class has limited relevance in many practical

settings. For example, the policy space Π may be exogenously constrained for in-

stitutional reasons, e.g. as policies may be required to satisfy specific requirements

for budget, fairness or interpretability. While the DM may still hope that his spec-

ification of Π contains the first-best policy 1{τ(X) ≥ 0}, it is useful to interpret

π∗ as the “best-in-class” policy for the chosen class Π, when this does not contain

the first-best. When Π is constrained, the DM is not able to obtain π∗ in general

without full knowledge of the CATE, although a partial ordering of policies can still

be deduced (see Kasy, 2016; Han, 2019; Byambadalai, 2022).

Under partial identification, the DM therefore faces two sources of ambiguity.

First, she does not know the distribution P . However, we assume that she has access

to a random sample (Wi)i=1,...,n from which she can learn about P . Second, she

does not have knowledge about τ within the identified-set T (P ), even under perfect

knowledge of P . The broad objective of this chapter is to provide a framework that

allows the DM to handle both sources of ambiguity. We will approach the problem

in two steps. First, we will study the decision problem faced by the DM under

perfect knowledge of P . In particular, we will handle the ambiguity arising from

partial identification of τ using well-known optimality criteria for decision under

ambiguity. Each of the optimality criteria we consider will deliver a corresponding

notion of optimal policy, which we call “ambiguity-robust”. The ambiguity-robust

optimal policy is a unique treatment assignment rule that is preferred to all other

policies in Π according to preferences of the DM, and that coincides with the usual

notion of optimal policy π∗ in (2.2) in the special case of point identification of the

4Cui and Tchetgen (2021) study a case in which sole point-identification of the sign of the CATE
via an instrumental variable allows to obtain the optimal policy.
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CATE. In the next section, we study several notions of ambiguity-robust optimal

policy.

In the second part of our analysis, we study how to handle the ambiguity in

P by showing how the random sample (Wi)i=1,...,n can be used to obtain an esti-

mate π̂n for the ambiguity-robust optimal policy. The estimation procedure and the

associated statistical guarantees are presented in Section 2.3 and 2.4, respectively.

Remark 2.1.1. Unrestricted policy classes may also be precluded for practical rea-

sons related to the estimation of the optimal policy. For example, the researcher may

need to condition on a large number of covariates X for identification of the treat-

ment effects, but only be interested in assigning treatment based on a restricted set

of the covariates X̃ ⊂ X (e.g. because she may not observe the full set of covari-

ates when assigning treatment to new individuals from the population). In that case,

a practical way to side-step computation of an estimate for the lower-dimensional

CATE, E[Yi(1)|X̃i = x̃] − E[Yi(0)|X̃i = x̃], is to impose restrictions directly on

the policy class Π and estimate the optimal policy based on the estimated higher-

dimensional CATE via the sample analogue of (2.2).

2.2 Ambiguity-robust optimal policies
The study of decision under ambiguity has a long tradition in decision theory and

has received considerable attention in the context of treatment assignment problems

(see Manski, 2011, for a review). In this section we review some classical optimal-

ity criteria for decision under ambiguity and study how they can be applied in the

context of the treatment assignment problem at hand, leading to several notions of

ambiguity-robust optimal policy.

A well-known optimality criterion for decision under ambiguity is minimax

risk (see, e.g. Wald, 1950). In the context of our treatment assignment problem we

can interpret welfare as negative risk, and this criterion leads to the optimal maximin

welfare policy

π∗
MMW = argmax

π∈Π
min

(y0,y1)∈Y(P )
Wy0,y1(π), (2.3)
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where Y(P ) is the ambiguity set for (y0(·), y1(·)) identified from the distribution P

of observables random variables. The optimal maximin welfare policy maximizes

the lowest possible welfare under any configuration of the expected potential out-

come functions in the identified set Y(P ). An alternative application of minimax

risk optimality in the context of treatment assignment is maximin impact, leading to

the optimal policy

π∗
MMI = argmax

π∈Π
min

τ∈T (P )
Iτ (π), (2.4)

where T (P ) denotes the ambiguity set for the CATE function. The optimal max-

imin impact policy maximizes the lowest possible impact under any configuration

of the CATE in the identified set T (P ). Notice that the minimax welfare criterion

reflects an extreme degree of pessimism with regards to outcomes associated with

both treatment and non-treatment scenarios; on the other hand, the minimax impact

criterion reflects an extreme degree of pessimism with regards to the impact of the

policy, thus directly raising the threshold for treatment.5 Despite its intuitive ap-

peal, minimax optimality has been criticised for being too conservative and often

delivering decisions that are especially sensitive to changes in the ambiguity set.6

An alternative criterion that alleviates some of these concerns is minimax re-

gret, with corresponding optimal policy

π∗
MMR = argmin

π∈Π
max

(y0,y1)∈Y(P )

[(
max

π :X→{0,1}
Wy0,y1(π)

)
−Wy0,y1(π)

]
= argmin

π∈Π
max

τ∈T (P )

[(
max

π :X→{0,1}
Iτ (π)

)
− Iτ (π)

]
,

(2.5)

The minimax regret criterion delivers a policy that minimizes the largest possible

distance between attained welfare and the highest level of welfare attainable by

the “oracle” treatment rule π∗ = I {τ(x) ≥ 0} that has knowledge of the true τ .

Minimax regret optimality has been advocated by Manski (2004) for its balanced

5In the empirical application of Section 2.5, both minimax welfare and minimax impact criteria
result in π(x) = 0 for the entire population.

6In his classic textbook, Berger goes as far as saying that “In actually making decisions, the use
of the minimax principle is definitely suspect.” (Berger, 1985).
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consideration of the possible states of nature and for delivering more “reasonable”

decisions rules in practice, compared to minimax risk approaches.

Remark 2.2.1. An alternative version of the minimax regret criterion is minimax

regret with respect to the welfare attained by the best-in-class policy in Π, resulting

in the objective

π∗
MMR2 = argmin

π∈Π
max

τ∈T (P )

[(
max
π∈Π

Iτ (π)

)
− Iτ (π)

]
. (2.6)

While these two versions of the minimax regret criterion can be expected to en-

joy similar properties, the first version we have considered is considerably more

tractable. In fact, the innermost maximization in (2.5) has the closed-form solution

maxπ :X→{0,1} Iτ (π) = EPX
[max {τ(X), 0}]. As we show in Proposition 2.2.2 be-

low, this allows to more explicitly characterize the properties of the optimization

problem and the resulting optimal policy, as well as reduce the computational bur-

den in solving the empirical analogue of the problem. For this reason we will focus

on the version in (2.5) of the criterion. We also note that whenever the class Π is

“well-specified”, in the sense that I {τ(x) ≥ 0} ∈ Π for all τ ∈ T (P ), the two

optimality criteria are equivalent.

One critical drawback in the application of the optimality criteria just presented

to the treatment assignment problem of this chapter is that the optimal policies can-

not be obtained in closed form. This is due to the form of (2.3), (2.4) and (2.5)

involving several nested optimizations whose solutions cannot be easily character-

ized at the current level of generality when X includes continuously distributed

covariates and Π may be arbitrarily restricted, which are both primary cases of in-

terest in our analysis. To make progress, we impose the following restrictions on

the ambiguity sets for the expected potential outcomes and CATE.

Assumption 2.2.1 (Rectangular identified set for (y0, y1)). The identified set for

(y0, y1) is rectangular, that is, Y is of the form

Y = {(y0(·), y1(·)) : (y0(x), y1(x)) ∈ Y(x)},
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where Y(x) is a compact subset of R2.

Assumption 2.2.2 (Rectangular identified set for τ ). The identified set for τ is rect-

angular, that is, T is of the form

T = {τ(·) : τ(x) ∈ [τ(x), τ(x)]},

where |τ(x)| <∞, |τ(x)| <∞ for all x ∈ X .

Assumptions 2.2.1 and 2.2.2 impose separation of the identified sets for the ex-

pected potential outcomes and CATE across the support of the covariates X .7 They

are typically satisfied by identification schemes that do not impose shape restrictions

on counterfactual outcomes with respect to the covariates Xi. These assumptions

are widely adopted in the partial identification literature, and we refer the reader to

Appendix B in Kasy (2016) for an extensive review of identification schemes that

result in rectangular identified sets. Below we present three examples of identifica-

tion schemes for the CATE that satisfy this assumption.

Example 2.2.1 (Manski bounds). Suppose there exists a binary instrument

Zi ∈ {0, 1} that satisfies the well know exogeneity and exclusion restrictions

Yi(0), Yi(1), Di(0), Di(1) ⊥ Zi|Xi, where Yi(d) and Di(z) denote the counter-

factual outcome and treatment functions, respectively. If the instrument Zi also

satisfies the overlap condition

η ≤ P(Zi = 1|Xi) ≤ 1− η, η > 0,

and the monotonicity condition (also known as no-defiers condition):

P
(
Di(1) ≤ Di(0)|Xi

)
= 1 or P

(
Di(1) ≥ Di(0)|Xi

)
= 1,

then seminal work by Imbens and Angrist (1994) shows point-identification of the

7Notice that Assumption 2.2.1 implies Assumption 2.2.2, but not viceversa.
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conditional local average treatment effect (LATE):

E[Yi(1)− Yi(0) |Di(1) ̸= Di(0), Xi = x].

Let us now assume that Y ∈ [YL, YU ], i.e. the outcome is bounded, and define

h(z, x) = E[Yi|Zi = z,Xi = x],

m(d, z, x) = E[Yi|Di = d, Zi = z,Xi = x],

p(z, x) = P(Di = 1|Zi = z,Xi = x),

z(x) = P(Zi = 1|Xi = x).

The identified sets for the expected potential outcomes y0(x) and y1(x) are con-

tained within the bounds

y0(x) = min
z∈{0,1}

{
m(0, z, x) · (1− p(z, x)) + YU · p(z, x)

}
,

y
0
(x) = max

z∈{0,1}

{
m(0, z, x) · (1− p(z, x)) + YL · p(z, x)

}
,

and

y1(x) = min
z∈{0,1}

{
m(1, z, x) · p(z, x) + YU · (1− p(z, x))

}
,

y
1
(x) = max

z∈{0,1}

{
m(1, z, x) · p(z, x) + YL · (1− p(z, x))

}
.

The identified set for the CATE is then contained within the bounds

τ(x) = y1(x)− y
0
(x),

τ(x) = y
1
(x)− y0(x).

If no further functional form assumption on the distribution of potential outcomes is

made, these bounds are sharp (Heckman and Vytlacil, 2001) and the sharp identi-

fied sets for the average potential outcomes and CATE respectively satisfy Assump-

tion 2.2.1 and Assumption 2.2.2.
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Example 2.2.2 (Balke-Pearl). Suppose that the same assumptions as in Example

2.2.1 hold, and additionally the monoticity assumption is strengthened to

P
(
Di(1) ≥ Di(0)|Xi

)
= 1,

that is, the direction of the monotonicity is known and positive. The bounds for the

potential outcomes simplify to

y0(x) = m(0, 0, x) · (1− p(0, x)) + YU · p(0, x),

y
0
(x) = m(0, 0, x) · (1− p(0, x)) + YL · p(0, x),

y1(x) = m(1, 1, x) · p(1, x) + YU · (1− p(1, x),

y
1
(x) = m(1, 1, x) · p(1, x) + YL · (1− p(1, x)),

and the CATE is contained within the bounds

τ(x) = h(1, x)− h(0, x) + p(0, x) ·
(
m(1, 0, x)− YL

)
+ (1− p(1, x)) ·

(
YU −m(0, 1, x)

)
,

τ(x) = h(1, x)− h(0, x) + p(0, x) ·
(
m(1, 0, x)− YU

)
+ (1− p(1, x)) ·

(
YL −m(0, 1, x)

)
.

where p(0, x) and 1 − p(1, x) identify the proportions of always-takers and never-

takers at Xi = x, respectively. If no further functional form assumption on the

distribution of outcomes for non-compliant populations is made, these bounds are

sharp (Balke and Pearl, 1997) and the sharp identified sets for the average potential

outcomes and CATE respectively satisfy Assumption 2.2.1 and Assumption 2.2.2.

Example 2.2.3 (Manski-Pepper bounds). Suppose that instead of full exogeneity,

the instrumental variable Zi satisfies the weaker “monotone IV” condition

E[Yi(d)|Zi = 0, Xi] ≤ E[Yi(d)|Zi = 1, Xi], d = 0, 1. (2.7)
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Manski and Pepper (2000) show that when the outcome is bounded one has

∑
z=0,1

P (Zi = z|Xi)

×max
z1≤z

{m(d, z1, Xi) · P(Di = d|Zi = z1, Xi) + YL · P(Di = 1− d|Zi = z1, Xi)}

≤ E[Yi(d)|Xi] ≤∑
z=0,1

P (Zi = z|Xi)

×min
z2≥z

{m(d, z2, Xi) · P(Di = d|Zi = z2, Xi) + YL · P(Di = 1− d|Zi = z2, Xi)} .

Upper (lower) bounds for the CATE are obtained by combining upper (lower)

bounds for E[Yi(1)|Xi = x] with the lower (upper) bound for E[Yi(0)|Xi = x]:

τ(x) = z(x) · ψ1,1(x;YU) + (1− z(x)) ·min {ψ0,1(x;YU), ψ1,1(x;YU)}

− z(x) ·max {ψ0,0(x;YL), ψ1,0(x;YL)} − (1− z(x)) · ψ0,0(x;YL),

τ(x) = z(x) ·max {ψ0,1(x;YL), ψ1,1(x;YL)}+ (1− z(x)) · ψ0,1(x;YL)

− z(x) · ψ1,1(x;YU)− (1− z(x)) ·min {ψ0,0(x;YU), ψ1,0(x;YU)} , .

where

ψz,d

(
x;Y(·)

)
= m(d, z, x) · (d · p(z, x) + (1− d) · (1− p(z, x))

+ Y(·) · (d · (1− p(z, x)) + (1− d) · p(z, x)).

Under no further assumption on the distribution of potential outcomes, these bounds

are sharp (Manski and Pepper, 2000) and satisfy Assumptions 2.2.1 and 2.2.2.

Having restricted the identified sets Y and T as in Assumptions 2.2.1-2.2.2,

we are now able to provide a simpler characterization of the maximin welfare and

maximin impact policies.

Proposition 2.2.1. Define y
d
(x) = minyd(x)∈Y(x) yd(x) and yd(x) = maxyd(x)∈Y(x) yd(x).
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Under Assumption 2.2.1 the optimal maximin welfare policy is

π∗
MMW = argmax

π∈Π
EPX

[
(2π(X)− 1) · (y

1
(X)− y

0
(X))

]
. (2.8)

Furthermore, under Assumption 2.2.2 the optimal maximin impact policy is

π∗
MMI = argmax

π∈Π
EPX

[
(2π(X)− 1) · τ(X)

]
. (2.9)

Proposition 2.2.1 shows that the optimal maximin welfare and maximin impact

policies maximize surrogate versions of the welfare substituting the unidentified

CATE with the difference in the lower bounds of potential outcomes y
1
(x)− y

0
(x)

and the lower bound for CATE τ(x) at every point in the covariate space, respec-

tively. Notice that when Y(x) is rectangular with respect to the two potential out-

comes, i.e. y0(x) ∈ Y0(x), y1(x) ∈ Y1(x) and Y(x) = Y0(x) × Y1(x), we have

τ(x) = y
1
(x) − y0(x), thus highlighting the “pessimistic” nature of the maximin

impact criterion.

Remark 2.2.2. The maximin welfare and maximin impact optimal policies coin-

cide when y0(·) is point-identified. This case is relevant when y0(x) represents the

(conditional) average outcome under the status-quo in the entire population and is

typically point-identified from observational data.

The simplification of these two maximin problems into single maximisation

problems has important advantages for the study of the optimal policies and their es-

timation from the data. In fact, the sample analogues of optimizations (2.8) and (2.9)

are amenable to standard computation procedures for a variety of policy classes Π.

Furthermore, their solution can be studied using tools for empirical risk minimisa-

tion problems, as discussed in Section 2.3.

Despite the involvement of an additional maximization problem compared to

maximin welfare and maximin impact, Assumption 2.2.2 allows to provide a sim-

pler characterization also for the minimax regret optimal policy.
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Proposition 2.2.2. Under Assumption 2.2.2 the optimal minimax welfare regret pol-

icy is

π∗
MMR = argmax

π∈Π
EPX

[
(2π(X)− 1) · τ̃(X)

]
(2.10)

where

τ̃(x) = τ(x) · 1
{
τ(x) ≥ 0

}
+ τ(x) · 1

{
τ(x) ≤ 0

}
(2.11)

This simpler characterization of the minimax regret problem as a single maxi-

mization sheds light on the properties of its associated optimal policy. In particular,

we see that the objective function symmetrically treats individuals whose expected

treatment effect sign is identified by assigning as surrogate for the CATE their outer

bound, i.e. the CATE upper (lower) bound for individuals with identified positive

(negative) sign for CATE. Individuals for which the sign of the treatment effect is

ambiguous are assigned an intermediate point within their respective CATE bounds.

The location of this intermediate point depends on the extent to which the identified

set lies in the positive or negative region. Intuitively, the criterion prioritizes correct

treatment allocation to individuals who unambiguously benefit from (or are harmed

by) the treatment and down-weights the importance of individuals for which the

sign of the treatment response is ambiguous within the treatment allocation prob-

lem. As an extreme case, individuals with CATE bounds exactly symmetric around

0 (i.e. τ(x) = −τ(x)) are given no consideration in the solution of the treatment

allocation problem. This intuition can be further supported by noticing that the orig-

inal welfare maximization under point-identification in (2.2) can be re-casted as the

weighted classification problem

π∗ = argmin
π∈Π

EPX

[
1
{
(2π(X)− 1) ̸= sign(τ(X))

}
· |τ(X)|

]
,

of which the minimax welfare regret optimal policy in (2.11) turns out to solve the
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minimax version under Assumption 2.2.2:

π∗
MMR = argmin

π∈Π
max
τ∈T

EPX

[
1
{
(2π(X)− 1) ̸= sign(τ(X))

}
· |τ(X)|

]
.

It is from this minimax classification risk perspective that Pu and Zhang (2021)

obtain and study the minimax regret policy, which they call the “IV-optimal policy”.

An alternative version of minimax regret optimality which has been used in

the context of treatment choice is minimax regret with respect to a baseline policy.

Kallus and Zhou (2018) assume the existence of a fixed policy πB from which the

DM does not want to unnecessarily deviate. They define the optimal policy as

minimizing regret with respect to this baseline policy:

π∗
MMRB = argmin

π∈Π
max
τ∈T

{Iτ (πB)− Iτ (π)}

= argmax
π∈Π

EPX

[
(2π(X)− 1) · (τ(X) · 1 {πB(X) ≥ 0}+ τ(X) · 1 {πB(X) < 0})

]
,

where the second equality uses Assumption 2.2.2. While potentially appealing in

certain settings, e.g. when πB represents the existing standard of care in a medical

setting, this optimality criterion suffers the potential drawback of requiring the DM

to specify (and motivate) the baseline policy for it to be operational. Adopting the

never-treat baseline policy, i.e. πB(x) = 0, ∀x ∈ X , could be seen as an appealing

“agnostic” choice, which however makes this criterion default to maximin impact

and thus inherit its potentially undesirable properties.

The last notion of ambiguity-robust optimal policy that we present in this sec-

tion is based on the Hurwicz criterion (Hurwicz, 1951), arguably one of the most

widely used in decision-making under ambiguity. In the context of the treatment

assignment problem at hand, the Hurwicz criterion leads to the ambiguity-robust
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policy

π∗
HurW,δ0,δ1 = argmax

π∈Π
EPX

[
(2π(X)− 1) ·

(
{δ1 · y1(X) + (1− δ1) · y1(X)}

− {δ0 · y0(X) + (1− δ0) · y0(X)}
)]
,

where δ1 ∈ [0, 1] and δ0 ∈ [0, 1] are user-defined weights reflecting the degree of

optimism with respect to the outcomes under treatment and non-treatment, respec-

tively. It is easy to see that the maximin welfare criterion in (2.3) corresponds to the

choice δ1 = 0, δ0 = 0. An analogous notion of optimality focused on impact rather

than welfare, leads to the optimal policy

π∗
HurI,δ = argmax

π∈Π
EPX

[
(2π(X)− 1) ·

(
δ · τ(X) + (1− δ) · τ(X)

)]
,

where δ ∈ [0, 1] controls the degree of optimism with respect to the effect of treat-

ment, with the maximin impact optimal policy corresponding to the choice δ = 0.

Under Assumption 2.2.1 and Y(x) = Y0(x)×Y1(x), the Hurwicz Impact criterion

is nested into the Hurwicz Welfare for the choice of parameters δ = δ0 = 1 − δ1;

unlike Hurwicz Welfare, however, the Hurwicz Impact criterion is still well-defined

under the weaker Assumption 2.2.2. Interestingly, when δ = 1/2 and Π is well-

specified, in the sense that it contains the first-best assignment 1{τ(x)+τ(x) ≥ 0},

we have

π∗
MMR(x) = 1{τ̃(x) ≥ 0} = 1{τ(x) + τ(x) ≥ 0} = π∗

HurI, 1
2
(x).

Therefore the minimax regret and Hurwicz impact optimal policies coincide un-

der correct specification of Π, as they assign treatment based on the middle point

between the upper and lower CATE bounds. When Π is not well-specified, how-

ever, minimax regret optimality is not nested into any of the Hurwicz-type criteria

just presented, thus highlighting the radically different attitude towards ambigu-

ity implied by minimax regret compared to maximin welfare/impact. In particu-
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lar, minimax regret is the only criterion of those presented (along with Hurwicz

impact under δ = 1/2) that treats symmetrically individuals with identified sets

symmetric around 0, in the sense that τ̃1(x) = −τ̃2(x) whenever τ 1(x) = −τ 2(x)

and τ 1(x) = −τ 2(x). For this reason, minimax regret does not reflect an opti-

mistic/pessimistic attitude towards ambiguity but rather an “opportunistic” one, in

light of its prioritization of correct treatment assignment to individuals whose CATE

sign is unambiguously identified.

Minimax
Regret

Hurwicz
Welfare

Hurwicz
Impact

Maximin
Welfare

Maximin
Impact

δ0 = δ1 = 0

Π well-specified, δ = 1
2

δ = 0

y0(x) point-identified

δ = δ1 = 1− δ0

Figure 2.1: Relationship between ambiguity-robust optimal policies

2.2.1 A common framework

While accommodating a wide range of attitudes towards ambiguity, the notions of

optimality presented in Section 2.4.2 share a common structure. In fact, by virtue of

Assumptions 2.2.1 and 2.2.2, the corresponding optimal policies can all be written

as

π∗(P ) = argmax
π∈Π

Q(P ; π), Q(P ; π) := EPX

[
(2π(X)− 1) · Γ(P ;X)

]
,

(2.12)
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for a specific score function8 Γ(P ; · ), where we have highlighted the dependence

of the score on the distribution P . The specific dependence on P is determined by

the optimality criterion (as summarized in Table 2.1) as well as the identification

assumptions (e.g. Balke-Pearl, Manski-Pepper etc.). This common structure also

nests the point identified setting as the special case Γ(P ;X) = τ(X) and thus

suggests that existing estimation procedures for this special case can be extended to

the partially identified setting.

However, one peculiar feature of the partially identified setting is the restricted

degree of smoothness enjoyed by the objective function, in particular the differen-

tiability of the scores with respect to P . Under point-identification of the CATE

via standard unconfoundedness assumptions, one has Γ(P ;x) = E[Y |D = 1, X =

x] − E[Y |D = 0, X = x] and the full differentiability of the score with respect

to the expectation E[Y |D,X] is immediately apparent. However, for the mini-

max regret criterion we notice that the score is directionally differentiable9 with

respect to P at τ(x) = 0 or τ(x) = 0. Even when Γ(P ;x) depends smoothly

on expected outcomes/CATE bounds, lack of full differentiability of the scores can

arise through a lack of differentiability of the expected outcomes and CATE bounds

themselves. In fact, many popular identification assumptions, including the Man-

ski and Manski-Pepper bounds from Examples 2.2.1 and 2.2.3, deliver bounds that

are only directionally differentiable with respect to identified parameters due to the

presence of min /max operators (see Chernozhukov et al., 2013, and examples

therein). Whether a consequence of the optimality criterion or the identification

assumptions, lack of full differentiability of the scores is a unique and pervasive

feature of the treatment assignment problem under partial identification, one that

has not been explicitly acknowledged in the most recent contributions in this area,
8The term ‘score function’ is borrowed from Athey and Wager (2021).
9Let P ∈ P be a probability distribution on which the function f : P → R depends. We say that

f is directionally differentiable at P0 if the limit

lim
t↓0

f(P0 + t(h− P0))− f(P0)

t
= ḟP0 [h]

exists for every h ∈ P , in which case ḟP0
[·] denotes the directional derivative of f at P0. If it exists,

the directional derivative ḟP0
[·] is positively homogeneous of degree one but not necessarily linear.

If ḟP0
[·] is linear then f is fully differentiable at P0.
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with the notable exception of Christensen et al. (2022). A major contribution of this

chapter is to account for the role played by the lack of full differentiability when

we establish procedures for estimating ambiguity-robust optimal policies in Section

2.3.
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2.3 Estimation

In this section we present the statistical framework underlying the problem of es-

timation of optimal treatment rules under partial identification. We will discuss

heuristics underlying several features of the estimation problem, and then present

our proposed estimation procedure.

We work in a learning setting where the estimand π∗(P ) is as in (2.12), and

we observe an i.i.d. sample (Wi)i=1,...,n of size n from the unknown distribution

P of the observed random variables W ∈ W , X ⊂ W . To retain generality of

the framework, we do not specify the exact dependence of the functional Γ(P ;x)

on P , which will depend on the choice of optimality criterion for the resolution of

ambiguity (maximin welfare, minimax regret etc.) and identification assumptions

determining the identification sets Y(P ), T (P ). However, we will assume that the

scores depend on P only through a vector of nuisance functions g : V → RJ

specified by the moment equations

E[U − g(V ) | V ] = 0, (2.13)

where U and V are random vectors with U ⊆ W and X ⊆ V ⊂ W . Furthermore,

we will stipulate that the dependence of Γ(g;x) on the nuisance functions g from

the possibly infinite-dimensional space G can be reduced as

Γ(g;x) = Γ(θ(x), x),

where, for a fixed x, the parameter θ(x) ∈ Θx ⊆ RM is a finite-dimensional vec-

tor of conditional moments of U deduced from g. This latter restriction rules out

scores Γ(g;X) that at a single point in the covariate space depend on exhaustive

evaluations of the nuisance functions g over continuous supports. This is the case,

for example, in versions of the CATE bounds from Examples 2.2.1-2.2.3 featuring

instruments with continuous support Z . In those settings, the CATE bounds depend

on objects such as supz∈Z E[Y | Z = z, X = x], and are therefore not covered

by the results of this chapter. Finally, we will assume that that Γ(θ(x);x) can be
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expressed as

Γ(θ(x);x) = φ0(θ(x);x) +
L∑

ℓ=1

aℓ · φℓ(θ(x);x) · 1 {φℓ(θ(x);x) ≥ 0} , aℓ ∈ {−1, 1},

(2.14)

where the functions φℓ(θ(x);x) : Θx ×X → R are fully differentiable with respect

to θ(x) for all x ∈ X . While seemingly ad-hoc, this restriction is sufficiently gen-

eral to accommodate a wide range of popular partial identification assumptions for

the CATE as well as optimality criteria for the resolution of ambiguity. In partic-

ular, formulation (2.14) accommodates linear combinations of min/max operators,

which typically feature in many identification bounds for the CATE with discrete

instruments. In fact, our framework can be shown to be applicable to any combina-

tion of the optimality criteria discussed in Section 2.2 and the identification schemes

contained in the recent survey paper by Swanson et al. (2018).10

Example 2.2.2 (Continued). Under the identification assumptions of the Balke-

Pearl bounds and resolution of ambiguity via Minimax Regret, we have

g = (h,m, p),

θ(x) = (h(1, x), h(0, x),m(1, 0, x),m(0, 1, x), p(1, x), p(0, x)),

and

Γ(g;x) = φ1(θ(x);x) · 1 {φ1(θ(x);x) ≥ 0} − φ2(θ(x);x) · 1 {φ2(θ(x);x) ≥ 0} ,

where φ1(θ(x);x) = τ(θ(x);x), φ2(θ(x);x) = −τ(θ(x);x) are differentiable with

respect to θ(x).

In this framework, a natural approach for estimation is via the so-called “em-

pirical risk minimisation” (ERM) principle (Vapnik, 1998), in which the estimate

for the optimal policy is obtained as the maximiser of a sample analogue of the

10Albeit not directly accommodated by formulation (2.14), our framework and theoretical results
also apply to scores that feature a finite number of nested linear combinations of min /max opera-
tors. We discuss this extension in Appendix A.1.
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population objective Q:

π̂n = argmax
{
Q̂n(π) : π ∈ Π

}
, Q̂n(π) =

1

n

n∑
i=1

(2π(Xi)− 1) · Γ̂i (2.15)

where Γ̂i is some suitable estimate for Γ(g;Xi). The ERM approach is a corner-

stone of statistical learning theory and is at the foundation of many traditional

and modern estimation methods in statistics, econometrics and machine learning.

The ERM principle has also guided much of the recent literature on individualized

treatment rules, where different variations have been applied under the names of

“outcome-weighted learning” (Zhao et al., 2012) and “empirical welfare maximiza-

tion” (Kitagawa and Tetenov, 2018). A major challenge in the implementation of

(2.15) comes from the presence of the nuisance functions g, which are typically

unknown and thus need to be estimated. Assuming that we have access to appro-

priate algorithms/nonparametric procedures for estimation the nuisance functions,

one simple approach would be to use the sample (Wi)i=1,...,n to obtain the estimates

ĝ and then form plug-in estimates for the score as Γ̂i = Γ(ĝ;Xi). While seemingly

natural, this “naive plug-in” approach has undesirable properties. In particular, poli-

cies estimated via the naive plug-in approach can typically only be shown to con-

verge at sub-optimal rates to their population counterparts, unless very restrictive

assumptions are imposed on first-stage estimators for the nuisance functions g (see,

e.g., Foster and Syrgkanis, 2019).

One crucial reason underlying the undesirable statistical properties of the naive

plug-in approach is that the resulting objective function estimate Q̂n is overtly sen-

sitive to error in estimating the nuisance functions g. In order to gain intuition, it

is useful to consider the following expansion of the population objective function

Q(g; π) = EPX
[(2π(X)− 1) · Γ(g;X)],

Q(g̃; π)−Q(g; π) =
∂Q(g + t(g̃ − g);π)

∂t

∣∣∣∣
t=0

+∆(g̃, g; π) +O
(
∥g̃ − g∥2L2(P )

)
(2.16)
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where

∆(g̃, g; π) =

EPX

[
(2π(X)− 1) ·

(
L∑

ℓ=1

aℓ · φℓ(g;X) · (1 {φℓ(g̃;X) ≥ 0} − 1 {φℓ(g;X) ≥ 0})

)]
.

Von Mises expansions like the above are at the heart of the theory of orthogonal

machine learning (Chernozhukov et al., 2022). In our setting, it allows to describe

the impact of a small deviation from g in the direction g̃ − g as consisting of three

terms. The first term is the so-called “pathwise derivative” of Q(g; π) and typically

scales with ∥g̃ − g∥L1(P ). The second term ∆(g̃, g; π) is due the presence of the

type of non-differentiabilities arising under partial identification, and is unique to

the framework of this chapter. This term accounts for the bias that arises from mis-

classifying whether the component functions φℓ are above or below 0, as we move

away from g in the direction g̃−g. The third term is a second-order remainder scal-

ing with the mean-square distance between g̃ and g. A central feature of our pro-

posed estimation procedure is the construction of a new objective function, called

Neyman-orthogonal, with reduced sensitivity to local perturbations away from g.

For this purpose, we will assume that there exists functionals αℓ({g, f};V ) such

that for every g̃ ∈ G

φℓ(g̃;x) = E[⟨αℓ({g̃, f};V ), g̃(V )⟩ | X = x], ℓ = 1, . . . , L,

where f ∈ F is a vector of additional nuisance functions defined analogously to g.11

We then construct Neyman-orthogonal formulations for the component functions as

φNOℓ ({g, f};w) = φℓ(θ;x) + ϕℓ({g, f};w), ϕℓ({g, f};w) = ⟨αℓ({g, f}, v), u− g(v)⟩.

11We will also assume that for the j-th entry of the Riesz-representer we have
α
(j)
ℓ ({(g̃−j , g̃j), f̃}, x) = α

(j)
ℓ ({g̃−j , f̃}, x), where g̃−j denotes the exclusion of the j-th entry

g̃j from the vector of nuisance functions g̃. This restriction is sufficiently general to accommo-
date component functions φℓ(θ(x);x) that feature linear combinations of products of the parameters
θ(x), thus encompassing all the discussed identification schemes, including Examples 2.2.1-2.2.3.
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The functionals αℓ are the Riesz-representers of φℓ, while the functionals ϕℓ are

their so-called influence function adjustments. We refer the reader to Ichimura and

Newey (2022) for their properties and general methods for their calculation, while

we provide below their specific form for the Balke-Pearl CATE bounds of Example

2.2.2.12

Example 2.2.2 (Continued). Following Ichimura and Newey (2022), we compute

the influence function adjustment ϕU({g, f},Wi) for the CATE upper bound by tak-

ing the Gateaux derivative of τ(g;X), which yields

ϕU({g, f};Wi) =[
Zi

z(Xi)
− 1− Zi

1− z(Xi)

]
︸ ︷︷ ︸

α
(1)
U ({g,f},Vi)

·
(
Yi − h(Zi, Xi)

)

+

[
Di(1− Zi)

1− z(Xi)
+

(1−Di)Zi

z(Xi)

]
︸ ︷︷ ︸

α
(2)
U ({g,f},Vi)

·
(
Yi −m(Di, Zi, Xi)

)

+

[
(m(1, 0, Xi)− YL) ·

1− Zi

1− z(Xi)
− (YU −m(0, 1, Xi)) ·

Zi

z(Xi)

]
︸ ︷︷ ︸

α
(3)
U ({g,f},Vi)

·
(
Di − p(Zi, Xi)

)
,

where the associated Riesz-representer is αU({g, f}, Vi) = (α
(1)
U , α

(2)
U , α

(3)
U )′ with

f = z(x) and Vi = (Di, Zi, Xi)
′. The influence function and Riesz-representer for

the CATE lower bound are obtained by interchanging YU and YL in the expressions

above.

Finally we construct Neyman-orthogonal formulations for the scores as

ΓNO({g, f};w) = φNO0 ({g, f};w) +
L∑

ℓ=1

aℓ · φNOℓ ({g, f};w) · 1 {φℓ(g;x) ≥ 0} ,

12See also Kennedy (2022) for a user-friendly discussion of methods for computation influence
function adjustments.
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which are then used to form the Neyman-orthogonal objective function

QNO({·, ·}; π) = EPW

[
(2π(X)− 1) · ΓNO({·, ·};W )

]
.

Our construction of Neyman-orthogonal scores features the addition of the influ-

ence function adjustments ϕℓ to the component functions φℓ outside the indicators,

but crucially not inside. Heuristically, the influence function adjustments serve the

purpose of reducing the bias induced by the evaluation of the component functions

φℓ(·;x) away from g. Since the indicators vary discontinuously with g it is not

possible to linearly approximate the dependence of the indicators on the nuisance

functions at the point of discontinuity φℓ(g;x) = 0. As a result, it is not possible to

reduce the bias induced by the presence of the indicators (represented by the term

∆(g̃, g, π) in (2.16)) by means of influence function adjustments, whose de-biasing

properties implicitly rely on the validity of such linear approximation.13 Notice that

QNO({g, f}; π) = Q(g; π) by the mean-zero property of the influence function ad-

justments, so that orthogonalization of the objective does not change the notion of

optimal policy π∗(P ). Nonetheless, for the orthogonalized objective we have that

QNO({g̃, f̃}; π)−QNO({g, f}; π) = ∆(g̃, g; π) +O
(
∥g̃ − g∥2L2(P ) + ∥f̃ − f∥2L2(P )

)
.

(2.17)

Comparing the above with (2.16), we see that the von Mises expansion for the or-

thogonalized objective does not feature the pathwise derivative term, implying that

QNO( · ; π) is less sensitive to deviations away from g compared to the original ob-

jective Q( · ; π). As shown in Section 2.4, this property will generally translate in

improved statistical guarantees for the estimated policy when the nuisance func-

tions have to be learned from the data. It should however be noticed that the term

∆(g̃, g; π) still appears in the relevant expansion after orthogonalization. The contri-

bution of this term is quantified in Section 2.4, where it is shown to be of first-order

importance for the statistical properties of the estimation procedures.

13On the contrary, naively adding the influence function adjustments inside the indicators would
lead to a bias increase, rather than a reduction.
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The second key component of our approach is the use of sample-splitting,

which is a commonly employed method in semiparametric inference (Cher-

nozhukov et al., 2022) and statistical learning (Foster and Syrgkanis, 2019). The

main purpose of sample-splitting is to reduce the risk of overfitting that generally

arises from using the same data to estimate the nuisance functions as well as the op-

timal policy, as in the naive plug-in approach. Similarly to Athey and Wager (2021),

we employ a particular form of sample-splitting known as K-fold cross-fitting (de-

scribed below). This procedure ensures that in the estimate for ΓNO({g, f};Wi),

the estimates for the nuisance functions {g, f} are independent from the data-point

Wi for that same unit. This independence property is crucial for the theoretical

guarantees of our proposed method.

Our proposed estimation procedure is therefore as follows. We first randomly

split the data into K evenly-sized folds and for each fold k = 1, . . . , K we obtain

estimates {ĝ(−k), f̂ (−k)} using data from the remainingK−1 folds. These estimates

are then used to form cross-fitted Neyman-orthogonal estimates for the scores

Γ̂i = Γ̂NO
(
{ĝ−k(i), f̂−k(i)};Wi

)
, i = 1, . . . , n, (2.18)

where k(i) ∈ {1, . . . , K} denotes the fold containing the i-th observation. Finally,

the estimated optimal policy rule π̂n is obtained via the optimization problem (2.15).

2.4 Statistical guarantees for the estimated policy
Let π̂n be the estimated treatment policy defined in (2.15), with estimated scores

as in (2.18). Following Manski (2004), we assess the performance of the estimated

policy in terms of (statistical) regret with respect to population optimal policy. Let

the population ambiguity-robust optimal policy be π∗
n(P ) ∈ argmaxπ∈Πn

Q(P ; π),

where we have included the n-subscript to the policy class Πn to allow this to de-

pend on the sample size for generality. The statistical regret of an estimated policy

π̂n is defined as

Rn(P ; π̂n) = EPn

[
Q(P ; π∗

n)−Q(P ; π̂n)
]
≥ 0, (2.19)
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where EPn is the expectation with respect to the i.i.d. sample of observable random

variables (Wi)i=1,...,n used to estimate π̂n. The next few subsections build up to a

final result providing asymptotic convergence guarantees for π̂n to π∗
n in terms of

statistical regret.

2.4.1 Assumptions

We make the following assumptions.

Assumption 2.4.1 (VC-class). There exists constants 0 ≤ ν < 1/2 and N ≥ 1

such that VC(Πn) ≲ nν for all n ≥ N .

Assumption 2.4.1 restricts the policy class to have finite VC-dimension, which

is a standard requirement for controlling the complexity of a policy class in the

classification literature. The VC-dimension of the policy-class Π is defined as the

largest interger m such that there exist points x1, . . . , xm that are shattered by Π,

i.e. where the policy values π(x1), . . . , π(xm) can take on all 2m possible combina-

tions in {0, 1}m (for more on the VC-dimension, see Wainwright, 2019). Several

practically relevant classes of treatment rules satisfy this requirement, including the

linear-index and quadrant rules used in the empirical application of Section 2.5. Our

assumption allows the VC-dimension of the policy class to grow moderately with

the sample size, thus allowing the treatment rule to depend on high-dimensional

covariates.

Assumption 2.4.2 (Regularity conditions for data-generating process).

(i) There exist constants C1,φ, C1,α such that for all {g̃, f̃} ∈ G × F

∥φℓ(g̃;X)− φℓ(g;X)∥L∞(PX) ≤ C1,φ · ∥g̃ − g∥L∞(PV ),∥∥∥αℓ({g̃, f̃};V )− αℓ({g, f};V )
∥∥∥
L∞(PV )

≤ C1,α ·
(
∥g̃ − g∥L∞(PV ) +

∥∥∥f̃ − f
∥∥∥
L∞(PV )

)
,

for ℓ = 0, . . . , L.
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(ii) There exist constants C2,φ, C2,α such that for all {g̃, f̃} ∈ G × F

∥φℓ(g̃;X)− φℓ(g;X)∥L2(PV ) ≤ C2,φ · ∥g̃ − g∥L2(PV ),∥∥∥αℓ({g̃, f̃};V )− αℓ({g, f};V )
∥∥∥
L2(PV )

≤ C2,α ·
(
∥g̃ − g∥L2(PV ) +

∥∥∥f̃ − f
∥∥∥
L2(PV )

)
,

for ℓ = 0, . . . , L.

(iii) There exist constants C3,φ, C3,α such that for all {g̃, f̃} ∈ G × F

∥φℓ(g̃;X)∥L∞(PX) ≤ C3,φ,∥∥∥αℓ({f̃ , g̃};V )
∥∥∥
L∞(PV )

≤ C3,α,

for ℓ = 0, . . . , L.

(iv) The irreducible noise εi := Ui − g(Vi) is a sub-Gaussian vector condi-

tional on Vi, with conditional variance Var(εi | Vi) = Σ(Vi) satisfying

∥λmax(Σ(V ))∥L∞(PV ) ≤ λ <∞.

Assumptions 5(i) and 5(ii) impose Lipschitz continuity of the component func-

tions and Riesz-representers with respect to the nuisance component in the L∞ and

L2-norm, respectively. These requirements are typically met under mild condi-

tions within the framework of this chapter. For the Balke-Pearl bounds of Exam-

ple 2.2.2, these assumptions hold under the overlap condition whenever G and F

are subsets of the space of bounded functions14, which is automatically satisfied

since Ui = (Yi, Di, Zi)
′ is a vector of random variables with bounded support.

Assumption 2.4.2(iii) is a uniform bound on the component functions and Riesz-

representers, the former implying uniform boundedness of the scores Γ(g; ·). As-

sumption 2.4.2(iv) is a standard requirement in statistical learning theory restricting

the tail behaviour of the statistical noise εi. It is automatically satisfied when Ui

has bounded support, as in the Balke-Pearl bounds, but also allows for outcomes

with unbounded support whose conditional distributions have sufficiently thin tails.

14That is, there exists a constant B > 0 such that ∥{g̃, f̃}∥L∞(PV ) ≤ B, ∀{g̃, f̃} ∈ G × F
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Together with Assumption 2.4.2(iii), this assumption implies sub-gaussianity of

ΓNO({g, f},Wi).

The next two assumptions impose requirements on the estimators for the nui-

sance components.

Assumption 2.4.3 (Regularity conditions for fist-step estimators).

(i) The estimators of the nuisance functions {ĝn, f̂n} belong to the function

classes G × F with probability 1.

(ii) There exists a constant C4 > 0 such that

∥ĝn − g∥L∞(PV ) ≤ C4,∥∥∥f̂n − f
∥∥∥
L∞(PV )

≤ C4,

with probability approaching 1 as n→ ∞.

Part (i) of Assumption 2.4.3 is needed to ensure the validity of the Lips-

chitz continuity requirements of Assumption 2.4.2 for the component functions and

Riesz-representers when evaluated at the first-stage estimates. In the context of

the Balke-Pearl bounds, it is satisfied when ĝn, f̂n are uniformly bounded and the

estimated propensity score ẑ(Xi) is uniformly bounded away from 0 and 1, with

probability one. The first condition is satisfied by virtually any estimation proce-

dure when the outcomes Ui have bounded support. The second requirement can

be guaranteed under appropriate trimming of the estimated propensities. Part (ii)

requires that estimation errors for the nuisance components are uniformly bounded,

which is satisfied under Assumption 2.4.3(i) when G ×F is a subset of the space of

bounded functions. When Ui has unbounded support and G×F includes unbounded

functions, a more primitive condition for (ii) would be uniform consistency of the

first stage estimates, that is ∥{ĝn, f̂n} − {g, f}∥L∞(PV ) →p 0.15

15However, it should be noted that the uniform consistency requirement is not completely innocu-
ous when {ĝn, f̂n} are machine learning estimators (Farrell et al., 2021).
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Assumption 2.4.4 (L2 convergence rates). The estimators of the nuisance functions

satisfy

EPn

[
∥ĝn − g∥2L2(PV )

]
≤ rn
n1/2

,

EPn

[∥∥∥f̂n − f
∥∥∥2
L2(PV )

]
≤ rn
n1/2

,

for some sequence rn = o(1).

The above requirement on the L2-convergence rates for the learners of the nui-

sance functions is a standard assumption in the semiparametric inference literature

(see, e.g., Farrell, 2015, and Chernozhukov et al., 2022). It can be shown to prov-

ably hold for traditional nonparametric estimation methods such as sieve methods

(Chen, 2007) as well as modern black-box machine learning algorithms including

Lasso (see, e.g., Farrell, 2015), deep neural networks (Farrell et al., 2021), boost-

ing and others, for which stronger guarantees such as Donsker-type properties are

typically not available. The ability to invoke a mild L2-convergence requirement

is a virtue of the combined use of Neyman-orthogonalization and sample-splitting,

a key insight brought forward by Chernozhukov et al. (2022) for semiparametric

GMM inference, and subsequently leveraged by Athey and Wager (2021) and Fos-

ter and Syrgkanis (2019) in the context of statistical learning problems.16

Finally, we present an assumption that concerns the distribution of the compo-

nent functions φℓ at the population level.

Assumption 2.4.5 (Margin). There exist constants Cm > 0 and γ ≥ 0 such that

PX

(
0 < |φℓ(g;X)| ≤ t

)
≤ Cm · tγ, ∀ t > 0.

for ℓ = 1, . . . , L.

The above assumption restricts the extent to which the distribution of the com-

16Unlike Athey and Wager (2021), our assumptions do not allow to trade-off accuracy in the
estimation across the different nuisance functions. This is because our framework allows for φℓ(g;x)
to be a potentially non-linear functional of the nuisance functions g, as is the case in Examples 2.2.1-
2.2.3, thus precluding such double-robustness property.
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ponent functions φℓ(g;X) can concentrate around the point of non-differentiability

0 and it is a form of “margin assumption”, first introduced by Mammen and Tsy-

bakov (1999). Such an assumption has been widely used in statistics to obtain fast

learning rates in classification problems (see, e.g., Arlot and Bartlett, 2011). Notice

that the above formulation for the margin assumption restricts the concentration of

probability for the distribution of the components functions in a neighbourhood of

0, but still allows for arbitrary probability mass at 0.

Example 2.4.1 (γ = 1). Suppose X contains an absolutely continuous covariate x̃

and φℓ(g;X) · 1{x̃ ̸= 0} is absolutely continuous with density bounded above by f

for ℓ = 1, . . . , L. Then Assumption (2.4.5) holds with γ = 1 and Cm = 2f .

Example 2.4.2 (γ = ∞). Suppose there exists a t0 > 0 such that PX (0 < |φℓ(X)| < t0) =

0 for ℓ = 1, . . . , L. Then Assumption (2.4.5) holds with γ = ∞ and some Cm > 0.

In the context of the Balke-Pearl bounds from Example 2.2.2 with resolution of

ambiguity via Minimax Regret, Assumption 2.4.5 restricts the extent to which the

CATE bounds τ , τ can concentrate around 0 in the data-generating process. Under

γ = ∞ the support of each CATE bound is required to be fully separated from 0,

while γ = 1 requires that each CATE bound has bounded density in a neighborhood

of 0.

In the next section we present our theoretical results based on Assumptions

2.4.1-2.4.5.

2.4.2 Regret convergence rates

In this section, we provide asymptotic rates of convergence for the regret of the es-

timated policy Rn(P ; π̂n) as defined in (2.19). In line with the existing literature,

we study uniform regret bounds that are valid for all distributions P ∈ P satisfy-

ing Assumptions 2.4.1-2.4.5. All results in this section are thus intended to hold

uniformly in the above sense, and we will drop the dependence on P for notational

convenience.

We begin by noticing that controlling the convergence of π̂n to the best-in-

class policy π∗
n intuitively requires accounting for: 1) the estimation error in the
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component functions φℓ and influence function adjustments ϕℓ due to estimation of

the nuisance components {g, f}, 2) the difference between the population Neyman-

orthogonal score and true score17, and 3) the fact that we estimate our policy using a

sample from the distribution of the covariates Xi rather than their true distribution.

We define the following quantities:

Q̂NO
n (π) =

1

n

n∑
i=1

(
2π(Xi)− 1

)
· ΓNO({ĝ, f̂};Wi),

QNO
n (π) =

1

n

n∑
i=1

(
2π(Xi)− 1

)
· ΓNO({g, f},Wi),

and formalize this intuition in the next proposition.

Proposition 2.4.1. The regret of π̂n obeys the following bound:

Rn(π̂n) ≤2E
[
sup
π∈Πn

∣∣∣Q̂NO
n (π)−QNO

n (π)
∣∣∣]+ E

[
sup
π∈Πn

|QNO
n (π)−Q(π)|

]
. (2.20)

The second term in the above bound accounts for points 2) and 3). Qn(π) −

Q(π) is a centred (mean-zero) empirical process and therefore its uniform expec-

tation can be shown to be O
(√

VC(Πn)/n
)

using symmetrization and chaining

arguments (see, e.g., Wainwright, 2019, Ch. 5.3). Controlling the first term, which

accounts for point 1), is particularly challenging and requires tailored arguments

that deal with the particular form of the population scores in (2.14), in particular

their lack of full differentiability.

Lemma 2.4.1. Suppose that Assumptions 2.4.1-2.4.5 hold and define κn = ⌊n(1−

1/K)⌋. Then we have

EPn

[
sup
π∈Πn

∣∣∣Q̂NO
n (π)−QNO

n (π)
∣∣∣] = O

(
rκn√
n
+

√
VC(Πn)

n
+

(
rκn√
n

) γ+1
γ+2

)
.

Lemma 2.4.1 is the central result of this chapter. It provides an asymptotic rate

of convergence to zero of the empirical process
∣∣∣Q̂NO

n (π)−QNO
n (π)

∣∣∣ uniformly over

17That is, we need to account for the fact that we have added the influence function adjustments
to the component functions.
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the policy class Πn, which depends on the VC-dimension of the class and the degree

of concentration of the component functions φℓ(g;X) around 0, as indexed by γ.

In order to convey intuition on this result we provide a brief outline of the proof,

which is based on the decomposition

Q̂NO
n (π)−QNO

n (π)

=
1

n

n∑
i=1

(2π(Xi)− 1) ·
[
Γ̂NO

(
{ĝ−k(i), f̂−k(i)},Wi

)
− ΓNO ({g, f},Wi)

]
= A0(π) +

L∑
ℓ=1

aℓ · [A1,ℓ(π) + A2,ℓ(π) + A3,ℓ(π)] , (2.21)

where

A0(π) =
1

n

n∑
i=1

(2π(Xi)− 1) ·
[
φNO0 ({ĝ−k(i), f̂−k(i)},Wi)− φNO0 ({g, f},Wi)

]
,

A1,ℓ(π) =
1

n

n∑
i=1

(2π(Xi)− 1) ·
[
φNOℓ ({ĝ−k(i), f̂−k(i)},Wi)− φNOℓ ({g, f},Wi)

]
× 1

{
φℓ

(
ĝ−k(i);Xi

)
> 0
}
,

A2,ℓ(π) =
1

n

n∑
i=1

(2π(Xi)− 1) ·
[
1
{
φℓ(ĝ

−k(i);Xi) ≥ 0
}
− 1 {φℓ(g;Xi) ≥ 0}

]
× ϕℓ({g, f};Wi),

A3,ℓ(π) =
1

n

n∑
i=1

(2π(Xi)− 1) ·
[
1
{
φℓ(ĝ

−k(i);Xi) ≥ 0
}
− 1 {φℓ(g;Xi) ≥ 0}

]
× φℓ(g;Xi).

Terms A0(π) and A1,ℓ(π) can be controlled using similar arguments to Athey

and Wager (2021) and are responsible for the O (rκn/
√
n) term in the bound of

Lemma 2.4.1. The de-biasing properties of Neyman-orthogonalization combined

with sample-splitting play a crucial role in this context, as they ensure that the er-

ror in estimating φℓ(g;x) only has a second-order contribution. As a result, term

A1,ℓ(π) scales with the mean-squared estimation error in the nuisance functions

and, under Assumption 2.4.4, its expectation decays faster than 1/
√
n uniformly
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over Πn.18 If plug-in (non-orthogonalized) estimates for φℓ are instead used to form

the score estimates Γ̂i, the estimation error in the nuisance functions has a first-

order impact on term A1,ℓ(π). As a result, its uniform expectation would scale with

the L1 estimation error which, under Assumption 2.4.4, implies the much slower

convergence E[supπ∈Πn
|A1,ℓ(π)|] = o(n1/4).

For termA2,ℓ(π), the mean-zero property of the influence function adjustments

together with sample-splitting ensures that this term is a centred empirical process

and thus it is responsible for aO
(√

VC(Πn)/n
)

contribution again by symmetriza-

tion and chaining arguments.

Finally, for term A3,ℓ(π) we show that

E
[
sup
π∈Πn

A3,ℓ(π)

]
≤ E

[ ∣∣∣φℓ(g;Xi) ·
(
1

{
φ
−k(i)
ℓ (ĝ−k(i);Xi) ≥ 0

}
− 1 {φℓ(g;Xi) ≥ 0}

)∣∣∣ ],
where the RHS can be recognized to be the classification loss of an estimator for the

sign of φℓ(g;x) based on thresholding φℓ(ĝ
−k(i);x). Rates of convergence in binary

classification problems intuitively depend on the degree of separation of the true

regression function from 0, as indexed by γ. We thus leverage results from the liter-

ature on classification (Audibert and Tsybakov, 2007) to quantify the contribution

of A3,ℓ in the bound of Lemma 2.4.1 in terms of γ.

We are now ready to combine the rates of convergence for the three terms in

Proposition 2.4.1 to obtain a final regret bound for our proposed estimation proce-

dure.

Theorem 2.4.1. Suppose Assumptions 2.4.2-2.4.5 hold. Then the regret obeys

Rn(π̂n) = O

(√
VC(Πn)

n
∨
(
rκn√
n

) γ+1
γ+2

)
.

We see that regret convergence for our policy learning procedure happens at

a rate corresponding to whichever is the leading term in the asymptotic expansion

of Lemma 2.4.1, which depends on ν and γ. When the policy class Πn has fixed

18Notice that, by virtue of sample-splitting, the presence of the indicator 1{φℓ(ĝ
−k(i);Xi) ≥ 0}

is immaterial when controlling the expectation of A1,ℓ(π) uniformly over Πn.
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VC-dimension (ν = 0), regret convergence happens at rates ranging from o(n1/4)

in the least favourable case (γ = 0) to O(
√

VC(Π)/n) in the most favourable

case (γ = ∞). The latter case is in line with existing results for policy learning

with point-identified CATE, in which full-differentiability of the scores leads to√
VC(Πn)/n learning rates (see Kitagawa and Tetenov, 2018; Athey and Wager,

2021; Foster and Syrgkanis, 2019). For the intermediate case γ = 1 of Example

2.4.1 our procedure guarantees regret convergence at rate o(n1/3).

It is useful to compare the performance guarantees in this chapter with Pu and

Zhang (2021), whose procedure involves the use of non-orthogonalized estimates

for the scores with sample-splitting. They show that the regret of a policy esti-

mated via the maximization (2.15) based on cross-fitted non-orthogonalized scores

is upper bounded by the L1-norm of the estimation error in the nuisance functions.

Under Assumption 2.4.4, this implies o(n1/4) convergence for the regret, which is

strictly slower than our rates for all values of γ > 0. The faster speed of conver-

gence guaranteed by our procedure is not just due to a refined proof strategy but

crucially depends on the use of Neyman-orthogonalization, as elucidated by our

discussion of Lemma 2.4.1.

Remark 2.4.1. The procedure of Pu and Zhang (2021) also differs from ours in

its final implementation, which in their case is carried out via support vector ma-

chines (SVM) with Πn assumed to be a reproducing kernel Hilbert space. While

the use of surrogate losses (such as the hinge loss in SVM) to convexify problem

(2.15) can bring considerable computational benefits in terms of speed and scala-

bility, it comes at the cost of even slower convergence guarantees than the o(n−1/4)

discussed above. We stress that our insights regarding the benefits of Neyman-

orthogonalization in terms of faster learning rates apply irrespective of the final

implementation. Notice also that the use of surrogate loss functions does not guar-

antee convergence of the estimated optimal policy to the best-in-class π∗
n in general

when the policy class Πn does not contain the “first-best” policy 1{Γ(g;x) ≥ 0},

as shown by the recent work of Kitagawa et al. (2021).
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2.5 Empirical application

In this section we apply the methods discussed in this chapter to data from the Na-

tional Job Training Partnership Act (JTPA) Study. This study randomly selected ap-

plicants to receive various training and services, including job-search assistance, for

a period of 18 months. The study collected background information on applicants

before random assignment and then recorded their earnings in the 30-month period

following treatment assignment. Kitagawa and Tetenov (2018) apply their EWM

method to a sample of 9,223 adult JTPA applicants to estimate the optimal alloca-

tion of eligibility into the programme that maximizes individual earnings across the

population. In particular, they take total individual earnings in the 30 months after

assignment as the welfare outcome measure Yi, and consider policies that allocate

eligibility in the programme based on the individual’s observable characteristics.

Kitagawa and Tetenov’s analysis is from an intent-to-treat perspective as they fo-

cus on the problem of deciding who should be given eligibility to participate in the

programme. Since eligibility in the JTPA study is randomly assigned, the effect

of eligibility on earnings is point identified from the data and methods for policy

learning under point-identification can be applied in this setting. We depart from

Kitagawa and Tetenov (2018) and instead consider optimal assignment of actual

participation in the training. This analysis would be of interest to a policy-maker

that expects to achieve (close to) perfect compliance to her treatment decision, e.g.

when participation is made a condition for receipt of a generous unemployment

benefit.19 Compliance in the JTPA study is imperfect as roughly 23% of appli-

cants’ participation status Di = 0, 1 deviates from their assigned eligibility status

Zi = 0, 1, as shown in Table 2.2. As a result, random assignment of the eligibil-

ity instrument Zi is not sufficient to point-identify the effect of participation in the

training, motivating the use of the methods proposed in this chapter.

For partial identification of the CATE we consider the Balke-Pearl scheme of

Example 2.2.2, where bounds for the 30-month post-treatment earnings are YL = $0

19No financial incentive had been put in place to promote compliance in the implementation of
the JTPA study.
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Table 2.2: Joint distribution of eligibility and participation, JTPA study

Eligibility (Zi)
Participation (Di) 0 1 Total

0 3047 2118 5165
1 43 4015 4058

Total 3090 6133 9233

Data source: Kitagawa and Tetenov (2018) and
Abadie, Angrist, and Imbens (2002).

and YU = $59, 640.20 We compare this with point-identification of the CATE as the

conditional local average treatment effect (LATE), predicated under the assumption

of no unobserved heterogeneity. We subtract $1216 from both the CATE bounds

and the conditional LATE; this is the average cost of services per actual treat-

ment, estimated from Table 5 in Bloom et al. (1997). Following Kitagawa and

Tetenov (2018), we condition treatment assignment on two pre-treatment variables:

the individual’s years of education and earnings in the year prior to assignment.

Estimation of the optimal policy follows the procedure described in Section 2.3,

with K = 10 evenly-sized data folds used to form cross-fitted Neyman-orthogonal

estimates for the CATE bounds and conditional LATE functions. The nuisance

functions are estimated via boosted regression trees, performed by the MATLAB

function fitrensenmble.21

Figure 1 demonstrates cross-fitted plug-in estimates for the CATE bounds (a)

and the LATE/minimax regret scores (b), where the size of the dots indicates the

number of individuals with different covariate values. We first notice that the esti-

mated CATE lower bounds are negative for the whole sample, and thus the maximin

impact optimal policy never assigns treatment in this application. We therefore fo-

cus our analysis on minimax regret (MMR).22 Comparison of the conditional LATE

20The outcome upper bound corresponds to the 97.5th percentile of the earnings distribution rather
than highest recorded value of $155, 760. Outcome bounds in Balke-Pearl bounds effectively impute
unidentified expected earnings for never-takers and always-takers. Restricting expected earnings to
be below such high quantile is in effect a mild requirement which brings considerable identification
power.

21Tuning parameters have been chosen via cross-validation within each data-fold. For further
details on the estimation procedure we refer to the MATLAB documentation for the command.

22Maximin welfare also results in no treatment for the whole population in this application.
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(b) Scores

Figure 2.2: JTPA – Plug-in cross-fitted estimates (net of $1216)

and MMR scores highlights how partial identification leads to increased variation

of the scores across different levels of education and pre-program earnings. In par-

ticular, the MMR scores are considerably higher (and positive) for individuals with

fewer years of education and smaller pre-programme earnings. The conditional

LATE estimates display less overall variation over the support of the covariates,

compared to the MMR scores, but are lower for individuals with 0 pre-programme

earnings.

We consider three alternative choices for the candidate policy class Π. The
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first is the class of quadrant treatment policies. To be assigned to treatment accord-

ing to this policy, an individual’s education and pre-program earnings have to be

above (or below) some specific threshold. Figure 2.3 illustrates the optimal quadrant

treatment policies based on Neyman-orthogonalized cross-fitted MMR and LATE

scores, where the colored shaded areas indicate individuals required to undertake

job training by the respective policies. The optimal MMR policy (green) assigns

treatment to individuals with education below 15 years and pre-treatment earnings

below $39,952. The optimal LATE policy (blue) selects the same threshold for

education, but selects individuals with pre-treatment earnings above $200 for treat-

ment. While the two policies appear similar, they substantially differ in the pro-

portion of population assigned to treatment (96% by the MMR policy versus 64%

by the LATE policy), as shown in Table 2.3. This is due to the large concentra-

tion of individuals with pre-treatment earnings close to (or equal) zero. As a result,

32% of individuals receive a different treatment assignment across the two poli-

cies. Figure 2.3 also shows the optimal “naı̈ve” MMR policy based on cross-fitted

but non-orthogonalized scores (yellow), which recommends participation into the

programme for the entire population.
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Table 2.3: Treatment proportions of alternative treatment assignment policies

Share of Population
to be treated

Share of Population receiving
same treatment as

MMR (naı̈ve) MMR LATE
Quadrant Rule

Minimax Regret (naı̈ve) 1.00 –
Minimax Regret 0.96 0.96 –
LATE 0.64 0.68 0.68 –

Linear Index Rule
Minimax Regret (naı̈ve) 0.99 –
Minimax Regret 0.96 0.96 –
LATE 0.69 0.69 0.70 –

Linear Index Rule + edu2 + edu3

Minimax Regret (naı̈ve) 0.99 –
Minimax Regret 0.96 0.97 –
LATE 0.75 0.75 0.75 –

The rows labeled “Minimax Regret (naı̈ve)” give information on the estimated optimal minimax
regret policy based on the scores in Equation (2.11) with the Balke-Pearl CATE bounds of Example
2.2.2, without Neyman-orthogonalization. The rows labeled “Minimax Regret” give information
on the estimated optimal minimax regret policy with Neyman-orthogonalization. The rows labeled
“LATE” give information on optimal policy for Neyman-orthogonal scores for the conditional
LATE.

Second, we consider the class of linear treatment policies. This class consists

of policies that assign treatment to an individual according to whether a linear index

in his observable characteristics is above a certain threshold. Figure 2.4 illustrates

how the direction of treatment assignment as a function of prior earnings differs

between the MMR and LATE policy in a similar fashion to the quadrant rules; con-

trary to the LATE policy, MMR prioritizes treatment assignment to individuals with

lower pre-program earnings. Nonetheless, 70% of the population still receives the

same treatment under the two different policies, in light of the relatively low con-

centration of individuals in the areas of the covariate space where the two policies

differ. Similarly to the quadrant policy rule, the MMR policy assigns treatment to a

larger share of the population (95%) compared to the LATE policy (69%). The naı̈ve

MMR policy is qualitatively similar to the one using Neyman-orthogonolization, but

recommends programme participation to a larger share of individuals.

Finally, we consider linear treatment policies that additionally include
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quadratic and cubic terms for education. Figure 2.5 shows how the additional

flexibility in the policy class leads to rules that are less interpretable but maintain

similar qualitative features compared to the more parsimonious classes previously

considered.

Figure 2.3: Estimated optimal policies from the quadrant policy class conditioning on years
of education and pre-programme earnings.
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Figure 2.4: Estimated optimal policies from the linear-index policy class

Figure 2.5: Estimated optimal policies from the linear-index policy class conditioning on
years of education, (education)2, (education)3, and pre-programme earnings.
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2.6 Conclusions
In this chapter, we develop a general policy learning framework for estimation of

individualized treatment rules when treatment effects are partially identified. By

drawing connections between the treatment assignment problem and classical de-

cision theory, we have characterized several notions of optimal treatment policies

in the presence of partial identification. We have shown how partial identifica-

tion leads to a new policy learning problem where the risk is only directionally-

differentiable with respect to a nuisance infinite-dimensional component. We have

proposed an estimation procedure that ensures Neyman-orthogonality with respect

to the nuisance components and we have provide statistical guarantees that depend

on the amount of concentration around the points of non-differentiability in the data-

generating process. Our proposed methods are illustrated with an application to the

Job Training Partnership Act study, where we have shown that allowing for par-

tial identification delivers substantially different programme participation policies

compared to existing methods that assume point-identification.

There are several avenues for future research. First, it would be interesting to

extend the theory of this chapter to partial identification via instrumental variables

with continuous support. Second, it would be useful to extend the methods to more

general identification sets that incorporate smoothness restrictions on unobserved

counterfactual quantities, such as those considered in Kim et al. (2018). Finally,

it would be interesting to assess the optimality of our proposed estimation proce-

dure by deriving minimax lower bound rates for semiparametric statistical learning

problems with directionally-differentiable risk.



Chapter 3

Auxiliary IV Estimation for

Nonlinear Models

Instrumental variables (IVs) are an essential tool to estimate causal relationships

from observational data. The underlying idea has been around for nearly a cen-

tury (going back to the appendix in Wright 1928), and the “credibility revolution”

in empirical economics has raised attention to IV methods even further in the past

few decades (see e.g. Angrist and Pischke 2010). Accordingly, there is a very large

literature on the subject, but the majority of both applied and theoretical work fo-

cuses on estimating linear regression models. IV estimation of non-linear models

is a challenging problem, and, despite a lot of work on the subject (see references

below), there is still room for new methods and ideas.

In this chapter we study estimation of non-linear models with endogenous co-

variates when appropriate IVs are available. However, to explain our estimation

approach in the simplest possible setting, consider a linear regression model for a

scalar outcomes Yi, with a vector of (potentially endogenous) covariates Xi, and a

vector of instruments Zi, observed for units i = 1, . . . , n. We are interested in the

effect of Xi on Yi, parameterized by the vector β. There are many ways to construct

an IV estimator in a linear model, and, at least for the case of (not too many) strong

instruments, they are all essentially equivalent (up to some choice of appropriate

weight matrix). One of those ways is as follows: Let γ̂(β) be the ordinary least

squares (OLS) estimator obtained by regressing Zi on the residuals Yi −X ′
i β, and
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let β̂ be obtained by minimizing the objective function γ̂ ′(β) Ω γ̂(β). Here, Ω is a

symmetric positive definite weight matrix. For example, if we set Ω =
∑N

i=1 Zi Z
′
i,

then, under standard regularity conditions, it is easy to verify that β̂ is equal to the

two-stage least squares (2SLS) estimator.1

This procedure of obtaining the 2SLS estimator is quite intuitive: We choose β

such that Zi has no explanatory power for the residuals Yi −X ′
i β, or equivalently,

such that the regression coefficient of Zi on Yi −X ′
i β is (close to) zero. This is one

way of formalizing what is meant by the instrument being an “excluded variable”.

Depending on the underlying model specification, we might not want to obtain

γ̂(β) by OLS. For example, Chernozhukov and Hansen (2006) apply this estimation

approach for quantile regressions with endogeneity, that is, γ̂(β) is obtained by a

quantile regression (Koenker and Bassett 1978) of Zi on Yi −X ′
i β. Similarly, Lee

et al. (2012) estimate panel regression models with endogeneity and unobserved

factors, and therefore obtain γ̂(β) by a panel regression with unobserved factors

(Pesaran 2006; Bai 2009). Those ideas are combined by Harding and Lamarche

(2014) who obtain γ̂(β) by a quantile regression that also controls for unobserved

factors.

In all those papers, the relation between Yi and Xi is still linear. In this

chapter, we generalize this estimation approach to models where the relation be-

tween Yi and Xi is non-linear. Our leading example is the binary choice model

Yi = 1 {X ′
i β + Ui ≥ 0}, where the distribution of the unobserved error Ui is as-

sumed to be known (e.g. a logit or probit model), and Ui is independent of Zi, but

may be correlated with Xi.

In this model, if Xi were exogenous (i.e. Xi = Zi), then we would simply

use the maximum likelihood estimator (MLE) to estimate β. For the case of en-

dogenous covariates, it therefore seems natural to obtain γ̂(β) as the MLE of the

model Yi = 1 {X ′
i β + Z ′

i γ + Ui ≥ 0}, where β is fixed, and the likelihood func-

tion is only maximized over γ. The estimator for β is then obtained by minimizing

γ̂ ′(β) Ω γ̂(β), as before. We denote the resulting estimator for β the “auxiliary IV”

1This is a representation of 2SLS as a minimum-distance estimator. Windmeijer (2019) shows
that 2SLS can be expressed in a different way as a minimum-distance estimator as well.
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(AIV) estimator, because the instrument Zi is included as an “auxiliary regressor”

in the maximum likelihood estimation.

Given the natural and intuitive structure of the AIV estimator, this chapter aims

to show that it has interesting theoretical properties and is useful in practice. How-

ever, the problem of IV estimation of non-linear models is too complicated to expect

that the AIV estimator is a miracle solution that always works well. In particular,

under the model assumptions imposed so far, the AIV will generally not be con-

sistent for the true parameter value for β (as n → ∞). This is because the esti-

mator γ̂(β) is obtained by maximizing a misspecified likelihood function: When

we write down the likelihood for the model Yi = 1 {X ′
i β + Z ′

i γ + Ui ≥ 0}, we

use the distribution of Ui conditional on Zi (which is assumed to be known by the

model assumptions), but one should really use the distribution of Ui conditional Xi

and Zi (which, however, is unknown to us without further assumptions on the data

generating process for the endogenous Xi).

Despite this obvious weakness of the AIV estimator, we argue that it is still a

useful estimator, exactly because it is a plausible estimator for β that can be con-

structed without making any assumptions on the data generating process for Xi.

The endogenous regressors can be discrete or continuous, and apart from regular-

ity conditions, can be arbitrarily distributed and arbitrarily correlated with Ui. This

should be contrasted with other simple IV estimators for non-linear models like the

control function estimator (Rivers and Vuong 1988) or the joint MLE that also fully

parameterizes the distribution of Xi. Such distributional assumptions are seldom

justified by economic theory, and it is well known that maximum likelihood es-

timators of bivariate models can be very sensitive to misspecification of the error

distribution (Little, 1985; Monfardini and Radice, 2008)

The main reason why we think that the AIV estimator is useful despite being

inconsistent in general is the following: If β = 0 (or more precisely, if the coef-

ficients on the endogenous components of Xi are zero), then the AIV estimator is

consistent as n→ ∞, and it also typically estimates the sign of β correctly within a

neighborhood of β. This “local sign consistency” is a very useful property in empir-
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ical applications, where it is often a primary concern whether a coefficient is differ-

ent from zero, and what the sign of a coefficient is. We are, therefore, confident that

the AIV estimator is a useful addition to the toolbox of applied researchers, which

should be reported alongside other estimation approaches that have complementary

properties, as illustrated by the empirical applications in this chapter.

As already mentioned above, there is a large existing literature on IV estima-

tion in both linear and non-linear models. General non-parametric identification

results are discussed, for example, in Imbens and Newey (2009), Chesher (2010),

and Chesher and Rosen (2017).

Newey (1986) presents a weighted IV estimator for continuous endogenous

regressor that requires estimation of the density of the exogenous regressors and

instruments, and assumes linearity of the first-stage equation. Yildiz (2013) pro-

poses a matching estimator that is
√
n-consistent for the coefficient of the single

binary endogenous variable under non-parametric restrictions on the distribution of

the unobservables, but relies on parametric specification of the functional form for

the first-stage equation (e.g. a linear index specification). Han and Lee (2019) con-

sider estimation of generalized bivariate probit models under a parametric copula

assumption for the errors. The validity of their proposed procedure does not rely on

knowledge of the marginal distribution of the errors in the structural and first-stage

equations, but requires parametric specification of the functional form of the first-

stage equation.2 Our proposed estimator assumes knowledge of the distribution of

the error in structural equation but does not impose any functional form or distri-

butional assumptions on the first-stage equation. It also invariably accommodates

continuous and discrete endogenous regressors. As a result, our proposed estimator

has complementary properties to those mentioned above.

Abrevaya et al. (2010) provide a consistent test for the relevance and sign of

the endogenous regressor under no parametric assumption on the distribution of the

errors. Their test is based on a version of Kendall’s τ -statistic that uses fitted values

from the first-stage equation. Unlike Abrevaya et al. (2010), the validity of the

2Han and Lee (2019) also discuss identification in bivariate probit models in the absence of
excluded instruments. See also Mourifié and Méango (2014) and Han and Vytlacil (2017).
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test of regressor relevance based on the AIV estimator does not rely on parametric

assumptions on the functional form of the first-stage.

Mu and Zhang (2018) propose an estimator for triangular binary choice models

with binary endogenous regressor based on maximum score Manski (1985). Their

proposal relies on the existence of continuous exogenous regressors with large sup-

port, in the spirit of Lewbel (2000). Their procedure does not require parametric

specification of the distribution of unobservables or the endogenous regressor, but

leads to rates of convergence that can be considerably slower than
√
n.

Bhattacharya et al. (2012) show 2SLS with binary outcome and binary endoge-

nous regressor correctly estimates the sign of the average treatment effect. This

property of 2SLS however is not guaranteed in the presence of additional exoge-

nous covariates. Our simulations suggest that, unlike 2SLS, the AIV estimator’s

sign-consistency property is robust to the inclusion of additional regressors.

Our results for the AIV estimator of consistency at β = 0 and the local sign

consistency generalise the results in the epidemiology literature of Dai and Zhang

(2015), who show this result for the logit model with a continuous endogenous

regressor when it is replaced by its first-stage linear IV prediction.

In the following, we first introduce the model assumptions and AIV estimator

in Section 3.1, for the case where the only unknown parameter are the slope coeffi-

cients in a single index. The large sample properties of the estimator are then studies

in Section 3.2. Generalizations to models with additional parameters are discussed

in Section 3.3. Monte Carlos results and empirical applications are presented in

Section 3.4 and 3.5, respectively. Finally, Section 3.6 concludes.

3.1 Model and Auxiliary IV estimator

3.1.1 Model

For each unit i = 1, . . . , n we observe a scalar outcome Yi ∈ Y , a vector of co-

variates Xi, and a vector of instrumental variables Zi. In practice, often only a

subset of the covariates are suspected to be endogenous, in which case the known

exogenous covariates are included in Zi. We denote the dimension of Xi and Zi by
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kx ∈ {1, 2, . . .} and kz ∈ {1, 2, . . .}, respectively.

Assumption 3.1.1 (Model).

(i) The outcomes Yi are generated from the latent variable model

Yi = g(ω0,i, Ui), ω0,i := X ′
i β0,

where Ui ∈ R are unobserved random variables, the function g(·, ·) is known,

and β0 are vectors of unknown parameters.

(ii) The distribution of Ui is independent of Zi, and Ui has known cumulative

distribution function FU(·).

(iii) (Xi, Zi, Ui) are independent and identically distributed across i = 1, . . . , n.

For example, for a binary choice model the function g(·, ·) in Assump-

tion 3.1.1(i) is given by g(ω, u) = 1 {ω + u ≥ 0}, that is, in that example we have

Yi = 1 {X ′
i β0 + Ui ≥ 0} .

In particular, for a binary choice probit model we choose the distribution of Ui to

be standard normal, that is, FU(·) in Assumption 3.1.1(ii) would be equal to the

standard normal cumulative distribution function Φ(·) in that case. Notice that As-

sumption 3.1.1(ii) imposes independence between the unobserved error Ui and the

instrument Zi, but the covariate Xi may be correlated with Ui. Finally, Assump-

tion 3.1.1(iii) imposes cross-sectional sampling.

The binary choice probit model will be the leading example in this chapter.

However, Assumption 3.1.1 also covers, for example, a Poisson model. Moreover,

Section 3.3 discusses more general models where Yi = g(ω0,i, Ui) is replaced by

Yi = g(ω0,i,Wi, Ui, α0), with additional unknown parameters α0 and additional

exogenous covariates Wi. That extension is important to cover models that feature

additional unknown parameters beyond the regression coefficients β0, for example,

Tobit models, ordered choice models, or multinomial choice models. However, to
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present our main idea and results as clearly as possible we find it convenient to focus

on the simpler model structure in Assumption 3.1.1 first, which covers the binary

choice model as our leading example.

For the model described by Assumption 3.1.1, let ℓ
(
y
∣∣ω) denote the log-

likelihood of observing Yi = y conditional on ω0,i = ω ∈ R, treating Ui and ω0,i as

indepedent. For example, for discrete Yi we have

ℓ
(
y
∣∣ω) = log Pr {y = g(ω, Ui)} ,

where the probability is evaluated according to the cdf FU(·). For all our theoretical

results below we will assume that the log-likelihood is strictly concave and contin-

uously differentiable in ω. This is, of course, satisifed for the binary choice probit

model where ℓ
(
y
∣∣ω) = y log Φ(ω) + (1− y) log[1− Φ(ω)].

3.1.2 AIV estimator

If Assumption 3.1.1 holds with Zi = Xi, then Xi is strictly exogenous and the

most natural estimator for β in the model described above is given by the maximum

likelihood estimator (MLE)

β̂MLE = argmax
β

n∑
i=1

ℓ
(
Yi
∣∣X ′

iβ
)
.

However, if Zi ̸= Xi and (some of) the covariates Xi are endogenous, then β̂MLE is

generally not a good estimator anymore. Some estimation strategy that makes use

of the instrumental variables Zi is required in that case. The auxiliary IV estimator

β̂AIV that we consider in this chapter is defined by

γ̂(β) = argmax
γ∈E

n∑
i=1

ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ
)
,

β̂AIV ∈ argmin
β∈B

∥γ̂(β)∥Ωn,β
, (3.1)

where E ⊂ Rkz and B ⊂ Rkx are compact sets, and ∥γ∥2Ω = γ′Ω γ is a quadratic

distance measure for vectors γ ∈ Rkz , parameterized by a positive definite kz × kz
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weight matrix Ω = Ωn,β , which might be stochastic and might depend on β. If we

choose Ω equal to the identity matrix, then ∥·∥Ω is simply the Euclidean norm. But

having the flexibility to choose more general Ω is useful, for example, by choosing

Ω = 1
n

∑
i ZiZ

′
i the estimator β̂AIV remains unchanged under the transformation

Zi 7→ ZiA, for any invertible kz × kz matrix A.

We introduce the compact sets E and B for technical reasons. In our practical

implementation we assume that the boundedness conditions imposed through E and

B are non-binding, that is, in practice we implement β̂AIV with E = Rkz and and

B = Rkx .

For the special case of all regressors known to be exogenous, Zi = Xi, we

have γ̂(β) = β̂MLE − β, and therefore β̂AIV = β̂MLE. Also, for the linear regression

model, Yi = X ′
i β0+Ui, with normal errors Ui ∼ N (0, σ2

0) and Ω = 1
n

∑
i ZiZ

′
i one

can easily show that β̂AIV = β̂2SLS, as long as the boundedness conditions imposed

through E and B are non-binding.

The idea underlying the IV estimator β̂AIV is as follows: We include the in-

struments Zi as “auxiliary regressors” into the model, and for fixed β we maximize

the corresponding log-likelihood ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ
)

only over the parameters γ that

correspond to the exogenous variables Zi. Intuitively, the instruments Zi should be

“excluded variables” and their coefficient estimates γ̂(β) are therefore expected to

be close to zero whenever β is close to the true value β0. Following that intuition

we therefore obtain β̂AIV by minimizing the distance between γ̂(β) and zero.

The idea of using instrumental variables as auxiliary regressors and then mini-

mizing their coefficients to find the parameters of interest has previously been used

in other contexts. In a quantile regression setting, this method was proposed by

Chernozhukov and Hansen (2006). To deal with endogeneity in panel regressions

with interactive fixed effects and for the purpose of demand estimation the method

was used in Lee et al. (2012) and Moon et al. (2018). However, none of those ex-

isting papers consider the type of non-linear models with endogenity that are our

focus here. The IV estimator in (3.1) and our theoretical results below are novel in

that context.
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An interesting alternative characterization of the objective function ∥γ̂(β)∥Ωn,β

for β̂AIV is provided by the following lemma.

Lemma 3.1.1. Let β ∈ Rkx . LetWn,β ∈ Rkz×kz be symmetric and positive definite.

Assume that the log-likelihood ℓ
(
y
∣∣ω) is strictly concave and twice continuously

differentiable in ω ∈ R, and that the maximizer γ̂(β) in (3.1) is well-defined. Define

the kz × kz matrix3

Hn(β, γ) :=
1

n

n∑
i=1

∂2ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ
)

∂ω2
Zi Z

′
i.

Then, there exists γ∗(β) ∈ Rkz such that for

Ωn,β = Hn(β, γ∗(β)) Wn,β Hn(β, γ∗(β)) (3.2)

we have

∥γ̂(β)∥Ωn,β
=

∥∥∥∥∥ 1n
n∑

i=1

∂ℓ
(
Yi
∣∣X ′

iβ
)

∂ω
Zi

∥∥∥∥∥
Wn,β

.

The lemma provides an alternative characterization for the objective function

∥γ̂(β)∥Ωn,β
that is used to define our IV estimator β̂AIV in (3.1). For matrices Ωn,β

and Wn,β satisfying the relation (3.2), we can use the lemma to express β̂AIV as

β̂AIV ∈ argmin
β∈B

∥∥∥∥∥ 1n
n∑

i=1

∂ℓ
(
Yi
∣∣X ′

iβ
)

∂ω
Zi

∥∥∥∥∥
Wn,β

. (3.3)

The researcher could choose the weight matrix Wn,β (e.g. a fixed matrix indepen-

dent of β) and use (3.3) to compute β̂AIV. In that case, (3.1) provides an alter-

native characterization of the same β̂AIV as long as (3.2) holds. Or the researcher

could choose the weight matrix Ωβ (e.g. a fixed matrix independent of β). Then, if

3We use the following notation

∂qℓ
(
Yi

∣∣ ai)
∂ωq

:=
∂qℓ

(
Yi

∣∣ω)
∂ωq

∣∣∣∣∣
ω=ai

.
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Hn(β, γ∗(β)) is invertible, (3.3) provides an alternative characterization of the same

β̂AIV as long as Wn,β = [Hn(β, γ∗(β))]
−1 Ωn,β [Hn(β, γ∗(β))]

−1.

Furthermore, for the exactly identified case, kz = kx, if a solution β̂AIV of the

method of moment equations

n∑
i=1

∂ℓ
(
Yi

∣∣∣X ′
i β̂AIV

)
∂ω

Zi = 0 (3.4)

exists, then that solution also solves (3.3). Our assumptions in Section 3.2 guarantee

existence of a solution to (3.4) for kz = kx in large samples. Notice that (3.4)

generalizes the first order condition of the MLE by replacing Xi with Zi. While

(3.4) is conveniently simple, we prefer the more general characterizations (3.1) and

(3.3) of the estimator since they are applicable to the overidentified case, kz > kx,

as well.

For both (3.1) and (3.3), the objective function for the minimization over β

may not be convex. For computation we refer to Section 3.3. There we show that if

only a single regressor is endogenous, then the “outer loop” optimization over β in

(3.1) can be transformed into a one-dimensional problem (for which a grid search

is computationally feasible), while the “inner loop” optimization over γ in (3.1)

always remains a convex problem as long as the log-likelihood is concave.

3.2 Asymptotic results for the IV estimator
We have argued in the last section that the AIV estimator is a quite intuitive and

plausible estimator to consider. However, IV estimation in non-linear models is a

challenging problem and our relatively simple estimator β̂AIV does not miraculously

fully solve this. Indeed, under the assumptions imposed so far, the IV estimator

β̂AIV is not consistent for β0 in general. Nevertheless, we believe that the estimator

β̂AIV is a useful element in the toolbox of nonlinear IV estimation, and the purpose

of the current section is to demonstrate this by deriving some asymptotic properties

of β̂AIV. To show consistency and asymptotic normality of β̂AIV we impose the

following additional assumption.
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Assumption 3.2.1 (Exogeneity of X ′
i β0). Ui is independent of (X ′

iβ0, Zi).

Assumption 3.2.1 is satisfied if for every k = 1, . . . , kx we either have β0,k = 0

or Xi,k is exogenous. Thus, endogenous regressors are allowed for here, as long as

the corresponding coefficient is zero. Indeed, we are particularly interested in cases

where some of the covariates Xi,k are endogenous and the corresponding coeffi-

cients β0,k are close to zero, but the researcher may not know that the coefficients

are close to zero. Those are the cases where the estimator β̂AIV will be most useful,

either to formally test the null hypothesis H0 : β0,k = 0, or to simply report and

interpret β̂AIV in a table with multiple other estimators that have complementary

properties.

In subsections 3.2.1 we derive consistency and asymptotic normality of β̂AIV

under Assumption 3.2.1. In subsection 3.2.2 we do not impose Assumption 3.2.1

strictly, but instead show that for endogenous Xi,k we obtain “local sign consis-

tency” for β̂AIV,k in a neighborhood around β0,k = 0.

3.2.1 Consistency and asymptotic normality

In addition to the Assumptions 3.1.1 and 3.2.1 imposed so far, we also require some

more technical regularity conditions. For this purpose we introduce the matrices

Gn(β, γ) :=
1

n

n∑
i=1

ZiX
′
i

∂2ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ
)

∂ω2
,

Hn(β, γ) :=
1

n

n∑
i=1

ZiZ
′
i

∂2ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ
)

∂ω2
,

G(β, γ) := E

[
ZiX

′
i

∂2ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ
)

∂ω2

]
,

H(β, γ) := E

[
ZiZ

′
i

∂2ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ
)

∂ω2

]
, (3.5)

and the score function for γ:

Sn(β, γ) =
1

n

n∑
i=1

Zi
∂ℓ (Yi | X ′

iβ + Z ′
iγ)

∂ω
. (3.6)
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Assumption 3.2.2 (Regularity conditions).

(i) The parameter sets B and E are compact. B contains β0 as an interior point.

E contains 0 as an interior point.

(ii) For all possible outcomes y, the log-likelihood function ℓ
(
y
∣∣ω) is strictly

convex in ω ∈ R. Furthermore, ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ
)

is three times continuously

differentiable in (β, γ) with derivatives that in expectation are bounded for all

(β, γ) ∈ (B, E).

(iii) sup
β∈B

sup
γ∈E

∥Gn(β, γ)−G(β, γ)∥ = oP (1), sup
β∈B

sup
γ∈E

∥Hn(β, γ)−H(β, γ)∥ = oP (1).

(iv) For all (β, γ) ∈ (B, E) and H(β, γ) has full rank kz, and G(β, 0) has full rank

kx.

(v) The symmetric matrix Ωn,β is a twice continuously differentiable function in β,

and there exists a constant c > 0 such that with probability approaching one

we have Ωn,β ≥ c for all β ∈ B. Furthermore, we have supβ∈B ∥Ωn,β−Ωβ∥ =

op(1) for some non-random symmetric matrix Ωβ which is positive-definite for

all β ∈ B.

Before we discuss these assumptions we first state our main consistency theo-

rem.

Theorem 3.2.1. Let Assumption 3.1.1, 3.2.1, 3.2.2 hold. Then we have β̂AIV =

β0 + oP (1), as n→ ∞.

Assumption 3.2.2(i) is a standard technical regularity condition that demands

the parameters sets to be compact while also containing the true parameter values

– notice that 0 is the “true value” for γ. Assumption 3.2.2(ii) demands the log-

likelihood to be strictly convex and sufficiently smooth. Assumption 3.2.2(iii) is

a uniform convergence requirement for the second derivatives of the sample likeli-

hood function. Classic primitive conditions for uniform convergence through “dom-

inance conditions” are satisfied under the smoothness assumptions in Assumption

3(ii) whenever E [∥Z ′
iXi∥] < ∞ and E [∥Z ′

iZi∥] < ∞. Assumption 3.2.2(v) is a

standard regularity condition on the weight matrix Ωn,β .
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In Assumption 3.2.2(iv), the condition on H(β, 0) is a generalized non-

collinearity condition on the instruments Zi, while the condition on G(β, 0) is a

generalized relevance condition on the instruments — if the definition ofH andG in

(3.5) would not contain ∂2ℓ/∂ω2, then these would be the standard non-collinearity

and relevance conditions. If one only wanted to show “local consistency” for B

being a small neighborhood around β0, then it would be sufficient to impose As-

sumption 3.2.2(iv) at β0 only.

Theorem 3.2.2. Suppose that Assumptions 3.1.1, 3.2.1, and 3.2.2 hold. Further-

more, assume that
√
nSn(β0, 0)

d→ N (0,Σ) with Σ := Var

[
Zi

dℓ(Yi |X′
iβ)

dω

]
. Then,

√
n (β̂AIV − β0)

d→ N
(
0, (G′W G)−1G′W ΣW G (G′W G)−1

)
,

where G := G(β0, 0) and W := H−1ΩH−1, with Ω := Ωβ0 and H := H(β0, 0).

Asymptotic normality of the score Sn(β0, 0) can be shown using the

Lindeberg-Lévy central limit theorem under the moment bound E [∥Z ′
iZi∥] < ∞.

Apart from that, the assumptions of Theorem 3.2.2 are identical to those of

Theorem 3.2.1. From the asymptotic variance formula of the AIV estima-

tor one can deduce the optimal weighting matrix Ω∗ = HΣ−1H under which

AVar(
√
n β̂AIV) = (G′Σ−1G)−1. While continuously-updating or feasible two-step

procedures would be asymptotically efficient, we find that they bring negligible

gains in our simulations compared to the simple choice Ωn,β = 1
n

∑n
i=1 ZiZ

′
i,

which is the one we recommend.

3.2.2 Local sign consistency

In this section we consider the case where all regressors are exogenous, except for

a single endogenous regressor Xi,k. We are interested in how the probability limit

of the corresponding component β̂AIV,k of our AIV estimator depends on the corre-

sponding true parameter value β0,k. The red line in Figure 3.1 plots this relationship

for one particular data generating process (DGP) that we also employ in our Monte

Carlo simulations (the binary choice probit model with a continuous endogenous
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1 2 3 4

1

2

3

4

β0,k

plim β̂AIV,k

Figure 3.1: Probability limit of β̂AIV as a function of β0.

regressor of Table 3.1).4 The details of this DGP do not matter here. What we are

interested in are a couple of qualitative features of Figure 3.1 that are valid more

generally:

(i) If the true value β0,k of the regression coefficient corresponding to the single

endogenous regressor is equal to zero, then plim β̂AIV,k is also equal to zero.

We already know that this is true for all data generating processes that satisfy

the conditions in Theorem 3.2.1.

(ii) According to Theorem 3.2.1 we also know that if the regressor Xi,k would be

exogenous as well, then we would have plim β̂AIV,k = β0,k, corresponding to

the 45-degree line drawn in grey in Figure 3.1. If the degree of endogeneity

would be small, then we would expect only a small deviation from the 45-

degree line. If the degree of endogeneity is larger, then we expect a larger

deviation from the 45-degree line.

(iii) In Figure 3.1 the sign of plim β̂AIV,k is always equal to the sign of β0,k. If

this property holds, then we say that β̂AIV is “globally sign consistent”. In

our simulations in Section 3.4 we always find global sign consistency for all

DGPs that we explore, but we are not able to provide formal conditions under

4In that DGP both the variance of the endogenous regressor Xi,k and of the error term Ui are
equal to one.
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which global sign consistency holds in this chapter (apart from exogeneity of

Xi,k). Instead, in the following we want to discuss “local sign consistency”,

that is, sign consistency in a small neighborhood of β0,k = 0.

(iv) Local sign consistency of the AIV estimator leads to a test of the null hypoth-

esis H0 : β0,k = 0 that is consistent for alternatives in a neighborhood of H0.

Global sign consistency leads to general consistency of the same test. This is

particularly useful in applications where a main concern is whether the effect

of an endogenous “treatment” variable is zero.

Let β∗(β0) be the large n probability limit of β̂AIV. We say that the k’th component

of the AIV estimator is locally sign consistent if there exists δ > 0 such that

sign (β∗,k(β0)) = sign (β0,k) ,

for all β0 with |β0,k| < δ. Under appropriate smoothness conditions, a sufficient

condition for local sign consistency of β̂AIV,k is given by

∂β∗,k(β0)

∂β0,k

∣∣∣∣
β0,k=0

> 0. (3.7)

In the following we give two concrete examples where (3.7) holds. Notice, how-

ever, that (3.7) is not a necessary condition for for local sign consistency of β̂AIV,k,

because one could, for example, have ∂β∗,k(β0)

∂β0,k
= 0, at β0,k = 0, and still achieve

local sign consistency via ∂2β∗,k(β0)

∂2β0,k
= 0 and ∂3β∗,k(β0)

∂3β0,k
> 0, at β0,k = 0.

Example 3.2.1 (Probit control function model). Consider the generalized probit

control function model:

Yi = 1(X ′
iβ0 − Ui > 0),

xi = m(Zi) + Vi, Xi = (1, xi),

(Ui, Vi)
∣∣Zi ∼ (Ui, Vi) ∼ FU,V , Ui ∼ N (0, 1),

(3.8)

where xi, Ui, Vi are all scalar random variables, Zi is a vector of instruments that

includes a constant, and FU,V is absolutely continuous with density fU,V . This model
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is more general than the one studied in Rivers and Vuong (1988) in that it does not

require the conditional distribution Ui

∣∣Vi to be linear in Vi nor normal; we also

do not require linearity of m(·). In this example, the regressor Xi,k for k = 2 is

endogenous, and one can show (see Appendix) that

∂β∗,2(β0)

∂β0,2

∣∣∣∣
β0,2=0

= 1,

therefore local sign consistency holds.

Example 3.2.2 (Generalized bivariate probit IV). Consider the bivariate probit IV

model:

Yi = 1(X ′
iβ0 + Ui > 0),

xi = 1(m(Zi) + Vi > 0) Xi = (1, xi), Zi = (1, zi),

(Ui, Vi)
∣∣Zi ∼ (Ui, Vi) ∼ FU,V , Ui ∼ N (0, 1),

(3.9)

where xi, zi, Ui, Vi are all scalar random variables, and m(Zi) is assumed to be

a monotonic function of zi. This model nests the popular bivariate probit model

which further assumes joint normality of (Ui, Vi) and linearity of m(Zi). Again,

the regressor Xi,k for k = 2 is endogenous, and one can show that (3.7) holds for

k = 2, that is, local sign consistency holds in this example as well. Unlike Example

3.2.1, the arguments we use to show local sign consistency in this model do not

directly generalize to the over-identified case (kz > 2).

We know that local sign consistency of the AIV estimators holds whenever all

the regressors are exogenous. In addition, the above examples provide two concrete

data generating processses where a single regressor is endogenous and local sign

consistency still holds. We have also verified local sign consistency (in fact, global

sign consistency) numerically for all the data generating processes in our Monte

Carlo simulations. We therefore conclude that local sign consistency of the AIV

estimator holds for a large class of data generating processes.

As mentioned above, an important implication of the local sign consistency

property is that a t-test for the hypothesis H0 : β0,k = 0 based on our estimator has
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non-trivial power — and it is in fact consistent — in a neighbourhood of the null

hypothesis. The distribution of this t-test under H0 is guaranteed by Theorem 3.2.2.

For implemention, one just needs to compute the sample analog ÂVar(
√
nβAIV) of

the asymptotic variance-covariance matrix (G′W G)−1G′W ΣW G (G′W G)−1

given in the theorem, and n(β̂AIV,k)
2/[ÂVar(

√
nβAIV)]kk will be χ2(1) distributes

as n→ ∞.

3.3 Generalization and implementation
We now want to discuss a generalization of the model and AIV estimator described

in Section 3.1.1. Specifically, we now assume that in addition to (Yi, Xi, Zi),

i = 1, . . . , n, we also observe the additional strictly exogenous covariate Wi. The

difference between Xi and Wi is that Wi need not enter the model through the lin-

ear single index ωi = X ′
iβ. Similarly, in addition to the unknown parameters β we

now allow for the additional unknown parameters α, which also need not enter the

model through the single index ωi. Examples where this generalization is impor-

tant are ordered choice models, Tobit models, and negative binomial models. The

appropriate generalization of Assumption 3.1.1 is as follows:

Assumption 3.3.1 (Generalized Model).

(i) The outcomes Yi are generated from the latent variable model

Yi = g(ω0,i,Wi, Ui, α0), ωi,0 := X ′
i β0,

where Ui ∈ R are unobserved random variables, the function g(·, ·, ·, ·) is

known, and α0 and β0 are vectors of unknown parameters.

(ii) The distribution of Ui is independent of (Zi,Wi), and Ui has known cumula-

tive distribution function of FU(·).

(iii) (Xi, Zi,Wi, Ui) are independent and identically distributed across i =

1, . . . , n.
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Let ℓ
(
Yi
∣∣Wi, ωi, α

)
be the log-likelihood of Yi conditional on Wi, ω0,i = ωi

and α0 = α. Then, the generalization of the AIV estimator in (3.1) is given by

(
γ̂(β), α̂(β)

)
= argmax

(γ,α)∈E

n∑
i=1

ℓ
(
Yi
∣∣Wi, X

′
iβ + Z ′

iγ, α
)
, β̂AIV ∈ argmin

β∈B
∥γ̂(β)∥Ωn,β

,

α̂†(β) = argmax
α∈E

n∑
i=1

ℓ
(
Yi
∣∣Wi, X

′
iβ, α

)
, α̂AIV = α̂†(β̂AIV, 0), (3.10)

where B is a compact parameter set for β0 as before, and E now is a compact pa-

rameter set for (γ, α). Compactness of the parameter sets is again a very helpful

technical regularity condition to derive asymptotic results. However, for practical

implementation we again assume that the boundedness imposed by B and E is not

binding, that is, in practice we replace B by Rkx and E by Rkz+kα , where kα denotes

the dimension of α.

The appropriate generalizations of our consistency result of Theorem 3.2.1 for

the AIV estimator in Section 3.2.1 to the model and estimator in Assumption 3.3.1

and display (3.10) are provided in the appendix.

In our Monte Carlo simulations and empirical applications below we focus

on the binary choice model for which this extension of the model discussed here

is not actually required. However, even for the binary choice model there can be

computational advantages in implementing the AIV estimator according to (3.10)

instead of (3.1). This is because we can “move” all the regression coefficients that

correspond to exogenous covariates from β to α and then implement (3.10) instead

of (3.1). The advantage of that implementation is that the “inner loop” optimization

over (γ, α) in (3.10) is a convex optimization problem (since we assume the log-

likelihood to be a concave function) while the “outer loop” optimization over β is

in general a non-convex problem, implying that we generally want the dimension

the vector β to be as small as possible for computational reasons.

This computational issue is important in practice (e.g. for our simulation and

application sections below) and we therefore want to be explicit about it: Consider

the setup of our original Assumption 3.1.1 and decompose Xi = (Xend ′
i , Xex ′

i )′

and Zi = (Zex ′
i , Xex ′

i ), where Xend
i are the endogenous regressors, Xex

i are the
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exogenous regressors, and Zex
i are the excluded instruments. In most applications

we expect Xend
i to be low-dimensional (often just a single variable). Let βend and

βex be the regression coefficients corresponding to Xend
i and Xex

i . By applying the

generalized AIV estimator in (3.10) to this setup with (Xi,Wi, Zi, β, α) equal to

(Xend
i , Xex

i , Z
ex
i , β

end, βex) we obtain

(
γ̂(βend), β

ex
(βend)

)
= argmax

(γ, βex)

n∑
i=1

ℓ
(
Yi
∣∣Xend ′

i βend +Xex ′
i βex + Zex ′

i γ
)
,

β̂end ∈ argmin
βend

∥∥γ̂(βend)
∥∥
Ωend

n,β

,

β̂ex = argmax
βex

n∑
i=1

ℓ
(
Yi
∣∣Xend ′

i β̂end +Xex ′
i βex

)
, (3.11)

where Ωend
n,β now is a positive definite matrix of dimension dim(Xend

i )× dim(Xend
i )

only.

Again, the key observation here is that the optimization over (γ, βex) is a con-

vex optimization problem, while the optimization over βend is non-convex but usu-

ally low-dimensional (often just one-dimensional which can e.g. be implemented

by an initial grid-search followed by, for example, a golden-section search). Im-

plementing the AIV estimator via (3.11) is therefore often computationally prefer-

able to (3.1) and to (3.3), in particular, if kx is large. Our results in the Ap-

pendix show that the two implementations are asymptotically equivalent when

kz = kx. When kz > kx, then the choice of implementation and weight ma-

trix matters for the (asymptotic) distribution of the resulting estimator, see the the

appendix for more details.5 In practice, we again recommend the simple choice

Ωend
n,β = 1

n

∑n
i=1 Z

ex
i Z

ex ′
i .

5When kz > kx, the asymptotic distribution for β̂end is equivalent under the two implementations
if

Ω =

[
Ωend 0
0 Ωex

]
and Σγα := E

[
ZiX

′
i

∂2ℓ
(
Yi

∣∣Xend ′
i βend

0 +Xex ′
i βex

0

)
∂ω2

]
= 0.

Beyond this set of special conditions, the two implementations do not in general lead to asymptoti-
cally equivalent estimators under over-identification.
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3.4 Monte Carlo simulations
We consider the following data generating process (DGP):

Yi = 1 {β1 +X2,iβ2 +X3,iβ3 + Ui ≥ 0} , Ui ∼ N (0, 1),

X2,i = σ−1
X2

(Zi + Vi) , Zi ∼ (χ2(k)− k)/
√
2k, k = 10,

X3,i = σ−1
X3

(
N (0, 1) + 0.5 · Z2

i

)
Vi = εi + δend · (Ui + δno norm · (2 · 1 {Ui ≥ 0}+ U2

i − 2)), εi ∼ N (0, 1),

with normalizing constants σX2 and σX3 chosen so that Var(X2,i) = Var(X3,i) = 1.

We set β1 = 1, β3 = −1 and we document the performance of different proce-

dures in the estimation of β2 under different configurations of β2, δend and δno norm.

We also report the empirical size of a two-sided t-test for the null hypothesis that β2

is equal to its true value.

The AIV estimator is implemented as in (3.11), with outer-loop direct search

over β2 initialized at the control function estimate. Standard errors used in the t-test

are based on the sample analogue of the asymptotic variance formula in Theorem

3.2.2.

For the control function estimator, the test statistic is based on the standard

error formula provided in Rivers and Vuong (1988), which assumes correct specifi-

cation of the model (including joint normality).6

The results are collected in Table 3.1. As expected, MLE is severely biased

under endogeneity of the regressor and non-normality of the errors, leading to con-

fidence intervals with no coverage. As predicted by theory, the control function

estimator is consistent and provides accurate inference under joint normality of the

errors, or in the absence of endogeneity. However, the coverage of its associated

confidence intervals is null in the presence of endogeneity and lack of joint normal-

ity, due to large biases. The AIV estimator instead enjoys negligible bias under all

6Notice that the asymptotic variance formula contained in Rivers and Vuong (1988) is for a differ-
ent normalization of the variance of Ui compared to MLE, bivariate Probit and the AIV estimators,
which all assume Var(Ui) = 1. In order to make the control function estimates comparable with
the other methods, we rescale the original control function estimates based on the normalization of
Rivers and Vuong (1988) and appropriately adjust standard errors via the Delta method.
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configurations considered, at the cost of mild variance increases compared to con-

trol function. Remarkably, the resulting rejection probabilities for a two-sided t-test

are close to nominal size, including for values of β2 away from 0. Figure 3.2 reports

the power function of a two-sided t-test of regressor relevance (H0 : β2 = 0) based

on the AIV estimator under δend = 1 and δno norm = 2. The sign-consistency prop-

erty of the AIV estimator results in good power for this test, even though the pres-

ence of bias in the estimator for values of β2 away from 0 leads to non-monotonic

power in this DGP.

3.4.1 Simulations with binary endogenous regressor

We consider a modification of the previous DGP which now features a binary en-

dogenous regressor:

Yi = 1 {β1 +X2,iβ2 +X3,iβ3 + Ui ≥ 0} , Ui ∼ N (0, 1),

X2,i =
{
σ−1
X2

(Zi + Vi) ≥ 0
}
, Zi ∼ (χ2(k)− k)/

√
2k, k = 10,

X3,i = σ−1
X3

(
N (0, 1) + 0.5 · Z2

i

)
Vi = εi + δend · (Ui + δno norm · (2 · 1 {Ui ≥ 0}+ U2

i − 2)), εi ∼ N (0, 1).

where σX2 , σX3 , β3 are as before, and we set β1 = 0.4 to ensure E[Yi] ≈ 0.5.

The results are given in Table 3.2. Curiously, the control function estimator

has negligible bias under endogeneity and non-normality.7 However, the associated

rejection probabilities for control function are far from nominal size due to severe

underestimation of the standard errors. As expected, the bivariate probit estimator

performs well under joint-normality of the errors or exogeneity of the regressors.

Under endogeneity and non-normality, the bivariate probit estimator suffers from

large bias and considerable size distortions of its associated tests. On the other

hand, the AIV estimator has negligible bias, resulting in good size control and high

power of the associated two-sided test of regressor relevance, as shown in Figure

3.3. It is interesting to notice that 2SLS is not sign-consistent for the effect of

7We have verified that the small bias of property exhibited by the control function estimator in
this DGP is coincidental, and does not hold generally.
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the endogenous treatment in this DGP, while it known to be sign-consistent in the

absence of additional covariates (Bhattacharya et al., 2012). The AIV estimator

enjoys sign-consistency in this DGP, suggesting improved robustness of the sign-

consistency property to the inclusion of additional covariates compared to 2SLS.

3.5 Empirical applications
In this section we present two empirical applications. In each application we com-

pare estimates of the coefficient on the the binary endogenous regressor of interest

based on popular existing estimators and the AIV estimator. In the first application,

a test of relevance of the endogenous regressor based on the AIV estimator cautions

the researcher about the conclusion that that having health insurance increases the

probability that an individual visits a doctor in a given year. In the second applica-

tion, the AIV estimator confirms the conclusion that smoking habits are transmitted

by a mother to her offspring which would be reached using existing methods. Over-

all, the two applications showcase the usefulness of the AIV estimator as a tool for

checking the robustness of inferential conclusions in nonlinear models.

3.5.1 The effect of health insurance on hospital visits (Han and

Lee, 2019)

Health insurance coverage is considered an important factor for patients’ decisions

to use medical services. On the other hand, the decision to acquire health insurance

is endogenously determined by an individual’s health status, as well as socioeco-

nomic characteristics that are correlated with health outcomes. In this application,

we investigate how health insurance coverage affects an individual’s choice to visit

a doctor. For this purpose, we use a dataset constructed by Han and Lee (2019)

which combines data from the 2010 wave of the Medical Expenditure Panel Survey

(MEPS) with information from the National Compensation Survey published by the

US Bureau of Labor Statistics. The outcome of interest Yi is a binary variable in-

dicating whether an individual visited a doctor’s office in January 2010; the binary

endogenous treatment Xend
i indicates whether an individual has his/her own private

insurance. Two instrumental variables are used following Zimmer (2018): the num-
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ber of employees in the firm at which the individual works and a dummy variable

that indicates whether a firm has multiple locations. These variables reflect how big

the firm is, and the underlying rationale for using these variables as instruments is

a that a bigger the firm is more likely it provides fringe benefits including health

insurance. The validity of these instruments relies on firm size not directly affecting

the decision to visit a doctor. Following Han and Lee (2019), we include a further

23 exogenous variables in the model as additional controls, including demographic

characteristics as well as indicators of health status.

Table 3.3 provides estimates for the coefficient βend on the binary treatment us-

ing probit MLE, 2SLS, the control function estimator of Rivers and Vuong (1988),

the bivariate probit estimator and the AIV estimator. We also report the associated

standard errors and the p-value of a two-sided t-test of no effect of health insurance

coverage on doctor visits (H0 : βend = 0). Remarkably, all methods deliver posi-

tive estimates for βend with similar magnitudes, with the exception of MLE being

roughly three times smaller than the other methods considered.8 The test of regres-

sor relevance based on bivariate probit leads to rejection of the null hypothesis at

all conventional levels of significance. On the other hand, a test based on the AIV

estimator does not reject the same hypothesis at the 1% level of significance. The

difference between p-values in this application is driven by the varying magnitude

of the standard errors associated with each method. Standard errors associated with

bivariate probit are likely to underestimate the sampling variability of the estima-

tor, as their validity relies on the assumptions of joint normality of the unobserved

disturbances and linearity of the first-stage equation. Our theory reassures us that

the AIV estimator provides inference that is robust to relaxing those assumptions in

this application.

8As an estimator for the average partial effect of Xend rather than the coefficient βend, only the
sign of the 2SLS estimator can be compared to the other estimators. Even though we report results
for the control function estimator, its use is not recommended in this application as the endogenous
regressor is binary.
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3.5.2 The intergenerational transmission of smoking habits (Mu

and Zhang, 2018)

Vertical transmission within family is considered a key driver of the persistence of

health behaviours. The way in which harmful practices such as smoke are transmit-

ted within a family has therefore important implications for health policies. In this

application we apply our proposed methods to the study of the intergenerational

transmission of smoking habits using data from British Household Panel Survey.

The outcome of interest Yi is a binary variable indicating whether an adolescent

smokes or not; the binary endogenous treatment Xend
i indicates whether his/her sin-

gle mother smokes or not. Following Loureiro et al. (2010) and Mu and Zhang

(2018), the instrument used is an indicator for whether the teenagers’ grandfather

was high-skilled or low-skilled occupation (including unemployed). The underly-

ing rationale for using this variable as an instrument is that the impact of parental

socio-economic status on smoking behaviour does not extend beyond one genera-

tion, after controlling for the relevant explanatory variables. We include a further 5

exogenous variables in the model as additional controls: the child’s age at interview

year, the single mother’s age at interview year, an indicator for whether the mother

has higher education, an indicator for whether the mother is in a high-skilled or low-

skilled occupation, and the natural logarithm of monthly household income. Table

3.4 provides estimation results for the coefficient βend. All methods deliver posi-

tive estimates for the coefficient βend, implying that a mother’s decision to smoke

increases the probability that her offspring chooses to be a smoker too. Similarly

to the previous empirical application, we find that all methods deliver estimates of

similar magnitude, with the exception of the MLE estimate being roughly a third of

the bivariate probit and AIV estimators. While the AIV estimator delivers a smaller

estimate for βend compared to bivariate probit, two-sided tests based on these two

estimators both lead to rejection of the hypothesis H0 : β
end = 0 at all conventional

levels of significance. As a result, the AIV estimator provides evidence on the ro-

bustness of the conclusion that smoking habits are transmitted between generations.
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3.6 Conclusions
We have introduced the AIV estimator as a new and simple estimator in non-linear

models with endogenous covariates. The estimator translates the concept of an

“excluded instruments” into a criterion functions that demands the MLE of the in-

strument coefficient to be zero when the instruments are includes as covariates. We

show that the resulting AIV estimator is consistent if the endogenous regression

coefficient is equal to zero. We also demonstrate that, for the case of a single en-

dogenous regressor, the AIV estimator is usually sign-consistent. We have argued

that those properties and its simplicity make the estimator useful in practice, as

illustrated by our empirical applications. In particular, the estimator is complemen-

tary to the control function and the probit IV estimator, because it makes weaker

assumptions, but also delivers weaker consistency results.
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Table 3.3: Effect of Health Insurance on Doctor Visits

β̂end Std. Err. p-value

MLE .1796 .0404 < .0000

2SLS .1326 .0459 .0038

Control Function .5358 .1740 .0020

Bivariate Probit .4962 .1558 .0014

Auxiliary IV .5622 .2487 .0238

Sample size n = 7555. Data source: Han and Lee
(2019).

Table 3.4: Effect of mother’s smoking habits on child’s smoking habits

β̂end Std. Err. p-value

MLE .3305 .0347 < .0000

2SLS .3746 .1243 .0026

Control Function 1.089 .3047 .0004

Bivariate Probit 1.440 .1203 < .0000

Auxiliary IV 1.130 .4269 .0081

Sample size n = 7053. Data source: Mu and Zhang
(2018).
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Figure 3.2: Power function of two-sided test with continuous endogenous regressor, n =
7000
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Figure 3.3: Power function of two-sided test with discrete endogenous regressor, n = 7000



Chapter 4

Cluster-Robust Standard Errors for

Linear Regression Models with Many

Controls

It is common practice in empirical work to use standard errors and associated confi-

dence intervals that are robust to heteroskedasticity and/or various forms of depen-

dence. In particular, since Moulton (1986) highlighted the importance of accounting

for dependence arising in data with a group structure, researchers often assume that

the data are clustered at some economically relevant level, e.g. by individual unit or

geographical location.

The justification for this type of inference procedures is asymptotic, in the

sense that their validity relies on the assumption that the sample size is large relative

to the (fixed) number of parameters in the model. In small samples two issues arise:

(i) confidence intervals based on the usual Gaussian approximation become invalid,

(ii) robust standard errors are biased. A variety of methods that address these issues

in the context of the linear regression model have been proposed in the literature.

However, these usually alleviate but do not entirely solve the problem and are not

always appealing given their ad hoc nature (see Imbens and Kolesár, 2016, for a

discussion).

Furthermore, while modern datasets usually include a large number of observa-

tions, the assumption that the number of estimated parameters is negligible relative
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to the sample size can still be unattractive, even when the researcher’s goal is to

conduct inference on a small set of parameters. For example, in many important

applications of the linear regression model, the object of interest is β in a model of

the form

yi,n = β′xi,n + γ ′
nwi,n + ui,n, i = 1, . . . , n, (4.1)

where yi,n is a scalar outcome variable, xi,n is a d × 1 vector of regressors of fixed

dimension, wi,n is a vector of covariates of possibly “large” dimension Kn, and ui,n

is an unobserved scalar error term. In many applications of this model, the assump-

tion that Kn/n → 0 is unpalatable or even violated, as researchers often include

a large set of covariates in wi,n in order to control for observed and unobserved

confounders (see discussion below).

Motivated by the above observations, this chapter develops inference theory for

linear regression models with many controls and clustering. In particular, we first

show that the usual cluster-robust standard errors by Liang and Zeger (1986) are

inconsistent in general when Kn/n↛ 0. We then propose a new clustered standard

error formula that allows to carry out valid inference on β under asymptotics in

which Kn is allowed (but not required) to grow as fast as the sample size.

The results of this chapter contribute to the long-established literature initiated

by White (1984) dealing with cluster-robust inference in a variety of models, a re-

view of which is given by Cameron and Miller (2015); see, e.g., Arellano (1987),

Bell and Mccaffrey (2002), Hansen (2007), Cameron et al. (2008), Ibragimov and

Müller (2016), Pustejovsky and Tipton (2018) and Canay et al. (2021). In particu-

lar, our analysis is related to a literature, reviewed in Imbens and Kolesár (2016), in

which bias-reduction modifications of standard errors and particular distributional

approximations are proposed with the aim of improving the performance of cluster-

robust inference procedures in small samples. We contribute to this literature by

studying a new general class of cluster-robust variance estimators that allows to

fully correct such “small-sample” bias, while also exploiting the particular struc-

ture of the model in (4.1) to circumvent the need for non-Gaussian distributional
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approximations.

This chapter also adds to a sizeable body of literature that deals with inference

procedures in models that involve the estimation of many incidental parameters;

see, e.g., Angrist and Hahn (2004), Hahn and Newey (2004), Stock and Watson

(2008), Belloni et al. (2013), Cattaneo, Jansson, and Newey (2018b, 2018a), Verdier

(2020), and references therein. In particular, our findings can be seen as generalising

those of Cattaneo et al. (2018b), who establish asymptotic normality of the OLS

estimator of β in (4.1) when Kn/n↛ 0, and provide inference methods under such

asymptotics when the errors are independent and heteroskedastic.

The results in this chapter were derived independently of Li (2016), who tack-

les the problem of cluster-robust variance estimation for the full set of coefficients

of a generic high-dimensional linear model and obtains a similar estimator to ours.1

However, his results are not directly applicable to inference and are silent about the

extent to which sufficient conditions for consistent variance estimation restrict the

underlying data generating process of the regressors.

The rest of this chapter is organized as follows. Section 2 introduces the frame-

work and illustrates its relevance using three leading examples. Section 3 discusses

our assumptions. Section 4 presents our main theoretical results. Section 5 reports

the findings of a Monte Carlo study. Section 6 presents an empirical illustration.

Section 7 briefly concludes. Proofs and extensions of the results are given in Ap-

pendix C.

4.1 Framework and motivation

The main object of interest in our analysis is β in (4.1), on which we would like to

carry out inference while treating the high-dimensional wi,n as nuisance covariates.

A natural choice of estimator for β is the OLS estimator, which can be written as

β̂ = (
n∑

i=1

v̂i,nv̂
′
i,n)

−1(
n∑

i=1

v̂i,nyi,n), v̂i,n =
n∑

j=1

Mij,nxj,n, (4.2)

1I am grateful to Valentin Verdier for alerting me to the existance of Li’s (2016) thesis.
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where Mij,n = 1{i = j} − w′
i,n(
∑n

k=1 wk,nw
′
k,n)

−1wj,n is the (i, j) entry of the

symmetric and idempotent annihilator matrix Mn, with 1{·} denoting the indica-

tor function. Defining Γ̂n =
∑n

i=1 v̂i,nv̂
′
i,n/n and Σn the (conditional) variance

of
∑n

i=1 v̂i,nui,n/
√
n, it is well-known that, when n → ∞ and Kn is fixed, the

asymptotic distribution of β̂n is

Ω−1/2
n

√
n(β̂n − β)

d→ N (0, Id), Ωn = Γ̂−1
n ΣnΓ̂

−1
n . (4.3)

When the errors are assumed to be correlated only within Gn clusters of bounded

size, Σn can be estimated consistently with the popular cluster-robust variance es-

timator by Liang and Zeger (1986, LZ hereafter):

Σ̂LZ
n =

1

n

Gn∑
g=1

∑
i,j∈Tg,n

v̂i,nv̂
′
j,nûi,nûj,n, ûi,n =

n∑
j=1

Mij,n(yj,n − β̂′
nxj,n), (4.4)

where Tg,n denotes the subset of observations contained in cluster g and {Tg,n :

1 ≤ g ≤ Gn} is a partition of the data. As a result, asymptotically valid inference

can be carried out using the usual testing procedures based on the distributional

approximation β̂n
a∼ N (β, Γ̂−1

n Σ̂LZ
n Γ̂−1

n /n).

The objective of this chapter is to establish cluster-robust inference procedures

for β under asymptotics in which Kn/n ↛ 0. Allowing the dimension of the

nuisance covariates Kn to grow at the same rate as the sample size n enables us to

cover many relevant applications of the general model in (4.1).

Example 4.1.1. Linear regression model with increasing dimension

This leading example takes (4.1) as the data generating process, in which wi,n con-

tains many observable individual characteristics and their nonlinear transforma-

tions, dummy variables for many categories such as age group, cohort, geographic

location etc. and their interactions with the former. The inclusion of many covari-

ates is motivated in practice by the assumption that the variable of interest xi,n

can be taken as exogenous after controlling for wi,n. Although the study of linear

regression models with growing dimension has a long tradition in statistics (see
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e.g. Huber, 1973; Mammen, 1993), until recently inference results were exiguous

and limited to the case in which the number of regressors in the model is at least

a vanishing fraction of the sample size. Cattaneo, Jansson, and Newey (2018b)

exploit the separability of model (4.1) to develop valid inference procedures for β

when Kn/n ↛ 0, but their theory only covers the case of homoskedastic and het-

eroskedastic errors. Li and Müller (2021) develop cluster-robust inference theory

in this setting for a scalar β, i.e. d = 1; their results allow for Kn ∝ n but rely on a

strong restriction on
∑n

i=1(γ
′
nwi,n)

2, which limits the amount of sample variation of

yi that can be induced by the high-dimensional controls wi,n. Belloni et al. (2013)

instead propose an estimation procedure for β based on LASSO double-selection

and provide inference theory for the case of i.n.i.d. data. While their method can

accomodate Kn ≫ n, it relies on the assumption that the effect of confounders

can be controlled for by a small subset of the variables in wi,n up to some small

approximation error (“approximate sparsity”).

Example 4.1.2. Semiparametric Partially Linear Model

Researchers often assume that data are generated by the model

yi = β′xi + g(zi) + εi, i = 1, . . . , n, (4.5)

where both xi and zi have fixed dimension, but the function g(·) is unknown. The

partially linear model is a long-standing area of interest in econometrics (see, e.g.,

Heckman, 1986, and Robinson, 1988). Estimation of this semiparametric model is

often carried out via series-based methods, in which the researcher assumes that the

function g(·) can be closely approximated using the polynomial functions pn(z) =

(p1(z), . . . , pKn(z))′, so that g(zi) ≈ γ ′
npn(zi) for some γn. The series estimator

for β is the OLS estimator as defined in (4.2), where wi,n = pn(zi). When the

underlying function g(·) is not sufficiently smooth and/or the dimension of zi is

relatively large, the inclusion of many polynomial terms might be required, resulting

in Kn being non-negligible relative to n. Cattaneo et al. (2018a) are the first to

consider asymptotics in which Kn/n↛ 0 in this setting. They establish asymptotic
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normality for β̂n and valid inference procedures under homoskedasticity and, in

their subsequent paper, heteroskedasticity (CJN, 2018a). However, no results are

available for the case of clustering.

Example 4.1.3. Multi-way fixed effects panel data models

Panel data models that use fixed effects are often used in order to control for unob-

served heterogeneity, such as the one-way fixed effects panel data regression model

Yit = β′Xit + αi + Uit, i = 1, . . . , N, t = 1, . . . , T, (4.6)

where αi is a scalar individual effect, Xit is a vector of regressors and Uit is a scalar

error term. This model can be mapped into our baseline specification in (4.1) by

setting n = NT , y(i−1)T+t,n = Yit, x(i−1)T+t,n = Xit, u(i−1)T+t,n = Uit, γn =

(α1, . . . , αN) and w(i−1)T+t,n equal to the i-th unit vector of dimensionN . It follows

that Kn = N and Kn/n = 1/T , which motivates the asymptotics of this chapter

underN → ∞ and T fixed. For this case, Arellano (1987) shows that LZ’s variance

estimator (1986) is consistent when errors are clustered at the individual level. For

the same setting, Stock and Watson (2008) propose a cluster-robust estimator for

the variance with additional zero restrictions on the conditional autocovariances of

the errors within entities, e.g. when an MA(q) structure is imposed on Uit.

In many empirical settings, researchers want to control for multiple terms

of unobserved heterogeneity. In the analysis of student/teacher or worker/firm

matched data, for example, two-way fixed effects models are commonly used, taking

the form

Yit = β′Xit + αi + edit + Uit, i = 1, . . . , N, t = 1, . . . , T, (4.7)

where edit are unobserved factors common to all observations sharing the same

value of the indexing variable dit ∈ {1, . . . , Nd}, so that w(i−1)T+t,n is now a N +

Nd vector selecting the relevant fixed effects from γn = (α1, . . . , αN , e1, . . . , eNd
).

When T is fixed and only few observations are assigned to each value of dit (i.e.

data are sparsely matched), then the number of fixed effects grows proportionally
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to the sample size and Kn ∝ n. Verdier (2020) considers cluster-robust inference

under these asymptotics for a new estimation procedure for β that accomodates

instrumental variables but is generally less efficient than OLS. He also proposes a

variance estimator that can be seen as a generalisation of the one proposed in this

chapter to multi-way cluster dependence.

To simplify exposition, we present our inference theory for linear regression

models with many controls for the case of strictly exogenous regressors. While

all the results of this chapter can be well-understood for this special case, their

generalisation to (potential) misspecification bias in the model is straightforward

and is provided in the Appendix.

4.2 Assumptions
In this section we present a set of assumptions for the special case of strict exogene-

ity of the regressors. A more general set of assumptions that allows for misspecifi-

cation bias is given in the Appendix.

Suppose that {(yi,n,x′
i,n,w

′
i,n) : 1 ≤ i ≤ n} is generated by (4.1) and set Xn =

(x1,n, . . . ,xn,n) and Wn = (w1,n, . . . ,wn,n). We define the following quantities:

χn =
1

n

n∑
i=1

E[∥Qi,n∥2], Qi,n = E[vi,n|Wn],

Γ̂n =
n∑

i=1

v̂i,nv̂
′
i,n/n, Σn = V[

1√
n

n∑
i=1

v̂i,nui,n|Xn,Wn],

where vi,n = xi,n − (
∑n

j=1 E[xj,nw
′
j,n])(

∑n
j=1 E[wj,nw

′
j,n])

−1wi,n is the popula-

tion counterpart of v̂i,n. Also, letting λmin(·) denote the minimum eigenvalue of its

argument, define

Cn = max
1≤i≤n

{E[u4i,n|Xn,Wn] + E[∥Vi,n∥4|Wn] + 1/E[u2i,n|Xn,Wn]}+1/λmin(E[Γ̃n|Wn])

where Vi,n = xi,n − E[xi,n|Wn], Γ̃n =
∑n

i=1 Ṽi,nṼ
′
i,n/n and Ṽi,n =∑n

j=1Mij,nVi,n.
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We impose the following three assumptions:

Assumption 4.2.1. max1≤g≤Gn #Tg,n = O(1), where #Tg,n is the cardinality of

Tg,n and where {Tg,n : 1 ≤ g ≤ Gn} is a partition of {1,. . . ,n} such that

{(ui,n,x′
i,n) : i ∈ Tg,n} are independent over g conditional on Wn.

Assumption 4.2.2. P[λmin(
∑n

i=1 wi,nw
′
i,n) > 0] → 1, lim supn→∞Kn/n < 1,

Cn = Op(1) and Σ−1
n = Op(1)

Assumption 4.2.3. E[ui,n|Xn,Wn] = 0 ∀i, n, χn = O(1),and max1≤i≤n ∥v̂i,n∥/
√
n =

op(1).

Assumption 1 defines the sampling structure, in which we allow for arbitrary

dependence within clusters of finite but possibly heterogenous size for both the

regressors and the errors. In terms of clustering structure, the resulting asymptotics

are the same as the usual ones of White (1984) and Liang and Zeger (1986) in

which n,Gn → ∞ and Gn ∝ n. We expect that the results of this chapter would

generalize to asymptotics where cluster sizes are allowed to diverge with n and

Gn, as considered in Hansen (2007) and Hansen and Lee (2019). It is likely that

such extension would require imposing more restrictive conditions on the regression

design and the distributional properties of the errors, e.g. stationarity and/or mixing,

and we leave it to future work.

Assumption 2 allows for asymptotics where Kn/n ↛ 0, while imposing stan-

dard restrictions on the regression design and some bounds on the (conditional)

higher-order moments of the structural residuals ui,n and Vi,n.

The condition on χn in Assumption 3 is a requirement on the quality of the

linear approximation for the conditional expectation E[xi,n|Wn]. The high-level

condition max1≤i≤n ∥v̂i,n∥/
√
n = op(1) also places restrictions on the relation-

ship between xi,n and wi,n and has a central importance in establishing asymp-

totic normality of the OLS estimator for β and consistency of our proposed vari-

ance estimator. Cattaneo et al. (2018b) show that this restriction holds under

mild moment conditions when either (i) Kn/n → 0, or (ii) χn = o(1) or (iii)

max1≤i≤n

∑n
i=1 1{Mij,n ̸= 0} = op(n

1/3). While condition (i) is not the case of
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primary interest of this chapter, (ii) and (iii) accomodateKn/n↛ 0 and can be used

to verify the high-level condition max1≤i≤n ∥v̂i,n∥/
√
n = op(1) when wi,n can be

interpreted as approximating functions, dummy/discrete variables or fixed effects.

See Cattaneo et al. (2018b) for details.

Remark 4.2.1. In the general formulation provided in Appendix, the assumptions

we consider are analogous to those in Cattaneo et al. (2018b) but we also allow for

clustered dependence in the errors. The set of restrictions imposed by this frame-

work allows to cover the three leading examples presented in the previous section.

A detailed discussion of conditions that satisfy the assumptions in those particular

models is provided in Cattaneo et al. (2018b) and their Supplemental Appendix.

4.3 Main results
This section presents our main theoretical results for inference in linear regression

models with many controls and clustering under the set of simplified assumptions

presented in Section 3. Proofs of the theorems and other auxiliary results are given

in the Appendix for the general case that allows for misspecification bias in the

model.

Our first result extends the asymptotic normality result for β̂ previously derived

by Cattaneo et al. (2018b) to the case of clustering.

Theorem 4.3.1. Suppose Assumptions 1-3 hold. Then,

Ω−1/2
n

√
n(β̂n − β)

d→ N (0, Id), Ωn = Γ̂−1
n ΣnΓ̂

−1
n ,

where Σn = 1
n

∑Gn

g=1

∑
i,j∈Tg,n v̂i,nv̂

′
j,nE[ui,nuj,n|Xn,Wn].

Theorem 1 implies that the asymptotic distribution of β̂ under Kn/n ↛ 0

resembles the standard one obtainable under fixed-Kn.2 As a result, confidence in-

tervals can be constructed using the usual Gaussian approximation and the problem

of conducting valid inference reduces to finding a consistent estimator for Σn under

our asymptotics of interest.

2From Assumptions 1-3 it also follows that Ω̂n = Op(1), implying that β̂n is
√
n-consistent.
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For our discussion of variance estimation, we introduce a new class of estima-

tors. Let Ωu,n = E[unu
′
n|Xn,Wn] be the (conditional) variance-covariance matrix

of the errors un = (u1,n, . . . , un,n)
′ and Ln =

∑Gn

g=1(#Tg,n)
2 the number of non-

zero elements contained in it. We define a general class of cluster-robust estimators

for Σn of the form

Σ̂n(κn) =
1

n

Gn∑
g1=1

Gn∑
g2=1

∑
i1,j1∈Tg1,n

∑
i2,j2∈Tg2,n

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂
′
j1,n

ûi2,nûj2,n, (4.8)

where κg1,g2,i1,j1,i2.j2,n is an entry of the Ln ×Ln matrix κn = κn(w1,n, . . . ,w1,n).3

Notice that by setting κn = ILn one obtains the usual cluster-robust estimator by

Liang and Zeger (1986):

Σ̂LZ
n ≡ Σ̂n(ILn) =

1

n

Gn∑
g=1

∑
i,j∈Tg,n

v̂i,nv̂
′
j,nûi,nûj,n.

The next theorem provides an asymptotic representation for this class of esti-

mators.

Theorem 4.3.2. Suppose Assumptions 1-3 hold.

If ∥κn∥∞ = max(g1,i1,j1)
∑Gn

g2=1

∑
i2,j2∈Tg2,n

|κg1,g2,i1,j1,i2,j2,n| = Op(1), then

Σ̂n(κn) =
1

n

Gn∑
g1=1

Gn∑
g2=1

∑
i1,j1∈Tg1,n

∑
i2,j2∈Tg2,n

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂
′
j1,n

×
Gn∑
g3=1

∑
i3,j3∈Tg3,n

Mi2j3,nMj2i3,nE[ui3,nuj3,n|Xn,Wn] + op(1).

(4.9)

Heuristically, in Theorem 2 consistency of β̂n implies that the estimated resid-

uals ûi,n asymptotically converge to ũi,n =
∑n

j=1Mij,nuj,n, which are only affected

by the estimation noise due to projecting out the high-dimensional covariates wi,n.

3In particular, κg1,g2,i1,j1,i2.j2,n corresponds to the (h(g1, i1, j1), h(g2, i2, j2)) entry of κn,
where h(g, i, j) = [

∑(g−1)
k=0 (#Tk,n)2 + (#Tg,n)(i − 1) + j] and we adopt the convention that

#T0,n = 0.
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The result of Theorem 2 has a central importance in our analysis. First, it

immediately provides an explicit characterization for the asymptotic limit of LZ’s

estimator, as shown in the following corollary.

Corollary 4.3.1. Suppose the assumptions of Theorem 2 hold. Then,

Σ̂LZ
n =

1

n

Gn∑
g1=1

Gn∑
g2=1

∑
i1,j1∈Tg1,n

∑
i2,j2∈Tg2,n

v̂i1,nv̂
′
j1,n

Mi1j2,nMj1i2,nE[ui2,nuj2,n|Xn,Wn]+op(1).

Corollary 1 implies that inference based on LZ’s clustered standard errors is

invalid in general under asymptotics where Kn/n ↛ 0. In fact, Σ̂LZ
n does not con-

verge to the target Σn due to elements of Mn arising in its asymptotic limit. While

the sign of the asymptotic bias of LZ’s estimator cannot be determined in gen-

eral, Σ̂LZ
n will typically underestimate Σn.4 Intuitively, the “asymptotic” regression

residuals ũi,n tend to be smaller than the true residuals as a result of the overfitting

due to the high-dimensional controls. In addition, estimated residuals will tend to

have lower intra-cluster correlation than the true errors (Bell and Mccaffrey, 2002).

Inference based on Σ̂LZ
n is therefore expected to be asymptotically liberal in most

applications.

Furthermore, Theorem 2 suggests that a particular choice of κn might set the

leading term in the expansion (4.9) equal to the target Σn. Based on this insight, we

define the estimator

Σ̂CR
n ≡ Σ̂(κCR

n ) =
1

n

Gn∑
g1=1

Gn∑
g2=1

∑
i1,j1∈Tg1,n

∑
i2,j2∈Tg2,n

κCRg1,g2,i1,j1,i2,j2,nv̂i1,nv̂
′
j1,n

ûi2,nûj2,n,

where κCR
n solves the system of Ln(Ln − 1)/2 equations

Gn∑
g2=1

∑
i2,j2∈Tg2,n

κg1,g2,i1,j1,i2,j2,nMi2,j3,nMj2,i3,n = 1{(g1, i1, j1) = (g3, i3, j3)},

1 ≤ g1, g3 ≤ Gn, i1, j1 ∈ Tg1,n, i3, j3 ∈ Tg3,n.

4A particular case in which plim Σ̂LZ
n ≤ Σn holds in general is when the true residuals are in

fact homoskedastic, which can be shown using arguments from Theorem 1 in Bell and Mccaffrey
(2002).
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The matrix κCR
n can be characterized in closed form as

κCR
n = (S′

n(Mn ⊗Mn)Sn)
−1,

where ⊗ denotes the Kronecker product and Sn is the n2×Ln selection matrix with

full column rank such that S′
nvec(Ωu,n) is the Ln×1 vector containing the non-zero

elements of Ωu,n.

Remark 4.3.1. When Ωu,n is assumed to be diagonal, i.e. errors are independent

and (conditionally) heteroskedastic, then Gn = n, Ti,n = {i}, Ln = n, S′
n(Mn ⊗

Mn)Sn = Mn ⊙ Mn where ⊙ denotes the Hadamard product, and our estimator

reduces to the heteroskedasticity-robust estimator of Cattaneo et al. (2018b).

In the next theorem we establish consistency of our proposed estimator.

Theorem 4.3.3. Suppose Assumptions 1-3 hold.

If P[λmin(S
′
n(Mn ⊗Mn)Sn) > 0] → 1 and ∥κCR

n ∥∞ = Op(1), then

Σ̂CR
n = Σn + op(1).

Since S′
n(Mn⊗Mn)Sn is observable, the first high-level condition in Theorem

3 is expected to be verified whenever S′
n(Mn ⊗ Mn)Sn is invertible. The second

high-level condition could be verified using Theorem 1 of Varah (1975), which pro-

vides a bound for ∥κCR
n ∥∞ under the condition that S′

n(Mn ⊗Mn)Sn is diagonally

dominant. In simulations we find that diagonal dominance typically does not hold

but our high-level condition is verified in a wide range of models and designs, as

shown in Section 5.5

Remark 4.3.2. Notice that explicit computation of κCR
n is not required for the

purpose of variance estimation. Having defined V̂n = (v̂1,n, . . . , v̂n,n)
′ and

cn = (S′
n(Mn⊗Mn)Sn)

−1Sn(ûn⊗ ûn), one has vec(Σ̂CR
n ) = (V̂n⊗V̂n)

′Sncn. As

5Cattaneo et al. (2018b) instead develop their theory under the requirement that Mn ⊙ Mn is
diagonally dominant. It would be interesting to investigate whether this requirement could be relaxed
in practice.
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a result, computing our variance estimator only requires to solve the linear system

(S′
n(Mn ⊗Mn)Sn)cn = Sn(ûn ⊗ ûn) for cn.

The structure of our proposed estimator is related to the cluster-robust variance

estimator proposed by Bell and Mccaffrey (2002), which corresponds to a particular

choice of block-diagonal κn that sets the the bias of the variance estimator to 0

only in the special case in which Ωu,n = σ2In, i.e. the true residuals are in fact

homoskedatic. Differently from Bell and Mccaffrey (2002), our choice of correction

matrix κCR
n induces an averaging over cross-products of estimated residuals not just

within but also across clusters, thus allowing to set the leading term in expansion

(4.9) equal to Σn in general.

The results of this chapter can be easily extended to a more general version of

the variance estimators, described in Section C.6 of the Appendix, that allows to im-

pose within-cluster zero restrictions on the variace-covariance matrix of the errors.

In such form, our proposed estimator reduces to the one of Stock and Watson (2008)

in the case of one-way fixed effects panel data models with zero restrictions on the

conditional autocovariances of Uit within entities. While our results cover a much

wider class of models, they also partly improve on Stock and Watson (2008) as we

do not require (X′
i1, . . . ,X

′
iT , Ui1, . . . , UiT ) to be i.i.d. nor we require (Xit, Uit) to

be stationary.

4.3.1 Consistency of Liang and Zeger’s estimator

Although consistency of Σ̂CR
n is derived under asymptotic sequences that allow but

do not require Kn/n ↛ 0, it is still desirable to establish consistency of LZ’s esti-

mator under some sufficiently slow rate of growth for Kn. For this purpose, define

w∗
i,n = Σ̂

−1/2
w,n wi,n, where Σ̂

1/2
w,n is the unique symmetric positive definite Kn ×Kn

matrix such that Σ̂1/2
w,nΣ̂

1/2
w,n = 1

n

∑n
i=1wi,nw

′
i,n. The following theorem provides

sufficient conditions for consistency of LZ’s cluster-robust estimator.

Theorem 4.3.4. Suppose Assumptions 1-3 hold and that maxi,j E[w∗2
ij,n] = O(1). If

K2
n/n→ 0, then

Σ̂LZ
n = Σn + op(1). (4.10)
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Moreover, if E[u2i,n|Xn,Wn] = σ2
n ∀i, and E[ui,nuj,n|Xn,Wn] = 0 ∀i ̸= j, then

(4.10) holds under Kn/n→ 0.

Although we can only prove consistency of LZ’s estimator under K2
n/n → 0,

we speculate that Kn/n → 0 might suffice in general. We leave the refinement of

this result for future work.6

4.4 Simulations
This section reports the findings of a simulation study that investigates the finite

sample behaviour of the cluster-robust variance estimators studied in this chapter.

We consider three distinct designs motivated by the empirical examples covered by

the theoretical framework of this chapter: the linear regression models with increas-

ing dimension, the semiparametric partially linear model and the fixed effects panel

data regression model.

4.4.1 Results - Linear regression model with increasing dimen-

sion

The chosen designs for our Monte Carlo experiments closely resemble those of

Cattaneo et al. (2018b), also borrowing from specifications in Stock and Watson

(2008) and MacKinnon (2013). The data generating process (DGP) for the linear

regression model with many covariates is:

ygi = βxgi + γ′
nwgi + Ugi,

xgi|wgi ∼ N (0, σ2
x,gi), σ2

x,gi = κx(1 + (ι′wi)
2),

Ugi = (ρ1(xgi ≥ 0)− ρ(1− 1(xgi ≥ 0))Ug,i−1 + εgi, εgi ∼ N (0, 1),

ug1 ∼ N (0, σ2
u1), σ2

u1 = κu1(1 + (t(xg1) + ι′wg1)
2),

i = 1, . . . , n/G, g = 1, . . . , G, n = 700,

(4.11)

where wgi
i.i.d.∼ U(−1, 1), ι = (1, 1, . . . , 1)′, β = 1, γ = 0, ρ = 0.3, the constants

κx and κu1 are chosen so that V[xgi] = V[Ug1] = 1 and t(a) = a1(−2 ≤ a ≤
6Theorem 4 also states that Kn/n → 0 is sufficient for consistency of LZ’s estimator in the

special case of homoskedastic errors.
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2) + 2sgn(a)(1− 1(−2 ≤ a ≤ 2)).

Table 4.2 reports the results of our experiment for five dimensions of wgi:

K ∈ {1, 71, 141, 211, 281}, where the first covariate is an intercept, as well as

three different numbers of equal-sized clusters: G ∈ {175, 70, 35}. We consider

three different estimators for the variance of the OLS estimator β̂: the unfeasible

estimator based on Σ̂Unf
n = 1

n

∑Gn

g=1

∑
i,j∈Tg,n v̂i,nv̂

′
j,nUi,nUj,n that makes use of

the true error realizations, the classical estimator by LZ and our proposed cluster-

robust formula, as previously defined. For each of these estimators, we report the

bias (expressed in percentage), the standard deviation (denoted by Std.) and the

empirical coverage probability (denoted by p̂;α) of the Gaussian confidence interval

of the form:

lℓ
.
=

[
β̂ − Φ−1(1− α/2) ·

√
Ω̂ℓ

n
, β̂ − Φ−1(α/2) ·

√
Ω̂ℓ

n

]
, Ω̂ℓ = Γ̂−1Σ̂ℓΓ̂−1,

where Φ−1 denotes the inverse of the standard normal cumulative distribution func-

tion Φ, Σ̂ℓ with ℓ ∈ {Unf, LZ, CR} corresponds to the variance estimators al-

ready discussed and we set α = 0.05.

The findings from this experiment are in line with our theoretical predictions.

Firstly, we find that inference based on LZ’s clustered standard errors formula is

highly inaccurate. In fact, its bias quickly increases with the dimensionality of

the model, resulting in substantial undercoverage even for K/n = 0.101. On the

other hand, our proposed estimator performs well, with negligible bias and close-to-

correct empirical coverage even for K/n = 0.401. Such improvement in inference

accuracy compared to LZ’s estimator is achieved in spite of a decrease in relative

precision. As expected, the performance of all estimators is adversely affected by a

reduction in the number of clusters. In Table 4.6 we also report on the behaviour of

∥κCR
n ∥∞ in this design; we find that ∥κCR

n ∥∞ not only seems to be bounded but even

decreasing as n grows.7

Analogous results are found for a different version of this experiment that con-

7Notice that diagonal dominance of S′
n(Mn ⊗ Mn)Sn does not hold in any of the simulations

carried out in this section.
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siders independent and discrete controls constructed as 1{N (0, 1) ≥ 1}, as reported

in Tables 4.3 and 4.7.

4.4.2 Results - Semiparametric partially linear model

The experimental design chosen for the semiparametric partially linear model takes

the form:

ygi = βxgi + g(zgi) + Ugi,

xgi = h(zgi) + vi, vgi|zgi ∼ N (0, σ2
v,gi), σ2

vi = κv(1 + (ι′zgi)
2),

Ugi = (ρ1(z1,gi ≥ 0)− ρ(1− 1(z1,gi ≥ 0))Ug,i−1 + εgi, εgi ∼ N (0, 1),

ug1 ∼ N (0, σ2
u1), σ2

u1 = κu1(1 + (t(xgi) + ι′zgi)
2),

i = 1, . . . , n/G, g = 1, . . . , G, n = 700,

(4.12)

where dim(zgi) = 6, zgi = (z1,gi, . . . , z6,gi)
′ with zℓ,gi

i.i.d.∼ U(−1, 1), ℓ = 1, . . . , 6.

The unknown regressions functions are set to g(zgi) = exp
(
− ∥zgi∥1/2

)
and

h(zgi) = exp
(
∥zgi∥1/2

)
, and the constants κv and κu1 are again chosen so that

V[xgi] = V[ug1] = 1. Similarly to the previous simulation, we set β = 1 and

ρ = 0.3.

To construct the covariates wgi entering the estimated linear regression model

ygi = β′xgi + γ ′
nwgi + ugi, we consider power series expansions. The table below

gives a summary of the expansions considered, where wgi = p(zgi;K) for K ∈

{1, 7, 13, 28, 34, 84, 90, 210, 216} is defined as follows:
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Table 4.1: Polynomial Basis Expansion: dim(zgi) = 6 and n = 700

K p(zgi;K) K/n

1 1 0.001

7 (1, z1,gi, z2,gi, z3,gi, z4,gi, z5,gi, z6,gi)
′ 0.010

13 (p(zgi; 7)
′, z21,gi, z

2
2,gi, z

2
3,gi, z

2
4,gi, z

2
5,gi, z

2
6,gi)

′ 0.019

28 p(zgi; 13) + first-order interactions 0.040

34 (p(zgi; 28)
′, z31,gi, z

3
2,gi, z

3
3,gi, z

3
4,gi, z

3
5,gi, z

3
6,gi)

′ 0.049

84 p(zgi; 13) + second-order interactions 0.120

90 (p(zgi; 84)
′, z41,gi, z

4
2,gi, z

4
3,gi, z

4
4,gi, z

4
5,gi, z

4
6,gi)

′ 0.129

210 p(zgi; 90) + third-order interactions 0.300

216 (p(zgi; 210)
′, z51,gi, z

5
2,gi, z

5
3,gi, z

5
4,gi, z

5
5,gi, z

5
6,gi)

′ 0.309

Source: Cattaneo, Jansson, and Newey (2018b, Supplemental Appendix).

The results for this experiment are given in Table 4.4, in which we only re-

port K ∈ {1, 13, 34, 90, 216} for reasons of parsimony. The numerical findings

are largely consistent with those reported for the other two simulation models. Al-

though ∥κCR
n ∥∞ has bigger magnitude in this setting compared to the other simula-

tion models, it still appears to be bounded (see Table 4.8).

The main difference between this setting and the linear model with increasing

dimension considered previously is that the unfeasible estimator that uses realiza-

tions of the true structural disturbances is free not just from estimation error but also

specification error, which in turn affects LZ’s and our proposed estimator when K

is small; in addition, the degree of heteroskedasticity and dependence in the errors

is invariant with respect to the dimensionality of the model, since it only depends

on xgi and zgi but not wgi.

4.4.3 Results - Fixed effects panel data regression model

For fixed effects panel data regression model we consider the following specifica-

tion:
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yit = βxit + αi + edit + uit, i = 1, . . . , N, t = 1, . . . , T, (4.13)

where αi is a time-invariant individual effect and edit are unobserved factors com-

mon to all observations sharing the same value of the indexing variable dit ∈

{1, . . . , Nd}. This model coincides with the one studied in Verdier (2018), whose

theory and simulation results concern the case of two-way clustering. We instead

consider the case of one-way clustering at the individual level as we postulate the

following DGP:

yit = βxit + αi + edit + Uit,

xit|zit ∼ N (0, σ2
x,it), σ2

x,gi = κx(1 + (ι′zit)
2),

Uit = (ρ1(xit ≥ 0)− ρ(1− 1(xit ≥ 0))Ui,t−1 + εit, εit ∼ N (0, 1),

ui1 ∼ N (0, σ2
u1), σ2

u1 = κu1(1 + (t(xi1) + ι′zi1)
2),

i = 1, . . . , N, t = 1, . . . , T,

(4.14)

where dim(zit) = 6, zit = (z1,it, . . . , z6,it)
′ with zℓ,gi

i.i.d.∼ Uniform(−1, 1), ℓ =

1, . . . , 6, the constants κx and κu1 are chosen so that V[xit] = V[Ui1] = 1, the

function t(·) is as previously defined and we set β = 1 and αi = edit = 0. For the

purpose of estimation, we transform (4.13) by partialling out the individual fixed

effects αi, so that the estimated model ỹit = βx̃it + ẽdit + ũit has dim(wi) = Nd.8

We consider G = N = [700/T ] for T ∈ {4, 10, 20}, as well as Nd = 700/r for r ∈

{700, 10, 5, 4, 3}, so that the total sample size is always roughly n = 700. Tables

4.5 and 4.9 report the numerical findings of this experiment, which are consistent

with our theoretical predictions and in line with the results obtained for the other

simulation designs.

8The motivation for this transformation is that (S′
n(Mn ⊗ Mn)Sn) is not invertible when the

controls wi,n include indicators for the clusters (see, e.g., Stock and Watson, 2008). Notice that
partialling out the fixed effects does not affect the correlation structure of the errors.
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4.5 Empirical illustration
This section illustrates the use of the inference methods discussed in this chapter

by revisiting Donohue and Levitt (2001) study of the impact of abortion on crime

rates.

Donohue and Levitt (2001, henceforth DL) put forward the hypothesis that

the legalization of abortion in the United States in the 1970s played a major role

in explaining the sharp decline in crime observed two decades later. In particular,

they describe two causal channels through which abortion might affect crime. The

first is that abortion reduces the absolute size of a cohort, resulting in lower crime

15-25 years later, when its members are at the highest risk of engaging in crimi-

nal activities. The second channel is ascribed to the increased control over fertility

that abortion provides to women. In fact, women may use abortion to optimize the

timing of childbearing, thus ensuring that the child grows in a more favourable en-

vironment, e.g. when a father is present in the family, the mother is better educated

and household income is stable. As a result, increased access to abortion is expected

to cause a reduction in crime levels even if fertility rates were to remain constant.

In order to estimate the impact of abortion on crime, Donohue and Levitt

(2001) consider state-level yearly data for the period 1985-1997 and propose a

model for crime rates whose basic specification is

ycit = βcacit + δ′
czit + θci + λct + ucit, (4.15)

where i indexes states, t indexes the time period, c ∈ {violent, property, murder}

indexes the type of crime, ycit is the crime-rate for crime type c; acit is measure

of abortion rate relevent for crime type c; zit is a set of time-varying state-specific

controls consisting of the log of lagged prisoners per capita, the log of lagged po-

lice per capita, the unemployment rate, per-capita income, the poverty rate, AFDC

generosity at time t− 15, a dummy for concealed weapons law and beer consump-

tions; θci are state fixed effects; and λct are time fixed effects. Further details on

data definitions and the institutional background can be found in the original paper.

The results from estimating the baseline model in (4.15) are reported in Table
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4.10 and resemble those in Donohue and Levitt (2001), although not identical as we

have excluded Washington DC from the sample.9 Following Donohue and Levitt

(2001), we report standard errors clustered at the state level. These estimates in-

dicate a strong (and statistically significant) negative association between abortion

and crime, as they imply that an increase in the abortion rate of 100 per 1,000 live

births is associated with a reduction in crime rates between 9 and 13 per cent, de-

pending on the type of crime. However, the extent to which this association can be

interpreted as causal crucially depends on the assumption that abortion rates can be

taken as random after controlling for a national trend, time-invariant state-specific

confounders and zit. Even if one believes that abortion rates can be taken as ex-

ogenous conditional on the the controls included by Donohue and Levitt (2001),

one can still expect the assumption that they enter the structural equation for crime

rates linearly as in (4.15) to be too restrictive. For example, Foote and Goetz (2008)

have argued that the results in Donohue and Levitt (2001) might not be robust to the

inclusion of state-specific trends.10

For these reasons, we consider a model for crime rates and abortion in which

the controls zit are allowed to enter in a much more flexible way compared to Dono-

hue and Levitt (2001). In particular, we consider a version of the high-dimensional

regression model studied in this chapter where in addition to the controls included

by Donohue and Levitt (2001), we include first-order interactions, quadratics, cu-

mulative values and interactions of those variables and their initial values with a

quadratic trend; in addition, we also include the interaction between the initial level

of abortion and a quadratic trend. Once we stack all these regressors and the time-

effects λct in the vector wit and absorb the state-effects, we obtain a regression

model of the same form as (4.1):

ỹcit = βcãcit + γ ′
cw̃it + ũcit, (4.16)

9We exclude Washington DC for simplicity, as it produces similar results to Donohue and Levitt
(2001) and circumvents the need to introduce the estimation weights used in their paper.

10In a response to Foote and Goetz (2008), Donohue and Levitt (2008) reexamine their orginal
study and use a longer panel to argue that their original results are robust to the inclusion of state-
specific linear time trends.
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where the dimension of the high-dimensional controls is Kn = 105, resulting in

Kn/n ≈ 0.161. Estimates for the causal effect of abortion on crime based on (4.16)

are given in Table 4.10, where we also report standard errors based on the variance

estimators considered in this chapter. These estimates are qualitatively similar to

those obtained for the baseline model considered in Donohue and Levitt (2001),

and interestingly imply an even more sizeable negative effect of abortion on crime

rates for all types of crime. The statistical significance of these effects however

crucially depends on the choice of standard errors. In fact, clustered standard errors

based on the variance estimator proposed in this chapter are between 42 and 74

per cent bigger than the traditional clustered stardard errors by Liang and Zeger

(1986), depending on the type of crime. In the case of violent crime, for example,

the estimated coefficient for abortion rates has associated p-value below 1 per cent

when traditional clustered standard errors are used, while the use of our proposed

standard errors leads to failure to reject the hypothesis of no effect of abortion on

crime at the 5 per cent level.

This empirical illustration showcases the relevance of the inference methods

proposed in this chapter. In this particular application, the inclusion of many con-

trols arises naturally as a way to flexibly control for observable state-level character-

istics and trends that are allowed to depend on those characteristics. Our approach

in this particular application resembles the one adopted by Belloni et al. (2013),

who also re-examine the empirical setting in Donohue and Levitt (2001) to illus-

trate the use of their proposed inference method for treatment effects with many

controls based on LASSO double-selection. They consider a similar specification

of the high-dimensional model in (4.16) but allow for an even more flexible spec-

ification that includes higher-order interactions of the variables we consider (and

a few additional ones, such as initial differences of zit) with cubic trends, which

gives Kn/n ≈ 0.500 in their application.11 While Belloni et al.’s (2013) method

is naturally suited to handle such large number of controls, its validity relies on the

assumption that the effect of confounding factors can be controlled for by a small

11Interestingly, their estimates imply statistically non-significant impact of abortion on all types
of crime.
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number of variables (“approximate sparsity”). Our proposed inference procedure

therefore offers a valuable alternative to selection-based methods in settings where

the inclusion of a relatively large number of controls is expected to yield a reason-

able approximation of the structural relationship of interest, while circumventing

the need to impose requirements of sparsity on the model.

4.6 Conclusions
This chapter presented inference results for the OLS estimator of a subset of co-

efficients in linear regression models with many controls and clustering. We show

that the usual cluster-robust variance estimator by Liang and Zeger (1986) does not

deliver consistent standard errors when the number of controls is a non-vanishing

fraction of the sample size, typically resulting in confidence intervals with coverage

below the nominal size. We then propose a new clustered standard error formula

that is robust to the inclusion of many controls. Monte Carlo evidence supports our

theoretical results and shows that our proposed variance estimator performs well in

finite samples.

While our results are presented for the case of one-way clustering, we expect

that they can be easily adapted to the generalisation of our methods to multi-way

clustering proposed by Verdier (2020). It would also be of interest to investigate

whether the analysis of this chapter could be extended to cases where variance esti-

mation does not rely on zero restrictions on the covariance matrix of the errors, e.g.

when time series or spatial dependence in the errors is assumed.
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Table 4.6: Absolute row sum of κn - Linear regression model with many continuous con-
trols

G = 140
n = 250 n = 500 n = 750 n = 1000

Kn/n = 0.200 4.93 4.23 3.95 3.80
(0.26) (0.14) (0.11) (0.090)

Kn/n = 0.300 9.36 7.66 7.12 6.77
(0.65) (0.32) (0.21) (0.17)

Kn/n = 0.400 18.4 14.5 13.3 12.6
(1.42) (0.64) (0.50) (0.36)

G = 70
n = 250 n = 500 n = 750 n = 1000

Kn/n = 0.200 8.41 6.71 6.11 5.81
(0.56) (0.24) (0.18) (0.14)

Kn/n = 0.300 17.5 13.2 11.9 11.2
(1.10) (0.67) (0.37) (0.29)

Kn/n = 0.400 37.3 26.6 23.8 22.0
(3.26) (1.15) (0.84) (0.59)

G = 35
n = 240 n = 500 n = 740 n = 1000

Kn/n = 0.200 18.1 12.4 11.1 10.1
(1.35) (0.50) (0.38) (0.25)

Kn/n = 0.300 41.2 26.1 22.6 20.7
(2.93) (1.13) (0.77) (0.55)

Kn/n = 0.400 100 59.9 47.6 43.0
(8.30) (2.64) (1.77) (1.20)

Notes: 250 repetitions. Standard deviations in parenthesis. DGP as described in Equa-
tion (4.11).
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Table 4.7: Absolute row sum of κn - Linear regression model with many discrete controls

G = 140
n = 250 n = 500 n = 750 n = 1000

Kn/n = 0.200 6.12 4.94 4.53 4.27
(0.50) (0.28) (0.18) (0.14)

Kn/n = 0.300 11.2 8.88 8.04 7.57
(0.96) (0.51) (0.34) (0.28)

Kn/n = 0.400 21.4 16.5 14.9 13.9
(1.87) (0.85) (0.68) (0.53)

G = 70
n = 250 n = 500 n = 750 n = 1000

Kn/n = 0.200 10.5 8.00 7.10 6.62
(0.85) (0.48) (0.31) (0.25)

Kn/n = 0.300 20.8 15.3 13.4 12.6
(1.62) (0.83) (0.57) (0.47)

Kn/n = 0.400 43.5 30.3 26.3 24.3
(4.49) (1.66) (1.11) (0.88)

G = 35
n = 240 n = 500 n = 740 n = 1000

Kn/n = 0.200 22.9 15.0 12.8 11.7
(2.33) (0.94) (0.56) (0.51)

Kn/n = 0.300 49.9 30.5 25.8 23.4
(4.70) (1.82) (1.19) (0.86)

Kn/n = 0.400 119 64.6 53.1 47.5
(11.7) (4.22) (2.47) (1.90)

Notes: 250 repetitions. Standard deviations in parenthesis. DGP as described in Equa-
tion (4.11), with wℓ,gi = 1{N (0, 1, ) ≥ 1}, ∀ℓ, g, i.



4.6. CONCLUSIONS 123

Table 4.8: Absolute row sum of κn - Semiparametric partially linear model

G = 140
n = 250 n = 500 n = 750 n = 1000

Kn/n = 0.200 19.6 18.1 43.3 43.7
(6.01) (4.86) (18.6) (17.2)

Kn/n = 0.300 64.9 142.5 142.4 56.1
(41.1) (70.7) (63.9) (25.0)

Kn/n = 0.400 140 509 140 56.1
(56.4) (349) (65.2) (25.0)

G = 70
n = 250 n = 500 n = 750 n = 1000

Kn/n = 0.200 33.0 27.5 63.2 63.1
(11.3) (8.99) (28.8) (25.1)

Kn/n = 0.300 109 211 191 80.1
(46.9) (104) (84.7) (34.8)

Kn/n = 0.400 265 700 208 80
(143) (532) (97.4) (30.4)

G = 35
n = 240 n = 500 n = 740 n = 1000

Kn/n = 0.200 75.1 51.8 101 98
(26.8) (15.0) (41.6) (33.0)

Kn/n = 0.300 260 390 356 134
(108) (177) (161) (62.5)

Kn/n = 0.400 703 1321 356 130
(342) (712) (164) (48.9)

Notes: 250 repetitions. Standard deviations in parenthesis. DGP as described in Equa-
tion (4.12).
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Table 4.9: Absolute row sum of κn - Two-way fixed effects panel data regression model

G = 140
n = 250 n = 500 n = 750 n = 1000

Kn/n = 0.200 3.97 3.90 3.87 3.85
(.063) (.039) (.031) (0.30)

Kn/n = 0.333 11.6 11.1 10.9 10.8
(.42) (.30) (.23) (.21)

G = 70
n = 250 n = 500 n = 750 n = 1000

Kn/n = 0.200 3.92 3.87 3.83 3.81
(.040) (.026) (.017) (.015)

Kn/n = 0.333 10.6 10.2 10.0 9.90
(.18) (.11) (.098) (.074)

G = 35
n = 240 n = 500 n = 740 n = 1000

Kn/n = 0.200 8.25 3.89 7.16 3.84
(1.94) (.023) (1.03) (.011)

Kn/n = 0.333 10.7 10.2 9.91 9.77
(.17) (.082) (.062) (.047)

Notes: 250 repetitions. Standard deviations in parenthesis. DGP as described in Equa-
tion (4.14).
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Table 4.10: Empirical illustration - Effect of Abortion on Crime

β̂ LZ Robust

Std. Error p-value Std. Error p-value

Violent crime
Baseline −0.135 0.0422 0.0013 0.0448 0.0025

Many controls −0.266 0.0842 0.0016 0.1473 0.0718

Property crime
Baseline −0.093 0.0146 < 0.00001 0.0149 < 0.00001

Many controls −0.135 0.0254 < 0.00001 0.0408 0.00091

Murder
Baseline −0.134 0.0536 0.0126 0.0551 0.0154

Many controls −0.197 0.1498 0.1848 0.2117 0.3513

The rows labeled “Baseline estimates” give estimates for the original model in Donohue and
Levitt (2001) as in (4.15). The rows labeled “Many controls” give estimates for the high-
dimensional model in (4.16) that includes a broader set of controls. Columns under the label
“LZ” report clustered standard errors and relative p-values computed with the traditional variance
formula by Liang and Zeger (1986). Columns under the label “Robust” report standard errors and
relative p-values computed with the cluster-robust variance estimator proposed in this paper.
Clustering is at the state level.
Data source: Belloni et al. (2013).
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Appendix – Chapter 1

A.1 Extension to nested min/max operators

In this section we describe how the proposed estimation procedure and the theo-

retical results of Section 2.3 can be extended to scores Γ(g;X) that feature nested

linear combinations of min /max operators. This extension comprises min /max

operators over multiple components, since max{a, b, c} = max{max{a, b}, c}.

We begin by noticing that our proposed estimation described in Section 2.3

can be also defined as follows. First, for each min{a(g;x), b(g;x)} (or max) oper-

ator contained in Γ(g;x), one substitutes the operator with a(g;x) or b(g;x) based

on their cross-fitted plug-in (non-orthogonalized) estimates âi := a(ĝ−k(i);Xi) and

b̂i := b(ĝ−k(i);Xi). Then, the selected component is estimated (a(g;x) or b(g;x))

is estimated by their cross-fitted Neyman-orthogonal analogue (âNOi or b̂NOi ). In the

presence of nested min /max operators, our estimation is generalized as follows.

First, in succession from the most inner to the most outer min /max, each oper-

ator is substituted with their smallest/largest argument based on cross-fitted non-

orthogonalized estimates. Then, the selected components are estimated by their

cross fitted Neyman-orthogonal analogue. As an illustration, consider the hypothet-
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ical score

Γ(g;x) = d(g;x) + max{c(g;x) + min{a(g;x), b(g;x)}, 0}

= d(g;x) + max{c(g;x) + b(g;x) + (a(g;x)− b(g;x)) · 1{a(g;x)− b(g;x) ≤ 0}︸ ︷︷ ︸
ϱ(g;x)

, 0}

= d(g;x) + ϱ(g;x) · 1 {ϱ(g;x) ≥ 0} .

Applying the above procedure to this example gives the following expression for

the estimated Neyman-orthogonal score:

ΓNO({ĝ−k(i), f̂−k(i)},Wi) = d̂NOi +
[
ĉNOi + b̂NOi + (âNOi − b̂NOi ) · 1{âi − b̂i ≤ 0}

]
· 1 {ϱ̂i ≥ 0} ,

where

ϱ̂i = ĉi + b̂i + (âi − b̂i) · 1{âi − b̂i ≤ 0}.

We will now show how the theoretical results of Section 2.4 can be generalized to

this example.1 Following the arguments of Section 2.4.2, we have

Q̂NO
n (π)−QNO

n (π)

=
n∑

i=1

(2π(Xi)− 1) · (d̂NOi − dNOi )

+
n∑

i=1

(2π(Xi)− 1) · (ĉNOi + b̂NOi − cNOi − bNOi ) · 1{ϱ̂i ≥ 0}

+
n∑

i=1

(2π(Xi)− 1) · (âNOi − b̂NOi ) · 1{âi − b̂i ≤ 0} · 1{ϱ̂i ≥ 0}

+
n∑

i=1

(2π(x)− 1) · (aNOi − bNOi ) ·
[
1{âi − b̂i ≤ 0} − 1{ai − bi ≤ 0}

]
· 1{ϱ̂i ≥ 0}

+
n∑

i=1

(2π(x)− 1) · ϱNOi · [1{ϱ̂i ≥ 0} − 1{ϱi ≥ 0}] .

The first term in the expansion has the same structure as A0,ℓ and thus obeys the
1The extension to general scores containing an arbitrary finite number of nested min /max op-

erators follows immediately from our discussion of this example.
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same bound. The second and third term obey the same bound asA1,ℓ since, by virtue

of sample-splitting, the indicators 1{ϱ̂i ≥ 0} and 1{âi − b̂i ≥ 0} are immaterial

when controlling the expectation of these term uniformly over Πn (see arguments

in the Proof of Lemma 2.4.1). The fourth term has the same structure as A2,ℓ +A3,ℓ

except for the presence of the indicator 1{ϱ̂i ≥ 0}, which again can be shown to be

immaterial for controlling the A2,ℓ-like term by virtue of sample-splitting. For the

A3,ℓ-like term we instead have the bound

E

[
sup
π∈Πn

1

n

n∑
i=1

(2π(x)− 1) · (ci − bi) ·
(
1{ĉi − b̂i ≤ 0} − 1{ci − bi ≤ 0}

)
· 1{ϱ̂i ≥ 0}

]

≤ E

[ ∣∣∣(ci − bi) ·
(
1{ĉi − b̂i ≤ 0} − 1{ci − bi ≤ 0}

)∣∣∣ · |1{ϱ̂i ≥ 0}|

]

≤ E

[ ∣∣∣(ci − bi) ·
(
1{ĉi − b̂i ≤ 0} − 1{ci − bi ≤ 0}

)∣∣∣ ],
which can be bounded in the same fashion as A3,ℓ under a margin assumption on

a(g;X) − b(g;X). Finally, the fifth term also has the same structure as A2,ℓ +

A2,ℓ, and can be controlled using arguments from Section 2.4.2 under a margin

assumption on ρ(g;X).

A.2 Proofs

A.2.1 Proof of Proposition 2.2.1

For the maximin welfare policy we have

min
(y0,y1)∈Y

EPX

[
π(X) · yπ(X)(X)

]
= EPX

[
min

(y0(x),y1(x))∈Y(x)
π(X) · yπ(X)(X)

]
= EPX

[
π(X) · y

1
(X) + (1− π(X)) · y

0
(X)

]
,

where the first equality is justified by 2.2.1. Thus we have

argmax
π∈Π

min
(y0,y1)∈Y

Wτ (π) = argmax
π∈Π

EPX

[
π(X) · y

1
(X) + (1− π(X)) · y

0
(X)

]
.
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For the maximin impact policy we have

min
τ∈T

EPX
[π(X) · τ(X)] = EPX

[
min
τ∈T

π(X) · τ(X)

]
= EPX

[π(X) · τ(X)] .

where the first equality is justified by Assumption 2.2.2. Thus we have

argmax
π∈Π

min
τ∈T

Wτ (π) = argmax
π∈Π

EPX
[π(X) · τ(X)] .

The statement of the proposition again follows from the invariance of the maximizer

to positive affine transformations of the objective function.

A.2.2 Proof of Proposition 2.2.2

We notice that

max
τ∈T

(
max

π̃ :X→{0,1}
Iτ (π̃)− Iτ (π)

)
= max

τ∈T
EPX

[(
1

2
+

1

2
sgn(τ(X))− π(X)

)
· τ(X)

]
= EPX

[
max
τ∈T

(
1

2
+

1

2
sgn(τ(X))− π(X)

)
· τ(X)

]
= EPX

[
max
τ∈T

1
{
τ(X) ≥ 0

}
· (1− π(X)) · τ(X)︸ ︷︷ ︸

=(1−π(X))·1{τ(X)≥0}·τ(X)

]

+ EPX

[
max
τ∈T

1
{
τ(X) ≤ 0

}
· −π(X) · τ(X)︸ ︷︷ ︸

=−π(X)·1{τ(X)≥0}·τ(X)

]

+ EPX

[
max
τ∈T

1
{
τ(X) < 0 < τ(X)

}
·
(
1

2
+

1

2
sgn(τ(X))− π(X)

)
· τ(X)︸ ︷︷ ︸

=−π(X)·1{τ(X)<0<τ(X)}(τ(X)+τ(X))+1{τ(X)<0<τ(X)}·τ(X)

]

= −EPX

[
π(X) ·

(
1
{
τ(X) ≥ 0

}
· τ(X) + 1

{
τ(X) ≤ 0

}
· τ(X)

+ 1
{
τ(X) < 0 < τ(X)

}
·
(
τ(X) + τ(X)

))]
+ EPX

[
τ(X) · 1

{
τ(X) ≥ 0

}
+ 1 {τ(X) < 0 < τ(X)} · τ(X)

]
,

where the first equality uses the fact argmaxπ :X→{0,1}Wτ (π) =
1
2
+ 1

2
sign(τ(X)),

and the second equality uses Assumption 2.2.2. The statement of the proposition
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then follows from the invariance of the maximizer to positive affine transformations

of the objective function.

A.2.3 Proof of Proposition 2.4.1

We being by decomposing regret as follows:

Q(π∗
n)−Q(π̂n) =

[
Q(π∗

n)−QNO
n (π∗

n)
]
+
[
QNO

n (π∗
n)− Q̂NO

n (π̂n)
]
+
[
Q̂NO

n (π̂n)−Q(π̂n)
]
.

(A.1)

The first term is zero in expectation. The second term can be upper bounded as

[
QNO

n (π∗
n)− Q̂NO

n (π̂n)
]
≤
[
QNO

n (π∗
n)− Q̂NO

n (π∗
n)
]
+
[
Q̂NO

n (π∗
n)− Q̂NO

n (π̂n)
]

≤ sup
π∈Πn

∣∣∣QNO
n (π)− Q̂NO

n (π)
∣∣∣ ,

where we have used that Q̂NO
n (π∗)− Q̂NO

n (π̂n) ≤ 0, which follows from π̂n being the

maximizer of Q̂NO
n (·). The third term can be further expanded and upper bounded as

follows

Q̂NO
n (π̂n)−Q(π̂n) ≤ sup

π∈Πn

∣∣∣Q̂NO
n (π)−QNO

n (π)
∣∣∣+ sup

π∈Πn

|QNO
n (π)−Q(π)| .

Using the last two displays and taking expectations in (A.1) yields the desired con-

clusion.

A.2.4 Proof of Lemma 2.4.1

We will establish each of the following bounds in turn:

E
[
sup
π∈Πn

|A0(π)|
]
= O

(√
VC(Πn) ·

rκn

n3/2
+
rκn

n1/2

)
,

E
[
sup
π∈Πn

|A1,ℓ(π)|
]
= O

(√
VC(Πn) ·

rκn

n3/2
+
rκn

n1/2

)
,

E
[
sup
π∈Πn

|A2,ℓ(π)|
]
= O

(√
VC(Πn)

n

)
,

E
[
sup
π∈Πn

|A3,ℓ(π)|
]
= O

((rκn

n

) γ+1
γ+2

)
.
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Combining the above through decomposition (2.21) gives the desired final bound.

# Bound for A0 and A1,ℓ

We prove a bound for supπ∈Πn
|A1,ℓ(π)|; it will be immediate that A0(π) obeys the

same bound. We begin with the following decomposition

A1,ℓ(π) =
1

n

n∑
i=1

(2π(Xi)− 1) · ⟨α̂i − αi, Ui − g(Vi)⟩, (= B1(π)) ,

+
1

n

n∑
i=1

(2π(Xi)− 1) · ⟨α̂i − αi, gi − ĝi⟩, (= B2(π)),

+
1

n

n∑
i=1

(2π(Xi)− 1) ·
(
φℓ(ĝ

−k(i);Xi)− φℓ(g;Xi) + ⟨αi, gi − ĝi⟩
)
, (= B3(π)),

where we have used the shorthand notation ĝi := ĝ−k(i)(Vi), gi = g(Vi), α̂i :=

({ĝ−k(i), f−k(i)};Vi), αi := ({g, f};Vi). Starting with B1(π), the contribution of

the k-th fold is

B
(k)
1 (π) =

1

n

∑
i:k(i)=k

(2π(Xi)− 1) · ⟨α̂i − αi, εi⟩ · 1{φ̂i ≥ 0}.

The sample-splitting procedure guarantees that {ĝ−k(i), f̂−k(i)} only depend on data

from the remaining K − 1 folds, and thus conditioning on these estimates for the

nuisance components makes B(k)
1 (π) a sum of independent mean-zero terms, in

light of

E
[
Ui − g(Vi) | Vi, ĝ−k(i), f̂−k(i)

]
= 0.

Furthermore, the terms are also sub-Gaussian since it is a linear combination of

sub-Gaussian random variables with bounded weights w.p.a 1, in light of

∥1{φ̂i ≥ 0} · (α̂i − αi)∥L∞(PV ) ≤
∥∥ĝ−k(V )− g(V )

∥∥
L∞(PV )

+
∥∥∥f̂−k(V )− f(V )

∥∥∥
L∞(PV )

≤ 2 · C2 · C3,
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w.p.a 1, where the first inequality uses Assumption 2.4.2(i) and the second inequal-

ity uses Assumption 2.4.2(iii). Having computed the variance of B(k)
1 (π) condi-

tional on
(
ĝ−k, f̂−k

)
Vn(k) = E

[
(α̂−k

i − αi)
′Σ(Vi) (α̂

−k
i − αi) · 1 {φ̂i ≥ 0} | ĝ−k, f̂−k

]
,

we can apply Corollary 3 in Athey and Wager (2021) to establish the bound

n

nk

E
[
sup
π∈Π

∣∣∣B(k)
1 (π)

∣∣∣ | ĝ−k

]
= O

√Vn(k)
VC(Πn)

nk

 , (A.2)

where nk denotes the number of observations in the k-th fold. Using Assumptions

2.4.2(ii) and 2.4.4, we have

E [Vn(k)] ≤ EPn

[
λ · ∥α̂i − αi∥2L2(PV )

]
≤ 2 · λ · C2

2,α · EPn

[∥∥ĝ−k(i) − g
∥∥2
L2(PV )

+
∥∥∥f̂−k(i) − f

∥∥∥2
L2(PV )

]
= O

(
rκn√
n

)
.

(A.3)

Finally, we apply (A.2) repeatedly for each of the K data-folds and using Jensen’s

Inequality and (A.3) and obtain the final bound

E
[
sup
π∈Π

|B1(π)|
]
= O

(√
VC(Πn) ·

rκn

n3/2

)
. (A.4)
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We now turn to B2(π), for which we have

B2(π) =
1

n

n∑
i=1

(2π(Xi)− 1) · ⟨α̂i − αi, ĝi − gi⟩ · 1{φ̂i ≥ 0}

=
J∑

j=1

[
1

n

n∑
i=1

(2π(Xi)− 1) · (α̂(j)
i − α

(j)
i ) · (ĝ(j)i − gi) · 1{φ̂i ≥ 0}

]

≤
J∑

j=1

[
1

n

n∑
i=1

|α̂(j)
i − α

(j)
i | · |ĝ(j)i − gi|

]

≤
J∑

j=1

√√√√ 1

n

n∑
i=1

(
α̂
(j)
i − α

(j)
i

)2
×

√√√√ 1

n

n∑
i=1

(
g
(j)
i − gi

)2
,

where the last inequality uses Cauchy-Schwarz inequality. This bound does not

depend on π and thus holds uniformly over Πn. We then apply Cauchy-Schwarz

again and use Asuumption 2.4.4 to verify that

E
[
sup
π∈Π

|B2(π)|
]

≤
J∑

j=1

EPn

[∥∥∥α̂(j)
i − α

(j)
i

∥∥∥2
L2(PV )

]1/2
× EPn

[∥∥∥ĝ(j)i − g
(j)
i

∥∥∥2
L2(PV )

]1/2
,

≤ J · EPn

[
∥α̂i − αi∥2L2(PV )

]1/2
× EPn

[
∥ĝi − gi∥2L2(PV )

]1/2
≲ J · EPn

[∥∥∥f̂−k(i) − f
∥∥∥2
L2(PV )

+
∥∥ĝ−k(i) − g

∥∥2
L2(PV )

]1/2
× EPn

[∥∥ĝ−k(i) − g
∥∥2
L2(PV )

]1/2
= O

(
rκn√
n

)
.

We now turn to B3(π). We begin by considering the following telescoping

ĝi − gi =
J∑

j=1

[
(g

(•:j−1)
i , ĝ

(j:•)
i )− (g

(•:j)
i , ĝ

(j+1:•)
i )

]
=

J∑
j=1

(
0, 0, . . . , ĝ

(j)
i − g

(j)
i , 0, . . . , 0

)
,

where g(•:j) and g(j:•) denote, respectively, the first and last j entries of g(Vi), where

we adopt the convention g(•:0) = g(J+1:•) = ∅. We can therefore decompose B3(π)
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as follows:

B3(π) =
J∑

j=1

1

n

n∑
i=1

(2π(Xi)− 1)

×
[
φ((g(•:j−1), ĝ

(j:•)
i );Xi)− φ((g

(•:j)
i , ĝ

(j+1:•)
i );Xi)− α(j)({(g(•:j−1), ĝ(j:•), f}) ·

(
ĝ
(j)
i − g

(j)
i

)]
× 1{φ̂i ≥ 0}

−
J∑

j=1

1

n

n∑
i=1

(2π(Xi)− 1) ·
[(
α
(j)
i − α(j)({(g(•:j−1, ĝ(j:•)), f})

)
·
(
ĝ
(j)
i − g

(j)
i

)]
· 1{φ̂i ≥ 0}.

By the definition of the Riesz-representer and cross-fitting we have

E
[
φ((g(•:j−1),ĝ

(j:•)
i );Xi)− φ((g

(•:j)
i , ĝ

(j+1:•)
i );Xi)

− α(j)({(g(•:j−1), ĝ(j:•), f},Wi) ·
(
ĝ
(j)
i − g

(j)
i

)
| Vi, ĝ−k(i), f̂−k(i)

]
= 0,

where we have used the property α(j)
ℓ ({(g̃−j, g̃j), f̃}, x) = α

(j)
ℓ ({g̃−j, f̃}, x). Fur-

thermore, the term within the expectation operator is sub-Gaussian since uniformly

bounded by Assumption 2.4.2(iii). Therefore the first term in the expansion of

B3(π) can be controlled uniformly using identical arguments as forB1(π) and obeys

the same bound. The second term in the expansion of B3(π) can be bounded with

identical arguments as for B2(π) and obeys the same bound. We therefore conclude

that

E
[
sup
π∈Π

|B3(π)|
]
= O

(√
VC(Πn) ·

rκn

n3/2
+
rκn√
n

)
.

Combining the bounds forB1(π),B2(π) andB3(π) via the triangle inequality finally

gives the desired bound for E
[
supπ∈Πn

|A1,ℓ(π)|
]
.

# Bound for A2,ℓ

We first notice that

E
[
ϕℓ({g, f};Wi) ·

(
1
{
φℓ(ĝ

−k(i);Xi) ≥ 0
}
− 1 {φℓ(g;Xi) ≥ 0}

)
| Vi, ĝ−k(i)

]
= 0,

(A.5)
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by the mean-zero property of the influence function adjustments ϕℓ and cross-fitting.

Furthermore, the term inside expectation is sub-Gaussian by uniform boundedness

of the Riesz-representer, guaranteed by Assumption 2.4.2(iii). Thus we can use

similar arguments to those used for B1(π) to show

E
[
sup
π∈Πn

|A2,ℓ(π)|
]
= O

(√
VC(Πn)

n

)
.

# Bound for A3,ℓ

We begin by noticing thatφℓ(g;Xi)
(
1
{
φℓ(ĝ

−k(i);Xi) ≥ 0
}
− 1 {φℓ(g;Xi) ≥ 0}

)
≤

0 and thus, since the “never treat” policy belongs to any policy class Π for which

VC(Π) ≥ 1, we have

sup
π∈Πn

A3,ℓ(π) =
1

2n

n∑
i=1

∣∣φℓ(g;Xi) ·
(
1
{
φℓ(ĝ

−k(i);Xi) ≥ 0
}
− 1 {φℓ(g;Xi) ≥ 0}

)∣∣ ,
and thus we obtain the uniform bound2

E
[
sup
π∈Πn

A3,ℓ(π)

]
=

1

2
E

[ ∣∣φℓ(g;Xi) ·
(
1
{
φℓ(ĝ

−k(i);Xi) ≥ 0
}
− 1 {φℓ(g;Xi) ≥ 0}

)∣∣ ].
(A.6)

For the RHS in (A.6), we closely follow Lemma 5.2 in Audibert and Tsybakov

(2007), but we report the steps of the proof for completeness. For γ > 0 and any

2For a policy class of zero VC-dimension, (A.6) holds as an inequality.
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t > 0 we have

E

[ ∣∣φℓ(g;Xi)
(
1
{
φℓ(ĝ

−k(i);Xi) ≥ 0
}
− 1 {φℓ(g;Xi) ≥ 0}

)∣∣ ]

≤ E

[
|φℓ(g;Xi)| · 1

{∣∣φℓ(ĝ
−k(i);Xi)− φℓ(g;Xi)

∣∣ ≥ |φℓ(g;Xi)|
}]

≤ E

[
|φℓ(g;Xi)| · 1

{∣∣φℓ(ĝ
−k(i);Xi)− φℓ(g;Xi)

∣∣ ≥ |φℓ(g;Xi)|
}
· 1 {0 < |φℓ(g;Xi)| ≤ t}

]

+ E

[
|φℓ(g;Xi)| · 1

{∣∣φℓ(ĝ
−k(i);Xi)− φℓ(g;Xi)

∣∣ ≥ |φℓ(g;Xi)|
}
· 1 {|φℓ(g;Xi)| > t}

]

≤ E

[ ∣∣φℓ(ĝ
−k(i);Xi)− φℓ(g;Xi)

∣∣ · 1 {0 < |φℓ(g;Xi)| ≤ t}

]

+ E

[ ∣∣φℓ(ĝ
−k(i);Xi)− φℓ(g;Xi)

∣∣ · 1{∣∣φℓ(ĝ
−k(i);Xi)− φℓ(g;Xi)

∣∣ > t
}]

≤ E
[(
φℓ(ĝ

−k(i);Xi)− φℓ(g;Xi)
)2]1/2 · P(0 < |φℓ(g;Xi)| ≤ t

)1/2
+

E
[(
φℓ(ĝ

−k(i);Xi)− φℓ(g;Xi)
)2]

t

≤ C
1/2
0 E

[(
φℓ(ĝ

−k(i);Xi)− φℓ(g;Xi)
)2]1/2

tγ/2 +
E
[(
φℓ(ĝ

−k(i);Xi)− φℓ(g;Xi)
)2]

t
,

where the penultimate inequality uses Cauchy-Schwarz and Markov inequalities,

and the last inequality uses the Margin Assumption. Minimizing the last display

over t gives

E
[
sup
π∈Πn

A3,ℓ(π)

]
≤ (γ + 2) ·

(
2

γ

)γ/(γ+2)

· C1/(γ+2)
m · E

[(
φℓ(ĝ

−k(i);Xi)− φℓ(g;Xi)
)2] γ+1

γ+2

≤ (γ + 2) ·
(
2

γ

)γ/(γ+2)

· C1/(γ+2)
m · C

2(γ+1)
γ+2

2,φ · EPn

[∥∥ĝ−k − g
∥∥2
L2(PX)

] γ+1
γ+2
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For γ = 0, a similar argument gives

E

[ ∣∣φℓ(g;Xi)
(
1
{
φℓ(ĝ

−k(i);Xi) ≥ 0
}
− 1 {φℓ(g;Xi) ≥ 0}

)∣∣ ]

≤ E

[ ∣∣φℓ(ĝ
−k(i);Xi)− φℓ(g;Xi)

∣∣ · 1 {0 < |φℓ(g;Xi)| ≤ t}

]

+ E

[ ∣∣φℓ(ĝ
−k(i);Xi)− φℓ(g;Xi)

∣∣ · 1{∣∣φℓ(ĝ
−k(i);Xi)− φℓ(g;Xi)

∣∣ > t
}]

≤ 2EPn

[∥∥φℓ(ĝ
−k;X)− φℓ(g;X)

∥∥2
L2(PX)

]1/2
≤ 2 · C2

2,φ · EPn

[∥∥ĝ−k − g
∥∥2
L2(PX)

]1/2
.

Combining the cases γ > 0 and γ = 0, and using the L2-risk bounds for ĝ−k from

Assumption 2.4.4 we finally get

E
[
sup
π∈Πn

A3,ℓ(π)

]
= O

((
rκn√
n

) γ+1
γ+2

)
.

A.2.5 Proof of Theorem 2.4.1

The Neyman-orthogonalized score ΓNO({g, f};Wi) satisfies the assumptions of

Corollary 3 in Athey and Wager (2021), and thus it can be applied verbatim to

show that

E
[
sup
π∈Πn

|QNO
n (π)−Q(π)|

]
= O

(√
VC(Πn)

n

)
.

Combining the above bound with Lemma 2.4.1 via Proposition 2.4.1 gives the state-

ment of the theorem.



Appendix B

Appendix – Chapter 2

B.0.1 Consistency result for generalized model

Here we present a consistency result for the generalized model of Assumption 3.3.1.

We make the following assumptions.

Assumption B.0.1 (Exogeneity of X ′
i β0). Ui is independent of (Wi, X

′
iβ0, Zi).

Assumption B.0.2 (Regularity conditions).

(i) The parameter sets B and E are compact. B contains β0 as an interior point.

E contains (0, α0) as an interior point.

(ii) For all possible outcomes y, the log-likelihood function ℓ
(
y
∣∣w, ω, α) is

strictly convex in (ω, α) and has Hessian with eigenvalues bounded away

from zero, uniformly over (w, ω, α). Furthermore, ℓ
(
Yi
∣∣Wi, X

′
iβ + Z ′

iγ, α
)

is three times continuously differentiable in (β, γ, α) with derivatives that in

expectation are bounded for all (β, γ, α) ∈ B × E .

(iii) Let L(β, γ, α) := E
[
ℓ
(
Yi
∣∣Wi, Xiβ + Ziγ, α

)]
denote the population log-

likelihood function. For all β ∈ B and η := (γ, α) ∈ E , we have

rank

{
∂2L(β, γ, α)

∂η∂η′

}
= kz + kα. (B.1)
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For all β ∈ B and (0, α) ∈ E , the matrix

A(β, 0, α) :=

∂2L(β,0,α)
∂γ∂β′

∂2L(β,0,α)
∂γ∂α′

∂2L(β,0,α)
∂α∂β′

∂2L(β,0,α)
∂α∂α′

 (B.2)

has full rank kx + kα.

(iv) The second derivatives of the sample log-likelihood

Ln(β, γ, α) =
1

n

n∑
i=1

ℓ (Yi | Wi, X
′
iβ + Z ′

iγ, α)

converge in probability to those of the population log-likelihood

L(β, γ, α) = E [ℓ (Yi | Wi, X
′
iβ + Z ′

iγ, α)]

uniformly over (β, γ, α) ∈ B × E .

(v) The symmetric matrix Ωn,β is a twice continuously differentiable function in β,

and there exists a constant c > 0 such that with probability approaching one

we have Ωn,β ≥ c for all β ∈ B. Furthermore, we have supβ∈B ∥Ωn,β−Ωβ∥ =

op(1) for some non-random symmetric matrix Ωβ which is positive-definite for

all β ∈ B.

Assumptions B.0.1 and B.0.2 generalize Assumptions 3.2.1 and 3.2.2, respec-

tively, to the case with additional regressors Wi and parameters α. In particular,

Assumption B.0.2(iii) imposes generalizations of the non-collinearity and relevance

conditions for the instruments. Under (B.1), condition (B.2) is equivalent to requir-

ing

rank

{
∂2L(β, 0, α)
∂γ∂β′ −

[
∂2L(β, 0, α)
∂γ∂α′

] [
∂2L(β, 0, α)
∂α∂α′

]−1 [
∂2L(β, 0, α)
∂α∂β′

]}
= kx.

(B.3)
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Theorem B.0.1. Let Assumption 3.3.1, B.0.1, B.0.2 hold. Then we have

(β̂AIV, α̂AIV) = (β0, α0) + oP (1), as n→ ∞.

B.0.2 Asymptotic normality result for generalized model

We now present the general result for the asymptotic distribution of the AIV estima-

tor. To do so, we introduce the following notation for the first and second derivatives

of the sample and population log-likelihood:

Lα(β, γ, α) = E
[
∂ℓ(Yi | Wi, X

′
iβ + Z ′

iγ, α)

∂α

]
,

Ln,α(β, γ, α) =
1

n

n∑
i=1

∂ℓ(Yi | Wi, X
′
iβ + Z ′

iγ, α)

∂α
,

Lαβ(β, γ, α) = E
[
∂ℓ(Yi | Wi, X

′
iβ + Z ′

iγ, α)

∂α ∂β′

]
,

Ln,αβ(β, γ, α) =
1

n

n∑
i=1

∂ℓ(Yi | Wi, X
′
iβ + Z ′

iγ, α)

∂α ∂β′ ,

where we will also use the short-hand Lαβ := Lαβ(β0, 0, α0). We also define the

matrices

H̃ = Lγγ − Lγα L−1
αα Lαγ, G̃ = Lγβ − Lγα L−1

αα Lαβ,

and their sample analogues H̃n, G̃n based on Ln,αα,Ln,αβ, . . . in the natural way.

Theorem B.0.2. Let Assumption 3.3.1, B.0.1, B.0.2 hold. Then we have

√
n (β̂AIV − β0) = −(G̃′ W̃ G̃)−1 G̃′ W̃

√
n
{
Ln,γ − Lγα L−1

αα Ln,α

}
+ op(1),

√
n (α̂AIV − α0) = −L−1

αα Lαβ

√
n (β̂AIV − β0)− L−1

αα

√
nLn,α + op(1)

= L−1
αα Lαβ (G̃

′ W̃ G̃)−1 G̃′ W̃
√
nLn,γ

−
{
L−1

αα Lαβ (G̃
′ W̃ G̃)−1 G̃′ W̃ LγαL−1

αα + L−1
αα

} √
nLn,α + op(1),

where W̃ := H̃−1Ωβ0 H̃
−1.

The asymptotic representation in Theorem B.0.2 can be used to show asymp-
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totic normality of the AIV estimator based on

√
n

Ln,γ

Ln,α

 d→ N


 0

0

 ,

 Σγ Σγα

Σ′
γα Σα




where Σα = Var
[
∂ℓ(Yi|Wi, X

′
iβ0, α0)

∂α

]
, Σγ = Var

[
Zi

∂ℓ(Yi |Wi,X
′
iβ0,α0)

∂ω

]
, and Σγα was

defined in the main text.

B.0.3 Local sign consistency: formal results

In this section, we formalize conditions under which the auxiliary IV estimator is

sign-consistent and we show that these conditions are verified in two benchmark

models. For this purpose we need some additional notation. Let γ(·, ·) : Rkx ×

Rkx → Rkz be the function implicitly defined by the relationship

s(β, γ(β, β0), β0) = 0, s(β, γ, β0) := EPβ0

[
∂ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ
)

∂ω
Zi

]
,

where Pβ0 denotes the true data generating process parametrized by β0. Our previ-

ous results show that γ̂(β) defined in (3.1) converges uniformly to γ(β, β0) under

Pβ0 . Thus, we can define the probability limit of our auxiliary IV estimator as a

function of β0 as

β∗(β0) = argmin
β∈B

∥γ(β, β0)∥Ω(β,β0)
, (B.4)

where Ω(β, β0) is the probability limit of Ωn,β under Pβ0 . The next theorem pro-

vides a sufficient condition for local sign consistency of the AIV estimator, which

relies on some additional regularity conditions.

Assumption B.0.3 (Additional regularity conditions). There exists an open set

around βO = (βO
−k, 0) such that

(i) The function s(β, γ, β0) is three-times continuously differentiable with uni-
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formly bounded derivatives, and second derivatives

G(β, γ, β0) :=
∂2s(β, γ, β0)

∂γ∂β′ = EPβ0

[
ZiX

′
i

∂2ℓ
(
Yi
∣∣Xiβ + Ziγ

)
∂ω2

]
,

H(β, γ, β0) :=
∂2s(β, γ, β0)

∂γ∂β′ = EPβ0

[
ZiZ

′
i

∂2ℓ
(
Yi
∣∣Xiβ + Ziγ

)
∂ω2

]
,

having singular values uniformly bounded away from 0.

(ii) The function Ω(β, β0) is positive-definite with eigenvalues uniformly bounded

away from 0 and uniformly bounded entries that have uniformly bounded

continuous derivatives up to second-order.

Assumption B.0.3 imposes additional smoothness conditions on the popula-

tion score function. These guarantee that the AIV estimator solves a convex opti-

mization problem for data generating process in a neighborhood of βO, when the

optimization is made over a suitably small set.

Theorem B.0.3. Suppose that Assumptions 3.1.1,3.2.1, 3.2.2, and B.0.3 hold. Then

the auxiliary IV estimator that solves (3.1) over a suitably small B∗ ⊆ B is locally

sign consistent if

∂β∗,k(β0)

∂β0,k

∣∣∣∣
β0=βO

=

[(
G′

OH
−1
O ΩOH

−1
O GO

)−1
G′

OH
−1
O ΩOH

−1
O
∂s(βO, 0, βO)

∂β′
0

]
(kx,kx)

> 0,

where GO = G(βO, 0, βO), HO = H(βO, 0, βO) and ΩO = Ω(βO, βO).

In the following subsections, we use the above Lemma to verify local sign

consistency of the auxiliary IV estimator in the benchmark models of Examples

3.2.1 and 3.2.2.
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B.0.3.1 Details for Example 3.2.1 (Control function)

We have

s(β, γ, β0)

= EPβ0

[
(Yi − Φ(X ′

iβ + Z ′
iγ)) ·

ϕ(X ′
iβ + Z ′

iγ)

Φ(X ′
iβ + Z ′

iγ) · (1− Φ(X ′
iβ + Z ′

iγ))
Zi

]
= EPβ0

[{
FU |V (X

′β0 | Vi)− Φ(X ′
iβ + Z ′

iγ)
}
· ϕ(X ′

iβ + Z ′
iγ)

Φ(X ′
iβ + Z ′

iγ) · (1− Φ(X ′
iβ + Z ′

iγ))
Zi

]
,

since

EPβ0
[Yi | Xi, Zi] = FU |X,Z(X

′β0 | Xi, Zi)

= FU |V,Z(X
′β0 | Vi, Zi)

= FU |V (X
′β0 | Vi),

which then gives

∂s(βO, 0, βO)

∂β0
=

ϕ(βO
2 )

Φ(βO
2 ) · (1− Φ(βO

2 ))
· E
[
fU |V (β

O
2 |Vi)ZiX

′
i

]
.

Having defined Z̃i := Ω
−1/2
O H−1

O Zi, we have by Theorem B.0.3 that

dβ∗(β0)

dβ0

∣∣∣∣
β0=βO

=
1

ϕ(βO
2 )

·
[
E[XiZ̃

′
i] · E[Z̃ ′

iXi]
]−1

E[XiZ̃
′
i] · E

[
fU |V (β

O
2 |Vi) Z̃iX

′
i

]
,

(B.5)

It is useful to define Q :=
[
E[XiZ̃

′
i] · E[Z̃ ′

iXi]
]
, for which we we have

Q−1 =
1

det(Q)
·

 Q22 −Q12

−Q12 Q11

 ,

Q11 =
kz∑
j=1

E[xi Z̃i,j]
2, Q12 =

kz∑
j=1

E[xi Z̃i,j] · E[Z̃i,j], Q22 =
kz∑
j=1

E[Z̃i,j]
2.
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We also have

E[fU |V (β
O
2 |Vi)Zixi] = E[fU |V (β

O
2 |Vi)m(Zi)Z̃i] + E[fU |V (β

O
2 |Vi)ViZ̃i]

= E[fU |V (β
O
2 |Vi)] · E[m(Zi)Z̃i] + E[fU |V (β

O
2 |Vi)Vi] · E[Z̃i]

= E[fU |V (β
O
2 |Vi)] · E[xiZ̃i] + E[fU |V (β

O
2 |Vi)Vi] · E[Z̃i]

= ϕ(βO
2 ) · E[xiZ̃i] + E[fU |V (β

O
2 |Vi)Vi] · E[Z̃i],

where we have used the independence between Zi and Vi. Thus we can express the

lower-diagonal entry of (B.5)

∂β∗,2(β0)

∂β0,2

∣∣∣∣
β0=βO

=
[
Q−1E[XiZ̃

′
i]
]
(2,•)

· E
[
Z̃iXi

]
(•,2)

+
E[fU |V (β

O
2 |Vi)Vi]

ϕ(βO
2 )

·
[
Q−1E[XiZ̃

′
i]
]
(2,•)

· E[Z̃i].

The first term in the above expansion is equal to 1 and the second term is equal to 0

since

[
Q−1E[XiZ̃

′
i]
]
(2,•)

· E[Z̃i]

=
1

det(Q)
·
[
−Q12 ·

( kz∑
j=1

E[Z̃i,j]
2

)
+Q11 ·

( kz∑
j=1

E[xiZ̃i,j] · E[Z̃i,j]

)]

=
1

det(Q)
·
[
−
( kz∑

ℓ=1

E[xi Z̃i,ℓ] · E[Z̃i,j]

)
·
( kz∑

j=1

E[Z̃i,j]
2

)

+

( kz∑
j=1

E[Z̃i,j]
2

)
·
( kz∑

ℓ=1

E[xiZ̃i,j] · E[Z̃i,j]

)]
= 0.

Hence we conclude that

∂β∗,2(β0)

∂β0,2

∣∣∣∣
β0=βO

= 1.
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B.0.3.2 Details for Example 3.2.2 (Generalized bivariate Probit)

Standard calculations (see Section 15.7.3 of Wooldridge, 2010) give:

EPβ0
[Yi | Xi, Zi] = E

[
FU |V (X

′
iβ0 | Vi) | Xi, Zi

]
=

Xi

FV (m(Zi))
·
∫ ∞

−m(Zi)

FU |V (X
′
iβ0 | Vi) · fV (v)dv

+
1−Xi

1− FV (m(Zi))
·
∫ −m(Zi)

−∞
FU |V (X

′
iβ0 | Vi) · fV (v)dv,

which then gives

∂s(βO, 0, βO)

∂β0,2
=

ϕ(βO
2 )

Φ(βO
2 ) · (1− Φ(βO

2 ))
· E
[
Zi ·

∫ ∞

−m(Zi)

fU |V (β
O
2 | Vi) · fV (v)dv

]
.

Using Theorem B.0.3 we obtain

∂β∗,2(β0)

∂β0,2

∣∣∣∣
β0=βO

=
1

ϕ(βO
2 )

· E[ZiXi]
−1
(2,•) · E

[
Zi ·

∫ ∞

−m(Zi)

fU |V (β
O
2 | Vi) · fV (v)dv

]

=
1

ϕ(βO
2 )

·
Cov

(
zi,
∫∞
−m(Zi)

fU |V (β
O
2 | Vi) · fV (v)dv

)
Cov (zi, FV (m(Zi))

.

The functions
∫∞
−Ziδ

fU |V (β
O
2 | Vi) · f(v)dv and FV (m(Zi)) are both monotonic

increasing (decreasing) in zi when m(Zi) is monotonic increasing (decreasing). As

a result, the two covariances in the above display have concordant signs and we

conclude that the auxiliary IV estimator is sign consistent.

B.0.4 Technical Lemmas

Lemma B.0.1. Under the Assumptions of Theorem B.0.3, there exists a convex and

compact set B∗ containing βO such that the optimization problem

argmin
β∈B∗

∥γ(β, β0)∥Ω(β,β0)

is convex for all β0 ∈ B∗.
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B.0.5 Proofs

B.0.5.1 Proof of Lemma 3.1.1

Concavity of the log-likelihood, we have that γ̂(β) is uniquely characterized by the

FOC

1

n

n∑
i=1

∂ℓ
(
Yi
∣∣X ′

iβ + Z ′
iγ, α

)
∂γ

Zi = 0

By a mean-value expansion of the LHS in γ around γ = 0, the last display equation

becomes

γ̂(β) = −Hn(β, γ∗(β))
−1 ·

[
1

n

n∑
i=1

dℓ
(
Yi
∣∣X ′

iβ
)

dω
Zi

]
.

Plugging the above into the objective function ∥γ̂(β)∥Ωn,β
gives the desired equiva-

lence.

B.0.5.2 Proof of Theorem B.0.1

We begin by defining the population (large n limit) analog of (3.10) as

(γ(β), α(β)) = argmax
γ, α∈E

L(β, γ, α),

β∗ =

{
β : β ∈ argmin

β∈B
∥γ(β)∥Ωn,β

}
,

α∗ = {α(β) : β ∈ β∗} ,

α†(β) = argmax
(α,0)∈E

L(β, 0, α),

α†
∗ =

{
α†(β) : β ∈ β∗} .

The proof consists of two parts. In Part I we show that β∗ = β0 and α∗ = α0. In

Part II we use the identification result of Part I to show consistency of (β̂AIV, α̂AIV).

Part I: Strict concavity of the expected log-likelihood in η (Assumption B.0.2(ii))
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guarantee that (γ(β), α(β)) are uniquely defined by the FOC

∂L(β, η)
∂η

= 0,

for which we have γ(β0) = 0, α(β0) = α0 by Assumption B.0.1. Suppose there

exists β̌ ∈ β∗ with β̌ ̸= β0, so that

∂L(β0, 0, α(β0))
∂η

= 0,

∂L(β̌, 0, α(β̌))
∂η

= 0.

By a mean value expansion of ∂L(β,0,α)
∂η

in (β, α):

0 =
∂L(β̌, 0, α)

∂η
− ∂L(β0, 0, α(β̌))

∂η
=

∂2L(β̃,0,α̃)
∂γ∂β′

∂2L(β̃,0,α̃)
∂γ∂α′

∂2L(β̃,0,α̃)
∂α∂β′

∂2L(β̃,0,α̃)
∂α∂α′


︸ ︷︷ ︸

=A(β̃,0,α̃)

 β̌ − β0

α(β̌)− α0



where (β̃, α̃) is an intermediate value between (β̌, α(β̌)) and (β0, α0). The matrix

A(β̃, 0, α̃) has full rank by Assumption B.0.2 (iii), and therefore we conclude from

the previous display that

β̌ = β0, α(β̌) = α0.

By similar arguments we have α†(β0) = α0 and thus α†
∗ = α0.

Part II: show (β̂AIV, α̂AIV) = (β0, α0) + oP (1).

First define

η̂(β) = argmax
η∈E

n∑
i=1

ℓ
(
Yi
∣∣Wi, X

′
iβ + Z ′

iγ, α
)
,

η(β) = argmax
η∈E

E ℓ
(
Yi
∣∣Wi, X

′
iβ + Z ′

iγ, α
)
,
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Then by Pollard’s convexity lemma we know that

sup
β∈B

sup
γ∈E

∣∣∣∣∣ 1n
n∑

i=1

ℓ
(
Yi
∣∣Wi, X

′
iβ + Z ′

iγ, α
)
− E ℓ

(
Yi
∣∣Wi, X

′
iβ + Z ′

iγ, α
)∣∣∣∣∣ = oP (1).

Having this, we satisfy all the assumptions of Lemma B.1 in Chernozhukov and

Hansen (2006), and therefore conclude

sup
β∈B

∥η̂(β)− η(β)∥ = oP (1).

It directly follows that the objective function ∥γ̂(β)∥Ωn,β
converges uniformly to

∥γ(β)∥Ω, which together with the continuity of ∥γ(β)∥Ω and β0 being its unique

minimizer over the compact set B (Part I) ensures that standard conditions for con-

sistency of extremum estimators are satisfied (see, e.g., Theorem 2.1 in Newey and

McFadden, 1994). We thus conclude

β̂AIV = β0 + oP (1).

By analogous arguments we have sup(β,γ)∈(B,E) ∥α̂†(β, γ)−α†(β, γ)∥ = op(1). Fur-

thermore, consistency of β̂AIV and continuity of α†(β, γ) imply that α†(β̂AIV, 0) =

α(β0) + oP (1). This, together with the uniform consistency of α̂†(β, γ), guarantees

that

α̂AIV = α0 + oP (1).

B.0.5.3 Proof of Theorem B.0.2

The proof is in three parts. First, we show that

∥γ̂(β)∥Ωn,β
= ∥s∗(β)∥Wn,β

, (B.6)
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with

s∗(β) = Ln,γ(β, 0, α0)− Ln,γα(β, η∗(β))Ln,αα(β, η∗(β))
−1 Ln,α(β, 0, α0).

Wn,β = H̃n(β, η∗(β))
−1Ωn,β H̃n(β, η∗(β))

−1,

where η∗(β) = (γ∗(β), α∗(β)) lies on the line between (γ̂(β), α̂(β)) and (0, α0). In

Part II, we use the result from Part I to derive the asymptotic representation for β̂AIV.

In Part III, we use the result from Part II to derive the asymptotic representation for

α̂AIV.

Part I: Strict concavity of the sample log-likelihood in η guarantees that η̂(β) =

(γ̂(β), α̂(β)) are uniquely defined by the FOC

Ln,η(β, η̂(β)) = 0.

A mean-value expansion the above around (γ, α) = (0, α0) gives

Ln,η(β, 0, α0) + Ln,ηη(β, η∗(β)) · η̂(β) = 0

=⇒ η̂(β) = −Ln,ηη(β, η∗(β))
−1 · Ln,η(β, 0, α0).

Using the partitioned inverse formula we obtain

γ̂(β) = −H̃n(β, η∗(β))
−1 · s∗(β)

Plugging the above into ∥γ̂(β)∥Ωn,(β,α)
gives (B.6).

Part II: Define

β̂† := β0 −
(
G̃′ W̃ G̃

)−1

G̃′ W̃ s(β), s(β) = Ln,γ(β, 0, α0)− Lγα L−1
αα Ln,α(β, 0, α0).

By definition, β̂ := β̂AIV minimizes s∗(β)′Wn,β s∗(β) . Therefore,

s∗(β̂)
′Wn,β̂ s∗(β̂) ≤ s∗(β̂

†)′Wn,β̂† s∗(β̂
†). (B.7)
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Uniform convergence of η̂(β) to η(β) (see proof of Theorem B.0.1), along with

consistency of β̂, implies η∗(β̂) = (0, α0) + oP (1). This, together with uniform

consistency of the second derivatives of Ln and Ωn,β implies thatWn,β̂ = W̃+op(1).

Uniform convergence of G̃n to G̃ justifies the expansions

s∗(β̂) = s(β0) + G̃ (β̂ − β0) + oP

(
∥β̂ − β0∥

)
,

s∗(β̂
†) = s(β0) + G̃ (β̂† − β0) + oP

(
∥β̂† − β0∥

)
= s(β0) + G̃ (β̂† − β0) + oP

(
1√
n

)
,

where we have used that
√
n(β̂†−β0) = Op(1). Plugging the expansions into (B.7)

and using W̃n,β̂ = W̃ + oP (1) gives for the LHS

[
s(β0) + G̃ (β̂ − β0) + oP

(
∥β̂ − β0∥

)]′
W̃
[
s(β0) + G̃ (β̂ − β0) + oP

(
∥β̂ − β0∥

)]
+ R(β̂),

with

R(β̂) = oP (1) ·
[
s(β0)

′s(β0) + (β̂ − β0)
′G̃′G̃(β̂ − β0) + oP (∥β̂ − β0∥2)

+ 2 s(β0)
′G̃(β̂ − β0) + 2 s(β0)

′ oP

(
∥β̂ − β0∥

)
+ 2 (β̂ − β0) G̃

′G̃ oP

(
∥β̂ − β0∥

)]
= oP

(
∥β̂ − β0∥2 +

1√
n
∥β̂ − β0∥+

1

n

)
,

where we have used s(β0) = OP (1/
√
n). Similarly, for the RHS we have

[
s(β0) + G̃ (β̂† − β0) + oP

(
∥β̂† − β0∥

)]′
W̃
[
s(β0) + G̃ (β̂† − β0) + oP

(
∥β̂† − β0∥

)]
+ R(β̂†),

with

R(β̂†) = oP

(
∥β̂† − β0∥2 +

1√
n
∥β̂† − β0∥+

1

n

)
= oP

(
1

n

)
.
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Combining the previous results with the inequality (B.7) gives

[
s(β0) + G̃ (β̂ − β0)

]′
W̃
[
s(β0) + G̃ (β̂ − β0)

]
≤
[
s(β0) + G̃ (β̂† − β0)

]′
W̃
[
s(β0) + G̃ (β̂† − β0)

]
+ oP

(
∥β̂ − β0∥2 +

1√
n
∥β̂ − β0∥+

1

n

)
. (B.8)

We now decompose s(β) = A1 + A2, where

A1 = G̃(G̃′W̃ G̃)−1G̃′W̃s(β), A2 =
[
I− G̃(G̃′W̃ G̃)−1G̃′W̃

]
s(β).

Because G̃′W̃A2 = 0, we find that the contributions of A2 on both sides of the

inequality (B.8) are identical and thus drop out. Also plugging in the definition of

β̂†, this inequality becomes

(β̂ − β0) + (G̃′W̃ G̃)−1G̃′W̃s(β0)︸ ︷︷ ︸
:=L

′

G̃′W̃ G̃

×
[
(β̂ − β0) + (G̃′W̃ G̃)−1G̃′W̃s(β0)

]
≤ oP

(
∥β̂ − β0∥2 +

1√
n
∥β̂ − β0∥+

1

n

)
.

Because G̃′W̃ G̃ has full rank (since W̃ > 0 and rank(G̃) = kx) we have that

∥(β̂ − β0) + L∥2 ≤ oP (1) ·
(
∥β̂ − β0∥2 +

1√
n
∥β̂ − β0∥+

1

n

)
≤ oP (1) ·

(
∥β̂ − β0 + L∥2 + 1√

n
∥β̂ − β0 + L∥+ ∥L∥2 + 1√

n
∥L∥+ 1

n

)
≤ oP

(
1√
n

)
· ∥β̂ − β0 + L∥+ oP

(
1

n

)
,

where we have used L = OP (1/
√
n). Denoting ξn := oP

(
1√
n

)
· ∥β̂ − β0 + L∥ we

can re-write the above as

(
∥β̂ − β0 + L∥ − ξn

)2
≤ ξ2n + oP

(
1

n

)
,
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from which we conclude

√
n(β̂ − β0) =

√
nL+ oP (1).

Part III: Consider the decomposition

α̂†(β̂)− α0 = [α̂†(β̂)− α̂†(β0)] + [α̂†(β0)− α(β0)]. (B.9)

For the first term we consider the mean-value expansion:

α̂†(β̂)− α̂†(β0) =
dα̂†(β)

dβ

∣∣∣
β=β̃

· (β̂ − β0),

for β̃ between β0 and β̂. By the implicit function theorem, we have that in a neigh-

bourhood of (β0, α̂†(β0))

∂α̂†(β)

∂β′ = −Ln,αα(β, 0, α̂
†(β))−1 · Ln,αβ(β, 0, α̂

†(β)).

Using β̃ = β0 + op(1) and the usual uniform convergence arguments we obtain

α̂(β̂)− α̂(β0) = −L−1
αα Lαβ (β̂ − β0) + op

(
∥β̂ − β0∥

)
. (B.10)

Furthermore, classical likelihood results give

α̂†(β0)− α0 = −L−1
αα Ln,α + op(1/

√
n). (B.11)

Plugging (B.10) and (B.11) into (B.9) gives the asymptotic representation for α̂.

B.0.5.4 Proof of Theorem B.0.3

The proof is made of three parts. In Part I we derive the formula for dβ∗(βO)
dβ0

. In Part

II we argue that dβ∗(β0)
dβ0

is bounded and continuous around βO. In Part III we finally

show local sign consistency of the AIV estimator defined as the minimizer of the

objective function over a suitably small closed ball around βO.
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Part I: The function s(β, γ, β0) is thrice continuously differentiable, and thus by the

implicit function theorem the function γ(β, β0) is thrice-continuously differentiable

in an open set containing (β, β0) = (βO, βO) with first-derivatives equal to

∂γ(β, β0)

∂β′ = [H(β, γ(β, β0), β0)]
−1G(β, γ(β, β0), β0),

∂γ(β, β0)

∂β′
0

= − [H(β, γ(β, β0), β0)]
−1 · s(β, γ(β, β0), β0)

∂β′
0

.

Thrice-differentiability of γ(β, β0) together with Technical Lemma B.0.1 implies

that the limit of the AIV estimator β∗(β0) is characterized around βO by the FOC

of the minimisation in (B.4):

Π(β, β0) := 2
∂γ(β, β0)

∂β′

′

Ω(β, β0)γ(β, β0) +
∑
i,j

γi(β, β0) · γj(β, β0) ·
∂Ωi,j(β, β0)

∂β
= 0,

(B.12)

when the estimator maximizes the objective function over the closed ballB∞,ϵ(β
O).

We now apply the implicit function theorem to (B.12), where thrice-differentiability

of γ(β, β0) implies that β∗(β0) is twice-differentiable with

dβ∗(β
O)

β′
0

= −
[
∂Π(βO, 0, βO)

∂β′

]−1
∂Π(βO, 0, βO)

∂β′
0

= −

[
∂γ(βO, βO)

∂β′

′

ΩO
∂γ(βO, βO)

∂β′

]−1
∂γ(βO, βO)

∂β′

′

ΩO
∂γ(βO, βO)

∂β′
0

=
(
G′

OH
−1
O ΩOH

−1
O GO

)−1
G′

OH
−1
O ΩOH

−1
O
∂s(βO, 0, βO)

∂β′
0

,

where we have used that γ(βO, βO) = 0.

Part II: Applying the implicit function theorem twice to (B.12) shows, after some

simple but tedious algebra, that d2β∗(β0)
(dβ0)2

is bounded and continuous in a neighbor-

hood of βO when H ,G and Ω are bounded and have singular values bounded away

from zero, uniformly in (β, γ, β0), which we assume.

Part III: We consider the Taylor expansion of β∗,k(β0) with respect to β0,k around
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βO:

β∗,k(β0) =
∂β∗,k(β

O)

∂β0,k
· β0,k +

∂2β∗,k(β̃)

(∂β0,k)2
· (β0,k)2

where β̃ is an intermediate point between (βO
−k, β0,k) and (βO

−k, 0), and we have used

that βO
0,k = 0. Multiplying the above by β0,k we obtain

β∗,k(β0) · β0,k =
∂β∗,k(β

O)

∂β0,k
· β2

0,k +
∂2β∗,k(β̃)

(∂β0,k)2
· β3

0,k. (B.13)

Continuity of ∂2β∗,k(β0)

(∂β0,k)2
implies that for an arbitrary ε > 0 there exists a δε > 0 such

that for any |β0,k| < δε one has
∣∣∣∂2β∗,k(β0)

(∂β0,k)2

∣∣∣ < Cε :=
∣∣∣∂2β∗,k(β

O)

(∂β0,k)2

∣∣∣ + ε. Fixing such

ε, and using that ∂β∗,k(β
O)

∂β0,k
> 0, we have that β∗,k(β0) · β0,k > 0 for any β0,k small

enough to satisfy the requirements of the implicit function theorem in Part I and II

and

0 < |β0,k| < min

{
δϵ, δε,

∂β∗,k(β
O)

∂β0,k
/Cε

}
.

B.0.5.5 Proof of Lemma B.0.1

We want to find a convex set B∗ containing βO for which the objective function

∥γ(β, β0)∥Ω(β,β0)
is convex in β ∈ B∗ for all β0 ∈ B∗. By the continuous twice-

differentiability of γ(β, β0) and Ωβ,β0 wrt (β, β0), for every ϵ > 0 there exists a δϵ

such that for ∥(β, β0)− (βO, βO)∥∞ ≤ δϵ we have∥∥∥∥∥∂ ∥γ(β, β0)∥Ω(β,β0)

∂β ∂β′ − ∂γ(βO, βO)

∂β

′

Ω(βO,βO)

∂γ(βO, βO)

∂β

∥∥∥∥∥ ≤ ϵ.

Denote Cλ the minimum eigenvalue of ∂γ(βO,βO)
∂β

′
Ω(βO,βO)

∂γ(βO,βO)
∂β

, which is

bounded away from 0 by Assumption 3.2.2. By Weyl’s Inequality we have∣∣∣∣∣λmin

(
∂ ∥γ(β, β0)∥Ω(β,β0)

∂β ∂β′

)
− Cλ

∣∣∣∣∣ ≤ ϵ
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Choosing ϵ < Cλ ensures that objective function is convex with respect to β over

the convex set B∞,ϵ(β
O) for all β0 ∈ B∞,ϵ(β

O), where B∞,ϵ(β
O) denotes a closed

ball around βO with respect to the ℓ∞-norm.



Appendix C

Appendix – Chapter 3

This appendix is organized as follows. Section C.1 presents the assumptions and the

variance estimators studied in Chapter 4 for the fully general case that allows for

misspecification bias in the model. Section C.2 presents the main results of Chapter

4 under the setup described in Section C.1. Section C.3 presents the technical lem-

mas needed to establish the main results of the chapter. Section C.4 provides the

proofs for the main results. Section C.5 provides the proofs for the technical lem-

mas. Section C.6 presents an extension of the variance estimators studied in Chapter

4 which allows to impose within-cluster zero restrictions on the variance-covariance

matrix of the errors.

C.1 Setup - general case

C.1.1 Assumptions

Suppose that {(yi,n,x′
i,n,w

′
i,n) : 1 ≤ i ≤ n} is generated by

yi,n = β′xi,n + γ ′
nwi,n + ui,n, i = 1, . . . , n, (C.1)



C.1. SETUP - GENERAL CASE 157

for which Wn is a collection of random variables such that E[wi,n|Wn] = wi,n, and

we set Xn = (x1,n, . . . ,xn,n). We define the following quantities:

ϱn =
1

n

n∑
i=1

E[R2
i,n], Ri,n = E[ui,n|Xn,Wn],

ρn =
1

n

n∑
i=1

E[r2i,n], ri,n = E[ui,n|Wn],

χn =
1

n

n∑
i=1

E[∥Qi,n∥2], Qi,n = E[vi,n|Wn],

Γ̂n =
n∑

i=1

v̂i,nv̂
′
i,n/n, Σn = V[

1√
n

n∑
i=1

v̂i,nUi,n|Xn,Wn],

(C.2)

where vi,n = xi,n − (
∑n

j=1 E[xj,nw
′
j,n])(

∑n
j=1 E[wj,nw

′
j,n])

−1wi,n is the popula-

tion counterpart of v̂i,n. Also, letting λmin(·) denote the minimum eigenvalue of its

argument, define

Cn = max
1≤i≤n

{E[U4
i,n|Xn,Wn] + E[∥Vi,n∥4|Wn] + 1/E[U2

i,n|Xn,Wn]}+1/λmin(E[Γ̃n|Wn]),

(C.3)

where Ui,n = yi.n − E[yi,n|Xn,Wn], Vi,n = xi,n − E[xi,n|Wn], Γ̃n =∑n
i=1 Ṽi,nṼ

′
i,n/n and Ṽi,n =

∑n
j=1Mij,nVi,n.

We impose the following three assumptions:

Assumption C.1.1. max1≤g≤Gn #Tg,n = O(1), where #Tg,n is the cardinality

of Tg,n and where {Tg,n : 1 ≤ g ≤ Gn} is a partition of {1,. . . ,n} such that

{(Ui,n,x
′
i,n) : i ∈ Tg,n} are independent over g conditional on Wn.

Assumption C.1.2. P[λmin(
∑n

i=1wi,nw
′
i,n) > 0] → 1, lim supn→∞Kn/n < 1,

Cn = Op(1) and Σ−1
n = Op(1)

Assumption C.1.3. χn = O(1), ϱn + n(ϱn − ρn) + nχnϱn = o(1), and

max1≤i≤n ∥v̂i,n∥/
√
n = op(1).

The only difference with the simplified set of assumptions presented in Section

4.2 of this paper is that we now allow for misspecification bias, i.e. E[ui|Xn,Wn] ̸=
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0. In particular, Assumption C.1.3 now also includes conditions on ϱn and ρn, which

are requirements on the quality of the linear approximation for the conditional ex-

pectations E[yi,n|Xn,Wn] and E[yi,n|Wn], respectively. The misspecification bias

is required to vanish asymptotically, thus ruling out the presence of lagged out-

comes in the model. Notice that when no misspecification bias is present one gets

ϱn = ρn = 0 and this set of assumptions reduces to the one presented in Section

4.2.

C.1.2 Variance estimators

Let ΩU,n = E[UnU
′
n|Xn,Wn] be the (conditional) variance-covariance matrix of

the errors Un = (U1,n, . . . , Un,n)
′ and Ln =

∑Gn

g=1(#Tg,n)
2 the number of non-zero

elements contained in it. We define a general class of cluster-robust estimators for

Σn of the form

Σ̂n(κn) =
1

n

Gn∑
g1=1

Gn∑
g2=1

∑
i1,j1∈Tg1,n

∑
i2,j2∈Tg2,n

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂
′
j1,n

ûi2,nûj2,n,

(C.4)

where κg1,g2,i1,j1,i2.j2,n is an entry of the Ln × Ln symmetric matrix κn =

κn(w1,n, . . . ,w1,n).1

Furthermore, define

κCR
n = (S′

n(Mn ⊗Mn)Sn)
−1, (C.5)

where ⊗ denotes the Kronecker product and Sn is the n2×Ln selection matrix with

full column rank such that S′
nvec(ΩU,n) is the Ln×1 vector containing the non-zero

elements of ΩU,n. Our proposed cluster-robust estimator is then defined as

Σ̂CR
n ≡ Σ̂(κCR

n ) =
1

n

Gn∑
g1=1

Gn∑
g2=1

∑
i1,j1∈Tg1,n

∑
i2,j2∈Tg2,n

κCRg1,g2,i1,j1,i2,j2,nv̂i1,nv̂
′
j1,n

ûi2,nûj2,n.

(C.6)

1In particular, κg1,g2,i1,j1,i2.j2,n corresponds to the (h(g1, i1, j1), h(g2, i2, j2)) entry of κn,
where h(g, i, j) = [

∑(g−1)
k=0 (#Tk,n)2 + (#Tg,n)(i − 1) + j] and we adopt the convention that

#T0,n = 0.
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C.2 Main results - general case
In this section we present the generalisation of the main results of the chapter to the

case of potential misspecification bias in the model.

The first theorem establishes asymptotic normality of the OLS estimator for

βn.

Theorem C.2.1. Suppose Assumptions C.1.1-C.1.3 hold. Then,

Ω−1/2
n

√
n(β̂n − β)

d→ N (0, Id), Ωn = Γ̂−1
n ΣnΓ̂

−1
n ,

where Σn = 1
n

∑Gn

g=1

∑
i,j∈Tg,n v̂i,nv̂

′
j,nE[Ui,nUj,n|Xn,Wn].

The second theorem provides an asymptotic representation for the general class

of variance estimators defined in (C.4).

Theorem C.2.2. Suppose Assumptions C.1.1-C.1.3 hold.

If ∥κn∥∞ = max(g1,i1,j1)
∑Gn

g2=1

∑
i2,j2∈Tg2,n

|κg1,g2,i1,j1,i2,j2,n| = Op(1), then

Σ̂n(κn) =
1

n

Gn∑
g1=1

Gn∑
g2=1

∑
i1,j1∈Tg1,n

∑
i2,j2∈Tg2,n

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂
′
j1,n

×
Gn∑
g3=1

∑
i3,j3∈Tg3,n

Mi2j3,nMj2i3,nE[Ui3,nUj3,n|Xn,Wn] + op(1).

(C.7)

The following corollary characterizes the asymptotic limit of LZ’s estimator.

Corollary C.2.1. Suppose the assumptions of Theorem C.2.2 hold. Then,

Σ̂LZ
n =

1

n

Gn∑
g1=1

Gn∑
g2=1

∑
i1,j1∈Tg1,n

∑
i2,j2∈Tg2,n

v̂i1,nv̂
′
j1,n

Mi1j2,nMj1i2,nE[Ui2,nUj2,n|Xn,Wn]+op(1).

The follwing theorem establishes consistency of our proposed estimator.

Theorem C.2.3. Suppose Assumptions C.1.1-C.1.3 hold.
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If P[λmin(S
′
n(Mn ⊗Mn)Sn) > 0] → 1 and ∥κCR

n ∥∞ = Op(1), then

Σ̂CR
n = Σn + op(1).

Finally, the fourth theorem provides sufficient conditions for consistency of

LZ’s estimator. For this purpose, define w∗
i,n = Σ̂

−1/2
w,n wi,n, where Σ̂

1/2
w,n is

the unique symmetric positive definite Kn × Kn matrix such that Σ̂1/2
w,nΣ̂

1/2
w,n =

1
n

∑n
i=1 wi,nw

′
i,n.

Theorem C.2.4. Suppose Assumptions C.1.1-C.1.3 hold and that maxi,j E[w∗2
ij,n] =

O(1). If K2
n/n→ 0, then

Σ̂LZ
n = Σn + op(1). (C.8)

Moreover, if E[U2
i,n|Xn,Wn] = σ2

n ∀i, and E[Ui,nUj,n|Xn,Wn] = 0 ∀i ̸= j, then

(C.8) holds under Kn/n→ 0.

C.3 Technical Lemmas
Here we present the technical lemmas needed to establish the main results of the

chapter.2

The first lemma can be used to approximate Σ̂n(κn) by means of Σ̃n(κn),

where

Σ̂n(κn) =
1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂
′
j1,n

ûi2,nûj2,n,

Σ̃n(κn) =
1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂
′
j1,n

Ũi2,nŨj2,n, Ũi,n =
n∑

j=1

Mij,nUj,n

Lemma C.3.1. Suppose Assumptions C.1.1-C.1.3 hold. If ∥κn∥∞ = Op(1), then

Σ̂n(κn) = E[Σ̃n(κn)|Xn,Wn] + op(1).
2Throughout the Technical Lemmas we adopt the notational convention

∑
(g,i,j) ≡∑Gn

g=1

∑
i,j∈Tg,n
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The second lemma can be combined with Lemma 1 to show consistency of

Σ̂n(κn) under a high-level condition.

Lemma C.3.2. Suppose Assumption C.1.2 holds. If

max
(g1,i1,j1)

{∣∣∣ ∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nMi1j2,nMj1i2,n − 1
∣∣∣+

∑
(g3,i3,j3 )̸=(g1,i1,j1)

∣∣∣ ∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nMi3,j2,nMj3,i2,n

∣∣∣} = op(1),

then E[Σ̃n(κn)|Xn,Wn] = Σn + op(1).

The third lemma gives sufficient conditions for the condition of Lemma 2 for

our proposed estimator Σ̂CR
n .

Lemma C.3.3. Suppose Assumption C.1.2 holds. If P[λmin(S
′
n(Mn ⊗ Mn)Sn) >

0] → 1, then

E[Σ̃n(κ
CR
n )|Xn,Wn] = Σn + op(1).

with κCR
n = (S′

n(Mn ⊗Mn)Sn)
−1.

The fourth lemma finds sufficient conditions for the condition of Lemma 2 for

LZ’s estimator.

Lemma C.3.4. Suppose Assumption C.1.2 holds and κn = ILn . Also define

w∗
i,n = Σ̂

−1/2
w,n wi,n, where Σ̂

1/2
w,n is the unique symmetric positive definite Kn ×Kn

matrix such that Σ̂
1/2
w,nΣ̂

1/2
w,n = 1

n

∑n
i=1wnw

′
n. If maxi,j E[w∗2

ij,n] = O(1) and

Kn = o(n1/2), then

E[Σ̃n(κn)|Xn,Wn] = Σn + op(1).

Finally, the fifth lemma establishes sufficient conditions for the condition of

Lemma 2 for LZ’s estimator for the special case of homoskedastic errors.

Lemma C.3.5. Suppose Assumption C.1.2 holds and κn = ILn . If maxi,j E[w∗2
ij,n] =

O(1),Kn = o(n), E[U2
i,n|Xn,Wn] = σ2

n ∀i and E[Ui,nUj,n|Xn,Wn] = 0 ∀i ̸= j,
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then

E[Σ̃n(κn)|Xn,Wn] = Σn + op(1).

C.4 Proof of Main Results

Theorem C.2.1 follows from Lemma SA-1 and Lemma SA-2 in Cattaneo et al.

(2018b), combined with the fact that Σ−1
n = Op(1) in Assumption C.1.2. Theorem

C.2.2 follows from Theorem C.2.1 combined with Lemma C.3.1. Theorem C.2.3

follows from Theorem C.2.2 combined with Lemma C.3.2 and C.3.3. Theorem

C.2.4 follows from Theorem C.2.2 combined with Lemma C.3.3, C.3.4 and C.3.5.

C.5 Proofs of Technical Lemmas

Here we provide the proofs for the technical lemmas. To simplify notation, through-

out the proofs we assume d = 1 without loss of generality.

C.5.1 Proof of Lemma C.3.1

It suffices to show that Σ̂n(κn) = Σ̃n(κn) + op(1) and that Σ̃n(κn) =

E[Σ̃n(κn)|Xn,Wn] + op(1).

First,

Σ̃n(κn) =
1

n

∑
1≤i≤Gn

cii,n +
2

n

∑
1≤i,j≤Gn,i<j

cij,n,

cij,n =
∑

s∈Ti,t∈Tj

∑
(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂j1,nMi2s,nMj2t,nUs,nUt,n,
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where
∑

1≤i,j≤Gn
V[cij,n|XnWn] = op(n

2) because

V[cij,n|Xn,Wn]

≤ (#Ti,n)(#Tj,n)
∑

s∈Ti,n,t∈Tj,n

(
∑

(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2 v̂i1,nv̂j1,nMi2s,nMj2t,n)
2

×V[Us,nUt,n|XnWn]

≤ C2
T ,nCU,n

∑
s∈Ti,n,t∈Tj,n

(
∑

(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂j1,nMi2s,nMj2t,n)
2

≤ C2
T ,nCU,n

∑
1≤s,t≤n

(
∑

(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂j1,nMi2s,nMj2t,n)
2

= C2
T ,nCU,n

∑
1≤s,t≤n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

∑
(g3,i3,j3)

∑
(g4,i4,j4)

κg1,g2,i1,j1,i2,j2,nκg3,g4,i3,j3,i4,j4,nv̂i1,nv̂j1,nv̂i3,nv̂j3,nMi2s,nMj2t,nMi4s,nMj4t,n

= C2
T ,nCU,n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

∑
(g3,i3,j3)

∑
(g4,i4,j4)

κg1,g2,i1,j1,i2,j2,nκg3,g4,i3,j3,i4,j4,nv̂i1,nv̂j1,nv̂i3,nv̂j3,nMi2i4,nMj2j4,n

≤ C2
T ,nCU,n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

∑
(g3,i3,j3)

∑
(g4,i4,j4)

|κg1,g2,i1,j1,i2,j2,n||κg3,g4,i3,j3,i4,j4,n||v̂i1,n||v̂j1,n||v̂i3,n||v̂j3,n||Mi2i4,n||Mj2j4,n|,
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where CT ,n = max1≤i≤Gn #(Ti,n), CU,n = 1 +max1≤i≤n E[U4
i,n|Xn,Wn], and

∑
(g1,i1,j1)

∑
(g2,i2,j2)

∑
(g3,i3,j3)

∑
(g4,i4,j4)

|κg1,g2,i1,j1,i2,j2,n||κg3,g4,i3,j3,i4,j4,n||v̂i1,n||v̂j1,n||v̂i3,n||v̂j3,n||Mi2i4,n||Mj2j4,n|

≤ (max
1≤i≤n

|v̂i,n|)2
∑

(g1,i1,j1)

∑
(g2,i2,j2)

∑
(g3,i3,j3)

∑
(g4,i4,j4)

|κg1,g2,i1,j1,i2,j2,n||κg3,g4,i3,j3,i4,j4,n||v̂i3,n||v̂j3,n||Mi2i4,n||Mj2j4,n|

≤ (max
1≤i≤n

|v̂i,n|)2∥κn∥∞
∑

(g2,i2,j2)

∑
(g3,i3,j3)

∑
(g4,i4,j4)

|κg3,g4,i3,j3,i4,j4,n||v̂i3,n||v̂j3,n||Mi2i4,n||Mj2j4,n|

≤ (max
1≤i≤n

|v̂i,n|)2∥κn∥∞CT ,n

∑
(g3,i3,j3)

∑
(g4,i4,j4)

|κg3,g4,i3,j3,i4,j4,n||v̂i3,n||v̂j3,n|

≤ (max
1≤i≤n

|v̂i,n|)2∥κn∥2∞CT ,n

∑
(g3,i3,j3)

|v̂i3,n||v̂j3,n|

≤ n2(
max1≤i≤n |v̂i|√

n
)2∥κn∥2∞C2

T ,n(
1

n

∑
1≤i≤n

v̂2i,n) = op(n
2),

where the third inequality uses

Gn∑
g2=1

∑
i2,j2∈Tg2,n

|Mi2i4,n||Mj2j4,n| ≤

√√√√( Gn∑
g2=1

∑
i2,j2)∈Tg2,n

M2
i2i4,n

)
(

Gn∑
g2=1

∑
(i2,j2)∈Vg2,n

M2
j2j4,n

)

≤

√√√√(CT ,n

n∑
k=1

M2
ki4,n

)(
CT ,n

n∑
l=1

M2
lj4,n

)
= CT ,n

√
Mi4i4,nMj4j4,n

≤ CT ,n,
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and the last inequality similarly uses3

G∑
g3=1

∑
i3,j3∈Tg2,n

|v̂i3,n||v̂j3,n| ≤

√√√√( G∑
g3=1

∑
i3,j3∈Tg3,n

v̂2i3,n
)( G∑

g3=1

∑
i3,j3∈Tg3,n

v̂2j3,n
)

≤

√√√√(CT ,n

n∑
k=1

v̂2k,n
)(
CT ,n

n∑
l=1

v̂2l,n
)

= CT ,n(
n∑

i=1

v̂2i,n).

As a consequence,

V[
1

n

∑
1≤i≤Gn

cii,n|Xn,Wn] =
1

n2

∑
1≤i≤Gn

V[cii,n|Xn,Wn]

≤ 1

n2

∑
1≤i,j≤Gn

V[cij,n|Xn,Wn]

= op(1),

and

V[
1

n

∑
1≤i,j≤Gn,i<j

cij,n|Xn,Wn] =
1

n2

∑
1≤i,j≤Gn,i<j

V[cij,n|Xn,Wn]

≤ 1

n2

∑
1≤i,j≤Gn

V[cij,n|Xn,Wn]

= op(1).

3We also make use of the bound 1
n

∑n
i=1 v̂

2
i = Op(1), as shown in Lemma SA-1 of Cattaneo

et al. (2018b, Supplemental Appendix).
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In particular, Σ̃n(κn) = E[Σ̃n(κn)|Xn,Wn] + op(1), where

|E[Σ̃n(κn)|Xn,Wn]|

≤ 1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

∑
(g3,i3,j3)

|κg1,g2,i1,j1,i2,j2,n||v̂i1,n||v̂j1,n||Mi2j3,n||Mj2i3,n||E[Ui3,nUj3,n|Xn,Wn]|

≤ CU,n
1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

∑
(g3,i3,j3)

|κg1,g2,i1,j1,i2,j2,n||v̂i1,n||v̂j1,n||Mi2j3,n||Mj2i3,n|

≤ CU,nCT ,n
1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n||v̂i1,n||v̂j1,n|

≤ CU,nCT ,n∥κn∥∞
1

n

∑
(g1,i1,j1)

|v̂i1,n||v̂j1,n|

≤ CU,nC2
T ,n∥κn∥∞(

1

n

∑
1≤i≤n

v̂2i,n)

= Op(1).

We have therefore established that Σ̃n(κn) = E[Σ̃n(κn)|Xn,Wn]+op(1). It remains

to show that Σ̂n(κn) = Σ̃n(κn) + op(1).

By using that ûi,n − Ũi,n = R̃i,n − v̂i,n(β̂n − β), where R̃i,n =
∑n

j=1Mij,nRj,n, we

obtain

Σ̂n(κn)− Σ̃n(κn) =
1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂j1,n(ûi2,nûj2,n − Ũi2,nŨj2,n)

=
1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂j1,n

× [(R̃i2,n − v̂i2,n(β̂n − β) + Ũi2,n)(R̃j2,n − v̂j2,n(β̂n − β) + Ũj2,n)− Ũi2,nŨj2,n].

By the Cauchy-Schwarz inequality, it suffices to show that

1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nv̂
2
i1,n

(R̃i2,n − v̂i2,n(β̂n − β))2 = op(1),

1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nv̂
2
i1,n
Ũ2
j2,n

= Op(1).

The latter can be straightforwardly shown by means of the arguments previously
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used to show Σ̃n(κn) = Op(1). For the former, since v̂j,n = Ṽj,n + Q̃j,n, where

Q̃i,n =
∑n

j=1Mij,nQj,n, and R̃i,n = r̃i,n+(R̃i,n−r̃i,n), where r̃i,n =
∑n

j=1Mij,nrj,n

it suffices to show that

1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|Q̃2
i1,n
R̃2

i2,n
= op(1),

1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|Ṽ 2
i1,n
r̃2i2,n = op(1),

1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|Ṽ 2
i1,n

|R̃i2,n − r̃i2,n|2 = op(1),

(β̂n − β)2
1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|v̂2i1,nv̂
2
i2,n

= op(1).

First, n−1
∑

(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|Ṽ 2
i1,n
r̃2i2,n = op(1) because

E
[ 1
n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|Ṽ 2
i1,n
r̃2i2,n|Wn

]
=

1

n

∑
(g2,i2,j2)

r̃2i2,n
∑

(g1,i1,j1)

|κg1,g2,i1,j1,i2,j2,n|E
[
Ṽ 2
i1,n

|Wn

]
≤ CV,nCT ,n

1

n

∑
(g2,i2,j2)

r̃2i2,n
∑

(g1,i1,j1)

|κg1,g2,i1,j1,i2,j2,n|

≤ CV,nCT ,n∥κn∥∞(
1

n

∑
(g2,i2,j2)

r̃2i2,n)

≤ CV,nC2
T ,n∥κn∥∞(

1

n

n∑
i=1

r̃2i,n)

= Op(ρn) = op(1),

where the first inequality uses the fact that E[Ṽi,n|Wn] ≤ CT ,nCV,n, with CV,n =

1 + max1≤i≤n,E[∥Vi,n∥4|Wn] as shown in Cattaneo et al. (2018b, Supplemental
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Appendix). Next,

1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|Ṽ 2
i1,n

|R̃i2,n − r̃i2,n|2

≤ n∥κn∥∞(
1

n

∑
(g1,i1,j1)

Ṽ 2
i1,n

)(
1

n

∑
(g2,i2,j2)

|R̃i2,n − r̃i2,n|2)

≤ n∥κn∥∞C2
T ,n(

1

n

n∑
i=1

Ṽ 2
i,n)(

1

n

n∑
i=1

|R̃i,n − r̃i,n|2)

= Op[n(ϱn − ρn)] = op(1)

and

1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|Q̃2
i1,n
R̃2

i2,n
≤ n∥κn∥∞(

1

n

∑
(g1,i1,j1)

Q̃2
i1,n

)(
1

n

∑
(g2,i2,j2)

R̃2
i2,n

)

≤ n∥κn∥∞C2
T ,n(

1

n

n∑
i=1

Q̃2
i,n)(

1

n

n∑
i=1

R̃2
i,n)

= Op(nχnϱn) = op(1)

Finally,

(β̂n − β)2
1

n

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|v̂2i1,nv̂
2
i2,n

= op(1)

because
√
n(β̂n − β) = Op(1) and

1

n2

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|v̂2i1,nv̂
2
i2,n

≤ (max
1≤i≤n

|v̂i,n|)2
1

n2

∑
(g1,i1,j1)

∑
(g2,i2,j2)

|κg1,g2,i1,j1,i2,j2,n|v̂2i2,n

≤ (
max1≤i≤n |v̂i,n|√

n
)2∥κn∥∞(

1

n

∑
(g2,i2,j2)

v̂2i2,n)

≤ (
max1≤i≤n |v̂i,n|√

n
)2∥κn∥∞CT ,n(

1

n

n∑
i=1

v̂2i,n) = op(1),

which concludes the proof.
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C.5.2 Proof of Lemma C.3.2

Let us define

di1j1,i3j3,n =
∑

(g2,i2,j2)

κg1,g2,i1,j1,i2,j2,nMi3,j2,nMj3,i2,n − 1{(i1, j1) = (i3, j3)}.

We hence have

E[Σ̃n(κn)|Xn,Wn]−Σn =
1

n

∑
(g1,i1,j1)

∑
(g3,i3,j3)

di1j1,i3j3,nv̂i1,nv̂j1,nE[Ui3,nUj3,n|Xn,Wn],

so if max(g1,i1,j1)
∑

(g3,i3,j3)
|di1j1,i3j3,n| = op(1), then

|E[Σ̃n(κn)|Xn,Wn]− Σn| ≤
1

n

∑
(g1,i1,j1)

∑
(g3,i3,j3)

|di1j1,i3j3,n||v̂i1,n||v̂j1,n||E[Ui3,nUj3,n|Xn,Wn]|

≤ CU,n
1

n

∑
(g1,i1,j1)

∑
(g3,i3,j3)

|di1j1,i3j3,n||v̂i1,n||v̂j1,n|

≤ CU,n(
1

n

∑
(g1,i1,j1)

|v̂i1,n||v̂j1,n|)
(

max
(g1,i1,j1)

∑
(g3,i3,j3)

|di1j1,i3j3,n|
)

≤ CU,nCT ,n(
1

n

n∑
i=1

v̂2i,n)
(

max
(g1,i1,j1)

∑
(g3,i3,j3)

|di1j1,i3j3,n|
)
= op(1).

C.5.3 Proof of Lemma C.3.3

If λmin(S
′
n(Mn ⊗Mn)Sn) > 0, then

∣∣∣ ∑
(g2,i2,j2)

κCRg1,g2,i1,j1,i2,j2,nMi1j2,nMj1i2,n − 1
∣∣∣

+
∑

(g3,i3,j3 )̸=(g1,i1,j1)

∣∣∣ ∑
(g2,i2,j2)

κCRg1,g2,i1,j1,i2,j2Mi3j2,nMj3i2,n

∣∣∣ = 0,

which combined with Lemma 2 gives E[Σ̃n(κ
CR
n )|Xn,Wn] = Σn + op(1).
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C.5.4 Proof of Lemma C.3.4

Recall that for LZ’s estimator we have

∑
g2,i2,j2

|di1,j1,i2,j2,n| = |Mi1i1,nMj1j1,n − 1|+
∑

(g2,i2,j2) ̸=(g1,i1,j1)

|Mi1j2,n||Mj1i2,n|

= (1−Mi1i1,nMj1j1,n) +Mi1i1,n(
∑
i2∈g1
i2 ̸=j1

|Mj1i2,n|)

+Mj1j1,n(
∑
j2∈g1
j2 ̸=i1

|Mi1j2,n|) +
∑

(g2,i2,j2)
i2 ̸=j1,j2 ̸=i1

|Mi1,j2,n||Mj1,i2,n|.

Defining Mn = 1 − min1≤i≤nMii,n, we have that Mn = Op(
Kn

n
) (see Cattaneo

et al., 2018b) and

max
i,j
i ̸=j

|Mij,n| ≤ max
i,j
i ̸=j

1

n

Kn∑
l=1

|w∗
il,n||w∗

jl,n| ≤ max
i

1

n

Kn∑
l=1

w∗2
il,n = Op(

Kn

n
).

As a result, we have

max
(g1,i1,j1)

∑
g2,i2,j2

|di1,j1,i2,j2,n| ≤ 2Mn + 2(CT ,n − 1)Op(
Kn

n
) + C2

T ,nGnOp(
K2

n

n2
)

≤ Op(
Kn

n
) + 2(CT ,n − 1)Op(

Kn

n
) + C2

T ,nO(n)Op(
K2

n

n2
)

= Op(
K2

n

n
),

which combined with Lemma 2 gives E[Σ̃n(ILn)|Xn,Wn] = Σn + op(1).

C.5.5 Proof of Lemma C.3.5

Under homoskedasticity one has

E[Σ̃n(ILn)|Xn,Wn] =
σ2
n

n

∑
(g1,i1,j1)

n∑
k=1

v̂i1,nv̂j1,nMi1k,nMj1k,n

=
σ2
n

n

∑
(g1,i1,j1)

v̂i1,nv̂j1,nMi1j1,n,
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and

Σn =
σ2
n

n

n∑
i=1

v̂2i,n.

As a result, we have

|E[Σ̃n(ILn)|Xn,Wn]− Σn|

≤ σ2
n

n

n∑
i=1

v̂2i,n|Mii.n − 1|+ σ2
n

n

∑
(g1,i1,j1)
i1 ̸=j1

|v̂i1,n||v̂j1,n||Mi1j1,n|

≤ CU,nMn(
1

n

n∑
i=1

v̂2i,n) + CU,nCT ,n(max
i,j
i ̸=j

|Mij,n|)(
1

n

n∑
i=1

v̂2i,n)

≤ CU,nOp(
Kn

n
)(
1

n

n∑
i=1

v̂2i,n) + CU,nCT ,nOp(
Kn

n
)(
1

n

n∑
i=1

v̂2i,n)

= Op(
Kn

n
),

and therefore E[Σ̃n(ILn)|Xn,Wn] = Σn + op(1).

C.6 Extension to within-cluster restrictions

In this section, we present an extension of the class of estimators studied in this

paper that allows to impose zero restrictions on the variance-covariance matrix of

the errors within clusters.

Define the sets

Vg,n = {(i, j) ∈ Tg,n × Tg,n : E[Ui,nUj,n|Xn,Wn] ̸= 0},

Rg,i,n = {j ∈ Tg,n : E[Ui,nUj,n|Xn,Wn] ̸= 0},

and letLn be the number of non-zero elements contained in ΩU,n = E[UnU
′
n|Xn,Wn].

The generalized version of our proposed class of cluster-robust variance estimators

reads:

Σ̂n(κn) =
1

n

Gn∑
g1=1

Gn∑
g2=1

∑
(i1,j1)∈Vg1,n

∑
(i2,j2)∈Vg2,n

κg1,g2,i1,j1,i2,j2,nv̂i1,nv̂
′
j1,n

ûi2,nûj2,n,



C.6. EXTENSION TO WITHIN-CLUSTER RESTRICTIONS 172

where κg1,g2,i1,j1,i2.j2,n corresponds to the (h(g1, i1, j1), h(g2, i2, j2)) entry of

the Ln × Ln symmetric matrix κn, where h(g, i, j) = [
∑(g−1)

k=0 (#Vk,n) +∑i−1
k=0(#Rg,k,n) + j(i)g,n] with j(i)g,n = #{k ∈ Tg,n : E[Ui,nUj,n|Xn,Wn] ̸=

0 and k ≤ j} and we adopt the convention that #V0,n = 0 and #Rg,0,n =

0 ∀g.

A consistent estimator under Assumptions C.1.1-C.1.3 is then defined as

Σ̂(κCR
n ), where κCR

n = (S′
n(Mn ⊗Mn)Sn)

−1.
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LI, C. M. AND U. K. MÜLLER (2021): “Linear regression with many controls of

limited explanatory power,” Quantitative Economics, 12, 405–442.

LIANG, K.-Y. AND S. L. ZEGER (1986): “Longitudinal data analysis using gener-

alized linear models,” Biometrika, 73, 13–22.

LITTLE, R. J. A. (1985): “A Note About Models for Selectivity Bias,” Economet-

rica, 53, 1469–1474.

LOUREIRO, M. L., A. SANZ-DE GALDEANO, AND D. VURI (2010): “Smoking

Habits: Like Father, Like Son, Like Mother, Like Daughter?*,” Oxford Bulletin

of Economics and Statistics, 72, 717–743.

MACKINNON, J. G. (2013): Thirty Years of Heteroskedasticity-Robust Inference,

New York, NY: Springer New York, 437–461.

MAMMEN, E. (1993): “Bootstrap and Wild Bootstrap for High Dimensional Linear

Models,” The Annals of Statistics, 21, 255 – 285.

MAMMEN, E. AND A. B. TSYBAKOV (1999): “Smooth discrimination analysis,”

The Annals of Statistics, 27, 1808 – 1829.

MANSKI, C. F. (1985): “Semiparametric analysis of discrete response: Asymptotic

properties of the maximum score estimator,” Journal of Econometrics, 27, 313–

333.

——— (1990): “Nonparametric Bounds on Treatment Effects,” The American Eco-

nomic Review, 80, 319–323.

——— (2004): “Statistical Treatment Rules for Heterogeneous Populations,”

Econometrica, 72, 1221–1246.

——— (2009): “Diversified treatment under ambiguity,” International Economic

Review, 50, 1013–1041.



BIBLIOGRAPHY 181

——— (2010): “Vaccination with partial knowledge of external effectiveness,”

Proceedings of the National Academy of Sciences, 107, 3953–3960.

——— (2011): “Choosing Treatment Policies Under Ambiguity,” Annual Review

of Economics, 3, 25–49.

MANSKI, C. F. AND J. V. PEPPER (2000): “Monotone Instrumental Variables:

With an Application to the Returns to Schooling,” Econometrica, 68, 997–1010.

MBAKOP, E. AND M. TABORD-MEEHAN (2021): “Model Selection for Treatment

Choice: Penalized Welfare Maximization,” Econometrica, 89, 825–848.

MONFARDINI, C. AND R. RADICE (2008): “Testing Exogeneity in the Bivariate

Probit Model: A Monte Carlo Study*,” Oxford Bulletin of Economics and Statis-

tics, 70, 271–282.

MOON, H. R., M. SHUM, AND M. WEIDNER (2018): “Estimation of random co-

efficients logit demand models with interactive fixed effects,” Journal of Econo-

metrics, 206, 613–644.

MOULTON, B. R. (1986): “Random group effects and the precision of regression

estimates,” Journal of Econometrics, 32, 385–397.
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Chapter 3, “Cluster-Robust Standard Errors for Linear Regression Models with

Many Controls”, is single-authored by Riccardo D’Adamo.
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