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Three-dimensional (3D) printing is emerging as a transformative technology for biomedical engineering. 
The 3D printed product can be patient-specific by allowing customizability and direct control of the 
architecture. The trial-and-error approach currently used for developing the composition of printable inks 
is time- and resource-consuming due to the increasing number of variables requiring expert knowledge. 
Artificial intelligence has the potential to reshape the ink development process by forming a predictive 
model for printability from experimental data. In this paper, we constructed machine learning (ML) 
algorithms including decision tree, random forest (RF), and deep learning (DL) to predict the printability 
of biomaterials. A total of 210 formulations including 16 different bioactive and smart materials and 4 
solvents were 3D printed, and their printability was assessed. All ML methods were able to learn and predict 
the printability of a variety of inks based on their biomaterial formulations. In particular, the RF algorithm 
has achieved the highest accuracy (88.1%), precision (90.6%), and F1 score (87.0%), indicating the best 
overall performance out of the 3 algorithms, while DL has the highest recall (87.3%). Furthermore, the 
ML algorithms have predicted the printability window of biomaterials to guide the ink development. 
The printability map generated with DL has finer granularity than other algorithms. ML has proven to 
be an effective and novel strategy for developing biomaterial formulations with desired 3D printability 
for biomedical engineering applications.

Introduction

Using three-dimensional (3D) printing for biomedical appli-
cations has gained popularity in recent years [1]. It is capable 
of fabricating complex implants and allows their architecture 
to be directly customized to be specific to each patient and 
clinical condition [2–4]. Among 3D printing techniques, direct 
ink writing (DIW), which involves directly extruding relatively 
viscous material through a moving nozzle, has been widely 
adopted in the biomedical field [5–8]. It operates at room tem-
perature, allowing the extrusion of a broad selection of bioac-
tive and smart materials and cells for tissue engineering [9], 
drug delivery [10], 4D printing [11], and bioprinting [12].

According to the solvent used, there are 2 types of polymeric 
inks for DIW, aqueous hydrogels and polymer/organic solvent 
mixtures. Hydrogel polymer networks swell extensively in water 
and contain several features resembling those of a natural extra-
cellular matrix (ECM), which are desirable for the adhesion 
and growth of cells [13,14]. Hydrogels are widely used for soft 
tissue engineering, allowing not only the diffusion of nutrients 
and cellular waste products but also the encapsulation of cells 
to make bioinks. The printing bioinks is then termed bioprint-
ing [2,15–18]. Hydrogels made from natural polymers, such as 
alginate, collagen, and gelatin, have the advantage of resembling 
native ECM chemically and structurally [19]. On the other 

hand, hydrogels made from synthetic polymers including 
Pluronic F127 (F), polyethylene oxide, and polyvinyl alcohol 
possess the advantages of reproducibility and tailorability of 
their chemistry and properties [20]. In particular, Pluronic 
F127 has been used as a smart hydrogel for 3D bioprinting [21], 
injectable drug delivery [22], and 4D printing [23], due to its 
thermo-gelling ability, high biocompatibility, and distinctive 
shear-thinning property [24]. Polymer/organic solvent systems 
are composed of polymers, often insoluble in water, dissolved 
in organic solvents (e.g., acetone and dichloromethane [DCM]). 
After being printed, the organic solvent evaporates rapidly, 
leaving behind a solidified polymer-based structure. A Food 
and Drug Administration-approved polymer, polycaprolactone 
(PCL), has been widely used for 3D printing bone scaffolds due 
to its high biocompatibility, toughness, and controlled biodeg-
radation rate [6,25,26]. It has also been used to co-print with 
hydrogels to provide a mechanical framework [27]. In this 
study, aqueous hydrogel inks are referred to as hydrogel-based 
inks, while polymer organic solvent inks are termed polymer- 
based inks.

Functional bioactive fillers can be added to both hydrogel- 
based and polymer-based inks to improve the viscosity and 
printability of the inks or the bioactivity and stiffness of the 
3D printed structure [28]. In particular, nanomaterials are 
considered highly efficient fillers in improving functionality 
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including printability due to their high surface area and 
small size [29–31]. For instance, Laponite nanoclay (LP) is 
a widely used bioactive viscosity enhancer for bioinks in 
bioprinting and hydroxyapatite nanoparticles (nHA) are a 
well-known bioactive filler for bone tissue engineering [32,33]. 
Bentonite nanoclay, on the other hand, has been demonstrated 
to be an effective drug delivery system due to its high surface 
area-to-volume ratio.

Apart from the compatible biological properties, printability 
is also a fundamental property of an ink for 3D printing. The 
architecture of the 3D printed product greatly influences its 
integration with host tissues and function [34]. Murphy and 
Atala [2] defined printability as the ability of an ink to be depos-
ited with the desired spatial and temporal control, and Ribeiro 
et al. [35] defined it as the possibility to be extruded and dis-
pensed with a satisfactory degree of shape fidelity (SF). While 
there are different opinions in the definition of printability, it 
is well-received that SF is a key aspect of printability and is 
evaluated as a means of assessing printability [35–37]. Several 
methods have been raised to assess the printability of hydrogels 
qualitatively [38,39] or quantitatively [35,40], but there is no 
consensus on the quantitative assessment [41]. For polymer- 
based inks, few studies focus on printability quantification. 
Therefore, the printability development of inks has been a major 
target for 3D printing in biomedical applications. Currently, 
the printability development process includes several steps: 
material selection from a broad range of choices based on 
the applications, ink formulation with a range of concentra-
tions, rheological characterization of inks, and printability 
tests of the formulations [41]. These empirical processes require 
expert knowledge in each field and are time- and resource- 
consuming, thus hindering the development of optimal 3D 
printing inks for biomedical engineering. This is a complex 
challenge, and in order to address these problems, a new 
approach is required [42].

Machine learning (ML) is a branch of artificial intelligence 
that is able to fit predictive models to data or discover patterns 
within it. It is particularly useful for automating data analysis 
in a time-efficient and reproducible manner, especially for data 
that are too large and complex for human analysis [43]. ML 
methods can be classified into 2 main approaches: supervised 
learning and unsupervised learning [44]. Supervised learning 
methods are currently the most widely used [45]. They are 
trained on labeled data to establish the function that connects 
input variables (x) to output variables (y) and then make pre-
dictions about unlabeled examples. In the biomedical field, ML 
has been successfully used for medical image analysis and diag-
nosis [46–48], gene recognition in a DNA sequence [49], pro-
tein structures prediction [50,51], biophysical cue screening 
[52], and data analysis for organ-on-chips [53,54]. Despite the 
great potential of ML, the black box nature of ML algorithms 
still hinders its interpretability and thus its use for interdisci-
plinary research. Consequently, the use of ML for developing 
3D printable biomaterials is underrepresented. Therefore, there 
is an urgent need to address this limitation and utilize the 
power of ML in processing printability data and developing 3D 
printing biomaterials for biomedical applications.

Although ML has demonstrated its capability to transform 
the analysis of large datasets, only a few studies applied ML 
to the development of biomaterials for 3D printing. Elbadawi 
et al. [55] conducted an early and innovative study using ML 
algorithms to predict the printability of polymer filaments 

from fused deposition modeling technique for drug delivery. 
However, in this study, printability is defined as the ability to 
extrude from the nozzle without printing into a 3D shape, while 
for biomedical applications, SF of printed products is a funda-
mental aspect of printability as it influences the integration and 
function of the products. Nadernezhad and Groll [56] reported 
a pioneering work using random forest (RF) algorithm for pre-
dicting printability with rheological properties and revealed a 
general understanding of how rheology influences printability. 
However, it also has some limitations. This study only used one 
algorithm, RF, and the data only contained one hydrogel mate-
rial, hyaluronic acid. The performance of ML for evaluating 
biomaterials with different properties for DIW remains to be 
ascertained. In addition, various rheological tests are needed 
to predict printability in the study, which can be an empirical 
process. Therefore, adopting this interdisciplinary approach of 
using ML for processing of printability data can accelerate the 
development of 3D printable biomaterials.

To the best of our knowledge, our study is the first to use 
ML techniques to predict printable biomaterial ink formula-
tions for 3D structures. A total of 210 biomaterial formulations 
were 3D printed with DIW technique, and the printability of 
each formulation was classified (yes/no) based on the SF of the 
printed structures. The biomaterials cover both natural and 
synthetic polymers with a range of molecular weights, as well 
as fillers that can provide a range of functionalities such as 
bioactivity, sustained drug release, and rheological modifica-
tion. ML algorithms including decision tree (DT), RF, and deep 
learning (DL) have predicted the printability using the formu-
lations with a train/test ratio of 7:3 with an accuracy of >80%. 
Furthermore, the printability window of ink formulations was 
built to guide the development of printable inks. This study 
paves the way for unleashing ML algorithms in developing 
printable biomaterials for biomedical applications.

Results and Discussion

Printability assessment
A total of 210 biomaterial formulations were 3D printed into 
4-layer 0°/90° scaffold structures, and their printability was 
defined based on the measured SF of the printed structures 
(detailed in Materials and Methods). The printability assess-
ment procedure is shown in Fig. 1A and B with examples of 
F127/LP inks for hydrogel-based inks and PCL/nHA inks for 
polymer-based inks. During extrusion, inks with low viscosity 
form wider openings when exiting the nozzle or even droplets 
instead of filaments (e.g., 20F and 30PCL). This results from 
the viscoelastic behavior of the inks and the expansion of 
the inks exiting the nozzle is known as the Barus effect [57]. 
Additionally, the lower resistance makes the structures more 
prone to post-printing deformation including the sagging and 
fusion of the filaments driven by gravity and capillary force 
respectively. This further makes filaments wider and lower, 
limiting the scalability of the inks in a layer-by-layer manner. 
The addition of fillers can enhance the viscosity of inks (e.g., 
15F/8LP and PCL/20nHA) and their resistance to deformation, 
which minimizes the Barus effect to extrude into smooth fila-
ments. The printed structures can better maintain the desig-
nated shape and also have higher SF, i.e., up to 91% and 88% 
for 15F/8LP and PCL/20nHA inks, respectively. This facilitates 
the building up of the structures in a layer-by-layer manner, 
thus improving the scalability. If the viscosity of the ink is too 
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high, its brittleness can cause irregular morphology of the 
deposited filaments (8LP), resulting in fractured filaments or 
even nozzle clogging (PCL/30nHA).

A variety of biomaterials and solvents were used in this study 
for ink formulation for 3D printing and printability assessment 
to generate printability data for training and testing the ML 
algorithms. In the printability data, the ink formulations are 
the input, and the printability of the formulations is the output. 
A summary of the input and output in the printability data is 
shown in Fig. 2. All biomaterials have appeared 8 times or more 
in the data and were formulated with a range of concentrations 
for effectively training the algorithms to recognize the under-
lying pattern in printability. The ratio between the 2 ink systems 
and the 2 output results is 104:106 and 98:112, respectively. The 
data are relatively balanced, which can help prevent bias from 
the algorithms. The main organic solvent used is DCM. The 
number of usage for polymeric materials is more than 4 times 
than that of fillers because a polymer matrix is used in every 
ink, whereas fillers are used to add functionality (e.g., enhanc-
ing viscosity and bioactivity).

Printability prediction with ML
The printability data were split into a training dataset and a 
testing dataset with a ratio of 7:3. The algorithms were trained 
using the training dataset and subsequently tested on the testing 
dataset unseen to the model to assess their generalization ability 
[58,59]. The key hyperparameters of the algorithms were tuned 
to generate the algorithms with varying degrees of complexity 
and their effect on the prediction performance of the ML mod-
els was examined to optimize the algorithms.

The DT algorithm uses a DT classifier composed of nodes 
and branches that lead to other nodes and ultimately a leaf 
(terminal node) where classification is assigned. Part of the DT 
is shown in Fig. S1. The maximum number of features (MNF) 
to consider for splitting branches and the maximum number 
of leaves (MNL) influence the prediction accuracy as shown in 
Fig. 3A. As the MNL increases, accuracy increases until con-
vergence due to better fitting to the data. As the MNF increases, 
the convergence was reached with lower MNL and the accuracy 
at convergence increases. With the MNF set at 20, DT reaches 
the highest accuracy of 80.5% at an MNL of 20 or above. The 
accuracy of 80.5% also remains constant with a further increase 
of MNL above 20 indicating that the DT has been completely 
developed and ceased expanding further.

Fig. 1. A summary of 3D printing results of (A) hydrogel-based F127/LP inks and (B) 
polymer-based PCL/nHA inks with DCM as solvent. The number in the ink name refers 
to wt% for F127/LP inks and w/v% for PCL/nHA inks. The Barus effect (expansion 
of the inks exiting the nozzle) was observed at low-viscosity inks. The viscosity of 
inks increases with the concentrations of fillers LP and nHA; at too high viscosity, 
inks were unextrudable or clogged nozzle, and the printed filaments were prone to 
fracture. A higher SF of 3D printed filaments and 4-layer 0°/90° scaffold structure 
was achieved for 15F/8LP and PCL/20nHA inks.
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The RF algorithm consists of an ensemble of DTs and the 
MNF for each tree was set as 20. The MNL in each tree and the 
number of DTs in RF influence its accuracy, as shown in Fig. 
3B. The accuracy of RF with a single tree (73% to 77.6%) is 
lower than that of DT (80.5%) as the training data for a single 
tree omit, on average, 36.8% of samples in the whole training 
data from the bootstrap sampling. However, as the number of 
trees increases, the accuracy of RF increases until convergence 
is reached due to the inclusion of diverse DTs trained with 
different bootstrap data. This can enhance the complexity of 
the predictive model, allowing it to learn more effectively from 
the complex training data. When the number of trees reaches 
5 and the MLN is 20 or above, the accuracy of RF (80.7% to 82.8%) 
surpasses DT (80.5%). It is noteworthy that when the MNL in 
each tree is as low as 10, as the number of trees increases past 
the convergence, the accuracy of the RF model decreases to an 
extent. This is likely due to overfitting when the complex model 
fits well to the training dataset but does not generalize well to 
the testing dataset. When MNL is 15 or above, accuracy does 
not decrease as the number of trees increases beyond conver-
gence. The reason is that a higher MNL allows for more ade-
quately developed DTs with reduced error in fitting the training 
dataset. Consequently, the RF model is able to generate large 
numbers of DTs with high diversity using the bootstrap sam-
pling method while inducing less error to mitigate the issue 
of overfitting. Due to the random nature of the RF algorithm, 
the accuracy changes within a boundary with the increase in 
the number of trees after reaching convergence. The accuracy 
is highest (88.1%) at 180 DTs with the MNF for splitting in DTs 
set at 25.

The DL algorithm consists of artificial neural networks (ANNs) 
with an input layer, hidden layers, and an output layer. Both 
the number of nodes in hidden layers and the number of hid-
den layers influence the performance of the algorithm, as shown 
in Fig. 3C. As the number of nodes per layer increases, the 
accuracy increases up to a threshold number of nodes: 17 nodes 
for a 1-layer structure, 12 nodes for a 2-layer structure, and 7 
nodes for a 3-layer structure. Below this threshold, the algo-
rithm forms a more complex model with the inclusion of more 
nodes to learn the training data. Increasing the number of 
nodes above the threshold decreases accuracy, which is likely 
due to overfitting. The increase in the number of hidden layers 
lowers the threshold number of nodes in each layer for conver-
gence as the total node number and complexity of the network 

structure increase. The accuracy is highest (82.2%) with 3 hid-
den layers, with 7 nodes in each layer.

The evaluation metrics including accuracy, precision, recall, 
and F1 score (as detailed in Materials and Methods) were used 
to assess the DT, RF, and DL algorithms with the optimized 
setup as shown in Fig. 4. All 3 algorithms achieved >80% accu-
racy, with RF having the highest accuracy (88.1%). For predict-
ing the printable class, RF has the highest precision (90.6%), 
confirming that the predicted printable inks have the highest 
chance to be useful, which could save researchers’ precious time 
and resources. On the other hand, although DL has lower pre-
cision than RF, it has the highest recall (87.3%), meaning that 
it has the best chance of predicting printable inks as printable, 
decreasing the chance of losing printable formulations. This 
could be very useful for ink development when the pool of print-
able inks is limited. RF also has the highest F1 score (87.0%), 
indicating that it had the overall best performance in precision 
and recall when predicting printable inks. DL has the lowest 
difference between precision and recall, indicating a balanced 
performance. There exists a trade-off between precision, which 
enhances the efficiency by ensuring the printability of inks 
predicted as printable, and recall, which minimizes the risk of 
omitting inks that are printable.

The evaluating metrics of the ML algorithms for predicting 
the unprintable class are shown in Fig. 4C. DL demonstrates 
the highest precision (87.2%), meaning that the inks predicted 
as unprintable are the most likely to be unusable. RF has the 
highest recall (92.1%), indicating that it has the highest cover-
age for screening out unprintable inks. RF also has the highest 
F1 score (89.0%), indicating that it had the best overall perfor-
mance predicting unprintable inks.

RF has shown to have the overall best performance predict-
ing printability, whereas DL has a higher recall when predicting 
the original dataset, and the highest precision when predicting 
the inverse dataset. Hence, the choice of algorithms for select-
ing inks for future ink development should be subject to the 
evaluation of trade-offs specific to the situation.

Printability window prediction with ML
After training and tuning, the ML algorithms are capable of 
predicting the printability window of hydrogel-based and 
polymer-based inks to guide ink formulations. All 210 formu-
lations were used as training data for the optimized ML algo-
rithms. A total of 45,511 and 350,001 testing formulations were 
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used for F127/LP inks and PCL/nHA inks, respectively. The pre-
dicted printability maps of F127/LP hydrogel nanocomposites 
and PCL/nHA polymer nanocomposites are shown in Fig. 5.

For the predicted printability maps of F127/LP inks, there 
is a threshold concentration of F127 in terms of a lower limit 
for formulating printable inks (8.0 wt% for DT, 7.6 wt% for RF, 
and 9.82 wt% for DL) as shown in Fig. 5A to C. All inks below 
the threshold value are predicted as unprintable. Above the 
threshold value, when the concentration of either F127 or 
Laponite increases, the printable range of the other material 
tends to increase. This threshold concentration corresponds to 
the formulation that meets the lowest rheological/printability 
requirements to be considered as printable in practice. Inks 
below the threshold F127 concentrations either do not have 
enough stiffness to retain the structure post-printing (e.g., 20F) 
or are too brittle from high LP concentrations but lack F127 
hydrogel matrix to provide ductility and suffer from filament 
fractures (e.g., 8LP) as shown in Fig. 1A.

In the printability maps of F127/LP inks predicted by DT 
and RF (Fig. 5A and B), the boundary regarding LP concen-
trations consists of 2 concentrations. They are 4.0 wt% and 
6.0 wt% for DT and 3.1 wt% and 5.1 wt% for RF, respectively. 
The possible reason is that there are 2 LP concentrations on the 
boundary in the training data and they appear in the questions 
in the trees in DT and RF algorithms that split the subnodes. 
The inks were then classified according to these concentrations. 
For RF, as a number of trees are used, the 2 boundary concen-
trations are averaged to 3.1 wt% and 5.1 wt%. The boundary 
regarding F127 concentrations consists of 3 concentrations for 
both DT and RF. They are 8.0 wt%, 18.0 wt%, and 23.0 wt% for 
DT and 27.5 wt%, 7.6%, and 22.5 wt% for RF, which are differ-
ent from the printability data, proving the extrapolation capa-
bility of the algorithms. For the printability map of F127/LP 
inks predicted by DL, the boundary of the printability window 
includes all 101 LP concentrations (0.0 to 10.0 wt%) demonstrating 

a finer granularity (Fig. 5C). The reason is that the output of 
the hidden layers is the possibility (0 to 1) of the input being 
printable, which is a continuous variable. This predicted pos-
sibility is then transformed into a binary classification (thresh-
old as 0.5) in the output layer as the final output of the algorithm. 
The continuity of the predicted possibility contributes to the 
finer granularity of the predicted printability window. This not 
only proves the ability of DL to predict formulations outside 
the data range, but also demonstrates the higher flexibility of 
the DL model compared to DT and RF.

The printability maps of PCL/nHA inks predicted by DT 
and RF (Fig. 5D and E) are similar due to their similar working 
principles and a relatively small amount of data of PCL/nHA 
inks. The printability region predicted by RF has an extra tran-
sition at 40 w/v% PCL compared to DT, which is likely due to 
the diversity resulting from the number of trees in RF. The 
printability map predicted by DL has a lower granularity and 
a smoother transition, which is also observed for F127/LP inks. 
In addition, the printable region has extended further from the 
printable inks in the training data to the 0 w/v% PCL concen-
tration region demonstrating enhanced extrapolation com-
pared to DT and RF. This allows prediction on inks with a 
higher difference in concentration compared to the training 
data. This also results in the higher number of inks predicted 
as printable and is likely the reason that DL has a higher recall 
for predicting printability.

As mentioned previously, in terms of the prediction perfor-
mance between the algorithms, RF has shown better perfor-
mance than DT while there is a trade-off between higher 
precision (90.6%) and accuracy (88.1%) of RF and higher recall 
(87.3%) and better extrapolation of DL. Hence, when develop-
ing biomaterial formulations, researchers can compare the 
results from the printability maps generated by RF and DL. 
Formulations close to the central area of overlapped printable 
regions predicted by RF and DL have the highest likelihood to 
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be printable. Therefore, they can be recommended for further 
ink development as they are likely to require less time and 
resources for trial-and-error process. Formulations in the 
unprintable regions predicted by both RF and DL are to be 
avoided. Formulations at the edge of the printable regions or 
within one printable region but outside the other are likely close 
to the threshold of being printable. These formulations can be 
favorable for certain applications. For example, hydrogel inks 
toward the lower limit of printability may not be suitable for 
printing scalable porous scaffold which requires high SF, but 
can be valuable for 3D printing wound dressing applications 
with lower requirements on SF. PCL/nHA inks with a high 
concentration range may have a higher chance of nozzle clog-
ging; they can be developed to print scaffold structures that 
require high SF.

The printability maps generated by the ML algorithms were 
learned from a small number of inks to save precious time and 
resources for researchers. The physical meaning of different 
regions of the printability map was also discussed. On the other 
hand, the small amount of data may limit the range and accu-
racy of the printability map. For example, for F127/LP hydrogel 
inks, high concentrations of hydrogel nanocomposites (top 
right of printability map) could not be formulated into a homo-
geneous mixture due to their high viscosity. Hence, there is no 
upper limit for the printability map of F127/LP, but it does not 
necessarily mean that inks above the 40 wt% F127 and 10 wt% 
LP range are printable. For PCL/nHA inks, the ML algorithms 
have successfully predicted the upper limit as the data contain 
inks with concentrations too high to extrude. However, the top 
left region of the printability map to low PCL w/v% and high 

nHA remains to be explored for applications of 3D printing 
bone implants with high mineral content for bioactivity and 
stiffness. Overall, the ML algorithms have shown great potential 
to guide ink formulation in exploring the printability window. 
Data from future experiments can also be used as input to fur-
ther improve the ML models forming a reinforcing circle.

Conclusion

In this study, 210 ink formulations made from 16 biomaterials 
were 3D printed and their printability was assessed. The ML 
algorithms (DT, RF, and DL) have successfully predicted the 
printability of biomaterials using their formulations. All 3 algo-
rithms have achieved >80% accuracy while RF has achieved 
the highest accuracy (88.1%), precision (90.6%), and F1 score 
(87.0%), indicating the best overall performance. DL algorithm 
has the highest recall (87.3%). Furthermore, the ML algorithms 
have successfully predicted the printability map of ink formu-
lations. In particular, the DL algorithm provides finer granu-
larity and enhanced extrapolation for the predicted printability 
window. The ML algorithms developed in this study have 
been shown to be a powerful tool to accelerate ink develop-
ment by screening out unprintable formulations and selecting 
printable formulations for targeted applications. The working 
principles and tuning of the ML algorithms in an interdisci-
plinary context were elucidated to unravel the “black box” of 
the ML algorithms. This study sheds light on ML for researchers 
to realize its potential for advancements in biomaterial ink 
development.

Fig. 5. Printability map of both hydrogel-based and polymer-based inks predicted by ML algorithms. (A to C) The printability map of F127/LP hydrogel nanocomposites predicted 
by DT, RF, and DL, respectively. (D to F) The printability map of PCL/nHA in DCM polymer nanocomposite inks predicted with DT, RF, and DL, respectively. The green triangles 
and red crosses mark the printable and unprintable formulations, respectively, in the training data. The green and red areas are the predicted printable and unprintable regions, 
respectively, mapped from the testing results.
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Materials and Methods

Ink preparation for 3D printing
In this study, the data were all accumulated from wet experi-
ments conducted in the laboratory with controlled parameters 
to ensure the reliability and consistency of the data used in this 
study. For all the polymeric inks used in this study, aqueous 
hydrogel inks are referred to as hydrogel-based inks, while pol-
ymer organic solvent inks are termed polymer-based inks. The 
materials including polymers, fillers, and solvents used to pre-
pare the inks were either purchased from different suppliers or 
synthesized in the laboratory. They are listed in Table S1. The 
different physical and chemical properties of the solvents used 
are listed in Table S2. The criteria for material selection are also 
included in the Supplementary Materials.

The biomaterials were formulated with a range of concen-
trations to present the underlying pattern between ink formu-
lation and printability for training algorithms effectively. To 
make hydrogel-based inks, dry hydrogel powders were mixed 
with de-ionized water under magnetic stirring (200 to 700 rev-
olutions per minute [rpm]) for at least 2 h. All hydrogel-based 
inks were stored for at least 1 day before further tests to allow 
equilibration. To make polymer-based inks, polymers were dis-
solved in organic solvents with magnetic stirring (50 to 500 rpm) 
for at least 2 h. When functional fillers were used, they were 
mixed with solvents under magnetic stirring (700 rpm) to form 
a homogeneous mixture prior to the addition of hydrogels/
polymers. All inks were centrifuged (2,000 rpm) for 3 min to 
remove air bubbles.

3D printing process
All 3D printing processes were operated with a DIW printer 
that was modified from a commercial FDM printer (Prusa i3). 
The original thermoplastic extruder of the FDM printer was 
replaced by a custom-made syringe pump extruder allowing 
direct extrusion of viscous inks. The nozzle diameter was 0.4 mm, 
the layer thickness was 0.4 mm, and the print speed was 10 mm/s. 
Room temperature (20 °C) was used for printing all other inks. 
The designed printing geometry is a 0°/90° lattice scaffold with 
a filament width of 0.4 mm, a fill gap of 0.8 mm, and a side 
length of 12 mm. Each ink was 3D printed into the 0°/90° scaf-
folds with 4 layers.

Printability assessment
To assess the printability of biomaterial formulations, a total 
of 210 formulations with 2 ink systems (hydrogel-based and 
polymer-based inks) were 3D printed into 4-layer lattice scaf-
fold structures, and their SF was evaluated. The images of the 
scaffolds were taken with a microscope (Leica DM 500). For 
hydrogel-based inks, the printed structure was assessed imme-
diately after printing, while for polymer-based inks, the printed 
structure was assessed after solvent evaporation was complete. 
The printability of an ink formulation is determined by the SF 
of the 3D printed structure. To quantitatively assess the SF, this 
study incorporates and combines 2 important parameters used 
in other studies to calculate printability, the printing accuracy 
(PA) [60] and the printability index (Pr) [40], which are calcu-
lated as follows:

where Am refers to the measured pore area, Ad is the designated 
pore area, and L refers to the perimeter of the pore. While PA 
calculates how the pore area is retained regardless of the pore 
shape, Pr assesses how the pore shape resembles a square (des-
ignated shape), regardless of how pore area deviates from the 
designated value. In this study, the SF combines these 2 param-
eters and is calculated as their harmonic mean:

SF evaluates how the 3D printed structure maintains both area 
and shape of pores to determine the printability of the inks. An 
SF higher than 35% was considered printable. An example of 
the printability data matrix is shown in Table S2. The dataset 
consists of 20 input features, including 16 biomaterials and 4 
solvents. There is one output: printability (yes or no) in the 
dataset.

ML algorithms
In this study, DT, RF, and DL algorithms were developed in 
Python v3.8.8 to predict the printability of an ink. RF was devel-
oped using the Scikit-learn package and DL was developed 
using the Keras package. The working principle of the algo-
rithms is shown in Fig. 6. The dataset is split into training data-
set X, and testing dataset (holdout set) Y in a ratio of 7:3. The 
algorithms were trained using the training dataset and subse-
quently tested on the testing dataset, unseen to the model, to 
assess their generalization ability [58,59]. During testing, the 
printability of the biomaterial formulations in the testing data-
set was predicted using the trained ML models and the predic-
tion results were assessed. The complexity of ML models is an 
important aspect influencing the learning capability and, in 
turn, the generalization ability of the algorithms [61]. Hence, 
the key hyperparameters of the algorithms were tuned to 
generate the algorithms with varying degrees of complexity, 
and their effect on the prediction performance of the ML 
models was examined. The optimal configurations of ML 
models were then determined through the investigation of the 
complex interplay between algorithmic complexity and model 
performance.

Decision tree
The DT algorithm has played a major role in data classification, 
due to its simplicity and effectiveness in aggregating diverse 
types of data to make accurate predictions [62,63]. A DT con-
tains nodes and branches that lead to other nodes. An item is 
classified by a DT by following the path from the top node 
(root) to one of the bottom nodes (leaf) where its classification 
is assigned. There is a feature-related question in each node to 
determine which branch the item should follow. The Gini index 
is used to measure the impurity of nodes.

where c is the number of classes (2 in this study) and Pi are the 
fraction of the items in the classes. The effect of the MNF to 
consider for splitting the branches and the MNL in the tree on 
the performance of DT was studied.

(1)PA =

(

1 −

||Am − Ad
|
|

Ad

)

× 100%

(2)Pr =
L2

16Am

(3)SF = 2 ×

(
PA × Pr

PA + Pr

)

× 100%

(4)Gini = 1 −
∑c

i=1
P
2
i
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Random forest
RF consists of an ensemble of DTs each trained with data res-
ampled from the training data X with the bootstrap method: 
samples are randomly chosen to reach the same size with 
replacement (i.e., the same sample can be chosen multiple 
times). On average, 63.2% of training data are chosen to train 
while the other 36.8% are omitted [64]. Such randomization 
enhances the diversity of DTs and reduces the chance of over-
fitting [62]. For predicting printability, the final prediction was 
determined by a majority vote from the DTs. Each tree was 
trained by data randomly resampled from the training data of 
147 formulations (70% of total data) with replacements. The 

effect of the MNL in each DT and the number of DTs in the RF 
algorithm on its performance was studied.

Deep learning
DL is designed using numerous layers of ANNs, each of which 
provides a different interpretation of the data that has been fed 
to them [65,66]. ANN is an ML algorithm inspired by biological 
neural networks. It consists of interconnected computational 
units named artificial neurons that imitate the biological neu-
rons of the human brain [67]. ANNs consist of one input layer, 
multiple hidden layers, and one output layer. The input layer 
receives input data (biomaterial formulations or printability 
profiles) and transfers a processed value to the next hidden 
layer. The hidden layers are considered as the computational 
engine. Neurons in the hidden layer receive input values from 
other neurons in the previous layer, combine them with weights, 
summate them together with a bias before applying an activa-
tion function, and lastly outputs the resultant value [65]. The 
output layer is the last layer that transforms the information 
received from the hidden layer into outputs [68].

For predicting printability, the input layer consists of 20 
nodes, each assigned to an input feature. There is one node in 
the output layer for outputting printability (yes/no). The batch 
size is the number of items passing through the model in one 
batch during training, which was set as 16. Epoch is the process 
of passing a batch of items through the neural networks and 
running a backpropagation (calculating an error and updating 
the weights accordingly). The epoch size was set as 500. The 
batch size and epoch number were set manually from prelim-
inary tests. Higher batch size increased testing speed but 
reduced accuracy. The epoch number was set as a sufficient 
number for the neural networks to reach convergence, that is, 
any further increase did not result in higher performance but 
reduced testing speed. The algorithm was tested with a range 
of node numbers in hidden layers and a range of hidden layer 
numbers in order to research their influence and optimize the 
algorithm.

Evaluation metrics
After training the ML algorithms with the training dataset, they 
were tested with an unseen testing dataset to assess their gen-
eralization ability. The prediction results were summarized in 
a confusion matrix as compared to the actual classifications 
(Fig. 7). There are 2 output classes, printable and unprintable. 
For assessing the prediction on printable inks, the printable 
class is considered as the positive class in the confusion matrix 
(Fig. 7A), and for assessing the prediction on unprintable 
inks, the unprintable class is considered as the positive class 
(Fig. 7B).

The 4 values in the confusion matrix were then used to cal-
culate evaluation metrics including accuracy, precision, recall, 
and F1 score to assess the prediction performance of the ML 
algorithms [69]. Accuracy is calculated as the percentage of 
correctly predicted cases among all predictions. Precision is 
the ratio between correctly predicted positive cases among all 
cases predicted as positive. Recall refers to the percentage of 
correctly predicted positive cases among all positive cases. F1 
score is a weighted average between precision and recall, which 
provides a balanced measure of the performance of the ML 
algorithms in predicting positive cases. These parameters are 
calculated as below:

Fig. 6. The working principles of the machine learning algorithms including DT, RF, and 
DL. (A) Example of a dataset of printability of hydrogel formulations. Each item (ink) is 
associated with several features (hydrogel type/name) and one output (printability). 
Schematics of the internal structures of machine learning algorithms include (B) DT, 
(C) RF, and (D) DL after learning from the dataset.
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where TP are true positives, FP are false positives, and FN are 
false negatives.

Precision, recall, and F1 score focus on evaluating the per-
formance of the algorithms in predicting positive cases as they 
are all proportional to true positives. Hence, in this study, they 
were calculated separately with the 2 confusion matrices. To 
assess prediction performance on printable inks, the printable 
class is considered the positive case and evaluation metrics were 
calculated using (Fig. 7A). Similarly, the unprintable class is 
considered the positive case (Fig. 7B) to calculate the evaluation 
metrics for assessing the prediction performance on unprint-
able inks. This allows for a more comprehensive analysis 
on the prediction performance to facilitate the application of 
these algorithms in various contexts, thereby broadening their 
utilization.

Printability window prediction
The printability window of F127/LP hydrogel nanocomposites 
and PCL/nHA polymer nanocomposites in DCM was predicted 
using ML algorithms (DT, RF, and DL) simulating the practical 
use of the ML algorithms for ink development. The ML algo-
rithms were trained from all 210 formulations in the printabil-
ity data. A total of 45,511 testing formulations of F127/LP 
hydrogel nanocomposites (F127: 0.0 to 40.0 wt% and LP: 0.0 
to 10.0 wt%) were input into the ML algorithms to predict the 

printability map of F127/LP inks. For PCL/nHA inks, 350,001 
testing formulations (PCL: 0 to 70 w/v% and nHA: 0 to 60 
w/v%) were used.
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