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This paper constructs steady solutions of the two-dimensional Euler equations corresponding to a
line source of vortical fluid on the impermeable boundary of a quiescent flow. The nonlinear, free-
boundary problem is solved by mapping the flow domain to the hodograph plane. A vortex dipole or,
equivalently, a source-sink doublet is superposed on the source leading to flow patterns that model
the ballooning outflows observed where rivers and straits discharge into the open ocean and in the
rotating flow experiments and numerical simulations designed to reflect these observations.
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1. Introduction

Observations by Lake et al. [1] and numerical modelling by
Beardsley et al. [2], Spall and Price [3] and Marques et al. [4] show
that fluid expelled from an outflow can gain positive or negative
relative vorticity through the stretching and squashing of the
expelled vortex columns. Motivated by these discussions, Johnson
et al. [5] present a simple, fully nonlinear, dispersive, quasi-
geostrophic model to describe the form of coastal outflows as
the relative strength of vortex to Kelvin wave driving is var-
ied and Jamshidi and Johnson [6] give a further discussion of
finite-amplitude effects. When vertical density variations are suf-
ficiently small the driving by image vorticity dominates Kelvin
wave effects and the governing equations for constant depth flow
reduce to the two-dimensional Euler equations, as demonstrated
experimentally by Hide [7]. Johnson and McDonald [8], JM here,
describe the coastal flow development in this limit for the initial
value problem when a line source of vortical fluid against a wall is
switched on, obtain an explicit analytical solution for the steady
flow that is eventually set up and present numerical integrations,
using the method of contour dynamics of the time-dependent
two-dimensional Euler equations, that asymptote to the steady
solution at large time.

One feature that is apparent in experiments modelling out-
flows [9] and numerical simulations of both the experiments [10]
and observations [11,12], but not in the steady solutions of JM, is a
bulging or ballooning of the vortical current in the neighbourhood
of the outflow. Nof and Pichevin [13] argue that outflows are
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necessarily unsteady but Johnson et al. [5] and Southwick et al.
[14] note that their momentum imbalance argument does not
always apply and that the steady flow of JM expels downstream
momentum from the source at precisely the rate that momentum
is carried away in the far-field. The aim of the present paper is to
extend the JM solutions to construct a steady ballooning outflow
that is an exact solution of the two-dimensional Euler equations.
When a vortex dipole or,equivalently, a source-sink doublet [15],
injecting upstream momentum and so decreasing the net down-
stream momentum injected by the source, is superposed on the
source then a ballooning steady recirculating region appears in
the neighbourhood of the origin.

Section 2 gives the geometry, scalings and governing equa-
tions for the motion. Section 3 derives the steady solution for
dipoles sufficiently strong for the flow to bulge near the outflow.
Section 4 considers briefly the dynamics of perturbations to the
steady solutions and Section 5 presents the numerical integration
of an initial value problem that converges to the corresponding
steady solution. The results are discussed briefly in Section 6 and
Appendix A gives the solution for weak dipoles.

2. Governing equations

Consider the two-dimensional motion driven when inviscid
fluid of uniform vorticity is expelled through a line source against
a wall into initially quiescent irrotational fluid. The flow also gives
the two-dimensional motion driven when irrotational inviscid
fluid is expelled through a line source on a wall bounding fluid
where the fluid and wall are in solid body rotation about an
axis parallel to the axis of the line source: in the rotating frame
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Fig. 1. (a) The vortical region at early time. (b) The scaling based on the final steady state.

the motion is that of a line source of fluid of constant vorticity
on a stationary wall. There is no limitation on the speed of
rotation or the strength of the outflow. Let there be superposed
on the source flow a vortex dipole or, equivalently, a source-sink
doublet directed so as to oppose the advection of vortical fluid by
its image. This closely models the experimental setup in [9] where
a source of constant-relative-vorticity fluid is located near the
wall of a rapidly rotating tank, giving a clockwise or anticyclonic
vortex which combines with its cyclonic image in the wall to give
a vortex dipole at the outflow. As noted in JM, the same effect
occurs if a source-sink pair on the tank wall is considered in the
dipole limit where the source-sink separation goes to zero while
the strengths go to infinity.

Take Cartesian axes Ox*y* with the impermeable wall lying
along y* = 0 and fluid expelled into the half-plane y* > 0 from a
source, at the origin O, with area flux Q (i.e. volume flux per unit
distance perpendicular to the x*y* plane). Let the vorticity of the
expelled fluid be w and the strength of the dipole at the origin be
ux, with dimensions of area flux times horizontal length. Since
solutions for w < 0 follow by reflecting those for @ > 0 about
x* = 0, w can be taken as positive. The expelled fluid then
propagates to the right under the influence of its image vorticity
in the wall and so the vortex dipole is directed to the left with
negative vorticity at y* = 0% opposing the expelled vorticity. All
expelled fluid eventually travels downstream in a unidirectional
current of width (2Q /w)"/2.

The formulae derived below take their simplest form by choos-
ing the spatial scale for the flow to be the breadth of the vortical
current at its widest point, denoted here by ¢, and introducing
the non-dimensional variables

(x*,y") = £(x,y), (u*, v*) = wl(u, v), t = wt*, (1)

where (u*, v*) are the Cartesian velocity components and t*
time. For strong dipoles the flow balloons near the origin, ¢ >
(2Q/w)'? and the downstream current has non-dimensional
width @ = (2Q/wf?)'/? < 1. For weak dipoles the current is
widest downstream and £ = (2Q/w)'/? as for a simple source
in JM. In both cases the strength of the dipole relative to that of
the vorticity in the expelled fluid, i = pu*/w>, is the sole free
parameter and is determined as part of the solution. For strong
dipoles u is obtained in Section 3 as a function of « and for
weak dipoles in Appendix A as a function of ¢ where ¢ w? is the
maximum downstream velocity.

Incompressibility allows the introduction of a streamfunction
Y defined through (u, v) = (=, ¥x). Then at each time ¢ the
flow consists of the vortical fluid occupying an expanding region
D (say) bounded by the wall and an advancing front I" separating
vortical fluid from irrotational fluid (Fig. 1(a)). The streamfunction
thus satisfies

1 in D
Viy = 2
v :0 outside D (22)
0 y=0, x<0
= 2
4 {Q/Za)ﬁ2 y=0, x>0 (2b)

¥ — 0 asx*+y* — oo (outside D), (2c)

together with the superposition of an irrotational dipole at the
origin, which identically satisfies the homogeneous form of (2).
System (2), with the condition that v+ and Vi are continuous
across I', uniquely determines i at each instant. The evolution
of the flow is given simply by the movement of the front I", with
for each (x,y)on I',

y=v(xy.1), (3)

where the overdot denotes differentiation with respect to time,
t. Section 5 presents numerical integrations of the initial value
problem for the evolution of this system when the source and
dipole are switched on in a previously quiescent fluid, compar-
ing the asymptotic state with the corresponding steady solution
derived below.

x=u(x,y,t),

3. The exact steady state for strong dipoles

For most dipole strengths the greatest current width occurs
across the ballooning region (Fig. 1(b)) and this will be the case
presented here. The modification for weak dipoles, where the
greatest width occurs downstream is noted in Appendix A. In
steady flow the front I" is a streamline meeting the wall at a
stagnation point S; (say) in x < 0. Since the flow is smooth in
the neighbourhood of I,

10:0 on . (4)

Thus  is identically zero outside D and the flow outside D is
stagnant. The steady solution is thus governed by (2) with (2c)
replaced by

V=0 onl. (5)

Consider (following Howison and King [16])
wo(z) =z — 2(v + iu) = vy + iu, (6)

(z=x+1y, z = x — iy). It follows directly from (2) that wq(z) is
an analytic function of z in D with the exception of singularities
at the origin: a simple pole giving the fluid source and a double
pole giving the dipole. Moreover (5) shows that

wo(z)=2z onTr. (7)

Thus wo(z) = S(z) (say), the Schwarz function for the curve I".

Equivalently, and perhaps more fundamentally, Crowdy [17]
and Crowdy [18] (chap. 24) shows that the streamfunction can
be identified as the modified Schwarz potential

V= —% (zi - /Z S(z') dz' — /-z S(z") dZ’) ; (8)

with associated velocity field

ooV L
u—1v_2132_ 2[z S(z)]. 9)
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Fig. 2. The cut hodograph w;-plane with the cut or two-sided, semi-infinite barrier along 0S;BAS,O.

y=0 -1 y=0 -0 y=u

U2

0 S5

A B

2

S

Fig. 3. The w,-plane. The vortical region corresponds to the upper half-plane.

The solutions obtained below thus appear as “case 1” solutions
of the 3-case taxonomy of Euler equation equilibria introduced
in [19]. The presentation in these works show that S(z) can be
obtained by mapping the flow region to an auxiliary domain
and considering the form of the mapping at special points on
the boundary. In the present problem the form of the solu-
tion at all the special points is not immediately obvious and
so the derivation below follows instead a hodograph mapping
method [20].
Introduce the function

wi(z) = vy + iUy = (2 —wo(2))/2 = v +i(y +u). (10)

The usual complex velocity is u; — ivq —iw; but, from
(7), definition (10) gives the simple boundary condition on the
unknown curve I,

up =y, vy=0 on I. (11)

The flow is obtained by solving for z as a function of w; in the
w1, or hodograph, plane, sketched in Fig. 2. From (10), (11) the
uq axis can be associated with y and the v; axis with x. The axes
in Fig. 2 have been rotated anti-clockwise by 7 /2 to allow more
economic labelling. Since w is analytic in D (except at the origin)
z is an analytic function of wy in the corresponding region of the
w1-plane except possibly at points corresponding to the origin or
infinity. In particular, both x and y satisfy Laplace’s equation in
the hodograph plane and a complete problem can be set up for y
as a function of uy and vy.

Since vy = 0 on y = 0, (11) shows that the entire boundary
of D lies along the line v; = 0 in the w;-plane. Since the velocity
is infinite at the origin in the z-plane, O maps to the point at
infinity in the wq-plane and the vortical flow region D maps to
the entire wy-plane. Fluid driven along the wall from the origin
arrives at the stagnation point S; in x < O which, since the
velocity vanishes there, corresponds to the origin in the w{-plane.
Since neighbouring fluid moves away from the wall (v; > 0)
the segment 0S; maps to the segment u; < 0, v; = 07 in
the wi-plane with y = 0 there. Fluid then passes around the
boundary I of D to first reach the point of maximum width,
denoted B here, where y = 1 by construction so u; = 1 by (11).
Neighbouring fluid is again moving away from the wall (v; > 0)
with 0 < y < b so the segment S;B maps to the segment v; = 0™,
0 < u; < 1 in the wi-plane with y = u; there, by (11). The
boundary I" then continues to the point at infinity in the z-plane,
denoted A here, where the current has width y = « so u; = « by
(11). Neighbouring fluid moves towards the wall (v; < 0) with
o <y < 1 so the segment BA maps to the segment v; = 07,
o < u; < 1in the wi-plane with again y = u; there. At A, y
jumps to zero and remains there along the whole segment AO,
passing through a second stagnation point at S,. Neighbouring
fluid moves towards the wall (v; < 0) so the segment AO maps to
the segment v; = 07, u; < « in the wy-plane with y = 0 there.

Thus y satisfies Laplace’s equation in the hodograph plane cut
along the half-line u; < 1, v; = 0, subject to

{0
y=
uq

and a condition at infinity in w; that gives a dipole at O. Suffi-
ciently close to O the velocity field is dominated by the dipole
and so

(u; <0, v1=0%) and (u;<a, v;=07)
O0O<u; <1, v1=0" and (¢ <u; <1, v1=07)

(12)

22(u —iv) > —p/7 + (Q/mrwt?)z + O(z?) (13)

where p gives the dipole strength scaled on 2Q /¢ = wf and is
real and positive for a dipole directed in the negative-x direction.
The condition at infinity is thus, from (6) and (10),

asz — 0,

2wy — —ip/m as wy — oo. (14)

The solution for y follows most simply by mapping the w-
plane to the upper half of the w,-plane through the mapping

2, (15)

wy = Up + vy = (1 4 iwq)
which maps the w;-plane to the upper half of the w,-plane
(Fig. 3), opening the cut and converting the two-sided, semi-
infinite barrier OB into the whole v, 0 axis. The points at
infinity, i.e. the origin O in the z-plane, correspond; the point B in
the w-plane maps to the origin in the w,-plane; the stagnation
points S; ; split mapping to u; = £1; and A, the point at infinity
in the z-plane, maps to u; = —y where y = (1 — «)"/? is real
and positive. The solution for z can then be written down by
inspection (c.f. JM) as

z = (1/m){U(w2)log[(wz — 1)/(w2 + y)] + G(wz)} = F(w;) (say),
(16)

where U(w;) = —iwy =1— w% and G is any function analytic in
the upper half-plane whose imaginary part vanishes on v, = 0.
In terms of w, the requirement (14) that there is a dipole at O
becomes z2w? — /7 as w, — oc. The first term in parentheses
in (16) has the expansion,

wy —> 00.
(17)

Thus G(w;) = —(1 4+ y)wy — (1 — y2)/2 and p = (1/97)(2 —
¥)*(1 4+ y)* completing the solution for the flow.

Fig. 4 shows the relative current width « as a function of
the scaled dipole strength u. As « — 0%, i.e. y — 17, this
solution reduces to that for a pure dipole, given in JM, with

(14 )wa +(1=y2)/2=(2=y ) 1+y ) /(Bwz)+0(w; %),

here u = 16/97 =~ 0.5659. As « increases, i.e. y decreases,
the position where the current is broadest moves monotonically
fromx = Owheno = 0tox = cowhena = 1,y = 0
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Fig. 4. The width of the downstream current as a fraction, «, of the width of the bulge as a function of the dipole strength, u, scaled on the expelled vorticity, with

4/97 < p < 16/97 for bulging outflows.

and u = 4/97 ~ 0.1415. The strength of the dipole decreases
monotonically and the region of recirculating flow near the origin,
driven by the dipole, shrinks. Appendix A shows that for weaker
dipoles, © < 4/9m, the geometry in the hodograph plane is
modified to give a solution that smoothly joins that of (16) with
y = 0 to that of the pure source in JM when u = 0.

Since v, v, =0o0n I', wy = Uy = (1 — uy)/2 = £(1 — y)1/?
there, giving the explicit expression for I,

12
x=mmmm%1¢“ Y)
==

“_W]ﬂF(1+y)(1—y)”z—(l—yz)/z},

(18)

with upper/lower signs associated.

Fig. 5 shows outflow current boundaries for different values
of the relative dipole strength u. Except for Fig. 7, this and
subsequent plots are isotropic with the same x and y plotting
scales. Here, and in subsequent figures, the length scale has been
taken to be the downstream current width, (2Q/w)'/?, so the
coordinates are (x*, y*)(w/2Q)"? = (x, y)/a, equivalent to taking
¢ = (2Q /wa?)/?2. With this scaling, in accord with Fig. 4, as 4 in-
creases from p = 4/9x the outflow bulge becomes larger relative
to the current width, becoming infinite when p = 16/97, when
the dimensional current width vanishes and the dimensional
dipole strength u* = w/a> becomes infinite for nonzero w.

Near the front stagnation point, y < 1 and (18) gives

T, wy y 2
=(y? -2y -3+ 2|1 21 o]
X 8(1/ y—3)+ 3 [ +y+ 0g<2+2y>]+ ),
(19a)
dx T b4
—==(3 —1 o(y). 19b
d 8( +y)+4 og<2+2y>+ (v) (19b)

The front stagnation point thus lies at x = 7(y% — 2y — 3)/8 and,
as dx/dy diverges logarithmically to negative infinity as y — 0%,
the interior angle between the boundary I and the positive-
x direction is 6 = m: I’ forms a cusp with its image in the
wall. In the closely related problem of a vortex patch propagating
steadily along a wall, Saffman and Tanveer [21] and Overman [22]
show that the patch boundary meets the wall perpendicularly
(corresponding to 6s = 7 /2 here). The difference arises from the
presence of a non-zero external flow in the co-moving frame of
the propagating patch which determines the form of the solution
local to the leading stagnation point. The absence of external flow
in the outflow problem changes the local form to that in (19).
Here, and for the propagating patch, the boundary curvature is
infinite at the wall.

Streamlines for the flow can be obtained straightforwardly by
following JM and differentiating (16) to give the particle path

Fig. 5. Outflow current boundaries for different relative dipole strengths u.
Horizontal distances are scaled on the downstream current width, (2Q/w)"/?,
and plotted isotropically here and below. The bulge width increases with
increasing pu with here y = 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 and px = 0.35, 0.40,
0.45, 0.50, 0.53 and 0.56.

equation

z = F'(wz)wya, (20)
where

Z=u+iv=iw —y=ws—1—3{F(wy)} = w (say), (21)

from (6), (10) and (15), with overbar denoting complex conjugate
and J imaginary part. Rearranging (20) and (21) gives the first
order scalar ordinary differential equation

wz = w/F’(w2). (22)

As the right side is known explicitly, (22) can be integrated simply
numerically to give the particle paths in the w,-plane with the
corresponding streamlines in the z-plane given by z = F(w-).
Since speeds become arbitrarily large near the source it is useful
for practical integrations to change the independent variable in
the integrations to the arc length s (say) along the streamline in
the original domain, so ds = |u + iv|dt and

B2 I (o). (23)

ds

Fig. 6 gives streamlines computed using (23) for the largest value
in Fig. 6, y = 0.9 for which © = 0.5577 and ¢« = 0.19,
giving a bulge width scaled on the current width of 5.26. Near the
origin the flow is dominated by the irrotational dipole directed
in the negative-x direction and only away from this region, over
non-dimensional distances of order unity corresponding to di-
mensional distances of order the vortical length scale (2Q /w)!/?,
does the fluid vorticity become important. The dipole sets up a
closed region of anticyclonic recirculating fluid, a feature that has
been noted in both experiments [9] and simulations [10].
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Fig. 6. The exact steady state for a source of positive vorticity fluid at the
origin with a superposed irrotational opposing dipole. The outer zero streamline,
marking the boundary of the expelled fluid, is thickened as is the streamline
separating the blue-shaded anticyclonic recirculating fluid from the escaping
fluid. Here y = 0.9.

4. Perturbations of the steady state

The robustness of the exact steady solution (Section 3) can be
assessed by considering the effects of small perturbations to the
flow. JM note that in the linear approximation this corresponds
to introducing a vortex sheet along I" and gives precisely the
problem of topographic wave evolution along an escarpment of
height unity lying along I [23,24]. Downstream, i.e. for x > 1,
I' can be taken as the straight line y =constant, giving a real-
valued dispersion relation for all wavelengths. All disturbances
are neutrally stable, propagating to the right with longer waves
travelling faster.

Sufficiently close to the stagnation point S; the presence of the
wall affects the form of the waves and the geometry becomes
one of an escarpment abutting a wall, considered previously
for a straight escarpment perpendicular to a wall [23] and a
semi-circular escarpment [25]. The waves move away from the
stagnation point, speeding up, lengthening and decreasing in
energy density as they do so.

For a pure dipole in the absence of a source flow the current
boundary reattaches to the wall at a downstream stagnation point
(the reflection about the origin of the upstream stagnation point).
The solutions in [23,25] show that small disturbances propagate
towards this reattachment point magnifying in energy density
(although not amplitude, in the linear approximation) as they
slow approaching it. JM investigated whether these perturbations
could disrupt the steady solution at the rear stagnation point,
noting that the steady dipole solution appears stable over long
times to sufficiently small but finite perturbations. For larger
perturbations the dipoles were all eventually disrupted with the
time until the disruption was significant increasing without limit
as the size of the perturbation amplitude decreased. JM concluded
that the steady dipole solution is unstable at sufficiently large
times due to finite amplitude perturbations accumulating at the
wall at the rear stagnation point.

The absence of a reattachment point when any source flow
is present suggests that steady flow in the presence of a source
is stable with perturbations taking the form of neutral waves of
bounded energy density. The numerical integrations of the initial
value problem in Section 5 bear this out.

5. The initial value problem

The initial value problem for the full unsteady system of
Section 2 can be integrated numerically to high accuracy using
the method of contour dynamics [26-28] by parametrising only
the boundary I" of the outflow. The code used here, described
in detail in [29], allows integrations to be continued to large
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Fig. 7. The outflow boundary (solid blue line) at time t = 240 for the initial
value problem of a dipole with y = 0.9. The length scale has been chosen to
give a coastal current of unit width. The dashed (red) line gives the outflow
boundary for the corresponding steady solution of Fig. 6. The vertical scale of
the plot has been exaggerated by a factor of 16.

times with practically no loss of accuracy by allowing bound-
ary contours to break and join through contour surgery. As in
JM, the solid wall is incorporated by introducing an equal and
opposite vortex patch in y < 0 and then using the unbounded
domain method with these two patches. The source and dipole
are incorporated by adding the velocity components for an irro-
tational dipole and an irrotational isotropic source to the velocity
components computed from the vortex patches. The expelled
fluid is taken to have unit vorticity (w = 1), determining the
timescale through (1), with higher vorticity simply giving faster
propagation. The volume flux is taken as Q = 0.5 to give a
downstream current of width unity. Increasing Q increases the
current width. The dipole strength is taken to correspond to the
value y = 0.9 of Fig. 6, giving « = 0.19, u = 0.5577 and thus
a dimensional dipole strength u* = puwt® = pw/a® = 81.31.
The vortex is started as a semi-circle of radius 0.1, as in Fig. 1(a),
to avoid the singular velocities at the origin associated with the
source and dipole. The results are independent of the radius of the
initial semi-circle provided it is sufficiently small but larger than
the discretisation length of the boundary curve I'. The source is
switched on impulsively at t = 0 but, to avoid the large velocities
associated with the dipole drawing the current’s downstream
boundary into the origin, the dipole strength is ramped up using
f(t) = p*sin(t/2T),

0<t<T; t>T,

(24)

alt) = u*,

with T = 200. The boundary is advected using a 4th-order
Runge-Kutta method with a timestep of 0.1 (with smaller
timesteps producing graphically indistinguishable results). At
each Runge-Kutta substep it is sufficient to compute the position
of only the patch in y > 0 as the position of the patchiny < 0
follows by symmetry (although the boundary integral for the
velocity must be evaluated along both patch boundaries). Points
are redistributed along the contour after each timestep based on
the curvature of the contour with the leading and trailing points
initially on the wall constrained to remain on the wall. Contour
surgery acts only on patches with the same value of vorticity and
so there is no interaction between the patches in y > 0 and
y < 0. The entire material curve surrounding the expelled fluid
is discretised and followed throughout the whole evolution. The
infinite space Laplacian Green’s function is used in the boundary
integral and so no additional boundary conditions are required
on the open boundaries.

Initially the flow develops similarly to the pure source evolu-
tion of JM: the region of expelled fluid grows to form an elongated
eddy whose head splits off and propagates away to the right un-
der the influence of its image in the wall, the current established
behind the leading eddy rapidly settles down to oscillate about
the exact steady solution with the oscillations taking the form of
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Fig. 8. The portion of Fig. 7 in the neighbourhood of the origin plotted iso-
tropically, without vertical exaggeration.

long waves of diminishing amplitude and increasing wavelength
propagating to the right along the interface between vortical and
irrotational fluid, as expected from the discussion of Section 4. As
the dipole strengthens the bulge near the origin grows towards
the corresponding steady solution and at t = T the curves are
graphically indistinguishable for x < 10. Fig. 7 shows the outflow
boundary at t = 240. The eddy formed at the impulsive starting
of the source lies between x = 80 and x = 90 with small regions
of shed vorticity visible in x > 60. The neutral waves propagating
along the outflow boundary are long, with wavelengths of order
8 current widths. Fig. 8 gives the portion of Fig. 7 near the
origin, showing that in this region the initial value problem has
converged to the steady solution. In fact there is no graphically
discernible change in the outflow boundary for t > T.

6. Discussion

Section 3 and Appendix A extend the solution for a source of
vortical fluid against a wall given in JM to include the effect of
an irrotational dipole superposed on the source and directed in
the opposite direction to the ensuing vortical coastal current. For
sufficiently strong dipoles this leads to a bulging outflow contain-
ing a closed anticyclonic recirculating region of similar form to
those observed in experiments and numerical simulations of the
full equations. Numerical integration of the governing unsteady
Euler equations using contour dynamics shows that the steady
solution is the final state of an initial value problem, verifying
the numerics, scalings and analysis and, incidentally, showing
that the final steady state is numerically stable. The flow rapidly
becomes steady within any finite region of the origin over times
sufficient for initial transients to be advected downstream.

The dipole imparts no net downstream momentum to the fluid
and so the argument of Johnson et al. [5] and Southwick et al.
[14] applies directly showing that the downstream momentum
imparted to the flow by the source precisely matches that car-
ried away by the coastal current and the argument supporting
expanding outflows in [13] does not apply. Equally, knowledge
of a small number of bulk quantities, such as the mass and
momentum fluxes, is not sufficient to determine the shape of
the flow near the outflow and more detailed knowledge of the
outflow velocity profile is needed [30].
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Appendix A. Weak dipoles, 1 < 4/97

Section 3 shows that as « increases from 0 to 1 and the dipole
weakens from p = 16/97, where the coastal current disappears,
to u = 4/9m, the position where the current is broadest moves
monotonically from x = 0 to x = oo. Simultaneously, the co-
located position of maximum downstream flow on the vortex
boundary moves from x = 0 to x = oco. For weaker dipoles this
boundary speed maximum, where u = c? (say) for ¢ > 1, larger
than the unit value at x = oo, occurs on y = 0 at some point C
which moves back from x = co when © = 16/9x to reach the
origin when u = 0. Fig. A.9 gives the w; hodograph plane for this
flow. The cut along v; = 0 now extends to u; < c? and A lies at
u; = 1. The entire curved boundary I", on which y = uy, maps
to the segment S;A, with the remainder of the cut corresponding
to the vortex boundary y = 0. Along CO fluid moves towards the
wall dominated by the dipole flow, so vy = 0~ but along AC fluid
moves away from the wall dominated by the expanding source
flow, so v; = 0*. The boundary conditions on y on the cut are
thus

0 (uy<O0andl<u;<c? v;=0") and (u; <c? vi=07)
y:
up 0<u; <1, n =0+)

(A1)
The required mapping to the upper half of the w,-plane is then
wy = (c? + 1wq) 2. (A2)
Again the points at infinity correspond; the point C maps to the
origin; the stagnation points split mapping to u; = =c; and A

maps to u, = y,, = (c2—1)/2 which is real and positive, sketched
in Fig. A.10. Similarly to Section 3 this gives

z = (1/7 ){Uyp(w2)10g[(w2 — ¢)/(w2 — Yu)] + Gu(w2)} = Fy(w2) (say),
(A.3)

where U, (w;) = —iw; = ¢ — w3 and G, is any function analytic
in the upper half-plane whose imaginary part vanishes on v, = 0.
The first term in parentheses in (A.3) has the expansion,

(€= Vu)wa +1/2+12¢2 + 1)y —2¢31/Bwa) +0(w; ), wy — oo.

(A4)

Thus G(w;) = (¥ — c)wy — 1/2 and p = (1/97)[(2¢? + 1)y, —
2c3]?, completing the solution for the flow. Forc = 1, ¥, = 0
and (A.3) gives (16) with y = 0, i.e. « = 1, as required.

Since w, = uy, = (¢ — )2 on I', (A.3) gives the explicit
equation for the vortex boundary

nx = ylog[(c—(c*=y)"3) /(=) =y 1+ (yw—c)c*=y) 2 =1/2,
(A5)
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Fig. A.9. The cut hodograph wi-plane for the weak dipole with the cut along 0S;ACS,0.
U2
¢ y_OT Tw YZUL ¢ y=0 _u,
O 52 C A Sl
Fig. A.10. The w,-plane for the weak dipole. The vortical region corresponds to the upper half-plane.
1 at B, before increasing back to infinity at ©,. Writing
0.8 | 1 Wy =2(w —)/(B-1)—1,  wr=(B-1)w1+1)/2+i, (B.2)
0.6 | > . translates the gap in Fig. B.12 along the vy axis and dilates it
> so that the gap fills the segment |u;| < 1. Then the Joukowski
04T > 7 mapping
021 > wy = [y £ (@] + 12, iy = —i(wy + 1/w3)/2,  (B3)
0 L L Il el . A
A 05 0 05 ] 15 opens both cuts, mapping the cut w; plane to the upper half of

Fig. A.11. The exact steady state for a source of positive vorticity fluid at the
origin with superposed opposing dipole. Evenly spaced streamlines are shown
with the outer zero streamline, marking the boundary of the expelled fluid, and
the streamline separating recirculating and escaping fluid, shown thickened as
in Fig. 6. Here ¢ = 1.01 in (A.3) and the recirculating region is already weak.

0 <y < 1. For c = 1, (A.5) reduces to solution (18) with y =0
as required; and for ¢ — oo (A.5) reduces to

x=—[1+4+ylog(1/y — 1)]/m, 0<y<l, (A.6)

the solution for a pure source in JM. Fig. A.11 gives streamlines
for the flow when ¢ = 1.01. Even for this almost minimum value
for solution (A.3) the recirculating region is negligible, vanishing
as ¢ — oo.

Appendix B. An unequal source-sink pair

The same general flow pattern as above for a source at the
origin with a superposed opposing dipole can be obtained by
considering a source at the origin with a weaker sink located on
the wall downstream from the source. Thus let there be a source
of strength Q(1 + &) at the origin, O, and a sink of strength Q4§
at O,, for x = o0 > 0, where ¢ is again the maximum width of
the current, horizontal lengths are scaled on ¢, the expelled fluid
has vorticity w and the downstream current has width « as in
Section 2. In the neighbourhood of © and O, the velocity field
has the form (c.f (13))

zZ(u—iv) = Q(1 4 8)/mwl? + 0(z) asz — 0,

(z—0)u—iv) > —QB/JTa)ﬁZ +0(z—0) asz— o.

(B.1a)
(B.1b)

The velocity along the wall is infinite at © and O, falling to a
minimum greater than 1 at a point between © and O,. Denote
this point by B, and the speed there by g. Fig. B.12 gives the
w1 hodograph plane for this flow. The boundary conditions on
y along 0S1BAS,0, are precisely those in Fig. 2 along 0S{BAS,0.
The additional cut along OB,0, simply gives the speed decreasing
from its infinite value at the source O to its local minimum of g

the w; plane (Fig. B.13), with the minus sign corresponding to the
half plane v; < 0 and the plus sign corresponding to v; > 0. The
points A, S; thus map to w, = a, s; where a = 4—(a>—1)"/2, s, =
S+ -1 fora=1-2—-1)/(B—1and§ =(B+1)/(B—1).
This gives the solution for z as

z = (1/7){Us(w2) log[(wz —s1)/(wz2 —a)]+Gs(w2)} = Fs(wy) (say),

(B.4)
where Us(wy) = —iw; = (B+1)/2—(8—1) w2+ 1/w3)/4 and G;
is any function analytic in the upper half-plane whose imaginary

part vanishes on v, = 0. Expanding the first term in parentheses
in (B.4) near O, and O gives

- C G+C o(w?), 0,
Us(w3)log <w2 sl) _|G/w G 3w2_2+ (). wa —
wy —a C4+C5/w2+0(w2 s

wy — 00,
(B.5)
where
Ci1 = [(1— B)/4]log(s1/a),
G = (B — 1)(a —s1)/4as1 + [(1 + B)/2]log(s1/a),
G = (a—s)l(B — 1)a+s1)—4asi(1+ B)l/8a’s;
—[(B — 1)/4]log(s1/a),
Co=(B—1)s1 —a)/4,
G =(a—s)4B+1)—(B—1)a+s1)]/8. (B.6)
In terms of w,, the asymptotic forms (B.1) give
—[4Q(1 + 8)/7(B — DNwl?]/wy + O(w?), wy — 0

| -14Q(1 4 8)/7(B — 1)wl?]/wy + 0w 2), wy — oc.
(B.7)

Comparing (B.5) and (B.7) gives Gs(w,) = —C4—C1 /w3, 0 = (G —
Cy)/m, Q(1+8)/wl?> = —(B—1)Cs/4 and Q8/wl? = (B —1)C3/4.
This completes the solution in terms of the fractional current
width « and the speed B. More natural variables are perhaps «
and the source-sink displacement o which can be obtained by
numerically inverting the equation for o.
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Fig. B.12. The cut hodograph w;-plane for the source-sink pair with a cut along 0S,BAS,0; as in Fig. 2 and a second cut along 0B,0,.

V2
y=0 1 y=0 T y=0 2 y=0 a y=w 1 y=w_ s y=0 o
@)

[ "B, 0,

5

A ‘B Si

Fig. B.13. The w;-plane for the source-sink pair. The vortical region corresponds to the upper half-plane.

B8] o | @ [ 6 [ o6 | 6

2 0.775 | 1.047 0.808 | 0.6260 | 3.100
4 0.470 | 2.419 1.228 | 0.5768 | 1.879
16 | 0.215 | 16.034 | 2.581 | 0.5550 | 0.860
512 | 0.037 | 2708.5 | 14.869 | 0.5511 | 0.148

Fig. B.14. Profiles of the current edge in source-sink flow. The source is at the
origin and the red circles give the locations for the sink. With increasing g the
sink moves towards the origin and the product o § approaches the corresponding
dipole strength p = 0.5514 (with profile shown in blue).

Onl,v;, =0sow;, =uy; =[1+8—-2y+2((—y)1—
y)/21/(B — 1) and (B.4) gives the explicit equation for the vortex
boundary

x = (1/m ){y log[(uz — s1)/(uz — a)] — C4 — G5 /ua}, O<y<1
(B.8)

Fig. B.14 gives profiles of the current edge and corresponding
derived flow quantities for various values of 8.
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