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Abstract 

The goal of this thesis is to understand what makes a social interaction successful, and 

whether it supports learning of conceptual knowledge. Crucially, it distinguishes 

learning via the social from learning about the social, and asks the question of how 

social interaction supports declarative processing of non-social material. In doing so, it 

priorities ecological validity: all experiments involve relatively unconstrained teacher-

learner interaction, and learning material resembled documentary-like content. The 

first half of the thesis shows a series of studies on how adults learn in online contexts 

(Study 1 and 2): Study 1 presents two online experiments, where social contingency 

(i.e. being part of a live interaction vs observing a pre-recorded one) and social cues 

(i.e. teacher’s webcam on vs off vs showing a slide only) were manipulated. Results 

showed that learning in live interaction was associated with the best performance, and 

live social interaction with a full view of the teacher provided the optimal setting for 

learning, while seeing a slide had greater benefit during recorded sessions specifically. 

Study 2 replicates the live-learning advantage across three experiments and a large 

sample of adults with Autistic Spectrum Condition (ASC). The second half of this thesis 

(Study 3 and 4) investigates face-to-face interaction, using functional Near-Infrared 

Spectroscopy (fNIRS) hyperscanning and wavelet transform coherence (WTC) analysis, 

to measure brain synchrony in naturalistic interactions. Study 3 tests the hypothesis 

that being in the same room and engaging in conversation affects people’s brain 

response to later novel stimuli. Study 4 asks whether teacher-student brain synchrony 

can be a marker of learning success and, if so, how it is modulated by social behaviours. 

Findings reveal a complex dynamic between neural responses and behavioural metrics, 

in particular mutual gaze and joint attention. Results are discussed in the frame of the 

mutual-prediction hypothesis, and advocate for a multi-modal investigation of social 

learning to fully understand its underlying cognitive mechanisms. Overall, this work 

advances the current understanding of naturalistic social interaction and has 

theoretical implications for cognitive models of information exchange and mutual 
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prediction, as well as practical significance for educational policies. The novel multi-

modal and highly ecological approach used in this thesis makes this work an important 

example for real-world second person social neuroscience.   
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Impact Statement 

People have been learning from and with each other since we have record of human 

activity. Despite changes in the modern educational system, it remains similar to its 

ancestral versions in one feature at its core: it is social. Yet, we know very little about 

the cognitive and neural mechanisms that support human learning in social 

interaction, especially with regards to real-world contexts. This thesis employed highly 

ecological designs and multimodal paradigms to answer questions about what social 

contexts better support acquisition of new knowledge, and how social interaction 

facilitates information transfer between teacher (sender) and learner (receiver). To 

investigate these questions, this work makes use of both online platforms as well as 

wearable functional near-infrared spectroscopy (fNIRS) to record brain activity from 

two people simultaneously as they interact.  

This thesis reports four main findings. First, in online contexts, learning in live 

(contingent) social interaction is more effective than learning from pre-recorded 

videos. Second, social interaction supports learning in adults with Autistic Spectrum 

Condition (ASC) too, more than non-social teaching and as much as it does in 

neurotypicals. Third, face-to-face social interaction synchronises brain systems 

involved in shared-understanding and common-ground during co-watching of 

naturalistic movies, beyond what would be expected by watching the same movies 

alone. Forth, learner-teacher brain synchrony predicts learning performance. Crucially 

however this is not a linear dynamic, but it is modulated by behavioural mechanisms 

of joint attention and mutual gaze between teacher and learner.  

These findings advance the current understanding of the neurocognitive mechanisms 

engaged as people learning from and with others. Specifically, they show that 

neurocognitive mechanisms involved in interactive learning are distinct from 

mechanisms involved in non-interactive learning. In addition, they support the notion 

that learning via social interaction is distinct from learning about the social world: social 
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cognition may support information transfer between people even in the context of 

non-social knowledge. This distinction may be particularly relevant in our 

understanding of neuro-diverse populations including ASC, and inform both cognitive 

models and experimental practices in the study of educational neuroscience. Lastly, 

this work emphasise the need for more ecologically valid investigations, with long-

term implications for educational policies. 
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1. Chapter 1  

This chapter has been adapted from the opinion piece published on 26th December 

2022, full reference is:  

De Felice, S.; Hamilton, A.; Ponari, M.; Vigliocco, G. (2022) Learning from others is good, 

with others is better: the role of social interaction in human acquisition of new 

knowledge Phil. Trans. R. Soc. http://doi.org/10.1098/rstb.2021.0357  

Introduction 

Communities where experts would transfer knowledge to novices have existed in one 

form or another since we have records of human activity. Despite changes in the 

modern educational system, it remains similar to its ancestral versions in one feature 

at its core: it is social. Yet, we know very little about the cognitive mechanisms that 

support human learning in social interaction. Throughout our life, we acquire new 

information and form new conceptual representations largely in social contexts: for 

example, babies learn from their caregivers at home, pupils learn from teachers at 

school and by sharing their experiences with other students. In the same way, adult 

learning typically occurs in social contexts and in relation to peers, colleagues at work 

and/or mentors. Researchers in anthropology and sociology (e.g., Schegloff, 2007; 

Sacks, Schegloff & Jefferson 1974), as well as in developmental psychology (e.g., 

Bruner, 1957, 1978; Nomikou et al., 2016; Rohfling et al., 2016; Vygotsky, 1978) have 

emphasised in their work the importance of social interaction for learning and for 

development. However, cognitive psychology and neuroscience has traditionally 

studied cognition at the individual level.  

The ‘single-brain’ approach (Gazzaniga, Ivry & Mangun, 2002) studies brain and 

cognition using experimental designs involving a sample of participants (children or 

adults) completing a given task individually, and then makes inferences about how the 

brain works more generally.  It is only in the last decade, that cognitive neuroscientists 

http://doi.org/10.1098/rstb.2021.0357
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have begun to move to a ‘second-person neuroscience’ approach (Redcay & 

Schilbach, 2019) which studies cognitive processes in interaction, including the back-

and-forth dynamics between two or more people. This thesis applies these ideas to 

the case of learning new concepts and knowledge.   

I first set out the theoretical framework for this thesis, providing some definitions and 

introducing some ideas relevant to the study of human learning and for the 

experimental chapters (Chapter 2, 3, 4 and 5). I then move to review the evidence in 

children and adults, showing what we know so far about how learning benefits from 

social interaction across the lifespan. I also present neuroimaging studies to identify 

the neural signature of social interactive learning. After the literature review, I identify 

the possible cognitive mechanisms subserving interactive learning. I then highlight 

some methodological and theoretical issues that emerged from the literature review. 

In doing so, I describe how my work attempts to deal with some of these issues and 

present the rationale for the four experiments described in the following chapters.  

1.1 Theories and definitions 

The goal of this section is to introduce key concepts and set some definitions which 

would be useful throughout the thesis. As this work looks at both 

behavioural/cognitive and neural mechanisms of social learning, this section provides 

some relevant definitions on these two aspects respectively. 

 Theories and definitions of social learning 

Human learning refers to any form of acquisition of new knowledge and skills by an 

individual. One can learn new information alone, e.g. memorising events via reading a 

history book. However, often learning occurs with and from other people. When such 

learning occurs via transmission of information across members of a social group, it is 

defined as social learning (Tomasello, 2004). Importantly, there are many ways in which 

learning can be social, depending on the role that the social agent(s) has in the learning 
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process of a given individual. Therefore, the term social learning is a broad term that 

refers to any form of learning – such as motor, verbal and knowledge-based learning 

– via any form of social context, including observation of others (Cross, 2011; Cross et 

al., 2009), imitation (Bandura, 2019) and interactive learning (Figure 1.1).  

 

Figure 1.1 Schematic of three types of social learning.  

Arrows indicate information flow between teacher and learner in three types of social learning. From 

left to right: Observational learning. Learner attends to information that flows from teacher to learner. 

Imitation learning. Learner attends to information that flows from teacher to learner and 

repeats/imitates the teacher. Interactive learning. Teacher and learner engage in social interaction and 

exchange reciprocal social signals. Importantly, information flows back and forth from teacher to learner. 

Observational learning refers to learning via attending to someone else’s actions 

and/or listening to them delivering information. Imitation refers to copying someone 

else (Bandura, 2019). Observational learning and imitation differ as observational 

learning only requires attention to the teacher, without immediate replication of their 

actions/words, while imitation learning involves observation plus active performance.  

Both of these can arise when a person watches a video of another person’s actions or 

speech, with no interaction between the watcher and the video, and thus both involve 

the one-way transmission of information from teacher to student without interaction, 

where the learner is confined to the role of a receiver. In contrast, in interactive 

learning, both the teacher and the student are concurrently engaged in the learning 

process and they can both take full turns during the interaction. While interactive 

learning can vary in terms of how interactive any given contexts is (Rogoff, 1998; 

Rogoff et al., 2007), with variations even within single episodes (e.g. sessions), by 
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definition any given interaction draws in all agents as contributors: all can participate 

in the interaction in both explicit (e.g. verbal feedback) and implicit (e.g. body 

language) forms.  

Within cognitive models, interactive learning is defined by a two-way exchange of 

signals that includes subtle but critical reciprocity from student to teacher (Figure 1). 

These signals could indicate understanding (or lack thereof) as well as attentiveness 

(or inattentiveness) and thus allow the teacher to tune their lesson to the student.  

Here, I refer to reciprocity as any reaction fed-back during an real-time exchange which 

would inform the interlocutor(s) about the quality of the exchange (e.g. nodding for 

understanding, frowning for confusion etc), and thus possibly allow for a (re)direction 

of behaviour(s), as well as opportunities for the learner to elaborate what is being 

discussed. Thus, learning in interaction requires mutual feedback between a student 

(or learner, who is acquiring new knowledge) and a teacher (who is providing new 

information). Importantly, independently of the type of social context, for (social) 

learning to occur there must be an enduring change in the learner’s action and/or 

knowledge as a consequence of either observing, imitating or interacting with others 

(Ramsey et al., 2021).  

Such categories have been developed over the last decades especially in the context 

of action/motor learning, and their applicability to knowledge-based learning may be 

less obvious, although still useful to draw some conceptual distinctions. I employ these 

categories here to draw the distinction between learning from others (imitation and 

observational learning) and learning with others (interactive learning). There are only 

a few studies which directly contrast different types of learning. Examples include 

comparisons of physical or observational learning (Cross et al., 2017), and comparisons 

of sequence learning from imitation or verbal instruction (Renner et al., 2018) or of 

observational versus interactive learning (Matheson et al., 2013). Pioneering work from 

developmental psychologist Vygotsky (1962,1978) had long argued for a key role for 

the environment, especially the social environment in learning and development. His 
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sociocultural theory of cognitive development views conceptual learning as an intrinsic 

social process. A number of other researchers in developmental psychology has also 

emphasised the importance of social interaction in cognitive and linguistic 

development (e.g., Rohfling et al., 2020).  

 Theories and definitions of brain-to-brain dynamics 

The study of brain-to-brain dynamics – i.e. the relationship across multiple brains’ 

neural responses – has received growing interest over the last few decades. This 

section will introduce some of the ideas emerging from this literature and define some 

terms to describe different aspects of brain-to-brain dynamics. In particular, it will 

consider two definitions, namely inter-subject correlation and brain synchrony (see 

figure 1.2), in relation to four main questions: a) what is the temporal relationship 

between multiple signals?; b) what does this relationship reflect?; c) when are multiple 

brain responses measured?; and d)  how is the relationship quantified? (Table 1.1) 

Table 1.1 Characteristics of inter-subject correlation and brain-to-brain synchrony to study 

inter-brain dynamics. Also see Figure 1.2. a. Note that this list is not meant to be exhaustive and 

here we include just a few examples of the most popular metrics used in the literature. 

 Inter-Subject 

Correlation 

Brain-to-Brain 

Synchrony 

Question a: what is the temporal 

relationship between multiple 

signals? 

Symmetric 

mirroring: how 

two or more 

signals align or 

dis-align over 

time (i.e. A=B) 

Dynamic 

coupling: how 

two or more 

signals co-vary in 

frequency and 

time (i.e. AB) 

Question b: what does the 

relationship between multiple 

signals believed to reflect? 

Similarity in 

individuals’ 

cognitive 

processing of 

either external 

stimuli or internal 

mental states 

Complex social 

interaction, signal 

exchange and 

communication 

Question c: what are the temporal 

characteristics of data collection, 

i.e. when is brain response of 

Separate sessions Simultaneously 

(with physical co-

presence) 
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participant A measured in relation 

to participant B? 

Question d: what measure is used 

to quantify the brain-to-brain 

relationship? a 

Pearson’s 

correlation 

Wavelet 

Coherence 

Transform; 

Circular 

correlation; 

Granger causality 

Inter-subject correlation (ISC) quantifies the consistency of stimulus-driven responses 

among individual brains. In other words, it looks at how aligned (or dis-aligned) two or 

more brains are in response to different stimuli and/or environments. This has been 

first studied by Hasson et al. (2004) in a pivotal functional Magnetic-Resonance 

Imaging (fMRI) experiment, where five different individuals showed similar neural 

responses in occipital, parietal and temporal areas during free watching of a movie. 

Crucially, each individual brain was scanned individually. Since Hasson et al.’s study, a 

number of other investigations replicated the findings of ISC during natural viewing 

(Jääskeläinen et al., 2008; Lahnakoski et al., 2014; Parkinson et al., 2018),  and extended 

them to interpretation of narratives (M. Nguyen et al., 2019; Yeshurun et al., 2017), 

speech comprehension (Wilson et al., 2008) and even reflection on socio-political 

issues (Dieffenbach et al., 2020).  

Recently, Madsen and Parra (2022) cleverly demonstrated that ISC is the result of 

effective cognitive processing: they presented participants with informative videos in 

an attentive and distracted condition, while measuring their neural activity via EEG, as 

well as heart rate, gaze position, pupil size, breathing and head movement. ISC (i.e. 

between-subjects) emerged only for those signals that exhibit a robust within-subject 

brain–body connection. Within-subject brain-body connection gives a measure of how 

engaged an individual is to a given experience. By showing that ISC was specifically 

present in those instances when there was a high within-subject brain-body 

connection, the authors demonstrated that ISC is linked to the degree of individual 

participant’s attunement to the stimulus. Consistent with this interpretation, the 
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strength of correlation changed with attentional state and predicted subsequent recall 

of information presented in the videos. 

Therefore, ISC or neural alignment reflect the temporal similarity between two (or 

more) brain signals (question a, Table 1.1), resulting from common cognitive 

processing of an external stimulus (question b). It is obtained by scanning single brains 

one at a time (question c) and is usually quantified via correlation methods (question 

d). Importantly, neural alignment reveals the similarity of different brains to how we 

process the world around us, and although it has been shown to be modulated by 

inter-personal dynamics (e.g. Parkinson et al., 2018), it does not tell us anything about 

real-time interactive minds.  

 

Figure 1.2 Inter-Subject Correlation vs Brain Synchrony 
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Left: on day 1, one participant is watching a cartoon while receiving a brain scan. On day 2, another 

participant is undergoing the same procedure, watching the same cartoon and receiving a brain scan. 

The neural responses from both participants are than compared. The similarity across neural responses 

to the same stimulus (e.g. the cartoon) collected from individual brains and different sessions is 

computed as inter-subject correlation. Right: On the same day, two participants watch a cartoon 

together, in real time, next to each other. Their brains response is recorded simultaneously, and the 

coherence between the two signals is computed as brain-to-brain synchrony. Also see Table 1.1. 

In contrast, brain-to-brain coherence (or synchrony) reflects the degree of real-time co-

variance across multiple interactive brains. As interactions are complex, signals from 

multiple interactive brains may not necessarily ‘mirror’ each other, but would instead 

‘couple’ to each other dynamically over time (Hasson & Frith, 2016). The first study to 

measure neural activity from multiple interacting brains simultaneously has been Cui 

et al. (2011). In their pioneering hyperscanning functional near-infrared spectroscopy 

(fNIRS, see section 1.4.3 for a description of this method) study, they measured brain 

activity from two people as they engaged in either a cooperative or competitive task. 

Findings revealed that while an individual time-series analysis did not show task-

specific neural patterns, an inter-brain coherence analysis did, with increased 

coherence emerging specifically during cooperative task blocks. This study was the 

first to provide evidence that collecting and analysing data from multiple interactive 

people can be more informative than single-person approaches, particularly in the 

study of social cognition. From this first pioneer study, many more have explored the 

potential of hyperscanning to shed light on real-time social dynamics in a variety of 

contexts (Babiloni & Astolfi, 2014a; Cañigueral et al., 2021b; Hirsch et al., 2018; 

Konvalinka et al., 2023; Lomoriello et al., 2022; T. Nguyen et al., 2020; Y. Pan et al., 2020; 

hyperscanning literature on social cognition is reviewed in details in section 1.2.3 and 

discussed in terms of social learning in section 1.3.3).  

Therefore, brain-to-brain coherence or synchrony gives a measure of complex dynamic 

coupling, beyond simple alignment (question a, Table 1.1). This is believed to reflect 

real-time social dynamics (question b) and is achieved by measuring multiple brains 
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simultaneously via hyperscanning (question c). As it reflects a complex signals dynamic, 

analysis tools used to compute brain synchrony include methods that can encompass 

not just temporal information about the signal, but also frequency components (e.g. 

wavelet transform coherence analysis, Grinsted et al., 2004) and directionality of the 

relationship (e.g. Granger causality, Granger, 1969) (question d).  

The distinction between neural alignment (or ISC) and brain-to-brain coherence is 

relevant as it has implications for building cognitive models of how people process 

reality and interact with others (see Figure 1.2). In fact, neural alignment gives 

information on how similarly people’s brains respond in a given context, or in other 

words how closely different brains experience and interpret the world. As such, it still 

involves the study of cognition within a single-brain framework. Instead, brain-to-brain 

coherence goes beyond similarities across solo brains, to grasp complex dynamics 

between interactive brains, as they continuously and mutually adapt over their 

interaction.  

The shift towards a second-person neuroscience (Redcay & Schilbach, 2019) allows 

theories to go beyond single-brain models and consider the mutual-influence between 

different social agents. The embodied mutual prediction framework (Hamilton, 2020; 

Kingsbury et al., 2019) arises from such an experimental shift, and make clear 

predictions about complex social dynamics. Importantly, despite the fact that brain 

synchrony is more informative than ISC about social dynamics, it cannot exhaustively 

explain the mechanisms underlying a successful (or unsuccessful) social interaction. 

The mutual-prediction hypothesis explicitly acknowledges that interactive brains exist 

within interactive bodies and, in line with this premise, interprets brain synchrony as 

the result of auditory, visual and motor signals exchange between social agents. 

Therefore, interrogating inter-brain dynamics under different contexts and 

distinguishing between ISC and brain synchrony is valuable as it consequently leads to 

both experimental and theoretical renovation.  
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It is worth mentioning at this point that ISC and brain synchrony are not completely 

separate concepts and some overlaps between the two exist, in that brain synchrony 

includes and extend from ISC.  In fact, when two (or more) people interact, a number 

of elements are processed by all parts involved which are not directly linked to any 

aspects of the interaction per se (e.g. the visual elements of the room, the sounds, the 

topic of the conversation etc). This would inevitably drive some degree of ISC. 

Therefore, brain synchrony would always include signal reflecting similarity in the way 

people process the world, while also including mutual-predictions about interactive 

agents.  

Note that other terms have also been used in the literature to describe various forms 

of brain-to-brain dynamics, including brainwave entrainment, neural homophily and 

possibly more. However, for the sake of clarity, here we limit our terminology to 

ISC/neural alignment and brain-to-brain coherence/synchrony specifically within the 

definitions provided in this section (also see Figure 1.2). Any other terms is avoided to 

minimise confusion.  

1.2 Review of the evidence 

This section reports evidence from studies on children and adults to illustrate what we 

know so far about how humans learn in social contexts, and also reviews neuroimaging 

studies of interactive brains. As outlined in section 1.1.1, the primary focus of this work 

is studying the mechanisms of learning via social interaction about non-social 

conceptual knowledge (i.e. long-term memory for facts and concepts). Review of the 

evidence and discussion of the literature will however extend to other forms (e.g., 

single words, motor learning) when relevant. 

 Social interaction for children learning 

Social interaction is crucial for optimal cognitive and brain development (Goswami, 

2006; Kuhl, 2007; Meltzoff et al., 2009). This statement is relatively uncontroversial and 



 

40 

 

is supported by a large body of literature (for the latest systematic review on the topic 

see Ilyka et al., 2021). Taking together the results from the 55 studies included in their 

review, Ilyka and colleagues concluded that an optimal development of cognitive 

functions – as measured via heterogeneous neuropsychological test batteries – and 

brain – as measured via structural and functional analysis of selected regions and 

networks – is contingent on child-caregiver interaction during the child’s first years of 

life.  Out of 55 relevant publications included in their systematic review, only six looked 

at both child and caregiver and how the dyadic interaction impacted cognitive and 

brain development (Beckwith & Parmelee, 2016; Elsabbagh et al., 2012; Gartstein et al., 

2020; Jones et al., 2004; Perone & Gartstein, 2019; Pratt et al., 2019). Results coming 

from such an approach point to the importance of ‘sensitivity’ and ‘reciprocity’ of both 

agents for optimal child development, and in turn at the quality of the overall 

interaction to support cognition later in life. 

Considering interactive learning specifically, the majority of work on children comes 

from studies on language acquisition: these robustly and consistently show that social 

interaction is a critical and constraining factor for successful language development 

(Kuhl, 2007).   In a pioneering study, Kuhl et al. (2003) trained 9-month old American 

babies to distinguish Chinese Mandarin sounds in three different conditions: in 

interaction with a native speaker, or by exposure to either videos or sound recordings 

from the same native speaker. Despite equivalent exposure time and content of 

Chinese sounds, only the group who engaged in live-interaction with the teacher 

showed learning, and being exposed to videos or sound recordings was associated 

with no learning. While this study is not strictly looking at knowledge-based learning 

(e.g. new words/concepts), it provides strong evidence for the crucial role of interaction 

in children’s learning over non-interactive learning methods.  

More work on word acquisition during child-caregiver interaction has been conducted 

by Yu and Smith (Yu et al., 2017; Yu & Smith, 2012a, 2013, 2016). In their experimental 

paradigm, the infant and the caregiver engage in a series of free-play sessions during 
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which they manipulate and name various objects (toys), while both wear head-

movement sensors and eye-trackers. Crucially, in all their studies, the parent (teacher) 

is not aware that their infant’s learning of the objects’ names will be tested after the 

free-play session. This ensures that child-caregiver interactions are as natural as 

possible. By conducting a series of dyadic analyses, Yu and Smith (2012) showed that 

18-month old infants were more likely to successfully learn objects’ names if two things 

happened concurrently: 1) the infant (learner) held the object closer so that it was 

visually dominant within their visual field (over other competitor objects on the play 

table), and 2) the caregiver (teacher) named the object. Overall, these papers 

demonstrate the importance of social interaction in young children’s word-learning. 

The critical role of social interaction for optimal language development is relatively 

unsurprising, considering how heavily human language relies on the ‘social brain’ and 

vice versa (Blakemore, 2010; Kuhl, 2003, 2007). Also, in many developmental 

pathologies such as autism spectrum disorder, social cognition deficits and 

communicative disorders are co-occurring (Happé, 1995; Whitehouse et al., 2007). 

Given the highly-interconnected nature of social cognition and language processing 

(Binney & Ramsey, 2020), learning language within a social context would be expected 

to be beneficial.   

Because of the strong relationship between communication and sociality, one may 

argue that the social-interaction advantage is limited to language development. 

However, the beneficial effect of social interaction during development is not limited 

to language. Evidence from a variety of studies show that social interaction supports 

learning more generally across different domains, including visuospatial categorization 

(Lauricella et al., 2011), procedural learning (Sauppé & Mutlu, 2014) and mathematical 

reasoning (Kostyrka-Allchorne et al., 2019a).  

In their study, Kostyrka-Allchorne and colleagues found that in a large group of five-

year-olds (n=215) the physical presence of a teacher (versus having  the teacher on 
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screen) was associated with the highest learning, independent of whether children 

were observing the teacher playing with a shape or they were playing with it 

themselves. This study is a great example of why student-teacher interaction should 

be studied as interdependent: it is certainly unlikely that the mere presence of the 

teacher had something ‘magical’ about it so that the child learned more when the 

teacher was physically there. Equally, audience effects – defined as “a change in 

behaviour caused by being observed by another person” (Hamilton & Lind, 2016, pp. 

160) – cannot explain the results, as students were explicitly observed in the on-screen 

condition too. Rather, there may well be something within the dynamic of learner-

teacher interaction as it occurs face-to-face that positively impacted learning.  

For example, Marsh, Ropar & Hamilton (2013) found that children showed more over-

imitation – i.e. unnecessarily copying actions of others – when an adult was 

demonstrating goal-oriented actions, compared to when demonstration was 

presented through a recorded video. This suggests that social factors may directly give 

rise to different behaviours (e.g. overimitation) during learning with others, and this 

may increase with age as people think more about social norms (Clay, Over & Tennie, 

2018, see below for a discussion of the mechanisms subserving interactive learning). 

 Social interaction for adult learning 

Studies on interactive learning are predominantly focusing on children and young 

people as they are considered as the typical learners. Little is known about social 

learning in adults, and even less in interactive learning specifically. There is some 

evidence suggesting that, similar to what is found in children, social interaction acts as 

a catalyst for learning in adults too (Verga & Kotz, 2013). Again similarly to the 

literature on children, the majority of studies on interactive learning in adults has 

considered the domain of language, the focus being on second language acquisition 

(Jeong et al., 2010, 2021; Li & Jeong, 2020; Verga & Kotz, 2013).  
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In their study, Jeong and colleagues (2021) asked 36 Japanese adults to learn two sets 

of unknown Korean spoken words via either translation or videos depicting social 

situations. Words encoded from the social condition showed significantly higher 

accuracy rates and faster reaction times (RTs) than words encoded from the translation 

condition, and the social-video learning condition was also associated with higher 

activity in the right temporal parietal junction, right hippocampus, and motor areas, as 

measured with functional magnetic resonance imaging (fMRI). In their review, Verga 

and Kotz (2013) reported evidence for the importance of sociality in adult learning: 

specifically, learning a second language in interaction with another person significantly 

improves long-term retention of new vocabulary. Noteworthy, language is tightly 

linked to social cognition (Garrod & Pickering, 2004), and as such it is relatively 

unsurprising that language learning would benefit when occurring within social 

contexts. 

Considering domains other than language, studies on adults have mainly looked at 

the impact of social interaction in comparison to online/virtual learning environments. 

Results are less conclusive: the majority of studies found no difference in learning 

outcomes between teaching live versus teaching through recorded videos (Brockfeld 

et al., 2018; Davis et al., 2008; Phillips, 2015; Schreiber et al., 2010; Solomon et al., 2004; 

Vaccani et al., 2016). In their intervention study, Brokfeld et al. (2018), divided 296 

medical students into four groups, three of which received 41 four-hour lessons live, 

while the last group watched videos of the same lessons. The group assigned to the 

video condition changed daily, so that all students saw both live and video lectures. 

The effectiveness of the teaching method was evaluated by looking at students’ 

performance on 301 multiple-choice questions of the medical exam. Similar 

approaches were adopted by the other studies cited here, and all found that learning 

performance did not differ across teaching methods. Despite no difference in objective 

performance, all these studies found that there were some differences in subjective 

evaluation, with the majority of students preferring live lessons. However, these studies 
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did not control for exposure time: recorded material could be replayed multiple times 

while the live session was only live once. Studies that controlled for content and 

exposure time across conditions, found a significant improvement in the learning of 

medical students during social interactive lectures compared to recorded tutorials 

(John et al., 2016; Ramlogan et al., 2013). 

Overall, studies of interactive learning in adults yield similar results to those in children.  

However, scholars are less unified on the notion that social factors matter in adult 

learning, possibly because adult learning – specifically of new concepts and 

information – is generally under-studied compared to children learning, and social 

factors in adulthood may be less critical than during development. Also, crucially, the 

studies reviewed above did not directly control the social factor during learning.  

In the next section, I review neuroimaging studies to describe the neural signature of 

social interactive learning. 

 The neural signature of interactive learning 

Hyperscanning has become increasingly popular over the last decade, as it has the 

advantage of measuring brain activity from more than one individual at the same time, 

meaning the social brain can be studied while people engage in social interaction 

rather than in isolation (Babiloni & Astolfi, 2014; Czeszumski et al., 2020; Dumas et al., 

2011; Kelsen et al., 2020a). 

In a five-person electroencephalography (EEG) hyperscanning study, Davidesco et al. 

(2019) simultaneously measured brain activity from four students and their teacher 

during a science class. They found that alpha-band (8-12Hz) brain-to-brain coherence, 

but not intra-brain alpha synchrony (i.e. within individuals), significantly predicted 

students’ learning, as measured via performance in an immediate and a delayed test a 

week after the class. Moreover, moment-to-moment variation in alpha-band brain-to-

brain coherence during the class specifically predicted what information was retained 

by the students a week later. Alpha frequency band is a well-established neural index 
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of attention (Klimesch et al., 2007), which suggests that learning was better predicted 

by moments when student was attuned (or paying attention) to the teacher, and 

concurrently the teacher was attuned (or paying attention) to the students. 

The same research group conducted another EEG hyperscanning study where brain 

activity was recorded from 12 high school seniors simultaneously over a semester 

(Dikker et al., 2017). Recording took place during students’ regular biology class and 

was repeated over 11 sessions. Results showed that the degree to which brain activity 

was synchronized across students predicted student class engagement (quantified as 

student appreciation ratings of different teaching styles and student daily self-

reported focus). In particular, they conducted a group-based neural coherence analysis 

to link student-to-group brain synchrony to different predictors. They found that 

student focus predicted student-to-group synchrony above and beyond teaching 

style, and also students who were more focused on a given day showed higher 

synchrony for that day. 

Given the association between learner-to-group synchrony and class engagement 

(Dikker et al., 2017), and the link between engagement, attentional processes and 

learning (Nissen & Bullemer, 1987a), Dikker’s group extended their work to ask 

whether learner-to-group or learner-to-teacher neural synchrony predicts learner’s 

content retention (Bevilacqua et al., 2019). Using a similar real-world classroom 

scenario, biology class materials were presented in either videos or live lectures, and 

students completed a multiple-choice quiz after each class. Results showed that brain-

to-brain synchrony was higher for video than for live lectures (as expected by greater 

similarity in low-level processes during watching of the same video content). However, 

for live lectures only, social closeness to the teacher was related to learner-teacher 

brain synchrony: in other words, when there was a contingent learner-teacher 

interaction, this was reflected in their brain activity. In addition, learning performance 

correlated with learner–teacher closeness, but not with learner-teacher brain 

synchrony. 
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Using functional near-infrared spectroscopy (fNIRS), Holper et al (2013) recorded 

prefrontal brain activity during the Socratic dialog simultaneously in seventeen 

teacher–student pairs. The Socratic dialog is a classical teaching model where the 

teacher encourages learning by interrogating the students via a set of structured 

questions. They found that learning - as measured by students’ correct responses – 

was associated with higher correlation of student-teacher brain activity. 

Similar findings were obtained by another group who also used fNIRS to measure brain 

activity from learner and teacher dyads during the acquisition of a music song (Pan et 

al., 2018). They found that brain activity in the bilateral Inferior Frontal Cortex showed 

learner-teacher synchronization. This was specifically associated with moments when 

the learner was observing the teacher and when learning was more interactive 

(measured in terms of turn-taking). Importantly, learner-teacher brain synchronization 

could predict student’s performance on the learned song. The same research group 

conducted a further study to investigate the causal role of such synchronization in 

learning (Pan et al., 2020). They used transcranial alternating current stimulation (tACS) 

to induce (or disrupt) brain synchrony in different conditions and found that induced 

teacher-learner neural coupling facilitated motor coordination, which in turn was 

associated with enhanced learning of novel Chinese songs.  This intriguing work hints 

at many further interesting questions, and it will be useful to see it replicated and 

extended.  

Overall, these studies demonstrate that brain-to-brain synchrony can be measured 

during interactive learning and may correlate with learning performance either across 

sessions (Dikker et al., 2017) or even across individual events (Davidesco et al., 2019; 

Pan et al., 2018).  However, the presence of a correlation does not necessarily reveal 

the causal mechanism behind the effect, and I consider possible cognitive processes 

in the next section. 
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1.3 Learning from and with others: Cognitive mechanisms of 

interactive learning 

In the previous sections I have reviewed evidence showing that social interaction plays 

a key role in human learning across the life span and in a variety of cognitive domains, 

and also that it has a distinctive neural signature in the brain. It remains unclear, 

however, what social and cognitive mechanisms enhance learning in an interactive 

context.  In this section, we consider some of the possible mechanisms which have 

been suggested and how these might be studied. 

A number of cognitive mechanisms have been proposed to account for the advantage 

of interactive learning over non-interactive learning, including stimulus saliency (End 

& Gamer, 2017), social arousal (Berger, 2011), internal motivation (Evans & Boucher, 

2015), sustained attention (Yu et al., 2017), audience effects (Hamilton & Lind, 2016), 

eye-contact and gaze (Ho et al., 2015), joint attention (Mundy & Newell, 2007), 

common ground (Bohn et al., 2019), attunement and shared intentionality (Sabbagh 

& Baldwin, 2001) and mutual predictions within inter-agents dynamics (Kingsbury et 

al., 2019).  These can be distinguished on the basis of whether they describe effects 

within one individual alone (e.g. the learner) or whether they describe the learner-

teacher relational dynamic (Brown & Brüne, 2012). Here, we discuss these 

systematically and evaluate them in relation to interactive learning. 

 Individual-based mechanisms: learner and teacher-based 

approaches 

Individual-based mechanisms include stimulus saliency (i.e. how obvious or prominent 

a stimulus is in someone’s environment), social arousal (i.e. a state of excitement or 

energy cost in relation to the physical intensity of a social situation), internal motivation 

(i.e. the individual willingness to engage in a situation or perform action), and sustained 

attention (i.e. a focused state maintained on a stimulus over an extended period of 

time). Stimulus saliency and social arousal have been proposed as possible 
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explanations for the social learning advantage on the basis of the well-established 

effects that faces (and social stimuli more generally) are processed differently than 

other type of non-social stimuli (Bentin et al., 1981), and that we get more aroused in 

social than non-social situations (Cacioppo et al., 1996). In other words, according to 

these accounts, interactive learning is not ‘special’ because it is social per se, rather 

because social contexts share some features that make encoding of information 

somehow more memorable for future recalls (Jeong et al., 2021). In line with this, it has 

been found that distinct neural patterns of activation are associated with encoding and 

retrieving information learned in social contexts (Jeong et al., 2010, 2021).  

In addition to external bottom-up influences, the internal motivation of the learner 

may be fundamental to direct sustained attention, which in turn is an essential pre-

requisite of learning (Nissen & Bullemer, 1987b). There is no doubt that engaging with 

the learning material, by attending and processing the target information, is a strong 

predictor of how well we may be doing on a follow-up test. Yu et al (2017) 

demonstrated that this may be a very early mechanism that we engage in from a young 

age. They found that, in 9-month old infants, sustained attention predicted the 

learning of new vocabulary above and beyond joint attention between infant and their 

caregiver. 

However, these factors seem to be telling only part of the story, and specifically the 

part concerning the learner. For example, Kostyrka-Allchorne and colleagues (2019) 

found that 5-year olds learned about atypical geometric shapes better when there was 

a teacher physically present in the room with them. The observed learning benefit may 

well reflect some degree of arousal given by the physical presence of the teacher. 

However, it cannot be excluded that the presence of the teacher improved learning via 

mechanisms of relational dynamics (Schertz et al., 2013). We simply cannot exclude 

either option, due to the way the study was designed and the fact that the focus of the 

analysis was limited to the learner.  
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In fact, the role played by the teacher is crucial in determining the learning outcomes, 

and yet it is often underrepresented in the learning literature. Social communicative 

signals (both verbal and non-verbal e.g. pointing, eye-gaze) are overtly employed by 

an expert (the teacher) to transfer information to a novice (the learner, Csibra & 

Gergely, 2009, 2011). Teacher’s communication is functional to achieve successful 

teaching (and in turn someone else’s learning), and as such is explicitly adjusted to 

maintain the learner’s attention and assist information transfer. Teacher’s 

communicative actions are therefore the other fundamental aspects to consider in the 

study of human learning. 

The fact that teachers can adjust their verbal and non-verbal behaviour to assist the 

learner has been demonstrated in the case of both children and adult learners. For 

example, in their study, Brand et al. (2002) showed that caregivers deliberately 

modified both their language and their action when sharing information about novel 

object properties to infant compared to adults (who presumably were not novice to 

those objects). Similarly, Vigliocco et al. (2019) further showed that caregivers adapted 

their language and their actions when presenting unknown vs known objects to their 

2-3 years old children. Similar modification of action with pedagogical intentions has 

been demonstrated in adults (McEllin, Knoblich and Sebanz, 2018). In three 

experiments, McEllin et al. recorded movements of participants playing simple 

xylophone melodies either alone, for a learner watching them, or together with another 

participant. They found that movement velocity was altered specifically in the 

condition when participants were playing to demonstrate a musical sequence to a 

novice, compared to when they were playing alone or with someone else who was 

expert in the melody. 

This literature demonstrates the importance of considering the teacher as well as the 

learner when studying how humans learn in interaction. However, looking at one or 

the other may not be enough. Studies that only consider one side of the interaction 

may overlook the social dynamic unfolding during interpersonal communication, and 
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in turn reach partial and/or inaccurate conclusions regarding the mechanisms of 

human interactive learning. 

 For every learner there is a teacher, and vice-versa: 

interaction-based approaches 

Real-time social interaction involves rich and complex behavioural dynamics, with bi-

directional responses and input between two or more people (Clark, 1996; Garrod & 

Pickering, 2004; Holler & Levinson, 2019; Yu & Smith, 2012). Such a multifaceted 

phenomenon is unlikely to rely on a single cognitive mechanism but rather a number 

of cognitive processes, which may be absent in a non-interactive situation. During 

interactive learning, learner-teacher dynamics may be characterised by joint attention 

(Schertz et al., 2013), common ground (Bohn et al., 2019), shared intentionality 

(Sabbagh & Baldwin, 2001), or all these processes together (Schmitz, 2014). These 

mechanisms of attunement between two or more conversational partners may allow 

information to be shared more effectively, and in turn be advantageous in those 

situations when we learn socially (Frith & Frith, 2012; Hu et al., 2015).  

One approach to examining the rich and complex dynamics of interpersonal 

interaction is to argue that social interaction is more than just a context for social 

cognitive processes, but in fact replaces individual mechanisms (De Jaegher et al., 

2010).  In such an enactive model, the inter-personal relational dynamics becomes 

autonomous from the single individual parts making up the interaction.  This implies 

that traditional single-person models have little relevance to the two-person 

interaction, and that researchers need to find a new type of dynamic model to 

understand interaction at a more abstract level. 

However, this work argues for a more incremental approach, where social interaction 

is included as an additional element in the study of human cognition. As such, 

interpersonal interactions can be integrated into – and understood by building on – 

models of the solo brain. For example, we know that learning a new concept from a 
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video will involve processes of perception, language and memory that allow the learner 

to integrate the new information into their existing knowledge structures.  Learning a 

concept in interaction is likely to engage the same processes plus additional cognitive 

systems (e.g., joint attention, common ground etc), where the moment-by-moment 

coordination of gaze and speech allows these additional processes to function 

smoothly.   

There is evidence that the quality and quantity of social cues present in a given 

interaction substantially affects the communicative outcome of that interaction 

(Cartmill et al., 2013; Sauppé & Mutlu, 2014). Rich visual cues may enable stronger 

attunement by providing more information about the interaction partner’s gaze and 

mental states (Kajopoulos et al., 2020; Marotta et al., 2012). Alksne (2016) looked at 

what features in teaching videos improved the quality of the lecture in a group of 

young adults: they found that speaking over the presentation and making eye-contact 

significantly improved student engagement, which in turn has been positively 

associated with learning outcomes (Bevilacqua et al., 2014).  

The fact that we somehow use our bodies to achieve a better attunment with our 

intelocutor(s) during social communication has been recently well demonstrated by 

Fini and colleagues (2021). In their study, they asked adults to guess concrete and 

abstract concepts from some photos, while being in interaction with an avatar. The 

avatar moved following the kinematics of a real actor’s arm previously recorded, from 

which human movement were implemented on the avatar. They found an association 

between sociality (as measured by motor imitation and motor synchrony between the 

participant and the avatar) and guessing of abstract concepts. They argued that greater 

motor imitation showed by the learner specifically during more difficult trials (abstract 

words) reflected a greater longing for help: participants would try to attune more to 

the avatar to receive more hints and support in the guessing task. This interpretation 

is in line with the argument that social attunement may be a way to support efficient 

information transfer across interlocutors (Shafto et al., 2012).  
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However, by looking only at the student, this study does not tell us much about 

whether the direction of such synchrony is unidirectional (from learner to teacher) or 

rather bi-directional. For example, Davidesco et al. (2019) found that while learner-to-

learner brain synchrony was instantaneous, learner-to-teacher brain synchrony could 

best predict learning when adjusting for a temporal lag of ~200 milliseconds. 

Specifically, student brain activity would ‘tune in’ to brain activity of the teacher only 

after a short delay, suggesting a sequential, lagged transfer of information from 

teachers to students. This type of data shows that, to fully grasp the neural mechanisms 

of interactive learning, it may be insufficient to focus on one social agent alone, instead 

dyadic analysis may carry more interesting and comprehensive information about 

these complex dynamics. 

 Synchronization as a signature of social learning 

A growing body of literature is emerging showing that a signature of interactive 

learning may be a bi-directional synchrony during teacher-learner interaction (see 

Section 2 for a review of the literature on this). When A interacts with B, both A and B 

would share some processing linked to the experience they are both part of, while the 

brain of A would process information about B and the brain of B would process 

information about A. By looking at individual brain systems as part of an interaction, 

we can start to understand the full temporal and behavioural dynamics that are 

reflected into individual brain activity (of interactive agents).  These patterns of bi-

directional coordination can be interpreted within the framework of the mutual-

prediction hypothesis (Hamilton, 2020; Kingsbury et al., 2019; Nishimura et al., 2020). 

This claims that, when interacting with others, we engage in social prediction all the 

time in order to anticipate other people’s actions and mental states (Holler & Levinson, 

2019; Tamir & Thornton, 2018).  Furthermore, when two people are both engaged in 

mutual prediction, their brain states will correlate and thus the signals recorded from 

their brains will correlate, giving rise to interbrain synchrony.  Thus, predictive 

mechanisms present in individual brains can give rise to a consistent cross-brain signal 
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that may predict learning (Bevilacqua et al., 2019; Davidesco et al., 2019; Dikker et al., 

2017; Holper et al., 2013; Pan et al., 2018).   

However, claiming that brain-to-brain coupling on its own can tell us something 

conclusive about the quality of the social interaction, and even further, on the learning 

mechanisms of teacher-student social exchange, is at best ambitious – if not 

misleading (see Novembre & Iannetti, 2021 and Hamilton, 2020 for a discussion on 

this). In conjunction with studying interpersonal brain synchrony, it is critical to 

understand the coordination of actions and how that relates to shared knowledge 

states (see Hasson et al., 2012 for a comprehensive framework of neural synchrony and 

its behavioural references). This may be particularly useful when learning from or 

teaching to someone else. In the case of interactive learning, the co-creation of 

knowledge and understanding is fundamental to the learning process: ideally, the 

teacher would want to share information, and the learner would want to tune in to 

their teacher to receive and process that information, while both would remain 

sensitive to feedback coming from their interlocutor to adjust their behaviour 

accordingly.  It has been proposed that the extent to which people synchronise may 

be a proxy of ongoing exchanges during human social interaction (Balconi et al., 2017; 

Reinero et al., 2020): in other words, high brain-to-brain synchrony across social agents 

should reflect behavioural inter-personal dynamics. Possibly, the objective is that of 

reducing prediction errors and increasing affiliation and communicative benefits 

(Hoehl et al., 2020).  Therefore, integrating behavioural data into hyperscanning studies 

is necessary to achieve a more comprehensive and meaningful knowledge of how 

humans learn from and with others. 

In fact, being a form of social interaction, good pedagogy would be therefore 

characterised by continuous reciprocity: the teacher would monitor the audience’s 

engagement and understanding, and use the audience feedback to adapt their 

performance as needed. Such mutual-prediction engages the brain in a constant 

probabilistic estimate of occurrence of external experiences based on expected 
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outcome. These may be plausible mechanisms underlying inter-personal synchrony 

and shared neural representations typical of social situations (Brown & Brüne, 2012). 

Studies have shown that interpersonal synchrony manifests across multiple levels 

during social interaction, including motor coordination (Chang et al., 2020; Kruppa et 

al., 2020), action coordination and decision-making (Heggli et al., 2020), and verbal 

coordination (Jiang et al., 2020; M. Nguyen et al., 2019; von Zimmermann & 

Richardson, 2016). In addition, person-to-person synchrony has been reported even at 

the physiological (Gordon et al., 2020; Kragness & Cirelli, 2020) and neural level 

(Hasson et al., 2012b; Hasson & Frith, 2016; Hoehl et al., 2020; T. Nguyen et al., 2020).  

1.4 Gap in the literature and rationale for the present work 

The scope of this introduction was to look at the state-of-the-art in the neuroscience 

of human learning as it most naturally occurs, i.e. socially. I have presented evidence 

showing the crucial role that social interaction plays in human learning across the life-

span. Social interactions feature as a catalyst for the human ability to acquire and retain 

new information (Csibra, 2006; Meltzoff et al., 2009). However, taking the cited 

literature together, a few issues emerge. I consider these below, and outline how this 

PhD work attempts to overcome them. 

 Learning *via* the social has been (wrongly) interchanged 

with learning *about* the social. 

The majority of work presented in the literature reviewed above has used the term 

‘social learning’ without clearly distinguishing between situations where people learn 

via social interaction to situations where people learn about the social world. Generally, 

studies focused on the investigation of learning about the social world (e.g. facial 

expression, language), either via social or via non-social contexts. In fact, there are 

disproportionally more studies on interactive learning in the domain of language 

acquisition than any other domain (both in children and adults). A tight link exists 

between language and social interaction, given the social nature of communication 
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(Garrod & Pickering, 2004; Kuhl, 2007; Seyfarth & Cheney, 2014). The problem with 

studies that did not distinguish the medium through which we learn from the object 

of learning, is that it is difficult to disentangle the contribution of social interaction in 

building new long-term knowledge (e.g. via one or multiple cognitive mechanisms 

described in section 2), in contrast to mechanisms of general social cognition 

(Holtgraves & Kashima, 2008). A clear separation between learning via the social and 

about the social is therefore important to build accurate cognitive models, and in turn 

should guide experimental practice.  

My PhD aims to understand how social interaction supports adult learning, and identify 

its distinct contribution. As such, we adopt a definition of social learning that is learning 

explicitly (i.e. the learner is aware that their aim is to learn new facts) via social 

interaction about non-social knowledge. To do so, I develop a task which employs 

social interaction as the medium through which learning occurs, while the object of 

learning (learning content) is carefully conceived to be non-social. Specifically, I design 

a series of fact-based descriptions about several obscure items (e.g. exotic animals, 

antiques, more details are reported in experimental chapter 2 and Appendix) which 

participants learn in different social contexts. Furthermore, in line with this idea, in 

chapter 3, I present a study which looks at the case of adults with Autistic Spectrum 

Condition (ASC). The blend (or lack of clear separation) between learning via the social 

and learning about the social is particularly evident in the literature on autism. In fact, 

based on decades of studies of how people with autism learn about social signals, it is 

commonly assumed that people with ASC also learn less well via social contexts and 

may prefer asocial learning (e.g. computer-based learning). This however has never 

been formally tested.  
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 Learning has been mainly studied within a specific context: 

in isolation, and in children.  

One of the main issues emerging from the review above is that the behavioural and 

cognitive mechanisms involved in learning are mainly studied in isolation: it remains 

largely unexplored how the experience of learning from others modulates the dynamic 

of people involved in the interaction, both within individuals and between individuals, 

as a coordinated system. Social agents will inevitably influence and be influenced by 

each other, and as such the inter-personal dynamics need to be taken into account to 

fully grasp the cognitive and neural mechanisms subserving social interactive learning.   

It is the case, however, that learner-teacher social dynamics has been largely neglected 

by modern cognitive neuroscience research, especially in adulthood. Methods 

adopted to study human learning have often included single-user tasks, where 

participants were required to memorise things from cards/screens, in very repetitive 

and highly constrained experimental paradigms (e.g. Batial & Shmueli, 1997; Duff & 

Hulme, 2012). More recently, there has been a trend towards studying human learning 

in more dynamic social contexts (e.g. Jeong et al., 2021; Kostyrka-Allchorne et al., 

2019). Despite the creditable effort to move away from the traditional reductionist 

approach (Putnam, 1973), this new line of research has only partially included the social 

aspect in the study of human learning. Namely, at best social context has been 

included in the study design and data collection, while the focus of data analysis has 

been almost exclusively either on the learner (Gilbert et al., 2001) or (less often) on the 

teacher (Battro, 2010), and only rarely on the interaction (Holper et al., 2013). This is 

also the case in many developmental studies that see the teacher (caregiver) as 

providing an input to the learner (the child) (e.g., Cartmill et al., 2013). The problem 

with this is that conclusions may be based on a partial view of what is happening 

during a real-world student-teacher interaction.  
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Understanding inter-personal coordination in social learning may be particularly 

important in conceptual learning (see point 1.4.1) because of the particular challenges 

required in acquiring new concepts.  Unlike learning an arbitrary word list, a new 

concept must be integrated with other existing knowledge of many different types 

(e.g., Tremont et al. 2000).  Interactive teaching may allow a learner to try out a new 

concept and explore how it relates to other concepts with immediate feedback, which 

is likely to provide richer and more robust learning. Furthermore, within the domain of 

interactive learning research, more direct comparisons of observational and interactive 

social learning are needed. This is essential to disentangle the contribution of specific 

factors associated with social contexts that benefit human learning.  

In addition, very little is known about social learning specifically in adults. I have 

presented a large body of evidence accumulated over the last decades showing how 

social interaction is crucial for development. Nevertheless, social interaction remains a 

fundamental human need beyond childhood, with implications for adulthood 

wellbeing and mental health (e.g. Tomova et al., 2020). Despite this, there is no work 

on whether and how social interaction supports learning in adults.  

 

Figure 1.3 Experimental set-up for the hyperscanning study 

Illustration of two participants during the hyperscanning study on learning described in Chapter 5. 

Teacher-student exchange is investigated in high-ecological set-up where participants are free to 

engage in conversation on the learning content while behavioural and brain metrics are recorded. 

Picture published with participants’ permission. 
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This work attempts to fill this gap, by bringing the investigation of social learning 

beyond the niche within which it has been mainly studied so far. Namely, here we 

examine social learning i) in interaction and ii) within the adult population (e.g. figure 

1.3). To do so, studies reported in this thesis employ paradigms which directly compare 

social interactive conditions (e.g. live conversation) with social non-interactive 

conditions (e.g. observational learning) and recruit participants aged from early 20s to 

their mid-thirties. Interactive learning is considered in a variety of contexts, including 

online (chapter 2 and 3) and face-to-face (chapter 5), and the teacher-learner social 

exchange dynamic is placed at the core of the investigation.  

 Social interaction is complex and multimodal, and should 

be studied as such. 

The relation between social interaction and learning may be modulated by complex 

dynamics spanning across behaviour, physiology and the brain (García & Ibáñez, 2014; 

Redcay & Schilbach, 2019). Previous studies have mainly either examined only 

behaviour or the brain. However, complex dynamics are unlikely to be fully grasped by 

experiments that look solely at one modality (e.g. speech or neural activity). Instead, 

the study of interactive conceptual learning should be integrated with the study of 

interactive communication, to include coordination in a number of verbal and non-

verbal behaviours (e.g. eye-gaze, Holler & Levinson, 2019b; Murgiano et al., 2021), as 

well as neural dynamics. We know very little about how coordination within and across 

these different channels can support conceptual learning.  

This work attempts to integrate multimodal experimental designs to grasp the 

complexity of interactive learning and the mechanisms subserving it. To do so, we 

make use of video recordings, behavioural metrics (e.g. learning performance, but also 

enjoyment and anxiety score, as well as social signals such as eye-gaze and joint 

attention), and measures brain activity while the interaction unfolds. Specifically, we 
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employ hyperscanning (i.e. measuring brain activity simultaneously from more than 

one brain) functional-Infrared Spectroscopy (fNIRS).  

 

 

Figure 1.4 Schematic of fNIRS principles 

Illustration of the path (shown in red) followed by the NIR photons from the light source to the detector 

travelling through the different tissues of the head. The penetration depth of the light is proportional 

to the source–detector distance (d1: deeper channel; d2: superficial channel). A channel is composed by 

the pair source–detector and is located at the midpoint between the source and the detector and at a 

depth of around the half of the source–detector separation. Standard source-detector distance to detect 

signal from brain cortex is 3cm. Picture adapted with permission from Pinti et al. 2020. 

fNIRS is an optical, non-invasive neuroimaging technique that measures brain tissue 

concentration changes of oxygenated (HbO2) and deoxygenated (HbR) haemoglobin 

following neuronal activation (BOLD response). This is achieved by shining NIR light 

(650–950 nm) into the head, which can travel through the scalp and reach the brain 

cortex (figure 1.4). Crucially, HbO2 and HbR absorb the NIR light differently: HbO2 

absorption is higher for > 800 nm; on the contrary, HbR absorption coefficient is higher 

for < 800 nm. This difference in absorption depends on the colour of the blood that is 

more red for oxygenated blood (arterial blood) and more purple for venous blood. 

When a brain area is active and involved in the execution of a certain task, the brain’s 

metabolic demand for oxygen and glucose increases, leading to an oversupply in 
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regional cerebral blood flow (CBF) to meet the increased metabolic demand of the 

brain. This in turn leads to an increase in HbO2 and a decrease in HbR concentrations 

in the area which is most active. These fluctuations in oxygenated and de-oxygenated 

blood cause changes in light attenuation that can be measured by fNIRS.  

The great advantage of fNIRS is that it allows us to measure brain activity in naturalistic 

context, as it is wearable and relatively robust to movement (Czeszumski et al., 2020; 

Kelsen et al., 2020b; Pinti et al., 2018). Therefore, this technique enables the study of 

social interaction with a high level of ecological validity, to an extent that is not possible 

with other neuroimaging modalities such as fMRI. For example, it allows us to measure 

brain-to-brain coherence across real-time interacting people (see section 1.1.2, Figure 

1.2 and Figure 1.3). In addition, being wearable it ensures that other metrics can be 

collected in combination with brain data, with relatively little interference across 

measurements (e.g. video-recordings, movement and physiological measures such as 

breathing can be collected alongside brain signals, see Figure 1.3). This makes this 

technique very attractive for multi-modal experimental work, including the 

experiments presented in chapter 4 and 5 of this thesis, and guarantees that a certain 

degree of real-world complexity can be incorporated in the experimental study of 

social interaction (Czeszumski et al., 2020; Kelsen et al., 2020).  

1.5 Overview of experimental chapters 

This thesis attempts to fill the existing gap in the literature by investigating the role of 

social interaction in adult human acquisition of new knowledge. First, it looks at social 

learning online (chapter 2 and 3), and then moves to a face-to-face context to integrate 

the study of neural mechanisms during social interaction (chapter 4) and how these 

relate to learning (chapter 5). Across all studies, this work prioritises the ecological 

validity of the design, allowing – within certain constrains (e.g. time limit) – a relatively 

free exchange between the teacher and the learner. Since the aim was to understand 

the cognitive and neural mechanisms of social learning in relation to how it usually 
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unfolds in the real world, participants have not been deceived at any point and the aim 

of the study was always made explicit. In addition, to minimise any confound arising 

from reward processing, participants were compensated for their time in the form of 

monetary reward, but did not receive further performance-based reward.  

In particular, chapter 2 investigates learning online as a function of interactivity (social 

contingency) and social signals (e.g. exposure to face). This is achieved by directly 

comparing learning during live video-calls versus pre-recorded videos over two 

experiments in a large sample of neurotypicals. In chapter 3, we ask whether the same 

pattern of results found in neurotypicals would be replicated in adults with ASC. 

Chapter 4 investigates whether social interaction (e.g. engaging in conversation) 

modulates the neural response for non-social processing (e.g. movie watching). 

Chapter 5 asks whether inter-personal neural dynamics (brain-to-brain coherence) can 

be used as a good metric to predict learning, along behavioural measures (eye-gaze 

and joint attention). 

Please note that throughout the thesis the pronoun ‘we’ will be used to refer to the 

experimental team who contributed to the work, with the default assumption that the 

candidate Sara De Felice has been the leading researcher who carried out the 

experiment. When other researchers completed a significant part in any of the studies 

presented in this thesis (e.g. data collection), details about their contribution are 

reported at the beginning of each chapter. In addition, it is worth bringing to the 

attention of the reader that the great majority of the data reported in this thesis has 

been collected during the Covid-19 global pandemic, with severe delays and great 

challenges for the study of naturalistic social interaction. This has not only deferred the 

whole research work (e.g. applying for extra ethical procedures; almost doubling the 

testing session duration to allow for sanitation of the research facilities etc), but has 

also led to a series of adaptations of the original study plan, based on constrains 

imposed by the unprecedented situation (e.g. testing people within the same 

household for Study 3 and 4 to follow government regulations).  
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2. Chapter 2 - Learning Online in Neurotypical Adults 

Data from this chapter has been published on 14th September 2021, full reference is: 

De Felice, S., Vigliocco, G. & Hamilton, A. (2021) Social interaction is a catalyst for adult 

human learning in online contexts. Current Biology, 31(21), 4853-4859. 

https://doi.org/10.1016/j.cub.2021.08.045  

Design, hypotheses and analysis plan for Experiment 2 of this chapter was pre-

registered on the 21st December 2020 on OSF (De Felice & Hamilton, 2020 

10.17605/OSF.IO/NXS37). 

2.1 Background  

Social learning refers to any learning happening between two or more individuals. 

Observational learning (Bandura, 2019) involves acquisition of information through 

passive exposure to the material (e.g. learning from a pre-recorded video). In contrast, 

interaction-based learning (Shamay-Tsoory, 2021) requires mutual-feedback between 

student and teacher (e.g. learning in live conversations, Morgan et al., 2015). In 

observational learning we learn from others, while in interaction-based learning we 

learn with others. These forms of social learning mainly differ on the basis of social 

contingency, that is, the bi-directional exchange during an interaction between two 

or more people, where each person can initiate an action and/or directly react to their 

partner (mutual feedback). Contingent interactions are cognitively demanding (Kourtis 

et al., 2020) and could impact on learning in different ways. Interaction might impair 

learning by increasing cognitive load and/or fear of being evaluated poorly by the 

interlocutor(Hertel et al., 2008).  Alternatively, socially contingent teaching might boost 

learning, as seen in children (Kuhl, 2007) but not always in adults (Ramlogan et al., 

2013; Solomon et al., 2004, see Introduction, Chapater 1 for an extensive litterature 

review on this). 

https://doi.org/10.1016/j.cub.2021.08.045
https://doi.org/10.17605/OSF.IO/NXS37
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A second important factor in social learning is social richness, that is, the type (and 

quantity) of social information available from one’s partner. Information could be 

presented in a variety of formats including by video (D. Zhang et al., 2006), multimedia 

characters (Kwok et al., 2016), recorded slides (Vaccani et al., 2016) or podcasts 

(Schreiber et al., 2010).  Previous studies have not systematically examined social 

richness as a contributing factor in learning. As with social-contingency, the 

relationship between social richness and learning could go in either direction.  Rich 

social features could increase cognitive load (Kourtis et al., 2020; Moore & Barresi, 

2017) and/or distract learners (Kajopoulos et al., 2020).  Alternatively, social cues such 

as eye-gaze (Marotta et al., 2012) and gestures of a teacher (Wakefield et al., 2018) 

could benefit learning by facilitating the coordination and ‘attunement’ between 

student and teacher (Mundy & Newell, 2007), via mechanisms of joint attention and 

social engagement (Hoehl et al., 2020a; Kasari et al., 2008; Kawai, 2011; Saito et al., 

2010).  

Over the 2020 Covid-19 pandemic, learning – as well as many other activities – has 

been moved online in many countries around the world. A whole generation of 

students, who were used to busy schools and universities, have now moved all their 

learning activities to a virtual environment. This has changed the patterns of social 

interaction during learning, but has also opened up several new options in terms of 

the format in which lectures are delivered: either live or recorded, with different degree 

of interactivity and/or social cues (e.g. face of the teacher being visible or not).  

However, it is not yet clear which of these formats represent the best way to help 

students to learn.  Therefore, studying the role played by social interaction in learning 

in such contexts not only becomes timely relevant for educational purposes, but also 

makes it extremely interesting for our understanding of cognition and how human 

learning adapts to these new environments. 

Here, we report a direct – and to our knowledge the first - investigation of different 

(online) social learning contexts in adults. We present two experiments conducted 
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during the Covid-19 pandemic where online learning has become widespread.  Our 

aim is to better understand what key components of social interaction support adult 

human learning in an online context, and whether these play a cumulative beneficial 

effect when employed together. Both experiments use a 2x2-factorial design, where 

participants learn novel information over a video-call in four teaching formats, 

differing on the basis of social contingency (live vs recorded) and social richness (more 

or less visual social cues, Figure 2.1). Verbal information about the object of learning 

was matched across all conditions and recorded conditions were yoked to the live 

conditions, allowing us to focus on how live-interaction and visual cues impact on 

learning. Learning performance – as measured via a multiple choice quiz – was 

assessed immediately after teaching and one week later. 

2.2 Experiment 1 

 Methods 

This study was approved by the UCL ethics committee. All participants gave consent 

to take part, and a separate optional consent to share the video recordings of their 

session with others.  Some people chose not to consent to video sharing but were still 

able to complete the learning task. 

2.2.1.1 Participants  

The sample was recruited via Prolific (www.prolific.co) [2020]. To be included in the 

study, participants had to be aged 18-35 (inclusive); be fluent in English (having spoken 

English regularly for at least the past 5-10 years); giving consent to have their camera 

and microphone on as well as being recorded for the whole duration of the 

experiment. In addition to these criteria, participants could only take part in experiment 

2 if they did not take part in experiment 1. Participants were paid £7.50 for the first 

hour of the experiment, and then a further £5 when they completed the learning quiz 

a week later. 
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43 participants took part in the study. Data from the first 13 participants formed our 

pilot study (not reported here). Of the remaining 30 participants, 6 participants were 

excluded due to poor video-call quality (N=2, we only accepted subjects who reported 

4 and above on a 1(poor)-5(excellent) video-call quality scale), inattention (N=1), not 

completing the one-week after test (N=1), revisiting the material during the week-gap 

(N=2). The final sample (N=24, 11 female) included in the analysis had a mean age of 

27.29 (SD=4.28, range 19-35 years). They were either native English speakers (45.83%) 

or reported to be regularly speaking English since at least more than 5 years. 

 

Figure 2.1 Experimental paradigm 

A. Sample item. Participants learnt facts about unusual items in a 2 min structured conversation.  See 

appendix (Table 1) for the full set of items.  B.  Design for Experiment 1.  In a 2x2 factorial design, 

participants were taught about items with high or low social contingency and high or low social richness.  

In each screenshot, the participant is circled in yellow. In the recorded sessions, participant learned from 

a recorded video of a previous participant, so that recorded session of participant 2 was the live session 

of participant 1 (the recorded session of participant 3 was the live session of participant 2 and so on).  

Experiment 2 used the same design with the ‘hands only’ conditions replaced with ‘slides’ showing only 

the item. C.  Experiment time-line.  In each 45 minute session, participants learnt about 4 items in each 

of the 4 conditions.  The order of conditions, sets and trials were counterbalanced.  Learning was tested 

with 80 computer quiz questions (5 per item) administered immediately after the learning session and 
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again 1 week later. Full information and question sets for all items are available in Appendix and online 

at https://osf.io/tuz9n/. 

2.2.1.2 Materials 

Two learning sets were created, each including eight items, two from each of the 

following four categories: animals, food, ancient objects and musical instruments. Item 

selection started from a pool used in Vigliocco et al., 2019. Final items were selected 

on the basis of an initial pilot (N = 15) run face-to-face before the covid-19 pandemic. 

The 16 selected items were considered highly unlikely to be known by the general 

population. Wherever possible, models for each item were bought online, when not 

found these were handmade in ceramic and acrylic, ensuring high resemblance to the 

real item. Learning material and quiz were adapted for this experiment based on a pilot 

study conducted online (N = 13). For the learning material, a descriptive paragraph 

was created for each item, made of 5 core pieces of information (e.g., where is the item 

from? what does the name mean? etc) plus two or three extra curiosities to make it 

more challenging (these were not tested). For the quiz, there were five multiple choice 

questions (each testing memory for one of the five core pieces of information): each 

question had three options (the correct one, a misleading one and a completely wrong 

one; see Al-Rukban, 2006). Full information and question sets for all items are reported 

in Table 2.1. 

Table 2.1 Full set of items for the learning task. 

Learning material with picture and full description on the left column, multiple choice quiz per item on 

the right column. The same multiple-choice quiz was used for immediate and delay testing. 

Item and learning material Multiple-choice quiz 

1. GLAUCUS 

Glaucus is a mollusc. It lives in the 

ocean, especially around India and 

Indonesia. It is known as ‘the blue 

1. What species is it? 

a. Fish 

b. Mollusc 

c. Mammal 

2. What is its habitat? 

a. Ocean 

b. Lake 

c. Tropical forest 

3. How is it also known as and why? 



 

67 

 

dragon’ because of its colour and ray-

shape tentacles. It feeds on jellyfish. 

However the jellyfish is not digested 

completely: the most poisoning cells 

are stored in the tips of the Glaucus 

tongue (in-between teeth) and used as 

a self-defence tool. It has a gas-filled 

sac in its stomach which acts as a 

balloon allowing it to float on the 

surface of the water: they don't swim 

but are carried along by the winds and 

ocean currents. 

a. "Blue dragon" because of its colour and 

shape 

b. "Cold fire" because of the blue ray-

shape fingers 

c. "Sea snake" because of the long tail 

4. What does it eat? 

a. Fish 

b. Leaves 

c. Jellyfish 

5. How can it float? 

a. Thanks to its ray-shape fingers 

b. It doesn't: it lives deep on the bottom of 

the ocean 

c. Via a gas-filled sac in its stomach 

2. TARSIER 

Tarsier is a mammal. Originally from 

south-east Asia, it lives in the jungle. Its 

name comes from its very long tarsal 

(ankle) bone. The elongated legs allow 

it to jump from tree to tree hunting prey 

(it can jump up to 40 meters). It is totally 

carnivorous and eats mainly insects. It 

has special eyes: these are bigger and 

heavier than its brain. Because its eyes 

are so huge, it cannot move them and 

has to rotate its head to look around. 

The head can rotate 180 degrees. Such 

big eyes allow for very good night 

vision. 

1. What species is it? 

a. Bird 

b. Amphibian 

c. Mammal 

2. What is its habitat? 

a. Jungle 

b. Mountain 

c. Fresh water 

3. Where does the name come from? 

a. From its long fingers 

b. From its long ankle bone 

c. From the region it lives in 

4. What does it eat? 

a. Only carnivorous, mostly insects 

b. Only herbivorous, mainly bananas 

c. Omnivorous, mainly insects 

5. What's special about its eyes? 

a. They act like magnifying glasses to 

detect extremely small insects 

b. They are bigger and heavier than its 

brain and can see in the dark 

c. They are bright yellow to be able to see 

in the dark 
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3. KIWANO 

Kiwano is a fruit native of Sub-Saharan 

Africa and needs a warm climate to 

grow. It is also known as the 'horned 

melon' because of its melon-like colour 

and the fact that it presents some 

horns/spikes on its skin. All its parts, 

including seeds, flesh, and peel, are 

edible. Its flavour is a combination of 

banana, cucumber, and lime: so quite 

fresh and with a gelatine-like texture. It 

is a good source of vitamins and liquids, 

and represents one of the few sources 

of water in Africa deserts during the dry 

season. It grows for half of the year from 

January until July. 

1. Where is it originally from? 

a. South-East Asia 

b. Sub-Saharan Africa 

c. Northern Africa 

2. How is it also known and why? 

a. Orange melon because of its colour 

b. Spiked peach because of its skin 

c. Horned melon because of its skin 

3. What can/cannot be eaten? 

a. It is all edible 

b. The peel cannot be eaten 

c. The seeds are poisonous 

4. What does it taste like? 

a. Strawberries, lemon, and melon 

b. Banana, cucumber, and lime 

c. Spinach, peas and lemon 

5. In which season(s) does it grow? 

a. Only during summer 

b. From July to November 

c. From January to July 

4. CHERIMOYA 

Cherimoya is a fruit native of South 

America. Its name means “cold seeds”, 

because it grows at high altitude where 

the climate is cold. The whitish flesh is 

edible, however its seeds are poisonous 

especially if eaten in big quantities 

(these are usually used to make 

pesticides). The flesh tastes like a blend 

of banana, pineapple, peach, and 

strawberry. It is very nutrient and has 

high calories with lots of good vitamins. 

It ripens from autumn until spring. 

When ripe the skin is green, but it turns 

brown when goes rotten. 

1. Where is it originally from? 

a. South America 

b. North America 

c. South-east Asia 

2. What does its name mean? 

a. "Spring taste" 

b. "Rough skin" 

c. "Cold seeds" 

3. What can/cannot be eaten? 

a. It is all edible 

b. The seeds are poisonous 

c. The peel cannot be eaten 

4. What does it taste like? 

a. Sweet potatos 

b. Grapes, lemon, apple and pear 

c. Banana, pineapple, peach and 

strawberry 

5. In which season(s) does it grow? 

a. Autumn to spring 

b. Winter to summer 

c. Summer only 
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5. CAXIXI 

Caxixi is originally from Africa. It 

belongs to the group of idiophones, as 

it is a percussion instrument played by 

shaking it: the small particles inside 

(made by little stones or sand) hit the 

walls of the instrument producing 

sound. Depending on whether you hit 

the walls or the bottom, it produces 

different sound: softer on the sides and 

sharper on the bottom. Its name 

resembles the sound it makes. It is still 

played in some communities in Africa 

and its music is believed to call for 

enchanted spirits and to ward off evil 

ones. 

1. Where is it originally from? 

a. Indonesia 

b. Africa 

c. Mexico 

2. What type of musical instrument is 

(classification)? 

a. Idiophone 

b. Membranophone 

c. Aerophone 

3. Where does the name come from? 

a. From african language and means rattle 

snake 

b. From the name of the seeds inside the 

basket 

c. From the sound it makes 

4. How is it played? 

a. Shaking it 

b. Hitting it 

c. tying it around the wristle while one 

dances 

5. What is its social valence (in what 

context is it usually played)?  

a. Used at weddings to bring fortune to 

the couple 

b. Used to sing children to sleep 

c. To call for enchanted spirits and ward off 

evil ones 

6. KALIMBA 

Kalimba is originally from Africa. It 

belongs to the group of idiophones, as 

it is a percussion instrument played by 

plucking the tines with the thumbs. Its 

name means “little music”, because of 

the sound it makes which is quite 

delicate. When out of tune, can be 

1. Where is it originally from? 

a. Australia 

b. Central America 

c. Africa 

2. What type of musical instrument is 

(classification)? 

a. Idiophone 

b. Membranophone 

c. Aerophone 

3. What does the name mean? 

a. Hand guitar because of how it is played 

b. Tiny Keyboard because of its shape 

c. Little music because of its sound 

4. How is it played? 

a. By plucking the tines with your thumbs 

b. With a pick similar to a guitar 
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tuned by regulating the individual tines 

either a bit higher or a bit lower across 

the horizontal bar. It is usually 

associated with joyful events and played 

at religious ceremonies, weddings, and 

social gatherings to celebrate the sense 

of community. 

c. By pressing on the tines like a piano key 

5. What is its social valence (in what 

context is it usually played)?  

a. Played at baby showers to symbolize 

new life 

b. Played at funerals and wakes 

symbolizing transition 

c. Played a religious ceremonies, 

weddings, and social gathering to 

celebrate sense of community 

7. PORTE-JUPE 

 

Porte-jupe used to be a female 

accessory popular during  the Victorian 

age in England. It was a tong used by 

women to lift up their long skirt. The 

small ring at the top would have held a 

cord, ribbon, or chain to suspend the 

tool just below the waist. Its function 

was that of making women more agile 

when they started to engage more in 

outdoor activities. For this reason, it was 

a fashion accessory associated with 

emancipation of women. Its name 

comes from french and literally means 

'dress holder'. 

1. What is its function? 

a. Used as a clip for long hair 

b. Used to lift long skirts 

c. Used to hold multiple items 

2. When was this item particularly 

popular? 

a. Middle ages in Italy 

b. Early 1900s in China 

c. Victorian age in England 

3. Who was used by mainly? 

a. Athletes with long hair 

b. Children 

c. Women 

4. Where does its name mean? 

a. "Dress holder" 

b. "Hair holder" 

c. "Elegant jewellery" 

5. What was its social valence? 

a. It reflected style and wealth 

b. It was a sign of women's emancipation 

c. It was associated with elegance among 

athletes 

8. SCOTCH HANDS 

 

Scotch hands are kitchen tools used for 

making butter. They are made of wood 

1. What is its function? 

a. Kneading dough 

b. Mixing alcoholic beverages 

c. Making butter 

2. When was this item particularly 

popular? 

a. Early 1900s across the UK 

b. Late 1700s in Ireland 

c. 1800s throughout Europe 

3. Who was used by mainly? 

a. People living in industrial cities 
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but can also be found in metal. The 

external side is smooth while inside 

there are some small ribs. They were 

popular in early 1900s across the UK. 

They were mainly used by women and 

chefs, especially in big farms where they 

had cows and were making diary 

products. Their name comes from their 

Scottish origin and their hand-like 

appearance. Usually one pad stays firm 

while the other is moved to shape or 

mix salt in the butter pat. 

b. Women during wedding parties 

c. Women and chefs 

4. Where does its name come from? 

a. From its Scottish origin and hand-like 

appearance 

b. From its usage of mixing scotch and 

soda 

c. From its inventor 

5. In which contexts was it found? 

a. In wealthy houses only 

b. In big farms 

c. In pubs and bars 

9. ANHINGA 

Anhinga is a bird. It lives around fresh 

water, including rivers and lakes. It can 

be found in warm parts of America (e.g. 

Florida, Mexico). It is also known as the 

water turkey, because it has a big tail 

similar to the one of turkeys. During 

breeding season, male anhinga have a 

blue ring around their eyes to attract 

female attention. It feeds on fish that it 

catches with its long beak. Body and 

feet designed to swim efficiently. It has 

a gland underneath its tail: this 

produces an oil that makes its feathers 

waterproof. 

1. What species is it? 

a. Bird 

b. Mammal 

c. Fish 

2. What is its habitat? 

a. Forest 

b. Sea 

c. Fresh water 

3. How is it also known as and why? 

a. Air duck because of its feet 

b. Water turkey because of its tail 

c. Water giraffe because of its long neck 

4. What does it eat? 

a. Algae 

b. Fish 

c. Worms and insects 

5. What’s its peculiarity? 

a. It has special organs that allow to 

breathe underwater 

b. It has a gland that produces an oil to 

waterproof its feather 

c. Its saliva acts as a glue to catch little fish 

10. AXOLOTL 

 

1. What species is it? 

a. Fish 

b. Amphibian 

c. Mammal 

2. What is its habitat? 

a. Lakes 

b. Ocean 

c. Rivers 

3. How is it also known as and why? 
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Axolotl is an amphibian which lives in 

the lake of Mexico. It is also known as 

the 'walking fish' for its way to 'walk' in 

water. It feeds on worms, insects and 

small fish, but can sometimes show 

cannibalism (eating another axolotl). It 

has a special power: it can regenerate 

limbs within days multiple times. For 

this reasons it is used a lot in staminal 

cell research against cancer. It 

reproduces asexually: male deposits the 

sperm into his habitat and then do a 

small dance to attract female so that she 

can find it and her eggs can be fertilised. 

a. Swimming lion because of its ray shape 

head 

b. Sea lizard because of its body shape 

c. Walking fish because of the way it 

moves in water 

4. What does it eat? 

a. Algae 

b. Worms, insects and small fish 

c. Dead body of big fish 

5. What's its special power? 

a. Can regenerate limbs  

b. Can see through obstacles (rocks, other 

animals etc) 

c. Can blend in and become invisible 

11. RAMBUTAN 

Rambutan is a fruit originally from 

southeast Asia. Because of the shape of 

the skin, which has thin spikes, its name 

means "hairy". It is all edible: it has only 

one big seed that can be cooked and 

eaten. It has a very sweet flavour which 

resembles that of grape, and for this 

reason is often used to make jams and 

jelly. It grows on ever-green trees, which 

fruit twice a year, in summer and winter. 

1. Where is it originally from? 

a. Middle east 

b. Southeast Asia 

c. South America 

2. What does the name mean? 

a. Hairy 

b. Spikes 

c. Spider 

3. What can/cannot be eaten? 

a. It is completely edible a part from the 

central seed 

b. It is completely edible including its seed 

c. It is poisonous 

4. What does it taste like? 

a. Banana 

b. Peach  

c. Grape 

5. In which season(s) does it grow? 

a. From spirng to late summer 

b. Only in summer 

c. Twice per year in summer and in winter 

12. HULUSI 

Hulusi is a musical instrument originally 

from China. It belongs to the group of 

1. Where is it originally from? 

a. Australia 

b. China 

c. Japan 

2. What type of musical instrument is 

(classification)? 

a. Aerophone 

b. Idiophone 
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aerophone, as it is played by blowing air 

through it like a flute. It has three 

bamboo pipes, one with finger holes 

while the others serve to make 

harmonic sound effects. Sometimes one 

of the two pipes is clogged up and it is 

only ornamental. Its name means "silky 

gourd": 'silky' refers to the delicate 

sound it makes, and 'gourd' refers to its 

round shape on top. It is usually played 

by minority groups in some regions of 

China, Vietnam and Thailand and has 

generally been associated with social 

struggles. 

c. Membraphone 

3. What does the name mean? 

a. Sacred wind 

b. Silky gourd 

c. Long flute 

4. How is it played? 

a. Hitting it with a stick 

b. Shaking it 

c. Like a flute 

5. What is its social valence (in what 

context is it usually played)? 

a. It symbolizes minority groups 

b. It represents national unity 

c. It is played at big festivals 

13. AGOGO 

Agogo is a musical instrument originally 

from Africa. Because of its shape, its 

name means ‘bells’, although the bell is 

in fact empty (there is no stem inside). It 

belongs to the group of idiophones, as 

it is a percussion instrument played by 

hitting the bells with the stick. It is 

played during religious ceremonies to 

give the right rhythm to the dance: it is 

believed that being in tune with the 

music will make it easier to be 

possessed by the spirits that will guide 

worshippers to a successful life. 

1. Where is it originally from? 

a. Africa 

b. China 

c. Brazil 

2. What type of musical instrument is 

(classification)? 

a. Aerophone 

b. Idiophone 

c. Membranophone 

3. What does the name mean? 

a. Cones 

b. Bells 

c. Corn 

4. How is it played? 

a. Hitting it 

b. Shaking it 

c. Folding it 

5. What is its social valence (in what 

context is it usually played)?  

a. Played at Olympic games 

b. Played during religious ceremonies 

c. Played at private parties to dance 

14. STRIGIL 1. What is its function? 

a. Scratch one’s back 

b. Clean the body 

c. Work the clay 

2. When was this item particularly 

popular? 

a. First half on 20th century 
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Strigil is an ancient object used during 

the Roman empire and ancient Greece 

to clean the body. It was mainly used by 

male athletes after their sport 

performance to scrape off the dirtiness 

from their skin before the bath. Because 

of its function, the name strigil literally 

means "scraper", from Latin. It could 

differ in the type of metal used and its 

design, depending on the social status 

of the owner and time period. It was 

often found in the tombs of important 

athletes to represent their social status 

in the afterlife. 

b. Ancient Egyptian empire 

c. Ancient Roman and Greek times 

3. Who was used by mainly? 

a. Women 

b. Athletes 

c. Doctors 

4. What does its name mean? 

a. Scraper 

b. Knife 

c. Curved metal 

5. In which contexts was it found? 

a. Tombs of athletes 

b. Hospitals 

c. House of nobles and aristocrats 

15. CHATLAINE 

Chatlaine is a decorative belt carrying 

household items including scissors, 

keys, needles etc. It was very popular in 

the middle age across Europe, and 

mainly wore by women. Its name comes 

from French and literally means "Lady of 

the castle". It could be made of metal, 

from gold to bronze or iron depending 

on how wealthy the owner was. As 

holding keys to different lockers and 

doors around the house, it represented 

a symbol of authority for the woman 

who wore it as other people in the 

houselhold had to ask her for access. 

1. What is its function? 

a. Necklace which carries household items 

b. Belt which carries household items 

c. Decorative wristlet 

2. When was this item particularly 

popular? 

a. Late 1800s in Russia 

b. 20th century in North America 

c. Middle ages around Europe 

3. Who was used by mainly? 

a. Woman 

b. Children 

c. Doctors 

4. Where does its name mean? 

a. House care 

b. Lady of the castle 

c. Lease of personal belongings 

5. What was its social valence? 

a. Slavery within the household 

b. Political responsibilities 

c. Women’s authority within the 

household 

 

2.2.1.3 Procedure 

Procedure involved four main parts: invitation on Prolific, the video-call (main 

experiment), completion of the immediate learning quiz and completion of the same 
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quiz a week later. First, participants responded to our advert on Prolific 

(www.prolific.co) [accessed July 2020], when they were directed to Gorilla Experiment 

Builder (www.gorilla.sc) to complete consent form and demographic variables. If 

meeting the inclusion criteria for the study, they were invited to arrange a videocall 

with the researcher. A zoom link was sent via the prolific chat: this ensured complete 

anonymity. 

Second, the researcher introduced herself and made sure the participant could 

see/hear well. Participants were then asked to make sure the zoom window was in full-

screen mode and that gallery-view was selected.  The researcher gave oral instructions 

always in the same way (alternating only the order of instructions for live and recorded 

session depending on the participant): “the aim of this experiment is for you to learn 

information about a bunch of different items including animals, food, musical 

instruments and ancient objects. You will learn about these in slightly different context: 

for the first half of the experiment we will be chatting over this live call. I will be showing 

a model of the item and tell several facts about it. When I have finished, you can interact 

with me, ask questions about the item and I can repeat any information you may have 

missed. You are very welcome to interact with me as much as you want. We will have 2 

minutes per item, then we will move to the next item. For the second part of the 

experiment, I will share my screen and play a video of a previous participant who did the 

same study before you. Your task is always the same: try to learn as many facts as you 

can about the items you will hear of, as after the experiment, you will be asked to 

complete a quiz to test your learning. Please do not take any notes while we go through 

the items: just listen and try to see what you can remember. Also, you will notice that 

sometimes I will adjust my screen like this [lowering down the camera so that only hands 

would be visible], this is just part of the experiment. Do not worry if it feels there is a lot 

of information: this is meant to be challenging. Hope you can just have fun listening to 

these different items and learn new things! Is it all clear?” Participants had the 

opportunity to ask questions at this point. Before starting the experiment, participants 

http://www.prolific.co/
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pre-knowledge on the items were tested by reading each items aloud “Have you ever 

heard of any of these items before?”. If an item was known, it was still included in the 

experimental session but it was noted and excluded from the analysis. The experiment 

then started with either the live session followed by the recorded session or vice versa 

(order was counterbalanced). For each trial, the name of the item was presented on 

the bottom-left side of the screen via a clip-holder, printed in capitals in black ink over 

white background. This was always visible throughout the whole duration of the trail 

and in all conditions. Trials alternated between face and hands condition. For each trial, 

after the description of the item, two prompts were included (e.g. “Do you remember 

what the name means?” and “Can you recall where it comes from?” – the researcher 

would give the correct answer if participants could not recall it). The researcher would 

omit prompting if the participant asked for repetition themselves, to ensure each 

session would have equal number of prompts/repetitions. The full session lasted 

approximately 45 mins (16 trials of 2 min each plus some time for instructions and 

debriefing, Figure 1.D).  

Third, at the end of the learning session, participants were redirected to prolific, where 

they could access a link to complete the learning quiz (immediate performance) in 

Gorilla. At this point, we also collected information about the video-call quality and 

measures of social anxiety (Liebowitz, 1987) and empathy (Jolliffe & Farrington, 2006). 

This part lasted about 10 mins. 

Fourth and finally, exactly one week after they completed the video-call and immediate 

learning quiz, participants were given access to a new study on Prolific. Those who 

wanted to participate responded through Prolific and were directed to the delay quiz 

on Gorilla. At this point, in addition to their learning performance, we also collected 

information on whether they reviewed of any experimental item during the one week-

delay period. This part lasted about 5-10 mins.  
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2.2.1.4 Data pre-processing 

Single trials (i.e. ‘item’) were excluded from the whole dataset based on the following 

criteria: i) participant reported pre-knowledge of the item before the experiment; ii) 

the connection was temporarily bad for one or two trials (but overall good enough to 

keep the participant as a whole); iii) the information presented by the teacher during 

the learning phase was somehow inaccurate, misleading or incomplete. 

In addition, single trials were excluded from the delayed performance only if 

participant reported to having revisited the item in any form (telling a friend about it, 

reading/googling about it) during the one-week gap between immediate and delayed 

learning quiz. 

Performance was calculated out of 5 questions per item, based on the valid trials: 

Performance (/5) = Sum Correct Answers / Total Trials. 

2.2.1.5 Data analysis 

We used SPSS to run a 2x2x2 factorial ANOVAs to test the difference in learning 

performance between Call (Live vs Recorded video-call) and View (Face vs Hands-only 

for experiment 1 and Slide for experiment 2) and Time (immediate vs delay recall). 

Sample size, Means and SD are reported for both experiments in Table S1. Statistical 

tests, p-values and Confidence Intervals are reported for all contrasts for both 

experiments in Table S2.  

 Results 

Experiment 1 (n=24 participants) investigated the difference in learning performance 

between interactive-learning and observational-learning (Social contingency factor), 

with either full-face (and hands) view of the teacher or a limited view of the hands only 

(social richness factor).  Figure 2.2A illustrates the main effects. There was a main effect 

of Time: not surprisingly, participants recalled more things straight after they learned 

them compared to a week later, independently of the learning conditions (F(1, 23)=25.81, 
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p<.0001, η2=.53). There was also a main effect of Social contingency (F(1, 23)=33.34, 

p<.0001, η2=.59): participants remembered more things learned during live teaching 

(compared to pre-recorded videos), irrespective of when they were tested and of 

whether the teacher’s face was visible during teaching. There was no main effect of 

Social richness (F(1, 23)=1.28, p=.27, η2 =.05). However, we found an interaction effect 

between Social contingency and Social richness (F(1, 23)=6.28, p=.017, η2=.22; Figure 2B). 

To interpret this interaction, given that the same pattern of results have been observed 

at both times – we collapsed across the factor Time and considered the Social 

contingency and Social richness factors (Table S2). While there was no difference in the 

live condition, in the recorded condition recall was significantly better for material 

learned when the teacher’s face was fully visible compared to when only the hands 

were presented (t(23)=2.15, p=.04). In addition, both post-hoc comparisons for the 

social contingency factor (live-face vs recorded-face t(23)=2.99, p=.007, and live-hands 

vs recorded-hands t(23)=5.61, p=.001) showed that performance in the live conditions 

was significantly higher. These results suggest that being engaged in a socially 

contingent interaction boosts learning, and that socially rich cues may also be relevant.   

 

Figure 2.2 Results for Experiment 1 

A.  Main effects of Time, Contingency and View on learning performance. Significant effects of Time 

and Contingency were found, the symbol *** indicates p<.0001. B.  Interaction effects. There was an 

interaction effect between Contingency and Richness F(1, 23) = 6.28, p = .017, η2=.22. The symbol * 

indicates significant difference as measured by paired t-test p< .05. Here, performance has been 

averaged across time (immediate and +1week test). The violin plots show the probability density 
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function (Kernel density estimation), which can go beyond the smallest and largest data point. For clarity, 

we have indicated the max possible score on performance (x axis). Dots are showing individual scores. 

2.3 Experiment 2 

Experiment 2 was pre-registered on the 21st December 2020 on OSF (De Felice & 

Hamilton, 2020 10.17605/OSF.IO/NXS37). 

 Methods 

For experiment 2, we replicated the same design as in experiment 1, with the only 

difference being the contrast in the social richness factor: here, we compare exposure 

to teacher’s face to presentation of PowerPoint slide (instead of the ‘Hands’ condition 

as in experiment 1). In the slide condition, participants were presented with a slide with 

white-background, the name of the item placed on the top-centre of the screen, and 

three pictures of the item taken from different perspectives.  During the slide 

presentations, the teacher used the mouse cursor to point to the item or parts of it on 

the slide.  This allows the slide conditions to maintain some aspect of attention/joint 

attention without any visible face.  The order of conditions and trials were the same as 

for experiment 1.   

2.3.1.1 Participants 

We used the software program G*Power to conduct a power analysis. From experiment 

1, we used the minimum effect size of interest of η2 =.05 (effect size F = .22, Social 

contingency contrast) and a correlation among repeated measure of .66, aiming for 

.95 power at .05 alpha error probability. The power analyses indicated a sample size of 

20 people. We recruited 30 to ensure our sample to account for data loss due to post-

hoc exclusion (see Experiment 1 sample and data pre-processing for exclusion criteria). 

30 participants took part in the study. Overall, 3 participants were excluded due to 

either poor video-call quality (N=1), or speaking English since less than 5 years (N=2). 

The final sample (N=27, 14 female) included in the analysis had a mean age of 25.23 

https://doi.org/10.17605/OSF.IO/NXS37
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(SD=5.04, range 19-35 years). 37.03% of the sample reported to be native English 

speakers (the rest reported to be regularly speaking English since at least more than 5 

years). All participants completed all the steps of the study. 

Participants’ recruitment, material, procedure, data pre-processing and data analysis 

for Experiment 2 was the same as described for Experiment 1.  

 Results 

Experiment 2 (n=27 participants) was a pre-registered extension of experiment 1. Here, 

we repeated the conditions with a full view of the teacher’s hands and face (both live 

and recorded) but instead of the hands-only view, we included a condition where 

information was presented in slides to provide a stronger distinction in social richness. 

We found a main effect of Time (F(1, 26)=30.68, p<.0001, η2=.54; Figure 3A). However, 

we did not find a main effect of Social contingency (F(1, 26)=1.67, p=.21, η2=.06) or of 

Social richness (F(1, 26)=.04, p=.84, η2=.002).  Importantly, we replicated the interaction 

effect between Social contingency and Social richness (F(1, 26)=5.28, p=.03, η2=.16; 

Figure 3B). 

 

Figure 2.3 Results for Experiment 2 

A. Main effects. A significant effect of Time was found, the symbol *** indicates p<.0001. B.  Interaction 

effects. There was an interaction effect between Contingency and Richness F(1, 26) = 5.28, p = .03, 

η2=.16. The symbol * indicates significant difference as measured by paired t-test p< .05. Here, 

performance has been averaged across time (immediate and +1week test). The violin plots show the 

probability density function (Kernel density estimation), which can go beyond the smallest and largest 
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data point. For clarity, we have indicated the max possible score on performance (x axis). Dots are 

showing individual scores. 

To interpret this interaction, given that the same pattern of results has been observed 

at both times – we collapsed across the factor Time and considered the Social 

contingency and Social richness factors (Table 2.2 and 2.3). In the Face condition, results 

from Experiment 2 replicated those of Experiment 1: when the teacher’s face was 

visible, learning from a live interactive session was more effective than learning via a 

recorded video (t(26)=2.45, p=.02). Additionally, in the live condition exposure to face 

might lead to more learning than slides (t(26)= 1.77, p=.09), while the opposite was 

observed in the recorded condition (t(26)=-1.87, p=.07; see Table 2.3 for details). In 

other words, seeing the teacher’s face seems to be advantageous specifically when 

learning was interactive, while during observational learning a slide presentation 

seems more beneficial.  

Table 2.2 Sample size (N), Means and SDs for Experiment 1 and 2. 

Mean number of items recalled at test (max of 5) for each condition. 

Experiment 1 N Mean SD 

Immediate – Live – Face+Hands 24 4.46 .42 

Immediate – Live – Hands 24 4.52 .45 

Immediate – Recorded – Face+Hands 24 4.07 .80 

Immediate – Recorded – Hands 24 3.91 .75 

+1week – Live – Face+Hands 24 4.06 .58 

+1week – Live – Hands 24 4.10 .69 

+1week – Recorded – Face+Hands 24 3.92 .66 

+1week – Recorded – Hands 24 3.53 .74 

Experiment 2    

Immediate – Live – Face+Hands 27 4.56 .43 

Immediate – Live – Slide 27 4.45 .55 

Immediate – Recorded – Face+Hands 27 4.32 .59 

Immediate – Recorded – Slide 27 4.44 .52 

+1week – Live – Face+Hands 27 4.33 .56 

+1week – Live – Slide 27 4.07 .63 

+1week – Recorded – Face+Hands 27 3.95 .70 

+1week – Recorded – Slide 27 4.25 .69 

Table 2.3 Statistics for all tests 

Results reported for Experiment 1 and 2 for all comparisons. 
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Comparisons 
F or T 

value 
df p-value 

95% CI 

Lower 

bound 

Upper 

bound 

Experiment 1 main effects F     

Time: Immediate vs +1week 25.81 23 .000 .200 .474 

Contingency: Live vs Recorded 33.34 23 .000 .274 .579 

Richness: Face+Hands vs Hands 1.28 23 .270 -.094 .321 

      

Experiment 1 simple effects t     

Live Face+Hands > Live Hands -.448 23 .66 -.273 .176 

Recorded Face+Hands > Recorded 

Hands 

2.15 23 .04 .011 .540 

Live Face+Hands > Recorded 

Face+Hands 

2.99 23 .007 .081 .448 

Live Hands > Recorded Hands 5.61 23 .001 .372 .805 

      

Experiment 2 main effects F     

Time: Immediate vs +1week 30.68 26 .000 .186 .405 

Contingency: Live vs Recorded 1.67 26 .208 -.066 .290 

Richness: Face+Hands vs Slide -.039 26 .844 -.149 .123 

      

Experiment 2 simple effects t     

Live Face+Hands > Live Slide 1.77 26 .088 -.029 .397 

Recorded Face+Hands > Recorded 

Slide 

-1.87 26 .073 -.441 .021 

Live Face+Hands > Recorded 

Face+Hands 

2.45 26 .021 .050 .568 

Live Slide > Recorded Slide -.72 26 .476 -.326 .157 

 Additional analysis 

As a supplement to our pre-registered ANOVA analysis, we used a Logistic Regression 

Model to evaluate what factors predicted recall on each individual question answered 

by participants.  The model used the glmer function in the lme4 package in R (Bates et 

al., 2015).  It was built with the three factors of interest (Time, Social Contingency and 

Social Richness) as predictors, and question (nested per item) and participant as 
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intercepts: Performance ~ 1 + Time*Contingency*Richness + (1 | Item/Question) +  (1 

| Participant). The outcome of the regression confirmed the pattern of results found 

with the factorial ANOVA. For experiment 1, we found that both Time (p<.0001) and 

Contingency (p<.0001) were good predictors of Performance: delay test was 

associated with a decreased of performance of .298 unit (R2= -.298 ± .047), and the 

recorded teaching condition was associated with worse learning (R2= -.346 ± .046). 

The model also revealed an interaction effect between Time and Contingency (R2=.098 

± .046, p<.01). For experiment 2, we found that both Time (p<.0001) and Contingency 

(p<.01) were good predictors of Performance: delay test was associated with a 

decreased of performance of .317 unit (R2= -.317 ± .051), and the recorded teaching 

condition was associated with worse learning (R2= -.118 ± .051). The model also 

revealed an interaction effect between Time and Contingency (R2=.195 ± .052, 

p<.0001). 

2.4 Discussion 

Understanding how learning is affected by social interaction is important for education 

and training in many contexts.  This has become even more important during the 

Covid-19 pandemic, where social contact has been constrained across all domains of 

our lives. We investigated which social factors modulate how adults learn new 

concepts online. In two experiments, we manipulated social contingency (whether 

teaching happens through a live interaction or via a recorded video) and social richness 

(the extent to which the teaching context is rich in social cues, e.g. seeing the teacher’s 

face or just a slide), and measured learning immediately after the teaching session and 

a week later.  

Findings from both experiments point to two main conclusions: first, in the case of full-

face view, interaction-based learning is more effective than observational learning. 

Both our studies showed that when the teacher’s face was fully visible, playing an active 

role in the interaction improves learning over yoked observation of the same sessions. 
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Second, visual social cues impact on learning differently depending on whether 

learning is interactive or observational (Figure 2.4): both studies show a strong 

interaction effect between social contingency and social richness.  To our knowledge, 

this is the first study showing that rich social cues specifically improve interactive but 

not observational learning. 

 

Figure 2.4 Summary of results from experiment 1 and experiment 2 

Performance has been averaged across time (immediate and +1week test). For Experiment 1, we found 

a main effect of Contingency (F(1, 23)=33.34, p<.0001, η2=.59) and an interaction effect between 

Contingency and Social Richness (F(1, 23)=6.28, p=.017, η2=.22). Paired-sample t-tests revealed 

significant differences between Recorded-Face+hands and Recorded-Hands condition (t(23)=2.15, 

p=.04); Live-Face+hands and Recorded-Face+hands (t(23)=2.99, p=.007), and Live-Hands and 

Recorded-Hands (t(23)=5.61, p=.001). For Experiment 2, we found an interaction effect between 

Contingency and Social Richness (F(1, 26)=5.28, p=.03, η2=.16). Paired-sample t-tests revealed 

significant differences between Live-Face+hands and Recorded-Face+hands (t(26)=2.45, p=.02). We 

also observed some trends for Live-Face+hands vs Live-Slide (t(26)= 1.77, p=.09) and for Recorded-

Face+hands vs Recorded-Slide (t(26)=-1.87, p=.07). 

We discuss first the impact of social contingency on learning from sessions when 

teacher’s full-face was visible.  The social contingency contrast was directly replicated 

in both studies (red lines on Fig 2.4): interactive learning (live video-call) resulted in 

better performance compared to observational learning (recorded video).  This data is 
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consistent with previous work on children, which have emphasised the benefits of 

social contingency for learning. Social connections with a teacher (e.g. parent vs 

stranger, Kuhl et al., 2003; Lauricella et al., 2011) and social contingency (Lauricella et 

al., 2011; Myers et al., 2017; O’Doherty et al., 2011; Roseberry et al., 2014) significantly 

improve learning in a variety of contexts (Calvert et al., 2007; Goldstein & Schwade, 

2008; Troseth et al., 2006).  

Previous work on adults had more mixed results. A majority of studies found no 

difference between interaction-based learning and observational learning (Davis et al., 

2008; Schreiber et al., 2010; Solomon et al., 2004; Vaccani et al., 2016). However, these 

did not control for exposure time (e.g. recorded material could be replayed multiple 

times while the live session was only played once) and did not specifically manipulated 

how interactive the teaching session was. Direct comparison of interaction-based with 

observational learning found a significant improvement in learning during interactive 

teaching (John et al., 2016; Ramlogan et al., 2013; D. Zhang et al., 2006). These studies 

however failed to control for factors beyond interactivity (e.g. attending a class vs 

watching a video of one teacher speaking to the camera present a number of 

differences beyond interactivity per se).  

Our work goes beyond previous studies by using a carefully controlled video-call 

method which allows interactivity during live learning (participants were free to 

interrupt, ask questions etc) but also a yoked-control for recorded sessions. Here, 

participants observed the previous participant, while the same exact information as the 

interactive sessions was available (overall across participants). Therefore, our results 

are in line with previous studies, and furthermore can specifically support the 

conclusion that interactivity is the factor that enhances human learning in social 

contexts. Together with our pre-registered replication (Experiment 2), this makes our 

results robust and relevant. The key role played by interactivity in social learning raises 

the question of which aspects of the interaction contributed the most (Dale et al., 2013; 

Dideriksen et al., 2020). While a systematic analysis of verbal and non-verbal 
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behaviours observed during the sessions is beyond the scope of this study, we do not 

believe that performance could be driven by differences in participants’ active 

engagement (e.g. clarifications requested): for each item, the researcher (teacher) 

ensured that two repetitions were given consistently in each session (see methods for 

an example). 

Our second important finding across both experiments is the interaction effect 

between social contingency and social richness (Fig 4).  While it seems sensible to think 

that the format in which information is delivered (slides/video/podcast etc) could 

impact learning, to our knowledge, no other study has directly investigated this. The 

fact that the social richness of a learning context influences learning differently when 

students engage in a social interaction or just observe one, suggests that different 

cognitive mechanisms may support interactive and observational learning.  

When participants take part in interactive learning with a full-face view of their teacher, 

they may engage in either joint attention (Schertz et al., 2013), common ground (Bohn 

et al., 2019), shared intentionality (Sabbagh & Baldwin, 2001) or all these processes 

together in order to attune with the teacher(Schmitz, 2014). This attunement may allow 

information to be shared more effectively (Hu et al., 2015; Kuhl, 2007).  Rich visual cues 

may enable stronger attunement by providing more information about the interaction 

partner’s gaze and mental states (Kajopoulos et al., 2020; Marotta et al., 2012).  If this 

interpretation is correct, this may explain the results of experiment 1 where more 

socialness (more contingency and more richness) leads to better learning, and also for 

the replication in experiment 2 when learning from full-face stimuli was better for 

interactive conditions.  

However, in experiment 2 learning was also good for the recorded-slides condition.  In 

this observational learning, the learner is passively decoding an interaction between 

two external actors.  Previous studies suggest that being an observer of a social 

interaction is more cognitively demanding than actively engaging in that interaction 
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(Kourtis et al., 2020) and social cues may become distracting (Friedman & Förster, 2010; 

Kirkorian, 2016; Phillips et al., 2007). In our study, the fact that during the recorded 

videos participants were presented with the view of another participant as well as the 

teacher could have possibly contributed to diverge attention away from the learning 

material, making it a possible explanation for worse learning performance in this 

condition. Instead, a slide may help to focus the attention on the learning content, 

compared to a ‘socially rich’ view (Experiment 2), while decoding a social situation 

where only the hands are visible may be particularly hard (cognitively demanding) 

given its atypicality (Experiment 1).   

Note that the differences between interactive and recorded conditions cannot be 

driven by the stimuli, which are matched in our yoked design, nor by audience effects 

(Hamilton & Lind, 2016), as the teacher was online in all conditions (and participants 

were aware of it).  Our claim that different mechanisms are engaged in interactive 

versus observational learning is compatible with the idea that being part of a social 

interaction engage different neural and cognitive mechanisms compared to 

observation (Rice & Redcay, 2016; Seuren et al., 2021). 

We use the term ‘social contingency’ here to refer to our live teaching condition, but 

we acknowledge that this goes beyond a simple time-dependent exchange and 

includes rich and complex behavioural dynamics, with bi-directional responses and 

original input between two or more people. This is not driven by a single cognitive 

mechanism, but rather a series of cognitive processes (e.g. attention, motivation, back-

channelling, monitoring, language) that may be absent in a non-interactive situation. 

It is hard to separate individual components because live interaction cannot be easily 

deconstructed (De Jaegher et al., 2010). Future studies using virtual reality might be 

able to do so (X. Pan & Hamilton, 2018), by experimentally manipulating which aspects 

of interaction are most important to learning. 
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The present work employed a naturalistic task which aimed to realistically recreate the 

student-teacher interaction online.  However, in real-world education, teaching usually 

occurs in bigger groups, leading to two important considerations: first, in the context 

of a classroom, the teacher does not engage directly with each and every student 

throughout the whole session. It remains unknown how our results generalise to a 

one-to-many situation like a lecture. Previous work comparing video lectures with 

face-to-face teaching suggests that the live teaching advantage generalises to the 

context of a classroom (John et al., 2016; Ramlogan et al., 2013).  However, remote 

video-call and face-to-face teaching may still involve different social dynamics. Video-

call interfaces can suffer from time lags, video distortions and a lack of mutual eye 

contact.  It may be that the video-call context accentuates both the sense of 

engagement and the sense of disengagement depending on whether a given student 

feels the teacher is directly interacting with them. Recently, an informal survey run 

across a large professional network revealed that during zoom calls, only about 27% 

of the 4671 respondents reported to pay attention, while the rest either engaged in 

other activities or found it hard not to zoning out, confessing to remain alert only to 

their name being called(Blind, 2020). The catalyst role of social interaction may be even 

more impactful in online teaching, as attention and engagement is a fundamental pre-

requisite to successfully acquire new information.  

Second, learning in a classroom environment implies learning in the presence of others 

(this being either offline in the same room or online in the same zoom call): the mere 

presence of peers could modulate arousal, attentional and motivational processes 

(Guerin, 1986), which in turn could either significantly improve learning (Lytle et al., 

2018), or making it harder (Skuballa et al., 2019). Given that our design only involves 

one student, we do not know how our results generalise to such peer-group effects. 

In conclusion, we have shown that social interaction acts as a catalyst to support 

learning and improves information-transfer across people, and as such it benefits from 

aspects that makes social interaction complex and rich. These findings contribute to 
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our understanding of human learning: they point at the importance of interaction-

based learning over observational learning, and at social richness in the context of 

interaction-based learning, where social cues may support the student-teacher effort 

of achieving a shared-understanding and co-creating knowledge. Future work can 

dissect the features of interaction that correlate with learning and identify ways to 

optimise learning in real-life educational contexts.  
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3. Chapter 3 – Learning online in adults with Autistic 

Spectrum Condition 

Design, hypotheses and analysis plan for Experiment 2 of this chapter was pre-

registered on 30th November 2022 on OSF (De Felice & Hamilton, 2022 

https://archive.org/details/osf-registrations-5pga3-v1). 

Contribution notes: MSc student Anna Hatilova collected the raw data for Experiment 

1. Medical student Filip Trojan and BSc student Iris Tsui collected raw data for 

Experiment 2. 

3.1 Background 

In the previous chapter we have shown how social interaction can catalyse learning in 

a online context, with a strong learning advantage for material learned via a live video-

call compared to pre-recorded videos. We identified social contingency (the bi-

directional and time-dependent exchange between a sender and a receiver) as the 

critical predictor of such learning advantage. Our conclusions however are limited to 

neurotypical (NT) adults. In this chapter, we asked whether the same live-learning 

advantage would be replicated in a sample of adults with Autistic Spectrum Condition 

(ASC).  

The question of whether people with ASC benefit from interactive learning is 

interesting for at least two main reasons. The first one is more practical and directly 

relates to pedagogy: ASC is often associated with poor outcomes at school. Despite 

this, studies on the experience of education (both online and offline) on ASC are scarce 

and limited to self-report questionnaires, and results are inconsistent (Adams et al., 

2019; Odom et al., 2015). Experimentally testing the effect of interactive learning on 

ASC would therefore contribute to fill this gap and directly inform educational 

practices.  

https://archive.org/details/osf-registrations-5pga3-v1
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The second reason to motivate this study is more theoretical, with implications for 

cognitive models of both social learning and ASC. ASC is a heterogeneous group of 

neurodevelopmental conditions manifesting in infancy or early childhood (American 

Psychiatric Association, 2013). While the constellation and severity of symptoms can 

vary significantly across individuals, the main common feature of ASC is disruption of 

processes crucial in communication and social interaction, including implicit imitation 

(Bernier et al., 2007; Edwards, 2014), joint attention (Roos et al., 2008), pragmatic 

language use (Philofsky et al., 2007; Whitehouse et al., 2007) and affect sharing (Abell 

et al., 2000; Happé & Frith, 2014).  

Furthermore, Vivanti and Rogers (2014) identified three aspects of social learning, 

which may be specifically impaired in ASC. Namely, they claim that social learning is 

characterised by being 1) implicit (without explicit instructions, e.g. via imitation), 2) 

intrinsically rewarding and 3) flexible (use social signals adaptively according to the 

communicative contexts, e.g. Senju et al., 2013). While the implicit aspect of Vivant & 

Rogers’ definition of social learning may be less relevant here – as we are interested in 

declarative learning of non-social knowledge (see Introduction, Chapter 1) –, the 

rewarding and the flexible nature of social exchange may be part of the interactive-

learning advantage (or the lack of it) over less interactive contexts. In fact, clinical and 

experimental observations found that people with ASC show disrupted processing on 

both social rewarding (Corbett et al., 2014) and flexible behaviour (Semrud-Clikeman 

et al., 2010). 

The social motivation hypothesis argues that people with ASC engage less in social 

contexts as they do not find these as rewarding as NT adults (Chevallier et al., 2012; G. 

Dawson et al., 1998; Mundy, 1995; Mundy & Newell, 2007): in other words, according 

to this hypothesis, people with ASC are less drawn to attend and process social signals 

(and therefore benefit from them) as they do not enjoy it as much, with consequences 

for their cognitive development and ultimately resulting in cognitive deficits of the 

social sphere (Corbett et al., 2014). This idea is supported by studies showing that 
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people with ASC find social stimuli less attractive than non-social ones, in contrast to 

what observed in NT people (Čeponiene et al., 2003; Dubey et al., 2015; Klin, 1991; Riby 

& Hancock, 2008). However, a meta-analysis of 13 fMRI studies found disrupted 

rewarding processes in people with ASC for both social and non-social signals 

(Clements et al., 2018), suggesting that there may be a global deficit in reward 

processing. 

Other evidence suggests that people with ASC cannot flexibly adapt their attention to 

use social signals in social learning contexts (Spengler et al., 2010). This may be due to 

attentional processes and repetitive and restrictive interests, which may expand 

beyond the social world. Sasson et al. (2008) presented NT children and children with 

ASC with some complex scenes of both social and non-social stimuli. They found that 

on average, children with ASC looked at fewer images, fixated each image for longer 

and were much more detailed-oriented. Crucially, they did not report any difference 

between social and non-social stimuli. Similarly, a study on eye-gaze and word-

learning found that children with ASC were able to follow the gaze of the instructor as 

well as NT children, but they use it in qualitatively different ways: while NT children 

were able to infer the social informativeness of gaze (resulting in higher semantic 

learning of the object-word), children with ASC used eye-gaze mainly as an associative 

aid to consolidate phonological feature of the word, and showed significantly less 

contingent gaze-to-object fixation (Norbury et al., 2010).   

Taken together, this evidence seem to predict that people with ASC would fail to show 

an interactive-learning advantage (either because live interaction is less rewarding or 

because it may be harder to attend to compared to a less interactive situation). 

However, this conclusion is mainly drawn from evidence on implicit learning of social 

material (e.g. language, Fitch et al., 2010; Holtgraves & Kashima, 2008; Seyfarth & 

Cheney, 2014). It is not clear whether the same predictions can refer to explicit, 

declarative learning of non-social material via social exchange. The question of how 
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people with ASC acquire new factual knowledge in social interaction remains largely 

unexplored empirically.  

In fact, the object of investigation here is how social interaction supports learning of 

factual non-social knowledge, in contrast to other forms of social learning, namely 

motor learning, observational learning and imitation (Bandura, 2019, also see 

Introduction, Chapter 1). The latter forms of social learning have been extensively 

studied both in children and adults with ASC (M. Dawson et al., 2007; Pearson, 2004; 

Webb et al., 2017), and overall results are consistent in finding idiosyncratic processing 

associated with ASC. What remains unclear is whether acquisition of non-social 

knowledge benefits from social interaction equally in people with ASC as in NT 

(Chapter 2). To the best of our knowledge, there is no experimental work that has 

investigated this. 

In this study, we compare learning performance during three different social learning 

conditions (one live and two recorded), where learning-content is always delivered 

online by a (human) teacher (similar to Study 1, Chapter 2). In all conditions, 

participants are explicitly instructed to learn facts about obscure items (e.g. exotic 

animals). In the live condition, the participant joins a live video-call where they can 

interact with the teacher. In the recorded-observant condition, the participant learns 

the material from a pre-recorded video of a previous session (observing a previously 

recorded student-teacher interaction). In the recorded-alone condition, the participant 

learns the material from a pre-recorded video of the teacher alone.  

We expect to replicate results from Study 1 (Chapter 2), showing a live-learning 

advantage in NT. In line with our results from Study 1 (Chapter 2) that showed that 

social cues are beneficial for learning specifically during interactive learning, but not 

during observational leaning (also see Tylén et al., 2012), we also expect the recorded-

observant condition to be associated with the lowest performance. With regards to 

ASC, according to the literature showing social cognition deficits in ASC, one could 
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speculate that no advantage in the live condition would be observed in this group. 

However, this speculation would be based on previous studies which mainly looked at 

implicit learning of social content, in contrast to the present study, which focuses on 

declarative interactive learning of non-social knowledge. We therefore do not have 

strong predictions about ASC performance. Here we first present results from a pilot 

study (N=46), and then show findings from a larger pre-registered replication (N=82). 

3.2 Experiment 1  

 Methods 

3.2.1.1 Design 

This study aims to investigate whether 1) participating in a live learning session 

improves learning online compared to recorded videos of either a previous interaction 

or of a teacher alone and ii) whether these conditions impact learning differently in 

adults with ASC compared to neurotypicals. To answer these questions, this study 

adopted a 2 (group) x3 (learning condition) x2 (time) repeated-measures design, with 

between- and within-subjects factors. The between-subjects factor is group (Autistic 

Spectrum Condition (ASC) vs neurotypical (NT)), the within-subjects factors are i) 

learning condition (live vs recorded of another social learning episode vs recorded of 

the teacher alone), and ii) time of recall (immediate vs delay quiz). Specifically, facts 

about 15 items were presented with two minutes per item (see materials below and 

Study 1, Chapter 2). Five items were assigned to each condition: 1) live condition: 

participant participated in a live video-call when they learned in interaction with the 

teacher; 2) recorded-observant condition: participant was shown a pre-recorded video 

of the teacher presenting the learning material to a student (confederate); 3) recorded 

alone condition: participant was shown a pre-recorded video of the teacher alone 

presenting the learning material (Figure 3.1). Learning score (outcome measure) for 

each participant was obtained from a multiple-choice quiz (see Materials and Study 1, 

Chapter 2). 



 

95 

 

Items assigned to each condition and trial order within each condition remained fixed 

for the whole duration of this experiment (see below for details on materials). Order of 

conditions were randomised across participant.  

 

Figure 3.1 Schematics of the three experimental conditions 

Learning sessions are represented as appearing to participants. From left to right: Live condition, 

participant learn about 5 items as they interact with the teacher in a real-time video-call; Recorded-

observant condition: participant learn about 5 items from a pre-recorded sessions with a confederate 

acting as a previous participant; Recorded-Alone condition: participant learns about 5 items from a pre-

recorded session of the teacher alone. In each condition, participant learns about 5 different items. Items 

were assigned to each condition randomly and remained fixed within each experiment, and 

counterbalanced between experiments. 

3.2.1.2 Materials 

A selection of 15 items were selected from Study 1 (Chapter 2), three from the exotic 

food category (Rambutan, Kiwano, Cherimoya), four from the antiques category 

(Strigil, Porte-joupe, Scotch Hands, Chatelaine), four from the animals category (Tarsier, 

Axolotl, Glaucus, Anhinga) and four from the musical instruments category (Kalimba, 

Caxixi, Agogo, Hulusi). Each condition presented a mixture of objects from these 

categories, which remained fixed for all participants for this experiment, as follow: 1) 

live condition [Tarsier, Kalimba, Strigil, Axolotl, Rambutan]; 2) recorded-observant 

condition [Porte-joupe, Kiwano, Caxixi, Scotch Hands, Glaucus]; 3) recorded-alone 

condition [Agogo, Cherimoya, Anhinga, Chatelaine, Hulusi]. Learning was tested via the 

same multiple-choice quiz used in Study 1 (Chapter 2). Full details of item information 

and multiple-choice quiz are reported in Table 1. 
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3.2.1.3 Procedure & participants recruitment 

This study was approved by the UCL ethic committee. Participants were recruited via 

the online platform Prolific (www.prolific.co). The platform retains demographic details 

as well as information on any disabilities/diagnosis of users, as reported by the users 

at the time of account registration. Such anonymous information can be used by 

researchers to create adverts targeting a specific pool. Two separate adverts were 

published: one targeting neurotypical participants and one targeting people with 

Autistic Spectrum Disorder (ASC). As a further check, users who responded to our 

adverts were asked to confirm their diagnosis via a questionnaire on Gorilla Experiment 

Builder (www.gorilla.sc). To ensure that the experimenter was blind to participants’ 

diagnosis, recruitment was done by a researcher who was not involved in data 

collection. 

To be eligible, all participants had to i) be fluent in English (speaking English regularly 

for >5 years); ii) be aged 18-65; iii) give consent to having their camera and 

microphone on; and iv) give consent to being recorded for the whole duration of the 

experiment. Participants were paid at the hourly rate of £7.50 for a total of £15 over 

two hours. An additional £3 were offered for those who completed a 10 min quiz a 

week later. 

Participants who responded to our advert were asked to complete four main parts: 1) 

background battery (independently online, on Gorilla Experiment Builder), 2) learning 

session (over a video-call), 3) online learning multiple-choice quiz immediately after 

the learning session (independently online on Gorilla Experiment Builder), and 4) 

repeat the quiz a week later. 

3.2.1.4 Background Battery  

Users who responded to the Prolific adverts were redirected to Gorilla Experiment 

Builder (www.gorilla.sc) where they received instructions on the study and gave 

consent for participation. They then completed the Background Battery tasks. This 

http://www.prolific.co/
http://www.gorilla.sc/
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comprises of i) Spot-the-word test, a measure of verbal fluency (Baddeley et al., 1993), 

ii) matrix reasoning item bank (MaRs-IB), a measure of non-verbal reasoning (Chierchia 

et al., 2019) and iii) Animated Triangle test, a measure of mentalising (Abell et al., 2000; 

Livingston et al., 2021; White et al., 2011).  

Upon completion of the Background battery task, an independent researcher sent the 

participant ID to the experimenter (teacher), who arranged a video-call with the 

participant (via Prolific chat), while remaining blind to their diagnosis. 

3.2.1.5 Video-call  

The experimenter greeted the participant and checked that audio and video worked 

properly. The participant was asked to open the zoom window in full-screen mode and 

choose the gallery view (i.e. everyone in the call is shown equal size, this ensured that 

view during live session was comparable to view during pre-recorded video watching). 

Participants were told that the aim of the study was to investigate how people learned 

online and whether this differed in people with ASC, and were asked not to disclose 

any personal information to the teacher, who was blind to their diagnosis. The 

experimenter then explained that the participant will learn some facts about exotic 

food, animals, antiques and rare musical instruments over three formats: in live 

interaction with the teacher (live condition), and through watching of pre-recorded 

videos showing either the teacher with a previous participant (recorded-observant 

condition) or the teacher alone (recorded-alone condition). They were instructed to 

memorize as much information as possible, as at the end of the video-call they will 

complete a multiple-choice quiz to test their learning. During the live condition, 

participants were told that they were free to ask questions and interact with the 

teacher. Before starting the learning sessions, participant’s pre-knowledge was tested. 

If any item was known, it was excluded from the analysis (but not from the learning 

session). Learning sessions started with either the live, recorded-alone or recorded-

observant condition, in a counterbalanced and semi-randomised order. The whole call 
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lasted approximately 40 minutes (i.e. 10 minutes per condition, with 2 min per item 

and five items in each condition, plus 10 minutes for instructions). 

3.2.1.6 Learning quiz 

Immediately after the learning session, participants were redirected to Prolific, where 

their IDs were included into a ‘white list’, so that a new advert was visible to them only. 

By replying to that advert, participants were redirected to Gorilla Experiment Builder 

(www.gorilla.sc), where they reported on the quality of the video call (audio and video), 

before completing the learning quiz. After the learning quiz, they also completed an 

‘enjoyment questionnaire’ and inclusion of other in self-questionnaire (Aron et al., 

1992). This part lasted approximately 20 minutes and was completed by the participant 

independently (note that the ‘immediateness’ of the quiz was ensured by the 

experimenter who terminated the video-call only after participant initiated the quiz 

part on Gorilla Experimenter Builder).  

Exactly one week after the learning sessions, participants invited through Prolific to the 

final stage of the experiment, and directed to Gorilla Experimenter Builder to complete 

the same learning quiz.   Additionally, participants filled in a history questionnaire, to 

check for potential revision of any of the items (e.g. search on Google). This part lasted 

approximately 10 minutes. 

 Results 

3.2.2.1 Sample 

53 participants took part in the study (Table 2). Participants were excluded when 

reporting 3 or less on a 1 (poor) to 5 (excellent) video-call quality scale (N=3), and 

being visibly distracted during the video-call (N=1). Of the remaining 49 participants, 

46 (NASC=20, male=11, female=4, non-binary=4; NNT=26, male=11, female=15) 

completed the full experiment, including the one-week delay quiz (see 2.1 Design and 

2.3 Procedure). We lost demographic data from one participant (ASC group) due to a 

technical fault. 

http://www.gorilla.sc/
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Participant with ASC either received a diagnosis by a clinician (N=18) or were self-

diagnosed (N=2). ASC and NT group did not differ on age (meanASC (sd) = 27.79 (9.22), 

meanNT (sd) = 29.85 (9.90), t(43)=.71, p=.48), verbal fluency (Spot the word test, meanASC 

(sd) = 47.63 (6.71),  meanNT (sd) = 44.73 (6.23), t(43)=-1.48, p=.15) non-verbal reasoning 

(MaRs-IB, meanASC (sd) = 64.48 (18.57), meanNT (sd) = 61.64 (16.98), t(43)=-.52, p=.60) 

and mentalising test (Animated Triangle, meanASC (sd) = 9 (2.54), meanNT (sd) = 9.33 

(1.92),  t(43)=.38, p=.71). ASC scored significantly higher on AQ than NT (meanASC (sd) = 

33.37 (6.73), meanNT (sd) = 19.19 (7.29); t(43) = -6.73, p<.0001). 

3.2.2.2 Data pre-processing 

Single trials were excluded when: i) participants reported that they knew the item; ii) 

internet connection dropped during the single trial but was good for the rest of the 

experiment; iii) the experimenter reported incorrect information about the item; iv) the 

participant reported revising information about a given item before the delay quiz 

(excluded from delay performance only). Performance was calculated for each learning 

condition separately, as an average over the included trials (score= points collected on 

all trials / total points available on all included trials). 

3.2.2.3 Analysis of Variance 

An analysis of variance (ANOVA) was run to test the difference in learning performance 

between 2 (groups: ASC and NT) x 3 (learning conditions: live, recorded-alone and 

recorded-observant) x 2 (time of learning quiz: immediate and delay). Means and SD 

for all conditions are reported in Table 3. Results for main and interaction effects are 

reported in Table 4 and Figure 2. 

Main effects. Findings show a main effect of time: unsurprisingly, people remembered 

more things straight after the learning session (mean (sd) = 4.2(.58) than a week later 

(Mean=3.8, sd=.73; F(1,44)=56.16, p<.001, η2=.56, large effect size; Bakeman, 2005). 

More interestingly, we found a main effect of learning condition (F(2,43)=3.86, p=.03, 

η2=.15, medium effect size; Bakeman, 2005). The pairwise comparison revealed a 
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significant learning advantage associated with Live compared to Recorded-alone 

condition (MLive (sd) = 4.1 (.09); MRecorded-alone (sd) = 3.9 (.1); t(44) = .19 p = .008). No 

other significant difference between learning conditions were found. No main effect 

was found for group: in other words, people with ASC showed a NT-equivalent 

performance (meanASC (sd) = 4.01 (.09); meanNT (sd) = 3.99 (.1); t(44)=-.01 p=.93).  

 

Figure 3.2 Results for Experiment 1 

Results from dataset of Experiment 1. *p<.05; **p<.001;***p<.0001 A. Boxplots of the three main factors 

of interest: Time, Learning condition and Group. B. Violin plots of learning performance immediately 

after the learning session (top) and a week later (bottom), for the three learning conditions. Violins are 

split in half showing the distribution of NT (blue) and ASD (red) sample separately. C. Line plot for 

learning performance immediately after the learning session (top) and after one week (bottom), plotted 

separately for NT (blue) and ASD (red). Error bars represent the standard error of the mean.  

Interaction effects. No significant interaction effects where found between the main 

factors of interest (group, learning conditions and time). However, visualization of the 

data (Fig. 1.C) revealed a trend specific to ASC group: while immediate recall showed 

a similar pattern across conditions between groups, delayed recall dropped specifically 

for items learned during the Live condition for ASC group. A 2(group) x2(time) was 

therefore run to test the hypothesis that delay performance was significantly more 

affected for ASC compared to NT specifically for things learned during Live condition. 

Results revealed a group*time interaction effect: F(1,44)=4.88, p=.03, η2=.1): for things 
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learned during Live condition, a week later people with ASC recalled significantly less 

things compared to NT (meanASC (sd) = 3.75 (.18); meanNT (sd) = 3.97 (.16)).  

3.2.2.4 Conclusions from Experiment 1 & Hypothesis for Experiment 2 

Experiment 1 found that for both NT and people with ASC, learning during Live session 

was associated with better recall both immediately after the session and one week 

later. In addition, it was found that the ASC group exhibited a decline in recall for items 

learned over Live interaction specifically, to a significantly greater extent than to that 

observed in the NT group.   

Based on these results, a follow-up experiment was pre-registered 

(https://archive.org/details/osf-registrations-5pga3-v1) to confirm two main 

hypotheses: 

1. Participants from both groups will learn more from live calls (Live condition) 

compared to pre-recorded video calls (Recorded-alone and Recorded-observant 

condition). 

2. There will be an interaction between learning condition, group and time: while 

neurotypical adults will show a consistent advantage for interactive learning (Live 

condition) over time, the ASC group will show better immediate learning for 

material learnt in Live condition, and better long-term learning for materials 

learned from pre-recorded videos (Recorded-alone and Recorded-observant 

condition). 

Experiment 2 consisted of two equal sub-experiments, which followed the same 

methods and procedure as experiment 1. Each sub-experiment was run by a different 

teacher. 

Table 3.1 Demographics for dataset from Experiment 1, 2 and combined 

Sample size (N), age, AQ score and performance on background battery tests for neurotypical (NT) and 

Autistic Spectrum Condition (ASC) group. Note that higher the AQ score, greater the autistic traits. 1. 

(Baddeley et al., 1993) 2. (Chierchia et al., 2019) 3. (Livingston et al., 2021) 4. (Baron-Cohen et al., 2001). 

https://archive.org/details/osf-registrations-5pga3-v1
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Experiment 1 (N=46) 

Neurotypical 

(NT)  

N=26 

Autistic 

Spectrum 

Condition 

(ASC)  

N=20 

NT vs ASC 

 Mean SD Mean SD t-test p 

Age 29.85 9.90 27.79 9.22 .71 .48 

Verbal fluency (Spot the 

word)1 
44.73 6.23 47.63 6.71 -1.49 .14 

Non-verbal reasoning 

(Matrix reasoning item 

bank, MaRs-IB)2 

61.64 16.98 64.48 18.57 -.52 .60 

Mentalising (Animated 

Triangle)3 9.62 1.87 8.74 2.35 .88 .18 

Autistic Quotient (AQ)4 19.19 7.29 33.37 6.73 -6.65 <.0001 

Experiment 2 (N=82) 

Neurotypical 

(NT)  

N=42 

Autistic 

Spectrum 

Condition 

(ASC)  

N=40 

NT vs ASC 

 Mean SD Mean SD t-test p 

Age 27.50 4.91 27.63 5.13 .13 .89 

Verbal fluency (Spot the 

word)1 
44.54 8.46 45.73 9.83 -.59 .56 

Non-verbal reasoning 

(Matrix reasoning item 

bank, MaRs-IB)2 

61.37 17.26 63.08 18.68 -.43 .67 

Mentalising (Animated 

Triangle)3 
8.93 2.22 9.37 1.85 -.44 .33 

Autistic Quotient (AQ)4 19.98 6.74 28.39 8.60 -4.93 <.0001 

Combined (N=128) 

Neurotypical 

(NT)  

N=68 

Autistic 

Spectrum 

Condition 

(ASC)  

N=60 

NT vs ASC 

 Mean SD Mean SD t-test p 

Age 28.49 7.27 27.58 6.62 .73 .46 

Verbal fluency (Spot the 

word)1 
44.61 7.63 46.33 8.95 -1.17 .24 

Non-verbal reasoning 

(Matrix reasoning item 

bank, MaRs-IB)2 

61.47 17.02 63.52 18.50 -.65 .51 

Mentalising (Animated 

Triangle)3 
9.19 2.10 9.17 2.03 .08 .94 

Autistic Quotient (AQ)4 19.67 6.91 29.97 8.33 -7.60 <.0001 
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3.3 Experiment 2  

 Results 

3.3.1.1 Sample 

86 participants took part in this study (Table 2), split equally between two researchers 

playing the role of the teacher. Each researcher completed the recruitment for the 

other, so that each teacher was blind to the diagnosis of the student during data 

collection. Participants were excluded when reporting 3 or less on a 1 (poor) to 5 

(excellent) video-call quality scale (N=4). The final sample included 82 participants 

(NASC=41, male=17, female=20, non-binary=4;  NNT=41, male=12, female=27, non-

binary=2).  

Participants in the ASC group either received a diagnosed by a clinician (N=13) or were 

self-diagnosed (N=28; see section below and appendix for further analysis excluding 

the self-diagnosed participants). The ASC and NT group did not differ on age (meanASC 

(sd) = 27,49 (5,13),  meanNT (sd) = 27,63 (4,91), t(80)=.13, p=.89), verbal fluency (Spot 

the word, meanASC (sd) = 45.73 (9.83), meanNT (sd) = 44.54 (8.46), t(80)=-.59, p=.56), 

non-verbal reasoning (MaRs-IB, meanASC (sd) = 63.08 (18.68), meanNT (sd) = 61.37 

(17.26), t(80)=-.43, p=.67) and mentalising test (Animated Triangle, meanASC (sd) = 9.37 

(1.85), meanNT (sd) = 9 (2.20),  t(43)=-.81, p=.42). ASC scored significantly higher on AQ 

than NT (meanASC (sd) = 28.39, (8.6), meanNT (sd) = 19.98 (6.74); t(80)=-6.73, p<.0001). 

Table 3.2 Sample size (N), Means and SDs for all conditions for Experiment 1, 2 and combined 

Mean number of items recalled at test (max of 5) for each condition for neurotypical (NT) and Autistic 

Spectrum Condition (ASC) group for each Experiment and for combined datasets. 

Experiment 1 – Recall scores    

Neurotypical (NT) N Mean SD 

Immediate: Live  26 4.26 .10 

Immediate: Recorded-observant  26 4.10 .12 

Immediate: Recorded-alone 26 4.09 .15 

+1week: Live  26 3.98 .16 

+1week: Recorded-observant 26 3.82 .16 

+1week: Recorded-alone 26 3.71 .14 
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Autistic Spectrum Condition (ASC) N Mean SD 

Immediate: Live  20 4.37 .12 

Immediate: Recorded-observant  20 4.24 .14 

Immediate: Recorded-alone 20 4.15 .17 

+1week: Live  20 3.75 .18 

+1week: Recorded-observant 20 3.86 .19 

+1week: Recorded-alone 20 3.67 .16 

Experiment 2 – Recall scores    

Neurotypical (NT) N Mean SD 

Immediate: Live  42 4.33 .08 

Immediate: Recorded-observant  42 3.93 .10 

Immediate: Recorded-alone 42 4.15 .10 

+1week: Live  42 3.84 .12 

+1week: Recorded-observant 42 3.58 .13 

+1week: Recorded-alone 42 3.75 .14 

Autistic Spectrum Condition (ASC) N Mean SD 

Immediate: Live  42 4.46 .08 

Immediate: Recorded-observant  42 4.13 .10 

Immediate: Recorded-alone 42 4.33 .10 

+1week: Live  42 4.01 .13 

+1week: Recorded-observant 42 3.81 .13 

+1week: Recorded-alone 42 4 .14 

Combined – Recall scores    

Neurotypical (NT) N Mean SD 

Immediate: Live  68 4.30 .06 

Immediate: Recorded-observant  68 4 .08 

Immediate: Recorded-alone 68 4.13 .08 

+1week: Live  68 3.89 .10 

+1week: Recorded-observant 68 3.67 .10 

+1week: Recorded-alone 68 3.75 .10 

Autistic Spectrum Condition (ASC) N Mean SD 

Immediate: Live  60 4.43 .07 

Immediate: Recorded-observant  60 4.16 .08 

Immediate: Recorded-alone 60 4.27 .09 

+1week: Live  60 3.93 .10 

+1week: Recorded-observant 60 3.83 .11 

+1week: Recorded-alone 60 3.89 .11 

 

3.3.1.2 Analysis of Variance 

An analysis of variance (ANOVA) was run to test the difference in learning performance 

between 2 (groups: ASC and NT) x 3 (learning conditions: live, recorded-alone and 

recorded-observant) x 2 (time of learning quiz: immediate and delay). Mean and SD 
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for each conditions are reported in Table 3. Results for main and interaction effects are 

reported in Table 4 and Figure 3. 

 

Figure 3.3 Results for Experiment 2 

Results from dataset of Experiment 2. *p<.05; **p<.001;***p<.0001 A. Boxplots of the three main factors 

of interest: Time, Learning condition and Group. B. Violin plots of learning performance immediately 

after the learning session (top) and a week later (bottom), for the three learning conditions. Violins are 

split in half showing the distribution of NT (blue) and ASC (red) sample separately. 

Main effects. Findings show a main effect of time: unsurprisingly, people remembered 

more things straight after the learning session (mean (sd) = 4.22 (.6)) than a week later 

(mean (sd) = 3.83 (.08); F(1,80)=38.56, p<.0001, η2=.32, large effect size; Bakeman, 2005). 

More interestingly, there was a main effect of learning condition (F(2,80)=13.53, p<.0001, 

η2=.15, large effect size; Bakeman, 2005). Pairwise comparisons revealed that Live 

interaction condition was the one associated with the highest learning, while 

Recorded-observant condition was associated with the worst learning: specifically, 

there was a significant learning advantage associated with Live compared to 

Recorded-observant condition (MLive (sd)= 4.16 (.06); MRecorded-observant (sd) = 3.86 (.07); 

t(80)=.29, p<.0001), and an advantage approaching significance level compared to 

Recorded-alone condition (MRecorded-alone (sd) = 4.06 (.08); t(80)=.10, p=.08). Recorded-
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observant condition was associated with significantly worse performance than 

Recorded-alone condition (t(80)=-.19, p=.001). No main effect was found for group: in 

other words, people with ASC showed NT-equivalent performance (MASC (sd) = 4.12 

(.09); MNT (sd) = 3.93 (.09); t(44)=.19, p=.13).  

Interaction effects. No significant interaction effects where found between the main 

factors of interest (group, learning conditions and time). Data visualisation showed a 

similar pattern across groups and times, with Recorded-observant condition 

producing the worst learning performance in both groups.  

To summarise, this experiment found support for hypothesis 1, showing that for both 

NT and people with ASC, learning during Live session was associated with better recall 

over time. In contrast, hypothesis 2 was not supported: ASC and NT group showed the 

same pattern of performance over time, with learning over Recorded-observant 

condition being associated with the worst performance for both groups.  

Table 3.3 Statistical results for all tests for Experiment 1, 2 and combined 

ANOVA results for experiment 1, experiment 2 and for the combined dataset. Factors of interest: Group 

(Neurotypical vs Autistic Spectrum Condition), Learning Condition (Live vs Recorded-observant vs 

Recorded-alone) and Time (Immediate vs Delay). 

Comparisons 
F or T 

value 
df p 

Partial 

Eta 

Squared 

95% CI 

Lower 

bound 

Upper 

bound 

Experiment 1 (N=46) F      

Main effects       

Group  .007 1 .93 .00 -.39 .36 

Learning condition 4.06 2 .016 .09 -- -- 

Time 56.16 1 <.0001 .56 .30 .51 

Interaction effects F      

Group*Time 2.56 1 .12 .06 -- -- 

Group*Learning condition .62 2 .54 .01 -- -- 

Learning condition*Time .92 2 .40 .02 -- -- 

Learning condition*Time*Group 1.08 2 .34 .02 -- -- 

Simple effects t      
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Live vs Recorded-observant .08 45 .14 -- -.03 .2 

Live vs Recorded-alone .19 45 .008 -- .05 .32 

Recorded-observant vs Recorded-

alone 
.10 45 .16 -- -.04 .24 

Liveimm vs Recorded-observantimm 2.51 45 .016 -- .03 .26 

Liveimm vs Recorded-aloneimm 2.41 45 .02 -- .03 .35 

Recorded-observantimm vs Recorded-

aloneimm 
.62 45 .53 -- -.10 .19 

Livedel vs Recorded-observantdel .54 45 .59 -- -.11 .20 

Livedel vs Recorded-alonedel 2.13 45 .04 -- .01 .37 

Recorded-observantdel vs Recorded-

alonedel 
1.56 45 .12 -- -.04 .33 

       

Experiment 2 (N=82) F      

Main effects       

Group 2.24 1 .14 .03 -.45 .06 

Learning condition 13.54 2 <.0001 .14 -- -- 

Time 38.56 1 <.0001 .33 .26 .51 

Interaction effects F      

Group*Time .16 1 .69 .002 -- -- 

Group*Learning condition .18 2 .83 .002 -- -- 

Learning condition*Time 2.12 2 .12 .03 -- -- 

Learning condition*Time*Group .03 2 .97 .00 -- -- 

Simple effects t      

Live vs Recorded-observant .30 1 <.0001 -- .18 .41 

Live vs Recorded-alone .10 1 .09 -- -.02 .22 

Recorded-observant vs Recorded-

alone 
-.19 1 .001 -- -.31 -.08 

Liveimm vs Recorded-observantimm 5.86 45 >.0001 -- .24 .49 

Liveimm vs Recorded-aloneimm 2.32 45 .02 -- .02 .28 

Recorded-observantimm vs Recorded-

aloneimm 
-3.21 45 .002 -- -.34 -.08 

Livedel vs Recorded-observantdel 3.32 45 .001 -- .09 .36 

Livedel vs Recorded-alonedel .74 45 .46 -- -.08 .18 

Recorded-observantdel vs Recorded-

alonedel 
-2.49 45 .01 -- -.32 -.04 

       

Combined (N=128) F      

Main effects       
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Group 1.54 1 .22 .01 -.34 .08 

Learning condition 12.63 2 <.0001 .09 -- -- 

Time 77.32 1 <.0001 .38 .30 .49 

Interaction effects F      

Group*Time .11 1 .75 .001 -- -- 

Group*Learning condition .45 2 .64 .004 -- -- 

Learning condition*Time 2.61 2 .07 .02 -- -- 

Learning condition*Time*Group .5 2 .6 .004 -- -- 

Simple effects t      

Live vs Recorded-observant .22 1 <.0001 -- .14 .31 

Live vs Recorded-alone .13 1 .004 -- .04 .22 

Recorded-observant vs Recorded-

alone 
-09 1 .05 -- .18 .002 

Liveimm vs Recorded-observantimm 6.24 127 <.0001 -- .19 .37 

Liveimm vs Recorded-aloneimm 3.28 127 .001 -- .07 .27 

Recorded-observantimm vs Recorded-

aloneimm 
-2.34 

127 
.02 -- -.22 -.02 

Livedel vs Recorded-observantdel 3.06 127 .003 -- .06 .27 

Livedel vs Recorded-alonedel 1.86 127 .06 -- -.01 .20 

Recorded-observantdel vs Recorded-

alonedel 
-1.06 

127 
.29 -- .-18 .05 

 

3.4 Combined analysis for Experiment 1 and 2 

In the previous section we presented results from experiment 1 (N=46) and experiment 

2 (N=82). Overall, in both experiments we found that learning in Live video-call was 

associated with the best performance for both groups. However, while experiment 1 

showed a significantly greater decline in recall over time for ASC specifically for things 

learned in Live condition (as compared to NT), experiment 2 did not confirm this 

pattern. In this section I present a combined analysis to better understand the effect 

of social learning online in ASC and NT over time.  
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 Results 

3.4.1.1 Sample  

The combined dataset included a sample of 128 participants (Table 2, NT N= 67; ASC 

N= 61). For the ASC group, either received a diagnosed by a clinician (N=31) or were 

self-diagnosed (N=29). Note that all analyses were also run by excluding the self-

diagnosed participants in the ASC group, and as results did not differ, here we report 

the full sample including the self-diagnosed participants (for results considering only 

participants who were clinically-diagnosed refer to Appendix, Table 2, 3 and 4). The 

ASC and NT group did not differ on age (meanASC (sd) = 27.58 (6.62), meanNT (sd) = 

28.49 (7.27), t(125)=.73, p=.46), verbal fluency (Spot the word, meanASC (sd)= 46.33, 

(8.95), meanNT (sd) = 44.61 (7.63), t(125)=.64, p=.24) and non-verbal reasoning (MaRs-

IB, meanASC (sd) = 63.52 (18.50), meanNT = 61.47 (17.02); t(80)=-.65, p=.51) and 

mentalising test (Animated Triangle, meanASC (sd) = 9.27 (2.03), meanNT (sd) = 9.08 

(2.13),  t(43)=-.49, p=.62). ASC group scored significantly higher on AQ than NT 

(meanASC (sd) = 29.97 (8.33), meanNT (sd) = 19.67 (6.91), t(125)=-7.61, p<.0001). We also 

confirmed that teacher was not a significant factor for learning performance 

(F(2,126)=.55, p=.58), ensuring the dataset could be combined into one despite being 

collected by different experimenters.  

3.4.1.2 Analysis of Variance 

An analysis of variance (ANOVA) was run to test the difference in learning performance 

between 2 (groups: ASC and NT) x 3 (learning conditions: live, recorded-alone and 

recorded-observant) x 2 (time of learning quiz: immediate and delay). Means and SD 

for all conditions are reported in Table 3. Results for main and interaction effects are 

reported in Table 4 and Figure 4. 

Main effects. Findings show a main effect of time: unsurprisingly, people remembered 

more things straight after the learning session (M (sd) =4.2 (0.6)) than a week later (M 

(sd) = 3.83 (0.08); F(1,128)=77.31, p<.0001, η2=.38, large effect size; Bakeman, 2005). The 
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main effect of learning condition was confirmed (F(2,128)=12.63, p<.0001, η2=.09, 

medium effect size; Bakeman, 2005). Pairwise comparisons confirmed that Live 

interaction condition was the one associated with the highest learning, while 

Recorded-observant condition was associated with the worst learning: specifically, 

there was a significant learning advantage associated with Live compared to 

Recorded-observant condition (MLive (sd) = 4.31 (.05); MRecorded-observant (sd) = 3.92 (.06), 

t(126)=.22, p<.0001), and compared to Recorded-alone condition (MRecorded-alone (sd)= 

4.01 (.06), t(126)=.13, p=.004). In addition, Recorded-observant condition was associated 

with the worst learning performance, showing also significant difference with 

Recorded-alone condition (t(126)=-.09, p=.05). No main effect was found for group: in 

other words, people with ASC showed a NT-equivalent performance (MASC (sd) = 4.09 

(.08); MNT (sd) = 3.95 (07), t(126)=-.13, p=.22).  

 

Figure 3.4 Results for combined analysis (Experiment 1 and 2) 

A. Boxplots of the three main factors of interest across the two experiments: Time, Learning condition 

and Group. B. Violin plots of learning performance immediately after the learning session (top) and a 

week later (bottom), for the three learning conditions across the two experiments. Violins are split in 

half showing the distribution of NT (blue) and ASC (red) sample separately. 
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Interaction effects. No significant interaction effects where found between the main 

factors of interest (group, learning conditions and time). However, the learning 

condition * time interaction approached significance (F(2,128)=2.61, p=.07). Post-hoc 

analysis revealed that all contrasts were significant (p<.01), but for delay recall, Live 

condition vs Recorded-alone condition only approached significance (t(128)=1.86, 

p=.06), while Recorded-observant and Recorded-alone condition did not significantly 

differ (t(128)=-1.06, p=.29). 

3.4.1.3 Exploratory Analyses 

In addition to the analysis of variance, we ran exploratory analyses to investigate the 

effect of other variables on social learning. Here we use autistic traits (AQ) as a 

continuous measure of autistic traits to minimise any confound arising from the fact 

that our ASC group included both self-diagnosed and clinically-diagnosed 

participants. We built two linear mixed-effects regression models to predict learning. 

Models were run in Matlab R2020b using the function fitlme. Full outcomes for both 

models are reported in table 5. 

First, we built a model to predict learning performance from learning condition (Live 

vs Recorded-observant vs Recorded-alone) along with others variables including AQ, 

mentalising (Animated Triangle test), verbal fluency (Spot the word test) and non-

verbal reasoning (MaRs-IB) measures, while controlling for variability coming from the 

teachers and individual participants:  

Learning ~ Condition + AQ + Animated Triangle + Spot the word + MaRs-IB + (1 | 

Participant) + (1|Teacher)  

Results confirmed ‘Condition’ as being a significant predictor of learning performance 

(beta = -.07, p = .003). In addition, we found that both verbal fluency (Spot the word 

test, beta = .02, p = .002) and non-verbal reasoning (MaRs-IB, beta = .01, p = .0003) 

were significant predictors of learning performance. This is not surprising: these 

measures have been linked to fluid cognition and intelligence (Baddeley et al., 1993; 
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Chierchia et al., 2019), which has been robustly associated with learning and academic 

performance more generally (Primi et al., 2010). With regards to measures of autistic 

traits (AQ) and mentalising (Animated Triangle), we did not find any significant effect, 

in line with the previous analysis of variance showing no difference between 

neurotypical and ASC group.  

 

Figure 3.5 Enjoyment and Anxiety level across conditions and groups 

A. Scatter plot of learning performance by enjoyment score for both groups, divided by condition (Live 

and Recorded, note: our questionnaire did not distinguish between the two recorded conditions). B. 

Box plots of enjoyment score divided by condition (Live and Recorded, note: our questionnaire did not 

distinguish between the two recorded conditions) and by group. C. Box plots of Anxiety score divided 

by condition and by group. All data plotted here refers to the combined sample (N=128; NT=67, 

ASC=61). ** p<.001 

Second, in addition to the predictors included in Model 1, we included a measure of 

Enjoyment and a measure of Anxiety, as well as their interaction with learning 

condition.  

Learning ~ Condition + AQ + Animated Triangle + Spot the word + MaRs-IB 

Enjoyment + Enjoyment*Condition + Anxiety + Anxiety*Condition + (1 | Participant) + 

(1|Teacher) 
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These measures were collected via participant self-report questionnaires after they 

completed the experiment: Enjoyment measure reflected a score from 1 to 5 for the 

question ‘How much did you enjoy learning from the experimenter during [the video-

call? / the pre-recorded video?]’ (1 = Not at all, 5 = Extremely much); Anxiety measure 

reflected a score from 1 to 5 for the question ‘How much anxious / uncomfortable did 

you feel when you learned [live from the experimenter? / from the recorded video of 

another participant? / from the recorded video of the experimenter only?]’ (1 = not at 

all, 5 = extremely much). 

Results show that Enjoyment was a significant predictor of learning for both groups 

(beta = .23, p = .0005), with people enjoying live interaction (M (sd) = 4.58 (0.71)) 

significantly more than learning from pre-recorded videos (M (sd) = 3.91 (0.95), t(128) = 

7.52, p<.00001). We also found Enjoyment*Condition interaction effect approaching 

significance (beta = -.05, p= .07), with Enjoyment boosting Learning performance 

slightly more for the Live Condition than the Recorded one (Figure 3.5.A), although 

this is hard to interpret given that we only have Enjoyment scores for Recorded 

condition overall (i.e. our questionnaire did not make a distinction between Recorded-

Observant and Recorded-Teacher-Alone condition). Interestingly, compared to Model 

1, Condition was no longer a significant predictor of learning performance (beta = -

.07, p = .089). Anxiety was not found to be a significant predictor of learning. Neither 

Enjoyment nor Anxiety scores differ between groups (Figure 3.5.B and 3.5.C).  

Table 3.4 Results from the linear mixed-effects models 

Outcome of the linear mixed-effects regression models. Model 1: Learning ~ Condition + AQ + 

Animated Triangle + Spot the word + MaRs-IB + (1 | Participant) + (1|Teacher); Model 2: Learning ~ 

Condition + AQ + Animated Triangle + Spot the word + MaRs-IB Enjoyment + Enjoyment*Condition + 

Anxiety + Anxiety*Condition + (1 | Participant) + (1|Teacher). 

 
Beta 

estimate 
SE df p 

Lower 

bound 

Upper 

bound 

Model 1 2 1 2 1 2 1 2 1 2 1 2 

Predictors             

Condition -.07 .24 .02 .14 750 746 .003 .089 -.11 -.04 -.02 .52 
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Verbal fluency 

(Spot the 

word)1 

.02 .02 .006 .006 750 746 .002 .0007 .01 .01 .03 .03 

Non-verbal 

reasoning 

(Matrix 

reasoning 

item bank, 

MaRs-IB)2 

.01 .01 .002 .002 750 746 .0003 .001 .004 .003 .02 .01 

Mentalising 

(Animated 

Triangle)3 

.002 -.01 .02 .02 750 746 .91 .57 -.04 -.06 .05 .03 

Autistic 

Quotient (AQ)4 
.001 .003 .005 .14 750 746 .78 .53 -.01 -.01 .01 .01 

Enjoyment -- .23 -- .07 -- 746 -- .0005 -- .10 -- .37 

Anxiety -- .02 -- .04 -- 746 -- .63 -- -.07 -- .11 

Enjoyment*Co

ndition 
-- -.05 -- .03 -- 746 -- .07 -- -.11 -- .005 

Anxiety*Condi

tion 
-- -.02 -- .02 -- 746 -- .33 -- -.07 -- .02 

 

3.5 Discussion 

In the previous study (Chapter 2), we found evidence for social interaction boosting 

learning in neurotypical (NT) adults in online contexts. Here we asked whether the 

same interactive-learning advantage would replicate in adults with Autism Spectrum 

Condition (ASC). Previous literature on ASC has mainly focused on infancy and 

childhood, and studied social learning (e.g. imitation and observation, Bandura, 2019) 

of social knowledge (e.g. face perception: M. Dawson et al., 2007; Webb et al., 2017; or 

language: Norbury et al., 2010; Whitehouse et al., 2007). To the best of our knowledge, 

this is the first large empirical investigation to test interactive-learning of non-social 

factual knowledge in adults with ASC.  

We tested learning over two blinded experiments (one pre-registered) in 128 adults, 

equally split in NT and ASC group, as they were presented with facts about obscure 

items online (over zoom) in three conditions (figure 1): in a live video-call with the 

teacher (interactive condition), by watching a recorded video of a previous student-
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teacher session (recorded-observant condition) and by watching a recorded video of 

the teacher alone (recorded-alone condition).  

Results revealed two important findings: first, overall and across groups, learning in 

the live video-call was significantly greater than learning over pre-recorded videos, 

replicating results from study 1 (Chapter 2, De Felice et al., 2021). Second, and possibly 

more crucial for the scope of this study, we found that the interactive-learning 

advantage was present in participants with ASC too, in accordance with our pre-

registered hypothesis 1: in fact, this group not only showed NT-equivalent 

performance overall, but benefitted from learning in live video-call over pre-recorded 

video as much as NT individuals did. With regards to our pre-registered hypothesis 2, 

the present data does not support it: we found no difference between groups in 

learning-advantage over time. We therefore discuss the results for the NT and ASD 

ignoring the factor of time and instead focusing on the other contrast of interest: the 

learning condition.   

As discussed in previous chapters (Introduction, Chapter 1 and Study 1, Chapter 2), 

there are a number of mechanisms (e.g. attention, mutual-understanding) that may be 

supporting learning in a contingent learner-teacher interaction. Our investigation does 

not allow to disentangle these different mechanisms, nor to interpret NT and ASC 

group performance with reference to specific cognitive processes. Overall however, all 

the mechanisms identified as possible candidate to explain the interactive-learning 

benefit – including attention, social motivation and reward, back channelling, 

mentalising, arousal, monitoring and language – have been found to various degrees 

to be abnormal in ASC (Abell et al., 2000; Clements et al., 2018; Hamilton & Lind, 2016; 

Hill, 2004; Klin, 1991; Webb et al., 2017; White, 2013). This would predict poorer 

learning in ASC in social contexts. However, our results robustly contradict this 

prediction.  
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If the cognitive processes implicated in social interactive learning are also those 

typically disrupted in ASC, why do we still find that participants with ASC learned as 

well as NT in our study? We identified two possible explanations: i) ASC showed NT-

equivalent performance, but at greater cost (compensatory hypothesis); ii) while ASC 

may struggle to learn about ‘the social’, they benefit from learning via ‘the social’ as 

much as NT do (about-the-social versus via-the-social hypothesis): in other words, 

evidence from previous studies come from experimental designs looking at how 

people with ASC learns about the social. In contrast, the present task disentangled the 

means through which learning occurs from the object of learning: this may have 

allowed people with ASC to benefit from the same interactive mechanisms supporting 

learning in NT individuals.  

First, let’s consider the possibility that similar learning between groups comes at 

greater cost for participants with ASC (compensatory hypothesis). In fact, both hyper- 

or hypo-arousal during social information processing has been associated with ASC 

(Yi et al., 2022). People with ASC also show abnormalities in executive function, sensory 

processing and emotional regulation (Fernandez-Prieto et al., 2021; Kilroy et al., 2019; 

Semrud-Clikeman et al., 2010). This may result in the social environment being 

cognitively demanding for autistic people, and would predict that they may show 

discomfort and/or less enjoyment during the task, despite overall NT-equivalent 

performance.  Results however clearly reject this interpretation in several ways. Our 

conditions were all social, as the only variation was the level of contingency (live vs 

recorded) and the social richness of the scene (observing a learner-teacher interaction 

vs observing the teacher alone). Despite this, ASC group learned better specifically 

over contingent live sessions: it does not seem reasonable to hypothesise that any 

compensatory mechanisms would act differently for the live condition compared to 

the recorded ones. Furthermore, ASC group enjoyed the experiment as much as NT, 

and significantly more when learning in the interactive condition compared to the less-

interactive ones (pre-recorded videos). Crucially, anxiety level during the task (as 



 

117 

 

measured via self-report) was also similar between the two groups and across 

conditions.  

Instead, we suggest that this data supports the about-the-social vs via-the-social 

hypothesis. The majority of the past literature has failed to disentangle these two 

mechanisms experimentally: previous experimental work looked at how people with 

ASC either learn about the social, or – e.g. in imitation studies – make implicit use of 

social signals to learn. In contrast, the present work disentangled the means through 

which explicit learning occurs from the object of learning: this may have allowed ASC 

to benefit from the same interactive mechanisms supporting learning in NT. While the 

present data does not allow us to identify the specific process, or set of processes, 

responsible for supporting learning in interactive contexts, it robustly showed how 

crucial it is to separate the medium through which we learn from the content of 

learning, and how contingent social interaction in online context can act as a catalyst 

across a variety of neuro-population, inclusive of ASC groups.   

This work has the strength of studying a novel question in a large sample, with findings 

robustly replicated over two separate experiments (one pre-registered) and three 

different blinded experimenters performing the role of the teacher. Results are 

ground-breaking in that they demonstrate, for the first time, that adults with ASC not 

only benefit but also enjoy learning via live-interaction more than from pre-recorded 

videos. Some considerations however must be made in order to place these findings 

within the correct panorama. Participants with ASC who took part in this study were all 

high-functioning individuals, and conclusions may not extend to the entire autism 

population. This consideration is particularly relevant for our sample, which included a 

number of self-diagnosed participants in the ASC group. Moreover, recruiting 

participants over online platforms (e.g. Prolific) may attract people who are generally 

keen to participate in a social interactive experiments, possibly introducing a bias in 

the sample, while leaving out those people who are less likely to engage in social 

interaction (either because they struggle more or because they enjoy it less). Future 
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work should investigate this question in a sample recruited via diverse sources (e.g. 

schools), to ensure a more diverse sample within the autistic community.  

Our results predict that the interactive-learning advantage would also apply to in-

person contexts. In fact, the present study – despite being online – resembled more 

the typical in-person situation: participants did not engage with any of the defining 

characteristics of a typical e-learning experience, e.g. pausing, repeat, forwarding etc. 

We however acknowledge that other aspects specific to in-person interaction, e.g. 

arousal due to physical proximity (Lougheed et al., 2016; McBride et al., 1965), may 

play a role in learner-teacher interaction, and online versus face-to-face contexts 

should be directly tested.  

In conclusion, we showed that people with high-functioning ASC benefit and enjoy 

learning in interactive contexts as much as NT people do, and did not report being 

more anxious in any of our social interactive conditions. The present work has 

implications for classic cognitive models of social learning, arguing for a distinct 

separation of the context through which learning occurs from the content of learning. 

Designing experiments which explicitly separate these two factors is essential to better 

understand the underlying cognitive mechanisms supporting interactive social 

learning in both neurotypical as well as neuro-diverse populations. This in turn would 

help identify specific dysfunctions of social cognition, without making assumptions 

about a certain condition in relation to one factor (e.g. via-the-social) based solely on 

the other (e.g. about-the-social). Practical implications for pedagogy are obvious, 

including re-thinking about how we deal with education in ASC.  
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4. Chapter 4 – Inter-subject neural coherence as a function 

of social interaction   

Data from this chapter has been published as a pre-print on 24th April 2023, full 

reference is: 

De Felice, S., Hakim, U., Gunasekara, N., Pinti, P., Tachtsidis, I., & Hamilton, A. (2023, 

April 24). Social interaction increases brain synchrony during co-watching of novel 

movies. https://doi.org/10.31234/osf.io/ruhmc  

Contribution notes: Uzair Hakim, Natalie Gunasekara and Paula Wicher helped to co-

collect the hyperscanning fNIRS data.  

4.1 Background 

In Study 1 (Chapter 2) and Study 2 (Chapter 3) we demonstrated how social interaction 

boosts learning online in both neurotypical and people with Autistic Spectrum 

Condition (ASC). We discussed some of the behavioural mechanisms that may be 

engaged during contingent social exchange, including shared-attention, arousal and 

back channelling. In the next two chapters, we shift our attention to the neural 

underpinnings of social interaction (and how these relate to behaviour), by presenting 

a large hyperscanning dataset collected using functional-infrared spectroscopy 

(fNIRS). First, we study how engaging in face-to-face conversation synchronises neural 

activity (current chapter), before asking how brain synchronisation relates to learning 

in interaction (chapter 5). The study of neural response across multiple brains has 

grown over the last few decades, giving rise to an important debate about what neural 

dynamics can tell us about different cognitive mechanisms, within and between brains. 

We discuss the literature here by considering these different mechanisms, before 

presenting the rationale for our study.  

https://doi.org/10.31234/osf.io/ruhmc
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First, attending to the same sensory stimuli has been found to elicit similar neural 

activity across brains. This has been referred to as neural alignment or inter-subject 

correlation (ISC, see Introduction, section 1.1.2). Using fMRI, Hasson et al. (2004) found 

that five different individuals showed similar neural response during free watching of 

a movie in occipital, parietal and temporal areas. Since between-brain synchronisation 

was found to extend beyond typical auditory and visual sensory-processing cortices to 

high-level association areas, the authors concluded that this reflected shared 

understanding of the movie narrative. Following this work, a number of studies 

confirmed this interpretation, showing neural alignment over areas involved in 

reasoning and abstract thinking, including pre-frontal and frontal regions 

(Jääskeläinen et al., 2008), and extending from visual stimuli to speech comprehension 

(Wilson et al., 2008), and from fMRI to EEG group-analysis (Poulsen et al., 2017).  

Furthermore, similar neural representations have been found during interpretation and 

recall of shared events. For example, when people were given different interpretation 

of an ambiguous story, ISC was greater between individuals who were given the same 

interpretation (Yeshurun et al., 2017), and the same results replicated when 

participants were free to develop their own interpretation of a movie showing 

interacting abstract shapes (M. Nguyen et al., 2019).  Likewise, in an fMRI study, Chen 

et al. (2017) found that neural patterns were more similar between people recalling the 

same event than between recall and perception of that event.  

If ISC reflects shared understanding, how is it modulated by relational dynamics 

between people that tend to be psychologically closer and ‘understand each other 

better’, like partners, family and friends? Using fMRI, Parkinson et al. (2018) tried to 

answer this exact question. They collected information about the social network 

proximity between undergraduate students, and used it to predict similarity in neural 

response across participants during free watching of naturalistic movies. They found 

that neural responses during movie watching were particularly similar among friends, 

and ISC decreased as distance in real-life social network increased. Taken together, 
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this data suggests that ISC during processing of external stimuli reflects mechanisms 

involved in attending to, understanding, interpreting and eventually remembering 

those stimuli similarly across individuals, in ways that are modulated by inter-personal 

dynamics. However, this work cannot answer questions about real-time interactive 

minds.  

Going beyond single-brain scanning, brain-to-brain coherence or synchrony is 

obtained by recording brain activity from multiple people simultaneously, and 

therefore can give information about the real-time neural dynamics between 

interactive brains (see Introduction 1.1.2). Azhari and colleagues designed a series of 

hyperscanning studies where they measured brain-to-brain coherence in parent-child 

dyads (Azhari et al., 2019, 2020, 2021, 2023). In their paradigm, the child sits on their 

parent’s lap to co-watch a series of short cartoons, while brain activity of the parent 

and the child is recorded simultaneously via fNIRS. Findings showed that real father-

child dyads exhibited greater coherence than pseudo dyads (i.e. shuffled parent-child 

pairs) in the medial left pre-frontal cortex (mPFC). Also, this was modulated by father’s 

age (Azhari et al., 2021), parenting stress (Azhari et al., 2019) and maternal anxiety 

(Azhari et al., 2023), with older, more stressed and more anxious parents resulting in 

less synchrony. Interestingly, co-parenting couples attending social salient signals (e.g. 

child laughing) also exhibited greater synchrony when being physically in the same 

room, compared to attending to the same stimuli at separate times, and significantly 

more than pseudo couples (Azhari et al., 2020). The small sample sizes of these studies 

however, together with the fact that they restrict to specific relationships (parent-

child/co-parenting couples), call for more studies to extent their conclusions to 

broader social network dynamics.  

Overall, results on neural alignment suggest that not only do different brains respond 

similarly to the same reality, but that such similarity is modulated by relationship 

closeness, possibly reflecting affinity in the way people perceive, experience and make 

sense of the world. In addition, hyperscanning studies reveal that social factors 
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including co-presence and psychological factors affecting inter-personal dynamics 

(e.g. parental stress), modulate brain synchrony between people beyond simple 

stimulus-driven response. However, some questions still need to be addressed. All the 

studies discussed so far considered long-term social dynamics, i.e. relationship that 

built over several years (parent-child, romantic couples, and friends) and did not 

consider real-time (short-term) social interaction. It remains unclear whether face-to-

face communication (e.g. having a conversation) modulates synchrony in brain activity 

between people as they co-experience the world around them.  

The closest attempt to answer the question of whether social interaction modulates 

similarity for later brain response has been investigated in an fMRI study by Sievers et 

al. (pre-print). In their paradigm, participants’ brains were first scanned during 

presentation of novel movie clips with ambiguous narratives. Then participants were 

assembled into small groups and asked to reach a consensus (via conversation) about 

each movie clip’s narrative. Finally, participants received a second brain scanning, 

during which they were presented with the same clips as well as new ones from the 

same movies. Results revealed more ISC after conversation, and distinctive patterns of 

similarity in brain activity were observed within members of the same group, a finding 

interpreted by the authors as reflecting the group’s unique discussion. 

Sievers and colleagues’ work innovatively demonstrated the effect of real-world 

conversation in modulating inter-subject neural alignment to later stimuli. However, 

by comparing neural response across solo brains, this work cannot inform our 

understanding of how people’s brain synchronise as they co-experience the world, nor 

elucidate how a conversation changes inter-brain synchrony during shared 

experiences. In addition, the question remains as to whether the observed neural 

alignment by Sievers and colleagues specifically reflects shared common-ground over 

a given topic (i.e. building a consensus about ambiguous narratives) or could 

potentially arise from any social interaction episode. The contribution of social 

interaction alone is difficult to disentangle, as while increased ISC after conversation 
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extended to novel clips, these were still part of the same movie, and thus related to 

the conversation’s content.  

The question we ask here is not whether similarity in brain responses reflects shared 

understanding of a given experience (as this has been convincingly demonstrated 

elsewhere). Rather we ask what the minimal social factor able to modulate brain 

synchrony between people is: in other words, is talking about the experience necessary 

to observe conversation-related increase in brain coherence, or is social interaction per 

se between two people (e.g. having a conversation unrelated to the experience) 

enough to further attune their brain responses for later events? 

In this study we asked pairs to watch an episode of the BBC cartoon DipDap, as they 

sit next to each-other, while we measure their brain activity using fNIRS. Note that all 

pairs were familiar pairs (e.g. friends, flatmates or partners). This has been mainly 

dictated by the fact that data was collected during the covid-19 global pandemic, 

where UK government only allowed people within the same household to meet and 

interact face-to-face. After the first co-watching phase, participants engage in a 

conversation on unrelated topics (see Chapter 5). They then take part in a second co-

watching phase, when they are presented with a new episode of the same cartoon. By 

comparing brain coherence computed from real-dyads to brain coherence computed 

from pseudo-dyads and separately for co-watching pre-conversation and co-watching 

post-conversation, we ask two questions: 1) is brain coherence during co-watching 

greater between real dyads (who sit next to each other and are familiar with each other) 

different from pseudo-dyads (i.e. baseline for stimulus-related activity)? And 2) what is 

the effect of an unrelated conversation on brain coherence during later co-watching? 
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4.2 Methods 

 Participants 

62 volunteers took part in the study, paired in 31 dyads. Participants were recruited via 

online platforms including university participant databases and social media, as well as 

flyers placed at local libraries and cafes around university campus. 1 dyad was excluded 

from the final sample due to data recording failure, and 3 dyads did not pass the pre-

processing data quality check (see nirs signal processing section). The final sample 

included 27 dyads (N=54, 34 females, 1 non-binary, age range = 19-37, age mean (sd) 

= 26.61 (4.76), years of education mean (sd) = 19.66 (2.99)). Demographic information 

are reported in Table 1. All participants gave written consent to participate in the study 

and were reminded of their right to withdraw at any point.  

Data collection took place during a time of severe covid-19 restrictions, which made it 

necessary for participants and their partner to be from the same household in order 

for them to participate in a face to face experiments (with no mask on). In our study, 

there were 17 ‘friends’ dyads, 10 ‘romantic’ dyads and 3 ‘flatmate’ dyads. The average 

relationship duration in years was 6.95 (sd = 4.45). Overall, on a scale from 1 (not at 

all) to 5 (very), they reported being close to their partner on average 4.43 (sd = .77), 

with no significant difference across dyad sub-groups.  

 Materials and Procedure 

Participants set next to each other facing a screen (Figure 1a). Once the NIRS cap was 

placed and localised (see section 4.2.3 and 4.2.4), the experiment started. Participants 

first watched one episode of the BBC Dipdap animated series (Phase 1), then chatted 

about unrelated topics for about 20 minutes (Phase 2), before watching another (new) 

Dipdap episode (Phase 3). Each episode lasts 2 minutes and shows the adventures of 

Dipdap, an animated puppet who has to face a series of challenges created by an 

imaginary drawing line. The episodes are all non-verbal and can be watched in any 
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order as they are all self-contained. They are particularly useful to engage the watcher’s 

imagination, as one follows the drawing line creating new and surprising scenarios for 

the puppet. The two episodes, ‘Balloon’ (no.7) and ‘Headphones’ (no.38), were selected 

randomly from the full list of episodes (available at 

https://www.bbc.co.uk/iplayer/episodes/b00xgpj9/dipdap?page=1), and were 

presented randomly in a counter-balanced order over phase 1 (pre-conversation) and 

phase 3 (post-conversation). During the co-watching parts (phase 1 and 3), a separator 

was placed in between the two participants, ensuring they did not engage in any social 

communication during the presentation of the episode. During the social interaction 

part (Phase 2), participants were taking part in another experiment (Chapter 5) where 

they engaged in a structured conversation (conversation phase). None of the 

participants ever mentioned the Dipdap episode during the conversation phase.   

https://www.bbc.co.uk/iplayer/episodes/b00xgpj9/dipdap?page=1
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Figure 4.1 . Example of data processing streamline for one dyad (and one channel/ROI). 

A. participants seat next to each other and watch an episode of the BBC series ‘Dipdap’ (Phase 1). After 

watching one episode, the two participants engage in a social interaction task, when they chat about 

unrelated topics (Phase 2). They than watch another – novel - episode of Dipdap (Phase 3). During co-

watching (phase 1 and 3), a separator ensures that participants do not engage in any form of 

communication. The two Dipdap episodes were randomly allocated to phase 1 or 3 (counterbalanced 

across dyads). They are all non-verbal, self-contained, identical for duration and comparable in terms of 
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audio/visual features. B. Full session Nirs Signal (HbCBSI) plotted for participant A (red) and participant 

B (blue). Nirs signal during each video co-watching is highlighted. C. Wavelet coherence spectrogram 

for video 1 and video 2. Bars show the frequency of interest used in analysis. D. Bars plot of the mean 

for the three frequencies of interest (High: 0.1-0.2 Hz, Medium: 0.03-0.1 Hz, Low: 0.02-0.03 Hz) for video 

1 and video 2. Data plotted in B., C. and D. belongs to the same dyad. 

 fNIRS signal acquisition 

Hemodynamic signals were acquired using a 56 optodes (28 sources and 28 detectors, 

split between two heads) continuous wave NIRS system (Shimadzu LABNIRS, Kyoto, 

Japan) with three wavelengths of light (780, 805 and 830 nm). Each participant in a 

dyad had the same distribution of 38 channels over both hemispheres (7 source and 7 

detectors per hemisphere, Figure 4.2A), with a source-detector distance of 3cm. Before 

starting the recording, data quality was optimized by adjusting the detectors gain to 

maximize signals’ intensities and improving the optical coupling between the optodes 

and the scalp (e.g. by moving the hair away from underneath the optodes). Data was 

collected at a sampling frequency of 8.33 Hz. 

 fNIRS data pre-processing 

The full data processing pipeline is illustrated in Figure 3. Raw intensity data from all 

optodes of both participants was converted into a readable format using Homer 

toolbox in Matlab. Each converted raw file was then split into two, based on the 

channel configuration of each individual participant within one dyad. Individual 

channel inspection for inclusion was assessed following the pipeline in Pinti et al. 2019. 

Specifically, channels were excluded if no heart beat oscillation was visible in the 

frequency spectrogram, or if light saturation artefacts and/or large motion errors were 

present. After the data quality check and exclusion, on average each channel had 44 

data points (out of 54 participants, min =31; max = 53).  

Of the included channels, raw intensity signals at the 3 wavelenghts were pre-

processed using the Homer2 toolbox. In particular, intensity data were converted into 
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changes in optical density (function: hmrIntensity2OD). Optical densities were then 

corrected for motion artefacts using the wavelet-based method (function: 

hmrMotionCorrectWavelet , iqr=1.5) and band-pass filtered in the range [0.01 0.4] Hz 

(5th order Butterwort filter, function: hmrBandPassFilt). Changes in HbO2 and HbR were 

calculated using the modified Beer-Lambert law assuming a fixed DPF of [6 6 6] 

(function: hmrOD2Conc). HbO2 and HbR were then combined into the ‘activation 

signal’ through the CBSI approach (Burgess et al., 2022; Cui et al., 2011). 

 Channel to Regions of Interest (ROIs) allocation 

Figure 4.2B shows the location of each channel in standard space across my whole 

sample (one colour per channel). The variability between participants is visibly large. 

Such location variability across participant is not unique to this experiment, but rather 

a very common issue in studies using fNIRS (Zimeo Morais et al., 2018). This is usually 

not addressed in neuroscientific studies, and it is instead assumed that each probe falls 

in the same location across participants. However, figure 4.2B shows how this is not a 

safe assumption to make. In the section below, I outline some steps I took before data 

analysis to minimize the negative effects of the variability in probe locations in my 

data. 

4.2.5.1  From real to standard space 

Before starting fNIRS data acquisition, we collected 3D space coordinates of the 

location of each optode from all participants, using a Polhemus Electromagnetic 

Tracking system (https://polhemus.com). We then converted these coordinates from 

real space (specific to the individual) to Montreal Neurological Institute (MNI) space 

(where individual locations can be compared), using the NIRS SPM-12 toolbox (Tak et 

al. 2016). To make sure that the location of each optode was registered correctly, we 

performed a check on each one of them within each participant: to be classified as 

correctly registered, we tested the assumption that each optode should be located 

between 2.5 and 3.5 cm from any neighbour optode (given the 3cm distance on the 

https://polhemus.com/
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cap configuration and taking into account errors in the measurements obtained 

through the 3D digitizer due to environmental electromagnetic interferences). When 

this assumption was met, the channel location was computed as the MNI coordinates 

of the middle point of two adjacent optodes (reflecting the original head configuration, 

figure 4.2A) for each participant. When an optode location was clearly off the standard 

grid (distance from neighbour optodes was either <2.5cm or >3.5cm), the MNI 

coordinates for that optode were discarded and the  location of any channel forming 

from the mis-located optode(s) was computed based on the mean MNI coordinate of 

well-located optodes. For participants where either more than 50% of optodes were 

mis-located (N=7) or Polhemus registration failed all together (N=2), the mean MNI 

coordinates were used to computed all channel locations.  

At the end of this process, every channel in every participant has an MNI coordinate 

as shown in Figure 4.2B. This allowed to compare channel locations across my sample. 

Noticeably, there is still substantial individual variability in the locations of each 

channel. 

4.2.5.2  From channel to regions of interest 

Using the database neurosynth (https://neurosynth.org/), I identified functional ROIs 

that would be potentially engaged in my study and that were of interest for our 

hypotheses. Specifically, I identified xyz coordinates for left and right hemisphere for 

the following terms: working memory - planning - DLPFC [1091 studies]; speech 

production [107 studies]; speech comprehension [424 studies]; TPJ/theory of mind 

[181 studies]; visual cortex [488 studies]; parietal - memory retrieval/episodic 

memory/joint attention [324 studies]. For each term, the area with the highest 

activation was identified as the ‘centre’ of the ROI. When terms produced extensive 

cortical activation (e.g. language terms over left hemisphere), an extra ‘centre’ was 

selected. A total of 18 centres of interest where identified across the two hemispheres. 

https://neurosynth.org/
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To check that these ROIs were in line with my headset configuration, and that I had 

enough data points for each of my ROIs, I plotted the xyz coordinates for each centre 

of interest along with the mean MNI for all channels. I then generated a spheres for 

each of my ROIs, having as centre the ROIs centre, and a radius of 2cm. From here, all 

ROIs that have less than 44 data points falling within the 2cm radius sphere were 

excluded. This threshold has been chosen so that our ROIs reflected the distribution 

of our dataset (44 was the average data points contributing to each channel after the 

quality check, see ‘nirs data quality check and signal pre-processing’, section 4.2.8).  

After this process, 8 ROIs were considered for the final analysis, 4 for each hemisphere: 

Dorso-Lateral Pre-Frontal cortex (DLPF), ventral Pre-Motor cortex (vPM), Temporo-

Parietal Junction (TPJ), and Superior-Parietal Lobe (SPL; Figure 4.2C). The MNI 

coordinates for all ROIs are reported in Table 4.1. For each participant, each channel 

was assigned to the closest ROI, and in turn it was checked that each ROI was receiving 

signal from the closest channel (e.g. if channel 27 was the closest channel to SPL, but 

in turn it was closer to TPJ, it was assigned to TPJ, and the next closest channel to SPL 

was instead assigned to SPL). All channels contributing to any ROI met the assumption 

that were not further distant than 2cm, and they each contributed to just one ROI. 

At the end of this process, each ROI had 54 allocated channels from 54 participants, 

apart from the left SPL which had 41 (figure 4.2D).  
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Figure 4.2 . From headset probe locations to Region of Interest 

A. NIRS headset configuration. Optodes are divided by 7 sources and 7 detectors per hemisphere, 

spreading from parietal to frontal regions. This configuration forms 19 channels per hemisphere, for a 

total of 38 channels per participant. B. Channel localization in standard space. Channels (1-38) are 

plotted. Each dot is one channel per participant, each nominal channel is assigned to one colour. C. 8 

functional ROIs are plotted in yellow, 4 in each hemisphere. Green dots are channels for one participant. 

For each ROI, the closest channel to the centre would be assigned and contribute with data. No more 

than one channel would contribute to each ROI per participant. To be assigned to an ROI, channels 

must be located within the area marked by the dark yellow dotted line around that ROI centre (radius 
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2cm). D. Channels plotted after being assigned to one of the 8 ROIs. Each colour represent one ROI. 

DLPF = Dorso-Lateral Pre-Frontal cortex; vPM = ventral Pre-Motor cortex; TPJ = Temporo-Parietal 

Junction; SPL = Superior Parietal Lobe. 

Table 4.1 MNI coordinates for the 8 ROIs included in this analysis 

MNI coordinates for the centre of each ROIs as taken from neurosynth database 

(https://neurosynth.org/). DLPF = Dorso-Lateral Pre-Frontal cortex; vPM = ventral Pre-Motor cortex; TPJ 

= Temporo-Parietal Junction; SPL = Superior Parietal Lobe; L = Left; R = Right. 

Region Laterality X Y Z 

DLPF R 44 34 28 

DLPF L -46 30 30 

vPM R 64 -4 20 

vPM L -58 -8 28 

TPJ R 58 -56 18 

TPJ L -54 -56 22 

SPL R 37 -63 59 

SPL L -40 -64 53 

 

 Pseudo-dyads 

The aim of this study (and the next study, Chapter 5), was to investigate neural 

synchrony as a potential marker for social cognition. In order to distinguish the neural 

coupling arising from simply being exposed to the same sensory experiences (e.g. 

watching a video), from neural synchrony arising from social cognitive processes, 

pseudo-dyads were created. Pseudo-dyads were computed respecting the same 

experimental characteristics of real dyads, including video presentations and condition 

order. For example, if real dyad 2 (formed by participant blue 2 and red 2) and real 

dyad 25 (participant blue 25 and red 25) had both watched the Balloon Dipdap episode 

first, and the Headphones Dipdap episode last, and both would start the learning 

condition with separator ON (see experimental procedure in chapter X) they will form 

one real-dyad subgroup. Then, all possible combination of pseudo-dyads were 

https://neurosynth.org/
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computed within each real-dyads sub-group (e.g. pseudo-dyads 1: blue 2 and red 25, 

pseudo-dyad 2: blue 25 and red 2). These ensured that pseudo-dyads would be exactly 

the same as real-dyads in all aspects of the experimental procedure, a part from the 

main factor of interest, i.e. having participated in the experiment together. A total of 

198 pseudo-dyads were created. 

4.3 Data Analysis 

  Wavelet Coherence Analysis 

We measured brain synchrony by running a wavelet coherence analysis using the 

MATLAB R2020b function wcoherence (Figure 4.1C). The main strength of this analysis 

over more simple correlation analyses is that it takes into account both the temporal 

and frequency characteristics of the two signals (Grinsted et al., 2004; Müller et al., 

2004). Wavelet coherence was calculated for each ROI within both real and pseudo 

dyads, for each trial separately (video 1 and video 2). This gave the spectrogram for 

each dyad in the time-frequency space. Given the large range of frequencies, we 

selected three frequency bands of interest, namely high (0.1-0.2 Hz, i.e. 5-10 sec 

period), medium (0.03-0.1 Hz, i.e. 10-30 sec period), and low (0.02-0.03 Hz, i.e. 30-60 

sec period; Figure 4.1C and 4.1D). This decision was informed by both a general 

agreement in the literature that different frequencies in hemodynamic rhythms are 

reflecting different cognitive processes (Cannon et al., 2014; Ward, 2003), and more 

specifically previous studies looking at brain coherence in social interaction contexts 

(Cui et al., 2011). Note that frequency components higher than 0.2Hz were disregarded 

altogether, as these would not reflect true brain signal as measured by fNIRS (the 

hemodynamic response has a frequency <0.2Hz), but rather physiological components 

such as respiration. 

Once all real and pseudo-dyads had a coherence index for each ROI separately for the 

video 1 and video 2 trial, the mean in brain coherence across videos was also computed 

for each ROI. This gave us a general measure of brain coherence during video co-
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watching. In addition, in order to investigate whether social interaction was responsible 

for any change in brain coherence between participants, the brain coherence difference 

between video 2 and video 1 was also computed. Therefore, our final matrix had 27 

dyads (real, or 198 pseudo) x 2 brain coherence measures (mean and change) x 3 

frequency bands (high, medium and low) x 8 ROIs (DLPF left and right, vPM left and 

right, TPJ left and right, and SPL left and right). 

  Permutation testing 

In order to answer the question of whether i) being physically in the same room/being 

familiar with one another and ii) having a conversation would drive brain coherence, 

above and beyond what would be explained by simply processing the same stimulus 

(e.g. watching the same video), 10.000 permutations were computed between real and 

pseudo dyads (Figure 4.3).  Permutation test has been proved to be a robust analysis 

tool to control for risk of type-1 error in multiple comparisons (Lage-castellanos et al., 

2010; Pesarin, 2001).  

The logic here is that real and pseudo dyads share the same features (they all watched 

the same videos, in the same order, and participated in the same experiments, in the 

same room), a part from the one factor of interest: pseudo dyads, in contrast to real 

dyads, did not experience those things together, and did not have a conversation 

between each other.  

For the permutation testing, we computed two input statistics. The first input statistic 

was ‘mean brain coherence V1+V2’, calculated for each real dyad and each pseudo 

dyad.  We then calculated a t-statistic for the difference between real and pseudo 

dyads.  We permuted the labels on the data (real or pseudo) 10,000 times and 

calculated a distribution of t-statistics.  Then we tested whether the true t-stat was 

different from the permuted t-stat. This helped us answer the questions of whether 

real dyads had greater brain coherence beyond what would be expected by simply 

being exposed to the same stimuli (pseudo dyads). 
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Figure 4.3 Permutation analysis streamline.  

Illustration of data analysis pipeline to compute pseudo dyads and run permutation test. Pseudo dyads 

were computed on the basis of some pre-assigned characteristics to match real dyads on all 

experimental factors (e.g. trial order) but the social factor (e.g. being physically next to each other, see 

text). The same data pre-processing pipeline and wavelet coherence analysis has been performed for 

real and pseudo dyads. 10000 permutations were run between real dyads and pseudo dyads for the two 

variable of interest: mean brain coherence over co-watching 1 and co-watching 2, and brain coherence 

difference between co-watching 2 and co-watching 1 (see Hypothesis). 

Our second input statistic was computed as the brain coherence change as a function 

of conversation (i.e. brain coherence co-watching phase 2 - brain coherence co-
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watching phase 1).  Again, this was computed for real dyads and pseudo dyads, and 

the t-statistic was calculated for the difference between real and pseudo dyads.  The 

true t-statistic was then compared to the t-statistic from 10,000 samples of permuted 

data.  This helped us answer the question of whether social interaction would lead to 

change in brain coherence. 

For each of the two measures of interest (mean and change), 10,000 permutations 

were repeated separately for the 8 ROIs and for the three frequency bands, for a total 

of 240.000 permutations per measure.  

4.4 Results 

Full results are reported in Table 4.2 and 4.3 for all ROI and all frequency bands. Main 

findings are presented in Figure 4.4. A reminder that our frequency bands include high 

band (0.1-0.2 Hz, i.e. 5-10 sec period), medium band (0.03-0.1 Hz, i.e. 10-30 sec period), 

and low band (0.02-0.03 Hz, i.e. 30-60 sec period). Results reported here come from 

10,000 permutations test (Lage-castellanos et al., 2010; Pesarin, 2001). 

 Does brain coherence change between real and pseudo 

dyads? 

Brain coherence mean during co-watching of both videos was significantly different 

between real and pseudo dyads over left SPL for the high frequency band and left TPJ 

for the low frequency band (Figure 4.4A). Interestingly, these effects were in opposite 

directions: we found that over left parietal ROI, brain coherence was smaller in real 

dyads compared to pseudo dyads (high frequency band, t = -.027, p = .04), and over 

left TPJ, brain coherence was greater in real dyads compared to pseudo dyads (low 

frequency band, t = .058; p = .04). In other words, being physically in the same room 

with someone familiar during co-watching (real dyads) was associated with less brain 

coherence for the high frequency band over the left SPL and more brain coherence for 

the low frequency band over left TPJ, compared to what would be expected on average 
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for processing the movie (pseudo dyads). No difference was found in brain coherence 

(in any frequency bands) for all other ROIs between real and pseudo dyads. 

 

Figure 4.4 Results 

A. Boxplots showing the distribution for real dyads (yellow) and for pseudo dyads (purple) of the brain 

coherence mean across the two co-watching phases. Right panel: there was significantly less brain 

coherence (high frequency 0.1-0.2 Hz) in real vs pseudo dyads over left SPL. Left panel: there was 

significantly more brain coherence (low frequency 0.02-0.03 Hz) in real vs pseudo dyads over left TPJ. 

B. Plots of brain coherence difference between co-watching 2 (post-conversation) and co-watching 1 

(pre-conversation). Left panel: boxplots of the distribution of brain coherence difference across co-

watching phases for real (yellow) and pseudo (purple) dyads. After a conversation, there was significantly 

more coherence in real vs pseudo dyads over right TPJ. Right panel: brain coherence for real dyads 

(sample mean) during co-watching pre-conversation (phase 1) and co-watching post-conversation 
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(phase 2) over session duration. *p<.05. brain coherence = Inter-Subject Correlation, SPL = Superior 

Parietal Lobe, TPJ = Temporo-Parietal Junction 

Table 4.2 Results for brain coherence over both co-watching phases (average) 

Results from 10.000 permutations test for brain coherence between real and pseudo dyads. Permutation 

statistic used was the average brain coherence across both videos [(co-watching phase 1 + co-watching 

phase 2) / 2]. 

Region 

Real 

dyads 

mean (sd) 

Pseudo 

dyads 

mean (sd) 

Observe

d diff. 
p-value 

Effect 

size 
Confidence Interval 

High Frequency Band (0.1-0.2 Hz) 

DLPF right .25 (.04) .25 (.06) .00 .90 -.02 -.42 .38 

DLPF left .26 (.05) .25 (.05) .00 .98 .07 -.33 .47 

vPM right .23 (.05) .24 (.04) -.01 .35 -.27 -.67 .13 

vPM left .26 (.04) .25 (.05) .01 .23 .14 -.26 .55 

TPJ right .25 (.05) .25 (.04) .00 .95 -.01 -.41 .39 

TPJ left .24 (.04) .25 (.05) -.01 .41 -.27 -.67 .13 

SPL right .25 (.06) .25 (.06) .00 .82 -.05 -.45 .35 

SPL left .23 (.04) .25 (.07) -.02 .04 -.28 -.68 .12 

Medium Frequency Band (0.03-0.1 Hz) 

DLPF right .24 (.07) .23 (.07) .00 .93 .05 -.35 .45 

DLPF left .21 (.05) .24 (.06) -.02 .07 -.45 -.85 -.04 

vPM right .24 (.06) .24 (.06) .00 .93 .08 -.32 .49 

vPM left .24 (.06) .23 (.05) .01 .43 .11 -.29 .51 

TPJ right .23 (.05) .24 (.06) .00 .72 -.07 -.47 .33 

TPJ left .25 (.07) .24 (.06) .02 .19 .19 -.21 .59 

SPL right .23 (.05) .25 (.08) .00 .85 -.22 -.62 .18 

SPL left .22 (.07) .21 (.07) .00 .80 .17 -.24 .57 

Low Frequency Band (0.02-0.03 Hz) 

DLPF right .38 (.17) .37 (.20) .07 .07 .09 -.31 .49 

DLPF left .28 (.15) .31 (.14) -.02 .57 -.15 -.55 .25 

vPM right .34 (.17) .34 (.15) .00 .90 .01 -.39 .41 

vPM left .35 (.14) .33 (.14) .04 .18 .15 -.25 .55 

TPJ right .33 (.12) .30 (.15) .03 .30 .21 -.19 .61 

TPJ left .35 (.14) .31 (.15) .06 .05 .29 -.11 .70 

SPL right .35 (.18) .33 (.17) .04 .22 .16 -.24 .56 

SPL left .34 (.15) .30 (.17) .05 .17 .20 -.20 .60 
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 Does brain coherence change as a function of recent social 

interaction? 

The difference in brain coherence between co-watching phases (coherence video 2 – 

coherence video 1) was significantly higher in real dyads compared to pseudo dyads 

over right TPJ for the high frequency band (t = .04, p = .03; Figure 4.4B). In other words, 

brain coherence for the high frequency band over the right TPJ during subsequent co-

watching of a novel video was higher between two interlocutors (real dyads), than 

between two people who did not have a chat with each other (pseudo-dyads).  

Table 4.3 Results for brain coherence difference after conversation 

Results from 10.000 permutations test for brain coherence difference across co-watching phases 

between real and pseudo dyads. Permutation statistic used was the difference brain coherence across 

videos (co-watching phase 2 - co-watching phase 1). 

Region 

Real 

dyads 

mean (sd) 

Pseudo 

dyads 

mean (sd) 

Observed 

diff. 
p 

Effect 

size 

Confidence 

Interval  

 

High Frequency Band (0.1-0.2 Hz) 

DLPF right -.017 (.08) -.005 (.07) -.02 .44 -.17 -.57 .23 

DLPF left -.004 (.08) -.003 (.08) .00 .96 -.01 -.41 .39 

vPM right .016 (.06) .001 (.09) .02 .37 .18 -.22 .59 

vPM left -.018 (.07) 0 (.08) -.02 .30 -.21 -.62 .19 

TPJ right .030 (.07) -.008 (.09) .04 .03 .44 .03 .84 

TPJ left .006 (.09) -.002 (.08) .01 .66 .09 -.31 .50 

SPL right .007 (.08) -.004 (.07) .01 .50 .14 -.26 .54 

SPL left .019 (.07) .01 (.08) .01 .68 .11 -.29 .52 

Medium Frequency Band (0.03-0.1 Hz) 

DLPF right -.003  (.09) -.007 (.10) .00 .86 .03 -.37 .43 

DLPF left -.016 (.11) .005 (.10) -.02 .31 -.20 -.60 .20 

vPM right -.004 (.13) .001 (.11) -.01 .82 -.05 -.45 .35 

vPM left -.004 (.12) -.007 (.11) .00 .91 .02 -.38 .42 

TPJ right .031 (.13) -.01 (.11) .04 .08 .37 -.03 .77 

TPJ left .023 (.10) -.003 (.10) .03 .24 .25 -.15 .65 

SPL right -.005 (.10) -.006 (.10) .00 .97 .01 -.39 .41 

SPL left .034 (.09) .009 (.09) .03 .26 .27 -.13 .67 

Low Frequency Band (0.02-0.03 Hz) 

DLPF right -.056 (.25) .002 (.24) -.08 .26 -.24 -.64 .17 

DLPF left -.028 (.29) -.003 (.31) -.03 .69 -.08 -.48 .32 

vPM right .015 (.32) .009 (.30) .01 .93 .02 -.38 .42 
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vPM left .048 (.26) .002 (.28) .05 .42 .17 -.23 .57 

TPJ right .054 (.30) .043 (.27) .01 .85 .04 -.36 .44 

TPJ left .112 (.29) .006 (.26) .11 .07 .40 0 .80 

SPL right -.052 (.27) .034 (.26) -.10 .11 -.33 -.73 .07 

SPL left .088 (.26) .041 (.23) .05 .44 .20 -.20 .60 

 

4.5 Discussion 

In this study, we asked whether social factors (e.g. co-presence and face-to-face 

interaction) could specifically contribute to brain synchrony above what would be 

expected by processing the same stimulus. We measured neural response during 

movie co-watching in pairs before and after they engaged in a conversation. We report 

two main findings: first, over the left hemisphere, real pairs showed increased brain 

synchrony over temporo-parietal junction (TPJ) and reduced brain synchrony over 

Superior Parietal Lobe (SPL), compared to pseudo pairs (who had never seen each 

other and watched the same movie at different times). Second, real pairs who engaged 

in conversation showed increased synchrony over right TPJ during subsequent novel 

movie co-watching, significantly more than what was observed in pseudo pairs. We 

discuss each of these findings in turn.  

First, when comparing brain-to-brain synchrony between real pairs and pseudo pairs 

across both co-watching phases (average over two movies), we found that real pairs 

showed increased synchrony over left TPJ and reduced synchrony over left SPL. 

Importantly, real pairs differ from pseudo pairs for two main features: they are familiar 

with their partner and they co-experienced the movie watching in time and space. 

While the contribution from these two factors is difficult to disentangle here, we can 

make some speculations on how these may have modulated synchrony in this study.  

Increased neural synchrony over left TPJ between real dyads during movie watching is 

consistent with previous studies showing that similarity in neural response to narratives 

was greater between people who were also closer within their social network 
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(Parkinson et al., 2018). Our real pairs were all familiar with their partner and shared 

the same household, as data was collected during the covid-19 pandemic when face-

to-face social interaction was only allowed within restricted social networks. Therefore, 

contrasting our real pairs with pseudo pairs de facto resulted in contrasting familiar 

versus unfamiliar pairs. Although the exact mechanisms remains unclear, greater brain 

coherence between familiar pairs (real dyads) may reflect emotional attunement 

(Nummenmaa et al., 2012), shared psychological perspectives (Lahnakoski et al., 2014)  

and social closeness (Wolf & Tomasello, 2020) typical of intimate relationships. 

However, in contrast to previous studies on neural alignment, this study measured 

brain activity from each pair simultaneously. It may be that co-experiencing movie-

watching would additionally modulate brain synchrony in real pairs (beyond 

familiarity), in ways that are not possible when watching the same movie alone. Here, 

we therefore refer to stimulus-driven brain coherence to distinguish cognitive 

processing during co-experiences (like in this study), from neural alignment of 

cognitive processing happening solo (like in Parkinson et al., 2008). Sharing a physical 

environment activates processes of self-location and vestibular regulation with 

reference to the external world (Ionta et al., 2011): physical proximity may therefore 

engage a series of computations that may align the brains of people immersed in the 

same spatial-temporal context (also see Hamilton, 2020), in ways that do not occur in 

alone experiences. Mechanisms of familiarity and co-presence are unlikely to be 

mutually exclusive and possibly modulate brain-to-brain dynamics in tandem. Future 

studies should disentangle the effect of physical proximity from familiarity in aligning 

brain activities during sensory processing, by contrasting familiar and unfamiliar pairs 

(or groups) and directly comparing solo experiences with shared experiences.  

Decreased neural synchrony over parietal regions in real compared to pseudo pairs 

also seems consistent with the interpretation that co-experiences activate qualitatively 

different neural response compared to experiencing the same thing alone. Previous 

work has identified the SPL as part of a global functional system termed as the ‘intrinsic 
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system’ (Golland et al., 2007; Konishi et al., 2015; Miura & Noguchi, 2022; Yeshurun et 

al., 2021). Using fMRI, Golland et al. (2007) found that superior and posterior parietal 

regions showed a low level of within-subject correlation during multiple presentations 

of the same video, suggesting that this region processes information in a way that is 

relatively de-coupled from external sensory inputs. In line with this interpretation, a 

large body of evidence points to SPL as the hub for a neurobiological model of internal 

cognitive processes, including body self-consciousness and body-ownership (see 

Blanke, 2012 for a review). It is possible that the observed reduction in brain coherence 

during movie watching may be due to real pairs engaging in mechanisms designated 

to maintain a first-person perspective over shared experience (Benedek et al., 2016), 

therefore showing de-coupling over SPL from the external contextual inputs, including 

their partner.  

Our second main finding was an increased level of brain coherence over right TPJ after 

face-to-face social interaction (difference in brain coherence between co-watching 

phase 2 and co-watching phase 1). In other words, after people engaged in 

conversation, their brain response to a novel movie watching was more similar 

compared to what was observed before the conversation, and increased to a 

significantly greater degree in real pairs compared to pseudo pairs. We refer to this 

effect as socially-driven brain coherence. There are two important points to highlight 

here: first, both real dyads and pseudo dyads engaged in conversation, but crucially 

only real dyads conversed with one another, while pseudo dyads conversed with 

someone else (i.e. their real partner rather the one forming the pseudo pair). Therefore, 

the observed effect cannot be explained by simply engaging in any social exchange, 

but specifically arise from interaction with one another. The second important element 

to consider is that conversation did not touch upon the content of the movie at any 

point, and the movie presented after the conversation was a novel one. This means 

that the observed increase in neural coherence cannot be interpreted as reflecting 

explicit consensus over a specific instance (e.g. one particular movie), but rather 
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suggests that social interaction may support the development of general common 

ground and shared-understanding for future events, in ways that are not attached to 

a specific paradigm or context.  

These results are consistent with previous studies showing conversation-related neural 

similarity between people (Sievers et al., pre-print). Importantly, they go beyond 

existing literature by demonstrating that social interaction distinctly contributes to 

increase synchrony over right TPJ between people co-experiencing later events. The 

right TPJ has been found to be associated with shared-understanding of external 

reality (M. Nguyen et al., 2019; Salazar et al., 2021; Yeshurun et al., 2017), as well as 

being heavily involved in social processes including mentalising (Molenberghs et al., 

2016) and face-to-face conversation (Cañigueral, Zhang, et al., 2021a). The non-verbal 

Dipdap episodes used in this study are likely to elicit internal narratives of what is about 

to happen next, as a puppet is challenged by an imaginary line creating new 

unpredictable adventures. Here we show that neural response in the right TPJ becomes 

more similar between people who just engaged in social interaction, even to later 

unpredictable events. Future studies should further test this hypothesis by comparing 

brain coherence with explicit individual reports of their interpretation of the new event. 

While we cannot be sure about the exact mechanisms behind the observed increase 

in brain coherence after conversation, one can suggest some speculations. It may be 

that the common ground and shared-understanding built over the conversation 

extended beyond it to immediately later events. Studies on mimicry suggests that 

during conversation people tend to naturally mirror their interlocutors body posture, 

speech rate, and even word-choice, with the ultimate goal of alignment of high-level 

mental representation (Garrod & Pickering, 2004, 2009). This effect has been shown to 

last also after the conversation event (e.g. Richardson et al., 2007). This may have been 

particularly true in the case of a pedagogical interaction (like the one here, see Chapter 

5) where common understanding is crucial, as the teacher and the learner have the 

common goal of transferring and receiving information efficiently. If this interpretation 
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is correct, synchrony would be observed not only at the neural level but also for other 

physiological signals (e.g. breathing, Konvalinka et al., 2023; McFarland, 2001), and 

eye-movements (Richardson et al., 2007; Richardson & Dale, 2005), and would also be 

stronger in dyads where such signals coupled more during the conversation. Future 

studies should test this hypothesis. 

Our results also suggest that brain coherence is affected by social processes differently 

across different frequency bands. We hesitate to make strong conclusions about the 

specific underlying cognitive mechanisms subserving these different frequencies, as 

these are difficult to interpret. Previous fNIRS studies have mainly looked at one 

frequency band only (e.g. Cui et al., 2012; Lu & Hao, 2019), and more direct 

investigations are needed to test different frequency components in relation to specific 

cognitive processes. Also, fNIRS has a relatively slow temporal resolution and cannot 

measure changes happening faster than the hemodynamic response (~5 seconds). 

Future work should combine different neuroimaging modalities to investigate a 

broader range of frequency components. However, the present findings suggest that 

different frequency bands may reflect difference in neuronal rhythms, possibly 

mirroring the complexity of spatio-temporal dynamics in social interaction, in line with 

previous work on both social and non-social processing (Cannon et al., 2014; Ward, 

2003).  

Using fNIRS in this study has allowed us to investigate real-world interaction in ways 

that other neuroimaging modalities would have not made possible (e.g. fMRI, see 

Introduction, Chapter 1). Specifically, it provided a way to study real-time brain 

synchrony to investigate questions which have only been considered in terms of neural 

alignment so far. However, the downside of this includes relatively poor spatial 

resolution. By re-allocating channels to specific ROIs based on their MNI coordinates 

(see methods), we have tried to minimize this limitation. Exact comparisons across 

studies in terms of neuro-anatomical regions and associated functional processes, 

especially when data comes from tools with high spatial precision like fMRI, should 
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however still be inferred with caution. Future studies should combine the use of 

multiple techniques to integrate strengths from different neuroimaging modalities, as 

well as making use of other technologies to include behavioural and physiological data 

to disentangle the contribution from different factors in driving brain coherence. 

In conclusion, in this study we showed how social interaction can distinctly affect brain 

response across people in real-time, for later processing of non-social signals (movie 

watching). We demonstrated how co-experiencing a simple activity like watching a 

movie can both couple and de-couple brain regions. This possibly reflects mechanisms 

of internal and external processing, namely how we experience the world within 

ourselves and with others. Furthermore, we were able to specifically isolate the role of 

social interaction and show how interacting with someone in particular synchronises 

brain signals for later events. These results are in line with the two previous chapters 

in highlighting the role that social interaction has in shaping our experiences of non-

social processing (e.g. learning online in chapter 2 and 3, and movie-watching in this 

chapter), and have implications for our understanding of social dynamics and how we 

share experiences and align interpretation with our friends and family in the real world. 
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5. Chapter 5 – Neural synchrony as a marker of learning in 

interaction 

Contribution notes: Uzair Hakim, Natalie Gunasekara and Paula Wicher helped to co-

collect the hyperscanning fNIRS data. MSc student Daniel Tompkins manually scored 

the free-recall learning test. Medical student Aliakber Dewji and Research Assistant 

Kamilla Bobyreva manually video-coded participants’ eye-gaze during experimental 

sessions.   

5.1 Background 

In the previous experimental chapters, we demonstrated that social interaction boosts 

learning in online contexts, both in neurotypicals (chapter 2) and adults with ASC 

(chapter 3). We then showed that social interaction modulates brain-to-brain 

coherence during presentation of naturalistic stimulus (watching a movie, Chapter 4). 

Given that social interaction supports learning and also modulates brain synchrony 

between interactive people, can therefore brain synchrony used to predict learning? 

Here, we build on the findings from previous chapters and go further by asking 

whether brain-to-brain coherence during teacher-learner interaction can be a 

biomarker of successful learning.  

A growing body of literature is emerging investigating the success of teacher-learner 

interaction (as a function of learning performance) in terms of brain synchrony (e.g. 

Bevilacqua et al., 2019; Davidesco et al., 2023; Dikker et al., 2017; Y. Pan et al., 2020, 

2021, 2023; also see Introduction Section 1.2.3 for a comprehensive review of the 

literature on this). Brain-to-brain synchrony (or coherence) reflects the degree of real-

time co-variance across brains, as measured simultaneously from multiple people as 

they interact (note that the term ‘interaction’ here refers to a range of situations along 

a continuum, from full-body and speech interaction to just co-presence, e.g. chapter 

4). The study of brain-synchrony has been increasing thanks to the more widely 
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available use of hyperscanning methods, where multiple people can engage in 

interaction and share experiences while their neural response are monitored 

simultaneously (Babiloni & Astolfi, 2014b; Czeszumski et al., 2020).  

Studies agree in showing that teacher-learner brain coherence is linked to learning 

performance (e.g. Davidesco et al., 2023; Y. Pan et al., 2023). However, the direction of 

the relationship between brain synchrony and learning is not always consistent across 

contextual situations and/or different brain regions: in other words, more synchrony is 

not always associated with more learning (and vice-versa), but the relationship may be 

context-specific and reflect other mediating mechanisms. For example, Bevilacqua et 

al. (2019) showed that brain-to-brain synchrony was greater during video class 

compared to live lecture, but that specifically in live lectures, brain synchrony could 

predict teacher-student closeness, which in turn predicted learning. Most importantly, 

brain synchrony alone could not account for how well students retained information 

after class. 

Similarly, Davidesco et al. (2019) found that specifically EEG alpha-band brain-to-brain 

coherence predicted learning, but not other frequency bands. Alpha frequency band 

is a well-established neural index of attention (Klimesch et al., 2007), which suggests 

that learning may have been better predicted by attentional dynamics between 

student and teacher, and brain synchrony simply reflected this cognitive process, 

rather than being the explanatory mechanisms per se. This hypothesis is consistent 

with another study by the same group, showing that the degree to which brain activity 

was synchronized across students reflected student class engagement (Dikker et al., 

2017). Other mechanisms such as turn-taking (Y. Pan et al., 2018) and motor 

coordination (Y. Pan, Dikker, et al., 2020) have also been suggested to explain the non-

linear relationship observed between brain synchrony and learning. 

Although publications on the topic have proliferated over the last few years, it remains 

unclear what are the cognitive and neural mechanisms driving this effect: in other 



 

148 

 

words, why does social interaction supports learning, and how? Existing literature 

suggests that brain-to-brain synchrony on its own cannot explain conclusively why 

certain interaction are ‘better’ or ‘more successful’ than others, nor can it account for 

the full complexity of teacher-student social exchange. In conjunction with studying 

brain-to-brain synchrony, it is therefore crucial to study the coordination of (joint) 

actions and how that relates to shared knowledge states (see Novembre & Iannetti, 

2021 and Hamilton, 2020 for a discussion on this). Related to this, a useful theoretical 

standpoint is the embodied mutual prediction framework (Hamilton, 2020; Kingsbury 

et al., 2019), which explicitly acknowledge that interactive brains exist within interactive 

bodies.  In other words, any synchrony between multiple brains results from auditory, 

visual and motor signals exchanged between social agents, and as such it should be 

studied and interpreted in conjunction with behavioural data.  

The mutual prediction framework makes the claim that synchrony between brains in a 

social interaction arises because the two people involved in the interaction each 

engage both brain systems for performing their own actions and also brain systems 

for perceiving/predicting the actions of their partner.  In cases where both partners are 

acting in a predictable fashion, there is a good match between A’s brain activity for 

performing own action and B’s brain activity for predicting A’s action, because both of 

these brain states are related to the same action that A is doing (e.g. talking, gazing, 

etc).  Similarly, there will be a good match between B’s brain activity for performing 

her own action and A’s brain activity for predicting B’s action because both are related 

to the action B is doing (e.g. listening, gaze following etc).  Thus, this sensorimotor 

coordination between A and B gives rise to coherent brain activity between A and B.  

Within this framework, high coherence can potentially be taken as an indicator that 

two participants are doing well at prediction and that their motor and cognitive 

processes are well matched, while low coherence might indicate unpredictable actions, 

a failure of prediction or a divergence of attention between the two people.  
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Tracking behaviour is important to understand social cognition and inter-personal 

dynamics particularly in the case of teacher-learning interaction. In fact, in interactive 

learning, the co-creation of knowledge and shared understanding is functional to the 

learning process, as the teacher share information, and the learner tunes in to their 

teacher to receive and process that information, while both adjust their behaviour as 

they receive feedback from their interlocutor. If brain-to-brain synchronisation is a 

proxy of behavioural and psychological dynamics, and particularly reflects the mutual 

prediction, increasing affiliation and communicative benefits across different minds 

(Hamilton, 2020; Hoehl et al., 2020b), then it would makes sense to study brain-

synchrony while also manipulating and studying behaviour. Integrating behavioural 

data into hyperscanning studies means that a more comprehensive and meaningful 

understanding of how humans learn from and with others can be achieved. 

One aspect of behaviour that may be particularly useful to consider in the context of 

social learning is eye-gaze (Emery, 2000). Gaze has been found to be an important 

social signal during communication (Richardson et al., 2007; Richardson & Dale, 2005; 

Wohltjen & Wheatley, 2021), and is considered one of the strongest factor driving 

brain synchrony (Dumas et al., 2011; Kelsen et al., 2020; Noah et al., 2020; Saito et al., 

2010). In the context of social learning, eye-gaze has been shown to be an important 

predictor of children’s learning (Elsabbagh et al., 2012; Ho et al., 2015; Lanthier et al., 

2021; Yu et al., 2017) and adult class engagement (Alksne, 2016). Also, it has been 

demonstrated that inter-subject gaze behaviour is a proxy of joint attention, i.e. when 

two or more people attend to the same thing simultaneously (Kourtis et al., 2020; 

Wohltjen & Wheatley, 2021), considered an essential pre-requisite for learning and 

social communication more generally (Mundy & Newell, 2007). In chapter 2, we 

showed that seeing the full face of the teacher (including their eyes) improved learning 

in interaction. However, what remains unclear is the relationship between mutual-gaze, 

the emergence of joint attention episodes, brain synchrony and learning in face to face 
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teacher-learner interaction (see Figure 5.1 for definition of gaze behaviours in 

interaction).  

 

Figure 5.1 Eye-gaze behaviour definitions and experimental-condition manipulation 

The separator ‘off’ condition (left) resembles a typical naturalistic interaction where both mutual gaze 

and joint attention episodes occur. The separator ‘on’ condition creates a disrupted-view where partners 

cannot see each other’s faces, where mutual-gaze is not possible and only joint attention episode can 

occur.  The lower panel illustrates how we coded gaze in interactions.  Coders first recorded the gaze of 

A and B to the object / partner / neither and then an algorithm categorised each time point as mutual 

gaze (both people look to partner at the same time) or joint attention (both people look to the object 

at the same time). 

In this study, we use fNIRS hyperscanning to measure brain activity simultaneously 

from two people, as they interact in a learner-teacher dynamic. Before coming to the 

lab and independently in their own time, participants learned some facts about 

obscure items (e.g. exotic animals). In the lab, they share those facts with their partner. 

Each participant alternates being a teacher and being a learner. In addition to the brain 

data, we also video-recorded the interaction and coded participants eye-gaze 

throughout the session. At the end of the interaction, participants’ learning was tested 

via free-recall and multiple choice quiz. The multiple choice quiz was also repeated a 

week later to include a measure long-term learning.  Thus, the primary data we will 

analyse in this study comprises (1) interpersonal brain coherence in specific regions of 
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interest across both people in the dyad for each trial (2) the amount of time spent in 

joint attention or mutual gaze on each trial (3) average learning score for the item 

learnt in each trial.  We will examine how both the brain and behavioural factors predict 

the learning outcomes for the dyad.   

The complexity and novelty of this design refrains us to make strong predictions about 

our results. Informed by the mutual-prediction framework and acknowledging that 

interactive brains exist only within interactive bodies, we plan to build a model which 

includes brain synchrony along with behavioural data, namely eye-gaze behaviour, to 

investigate the dynamic between social signals and brain synchrony in predicting 

learning during face-to-face teacher-learner interaction. We plan to build a large 

model where contribution from predictors and their interactions will be evaluated via 

a stepwise iterative method.  

Previous work on some of the aspects investigated here can nevertheless hint at some 

hypotheses. We regards to brain signals, we hypothesise that teacher-learner 

synchrony would predict learning, especially in areas involved in brain networks 

implicated in social cognition and communication, including dlPFC and TPJ, in line with 

previous studies on face-to-face communication and information sharing (Cañigueral, 

Zhang, et al., 2021a; Fronda & Balconi, 2020; Jiang et al., 2015). However, we do not 

have strong predictions on the direction of this relationship: it may be that greater 

learning would be associated with more synchrony in certain areas while de-coupling 

in other areas, possibly reflecting different behavioural dynamic unfolding over time 

between the teacher and the learner. In line with studies showing the importance of 

joint attention in effective communication and information sharing (e.g. Kourtis et al., 

2020; Richardson et al., 2007), we hypothesise that joint attention would positively 

predict learning. With regards to mutual-gaze behaviour, the literature is mixed in 

reporting a positive association between mutual-gaze and learning (e.g. Schneider & 

Pea, 2013), and also showing that in naturalistic conversation mutual-gaze is avoided 

when speaking, possibly to minimise cognitive load and prioritise speech planning and 
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production (Cañigueral, Ward, et al., 2021). In fact, previous studies on learning in 

naturalistic interaction did not specifically study the effect of joint attention and 

mutual-gaze in the same experiment, and it is not clear how these interact to modulate 

both brain synchrony and learning.  

To better isolate different eye-gaze behaviours, we include a ‘separator’ condition, 

where learner-teacher interaction is ‘disrupted’ by a physical barrier (see Figure 5.1). 

Importantly, note that even during the separator ‘on’ condition (obstructed view), 

participants can engage in joint attention by attending to the object simultaneously 

and communicating via gestures and speech. Therefore, in line with the previously 

stated hypothesis that joint attention would be positively associated with learning, and 

acknowledging that even in the separator ‘on’ condition teacher-learner exchange is 

highly interactive, we do not expect difference in learning performance between 

conditions. However, by blocking the interlocutor view, the separator ‘on’ condition 

allows us to isolate joint attention and mutual-gaze episodes and to look at these 

different social signals separately, including their impact on brain synchrony. We 

predict that joint attention and mutual gaze would modulate brain coherence 

differently, possibly engaging different brain areas, but we do not have strong 

hypotheses on the neural topography or directionality of these effects.   

5.2 Methods 

This experiment corresponds to ‘phase 2’ of Study 3 (Chapter 4, i.e. the conversation 

stage in-between the two co-watching phases). Therefore, information about 

participants and nirs signal acquisition as well as some steps of the data analysis 

pipeline (including nirs data quality check and signal pre-processing, channel to 

regions of interest (ROIs) allocation and wavelet transform coherence analysis) applies 

also to this dataset. Also, the learning material used for this study is the same used in 

Study 1 (Chapter 2). Therefore, here we report enough details for the reader to 
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understand the work done in this study, while we refer to previous chapters for more 

details on specific sections.  

 Participants 

Participants were the same who participated in Study 3 (Chapter 4). The final sample 

included 27 dyads (N=54, 34 females, 1 non-binary, age range = 19-37, age mean (sd) 

= 26.61 (4.76), years of education mean (sd) = 19.66 (2.99)). All participants gave 

written consent to participate in the study and were reminded of their right to 

withdraw at any point.  

 Material and Procedure 

A schematic of experimental procedure is illustrated in figure 5.2.A. This Study was 

composed of three main parts: 1) the pre-learning phase, 2) the experimental-session 

phase and 3) the learning-test phase. Participants were instructed to learn facts about 

obscure items in their own time before the experimental session (pre-learning phase), 

and told that they will teach those facts to their partner (experimental-session phase), 

whose learning will in turn be tested (learning-test phase). During the experimental-

session phase, for certain trials a separator obstructed the view of the two participants.  

Learning material was the same used in Study 1 (Chapter 2). 16 items formed two 

learning sets (set ‘red’ and set ‘blue’, 8 items in each set, 2 item from each of the four 

categories ‘animals’, ‘antiques’, ‘exotic food’ and ‘musical instruments’). In each dyad, 

one participant was randomly assigned to the ‘red’ role (and received the ‘red’ set) and 

the other was assigned to the ‘blue’ role (and received the ‘blue’ set). The learning set 

assigned to each participant formed the material they had to teach to their partner 

during the experimental-session phase, while the other set formed the material they 

had to learn as students (and on which they were then being tested): in other words, 

participant ‘blue’ would pre-learn the set ‘blue’ (pre-learning phase), then teach the 

set ‘blue’ to their partner and learn the set ‘red’ from their partner (experimental-

session phase), and be tested on the set ‘red’ (learning-test phase).  
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To ensure the learning material was truly novel to participants, a few days before the 

experimental session the researcher scheduled a short call and asked each participant 

to give a ‘yes/no’ answer to the question ‘have you ever heard of e.g. Axolotl?’. If any 

of the items were known to just one participant within the dyad, then the learning set 

containing the known item was assigned to that participant (i.e. this ensured that any 

pre-knowledge would contribute to the teacher performance, but not the student 

performance). If both participants within the dyad knew about the item, than that item 

was excluded post-hoc from the analysis. At the end of the screening call, participants 

were each sent a unique link via email, containing their learning set (pre-learning 

phase).  

The pre-learning phase was conducted online (in Gorilla Experiment Builder) and lasted 

on average 33 (sd = 2.7) minutes. This included a mixture of text and pictures about 8 

items as well as MCQs with feedback to facilitate memorisation of the facts. 

Participants were instructed to complete the pre-learning phase in their own time and 

away from their partner, and were informed that while they could repeat this phase as 

many time as they wanted, to participate to the experimental session they had to 

achieve a 100% learning score (as measured in Gorilla Experimenter Builder).  

The experimental-session phase was conducted in the lab and lasted approximately 1.5 

hour. Participants set next to each other at approximately 30 degrees angle (Figure 

5.1). Next to each participant and at reaching distance, there was a box containing the 

8 items learned during the pre-learning phase. In addition, a cardboard separator was 

placed next to participant ‘red’. Before starting the experiment, polhemus data was 

collected and the nirs cap was mounted on participants’ heads by two researchers (see 

Chapter 4). During the experiment, a monitor in front of them displayed the name of 

the item to discuss in that trial and whether to place or remove the separator in 

between them. Participants were instructed to read the name of the item on the 

monitor and, if that item belonged to their learning set, pick it from their box and share 

their knowledge about it. Each trial lasted 1.5 min and a sound signalled the start and 
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the end of that trial. Items’ order were presented randomly alternating from the ‘red’ 

set and the ‘blue’ set, so that each participant was never playing the same role 

(student/teacher) twice consecutively. The separator was placed (or removed) every 

four trials.  

Participants were told to share information about a given item as well as possible as 

teachers, and to learn as much as possible as students, as their knowledge would have 

been tested at the end of the session. Beyond these instructions, they were welcomed 

to use the time in each trial autonomously and freely (e.g. ask questions, repeat 

information, interrupt their partner, play with the items’ model etc). Apart from the 

item model, no prompts nor scripts were given to participants during this phase.  

In the learning-test phase, learning was measured immediately after the experimental-

session phase via a free-recall questionnaire (‘can you write down all you can remember 

about e.g. Axolotl?’). Once finished, participant were reimbursed for their times and 

reminded to complete a multiple-choice quiz by the end of the day and in a week time. 

The multiple-choice quiz link was sent to participants at the end of the experimental 

session and again 7 days after. This was run in Gorilla Experiment Builder and was the 

same used in Study 1 (Chapter 2) and Study 2 (Chapter 3). 
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Figure 5.2 Data collection and processing streamline for one dyad 

A. Experimental design B. Full session Nirs Signal (HbCBSI) plotted for participant A (red) and participant 

B (blue). Yellow (face-to-face condition) and green (obstructed condition) bars represent separate 

experimental trials. C. Right: Wavelet coherence spectrogram for one trial. Bars show the two frequency 

bands of interest. Left:  Bars plot of the mean for the two frequency bands of interest (High: 0.1-0.2 Hz, 

Low: 0.03-0.1 Hz). 
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 Nirs signal acquisition 

Please refer to Chapter 4 Section 4.2.3 for details on this section.  

 Channel to Regions of Interest (ROIs) allocation 

We analysed data in 8 ROIs comprising the dlPFC, vPM, TPJ and SPL in each 

hemisphere.  Figure 4 shows channel configuration and ROIs. Please refer to Chapter 

4 Section 4.2.5 for details on how we assigned channels to ROIs.   

 

Figure 5.3 Headset probe locations and Region of Interest  

A. NIRS headset configuration. Optodes are divided by 7 sources and 7 detectors per hemisphere, 

spreading from parietal to frontal regions. This configuration forms 19 channels per hemisphere, for a 

total of 38 channels per participant. B. Channels plotted after being assigned to one of the 8 ROIs. Each 

colour represent one ROI. DLPF: Dorso-Lateral Pre-Frontal cortex; vPMC: ventral Pre-Motor cortex; TPJ: 

Temporo-Parietal Junction. See Chapter 4 and Figure 4.2 for details on how we got from A to B.  

 Nirs data quality check and signal pre-processing 

The full data processing pipeline is illustrated in Figure 2 and reported in details in 

Chapter 4 Section 4.2.4. After the data quality check and channel exclusion, on average 

each channel had 44 data points (out of 54 participants, min = 31; max = 53). 
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 Data Analysis 

5.2.6.1  Wavelet Coherence Analysis 

To measure neural synchrony, we calculated the coherence between the signals of the 

two brains within each dyad. This was obtained by running wavelet coherence analysis 

separately for each dyad during single trials (Figure 2.C), over the 8 ROIs, using the 

MATLAB R2020b function wcoherence. We selected two frequency bands of interest, 

namely high (0.1-0.2 Hz, i.e. 5-10 sec period) and low (0.03-0.1 Hz, i.e. 10-30 sec 

period). Compared to chapter 4, here the time series where too short to select a third 

frequency bands (trial duration in this Study = 90 sec vs co-watching phase duration 

in Study 3 = 120sec). This decision was informed by both a general agreement in the 

literature that different frequencies in neuronal rhythms are reflecting different 

cognitive processes (Cannon et al., 2014; Ward, 2003), and more specifically previous 

fNIRS studies looking at brain coherence in social interaction contexts (Cui et al., 2011).  

5.2.6.2  Learning performance scoring  

Across the whole sample, 16 trials were excluded based on participants’ pre-

knowledge screening (see Section 5.2.2). Learning performance on the included trials 

was scored from MCQs (immediate and delay) and free recall questionnaire. For MCQs 

performance, a score of 0 (incorrect) or 1 (correct) was assigned to each question (five 

per item), and a global score was then computed for each item (max score 5). With 

regards to free recall, an MSc postgraduate was trained to score the content recalled 

(‘student performance’). 1 point was given for every fact correctly recalled (each item 

had a total of 15 facts). If facts were reported only partially, these were scored as 0.5. 

When facts were not recalled entirely, or something else was reported altogether, this 

was scored as 0.  

In some instances, students misremembered the item’s name while still remembering 

facts about that item: e.g. reporting facts about Anhinga while referring to it as Axolotl. 

Awarding 0 to these cases would have unfairly assessed learning performance: the 
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student recalled considerable information and only failed to remember the target 

name for those facts. To ensure a fair scoring, we added an additional scoring section, 

referred to as ‘Correct name-description association’. Students scored 1 on this section 

if they reported facts about an object and referred to it with the correct name (e.g. 

reporting facts about Anhinga and also referring to it as Anhinga). In cases where 

participants recalled information about an object but under the wrong name, they 

were awarded 0 for ‘Correct Name-Description Association’, but marked normally for 

the other fifteen facts. 

In addition, the audio-recordings of all dyads were scored for how many facts were 

provided by the teacher in each trial (‘teacher performance’). This allowed us to 

account for variability in learning caused by variation in teaching quality which arose 

because our procedure prioritised ecological validity and encouraged free-flowing 

interaction between participants. Having a measure of ‘teacher performance’ alongside 

the ‘student performance’ allowed us to compute a rigorous measure of learning 

(student performance/teacher performance), which reflected what the student was 

truly taught during a naturalistic teacher-student interaction.  In some cases, facts were 

recalled when these were not discussed verbally, but were observed visually e.g. the 

colour of a fruit. In these cases, facts scored a point for both student performance and 

teacher performance.  

Overall, learning was characterised by a single score calculated as the average of the 

scores in the free recall test, the immediate multiple choice test and the delayed 

multiple choice test.  Scores on each of these three tests were expressed as a % of the 

maximum available points given the constraints listed above, so that the total learning 

score for each person and each item gives the best estimate of how much the 

participant has learnt about that item. 
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5.2.6.3 Eye-gaze behaviour scoring 

Video recordings of each session were manually scored for all dyads included in the 

wavelet transform coherence analysis (N=27, see section 4.2.4 in Chapter 4). Due to a 

technical fault, we lost video recording for one dyad. This gives us a total sample of 26 

dyads for which we extracted eye-gaze behavioural measures. Each video was coded 

separately for participant A and participant B in each dyad, specifically for gaze to 

object and gaze to partner (see Figure 5.1). From this coding, we computed two 

measures reflecting the sum of instances (all in seconds) when a particular behaviour 

occurred: joint attention was computed as the time when both participants looked at 

the learning-object simultaneously; mutual-gaze, was computed as the time when 

participants looked at each other (only available for separator ‘off’ trials). In addition, 

we computed an extra measure for sustained attention separately for participant A and 

B as the time each one of them looked at the learning-object (independently on their 

partner’s behavior). We used this to control for time participants attended to the object 

which was not related to the interaction.   

5.2.6.4 Linear mixed-effects regression models 

To investigate what factors could best predict learning in a face-to-face naturalistic 

teacher-learner interaction, we built a model to predict learning that included all the 

behavioural and brain signals we collected. We then looked at data coming from the 

separator ‘on’ condition and separator ‘off’ condition separately. This allowed us to 

include mutual-gaze among the predictors of the model for separator ‘off’ data. We 

used a stepwise removal iterative method to exclude terms which did not significantly 

explain the variance in learning. The predicted factor in all our models was average 

learning (see section 5.2.6.2 for details on how this was computed). Mixed-linear model 

analyses were run using the function fitlme and step in MatlabR2023a. 

We first describe the models in more details below, and then present results from each 

of this analysis in the Result section. 
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‘Big exploratory model’: predictors included coherence values for each ROI in the two 

frequency bands (8 ROIs x 2 frequency bands, 16 terms), joint attention (seconds, 1 

term) and the separator condition (0/1, 1 term). The model also included all possible 

interaction terms: namely, separator x joint attention (1 term), separator x coherence 

in all ROIs (16 terms) and joint attention x coherence in all ROIs (16 terms). This gave 

us a model with 51 predicting terms. To control for variability coming from other terms, 

we included random effects of dyad sustained attention (i.e. average of time spent by 

both teacher and learner looking the object, not necessarily simultaneously), learner 

sustained attention, learning-items, teacher performance (how much the teacher 

reported) and dyad. A schematic of the model’s formula is reported below: 

Learning ~ separator + brain-coherencei + joint attention + 

separator*brain-coherencei + separator*joint-attention + joint-

attention*brain-coherencei + (1 | learner sustained-attention) + (1 | dyad 

sustained-attention) + (1 | item) + (1 | teacher performance) + (1 | dyad) 

where subscript i indicates that 8 different brain coherence values were included for 

the 8 ROIs.   

Separator ‘on’ and separator ‘off’ models: to better investigate the relationship between 

eye-gaze behaviour and brain coherence in predicting learning, we considered data 

coming from the separator ‘on’ and the separator ‘off’ condition separately. For 

separator ‘on’ condition, we run the same model as the ‘all-inclusive model’, without 

the ‘separator’ term: 

Learning in separator ‘on’ ~ brain-coherencei + joint attention + joint-

attention*brain-coherencei + (1 | learner sustained-attention) + (1 | dyad 

sustained-attention) + (1 | item) + (1 | teacher performance) + (1 | dyad) 

For separator ‘off’ condition, we added mutual-gaze as an independent predictor and 

in interaction with brain coherence values: 

Learning in separator ‘off’ ~ brain-coherencei + joint attention + mutual-

gaze + joint-attention*brain-coherencei + mutual-gaze*brain-coherencei 
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+ (1 | learner sustained-attention) + (1 | dyad sustained-attention) + (1 | 

item) + (1 | teacher performance) + (1 | dyad) 

5.3 Results 

Descriptive statistics for all measures are reported in Table 5.1. Brain synchrony data is 

also plotted for each ROIs in Figure 5.4 (high-frequency band) and 5.5 (low frequency 

band). Overall, learning distribution was very similar across experimental conditions 

(t(368)=-.74, p=.45), as shown in Figure 5.4.  

 

Figure 5.4 Distribution of learning performance (%) for the two experimental conditions 

Each dot in the scatterplot represents learning performance for one item (trail). 

We first report outcomes from the big exploratory linear-mixed effect model, and then 

present results separately for separator ‘on’ and separator ‘off’ condition. Given the 

high number of predictors in our models, we set our alpha level for significance at 0.01. 

Table 5.1 Descriptive statistics for all experimental variables 

MCQ: multiple-choice question; dlPFC: dorsolateral pre-frontal cortex; vPMC: ventral pre-motor cortex; 

TPJ: temporo-parietal junction; SPL: superior parietal lobe; wtc: wavelet transform coherence; JA: joint 

attention. 

 Overall Separator on Separator off 

Variable  Mean SD Mean SD Mean SD 

Learning immediate free-recall (%) .56 .22 .54 .23 .57 .22 
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Learning immediate MCQ (%) .87 .18 .88 .17 .86 .17 

Learning +1week MCQ (%) .83 .20 .82 .21 .84 .20 

Learning average (%) .75 .16 .75 .16 .76 .15 

MG (sec) -- -- -- -- 8.75 8.23 

JA (sec) 58.22 21.25 68.12 21.22 48.69 16.41 

Sustained Attention learner (sec) 68.14 26.67 75.65 27.08 60.72 24.16 

Sustained Attention dyad (sec) 65.34 25.14 72.40 25.69 58.38 22.59 

dlPFC right high-freq (wtc) .27 .07 .27 .07 .26 .08 

dlPFC left high-freq (wtc) .27 .07 .26 .06 .27 .07 

vPMC right high-freq (wtc) .26 .07 .26 .07 .26 .07 

vPMC left high-freq (wtc) .28 .07 .28 .07 .28 .07 

TPJ right high-freq (wtc) .28 .07 .28 .07 .27 .07 

TPJ left high-freq (wtc) .27 .06 .26 .06 .28 .07 

SPL right high-freq (wtc) .27 .07 .27 .08 .27 .06 

SPL left high-freq (wtc) .27 .07 .27 .07 .26 .06 

dlPFC right low-freq (wtc) .30 .10 .30 .10 .29 .10 

dlPFC left low-freq (wtc) .31 .10 .32 .11 .30 .10 

vPMC right low-freq (wtc) .29 .10 .29 .19 .29 .09 

vPMC left low-freq (wtc) .31 .09 .31 .09 .31 .09 

TPJ right low-freq (wtc) .30 .10 .30 .09 .30 .10 

TPJ left low-freq (wtc) .29 .10 .29 .10 .29 .10 

SPL right low-freq (wtc) .30 .10 .30 .11 .30 .10 

SPL left low-freq (wtc) .29 .09 .29 .10 .28 .09 
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Figure 5.5 High Frequency Band – brain synchrony (x) for each ROI and learning (y) 

Significant main effects are indicated with a yellow star. dlPFC: dorsolateral pre-frontal cortex; vPMC: 

ventral pre-motor cortex; TPJ: temporo-parietal junction; SPL: superior parietal lobe. 

 

Figure 5.6 Low Frequency Band – brain synchrony (x) for each ROI and learning (y) 

Significant main effects are indicated with a yellow star. dlPFC: dorsolateral pre-frontal cortex; vPMC: 

ventral pre-motor cortex; TPJ: temporo-parietal junction; SPL: superior parietal lobe. 

Big exploratory model. As a reminder, the formula for this model is reported below: 

Learning ~ separator + brain-coherencei + joint attention + 

separator*brain-coherencei + separator*joint-attention + joint-

attention*brain-coherencei + (1 | learner sustained-attention) + (1 | dyad 

sustained-attention) + (1 | item) + (1 | teacher performance) + (1 | dyad) 

Complete results for the big exploratory model are reported in Table 5.2. We found a 

main effect of brain synchrony in right TPJ for high frequency band (beta=1.16, p-

value<.001) and in left TPJ for low frequency band (beta=.8, p-value<.001). We also 

found an interaction effect between right TPJ for high frequency band and joint 

attention (beta=-.02, p-value=.01), between left dlPFC for high frequency band and 
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joint attention (beta=.02, p-value<.001) and between left vPMC for high frequency 

band and separator condition.  

Table 5.2 Big exploratory model 

dlPFC: dorsolateral pre-frontal cortex; vPMC: ventral pre-motor cortex; TPJ: temporo-parietal junction; 

SPL: superior parietal lobe; JA: joint attention. 

Predictor Term Estimate SE tStat DF p Lower Upper 

(Intercept) 0.46 0.30 1.52 189 0.13 -0.14 1.05 

separator 0.43 0.23 1.89 189 0.06 -0.02 0.87 

JA 0.00 0.01 -0.10 189 0.92 -0.01 0.01 

dlPFC right high-freq -0.47 0.39 -1.22 189 0.22 -1.24 0.29 

dlPFC left high-freq -0.96 0.41 -2.34 189 0.02 -1.77 -0.15 

vPMC right high-freq 0.21 0.44 0.47 189 0.64 -0.66 1.08 

vPMC left high-freq -0.45 0.31 -1.45 189 0.15 -1.06 0.16 

TPJ right high-freq 1.16 0.35 3.37 189 <0.001 0.48 1.85 

TPJ left high-freq -0.18 0.31 -0.59 189 0.56 -0.80 0.43 

SPL right high-freq -0.25 0.43 -0.57 189 0.57 -1.10 0.61 

SPL left high-freq 0.62 0.37 1.69 189 0.09 -0.11 1.34 

dlPFC right low-freq 0.00 0.31 0.00 189 1.00 -0.62 0.62 

dlPFC left low-freq -0.44 0.24 -1.82 189 0.07 -0.92 0.04 

vPMC right low-freq 0.28 0.28 1.03 189 0.31 -0.26 0.83 

vPMC left low-freq 0.13 0.24 0.54 189 0.59 -0.35 0.60 

TPJ right low-freq 0.19 0.22 0.85 189 0.40 -0.25 0.62 

TPJ left low-freq 0.80 0.23 3.46 189 <0.001 0.35 1.26 

SPL right low-freq 0.30 0.24 1.25 189 0.21 -0.17 0.77 

SPL left low-freq -0.05 0.25 -0.20 189 0.84 -0.54 0.44 

separator:dlPFC right high-freq 0.06 0.26 0.22 189 0.82 -0.46 0.57 

separator:dlPFC left high-freq -0.46 0.29 -1.57 189 0.12 -1.04 0.12 

separator:vPMC right high-freq -0.49 0.30 -1.62 189 0.11 -1.09 0.11 

separator:vPMC left high-freq -0.92 0.25 -3.72 189 <0.001 -1.41 -0.43 

separator:TPJ right high-freq -0.05 0.27 -0.18 189 0.85 -0.58 0.49 

separator:TPJ left high-freq -0.28 0.24 -1.15 189 0.25 -0.76 0.20 

separator:SPL right high-freq -0.18 0.32 -0.58 189 0.56 -0.81 0.44 

separator:SPL left high-freq -0.03 0.27 -0.10 189 0.92 -0.56 0.51 

separator:dlPFC right low-freq 0.02 0.23 0.09 189 0.93 -0.43 0.47 

separator:dlPFC left low-freq 0.06 0.19 0.32 189 0.75 -0.31 0.43 

separator:vPMC right low-freq -0.03 0.20 -0.16 189 0.88 -0.43 0.37 

separator:vPMC left low-freq 0.26 0.20 1.31 189 0.19 -0.13 0.66 

separator:TPJ right low-freq 0.43 0.19 2.21 189 0.03 0.05 0.82 

separator:TPJ left low-freq 0.12 0.19 0.67 189 0.51 -0.25 0.49 

separator:SPL right low-freq -0.43 0.19 -2.19 189 0.03 -0.81 -0.04 

separator:SPL left low-freq 0.08 0.19 0.41 189 0.68 -0.30 0.45 
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separator:JA 0.00 0.00 0.13 189 0.90 0.00 0.00 

dlPFC right high-freq:JA 0.01 0.01 1.22 189 0.22 -0.01 0.02 

dlPFC left high-freq:JA 0.02 0.01 2.86 189 <0.001 0.01 0.04 

vPMC right high-freq:JA 0.00 0.01 0.09 189 0.93 -0.02 0.02 

vPMC left high-freq:JA 0.01 0.01 2.17 189 0.03 0.00 0.02 

TPJ right high-freq:JA -0.02 0.01 -2.54 189 0.01 -0.03 0.00 

TPJ left high-freq:JA 0.00 0.01 -0.14 189 0.89 -0.01 0.01 

PAR_r_high:JA 0.01 0.01 0.60 189 0.55 -0.01 0.02 

PAR_l_high:JA -0.01 0.01 -1.24 189 0.22 -0.02 0.00 

DLPF_r_low:JA 0.00 0.01 0.53 189 0.60 -0.01 0.01 

DLPF_l_low:JA 0.00 0.00 1.14 189 0.26 0.00 0.01 

vPMC right low-freq:JA 0.00 0.00 -0.48 189 0.63 -0.01 0.01 

vPMC left low-freq:JA 0.00 0.00 -1.04 189 0.30 -0.01 0.00 

TPJ right low-freq:JA -0.01 0.00 -1.52 189 0.13 -0.02 0.00 

TPJ left low-freq:JA -0.01 0.00 -2.56 189 0.01 -0.02 0.00 

SPL right low-freq:JA 0.00 0.00 0.42 189 0.67 -0.01 0.01 

SPL left low-freq:JA 0.00 0.00 -0.17 189 0.86 -0.01 0.01 

 

Separator ‘on’ model. As a reminder, the formula for this model is reported below: 

Learning in separator ‘on’ ~ brain-coherencei + joint attention + joint-

attention*brain-coherencei + (1 | learner sustained-attention) + (1 | dyad 

sustained-attention) + (1 | item) + (1 | teacher performance) + (1 | dyad) 

Results for separator ‘on’ model are reported in Table 5.3. The final model after the 

stepwise iteration analysis is reported in Table 5.4. The stepwise analysis showed that 

variability in learning was significantly predicted by joint attention (beta=.01, p-

value<.001), brain synchrony in left TPJ for low frequency band (beta=1.49, p-

value<.001) and the interaction between the two (joint attention * left TPJ for low 

frequency band, beta=-.02, p-value<.001). In addition, we found a main effect of brain 

synchrony in vPMC for high frequency band (beta=-.54, p-value<.001). 

Table 5.3 Separator ‘on’ model 

dlPFC: dorsolateral pre-frontal cortex; vPMC: ventral pre-motor cortex; TPJ: temporo-parietal junction; 

SPL: superior parietal lobe; JA: joint attention. 

Predictor Term Estimate SE tStat DF p Lower Upper 

(Intercept) -0.14 0.70 -0.19 85 0.85 -1.53 1.26 

dlPFC right high-freq 0.76 0.73 1.03 85 0.31 -0.70 2.22 
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dlPFC left high-freq -1.87 0.94 -2.00 85 0.05 -3.73 -0.01 

vPMC right high-freq -0.87 1.13 -0.77 85 0.45 -3.12 1.38 

vPMC left high-freq -1.64 0.69 -2.38 85 0.02 -3.00 -0.27 

TPJ right high-freq 1.15 0.74 1.56 85 0.12 -0.32 2.63 

TPJ left high-freq 0.06 0.61 0.09 85 0.93 -1.16 1.27 

SPL right high-freq 0.10 1.02 0.10 85 0.92 -1.92 2.13 

SPL left high-freq 0.06 0.83 0.07 85 0.95 -1.59 1.70 

dlPFC right low-freq -0.52 0.80 -0.65 85 0.52 -2.11 1.07 

dlPFC left low-freq 0.07 0.52 0.13 85 0.90 -0.96 1.09 

vPMC right low-freq 1.14 0.94 1.21 85 0.23 -0.74 3.01 

vPMC left low-freq 0.64 0.57 1.12 85 0.26 -0.50 1.79 

TPJ right low-freq 0.95 0.56 1.68 85 0.10 -0.17 2.07 

TPJ left low-freq 1.93 0.48 3.99 85 <0.001 0.97 2.90 

SPL right low-freq 0.37 0.56 0.66 85 0.51 -0.74 1.48 

SPL left low-freq -0.27 0.55 -0.50 85 0.62 -1.36 0.81 

JA 0.01 0.01 1.32 85 0.19 -0.01 0.03 

dlPFC right high-freq:JA -0.01 0.01 -0.98 85 0.33 -0.03 0.01 

dlPFC left high-freq:JA 0.03 0.01 2.28 85 0.03 0.00 0.05 

vPMC right high-freq:JA 0.01 0.02 0.51 85 0.61 -0.02 0.04 

vPMC left high-freq:JA 0.02 0.01 1.61 85 0.11 0.00 0.03 

TPJ right high-freq:JA -0.02 0.01 -1.60 85 0.11 -0.04 0.00 

TPJ left high-freq:JA -0.01 0.01 -0.89 85 0.38 -0.03 0.01 

SPL right high-freq:JA 0.00 0.01 -0.17 85 0.87 -0.03 0.02 

SPL left high-freq:JA 0.00 0.01 -0.12 85 0.90 -0.02 0.02 

dlPFC right low-freq:JA 0.01 0.01 0.78 85 0.44 -0.01 0.03 

dlPFC left low-freq:JA 0.00 0.01 0.05 85 0.96 -0.01 0.01 

vPMC right low-freq:JA -0.02 0.01 -1.28 85 0.20 -0.04 0.01 

vPMC left low-freq:JA 0.00 0.01 -0.50 85 0.62 -0.02 0.01 

TPJ right low-freq:JA -0.01 0.01 -1.19 85 0.24 -0.02 0.01 

TPJ left low-freq:JA -0.03 0.01 -3.96 85 <0.001 -0.04 -0.01 

SPL right low-freq:JA -0.01 0.01 -0.66 85 0.51 -0.02 0.01 

SPL left low-freq:JA 0.01 0.01 1.05 85 0.30 -0.01 0.02 

 

Table 5.4 Separator ‘on’ model after the stepwise iterative analysis 

dlPFC: dorsolateral pre-frontal cortex; vPMC: ventral pre-motor cortex; TPJ: temporo-parietal junction; 

SPL: superior parietal lobe; JA: joint attention. 

Predictor Term Estimate SE tStat p 

(Intercept) -0.34 0.31 -1.08 0.28 

JA 0.01 0.00 3.70 <0.001 

vPMC left high-freq -0.54 0.18 -3.02 <0.001 

TPJ left high-freq -0.47 0.18 -2.57 0.01 

vPMC right low-freq 1.60 0.78 2.06 0.04 
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vPMC left low-freq 0,36 0,14 2,48 0,01 

TPJ right low-freq 0,34 0,13 2,60 0,01 

TPJ left low-freq 1,49 0,44 3,38 <0,001 

SPL left low-freq 0,31 0,15 2,14 0,03 

vPMC right low-freq:JA -0,02 0,01 -2,08 0,04 

TPJ left low-freq:JA -0,02 0,01 -3,38 <0,001 

 

Separator ‘off’ model. As a reminder, the formula for this model is reported below: 

Learning in separator ‘off’ ~ brain-coherencei + joint attention + mutual-

gaze + joint-attention*brain-coherencei + mutual-gaze*brain-coherencei 

+ (1 | learner sustained-attention) + (1 | dyad sustained-attention) + (1 | 

item) + (1 | teacher performance) + (1 | dyad) 

Results for separator ‘off’ model are reported in Table 5.5. The final model after the 

stepwise iteration analysis is reported in Table 5.6. The stepwise analysis showed that 

variability in learning was significantly predicted by joint attention (beta=-.02, p=.01) 

and mutual gaze (beta=-.08, p<.001). In addition, we found a main effect of brain 

synchrony in left dlPFC for low frequency band (beta=-2.89, p=.01). Left dlPFC for low 

frequency band also showed a significant interaction effect with both joint attention 

(beta=.04, p=.01) and mutual gaze (beta=.10, p<.001). 

Table 5.5 Separator ‘off’ model 

dlPFC: dorsolateral pre-frontal cortex; vPMC: ventral pre-motor cortex; TPJ: temporo-parietal junction; 

SPL: superior parietal lobe. 

Name Estimate SE tStat DF p Lower Upper 

(Intercept) 2.88 1.59 1.81 69.00 0.07 -0.30 6.05 

JA -0.03 0.02 -1.37 69.00 0.17 -0.08 0.01 

MG -0.10 0.05 -1.88 69.00 0.06 -0.20 0.01 

dlPFC right high-freq -1.82 1.67 -1.09 69.00 0.28 -5.15 1.50 

dlPFC left high-freq -3.57 1.59 -2.25 69.00 0.03 -6.74 -0.41 

vPMC right high-freq 0.00 1.86 0.00 69.00 1.00 -3.72 3.71 

vPMC left high-freq -1.15 1.43 -0.81 69.00 0.42 -4.00 1.70 

TPJ right high-freq 0.65 1.72 0.38 69.00 0.71 -2.79 4.09 

TPJ left high-freq 1.42 1.66 0.86 69.00 0.39 -1.88 4.72 

SPL right high-freq -1.59 1.72 -0.93 69.00 0.36 -5.01 1.84 

SPL left high-freq -1.80 1.94 -0.93 69.00 0.36 -5.67 2.06 

dlPFC right low-freq -0.60 1.16 -0.51 69.00 0.61 -2.91 1.72 
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dlPFC left low-freq -1.62 1.29 -1.26 69.00 0.21 -4.19 0.94 

vPMC right low-freq 1.19 0.86 1.38 69.00 0.17 -0.53 2.92 

vPMC left low-freq -0.06 1.09 -0.06 69.00 0.96 -2.24 2.12 

TPJ right low-freq 2.01 1.02 1.97 69.00 0.05 -0.03 4.05 

TPJ left low-freq -0.93 1.09 -0.85 69.00 0.40 -3.10 1.24 

SPL right low-freq -1.31 1.21 -1.08 69.00 0.29 -3.73 1.11 

SPL left low-freq 0.83 1.58 0.52 69.00 0.60 -2.32 3.97 

dlPFC right high-freq:JA 0.03 0.03 1.06 69.00 0.29 -0.02 0.08 

dlPFC left high-freq:JA 0.06 0.03 2.35 69.00 0.02 0.01 0.11 

vPMC right high-freq:JA 0.00 0.03 0.13 69.00 0.90 -0.05 0.06 

vPMC left high-freq:JA 0.02 0.02 1.11 69.00 0.27 -0.02 0.07 

TPJ right high-freq:JA -0.02 0.03 -0.63 69.00 0.53 -0.07 0.04 

TPJ left high-freq:JA -0.01 0.03 -0.58 69.00 0.56 -0.07 0.04 

SPL right high-freq:JA 0.02 0.03 0.77 69.00 0.44 -0.03 0.08 

SPL left high-freq:JA 0.03 0.03 1.01 69.00 0.32 -0.03 0.08 

dlPFC right low-freq:JA 0.01 0.02 0.78 69.00 0.44 -0.02 0.05 

dlPFC left low-freq:JA 0.02 0.02 1.00 69.00 0.32 -0.02 0.06 

vPMC right low-freq:JA -0.02 0.01 -1.47 69.00 0.15 -0.04 0.01 

vPMC left low-freq:JA -0.01 0.02 -0.47 69.00 0.64 -0.04 0.03 

TPJ right low-freq:JA -0.03 0.02 -1.84 69.00 0.07 -0.06 0.00 

TPJ left low-freq:JA 0.01 0.02 0.52 69.00 0.61 -0.03 0.04 

SPL right low-freq:JA 0.03 0.02 1.28 69.00 0.20 -0.01 0.06 

SPL left low-freq:JA -0.01 0.02 -0.64 69.00 0.53 -0.06 0.03 

dlPFC right high-freq:MG 0.03 0.06 0.57 69.00 0.57 -0.09 0.15 

dlPFC left high-freq:MG 0.07 0.05 1.55 69.00 0.13 -0.02 0.17 

vPMC right high-freq:MG -0.01 0.06 -0.12 69.00 0.90 -0.12 0.11 

vPMC left high-freq:MG 0.02 0.05 0.43 69.00 0.67 -0.07 0.11 

TPJ right high-freq:MG 0.04 0.06 0.69 69.00 0.50 -0.08 0.16 

TPJ left high-freq:MG -0.07 0.05 -1.38 69.00 0.17 -0.18 0.03 

SPL right high-freq:MG 0.08 0.05 1.43 69.00 0.16 -0.03 0.19 

SPL left high-freq:MG 0.07 0.07 1.02 69.00 0.31 -0.06 0.20 

dlPFC right low-freq:MG 0.03 0.05 0.71 69.00 0.48 -0.06 0.12 

dlPFC left low-freq:MG 0.07 0.04 1.67 69.00 0.10 -0.01 0.16 

vPMC right low-freq:MG -0.04 0.03 -1.27 69.00 0.21 -0.11 0.02 

vPMC left low-freq:MG 0.02 0.03 0.56 69.00 0.58 -0.05 0.09 

TPJ right low-freq:MG -0.07 0.04 -1.93 69.00 0.06 -0.14 0.00 

TPJ left low-freq:MG 0.07 0.04 1.95 69.00 0.05 0.00 0.14 

SPL right low-freq:MG 0.04 0.04 1.14 69.00 0.26 -0.03 0.12 

SPL left low-freq:MG -0.01 0.05 -0.28 69.00 0.78 -0.12 0.09 

 

Table 5.6 Separator ‘off’ model after the stepwise iterative analysis  

dlPFC: dorsolateral pre-frontal cortex; TPJ: temporo-parietal junction; SPL: superior parietal lobe; JA: 

joint attention; MG: mutual gaze. 
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Predictor Term Estimate SE tStat p 

(Intercept) 2.18 0.44 4.99 0.00 

JA -0.02 0.01 -2.59 0.01 

MG -0.08 0.02 -4.13 <0.001 

SPL right high-freq -0.60 0.36 -1.66 0.10 

dlPFC left low-freq -2.89 1.03 -2.80 0.01 

TPJ left low-freq -0.12 0.21 -0.57 0.57 

SPL right low-freq -1.80 0.95 -1.90 0.06 

dlPFC left low-freq:JA 0.04 0.02 2.51 0.01 

SPL right low-freq:JA 0.03 0.02 1.72 0.09 

SPL right high-freq:MG 0.07 0.03 1.98 0.05 

dlPFC left low-freq:MG 0.10 0.03 3.08 <0.001 

TPJ left low-freq:MG 0.04 0.02 2.11 0.04 

SPL right low-freq:MG 0.06 0.03 2.23 0.03 

 Is learning predicted by what *we* looked at OR by what *I* looked at? 

Consistently across different models, including the big exploratory model and the 

stepwise iterative analysis run separately for the two experimental conditions, joint 

attention emerged as a significant predictor of learning, with greater joint attention 

resulting in better learning. For the separator ‘off’ condition, also mutual gaze was 

found to significantly contribute to learning, with people generally learning more when 

engaging less in mutual-gaze. Note that both these measures reflect interactive 

behaviour, that is eye-gaze dynamic between learner and teacher. In other words, we 

observed that learning was predicted by inter-personal eye-gaze dynamic, even when 

controlling for individual eye-gaze pattern (sustained attention).  To confirm that these 

effects reflect a truly interactive dynamic and are not simply driven by how long the 

learner spent fixating the object (regardless of what their partner was doing), we run a 

further much simpler model where we tested the isolated contribution of eye-gaze 

behavioural measures to learning, separately for separator ‘on’ and separator ‘off’ 

condition: 

- Learning in separator ‘on’ ~ joint attention + learner sustained-

attention + (1 | item) + (1 | teacher performance) + (1 | dyad) 

 

- Learning in separator ‘off’ ~ joint attention + mutual-gaze + learner 

sustained-attention +  (1 | item) + (1 | teacher performance) + (1 | dyad) 
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Results from these models are reported in table 5.7. Eye-gaze behaviour and learning 

data is also plotted in Figure 5.7 separately for each condition. For separator ‘on’ 

condition, the model showed that none of the eye-gaze behavioural measures 

included on its own could account for variability in learning. For separator ‘off’ 

condition, we found that joint attention (beta=.003, p=.04) was the only significant 

predictor of learning, above mutual gaze and learner sustained attention. Importantly, 

these results demonstrate that sustained attention cannot account for variability in 

learning, and that better learning was predicted specifically by time when learner and 

teacher attended to the object simultaneously.     

Table 5.7 Eye-gaze behaviour models 

Separator ‘on’        

 Estimate SE tStat DF p Lower Upper 

(Intercept) 0.80 0.06 13.20 118 <0.001 0.68 0.92 

Joint attention 0.00 0.00 0.33 118 0.74 0.00 0.00 

Sustained attention 

(learner) 

0.00 0.00 -1.35 118 0.18 0.00 0.00 

Separator ‘off’        

 Estimate SE tStat DF p Lower Upper 

(Intercept) 0.625 0.090 6.948 118 <0.001 0.447 0.803 

Joint attention 0.003 0.001 2.004 118 0.04 0.00 0.005 

Mutual gaze 0.002 0.003 0.917 118 0.36 -0.003 0.007 

Sustained attention 

(learner) 

0.000 0.001 -0.329 118 0.74 -0.002 0.002 
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Figure 5.7 Scatterplots of eye-gaze behaviour and learning  

Note that beta and p values reported here comes from the eye-gaze behavioural model only. Significant 

main effects are indicated with a yellow star. For statistics on these measures and their contribution in 

predicting learning when considered along brain synchrony measures refer to text and Table 5.4 and 

5.6 and Figure 5.8. JA: joint attention; SA: sustained attention; MG: mutual gaze. 

Results summary. Overall, brain synchrony emerged as a predictor of learning in the 

left hemisphere over dlPFC and TPJ. Interestingly, these same areas also showed 

interaction effects with eye-gaze behaviours, namely joint attention and mutual gaze.  

In left dlPFC, we found that during separator ‘on’ trials, only joint attention predicted 

learning (Fig5.8A).  However, during separator ‘off’ trials when participants could see 

each other, coherence of left dLPFC predicted learning both alone and in interaction 

with both joint attention and mutual gaze (Fig 5.8B and C).  While increased dlPFC 

coherence always related positively to learning, the effects of joint attention and 

mutual gaze went in opposite directions. 

In left TPJ, we also found interactions of gaze brain coherence to predict learning.  

Specifically, left TPJ showed a positive interaction with joint attention during trials 

when learner and teacher could not see each other (separator ‘on’ condition, Figure 
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5.8D). Although no other interactions survived our alpha threshold for significance of 

.01, it is interesting to observe that the trends between brain synchrony and eye-gaze 

behaviour in predicting learning remain consistent: it seems that the best learning is 

associated with greater joint attention and less mutual gaze, as well as more brain 

synchrony in left dlPFC and left TPJ.  

Finally, coherence in left vPMC, a regions heavily engaged in speech planning and 

production, showed a significant negative effect in predicting learning specifically 

during separator ‘on’ condition (see Table 5.4 and Figure 5.5): in other words, better 

learning was associated with less synchrony over this area. 
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Figure 5.8 3d plots of the two-way relationship between brain synchrony and eye-gaze 

behaviour over left dlPFC and TPJ 

Significant main effects are indicated with a yellow star. Below each plot is a schematic of the 

behavioural condition of the plotted data.  L: left; R: right; JA: joint attention; MG: mutual gaze; dlPFC: 

dorsolateral pre-frontal cortex; TPJ: temporo-parietal junction.  

5.4 Discussion 

The aim of this study was to identify markers of successful interactive learning. To do 

so, we adopted a multi-modal approach to study of naturalistic teacher-learner 

interaction, in line with the idea that interactive brains exist within interactive bodies 
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(Hamilton, 2020).  Using hyperscanning fNIRS, we measured brain activity from learner 

and teacher simultaneously as they exchanged information about obscure objects (e.g. 

exotic animals), while also coding their eye-gaze behaviour (see Figure 5.1). 

Specifically, we computed brain synchrony in 26 learner-teacher pairs over dorsolateral 

pre-frontal cortex (dlPFC), ventral pre-motor cortex (vPMC), temporo-parietal junction 

(TPJ) and superior parietal lobe (SPL) bilaterally, as well as measuring the time each 

pair spent in joint attention and mutual gaze behaviour, and asked whether and how 

these signals predicted learning.  

Our findings show that learner-teacher brain synchrony is a good marker of learning 

specifically over left dlPFC and TPJ. Crucially, the relationship between brain synchrony 

and learning was not linear, i.e. more synchrony did not always resulted in better 

learning, but was modulated by eye-gaze behaviour, in particular joint attention and 

mutual-gaze. This was particularly evident as we experimentally manipulated the 

learner’s and the teacher’s view by placing a separator, i.e. a physical barrier, that in 

some trials obstructed their view, preventing them to engage in mutual-gaze 

behaviour, but not in joint attention (see Fig. 5.1 and 5.2).  We discuss these results by 

considering learning performance in relation to joint attention and mutual-gaze 

separately.  

First, we found that greater joint attention was associated with better learning, and 

showed a positive interaction with brain synchrony over both left dlPFC and TPJ. Joint 

attention has been shown to be a hallmark of good conversations (Garrod & Pickering, 

2004; Richardson et al., 2007) and successful learning (Schertz et al., 2013; Striano et 

al., 2006). Also, previous literature has placed dlPFC and TPJ as important hubs within 

the brain network engaged in social cognition and specifically in face-to-face 

communication (Burgess et al., 2022; Jiang et al., 2015; Suda et al., 2010). Our results 

are also consistent with previous work in confirming the involvement of these areas in 

eye-gaze social dynamics (Jiang et al., 2017; Noah et al., 2020). However, when 

considering the two-way relationship between brain synchrony and joint attention in 
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predicting learning, we suggest that the underlying cognitive mechanisms engaging 

left dlPFC and left TPJ may be specific to each of these two areas.  

dlPFC has been shown to be particularly important in our ability to remain ‘on-task’ 

(Turnbull et al., 2019). Using fMRI, Turnbull and colleagues measured whole-brain 

neural activity as participants engaged in working-memory task varying in difficultly (a 

classic n-back paradigm where an always increasing number of digits has to be 

retrieved backwards). During the task, participants were randomly asked whether their 

thoughts were focused on the task or they were daydreaming. Results showed that 

activity in left dlPFC was correlated with being on-task specifically when task demands 

were higher, and off-task thoughts when demands were lower. In our study, 

participants were explicitly instructed to teach and learn as many information as 

possible, a task that involve high cognitive resources. Crucially, we found that higher 

synchrony over this area and the consequent benefit to learning was specifically 

associated with instances of joint attention, where teacher and learner where ‘on task’ 

together at the same time. Therefore, left dlPFC may have played a crucial role in 

supporting both teacher’s task of sharing information clearly and accurately, and 

learner’s task of simultaneously attending to that information in order to memorise as 

many facts as possible.  

While synchrony over left dlPFC may support learning as reflecting teacher and learner 

jointly attending to the task, previous work suggests that synchrony over TPJ may 

instead reflect processing of inter-personal dynamics, or in other words teacher and 

learner attending to each other. This may contribute to co-creating a smoother 

communication which in turn increases learning. TPJ has been shown to be implicated 

in theory of mind and shared understanding (Doricchi et al., 2022; Jiang et al., 2015; 

Zheng et al., 2018), as well as being important in predicting other’s action (Kayhan et 

al., 2022) and monitoring verbal exchange and turn-taking in contingent 

communication (Cañigueral, Zhang, et al., 2021a; Liu et al., 2019). More relevant for the 

present study, TPJ has been reported among the core areas to show brain synchrony 
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during learner-teacher interaction in a number of studies on learning (Y. Pan, 

Novembre, et al., 2020; Zheng et al., 2018, 2020). Here, we show that synchrony over 

this area is directly modulated by joint attention in supporting effective 

communication, which consequently resulted in better learning.  

In contrast to what we observed for joint attention, our second main finding shows 

that mutual-gaze was associated with both less brain synchrony and less learning over 

dlPFC. The fact that mutual gaze was associated with less brain synchrony over dlPFC 

is novel, yet relatively unsurprising. People frequently avert their eyes from 

interlocutors during natural conversation. Previous work has also confirmed this trend 

experimentally, showing that direct eye-contact disrupts our ability to produce speech 

(Kajimura & Nomura, 2016), therefore suggesting that smooth conversations may be 

associated with less mutual-gaze. In fact, it has been recently shown that eye-contact 

may be specifically employed to ‘disrupt’ synchrony (measured in terms of pupil size) 

in naturalistic interaction, by providing a signal to facilitate independent contributions 

to conversation (Wohltjen & Wheatley, 2021). Therefore, our results are consistent with 

previous work in showing that mutual-gaze is a social signal that lead people to ‘de-

synchronize’ rather than ‘synchronize’ to their partner. Notably, overall we observe 

relatively little mutual-gaze behaviour in our data: precisely, on an average trial, mutual 

gaze was observed for 10% of the time, while joint attention was observed for 65% of 

the time. This is consistent with the interpretation that participants may have used this 

social signal to only briefly disengage from the shared task and allow independent 

internal processing, before ‘re-connecting’ into shared information processing. In line 

with this interpretation, we do not find a significant reduction in learning as a function 

of mutual gaze (see Figure 5.7 and 5.8).  

Lastly, we found that during separator ‘on’ condition, i.e. when learner and teacher 

could not see each other’s face, better learning was predicted by less synchrony over 

vPMC. vPMC is typically engaged in speech planning and verbal production (Tremblay 

& Small, 2011). We identified two possible explanations for this result, which may be 
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equally possible and not necessarily mutually exclusive. The first one develops from 

the mutual prediction framework: under this framework, decoupling is linked to 

learning because in a teacher-learner exchange, information to be learnt is novel and 

therefore – by definition – unpredictable. In other words, vPMC might fail to predict 

the exact words that teacher will say during conversation, given that the teacher’s job 

is to share unknown information about a novel object. This would therefore results in 

low coherence and good learning. Note that this interpretation would assume that the 

same mechanism occurs during both separator ‘on’ (obstructed view) and separator 

‘off’ (face-to-face view) condition, while our results specifically detect an effect during 

obstructed view only. It is possible that no effect is detected in face-to-face view 

(separator ‘off’ condition), because the additional visual signals may have helped good 

(speech) prediction. In fact, it has been recently demonstrated that multi-modal (non-

linguistic) cues, including gestures and mouth movements, supports language 

comprehension (Y. Zhang et al., 2021). Our separator ‘on’ condition specifically isolates 

the contribution of linguistic (verbal) information from multi-modal cues, possibly 

resulting in less brain coherence associated with better learning.  

Alternatively, it may be that greater de-coupling leads to better learning as it reflects 

internal mechanism of self-monitoring. Recently, vPMC has been included in models 

of speech perception and in particular is believed to monitor one’s own speech (Ozker 

et al., 2022; Scott et al., 2020). Our task is heavily verbal: de-coupling from the partner 

may have reflected the ability of the speaker to ‘tune in’ with their own speech to 

integrate auditory feedback and adapt communication accordingly. Presumably, this 

would be particularly relevant in the case of the teacher, who would be the one 

predominantly speaking and sharing information about the object to learn. During this 

process, self-monitoring would possibly have a two-fold effect: in terms of brain 

coherence, it would result in more de-coupling as the teacher would focus on their 

own performance more than focusing on the interaction (e.g. what they themselves 

have just said, what they themselves are about to say next etc), resulting in a divergence 
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in brain activity patterns. In addition, in terms of learning, greater self-monitoring 

could make for a better teacher, which would translate in better learning. This 

interpretation is consistent with the fact that the association between greater de-

coupling and better learning was only found in our separator ‘on’ condition, i.e. when 

visual feedback was absent and the view between the teacher and the learner was 

obstructed. It may be that relying on auditory feedback from one’s own speech may 

have been particular important during trials where it was not possible to rely on 

feedback from the partner (e.g. nodding to communicate understanding). 

We acknowledge that both of these explanations rely on a number of assumptions and 

that many of these conclusions remain speculations. Future work is needed to 

disentangle the specific contribution of each brain networks in coupling and de-

coupling and how these inter-brain dynamics impact learning. Overall however, our 

data points towards the conclusion that the relationship between learner-teacher 

brain-to-brain synchrony and learning is non-linear: different brain regions at different 

levels of the sensorimotor hierarchy supports learning by either coupling or de-

coupling from their analogous region in the partner’s brain. This is likely to depend on 

which signals those regions are responsible for computing and how accurately they 

are at predicting a partner’s actions, beliefs and/or speech during the task. This could 

therefore mean that good learning would result, for example, from low coherence in 

areas engaged in predicting the precise word sequence in speech (vPMC), and from 

high coherence in areas engaged in predicting the overall arc of the conversation and 

the turn-taking structure (dlPFC and TPJ), in a complex non-linear system, that 

synergistically work to achieve an effective representation of the items under 

discussion.  

Future Directions 

These results are novel in that they investigate social learning by directly linking brain 

and behavioural dynamics in naturalistic interaction. However, the focus is limited to 
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eye-gaze behaviour. Future studies should go further and integrate other behavioural 

signals, especially verbal behaviour, to better disentangle the contribution of these 

different mechanisms to knowledge acquisition (Cartmill et al., 2013; Ponari et al., 

2018). In addition, this work studied inter-personal dynamics by looking at the dyadic 

interaction, but did not investigate further the directionality of such dynamics. In the 

future, more sophisticated analysis tools (e.g. Granger causality) should be employed 

to make more precise inferences on mechanisms regulating mutual-prediction and 

information flowing from one person (e.g. teacher) to another (e.g. learner). While this 

study of dyadic interaction provides a good framework to build model of naturalistic 

conversation, the study of interactive learning should be extended to group dynamics, 

in order to make conclusions that can apply to educational setting more similar to the 

real-world (e.g. classroom).  

Previous work has identified social networks as an important modulator of inter-

personal brain dynamics (Parkinson et al., 2018; Sievers et al., pre-print). It remains 

unclear whether the relationship existing between teacher and learner affects the 

mechanisms studied here, e.g. by modulating the inter-personal brain and behavioural 

pattern and, in turn, learning outcomes. Due to restrictions imposed by the 2020 global 

pandemic, in this study, participants in each pair were recruited from the same 

household. Although we do not anticipate different results in dyads of strangers, as 

the cognitive mechanisms identified as potential contributors in supporting interactive 

learning should still hold, this will need to be experimentally tested. In line with this, it 

would be particularly interesting to study these questions in adolescence, a sensitive 

period for brain development, particularly for social cognition, and a time when 

relational social network are notably important for optimal development, mental 

health and wellbeing (Becht et al., 2021; Fuhrmann et al., 2015).  

In conclusion, we found that during trials with more joint attention, inter-brain 

synchrony over left dlPFC and left TPJ increases and this is linked to better learning.  

This may reflect how participant’s coordinating attending to the object drives both 
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brain activity and learning.  In contrast, during trials with more mutual gaze, we 

observed a pattern in the opposite direction, where learner-teacher were less 

synchronized over these brain regions.  This may reflect mutual gaze crowding-out 

joint attention (because the two states cannot occur simultaneously) or it could reflect 

moments of internal unshared integration of information. In addition, specifically when 

partners could not see each other, learning was higher as their brain synchrony over 

vPMC was lower. This possibly reflects unsuccessful prediction of novel verbal 

information about to-be-learnt items; or alternatively it may reflect greater self-

monitoring, as the teacher relies more on audio-feedback from their own speech when 

their view of the learner is obstructed, to achieve an effective contingent 

communication. Overall, we interpreted these results in line with previous work which 

identify dlPFC, TPJ and vPMC as the hubs for social brain networks and involved in 

shared-understanding, turn-taking, monitoring and mutual-prediction during 

naturalistic verbal communication. Importantly, these findings go beyond previous 

literature by showing the complex interplay between inter-personal brain synchrony 

and eye-gaze dynamics and how this supports learning in social contexts.    
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6. General Discussion 

The goal of this thesis has been that of studying what factors of social interaction 

support learning of conceptual knowledge. On the premise that learning most 

naturally occurs socially, it investigated different aspects of naturalistic social exchange 

to identify the optimal condition for learning. Crucially, it distinguishes learning via the 

social from learning about the social, and asks the question of how social interaction 

supports declarative processing of non-social material. In doing so, we conducted four 

studies which prioritised ecological validity: all experiments involved relatively 

unconstrained teacher-learner interaction, and learning material resembled 

documentary-like content. The first two experimental chapters showed a series of 

studies on how adults learn in online contexts, while the third and fourth experimental 

chapter focused on face-to-face interaction and used functional Near-Infrared 

Spectroscopy (fNIRS) hyperscanning and wavelet transform coherence (WTC) analysis 

to measure brain synchrony in naturalistic interactions. We first summarise results from 

each chapter. We then discuss these in a broader context, outlining some general 

conclusions this work has reached as well as recognising its limitations. We finally 

outline some outstanding questions for future research in this area.  

6.1 Summary of experimental chapters 

Study 1 presents two online experiments, where social contingency (i.e. being part of 

a live interaction vs observing a pre-recorded one) and social cues (i.e. teacher’s 

webcam on vs off vs showing a slide only) were manipulated. We asked participants to 

learn obscure items (e.g. exotic animals) either in live interaction with the teacher or 

from recorded videos. Results showed that learning in live interaction was associated 

with the best performance, and live social interaction with a full view of the teacher 

provided the optimal setting for learning, while seeing a slide had greater benefit 

during recorded sessions specifically. We suggest that while overall social interaction 

supports learning over less interactive contexts, social signals may specifically benefit 
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learning during contingent interaction, as these serve the function of facilitating the 

feed-forward and feed-back exchange between interlocutors. In contrast, when the 

learner is observing a social interaction which they are not part of, social signals lose 

their functional role, while increasing the cognitive demand of the task, resulting in 

less learning. This interpretation is consistent with studies showing that being an 

observer of a social interaction is more cognitively demanding than actively engaging 

in that interaction (Kourtis et al., 2020), when social cues may become distracting 

(Friedman & Förster, 2010; Kirkorian, 2016; Phillips et al., 2007). 

Study 2 replicates the live-learning advantage found in study 1, across two experiments 

and a large sample of adults with and without Autistic Spectrum Condition (ASC). 

Specifically, we asked participants to learned about obscure items (same as in Study 1) 

over zoom in three conditions: i) in live video-call with the teacher, ii) from a recorded 

video of a previous student-teacher interaction and iii) from a recorded video of the 

teacher alone. Results across both experiments and with three different teachers 

robustly confirmed that people learned better in live-video calls compared to both 

recorded conditions. Importantly, we found no difference in learning pattern between 

the NT and the ASC group. Mixed-linear effects model also revealed that enjoyment 

was the strongest predictor of learning. Both groups enjoyed learning significantly 

more in live interaction compared to learning from pre-recorded sessions, and 

reported similar levels of anxiety in all conditions. These findings advocate for a 

distinction between learning about the social versus learning via the social: while the 

former has been suggested to be atypical in ASC (Happé & Frith, 2014; Mundy & 

Newell, 2007), social interaction represents an effective medium through which 

learning can be boosted in both neurotypical and autistic people. Models of ASC 

suggesting dysfunctional social processes across social cognition should be revisited 

to consider social interaction not just as a puzzle to de-code, but rather a medium 

through which we experience the world around us (De Jaegher et al., 2010; Pfeiffer et 

al., 2014), which may support cognitive functioning across neuro-diverse populations.   
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Studies 3 and 4 aimed at identifying the effect of face-to-face social interaction on 

inter-subject neural synchrony and learning. Before looking at the complex interplay 

between social interaction, brain-to-brain dynamics and learning (Study 4), in study 3 

we first asked whether and how co-presence and conversation change people’s neural 

experience of the world. We invited pairs of familiar adults to co-watch two different 

episodes of the BBC DipDap series while we measured brain activity simultaneously 

from the two participants in each pair over frontal, temporal and parietal regions 

bilaterally. Compared to shuffled pseudo pairs (who had never seen each other and 

watched the same movie at different times), real pairs showed increased brain 

synchrony over left Temporo-Parietal Junction (TPJ) and reduced brain synchrony over 

left Superior Parietal Lobe (SPL). We interpreted these findings as reflecting 

complementary mechanisms by which people showed on one hand, in-synch brain 

activity in areas engaged in attunement and shared common-ground (i.e. TPJ, 

Cañigueral, Zhang, et al., 2021a; Jiang et al., 2015), and on the other hand de-coupled 

brain activity in areas recruited by internal cognitive processes (i.e. SPL, Golland et al., 

2007), including body self-consciousness and body-ownership (Blanke, 2012). In 

addition, we found that after a conversation on topics unrelated to the cartoon 

episodes, real pairs showed increased synchrony over right TPJ during subsequent 

novel movie co-watching, to a significantly greater extent than what observed in 

pseudo pairs. The right TPJ has been found to be associated with shared-

understanding of external reality (M. Nguyen et al., 2019; Salazar et al., 2021; Yeshurun 

et al., 2017). It may be that conversation with one another elicited more similar neural 

response between real partners by facilitating alignment of bodies and minds, whose 

effect extended to later co-watching (Garrod & Pickering, 2009; Richardson et al., 

2007). 

Study 4 asks whether teacher-student brain synchrony can be a marker of learning 

and, if so, how it is modulated by social signals such as eye-gaze behaviour. We asked 

participants to learn facts about a selection of obscure items from our previous studies 
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(study 1 and 2) on their own, before coming to the lab and teach those facts to their 

partner. As they engaged with each other, we measured their brain activity via fNIRS 

hyperscanning and video recorded their interaction. Findings reveal that learning was 

best predicted by a complex dynamic between neural responses and behavioural 

metrics, namely mutual gaze and joint attention. In particular, during instances of joint 

attention, brain synchrony over left dlPFC and left TPJ increases and this resulted in 

better learning, possibly reflecting participants attending to the task (Turnbull et al., 

2019) and to the partner (Doricchi et al., 2022; Stanley & Adolphs, 2013), respectively. 

In contrast, during mutual gaze, we observed that learner-teacher were less 

synchronized over these brain regions, potentially marking moments of unshared 

consolidation of information (Wohltjen & Wheatley, 2021). This may have been 

important to ensure a successful integration between internal ‘solo’ processes and 

external interactive processes, and in turn to achieve good learning. In addition, 

specifically when partners could not see each other, learning was higher when their 

brain synchrony was lower in left vPMC, an area involved in speech production, 

comprehension and also recently showed to process audio-feedback from one’s own 

speech (Ozker et al., 2022). It may be that specifically for verbal information, de-

coupling was linked to  better learning as – by definition – learning material is unknown 

(and therefore unpredictable). While the difficulty in prediction may have been 

somehow attenuated by other multi-modal cues available during face-to-face view 

(e.g. gestures, mouth movement etc., Y. Zhang et al., 2021), this may have been 

particularly hard during the obstructed view condition when verbal information was 

the only modality available. This study showed how brain synchrony during learner-

teacher interaction can be a good marker to predict learning outcomes, but can only 

be successfully interpreted with reference to behavioural metrics, in line with the 

mutual-prediction framework placing interactive brains within interactive bodies 

(Hamilton, 2020). 
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6.2 What can we conclude about the role of social interaction in 

learning? Strength and limitations of the present work 

Taken together, the present experimental work led to findings which advance the field 

at the intersection between social neuroscience and educational neuroscience with 

three main discoveries. First, social interaction supports adults learning of non-social 

knowledge. Second, social contingency – including mechanisms engaged during 

contingent interaction (e.g. joint attention) – is the strongest factor predicting the 

social learning advantage, while social cues may mediate and facilitate social-learning 

advantage in interactive contexts, but are not essential. Third, while our results are in 

line with previous work showing that social interaction mediates brain-synchrony, we 

showed that behavioural measures (e.g. joint attention) are more informative 

predictors of the quality of the social interaction (e.g. learning success in a learner-

teacher interaction) than brain measures (including inter-brains measures), especially 

when the brain is studied on its own without reference to behaviour. We discuss each 

of these points in turn. 

Our first and strongest conclusion is that social interaction supports adults learning of 

non-social knowledge. We went beyond existing literature in showing that this is the 

case i) not only for learning of social knowledge, as it has been well demonstrated by 

previous work (e.g. see Verga & Kotz, 2013), and ii) not only in developmental sensitive 

periods such as childhood (e.g. Kostyrka-Allchorne et al., 2019; Roseberry et al., 2009), 

but most specifically it extends to learning of non-social factual knowledge in adults. 

We demonstrated that over 4 experiments and almost 200 participants (chapter 2 and 

chapter 3), where we directly compared interactive learning to non-interactive 

learning. Importantly, we showed that social interaction may support learning over 

mechanisms that are intact even when the networks supporting social cognition may 

not entirely be: by replicating the interactive-learning advantage in a large group of 

autistic adults (chapter 3) – a population typically associated with social cognition 

atypicalities (Happé & Frith, 2014) – we highlighted how learning via social interaction 
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may engage mechanisms that are dissociable from mechanisms engaged during 

learning about the social world.  

We cannot be sure that mechanisms responsible for the interactive-learning advantage 

in autistic adults are the exact same mechanisms responsible for the effect in 

neurotypicals. However, the conclusion that social interaction supports learning via 

mechanisms that are independent from processing of social signals, at least partially, 

is supported by two main findings: first, we observed a within-group advantage (and 

no between-group difference), and second, this was correlated with greater enjoyment 

and equivalent level of anxiety compared to less-interactive contexts in both groups. 

It should be noted that all our conditions where somehow social (all presented at the 

very least the recorded voice of the teacher, i.e. a social agent, through which the 

material was delivered). Future studies should directly compare learning via social 

contexts to learning via fully non-social medium (e.g. reading solo).  

Nevertheless, the fact that all our conditions (across all our studies) were ‘social’ to a 

certain extent, allowed us to reach our second core conclusion: our effect can be more 

certainly attributed to the temporal contingency typical of real-world social interactions 

(Konvalinka et al., 2023; Redcay & Schilbach, 2019; Stanley & Adolphs, 2013), rather 

than the richness in social cues (e.g. voices, faces etc) that usually characterise social 

contexts. Our findings directly support this conclusion: in study 1 (chapter 2), social 

cues only interacted with social contingency, but did not show a main effect on 

learning; in study 2 (chapter 3), although learning from recorded videos was slightly 

better for videos with less social content (recorded teacher-alone condition > recorded 

teacher-student interaction), again this effect was marginal and only present for delay 

performance, and significantly less strong than the live-advantage effect; in study 4, 

we did not find any difference in learning performance when we compared full-face 

interaction to obstructed-view interaction.  
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Furthermore, some indirect evidence supporting the notion that social contingency 

characterises naturalistic social interaction (and its consequent benefit) above and 

beyond social cues per se, also comes from study 3: here we compared inter-personal 

neural dynamics in response to novel stimuli between real dyads and pseudo dyads. 

Note that all dyads (real and pseudo) were exposed to the same social environment, 

while only real dyads engaged in a real (contingent) interaction. We showed that inter-

brain synchrony were specifically modulated by real interaction with each other, rather 

than by simple exposure to non-contingent social signals (pseudo dyads).  

In line with our conclusion that social contingency plays a primary role in supporting 

mechanisms of naturalistic social interaction, we found that contingent behaviour can 

predict learning in interactive contexts better than neural measures, and may 

specifically mediate inter-subject neural dynamics (chapter 4). This leads to our third 

core conclusion: behavioural dynamics during naturalistic social interaction explain 

variability in learning above and beyond what neural measures on their own can do. 

This is in line with the recent paradigm shift towards studying brains within bodies, 

rather than brains isolated from the perceptual and sensory contexts of real-world 

experiences (De Jaegher et al., 2010; Hamilton, 2020). Our hyperscanning study on 

learning (chapter 4) provides strong evidence for this argument: we found that joint 

attention and mutual gaze were the strongest predictors of learning performance, and 

in turn modulated learner-teacher neural synchrony consistently over different brain 

regions. Specifically, we found that joint attention was associated with increased neural 

synchrony over areas typically part of the social brain network (TPJ and dlPFC, e.g. 

Kelsen et al., 2020) and facilitated learning, while mutual gaze was associated with less 

brain synchrony over the same regions, consistent with models of successful 

integration between internal and external interactive processes (Kajimura & Nomura, 

2016; Wohltjen & Wheatley, 2021).  

This work advances our understanding of naturalistic social learning. It also shows that 

– despite being challenging and resulting in complex multi-modal datasets – it is 
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possible to study interactive brains within interactive bodies during real-world social 

dynamics, without compromising the rigour necessary in scientific experimental 

investigation. However, future studies are needed to resolve some of the limitations of 

the present work: for example, a more fine-grained study of eye-gaze dynamics (e.g. 

using eye-tracking which are more precise than post-hoc video coding) should confirm 

our conclusions with regards to the role of joint attention and mutual gaze in 

modulating brain synchrony and supporting learning. Also, due to the 2020 global 

pandemic, our face-to-face hyperscanning studies (chapter 4 and 5) included familiar 

pairs. Future work should directly compare how different inter-personal relational 

dynamics affect the social learning mechanisms. In addition, future work should 

include a greater range of behavioural metrics, in order to fully define the profile of a 

successful social interaction and find biomarkers for best learning. This would also call 

for more sophisticated analysis tools including cross brain general linear models, 

Principal component analysis and Granger causality.  

Zooming out to incorporate the complexity while at the same time zooming in to 

increase the precision of each of the signals composing real-world social interaction is 

crucial to fully understand how people experience the world within themselves and 

with others.  In the next section, we set out some outstanding research questions for 

future work in social neuroscience and educational neuroscience.  

6.3 Future directions and outstanding questions 

The aim of this thesis was to study adult learning as it most naturally occurs, that is 

socially, and to understand what aspects of naturalistic social interaction best support 

acquisition of new knowledge. As it contributes to advancing our understanding of 

real-world social learning, this thesis also opens up future pressing questions in the 

field of both social neuroscience and educational neuroscience.  

The study of interactive learning cannot answer questions on how individual cognitive 

mechanisms work per se, unless research considers the individual agents alone and as 
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part of an integrated social dynamic where they learn from (and/or with) one another. 

Taking a second-person neuroscience approach (Hamilton, 2020; Redcay & Schilbach, 

2019) across all stages of the experimental work is particularly important as we are 

moving away from studying learning in isolation to study learning in social contexts: 

we must study interactive minds as they are found in the real world in the context of 

rich interactions, to fully understand interactive learning dynamics as they unfold 

(Shamay-Tsoory, 2021). We believe that this approach can give us a comprehensive 

understanding of what factors influence learning and its underlying cognitive 

mechanisms and neural markers.  

It is hard to separate individual components because live interaction cannot be easily 

deconstructed. Future work should aim to develop paradigms that are able to 

disentangle different contributions while also refrain from ‘de-constructing’ the social 

interaction phenomenon. In other words, the challenge would be that of ensuring that 

ecological validity co-exists with experimental rigour (Vigliocco et al., pre-print). 

Investigations that would disentangle the different potential mechanisms engaged in 

contingent social interaction (e.g. arousal, attention, reciprocity, active attunement etc) 

may be able to do so by using virtual reality, which allows for experimental 

manipulation of different aspects of interaction and therefore to test which of these 

are most important to learning (Pan & Hamilton, 2018). In addition, using robots may 

be a valuable tool to isolate social mechanisms specifically responsible for efficient 

information transfer in interactive contexts (Jung et al., 2013; Tanaka et al., 2007; 

Westlund et al., 2015), and may allow us to answer questions about how human-

human interaction differs from human-robot interaction.   

In addition, it is not clear how social interaction benefits learning longitudinally 

throughout our lives. In particular, the majority of work has been conducted in children. 

This thesis contributed to fill the gap by looking at adulthood. However, adolescence 

remains a largely unexplored age-group, about which little is known with regards to 

the intersection between social interaction and learning (Blakemore, 2010). This would 
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be important as adolescence is a sensitive period for the development of the social 

brain (Becht et al., 2021; Fuhrmann et al., 2015), as well as an age where peer-

relationship and social networks are notoriously important. Also, very little is known 

about how we learn in interaction in ways that do not involve verbal communication, 

for example during large in-person classes where, although there is co-presence, there 

is no or very little active exchange. Studies addressing these questions are needed in 

order to assess to what extent the benefit of social interaction in learning is global and 

important throughout our life, or is content-dependent and age-sensitive. 

6.4 Final remarks 

In conclusion, this thesis investigated the role of social interaction in knowledge-based 

learning. It prioritised ecological validity and multi-modal paradigms to study learner-

teacher interaction as it most naturally occurs. It included investigation of social 

learning over both online and face-to-face contexts, and looked at both behavioural 

measures and inter-personal neural dynamics. Findings revealed the strong beneficial 

role of social interaction in human acquisition of new knowledge, which extends to 

long-term learning and to neuro-diverse populations such as people with autistic 

spectrum condition (ASC). In addition, it provides novel insights into the complex 

dynamic between behaviour and neural signals in predicting learning, advocating for 

a study of interactive brains within interactive bodies, and pointing at joint attention 

as one of the core mechanisms through which we share information effectively to 

consolidate knowledge. This may be fundamental for humans as they do not exist in a 

vacuum, rather in a reality that it is shared, and therefore should also be interpreted, 

understood and co-constructed with others.  
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