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Abstract 
 

This thesis explores the role of micronutrients in genetic adaptation, largely focusing on 
micronutrients as the selective driver of local adaptation in modern humans. Additionally, 
the role of the micronutrient selenium in wider mammalian evolution is also investigated. 
Micronutrients are key dietary components in all organisms, needed in small, specific 
quantities and involved in a wide variety of essential metabolic processes. In modern 
humans, all micronutrients (with the exception of vitamin D) must be absorbed from the 
diet, since they cannot be synthesised within the body. Levels of dietary micronutrients 
in turn depend on the composition of the soil where plant and animal foodstuffs grow and 
feed, and hence can vary widely over different localities. As informed by a novel 
simulation framework, I use the allele-differentiation statistic 𝐹𝑆𝑇 and recently developed 
genealogical method 𝑅𝑒𝑙𝑎𝑡𝑒  to identify signatures of natural selection in 40 diverse 
modern human populations in 276 genes associated with 13 micronutrients. I show 
signatures of positive selection are inferred in many global populations and 
micronutrient categories, and show that the strongest signatures of positive selection 
agree with known micronutrient composition of local soils and endemic deficiencies in 
modern human populations. I found no evidence for classic polygenic models of positive 
selection and infer that adaptation in response to micronutrients in the diet is most likely 
monogenic or oligogenic in nature. I evaluate the evidence for positive selection in genes 
associated with zinc, calcium, selenium, iron and iodine in detail and use a combination 
of methods to propose the origin and timing of selection acting on these micronutrient-
associated genes. I propose that micronutrients are an important selective force in 
modern humans, and have shaped the genomic variation of our species. I also present the 
first evidence for molecular convergent evolution in mammalian proteins losing the 
selenium-containing amino acid selenocysteine for the sulphur-containing cysteine. 
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Impact Statement 
There has been significant recent progress in understanding local adaptation amongst 
modern human populations, largely pertaining to methodological developments and 
increases in available genomic data, of both modern and ancient humans. Still, 
important questions and goals remain. This includes 1) evaluating the role of local 
adaptation, and respective selective drivers, in human genetic diversity and population 
differentiation; 2) evaluating the role of selection on standing variation in modern 
humans, which requires identification of subtle signatures of positive selection that can 
remain hidden in the genome; 3) addressing the current bias, at the time of writing, of 
studied populations, and including under-represented populations in studies of genetic 
diversity; and 4) identifying cases of local adaptation that have resulted in average 
phenotypic differences between populations in health-related traits.  

In this thesis, I explore the role of dietary micronutrients in human local adaptation in 
the most comprehensive study to-date, identifying signatures of positive selection in 
276 genes associated with 13 different micronutrients in 40 diverse populations. I 
propose dietary micronutrients as a key selective driver amongst modern human 
populations, building on previous literature and suggesting novel cases of 
micronutrient-associated adaptation in individual populations or regions. Here, I 
address point number 1) and point number 3). I also first identify two methods with 
increased power of identifying the subtle signatures of selection on standing variation, 
and identify potential instances of micronutrient-associated adaptation driven by 
selection on standing variation. This addresses point number 2).  

Micronutrients play an essential role in human health, and understanding the 
interaction between micronutrient levels in the diet and genetic variation of diverse 
modern human populations is vital in understanding the differential risk of 
micronutrient deficiency amongst different populations. The signatures of positive 
selection identified here implies that different human populations may have, on 
average, different metabolic responses to varied dietary micronutrient levels and may 
therefore have increased risk of micronutrient deficiency or toxicity. Hence, I also 
address point number 4). The work presented here should thus prompt further study 
into the phenotypic consequences of such proposed adaptation, particularly under a 
changing dietary environment, made likely by changing soil levels under climate change 
and over-farming.  

In this thesis, I also explore selenoprotein evolution in mammals, and propose a novel 
example of convergent adaptation leading to the development of novel function when a 
protein exchanges its catalytic residue selenocysteine to cysteine. This suggests the 
evolutionary pathway following the loss of selenocysteine can be narrow, and that other 
novel selenoprotein functions may remain currently hidden in nature. 
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Chapter 1: Introduction 
1.1. Overview 

Micronutrients are needed by all living organisms to maintain optimal fitness, whether 
that is by contributing to healthy growth and development, maintaining immunity or 
supporting key metabolic processes (Bhutta and Salam 2012; Bailey et al. 2015; 
Monteiro et al. 2015). Hence, micronutrients can drive genomic adaptations to regulate 
their metabolism, uptake or synthesis within the body (Herráez et al. 2009; Mariotti et 
al. 2012; White et al. 2015; Engelken et al. 2016; Roca-Umbert et al. 2022). Many 
micronutrients, including all but one of the micronutrients essential for human health, 
cannot be synthesised by the organism, and instead must be absorbed from the diet or 
directly from the soil (Hurst et al. 2013; Dhaliwal et al. 2019). The local environment 
(which shapes the local diet) may then directly affect or result in micronutrient-
associated adaptation, which may differ on a large scale over different taxa, or even 
between populations of the same species (hereby referred to as local adaptation).  

In this thesis I explore the role of micronutrients in genetic adaptation, with a particular 
focus on exploring local adaptation in modern humans in response to micronutrients 
levels in the diet, as well as the greater role of selenium in selenoprotein evolution. This 
chapter begins with a brief discussion on the various types of natural selection and the 
role they play in genome evolution (Section 1.2). The history of migrations and 
admixture of modern humans is then summarised to present appropriate context in 
which to consider how the signatures of local adaptation may present in different 
human populations (Section 1.3). The majority of this chapter then reviews our current 
understanding of local adaptation in modern humans, including common selective 
drivers (Section 1.4), the genomics of local adaptation (Section 1.5), and the current 
methods used to infer local adaptation events (Section 1.6). 

Micronutrients as a specific driver of human local adaptation is then explored (Section 
1.7), with discussion of endemic diseases associated with micronutrient deficiency and 
toxicity; the variation of micronutrient levels in different soils; and previously identified 
instances of adaptation in modern humans in response to micronutrient levels. Finally, 
the role of micronutrients in wider biology is briefly explored, before describing the 
evolution of selenoproteins in the context of a specific selenium-containing amino acid 
(selenocysteine; Section 1.8).  

In Chapter 2, a simulation framework that models local adaptation in major human 
populations is used to test the power of different methods in identifying signatures of 
recent positive selection. The methods identified as having the highest power by these 
simulations (𝐹𝑆𝑇 and 𝑅𝑒𝑙𝑎𝑡𝑒; (Weir and Cockerham 1984; Speidel et al. 2019) are then 
used in Chapter 3 and Chapter 4.  

In Chapter 3, the signatures of natural selection in genes (n=276) associated with 13 
micronutrients within 40 diverse modern human populations are investigated. In 
Chapter 4, the adaptive signatures of genes associated with five micronutrients (zinc, 
calcium, selenium, iron and iodine) are further explored to suggest the potential origin 
and time of putative selection events, alongside the most likely selective drivers. Finally, 
in Chapter 5, the role of the micronutrient selenium in wider evolution is explored, by 
reconstructing the history and adaptive signatures surrounding the selenoprotein GPX6 
in mammals, which relies on selenium for catalysis. Chapter 6 presents a summary of 
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this work, contextualising the findings across the field of human local adaptation and 
selenium biology. 

1.2. Natural Selection 

Natural selection is one of the four fundamental forces of evolution, alongside mutation, 
genetic drift and gene flow, and drives the evolution and persistence of adaptive 
phenotypes within a population. It was first formally defined by Charles Darwin in the 
mid-19th century (Darwin 1859), although also independently proposed by and 
developed alongside Alfred Russell Wallace (Darwin and Wallace 1858). It continued to 
be advanced by many biologists in the following century, most notably by Ronald Fisher 
and John Burdon Sanderson Haldane (Fisher 1919; Haldane 1924). Natural selection 
refers to the differential reproductive success of individuals within a population, 
whereby fitness advantage, or disadvantage, is conferred by underlying genotypes. In 
reference to natural selection, the fitness of a genotype is hence the relative fitness (𝜔; 
the absolute fitness relative to the fittest genotype). This serves as a measure of the 
relative fitness advantage or disadvantage of a genotype, which, within population 
genetics studies, is often referred to as the selection coefficient 𝑠. 

The efficacy of natural selection depends on this relative fitness (𝑠) but also on the 
magnitude of genetic drift (Hahn 2018). In populations with a small effective population 
size (𝑁𝑒, the value that represents the size of an idealised Wright-Fisher population 
showing the same loss of genetic diversity, and is usually lower than the census 
population size (Hahn 2018), the effect of genetic drift is larger, and can cause a random 
subset of genetic variants to rise to high frequencies, irrespective of their selection 
coefficient. The action of natural selection is also heavily interlinked with the remaining 
evolutionary forces, gene flow and mutation, both of which introduce new genetic 
variants into a population (where mutations are the only source of true novel genetic 
variants). Therefore, natural selection must be considered alongside such forces. In 
humans, the specie of interest in Chapters 2-4, the role of highly diverse demographic 
and migration histories across populations (see Section 1.3) in the efficacy of natural 
selection must be considered. More than this, complex histories of migrations and gene 
flow must be recognised when considering how genetic diversity may be a result of 
either natural selection or neutral processes (see Section 1.5).  

Natural selection also underpins the Modern Synthesis evolutionary theory (Huxley 
1942) which reconciled Darwin’s concept of natural selection with a population-
oriented view of Mendelian genetics. A key idea here is that whilst natural selection acts 
on all individuals, it results in evolution at the population level (where evolution is most 
explicitly the change in frequency of alleles within a population). Whilst this theory has 
since been further developed, including expanding our view of inheritance to not solely 
gene-based but also epigenetic or cultural inheritance (Laland et al. 2015), it still 
remains a key framework of which to understand evolution and adaptation.  

1.2.1. Selection in Genome Evolution 

Both natural selection and neutral evolutionary processes drive the fate of mutations 
following their appearance within a population. It is important to consider how natural 
selection ultimately contributes to overall genome evolution, and how the role of 𝑁𝑒 and 
mutation fitness may contribute to this.  
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Broadly speaking, mutations can be categorised as advantageous, deleterious or neutral, 
where some weakly deleterious or advantageous mutations may be referred to as 
nearly-neutral should they exist in populations dominated by genetic drift (i.e., low 

population size; with the upper limit to effective neutrality approximately |𝑁𝑒𝑠| ≈
1

4
 

(Loewe and Hill 2010)). The majority of non-neutral mutations are strongly deleterious 
(Keightley and Eyre-Walker 2010; Trindade et al. 2010), and are rapidly purged from 
populations via purifying selection. Intuitively, it then remains that the majority of the 
observed genetic variation is largely a product of advantageous and neutral mutations 
(where the latter includes weakly deleterious and weakly advantageous mutations that 
behave as neutral when 𝑁𝑒 is particularly low).  

Prior to the 1960s, genome evolution was believed to be primarily driven by positive 
selection: selection that increases the frequency of advantageous alleles faster than 
what would be expected under neutral drift (Sabeti et al. 2006). Existing 
polymorphisms were then believed, although with some contention (Asthana et al, 
2005), to reflect balancing selection: selection maintaining multiple alleles within a 
population or species, thereby driving advantageous genetic and phenotypic diversity 
(Andrés 2011; Bitarello et al. 2018). Implicitly, this represented the view that genetic 
differences between populations and species were mostly reflecting their own adaptive 
processes (Duret 2008). 

However, with the availability of sequence data came the birth of the seminal neutral 
theory of evolution, most notably proposed by Mottoo Kimura (Kimura 1968). This 
theory states that the vast majority of evolutionary changes at the molecular level are 
not in fact a product of positive selection, but rather random fixations of selectively 
neutral or nearly neutral mutations. Hence, this makes two key points about how 
natural selection affects genome evolution: 1) the great majority of molecular 
differences between species is due to nearly neutral substitutions and 2) polymorphic 
alternative alleles within species have neutral fitness effects with respect to each other 
(with their dynamics dominated by mutation-drift equilibrium) (Hahn 2018). 

Whilst this model remains arguably the most dominant explanation of molecular 
variation, at both the level of intraspecific genetic variation and interspecific genetic 
divergence, and is often used as a null model representing the most parsimonious 
scenario across species (Hahn 2018), other models have since been proposed to fully 
represent observed patterns of variation. This includes the nearly neutral theory of 
molecular evolution which emphasises the role of slightly deleterious mutations (Ohta 
1973, 1976), as well as models that emphasise the role of selection on linked neutral 
variation, either purifying selection (background selection model; (Charlesworth et al. 
1993, 1995)) or positive selection (hitchhiking model; (Smith and Haigh 1974; Kaplan 
et al. 1989)). Whilst these models do exhibit key differences, they are united in their 
assumption that the majority of polymorphisms are not maintained by positive 
selection.   

1.2.2. Adaptive Convergence 

Positive selection may not be as pervasive in genomes as first thought, but it remains 
the driving force behind the prevalence of advantageous traits across species. Whilst 
many adaptations are unique to species or populations (Sabeti et al. 2006; Savolainen et 
al. 2013), some adaptive phenotypes may be shared although independently acquired. 
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This is adaptive convergence: repeated acquisition of the same phenotype from 
independent lineages (Storz 2016; He et al. 2020).  

Adaptive convergence may be caused by both convergent or parallel changes at the 
amino acid level (Storz 2016; He et al. 2020). That is to say, the same phenotypes may 
be acquired from substitutions at a particular site from different ancestral amino acids 
to the same derived amino acid (convergent substitution) or from sites that have 
independently changed from the same ancestral amino acid to the same derived amino 
acid (parallel substitution, more common in closely related species) (see Fig. 1.1). In an 
extension of this, substitutions at different sites, or indeed variants of different genes, 
may even confer the same adaptive phenotype (Witt and Huerta-Sánchez 2019).  

Figure 1.1: Convergent and parallel amino acid changes. Convergent substitutions 
from a different ancestral amino acid to the same derived amino acid (a) and parallel 
substitutions from the same ancestral amino acid to the same derived amino acid (b) may 
lead to acquisition of the same adaptive phenotype. Taken from (Storz 2016).  

 

This variation in acquisition of the same adaptive phenotype reflects the many-to-one 
mapping of genotype to phenotype. However, not all genotypes mapping to the same 
phenotype necessarily have the same probability of fixation. Probability of fixation of 
advantageous mutations once they arise is not only dictated by the strength of selection 
and the demography of the population they are in, but by the role of pleiotropy, the 
phenomenon where a single mutation or genetic locus affects multiple traits (Solovieff 
et al. 2013). For a given set of possible mutations that result in the same phenotypic 
response, those which have the lowest degree of deleterious pleiotropy, i.e., those that 
have the least deleterious effect on other genetically related functions, have higher 
fixation probability (Storz 2016).  

Epistasis, or the functional interaction between genes (Phillips 2008), must also be 
considered in adaptive convergence. This phenomenon describes how different 
mutations have varying fitness depending on the underlying genetic background. 
Thereby epistasis also narrows the set of possible mutations that may respond similarly 
to selection (Lunzer et al. 2010; Storz 2016), an effect particularly strong in more 
divergent species. This is not necessarily independent from the effects of pleiotropy: 
mutations that can compensate for the reduction of fitness arising from deleterious 
pleiotropy also depend on the genetic background (Solovieff et al. 2013; Storz 2016).  
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1.3. Genetic History of Modern Humans 
1.3.1. Major Migrations in Human History 

Modern humans differ from many other species in that they inhabit almost all areas of 
the globe. The history of modern humans is therefore tightly interwoven with a series of 
large- and small-scale migration events, which can vary drastically over different 
populations. These migration events have profoundly affected the genomic variation 
across human populations and therefore must be considered in parallel with the 
genomic effects of selection (see Section 1.5). 

Modern humans originated in Africa less than 200kya years ago (Reich et al. 2010), and 
are identified in the fossil record by a wealth of anatomical traits, particularly those 
defined in the crania: a high frontal bone, weak supraorbital torus and small dentition 
with canine fossa (Stringer and Andrews 1988; White et al. 2003). The development of 
sequencing technology resulted in genetic evidence for an African origin of modern 
humans, such as seminal studies showing mitochondrial and Y-chromosome haplotypes 
as subsets of those identified within Africa (Soares et al. 2012; Haber et al. 2019) as well 
as those demonstrating a decrease in genetic diversity as a function of geographic 
distance from East or South Africa (Prugnolle et al. 2005; Ramachandran et al. 2005). 
Still, debates remain on the exact region of Africa where modern humans evolved. 
Historically, an East African origin has often been suggested, supported by the oldest 
anatomically modern human fossils in Ethiopia (Clark et al. 2003; McDougall et al. 2005; 
McCarthy and Lucas 2014). However, genetic studies have suggested a variety of 
origins, including East Africa as well as Southern and Northern regions (Henn et al. 
2011; Blome et al. 2012; Schlebusch et al. 2012; Fadhlaoui-Zid et al. 2013). Still, these 
studies are united in their acknowledgement that the complex population history of the 
continent complicates any such conclusion. 

The Out of Africa migration (Stringer and Andrews 1988), or the event that resulted in 
modern humans colonising the world outside of the African continent, is therefore a 
substantial migration event in human evolutionary history. That is not to say migrations 
only occurred outside of Africa; Africa itself has a rich and varied migration history, 
although on the whole is less resolved than the migrations of non-African regions (due 
to increased complexity, lower availability of modern and ancient genomes, and 
historical bias). Some notable African migrations include the Bantu expansion 
(beginning ~5kya at the Cameroon and Nigeria border, eastward to Uganda at ~3kya 
and then southwards to Mozambique and South Africa at ~1.8kya and ~1.5kya, 
respectively (Beltrame et al. 2016)), the spread of pastoralism into sub-Saharan Africa 
(Afroasiatic populations migrating from Ethiopia into Kenya and Tanzania ~5kya (Patin 
et al. 2017)) and bidirectional migrations through the Sahel (between east and west 
Africa over the past ~8ky (Hirbo et al. 2012)).  

Whilst the exact dynamics of the Out of Africa migration are still debated (as more 
comprehensively reviewed in (López et al. 2016)), the majority of genetic evidence 
places the date of the main body of this migration as approximately 60kya (Zhivotovsky 
et al. 2000; Underhill and Kivisild 2007; Shi et al. 2010; Gravel et al. 2011; Harris and 
Nielsen 2013). Some archaeological evidence, including modern human teeth identified 
in Southern China (~80-120kya; (Liu et al. 2015)) and Australian modern human fossils 
(~56-40kya; (Bowler et al. 2003)), suggests an earlier migration through to East Asia 
and Oceania (Armitage et al. 2011; Rose et al. 2011). It is important to note that not all 
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migrations of modern humans necessarily resulted in descendant extant populations. 
Indeed, the early modern human fossils found in the Levant (dated 120-90kya; (Grün et 
al. 2005)) are suggested to be a result of an earlier “failed” exodus from Africa (Pope 
and Terrell 2007; Hershkovitz et al. 2015; Kuhlwilm et al. 2016).  

There are two main suggested routes that modern humans took on the exit from Africa: 
the Northern route (through Egypt and Sinai (Luis et al. 2004; Pagani et al. 2015)) and 
the Southern route (through Ethiopia, the Bab el Mandeb strait, and the Arabian 
Peninsula; (Quintana-Murci et al. 1999; Fernandes et al. 2012; Soares et al. 2012) see 
Fig. 1.2). However, there remains no confident consensus from either genetic or 
archaeological evidence on which route was taken (López et al. 2016). Some genetic 
evidence supports migrations at different timepoints possibly along both routes, with 
both migrations resulting in descendant populations today (Lahr and Foley 1994; 
Rasmussen et al. 2011; Reyes-Centeno et al. 2014; Tassi et al. 2015). In particular, this 
supports the hypothesis that Southeast Asian and Oceanic populations are the 
descendants of a first migratory wave Out of Africa estimated as approximately 70-
100kya (Rasmussen et al. 2011; Reyes-Centeno et al. 2014, 2015; Tassi et al. 2015). 

 

 

Figure 1.2: Overview of modern human migrations out of Africa. Putative migration 
waves Out of Africa, and following migrations, are shown according to various models. 
Significant human remains and archaeological sites also given. Taken from (López et al. 
2016). 
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All such migrations described here, including the Out of Africa migration, remain 
estimations rather than known events, but do represent the general consensus in the 
field, although not without uncertainties (particularly surrounding the exact timing of 
migration or admixture events). Still, the Out of Africa migration refers to the strongly 
supported migration at around 60kya of a population ancestral to modern Eurasians 
and Americans (Zhivotovsky et al. 2000; Underhill and Kivisild 2007; Shi et al. 2010; 
Gravel et al. 2011; Harris and Nielsen 2013). This ancestral population then expanded 
across Eurasia, resulting in a spatially structured modern human population across this 
region by 40kya (Fu et al. 2014; Seguin-Orlando et al. 2014). East Asians are also 
suggested to have then received gene flow from populations ancestral to Aboriginal 
Australians already having colonised Asia following the proposed earlier migration 
(Rasmussen et al. 2011). Approximately 20kya, a population descended from East 
Asians with substantial north Eurasian gene flow migrated to the Beringian strait, 
before migrating downwards into the Americas, eventually giving rise to northern and 
southern Native American populations (Raghavan, Skoglund, et al. 2014; Rasmussen, 
Anzick, et al. 2014; Moreno-Mayar et al. 2018). Naturally, with such a migration, or 
multiple migrations as some work has suggested (including migrations harbouring 
Austronesian ancestry (Skoglund et al. 2015)), modern American population history is 
characterised by an extreme population bottleneck (Prugnolle et al. 2005; 
Ramachandran et al. 2005; Gravel et al, 2013; Fagundes et al, 2018).   

The time following the Neolithic transition (10-5kya (Hawkes 1949)) resulted in 
multiple population movements and subsequent gene flow, particularly well 
documented across Europe. The most notable migrations include that of Anatolian 
farmers of the Near East into early western European populations (Haak et al. 2010; 
Skoglund et al. 2012; Lazaridis et al. 2014). The admixture between this group and the 
hunter-gatherer groups already present in Europe resulted in what is termed the Early 
European Farmer population (Mathieson et al. 2015a). This population was later largely 
replaced by a population associated with the Yamnaya culture, who migrated into 
western Europe from the steppe of Eastern Europe surrounding 3000BC and from 
which modern European ancestry is mostly derived (Allentoft et al. 2015; Mathieson 
and Terhorst 2022). 

The migratory history of modern humans given here is not designed to be fully 
comprehensive, but to give an overview of the range of population histories of the 
human species. It also must be highlighted that population histories are not 
independent from each other following divergence events, as back-migrations were 
likely common throughout human history (González et al. 2007; Moreno-Mayar et al. 
2018). In particular, African and non-African populations are not independent in the 
time following the Out of Africa migration(s); migrations from Eurasian populations 
back into some African populations are believed to have resulted in the high levels of 
non-African ancestry in some regions of Africa (Maca-Meyer et al. 2001; González et al. 
2007; Pagani et al. 2012; Pickrell et al. 2014). The number and timing of these 
migrations remain a question, but must also be considered when exploring African 
genetic diversity (López et al. 2016). 

1.3.2. Introgression with Archaic Humans 

In recent years, it has become clear that there has been extensive admixture with 
archaic humans in the evolutionary history of anatomically modern humans (Green et 
al. 2010; Reich et al. 2010; Meyer et al. 2012; Prüfer et al. 2014). Archaeological 
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evidence has long placed Neanderthals across Eurasia (Higham et al. 2014), with more 
recent archaeological data placing their sister group Denisovans in the same localities of 
Siberia (Reich et al. 2010). With the development of ancient DNA sequencing technology 
and analysis has come substantial evidence for gene flow events between these archaic 
and modern human populations (see Figure 1.3; (Green et al. 2010; Reich et al. 2010; 
Meyer et al. 2012; Castellano et al. 2014; Prüfer et al. 2014; Reilly et al. 2022)).   

These gene flow events, or introgression events, did not occur between all modern and 
archaic populations, and instead were more localised events that have resulted in 
different proportions of archaic DNA in the genomes of various modern human 
populations. Non-Africans have approximately 1.5-2.1% of DNA of Neanderthal origin, 
with this proportion slightly higher in Asian individuals compared to Europeans (Green 
et al. 2010; Prüfer et al. 2014). Historically, there was the suggestion that this higher 
proportion in East Asians was due to a following bottleneck and greater genetic drift in 
East Asian population history, rather than a separate pulse of introgression (Keinan et 
al. 2007; Skoglund and Jakobsson 2011; Sankararaman et al. 2012). However, more 
recent studies have implied a far more complex history of multiple introgression events 
across ancient European and Asian populations which may explain these differences 
(Villanea and Schraiber 2019; Iasi et al. 2021; Schaefer et al. 2021). 

 

 

Figure 1.3: Overview of modern human demographic history. A simplified overview of 
the demographic history and inferred gene flow events between modern and archaic 
humans, including un-named “ghost” populations. Taken from (Reilly et al. 2022). 
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By measuring the length of inferred introgressed tracts of DNA, the timing of the 
introgression events from Neanderthals into Eurasians is estimated to be approximately 
50-60kya, suggested to have occurred in the region of the Middle-East (Sankararaman 
et al. 2012; Fu et al. 2014; Seguin-Orlando et al. 2014). This estimated introgression 
time supports introgression rather than ancestral population structure as the cause of 
Neanderthal ancestry in only non-Africans, which has been proposed as a counter-
explanation. However, if ancient population subdivision in a common ancestral 
population of archaic and modern humans drove the observed Neanderthal ancestry in 
Eurasians, it would be expected that these tracts would be dated more closely to the 
time of Neanderthal-modern human divergence (estimated older than 200kya (Prüfer 
et al. 2014)); this is hence discounted by the majority of the field and Neanderthal 
introgression remains well supported. 

Denisovan ancestry, is predominantly found in Melanesians, Papuans and Australians at 
higher proportions of 3-6% (Reich et al. 2010, 2011; Meyer et al. 2012), alongside 
smaller proportions found in East Asians (0.2%) (Skoglund and Jakobsson 2011; 
Browning et al. 2018). Similar to what is now understood to be the case in Neanderthal-
modern human introgression, it appears that introgression events between Denisovans 
and modern humans occurred multiple times in human evolutionary history (Browning 
et al. 2018; Jacobs et al. 2019; Schaefer et al. 2021). At least three separate Denisovan 
lineages have been inferred to contribute to modern human genetic variation, all of 
which appear divergent from each other and likely represent geographically separated 
archaic populations (Jacobs et al. 2019). 

Finally, more recent studies have suggested that currently unknown archaic human 
groups have contributed to the genomes of contemporary populations, including 
African populations (Mondal et al. 2019; Wall et al. 2019; Durvasula and Sankararaman 
2020; Hubisz and Siepel 2020; Wang et al. 2020). These ghost introgression events are 
between modern humans and populations for which we currently have no genomic 
data, and therefore remain in most senses unresolved. Still, this not only implies that 
modern humans lived contemporaneously and coexisted with multiple groups, but also 
suggests a considerably deeper and interwoven history of admixture between modern, 
archaic and potentially super-archaic humans (Ahlquist et al. 2021). 

1.4. Local Adaptation in Modern Humans 

Local adaptation is defined as when, due to genetic differences, individuals from a 
population have a higher average fitness in their local environment than those from 
other populations of the same species (Rees et al. 2020). This occurs when populations 
are exposed to different selective pressures, often tightly related to local environment 
(Savolainen et al. 2013; Tiffin and Ross-Ibarra 2014). Ultimately, this population-
specific natural selection results in genetic and phenotypic differentiation between 
populations.  

Local adaptation in modern humans is of particular interest because, as a species, we 
inhabit almost all environments across the globe, including some of which are 
considered extreme (Ilardo and Nielsen 2018). Moreover, following the Out of Africa 
migration (Soares et al. 2012; López et al. 2016; Haber et al. 2019), humans have 
colonised many of these environments rather rapidly (see Section 1.3.1), with novel 
environmental conditions expected to exert potentially strong selective pressures. 
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Environments within Africa are also incredibly diverse and have the potential to result 
in local adaptation events (Fan et al. 2023). 

1.4.1. Common Selective Drivers  

Many well documented examples of local adaptation within humans exist, and are in 
strong support of local adaptation contributing to modern human genetic variation and 
differentiation between populations (see Table 1.1; (Rees et al. 2020)). These 
adaptations are most commonly shown to be in response to diverse diets (Perry et al. 
2007; Tishkoff et al. 2007a; Schlebusch et al. 2012; Fumagalli et al. 2015; White et al. 
2015; Minster et al. 2016; Evershed et al. 2022), pathogens (Fumagalli et al. 2011; 
Karlsson et al. 2014; Nédélec et al. 2016; McManus et al. 2017), elevation (Yi et al. 2010; 
Bigham and Lee 2014; Huerta-Sánchez et al. 2014) and ambient temperature (Key et al. 
2018), as well as to mediate local cultural pressures, such as breath-hold diving in the 
Bajau (Ilardo et al. 2018). Other local selective pressures were driven by the Neolithic 
revolution and development of agriculture, and include dietary changes as well as 
increased pathogen risk that accompanied densely packed living conditions and 
exposure to zoonotic diseases (Latham 2013; Domínguez-Andrés et al. 2021).  

In some cases, these adaptations are convergent in nature, with different populations 
developing adaptive phenotypic responses to the same environmental pressure via 
different genes. This is most notable in the adaptation to high altitude in Ethiopian, 
Andean and Tibetan populations (Bigham and Lee 2014; Witt and Huerta-Sánchez 
2019), light skin adaptation in Europeans and East Asians (Norton et al. 2007), and the 
adaptation allowing consumption of milk past weaning, independently conferred by 
multiple different variants upstream of the LCT gene in African and European 
populations (Tishkoff et al. 2007a; Evershed et al. 2022). However, the adaptive 
function of other convergent phenotypes remains unclear. For example, the small-
stature phenotype (mean adult height below 152cm) is a characteristic trait of multiple 
rainforest hunter-gatherers, living in Central Africa, South America and Southeast Asia 
(Perry and Dominy 2009). This trait appears to be under selection, and driven by a 
currently unknown, and debated, selective pressure (Herráez et al. 2009; Perry and 
Dominy 2009; Venkataraman et al. 2018). 
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Table 1.1: Overview of the known genes under local adaptation in human 
populations and their proposed selective pressures. a: indicates gene variants that are 
a result of adaptive introgression with Neanderthal populations b: indicates gene variants 
that are a result of adaptive introgression with Denisovan populations c: selection acting 
on structural variations (deletions, insertions, inversions, duplications’ and copy number 
variations). Selection noted as across populations indicates that selection is seen 
differentially across multiple populations according to the strength of the selective 
pressure. Taken from (Rees et al. 2020). 
 
Category Selective 

Pressure 
Gene Target(s) Population with 

Adaptations 
Refs  

Diet Lactose Post-weaning  LCT   Eurasians and Africans (Bersaglieri et al, 2004; 
Sabeti et al. 2007; 
Tishkoff et al. 2007) 

 Fatty Diets FADS  Greenland Inuit  (Fumagalli 2015) 

 High Arsenic levels AS3MT Argentinians  (Schlebusch et al. 2015) 

 Low Selenium levels DI2, SelS, GPX1, GPX3, CELF1, 
SPS2, SEPSECS 

Chinese (White et al. 2015; 
Engelken et al. 2016; 
Davy and Castellano 
2018) 

 Low Iron levels HFE Europeans (Toomajian et al. 2003; 
Heath et al. 2016a) 

 Low Iodine levels TRIP4 Central African Pygmies (López Herráez et al. 
2009) 

 Low Calcium levels  TRPV6 Non-Africans  (Hughes et al. 2008; 
Kovacs et al. 2013a) 

 Zinc Levels SLC30A9, SLC39A8 East Asians and Africans  (Zhang et al. 2015a; 
Engelken et al. 2016) 

 Ergothioneine deficiency  IBD5 (SLC22A4, SLC22A5) Europeans  (Wang et al. 2012) 

 Frequent Starvation CREBRF Samoans (Minster et al. 2016) 

 Alcohol Consumption  ADH1B  Asians (Osier et al. 2002; Han et 
al. 2007; Li et al, 2007) 

 Starchy foods AMY1c   Across populations  (Perry and Dominy 
2009) 

Pathogens Malaria  HBB, HBA, HPA, GYPA, GYPB, 
GYPC, G6PD, FY 

Sub-Saharan Africans  (Kwiatkowski 2005; 
McManus et al. 2017; 
Pierron et al. 2018) 

 “African Sleeping 
Sickness” 

APOL1 Western Africans (Genovese et al. 2010) 

 Hepatitis C IFNL4, IL28B Eurasians (Ge et al. 2009; Key et al. 
2014; Lu et al. 2014) 

 HIV CUL5, TRIM5, APOBEC3G Biaka (Ge et al. 2009; Zhao et 
al. 2012; Lu et al. 2014) 

 General pathogen load ADAM17, ITGAL, LAG3, IL6, 
LRRC19, PON2, OAS1b, OAS 
groupa, HLA groupa, STAT2b, 
STAT2a, TLR1-TLR6-TLR10a 

Across populations (Abi-Rached et al. 2011; 
Fumagalli et al. 2011; 
Mendez et al. 2012a, 
2012b, 2013; Fumagalli 
2015; Mathieson et al. 
2015a; Nédélec et al. 
2016) 

Oxidative 
Stress 

High Altitude EGLN1 Andeans, Tibetans (Bigham et al. 2010; 
Simonson et al. 2010; 
Bigham and Lee 2014) 

  EPAS1b Tibetans, Han Chinese  (Yi et al. 2010; Bigham 
and Lee 2014; Huerta-
Sánchez et al. 2014) 

  VAV3, ARNT2, THRB Ethiopians (Scheinfeldt et al. 2012) 

 Breath-Hold Diving  PDE10A, BDKRB2 Bajau (Indonesia) (Ilardo et al. 2018) 

Cold 
Resistance 

Cold Temperature TRPM8 Eurasians (Key et al. 2018) 

 Polar Diet CPT1A, LRP5, THADA Siberians  (Cardona et al. 2014) 

  PRKG1 Siberians  (Cardona et al. 2014) 

  TBX15 Greenlandic Inuit (Fumagalli 2015) 

UV 
Exposure 

Low UV levels  SLC24A5, SLC45A2, OCA1-4, 
TYRP1, DCT, TYR, MC1Ra, 
HYAL2a 

Across populations (Nakayama et al. 2006; 
Edwards et al. 2010; 
Hancock, Alkorta-
Aranburu, et al. 2010; 
Paschou et al. 2010; 
Yang, Novembre, et al. 
2012) 

 Low Vitamin D levels  DHCR7, NADSYN1 Northern European 
populations 

(Mathieson et al. 2015a) 

Height Undetermined  DOCK3, CISH, HESX1, 
POU1F1 

Central African 
rainforest hunter-
gatherers 

(Perry and Dominy 2009; 
Jarvis et al. 2012; 
Lachance et al. 2012) 

 Undetermined  Highly polygenic  Europeans (Turchin, Chiang, Palmer, 
Sankararaman, Reich, 
Hirschhorn, et al. 2012; 
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Berg and Coop 2014; 
Mathieson et al. 2015a; 
Field et al. 2016; Sanjak 
et al. 2018; Berg, Zhang, 
et al. 2019; Sohail et al. 
2019) 

Assorted1  Undetermined  EDAR East Asians (Sabeti et al. 2007; 
Grossman et al. 2010; 
Adhikari et al, 2015; 
Reyes-Reali et al, 2018, 
Kataoka et al, 2021) 

Unknown Undetermined  17q.21.31 gene regionc  Icelandic (Stefansson et al. 2005) 

 

1.4.1.1. Dietary Adaptation 

Diet is arguably one of the most notable local selective pressures in humans, with 
lactase persistence often identified as representing the strongest signature of selection 
in Eurasian populations (Mathieson et al. 2015a; Speidel et al. 2019; Evershed et al. 
2022). However, the diversity of diets across the globe is represented by more than the 
milk-drinking habits of certain populations. Some other notable differences in diet are 
due to underlying environmental conditions or food availability, whilst others are more 
tightly associated with cultural or societal developments. 

Environments affect the human diet in many ways: not only the surrounding availability 
of plant and animal foodstuffs, but also the local soil composition (which affects the 
nutrient content in consumed plant and animal matter (Alloway 2013)). Indeed, 
adaptation in response to diet caused by environmental factors has been inferred in 
modern humans. This includes adaptation to frequent periods of starvation in Samoan 
populations (Minster et al. 2016), adaptation to the high fatty acid content found in 
Arctic diets (Fumagalli et al. 2015) and various proposed adaptations to deficient or 
toxic levels of trace minerals in local soils (Herráez et al. 2009; Schlebusch et al. 2012; 
White et al. 2015; Zhang et al. 2015a). These adaptations in response to trace mineral 
levels include those of micronutrients essential to the human diet (Shenkin 2006; 
Tulchinsky 2010) (see Section 1.7), such as selenium, iodine and zinc (Herráez et al. 
2009; White et al. 2015; Zhang et al. 2015a), as well an adaptive response to toxic levels 
of arsenic (Schlebusch et al. 2015). 

Dietary culture has also been shown to result in local adaptations, particularly following 
the agricultural revolution (which resulted in many changes to modern human life 
including vastly different diets (Diamond 2002; Naugler 2008; Latham 2013; 
Domínguez-Andrés et al. 2021; Evershed et al. 2022)). The increased copy number of 
the AMY1 gene in various populations has been proposed as an adaptive response to 
increased amounts of starchy foods in agricultural diets (Perry et al. 2007) (although 
there has been some debate on the accuracy of determining the copy number of AMY1 in 
this study (Ooi et al. 2017)) and lactase persistence is an adaptation associated with the 
practice of drinking milk post weaning (Tishkoff et al. 2007a; Evershed et al. 2022). 
Deficiencies of alcohol and aldehyde dehydrogenase, which result in reduced alcohol 
metabolism and risk of alcoholism, has also been suggested to be adaptive in some way 
(Osier et al. 2002; Han et al. 2007, Li et al. 2007), potentially associated with 
fermentation practices that arose following agriculture.  

 

                                                        
1 A derived EDAR variant is associated with thicker hair, tooth and ear shape, sweat gland density and 
chin protrusion (Fujimoto et al, 2008; Adhikari et al, 2015; Reyes-Reali et al, 2018, Kataoka et al, 2021). 
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1.4.2. Local Adaptation and Health 

The history of recent divergences and subsequent admixture amongst human 
populations means that the majority of genetic and phenotypic variation is found 
within, rather than between, populations (Rees et al. 2020). Still, local adaptation has 
resulted in average phenotypic differences amongst populations. Many of these 
adaptations are directly relevant to the health of contemporary populations, and result 
in population differences in the genetic risk or prevalence of disease.  

In some cases, this is due to evolutionary mismatch, or a previously advantageous and 
selected trait becoming deleterious in contemporary environments (Manus 2018). The 
most notable example of this is seen in Samoan populations, who have a high frequency 
of the CREBF gene variant that allows rapid weight gain. This variant was likely 
beneficial under frequent starvation conditions, but now, in a modern state of food 
abundance, increases the risk of type 2 diabetes and related metabolic disorders 
(Minster et al. 2016). Similar issues are seen in Canadian, Greenlandic Inuit, and 
Siberian populations with a particular CPT1A gene variant. This variant maintains sugar 
homeostasis during a similarly nutrient sparse environment (low carbohydrate intake), 
but is now associated to hypoketotic hypoglycaemia and high infant mortality 
(Clemente et al. 2014).  

Migrations and ecological change may also expose modern populations to novel 
environmental conditions to which they have not previously adapted. Relevant 
environments here are those that drove the suggested adaptations to trace mineral 
levels in the soil (e.g., toxic arsenic levels and low selenium levels (Schlebusch et al. 
2015; White et al. 2015)). Individuals that migrate to these environments and lack these 
genetic adaptations may face numerous health issues if the respective toxicity or 
deficiency is not addressed via other means. Similarly, individuals with such genetic 
adaptations who migrate from these environments to other geographic regions may 
also be more susceptible to deficiencies or toxicities under the soil conditions of their 
new environment.  

In other cases, adaptive alleles may have deleterious pleiotropic effects. Malaria 
adaptation can be conferred by the HbS variant of the HBB gene; when heterozygous 
this allele gives a ten-fold reduction in risk of severe malaria, but results in sickle cell 
anaemia when homozygous (Hill et al. 1991; Archer et al. 2018). Other adaptations to 
malaria via different genes also often result in deleterious blood-related disorders, such 
as G6PD deficiency, ∝+ thalassemia and hemoglobin C (Kwiatkowski 2005). Otherwise, 
adaptations to African sleeping sickness, cold ambient temperature and low amino acid 
levels have been associated with higher risk or prevalence of chronic kidney disease, 
migraine and celiac disease, respectively (Genovese et al. 2010; Wang et al. 2012; 
Mathieson et al. 2015a; Key et al. 2018).  

There is also some evidence of population-specific adaptation that results in differences 
in the outcome of treatment of non-inherited disorders. For example, a derived variant 
of IFNL4, which when homozygous results in a loss of the IFN-𝜆4 protein, is inferred to 
have evolved under positive selection in Eurasian populations and has been associated 
with a more rapid clearing of the hepatitis C virus infection (Key et al. 2014). The 
African Biaka population also appear to have multiple alleles (CUL5, TRIM5, APOBEC3G) 
fixed or at high frequency that appear to confer protection to HIV (Zhao et al. 2012). 
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Hence, studies into local adaptation are not only imperative to understanding the 
selected, and by extension neutral, proportion of the modern human genome, but are 
vital in understanding which populations are most at risk from modern disease or 
malnutrition. Moreover, such studies help to identify adapted alleles that are 
functionally relevant to critical environmental pressures. In turn, this may allow a 
deeper understanding of the genetic basis of human phenotypes, including those 
relating to disease or disease risk.  

1.4.3. A Note on Diversity in Modern Human Studies 

Local genetic differences can contribute to population differences in the genetic basis of 
common disease, as well as to response to treatment. Therefore, a comprehensive 
understanding of disease progression and treatment in individual populations cannot 
be achieved without a fundamental understanding of the underlying genetic diversity of 
such a population, including that which may have been driven by local adaption events. 
However, it is clear that genetic studies have been historically biased towards European 
populations, especially those exploring genetic associations with disease (Sirugo et al. 
2019). This bias not only results in a failure to capture the full extent of global genetic 
diversity (Popejoy and Fullerton 2016), but also exacerbates global health inequalities 
by limiting our knowledge of health-related traits to well-studied populations (Sirugo et 
al. 2019).  

When population-specific mutations drive disease, a biased understanding of the 
genetic drivers of disease to only well-studied populations have been shown to increase 
health and diagnosis disparities between populations. This is the case for retinitis 
pigmentosa (where over 3000 mutations in 65 genes have been identified in causing 
retinitis pigmentosa, but mostly in Europeans (Sirugo et al. 2019)) and cystic fibrosis 
(where the most common causal variants differ between European and African 
populations (Padoa et al. 1999; Stewart and Pepper 2017)). Moreover, causal mutations 
unique to an under-studied population may remain unidentified and the associated 
disease underdiagnosed or untreated, as was the case for the mutation driving 
transthyretin amyloid cardiomyopathy in African Americans, an underdiagnosed cause 
of heart failure (Buxbaum et al. 2006; Sirugo et al. 2019).  

More than this, the bias towards certain portions of genetic diversity in human genomic 
studies reduces our ability to accurately, and therefore safely, translate genetic research 
into clinical care of under-studied populations. Genome-wide association studies 
(GWAS) have most commonly been undertaken in European populations (52% of 
studies in European populations as of 2018 (see Figure 1.4; (Sirugo et al. 2019)). This 
has resulted in estimates of the genetic risk of variants in Europeans, but it is unclear to 
what degree the genetic determinants of certain health-related traits are shared by 
other populations (Huang et al. 2022). Differences in genetic architecture (as a result of 
drift or local selection events in populations of different ancestry (Lim et al. 2014)) as 
well as differences in linkage disequilibrium (which can affect the accuracy of 
identifying causal variants and varies according to demographic history (Tishkoff et al. 
2009)) both heavily contribute to the lack of replication of GWAS-estimated risk values 
amongst populations.  

Using estimates of risk calculated from one population in another population of 
differing ancestry may result in an inaccurate estimation of clinical risk, delayed or  lack 
of intervention and could falsely prioritise different treatment or drug strategies, 
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ultimately most adversely affecting under-studied populations (Sirugo et al. 2019). This, 
partnered with the clear bias of precision medicine towards well-studied, particularly 
European, populations should emphasise the need for genetic studies across a range of 
historically under-represented populations, as well as a recognition of the current 
health inequalities facing many populations today. 

 

 

Figure 1.4: Summary of GWAS by Ancestry. A summary of the ancestry by GWAS (left) 
and by individuals within each GWAS (right), as calculated by the GWAS Catalogue 
through January 2019. Taken from (Sirugo et al. 2019). 

 

 

1.5. Genomics of Local Adaptation 
1.5.1. Dynamics of Local Adaptation 

Positive selection driving human local adaptation occurs under highly variable and 
complex scenarios. Not only is this selection exerted on different populations (or groups 
of populations), it also acts on various different phenotypes, at different times, and at 
various strengths. More than this, positive selection to drive an adaptive trait can be 
exerted on alleles of different origins, and may be either monogenic or polygenic in 
nature, of which a summary is given below.  
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1.5.1.1. Origin of Selected Allele(s) 

The origins of beneficial alleles can be broadly split into those coming from de novo 
mutation, from standing variation (or previous polymorphisms within a population) or 
introduced into a population via admixture or introgression (Hermisson and Pennings 
2005; Peter et al. 2012; Rees et al. 2020). Local adaptation in humans has been 
suggested to be mediated from alleles of all three origins, with each form of selection 
resulting in subtly different signatures on the genome (see Figure 1.5; (Rees et al. 
2020).  

Selection on de novo mutation (SDN) acts on a new allele that is immediately 
advantageous in its environment, and therefore rapidly increases in frequency in the 
population if selection is strong (termed a hard selective sweep (Pritchard et al. 2010; 
Rees et al. 2020). Still, there are limits to its occurrence. The adaptive mutation must not 
only appear in a population experiencing an at least somewhat unmediated selective 
pressure, but also avoid immediate loss from the population due to random genetic 
drift. Variants that act as dominants, therefore having an effect in heterozygotes, can 
immediately be under strong selection and are less likely to be quickly lost from a 
population (Rees et al. 2020). 

Selection on standing variation (SSV) differs from SDN in many senses, including the 
appearance of the mutation with respect to the onset of selection. Here, previously 
segregating alleles become advantageous following a change in selective pressure, often 
when encountering a new environment (via change of the current environment or 
migrations into novel conditions; (Hermisson and Pennings 2005, 2017; Peter et al. 
2012)). Hence, the selected allele is older than the selective pressure. Such an allele may 
have been previously maintained in the population by neutral processes (being neutral 
or nearly neutral, see Section 1.2.1) or maintained by balancing selection (Andrés 
2011; Bitarello et al. 2018). The latter has great potential in contributing alleles for 
rapid adaptation in novel conditions, since they by definition affect phenotype and 
fitness, and are already maintained at intermediate frequencies (Andrés 2011; de 
Filippo et al. 2016; Bitarello et al. 2018). 

SSV is considered likely very important in mediating human local adaptation, 
specifically in populations rapidly encountering novel environments following the Out 
of Africa migration (Hermisson and Pennings 2017; Rees et al. 2020). The sudden onset 
of selective pressure in these populations would have given little time for the 
emergence of de novo mutations (especially considering the small effective population 
size contributing to a low effect mutation rate), and the rapid population growth allows 
many low-frequency polymorphisms with selective potential to be maintained in the 
population (de Filippo et al. 2016; Hermisson and Pennings 2017). Indeed, a number of 
recent studies have suggested that SSV has been prevalent, if not dominant (Hernandez 
et al. 2011; Pybus et al. 2015), in human adaptation (Peter et al. 2012; Schrider and 
Kern 2017). 

Finally, admixture between genetically distinct populations can introduce beneficial 
alleles into a population, a process termed adaptive admixture. This has been implied 
many times between modern human populations, particularly when gene flow between 
populations accompanies cultural exchange (such as alleles conferring lactase 
persistence spreading from pastoralists to close-by populations, recorded between both 
African and European populations (Tishkoff et al. 2007a; Evershed et al. 2022). Other 
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examples include the contribution of the Duffy blood group allele conferring malaria 
resistance from an ancient African population to modern Malagasy populations (Pierron 
et al. 2018). 

 

 

Figure 1.5: A schematic representation of the rise of allele frequency through a 
population according to its origin.  Stars represent mutations (blue: variant present in 
the population prior to selection; yellow: mutation occurring after the onset of selection; 
red: mutation present in an archaic population which spreads through a receiving 
population following an admixture event). The frequency of each variant in a population 
following a selection event is represented by the number of people icons of their respective 
colours under each panel. The red walking person icon in the top right represents an 
archaic human, which contributes the red variant to a receiving population following an 
admixture event. Taken from (Rees et al. 2020). 

 

 

Adaptive introgression, or the adaptive admixture between modern and archaic 
humans, has also been identified as playing a role in mediating local selective pressures 
in non-African populations. Since Neanderthal and Denisovans long inhabited Eurasia 
before modern humans (a short time after the divergence between archaic and modern 
humans; approximately 600,000 years ago (Schaefer et al. 2021)), these archaic 
populations had time to develop their own local adaptations, for which different 
modern humans could rapidly acquire through various introgression events when first 
encountering these novel environments (Reich et al. 2010; Prüfer et al. 2014; Rees et al. 
2020).  

Indeed, whilst many of the non-neutral introgressed alleles were deleterious and 
therefore removed by purifying selection in modern humans (Juric et al. 2016), a few 
others have been shown to contribute to adaptations related to immune function, 
pigmentation and oxidative stress (see Figure 1.6). They have been highlighted in their 
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role of conferring virus resistance, particularly against RNA viruses in Europeans 
(Enard and Petrov 2018). In some instances, where genetic diversity in of itself is 
advantageous, more than one archaic allele is maintained (Dannemann et al. 2016; 
Enard and Petrov 2018). 
 

 

Figure 1.6: Cartoon representation of the adaptive introgression events from 
archaic human populations into modern humans. The red and purple persons indicate 
human populations with evidence of adaptive introgression with Neanderthals and 
Denisovans, respectively. The gene(s) believed to be under selection given in the linked 
boxes, on the lineages where selection is suggested to have occurred. Taken from (Rees et 
al. 2020). 

 

1.5.1.2. Polygenicity of Adaptation 

Selection may be mediated by one beneficial allele (monogenic selection) or many 
beneficial alleles (polygenic selection) (Pritchard et al. 2010). Monogenic selection can 
result in strong selection signatures in a single locus, and therefore are often the 
simplest signatures to identify in the genome, with most known adaptations monogenic 
in nature (e.g., (Perry et al. 2007; Tishkoff et al. 2007a; Minster et al. 2016; Ilardo et al. 
2018; Key et al. 2018; Pierron et al. 2018; Evershed et al. 2022)).  
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Polygenic selection is characterised by selection acting on multiple adaptive alleles in a 
population. This does not necessarily include any one extreme single allele frequency 
change, but rather a group of alleles that all show concerted shifts in allele frequencies 
to shift the phenotype in the adaptive direction (Pritchard et al. 2010). Which alleles 
mediate adaptation depends on stochastic processes and their pleiotropic restraints, 
which in turn are specific to their particular genetic background (and therefore also 
influenced by epistasis; (Phillips 2008; Solovieff et al. 2013)). Hence, different 
populations may show different alleles responding to selection, or at different degrees. 

Polygenic adaptation has been proposed to be common in modern humans, since most 
traits are likely polygenic, with many alleles mediating phenotypic response. Indeed, 
various studies have suggested polygenic selection is prevalent throughout human 
history, and it has been proposed to drive adaptations to diet, metabolism, pathogen 
resistance and altitude (Fumagalli et al. 2011; Daub et al. 2013; Berg and Coop 2014; 
Daub et al. 2015; White et al. 2015; Nédélec et al. 2016; Gouy et al. 2017, 2017; Roca-
Umbert et al. 2022). 

1.5.1.3. Epigenetic Local Adaptation 

Whilst not directly relevant to the work in this thesis, it should also be stated here that 
there is increasing interest in the importance of epigenetics in local adaptation. 

Epigenetic response is a somatically heritable change of chemical modification, most 
commonly studied being DNA methylation, that does not result in changes in the DNA 
sequence. Whilst it is still debated if such chemical modifications are heritable (Heard 
and Martienssen 2014), it has been shown that epigenetic responses occur under 
changes in the local environment, particularly during development (Gokhman et al. 
2017). These modifications can occur much faster than genetic adaptations, and so it 
has been proposed that they also may help populations to mediate environmental 
pressures over periods as short as a lifetime (Gokhman et al. 2017).  

Whilst is it difficult to show that epigenetic changes are adaptive rather than a response 
to stress, adaptation and epigenetic change has been linked in populations of Central 
Africa. Here, genetic variants associated with methylation variation have been identified 
to show signatures of positive selection (Fagny et al. 2015), leading to the suggestion 
that epigenetic change allows rapid, plastic mediation of selective pressures before 
adaptive alleles can be cemented in the genome. 

1.5.2. Signatures of Local Adaptation 

Selection events leave distinct patterns, or signatures, in the genome. These signatures 
rely heavily on not only the strength and timing of selection, but also the allele origin. 
Large allele frequency differentiation in a SNP between populations, more extreme than 
could be explained by neutral demographic processes, is considered an almost-
universal signature of strong local adaptation (Rees et al. 2020). However, linked 
variation, which can be a powerful tool to identify loci under selection, is highly varied 
according to an allele’s selective history.  

Alleles that rapidly rise in frequency, as under SDN, exhibit linked haplotypes of low 
diversity and many low frequency variants (see Figure 1.7). A selective sweep is 
defined by this extended haplotype homozygosity surrounding the selected site, 
accompanied by high population differentiation and skews in the site frequency 
spectrum (or an excess of high-frequency derived alleles; (Sabeti et al. 2006; Pritchard 
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et al. 2010)). Such a rapid rise in frequency also leaves a distinctive pattern on the 
allele’s genealogy; a long internal branch with short terminal tips (or a “star”-like 
shape) represents the sweep of an advantageous allele through a population (Field et al. 
2016). The strength of these signatures is largely dependent on the strength and timing 
of selection, with those most striking signatures pertaining to site frequency spectrum, 
population differentiation and haplotype homozygosity originating from strong 
selection events with an onset surrounding < 80kya, 75-50kya and <30kya, respectively 
(Sabeti et al. 2006).  

 

 

 

 

 

 

Figure 1.7: Cartoon depicting the 
haplotypes arising from selection 
on standing variation (SSV), 
selection on de novo mutation 
(SDN), and adaptive introgression. 
Stars represent the beneficial allele 
(blue: mutation occurs in the 
population prior to selection; yellow: 
mutation occurring after the onset of 
selection; red: mutation occurs in an 
archaic population which spreads 
through a receiving population 
following an admixture event) and 
grey circles represent neutral linked 
polymorphic alleles. Taken from (Rees 
et al. 2020). 

 
However, under SSV, the signatures of linked variation are usually highly reduced and 
less easily distinguishable from the neutral genetic background (Fig. 1.7). This is not 
only due to a typically less striking rise in frequency (if the selected allele is already 
segregating at intermediate frequencies), but the selection occurring on multiple 
haplotype backgrounds (Rees et al. 2020). It is this lack of haplotype homozygosity that 
particularly separates the signatures of SSV from SDN. SSV also encompasses a range of 
ratios between allele origin and selection onset (e.g., selection acting on an allele swiftly 
following its origin compared to selection acting on an allele more than, say, 80,000 
years following its origin). This highly varied age and frequency of the segregating allele 
further increases the variance of expected linked variation under the umbrella term of 
SSV. In some cases, SSV may even resemble, or be considered as, SDN if the onset of 
selection closely follows the allele origin or a population bottleneck results in extreme 
frequency increase (Wilson et al. 2014). 
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The selection signatures arising from adaptive admixture events differ heavily from 
those of SDN or SSV, and have a dual aspect to their identification. Admixed or 
introgressed segments must be first extracted from shared ancestry or incomplete 
lineage sorting (Huerta-Sánchez et al. 2014), before then isolating adaptive segments 
from those that are neutral. These admixed or introgressed segments are largely 
defined by the timescale and populations of the gene flow event. For example, 
introgressed segments are long and unusually similar to archaic segments but appear 
young, are accompanied by high levels of linkage disequilibrium and only present in 
some modern human populations (Yang, Malaspinas, et al. 2012; Liang and Nielsen 
2014; Racimo et al. 2015). 

Many of the classic signatures used to identify positive selection are therefore also 
present in neutrally introgressed segments, such as long-range LD or population 
differentiation (Racimo et al. 2015). The strongest evidence for adaptive introgression 
is thus usually considered an unusually high frequency of an introgressed segment 
compared to the empirical distribution of introgressed segments throughout the 
genome. Similarly, strong evidence for recent adaptive admixture, that between modern 
human populations, is often identified by higher proportions of putatively adaptive 
ancestry compared to the expected ratio of ancestry components, as well as by 
clustering algorithms which classify individuals by their genetic patterns (such as 
𝑆𝑇𝑅𝑈𝐶𝑇𝑈𝑅𝐸 or 𝐴𝐷𝑀𝐼𝑋𝑇𝑈𝑅𝐸 (Pritchard et al. 2000; Alexander et al. 2009; Pierron et al. 
2018; Wangkumhang and Hellenthal 2018; Secolin et al. 2019). Naturally, identifying 
such signatures rely on confident assignment of ancestry components, be that from 
modern or archaic humans, and may be biased by limited ancient DNA data of ancestral 
human populations. 

Finally, local adaptation may be inferred from signatures of polygenic adaptation, which 
can be summarised as highly varied and often weak signatures spread over many loci 
(see Figure 1.8). Multiple small frequency shifts, which may occur at different 
timepoints and can be highly spread throughout the genome, means that polygenic 
selection can appear indistinguishable from neutral genetic drift (Pritchard et al. 2010; 
Le Corre and Kremer 2012). The highly variable dynamics of polygenic selection, such 
as the number of loci under polygenic adaptation, as well as the effect sizes and the 
origin of these alleles, also result in selection signatures that may appear very different 
from each other. In some cases, even very strong signatures may accompany polygenic 
adaptation; alleles with large effect sizes or a small number of alleles without 
deleterious pleiotropic effects may sweep to fixation as expected under SDN (Chevin 
and Hospital 2008).  

The omnigenic model offers an additional explanation as to why polygenic selection is 
difficult to identify in modern humans. This model considers that variants across almost 
the entire genome can contribute to an adaptive phenotype; these variants are found in 
both “core” genes (those which directly affect the phenotype) and “peripheral” genes 
(those that indirectly affect the phenotype through interacting networks (Boyle et al. 
2017; Mathieson 2021)). The effects of these “core” genes are consistent over different 
populations and are therefore more likely to be identified as under positive selection. 
However, the effects of “peripheral” genes are governed by their interaction with a 
number of other peripheral and core genes. Hence, their effects may differ amongst 
studied populations according to the differing allele frequencies across the entire gene 
network, and they may constitute the more variable signatures that elude identification 
(Mathieson 2021). 
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Figure 1.8: Cartoon depiction of polygenic adaptation. Each horizontal bar represents 
a haplotype and stars indicate mutations occurring on different genetic backgrounds. 
Taken from (Fan et al. 2016). 

 

 

1.5.2.1. A Note on Hard and Soft Sweeps 

Historically, selection signatures have been categorised into either “hard” or “soft” 
sweeps (Hermisson and Pennings 2005; Peter et al. 2012; Schrider and Kern 2016, 
2017), where hard sweeps represent the rapid rise of frequency resulting from SDN and 
soft sweeps represent weaker, and altogether more variable, signatures on the genome. 
These soft sweeps may be a result of weak selection, SSV or recurrent mutations, 
although the latter is unlikely in humans due to the low effective mutation rate 
(Hermisson and Pennings 2005). Many studies have attempted to determine the 
relative importance of hard and soft sweeps in human adaptation, more recently using 
methods like Approximate Bayesian Computation or Supervised Machine Learning to 
compare the proposed incidence of SDN, SSV and polygenic selection (Peter et al. 2012; 
Schrider and Kern 2016, 2017). 

Whilst there is value in assigning categories to differing dynamics of selection, the 
dynamics themselves (e.g., strength, age and frequency of the selected allele) are so 
intrinsically heterogeneous that a discrete categorisation will never fully represent 
signatures on the genome (Rees et al. 2020). Whilst many have moved away from using 
terms such as “hard” or “soft” sweeps (or at least recognise that “soft” can often be 
simply interpreted as the definition of all sweeps that aren’t strong enough to be “hard”) 
and instead moved to using terms such as SDN and SSV (Peter et al. 2012), often these 
terms are still used and may falsely imply a binary, or less variable, nature of selection 
in modern humans.  
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1.6. Methods to Identify Local Adaptation 

Local adaptation can be represented in the genome via a multitude of selection 
signatures. Methods, either individually or as a collection within the field, must be able 
to identify these various signatures and, by extension, identify the different dynamics of 
local adaptation. This includes different strengths and timing of selection, different 
allele origins, and different numbers of alleles under selection, all which must be 
distinguished from neutral processes. 

Random genetic drift can increase the frequency of alleles, sometimes so rapidly that 
they can mimic the allele frequency rise seen under positive selection. Demographic 
processes, particularly population bottlenecks, can aid this frequency increase (Rees et 
al. 2020). Such bottlenecks are not only common in human populations, but many 
populations have only a partially resolved demographic model (Gravel et al. 2011, 
2013). Without a high degree of certainty surrounding demographic history, it can be 
difficult to tease apart past population expansions and admixture with that of positive 
selection (Pritchard et al. 2010; Peter et al. 2012). 

Purifying selection can also mimic some of the genomic signatures of local adaptation. 
Background selection, or the reduced effective population size at sites linked to those 
undergoing purifying selection, increases the effect of genetic drift (Charlesworth et al. 
1995). This can cause strong genetic differentiation between populations, which is 
usually an indicator of local adaptation (Cruickshank and Hahn 2014). There is also 
evidence that deleterious introgressed alleles result in heterosis, or hybrid vigour, in 
modern humans, again mimicking signatures of adaptation (Kim et al. 2018; Zhang et al. 
2020). 

1.6.1. Summary Statistics 

The most common method to identify signatures of local adaptation is to represent 
selection signatures (or particular aspects of the overall signature) as a summary 
statistic and compare these to a neutral background. In practice, this involves sampling 
many loci throughout the genome, calculating the chosen summary statistic and 
identifying the loci with summary statistic values unexpected under neutrality (Sabeti 
et al. 2006; Rees et al. 2020). The gold-standard approach would be to have a neutral 
expectation based on truly accurate neutral simulations, operating under a fully 
resolved demographic model. In reality, this is both highly improbable and impractical 
for many studies and populations. A common method is instead to build an empirical 
distribution of the summary statistic values throughout the genome and identify loci 
with outlier values. It is an important distinction here that those outliers do not 
necessarily have signatures unexpected under neutrality, but are strong candidate 
targets of selection compared to the rest of the genome (Rees et al. 2020). 

Many classical summary statistics used to identify local adaptation aim to identify one of 
three signatures of selection (see Figure 1.9): high-frequency derived alleles (or skews 
in the site frequency spectrum (Tajima 1989)), population differentiation (Weir and 
Cockerham 1984; Yi et al. 2010; Yassin et al. 2016; Crawford et al. 2017; Librado and 
Orlando 2018; Schmidt et al. 2019) and degree of haplotype homozygosity (Voight et al. 
2006; Sabeti et al. 2007; Ferrer-Admetlla et al. 2014; Szpiech et al. 2021). Since these 
aspects of selection signatures are all strong under strong SDN, many classic summary 
statistics are well-equipped to identify this type of selection (indeed, reflected in the 
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literature of known adaptations (Rees et al. 2020)), but comparatively poorly equipped 
at detecting weaker signatures of selection (with some exceptions e.g., (Ferrer-Admetlla 
et al. 2014; Garud et al. 2015; Field et al. 2016; Speidel et al. 2019)).  

 

 

 
 

 

 

 

Figure 1.9: Common statistics used to 
identify local adaptation in modern 
humans. Statistics (not a comprehensive 
list) arranged according to their power in 
identifying different strengths and modes of 
local adaptation signatures. Abbreviations: 
iHS, integrated haplotype score; LRH, long 
range haplotype; PBS, population branch 
statistic; SDS, singleton density score; XP-
EHH, cross-population extended haplotype 
homozygosity. Taken from (Rees et al. 
2020). 

 

 

 

As previously noted, strong population differentiation can be considered a more 
universal signature of adaptation, leading to a particular focus on allele frequency 
differentiation methods to identify potentially weaker signatures of selection. This 
includes 𝐹𝑆𝑇  and similarly operating methods, such as the population branch statistic 
(𝑃𝐵𝑆; comparing three pairwise 𝐹𝑆𝑇 values between three populations to identify 
unusual differentiation (Yi et al. 2010)) and its derivatives (𝑃𝐵𝑆𝑛1, 𝑃𝐵𝑆𝑛𝑗  and 𝑃𝐵𝐸 

(Yassin et al. 2016; Crawford et al. 2017; Schmidt et al. 2019)). Multiple methods (e.g., 
𝐵𝑎𝑦𝑒𝑛𝑣 (Günther and Coop 2013)) continue to add value to using population 
differentiation methods to more confidently identify SNPs which are unusually 
differentiated by estimating the covariance due to shared ancestry in allele frequencies 
between populations. 

There has been some development in using composite statistics, or those that combine 
multiple summary statistics whilst accounting for correlation between the individual 
statistics, to present an overall score for selection (Grossman et al. 2010; Ma et al. 
2015). Naturally, the composite score is reduced when any of the individual summary 
statistics used are themselves of low value. Hence, these methods have the highest 
power in identifying those selective events that result in consistently strong selection 
signatures. More than this, combining signatures into a single score in this way can 
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make understanding the dynamics of selection less intuitive. Calculating such statistics 
individually but manually considering their results together for a candidate locus may 
result in a more informed view on the probability and nature of selection.  

1.6.1.1. Machine Learning Methods  

Machine learning methods integrate spatial patterns along the genome to classify loci 
into prespecified models of evolution, such as the exact nature of inferred selective 
sweeps (including traditional classifications of “hard” or “soft”, as well as completeness 
or timing of the sweep; Pybus et al. 2015; Sheehan and Song 2016; Schrider and Kern 
2016, 2017; Kern and Schrider 2018; Sanchez et al. 2020; Gower et al. 2021, Caldas et al, 
2022; Qin et al. 2022). In some cases, the spatial patterns of a range of summary 
statistics are used to represent the genomic data (Pybus et al. 2015; Sheehan and Song 
2016; Schrider and Kern 2016, 2017; Sugden et al. 2018; Mughal and DeGiorgio 2018). 
In the case of deep learning algorithms, a particularly promising subset of machine 
learning algorithms, a predefined set of summary statistics is not required as input 
(LeCun et al, 2015; Sheehan and Song 2016; Kern and Schrider 2018; Sanchez et al, 
2020; Gower et al, 2021, Caldas et al, 2022, Qin et al. 2022). Instead, deep learning 
methods can effectively use the entirety of the available raw data to learn which 
features are most useful for predicting the nature and presence of natural selection, 
potentially improving inferences by using the data which would be lost in the process of 
calculating summary statistics (Korfmann et al, 2023).  

Machine learning methods in their entirety are particularly promising since they are 
trained by a range of simulations modelling different selection scenarios, some of which, 
e.g., those arising from polygenic adaptation or SSV, are not represented by extreme 
patterns in the raw data, including those captured by summary statistics (Pybus et al. 
2015; Sheehan and Song 2016; Schrider and Kern 2016, 2017; Kern and Schrider 2018; 
Sanchez et al, 2020; Gower et al, 2021, Caldas et al, 2022, Qin et al. 2022). In short, these 
methods have the potential to recognise the more subtle genomic signatures that 
characterise other strengths or dynamics of selection.  

1.6.2. Ancient DNA 

Ancient DNA (aDNA) sequencing methods have vastly improved in the 21st century 
alone, with available ancient human samples now sequenced in their thousands 
(Racimo et al. 2015; Wohns et al. 2022). Whilst many of these are dated to more recent 
times (e.g., <5000 years ago), there is increasing coverage of ancient human populations 
as far back as ~45kya (Skoglund and Mathieson 2018), as well as numerous archaic 
human samples dating as more than ~50kya (Green et al. 2010; Reich et al. 2010; Meyer 
et al. 2012, 2012; Castellano et al. 2014; Prüfer et al. 2014, 2017; Mafessoni et al. 2020). 

Ancient DNA is exceptionally powerful in selection studies because it can provide direct 
snap-shots of past allele frequencies (Key et al. 2018). This allows the identification of 
rapid allele frequency change, and hence potentially suggest the onset of selection; 
identify or support proposed selection at individual sites; and allow a deeper 
understanding of the role of adaptation and neutrality in creating modern population 
differentiation. (Sverrisdóttir et al. 2014; Mathieson et al. 2015a; Mathieson and 
Mathieson 2018; Le et al. 2022; Mathieson and Terhorst 2022).  

More than this, aDNA is imperative in understanding adaptive admixture or 
introgression, where ancient genomes can identify the population origin of alleles and 
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identify any regions with an unusually high contribution from one ancestral population, 
that which is expected under adaptive admixture (Mathieson et al. 2015a; Racimo et al. 
2015).  Ultimately, aDNA has played a key role in evaluating the role of gene flow in 
neutral and selected genetic diversity, e.g., has allowed identification of loci mediating 
adaptation post-admixture in European and American populations (Mathieson et al. 
2015a; Lindo et al. 2016), as well as introgressed alleles conferring adaptation in many 
non-African populations (Green et al. 2010; Reich et al. 2010; Meyer et al. 2012; Huerta-
Sánchez et al. 2014; Prüfer et al. 2014; Racimo et al. 2015). 

1.6.3. Tree-based Methods 

Many recent advances have been made in genealogical reconstruction methods (Hejase 
et al. 2020): those that build individual trees for SNPs along the genome which, in 
theory, represent an almost complete history of each locus. Here, the evidence for 
selection can then be more directly evaluated from the inferred tree. This is considered 
superior to using classical summary statistics to infer selection, since these statistics 
complex evolutionary or genomic patterns into a single value (Rees and Andrés 2022). 

Tree-based methods to infer selection have been used in a number of programmes for 
some time (e.g., 𝐴𝑅𝐺𝑤𝑒𝑎𝑣𝑒𝑟 and 𝑚𝑠𝑝𝑟𝑖𝑚𝑒; both continuing to be developed 
(Rasmussen, Hubisz, et al. 2014; Kelleher et al. 2016; Hubisz and Siepel 2020; 
Baumdicker et al. 2022, Brandt et al, 2022) but only recently have computational 
advances allowed the inference of genealogies for large sample sizes (Kelleher et al. 
2019; Speidel et al. 2019; Wohns et al. 2022), pushing these methods to the forefront of 
the field. Two notable recent methods, 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝑡𝑠𝑖𝑛𝑓𝑒𝑟, are able to efficiently build 
trees from over 1000 samples, including the integration of high-coverage archaic 
human samples (Kelleher et al. 2019; Speidel et al. 2019; Wohns et al. 2022). 𝑡𝑠𝑖𝑛𝑓𝑒𝑟 
has also been used to infer a “unified genealogy”, one that has been built from 3601 
modern and high coverage ancient genomes (alongside using 3589 low-coverage 
ancient samples to further constrain and date the tree) and represents the most 
complete tree-representation of the genetic history of humans yet (Rees and Andrés 
2022; Wohns et al. 2022). 

Whilst 𝑡𝑠𝑖𝑛𝑓𝑒𝑟 is accompanied by a python package (𝑡𝑠𝑘𝑖𝑡 (Kelleher et al. 2019; 
Baumdicker et al. 2022)) that allows manipulation and analysis of the inferred tree 
sequences, including calculating summary statistics using the inferred trees, 𝑅𝑒𝑙𝑎𝑡𝑒 has 
a built-in method for inferring selection, and is generally considered more suited to this 
analysis (Speidel et al. 2019). 𝑅𝑒𝑙𝑎𝑡𝑒 first infers a tree for each SNP along the genome 
(see Chapter 2), and then simultaneously re-estimates branch lengths, changing 
population size through time and mutation rate to refine the tree sequences. Its 
selection test uses these inferred trees and allele ages to compare the spread of a 
mutation (or the lineage carrying a mutation) to all other lineages, conditioning on the 
number of lineages present on the onset of the mutation and outputting a probability of 
the mutation’s trajectory under neutrality. This has shown to be successful in 
identifying both monogenic and polygenic adaptation (Speidel et al. 2019), and its direct 
inference of a mutation’s spread is suggested to be better suited in identifying subtler 
instances of selection.  
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1.6.4. Environmental Correlations 

Arguably the strongest evidence of local adaptation is when correlations are observed 
between allele frequencies and environmental factors, given that they are more extreme 
than expected under population histories and relatedness (Günther and Coop 2013). 
𝐵𝑎𝑦𝑒𝑛𝑣 is one such method that is able to account for population structure when 
testing for environmental correlations, and has been used to identify human 
adaptations along clines of climate, diet and pathogen density (Hancock et al. 2008; 
Hancock, Witonsky, et al. 2010, 2011; Fumagalli et al. 2011; Hancock, Clark, et al. 2011). 

Otherwise, linear models may be used to ask to what extent shared ancestry and 
proposed environmental factors explain the observed allele frequencies, a method that 
has been used to infer adaptation to climate, including that of the cold receptor TRPM8 
to cold ambient temperature (Raj et al. 2013; Key et al. 2018). Evidence for local 
adaptation is also given when functionally relevant genes are inferred to be under 
selection in a linked extreme environment (as the case for strong signatures of selection 
in AS3MT, a gene associated with arsenic metabolism, in populations living on arsenic-
rich soils of Argentina (Schlebusch et al. 2015)), or when several populations 
experiencing similar selective pressures show signatures of selection in the same 
gene(s) (as is the case for selection signatures surrounding the LCT gene, that which is 
responsible for lactase persistence in multiple pastoralist populations (Tishkoff et al. 
2007a; Gerbault et al. 2011; Evershed et al. 2022)). 

1.6.5. Identifying Polygenic Selection 

Identifying polygenic adaptation is considered far more challenging than identifying 
monogenic adaptation, since the signatures of selection are defined by weaker allele 
frequency changes spread amongst multiple loci (as well as being highly variable in the 
degree of allele frequency change, number of loci and their associated effect sizes). The 
most common methods used to identify polygenic selection are derived from genome-
wide association studies (GWAS) (Sabeti et al. 2006; Berg and Coop 2014; Berg, Zhang, 
et al. 2019) (see Section 1.6.5.1), alongside a growing use of gene set and gene network 
methods (Daub et al. 2013, 2017; Gouy et al. 2017; Gouy and Excoffier 2020) (see 
Section 1.6.5.2.). 

Additional methods to identify polygenic adaptation, but not explored in detail here, 
included statistics such as 2𝐷𝑁𝑆 (a McDonald-Kreitman-based test (Daub et al. 2015)) 
or 𝑆𝐷𝑆 (Single Density Score; which uses the distances in tree tip branch lengths to infer 
selection (Field et al. 2016)). The latter statistic, whilst shown to have good power in 
identifying recent selection, is still liable to population stratification when using GWAS 
hits (see Section 1.6.5.1).  

1.6.5.1. Genome-Wide Association Studies 

The increasing availability of genome sequences and catalogues of human genetic 
variation makes GWAS a popular choice in identifying polygenic selection (Sabeti et al. 
2006). These studies scan for genetic markers over complete genomes that are 
associated with a particular trait or disease, and their ultimate objective is to identify 
causal genetic variants and estimate their corresponding effect size on such a trait. To 
identify polygenic adaptation, the effect sizes calculated from these studies can also be 
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used to identify the global sets of alleles that show positive covariance (Berg and Coop 
2014; Berg, Zhang, et al. 2019).  

However, it has now been suggested that differences in the genetic basis of traits in 
populations and hidden population stratification amongst the samples used in these 
studies can result in spurious claims of polygenic adaptation (Berg, Harpak, et al. 2019; 
Sohail et al. 2019). Still, population stratification is only believed to result in small, 
systematic biases, rather than false genome-wide significant associations. Hence, when 
testing if derived mutations increasing or decreasing a phenotype are enriched for 
evidence of positive selection, one study chose to use only SNPs with genome-wide 
significant associations in their analysis (Speidel et al. 2019). This method, which also 
only used effect direction rather than effect size, reduces confounding due to population 
stratification, but does not completely avoid it (Speidel et al. 2019).  

However, it must also be considered that SNPs identified as causal to a trait in one 
population may not necessarily be causal in other populations, and can further lead to 
false inferences of selection. Many of the recognised issues with using GWAS highlight 
the need for wider sampling of human populations in order to understand currently 
undocumented genetic variance, and its association with modern traits (see Section 
1.4.3). 

1.6.5.2. Gene Set Methods 

Methods using gene sets, or gene networks, propose to combine the weak signatures 
from multiple genes within a meaningful set, such as known biological pathways (Daub 
et al. 2013, 2017; Foll et al. 2014; Amorim et al. 2015; Gouy et al. 2017; Gouy and 
Excoffier 2020). This can result in a gain of statistical power to detect polygenic 
selection, even when the selection on individual genes is weak. These approaches have 
given evidence for polygenic adaptation to pathogens (Daub et al. 2013), convergent 
adaptation to high-altitude (Foll et al. 2014) and tropical forest environments in 
modern humans (Amorim et al. 2015), as well as more ancient selection acting after the 
human-chimp split (Daub et al. 2017). 

One particular gene-set enrichment test, notable for its simplicity and customisation, is 
the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 method (Daub et al. 2013). This method uses the sums of test statistics, 
compared to neutral gene sets, to detect selection for a given gene set or pathway. 
Hence, it specifically looks for the signatures of small effect mutations over a phenotype, 
making it highly suitable for identifying polygenic selection. Moreover, whilst this 
method has previously used 𝐹𝑆𝑇 as the summed test statistic (Daub et al. 2013), 
𝑆𝑈𝑀𝑆𝑇𝐴𝑇 can integrate any test statistic in its identification process, allowing the use 
of more sensitive statistics should they be identified or proposed. 

Still, 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 is naturally limited by its integrated test statistic, and may falsely 
identify signatures arising from background selection or relaxation of constraint as 
positive polygenic selection (Daub et al. 2013). As well as this, such a method relies on 
accurate sets of neutral genes, which in practice are often sets of random genes 
throughout the genome that should, but do not necessarily, approximate neutrality. 

All gene set or network methods also inherently rely on functionally related sets or 
networks of genes, where some genes may be associated with multiple functions and 
hence represented in multiple sets or networks (Daub et al. 2013; Gouy et al. 2017). It 
can therefore be difficult to tease apart selection on one function from another and, 
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given pleiotropic constraints, it is often unrealistic to expect all genes within a gene set 
to be exhibiting signatures of polygenic selection. 

1.6.6. Determining the Selective Driver 

Once local adaptation has been identified, the natural next step is to identify the driving 
selective force. In some cases, this is integrated in the identification of local adaptation 
itself (e.g., when using environmental data to identify unusual allele correlations, 
repeated adaptation of the same genes to similar environments or functional 
relationships between putatively selected genes and environment, see Section 1.6.4), 
but in most cases additional avenues may be used.  

Determining the timing of proposed local adaptation events is a common way of 
attempting to identify a putative selective force. Here, aDNA is especially valuable, since 
it can help reconstruct the allele frequency through time, constraining estimates of the 
onset of selective pressures (Mathieson et al. 2015a; Mathieson and Mathieson 2018; Le 
et al. 2022; Mathieson and Terhorst 2022). Due to the increasing availability of samples, 
many studies using aDNA to infer selection have been carried out in European 
populations. Their results have questioned the proposed link between the development 
of agriculture and selection inferred on the FADS locus (linked to fatty acid metabolism), 
AMY1 (production of amylase) and LCT (production of lactase) (Sverrisdóttir et al. 
2014; Mathieson et al. 2015a; Mathieson and Mathieson 2018; Le et al. 2022). 

Otherwise, studies may aim to establish the function of putatively selected genes or 
genomic elements to suggest the environmental pressure for which they are 
responding, often using model organisms (Lamason et al. 2005; Fujimoto et al. 2008). 
Such methods have helped elucidate the role of genes such as SLC24A5 (under positive 
selection in European populations; affecting pigmentation in zebrafish (Lamason et al. 
2005)) and EDAR (under positive selection in Asian populations; affects mammary and 
eccrine glands in mice (Fujimoto et al. 2008) and now shown to affect hair thickness, 
tooth and ear shape, sweat gland density and chin protrusion in modern humans 
(Fujimoto et al, 2008; Adhikari et al, 2015; Reyes-Reali et al, 2018, Kataoka et al, 2021).  

Determining the phenotypic trait affected by human variants is considerably more 
challenging. Whilst large association studies can propose trait associations (with 
recognition of the bias towards more studied and sampled populations), elucidating the 
molecular response of selected variants relies on further analyses integrating 
transcriptomics, metabolic and microbiota datasets (Rees et al. 2020). SNP-function 
may also be categorised with the use of high-throughput assays exploring the effect of 
proposed adaptive variants on protein expression, transcription or methylation 
(Downes et al. 2019). As stem cell technology improves, it may also become more 
commonplace to use pluripotent stem cells and stem cell-derived organoids to 
experimentally test the phenotypic consequences of certain gene variants in human 
cells (Kilpinen et al. 2017; Hwang et al. 2019). This represents an exciting future avenue 
for local adaptation studies, providing additional tools to investigate not only variants 
under selection, but the functional consequences of such selection, ultimately necessary 
to validate these signatures. 

1.7. Micronutrients in the Human Diet 

Micronutrients are an essential part of the human diet since, with the exception of 
vitamin D, they are not synthesised in the body (Shenkin 2006). Instead, they must be 
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consumed via the diet, where the levels of micronutrients in plant and animal foodstuffs 
rely heavily on the underlying soil geology (Diamond 2002; White et al. 2015; Dhaliwal 
et al. 2019). They play a central role in human metabolism and maintenance of tissue 
function, and are particularly important in immunity and healthy growth and 
development (Shenkin 2006). Micronutrient levels in the diet outside a very small but 
specific healthy range can result in a range of pathologies, many of which are very 
common over global or individual populations (see Section 1.7.1).  

Micronutrients themselves can be split into two main categories: vitamins (organic 
compounds made by plant and animal sources) and minerals (inorganic compounds 
absorbed from soil or water; (Tako 2019)). Minerals are further subset into 
macrominerals and trace minerals, where macrominerals are needed in slightly higher 
levels compared to trace minerals and vitamins (see Table 1.2), but are still required at 
far reduced levels compared to macronutrients such as carbohydrates or fats (Prasad 
2013; Tako 2019). Here, we focus on the trace minerals and macrominerals in the 
human diet. 

 

Table 1.2: Recommended daily amounts (RDA; for adults >19 years old) for all 
micronutrients needed for maintaining human health. Given alongside major 
sources of each micronutrient. Taken from (Streit 2018; Rowles 2023).   

 

Micronutrient Type Micronutrient Source RDA 
Macrominerals Potassium Lentils, acorn squash, 

bananas 
4700mg 

 Sodium Salt, processed foods 2300mg 
 Calcium Milk products, leafy 

greens, broccoli 
2000-2500mg 

 Chloride Seaweed, salt, celery 1800-2300mg 
 Phosphorus Salmon, yogurt, turkey 700mg 
 Magnesium Almonds, cashews, 

black beans 
310-420mg 

 Sulphur Garlic, onions, brussels 
sprouts, eggs, mineral 

water 

None established 

Trace Minerals Iron Oysters, white beans, 
spinach 

8-18mg 

 Zinc Oysters, crab, 
chickpeas 

8-11mg 

 Fluoride Fruit juice, water, crab 3-4mg 
 Manganese Pineapple, pecans, 

peanuts 
1.8-2.3mg 

 Molybdenum Beans, lentils, grains, 
organ meats 

2000mcg 

 Copper Liver, crabs, cashews 900mcg 
 Iodine Seaweed, cod, yogurt 150mcg 
 Selenium Brazil nuts, sardines, 

ham 
55mcg 

Vitamins Vitamin A Liver, dairy, fish, sweet 
potatoes, carrots, 

spinach 

700-900mcg 

 Vitamin B1 (thiamine) Whole grains, meat, 
fish 

1.1-1.2mg 

 Vitamin B2 (riboflavin) Organ meats, eggs, milk 1.1-1.3mg 
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 Vitamin B3 (niacin) Meat, salmon, leafy 
greens, beans 

14-16mg 

 Vitamin B5 
(pantothenic acid) 

Organ meats, 
mushrooms, tuna, 

avocado 

5mg 

 Vitamin B6 
(pyridoxine) 

Fish, milk, carrots, 
potatoes 

1.3mg 

 Vitamin B7 (biotin) Eggs, almonds, spinach, 
sweet potatoes 

30mcg 

 Vitamin B9 (folate) Beef, liver, black eyed 
peas, spinach, 

asparagus 

400mcg 

 Vitamin B12 
(cobalamin) 

Clams, fish, meat 2.4mcg 

 Vitamin C (ascorbic 
acid) 

Citrus fruits, bell 
peppers, Brussels 

sprouts 

75-90mg 

 Vitamin D Sunlight, fish oil, milk 600-800 IU 
 Vitamin E Sunflower seeds, wheat 

germ, almonds 
15mg 

 Vitamin K Leafy greens, soybeans, 
pumpkin 

90-120mcg 

 

 
1.7.1. Micronutrient Deficiency and Toxicity 

Micronutrient deficiency is estimated to affect 2 billion people worldwide, with the 
majority of these individuals in sub-Saharan Africa and South-Central Asia (Bhutta and 
Salam 2012; Bailey et al. 2015). Of these, 178 million are children under 5 and 
estimated to have experienced stunted growth from micronutrient deficiency, with 19 
million of these predicted to be at such a level of malnutrition to be at a risk of death 
(Bhutta and Salam 2012). Often deficiencies co-occur, and may be further coupled with 
protein or caloric malnutrition (Bailey et al. 2015). This can complicate the association 
between micronutrient deficiency and health, since it most explicitly associates 
undernutrition to increased health risk.  

Still, micronutrient deficiencies independently result in an increased risk of metabolic, 
cardiovascular and infectious diseases (Shenkin 2006; Triggiani et al. 2009; Tulchinsky 
2010; Bailey et al. 2015; Biban and Lichiardopol 2017; Khan et al. 2022). During 
development, deficiencies may result in stunted growth, mental retardation and an 
overall increased risk of morbidity and mortality (Halsted et al. 1972; Yant et al. 2003; 
Conrad et al. 2004; Shenkin 2006; Prasad 2013; Bailey et al. 2015). Hence, pregnant 
women and children under five are considered the most vulnerable to the long-term 
effects of micronutrient deficiency and generally are the focus of public health 
intervention strategies. In some cases, intervention strategies have great success and 
health disorders may even be reversed with supplementation of the missing 
micronutrients. In other cases, particularly when malnutrition occurs at key periods of 
development, the health consequences remain permanent (Bailey et al. 2015). 
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The most widespread macromineral and trace minerals deficiencies are those 
pertaining to iron, iodine and zinc2 (Bhutta and Salam 2012; Bailey et al. 2015). Iron is 
the most common global deficiency, with approximately 40% of children between 6-59 
months and 36% of pregnant women estimated as anaemic in 2019 (Stevens et al. 
2022). Anaemia increases the risk of poor maternal and perinatal health, delays growth 
and cognitive development, and considerably reduces physical work capacity and 
impairs immune and endocrine function (Stevens et al. 2022). Goitre, the swelling of the 
thyroid gland as a result of iodine deficiency, is observed in approximately 15.8% of the 
global population (Gebremichael et al. 2020). Like iron, extreme iodine deficiency is 
tightly associated with impaired cognitive function and mental retardation, particularly 
during development. Zinc deficiency, estimated to affect 1.1billion people worldwide, 
however, is primarily associated to impaired immune function (Bailey et al. 2015; Khan 
et al. 2022). Deficiency is associated with increased risk of diarrhoea and acute 
respiratory infections, including the SARS-CoV-2 virus, which are major causes of death 
in many global populations (Khan et al. 2022). The major health consequences and 
symptoms associated with less common macromineral and trace mineral deficiencies of 
interest, alongside their toxicity symptoms, are summarised in Table 1.3. 

Micronutrient toxicities generally result in increased gastrointestinal distress, nausea, 
vomiting and diarrhoea, with some claims that they can increase the risk of poisoning 
from non-essential minerals (Peraza et al. 1998; Pike and Zlotkin 2019). Toxicities have 
been identified across many domestic animal and plant species, often a result of the 
underlying soil conditions (Becker and Asch 2005; Giri et al. 2021; Kaur and Garg 2021), 
but are less commonly recorded in humans compared to micronutrient deficiencies 
(Fraga 2005). This may be due in some parts to the decoupling of toxicity from 
surrounding malnutrition risk. Hemochromatosis, or the systemic overload of iron 
caused by mutations in the HFE, HAMP, HJV, TFR2 and SLC40A1 genes, is the most 
common micronutrient toxicity disorder (Brissot et al. 2018). This is most common in 
European populations (see Section 1.7.3.) and results in a range of symptoms including 
chronic fatigue, joint pain and, in extreme cases, cardiac failure (Naugler 2008; Brissot 
et al. 2018). 

 

 

 

 

 

 

 

 

 

                                                        
2 Deficiencies of vitamin A and folate are also very common micronutrient deficiencies and are of a 
concern to global health. Vitamin A deficiency is the leading global cause of vision loss (Xu et al. 2021)) 
and deficiencies of folate, or vitamin B9, is estimated to be associated with 80% of neural tube defects 
during pregnancy (fatal or severely disabling birth defects that result in approximately 300,000 cases 
worldwide (Wald 2022)). 
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Table 1.3: The role of thirteen essential trace minerals and macrominerals. 
Given alongside documented symptoms or diseases associated with their respective 
deficiencies and toxicities. 

 

Micronutrient Role Deficiency 
Symptoms 

Toxicity 
Symptoms 

References 

Potassium Nerve 
transmission, 
muscle 
function 

Increased blood 
pressure, fatigue, 
constipation, 
polyuria, cardiac 
arrhythmias  

Neuromuscular 
dysfunctions 

(Erdman et al. 
2012; Jain et al. 
2013; Stone et 
al. 2016; Streit 
2018) 

Sodium Maintains 
blood pressure 

Impaired cognition, 
fatigue, nausea, 
weight loss  

Increased blood 
pressure, 
hypertension, 
cardiovascular 
morbidity  

(Geerling and 
Loewy 2008; 
Hurley and 
Johnson 2015; 
Grillo et al. 
2019) 

Calcium Bone and teeth 
structure and 
growth, muscle 
function, blood 
vessel 
contraction 

Reduced bone 
strength 
(osteoporosis), 
defective bone 
mineralisation and 
bone softening 
(osteomalacia) 
rickets (in children) 

Weight loss, 
polyuria, heart 
arrhythmias, 
fatigue, soft tissue 
calcifications  

(Sunyecz 2008; 
Calcium et al. 
2011; Streit 
2018) 

Chloride Maintains fluid 
balance, 
digestive juices  

Muscle weakness, 
lethargy, loss of 
appetite  

Pulmonary 
irritation and injury 
(gaseous explosure) 

(Grossman et 
al. 1980; Morim 
and Guldner 
2022) 

Phosphorus Forms bone 
and cell 
membrane 
structure  

Anaemia, muscle 
weakness, bone 
pain, osteomalacia, 
decreased immunity  

Hypotension, 
vascular 
calcification, cardiac 
arrest  

(Razzaque 
2011; Streit 
2018) 

Magnesium Enzymatic 
reactions, 
regulates 
blood pressure  

Nausea, vomiting, 
fatigue, weakness, 
seizures, muscle 
cramps, 
hypocalcemia, 
hypokalemia, 
osteoporosis  

Hypotension, 
nausea, muscle 
weakness 

(Castiglioni et 
al. 2013; Al 
Alawi et al. 
2018; Streit 
2018; Ajib and 
Childress 
2022) 

Iron Supplies 
muscles with 
oxygen, 
hormone 
synthesis  

Anaemia (fatigue, 
shortness of breath, 
dizziness, heart 
palpitations) 

Hormonal 
abnormalities, 
decreased 
immunity, diabetes, 
heart disease, liver 
disease, fatigue, 
joint pain 

(Fraga and 
Oteiza 2002; 
Fraga 2005; 
Streit 2018; 
Stevens et al. 
2022) 

Zinc Growth, 
immunity  

Delayed growth, 
impaired immune 
function, alopecia, 
diarrhoea, cognitive 
decline 

Anaemia, headache, 
abdominal cramps, 
nausea  

(Plum et al. 
2010; Streit 
2018; Khan et 
al. 2022) 

Manganese Carbohydrate, 
amino acid and 
cholesterol 
metabolism  

Abnormal bone and 
cartilage 
development, 

Neurological 
dysfunction 

(Horning et al. 
2015; O’Neal 
and Zheng 
2015; Streit 
2018) 
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delayed wound 
healing  

Molybdenum Cofactor for 
enzyme 
reactions  

Tachycardia, night 
blindness, 
irritability, 
childhood death (if a 
result of the genetic 
disorder 
molybdenum 
cofactor deficiency) 

Hallucinations, 
seizures, cognitive 
decline 

(Novotny 2011; 
Reiss and 
Hahnewald 
2011; Rowles 
2023) 

Copper Brain and 
nervous 
system 
function, 
connective 
tissues  

Anaemia, ataxia, low 
numbers of white 
blood cells 
(neutropenia) 

Vomiting, 
abdominal pain, 
paralysis  

(Williams 
1983; Ashish et 
al. 2013; 
Prohaska 
2014) 

Iodine Thyroid 
regulation 

Growth and 
development 
impairment, 
neurodevelopmental 
deficits, cretinism, 
hypothyroidism and 
goitre   

Nausea, diarrhoea, 
vomiting, delirium  

(Miles 1998; 
Biban and 
Lichiardopol 
2017; Streit 
2018; Southern 
and Jwayyed 
2022) 

Selenium Thyroid 
regulation, 
reproductive 
health, defence 
against 
oxidative 
damage, 
potential 
cancer 
prevention 

Cognitive decline, 
impaired immunity, 
osteoarthritis (e.g., 
Kashin-Beck 
disease), 
cardiomyopathy 
(e.g., Keshan 
diseasd), exacerbate 
iodine deficiency   

Metallic taste in 
mouth, hair and nail 
loss, nausea, 
diarrhoea, fatigue, 
nervous system 
abnormalities 

(MacFarquhar 
et al. 2010; 
Streit 2018; 
Ibrahim et al. 
2019; Shi et al. 
2021; Xu et al. 
2022) 

 

 

1.7.2. Global Variation of Micronutrient Levels 

A significant proportion of contemporary micronutrient deficiency is linked to the 
socioeconomic status of individual populations, and significantly associated with global 
poverty and undernutrition (Keats et al. 2019). Indeed, the most prevalent cases of 
micronutrient deficiency are observed in low-income and middle-income countries 
(Keats et al. 2019; Khan et al. 2022). Often, the diets of these countries largely consist of 
staple foods that do not sufficiently cover the range of nutrition needed for optimum 
health, and may be very low in levels of specific micronutrients (Ishfaq et al. 2021). 
Toxicities, however, often result from chemical exposure to the individual, rather than 
at a population-wide level (Fraga 2005). 

Still, the public health concerns of some populations include particular micronutrient 
deficiencies, or even toxicities, driven by the micronutrient levels of their underlying 
soil environment. This can result in micronutrient-associated diseases endemic to a 
population or region. Here, such a health burden on a population may have been 
experienced for considerably longer periods of time, rather than a product of relatively 
recent global and societal inequality.  
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1.7.2.1. Soil Geology and Micronutrient Levels 

Micronutrients are present in soils in a variety of different forms, which vary in their 
bioavailability (the extent that they may absorbed and used) to plant and animal 
species. They may be present as precipitates, adsorbed onto soil particles, present as 
complex ring compounds or simply be part of rocks (primary minerals) or clays 
(secondary minerals) (Keefer 1999). Many chemical factors affect the form 
micronutrients take in the soil and their corresponding bioavailability, such as other 
available elements, pH and organic matter (Dhaliwal et al. 2019; Liu et al. 2021). 
Geographical factors also play a role, particularly the surrounding rock types, 
topography and distance from the ocean (e.g., coastal regions are noted as particularly 
high in iodine and many iodine deficient regions are highly landlocked (Cifor 2006; 
Shetaya et al. 2012)). It is important to note that high levels of a micronutrient in a soil 
does not directly result in high intake in the human diet, as it is the bioavailability itself 
that plays the greatest role. 

Given the extreme variety of global environments, soils can be highly variable even 
between relatively proximal localities (and also may not align directly with modern 
country or region classifications). Whilst there are few comprehensive studies of 
micronutrient levels across global soils, and even fewer that compare the levels of 
different micronutrients, the global distributions of some micronutrients are well-
explored. Often, this is linked to either the prevalence of human micronutrient-
associated disorders (e.g., the endemic diseases caused by selenium deficiency in East 
Asia have prompted many studies investigating selenium levels in local soils (Hurst et 
al. 2013; Liu et al. 2021, p. 202)), or their relevance in agriculture, particularly to 
optimise plant growth (Diamond 2002; Alloway 2013; Duborská et al. 2022).  

Areas of the world with the most notable, and most well resolved, deficient or toxic soils 
for different micronutrients are given below, accompanied by their associated endemic 
diseases when relevant. These are simply well-documented examples, and should not 
be considered the only examples of micronutrient deficiency or toxicity in global soils. 
Moreover, there is likely considerable change from the ancestral soil state following the 
birth of wide-scale agriculture, and contemporary micronutrient soil levels may not 
reflect their levels throughout the majority of time (Diamond 2002). 

Selenium 

Selenium levels have been shown to be highly variable at both the global and the local 
scale. Most notably, selenium-deficient soils have been recorded in areas of East Asia, 
particularly along a wide belt stretching across the southwest to northeast of China 
(although this also contains pockets of selenium-enriched soils; see Figure 1.10 (Xia et 
al. 2005; Liu et al. 2021)). Indeed, endemic diseases related to selenium deficiency have 
been identified in particularly rural populations within these regions, such as the 
cardiomyopathy Keshan disease and bone disorder Kashin-Beck disease (Shi et al. 2021; 
Xu et al. 2022). Otherwise, there is evidence for geospatial variation in selenium levels 
across many African soils, with deficiencies particularly highlighted in Malawi (Hurst et 
al. 2013; Ligowe et al. 2020), alongside New Zealand, Finland, Australia and some areas 
of North and South America  (Fig 1.10; (Koivistoinen and Huttunen 1986; Thomson 
2004; Jones et al. 2017). 
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Figure 1.10: Geographical representation of soil selenium levels. Soil selenium levels 
modelled from 1980-1999 (A) and predicted percentage change in soil selenium levels 
from 1980-1999 to 2080-2099 (B). Taken from (Jones et al. 2017). 

 

Iodine 

Iodine deficiency often co-occurs with selenium deficiency in soils, due to their shared 
reliance on proximity to aquatic environments (Winkel et al. 2015; Duborská et al. 
2022). Soils documented as low in both selenium and iodine include those in Central 
Africa, Central and East Asia and pockets in the Americas, amongst others (Lyons 2018). 
This often results in the co-occurrence of selenium and iodine-associated disorders. 
Moreover, the metabolic pathways which rely on selenium and iodine are often tightly 
interlinked (Duborská et al., 2022), where low selenium levels may even exacerbate the 
effects of iodine deficiency (Triggiani et al. 2009).  

Rainforest environments have been particularly highlighted as being low in iodine, 
including those in Central Africa, the wet zones of Sri Lanka and the wet, monsoon delta 
regions of Java and Bali (Cifor 2006). Goitre has been reported at high incidence in some 
populations living in these environments, including the Bantu population of Central 
Africa, which have a 42.9% incidence of goitre (Dormitzer et al. 1989). Other affected 
populations include those in Central and South America, with the incidence of goitre at 
54.6% in Mexico in the 1980s (Hetzel and Nutrition 1988), and various South and East 
Asian populations, where goitre has been treated with iodine supplementation since the 
mid 19th century (Miles 1998).  
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Zinc 

Zinc deficient soils have been identified particularly across the Middle-East (Sillanpaeae 
1982; Ryan et al. 2013), as well as India and sub-Saharan Africa (Arunachalam et al. 
2013; Kihara et al. 2020), and some areas of China, Indonesia and north-western region 
of South America (Prasad 2013). From a survey of over 3500 soils across 29 countries, 
Iraq was found to have the highest proportion of zinc-deficient soils (57%) followed by 
Turkey (35%) and Pakistan (20%) (Sillanpaeae 1982). Indeed, zinc deficiency also has 
the strongest history in the Middle-East, where the first instances of zinc deficiency 
were recognised in the 20th century (Halsted et al. 1972; Gibson 2012; Prasad 2013). 
Here, the dietary zinc levels were so low that it resulted in extreme stunted growth, 
delayed sexual development and recurrent infections that usually resulted in death 
before 25 years of age (Halsted et al. 1972; Prasad 2013; Khan et al. 2022). 

Sodium and Chloride (Salt) 

Hyper-salinity, or excess of salt in soils (associated with levels of both sodium and 
chloride, the elemental constituents of salt) often occur in arid zones with low rainfall, 
and has been linked to the fall of many agricultural civilisations when it has decimated 
crop growth (including multiple times in the history of Iraq (Shahid et al. 2018)). Hence, 
it must be noted that the main recorded impact excess salinity has on human health is 
the reduction of crop yield and general nutrition, rather than overt micronutrient 
deficiencies or toxicities. As well as in Iraq (and other areas of the Middle-East), hyper-
salinity has been reported in the arid regions of South Africa, the Americas and 
Australia (Nell and van Huyssteen 2018; Shahid et al. 2018; Hassani et al. 2021), but it is 
unclear the degree to which recent agriculture has contributed to the contemporary 
excess levels of salt in soils (Hassani et al. 2021). 

Phosphorus 

Phosphorus levels in the soil are also heavily affected by farming practices, both by use 
of fertilizers or by over-farming (Dhaliwal et al. 2019; Alewell et al. 2020). Still, 
calcareous soils are known to have low bioavailability of phosphorus (von Wandruszka 
2006), as well as low levels of iron (Chen and Barak 1982). There is also a broad pattern 
of increased soil phosphorus in non-African soils, particularly across northern areas of 
Europe, Asia and the Americas (He et al. 2021). 

Micronutrients with Limited Soil Data 

The soil levels of the remaining micronutrients of interest (see Table 1.3) are less 
clearly elucidated. From the literature, we highlight extremely high levels of magnesium 
in some areas of Central Asia (Vyshpolsky et al. 2008; Karimov et al. 2009); low levels of 
potassium in Ethiopia and New Zealand (Edmeades et al. 2010; Laekemariam et al. 
2018) and potassium-rich soils in India (Naidu et al. 2011); calcium deficiency of the 
coastal plain of the south-eastern United States (Adams and Hathcock 1984); low levels 
of copper amongst peat soils such as those in Japan, South Africa, Scandinavia and 
Russia, amongst others (Alloway and Tills 1984); high levels of molybdenum in 
sedimentary based soil but low levels in acidic soils (Barceloux and Barceloux 1999); 
and toxic levels of manganese in Puerto-Rico, Brazil, areas of tropical Africa and eastern 
Australia (Fernando and Lynch 2015). 
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1.7.3. Adaptation to Dietary Micronutrients 

Micronutrient levels in the diet are strong candidates for local adaptation in modern 
humans for two key reasons. The first is that they are necessary for maintaining 
optimum health and development, but with complete reliance on what is absorbed via 
the diet (with the exception of vitamin D). Secondly, micronutrient levels are highly 
variable across different soil environments, therefore exerting potentially strong 
differential selective pressures over modern human populations. This proposed local 
adaptation may also be polygenic in nature, given the many genes associated with the 
transport and uptake of different dietary components (including micronutrients 
(Monteiro et al. 2015)).   

Below, a summary of the studies suggesting local adaptation in response to 
micronutrient levels is given (see Figure 1.11), proposed to be driven by either 
underlying soil levels or cultural factors. 

Iodine 

Strong signatures of selection, identified using a modified version of the 𝑙𝑛𝑅𝑠𝑏 method 
which searches for unusual haplotype homozygosity amongst populations (Tang et al. 
2007), in the iodide-dependent thyroid pathways have been inferred in two African 
pygmy populations, both of which live on iodine-deficient rainforest soil environments 
(Herráez et al. 2009). Since changes to the thyroid hormone have also been shown to 
result in short stature, this has been used to suggest that the short-stature of different 
populations across the world may be a phenotypic consequence of their adaptation to 
their iodine-deficient tropical forest environments.  

 

Figure 1.11: Schematic map of suggested local adaptation events in modern 
humans in response to micronutrients. Proposed examples of micronutrient-associated 
adaptation in modern humans alongside their suggested driver (Distante et al. 2004; 
Hughes et al. 2008; Herráez et al. 2009; Engelken et al. 2014; White et al. 2015; Ye et al. 
2015; Zhang et al. 2015a; Engelken et al. 2016; Roca-Umbert et al. 2022). Includes the 
instance of selection on HFE in European populations, which has been argued to be a false 
positive owing to allele surfing (Peischl et al. 2016). Made by biorender.com.  
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Selenium 

White et al (2015) suggested that selenium-associated genes (selenoproteins and those 
that regulate selenium or selenocysteine, see Section 1.8.1) show evidence of positive 
selection in the populations living in regions of the world documented with low 
selenium soil levels. These genes were enriched for signatures of differentiation (as 
calculated via 𝐹𝑆𝑇 (Weir and Cockerham 1984)) in populations of Central South Asia and 
East Asia (White et al. 2015). Within this latter region, which has a particularly high 
prevalence of extreme selenium deficiency and associated disorders (Xia et al. 2005; 
White et al. 2015; Shi et al. 2021; Xu et al. 2022), the enrichment of 𝐹𝑆𝑇 signatures were 
localised to the populations living on soils of low selenium levels, particularly the 
Hezhen, Naxi and Oroqen populations of China (White et al. 2015). This study suggested 
a polygenic nature of adaptation to selenium levels, which is supported by an additional 
study inferring signatures of selective sweeps across three selenium-associated genes in 
East Asians (GPX1, GPX3, SELENBP1 (Engelken et al. 2016). 

Zinc 

Zinc adaptation has also been suggested to be polygenic in nature (Zhang et al. 2015a; 
Roca-Umbert et al. 2022).  Zinc concentration is regulated in the body by a family of 24 
zinc transporters, with this entire gene set inferred to show an unusual degree of 
differentiation between Eurasian and African populations (Zhang et al. 2015a; Engelken 
et al. 2016; Roca-Umbert et al. 2022). Some zinc transporters also show especially 
strong evidence of positive selection. This includes SLC30A9, which has been inferred to 
be under selection to regulate zinc levels, but in opposite directions, in East Asians and 
Africans (Zhang et al. 2015a). A correlation was shown between the haplotype under 
selection and the zinc levels in soil or crops, suggestive of positive selection in response 
to the low and high levels of zinc in the diets of Africans and East Asians, respectively. 

Other zinc transporters with notable evidence of positive selection include SLC39A4, 
which appears to be differentiated between West Africans and Eurasians at a level that 
is inconsistent with coalescent simulations of neutrality (Engelken et al. 2014). Here, 
the African variant of SLC39A4 has been suggested to reduce zinc uptake and 
consequent availability in the human body, thereby starving pathogens of zinc. Thus, 
suggested as an adaptive response to the pathogen-rich environment of sub-Saharan 
Africa (Engelken et al. 2014; Zhang et al. 2015a). This “pathogen-starvation” hypothesis 
has not only been suggested in playing a role in zinc regulation, but also notably in the 
regulation of iron, amongst other key micronutrients needed for pathogen development 
(Pietrangelo 2015). 

Iron 

Dietary changes in recent human history, particularly those that resulted from the 
agricultural revolution approximately 10,000 years ago (Naugler 2008; Brown et al. 
2009; Latham 2013), have been suggested to have driven putative adaptation in iron-
associated genes. The early agricultural diet was largely characterised by staple crops 
and had reduced nutritional variety, as well as severe reductions of micronutrients such 
as iron and calcium (Diamond 2002; Naugler 2008). Indeed, it has been suggested that 
the high frequency of the C282Y allele of the HFE gene in Europeans, which results in 
hemochromatosis or excess iron levels, is a result of adaptation to dietary iron 
deficiency that followed this cultural change (Distante et al. 2004; Naugler 2008). 
Parallel adaptation of this gene has also been suggested in East Asian populations, 
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driven by traditional, low iron diets, rather than underlying soil levels (Ye et al. 2015). 
Others have suggested the putative adaptation of HFE, in European populations, is a 
response to the colder European climates, since iron plays a key role in 
thermoregulation (Distante et al. 2004). In more recent years, however, there is 
growing evidence that the high frequency of the C282Y allele in Northern European 
populations is a result of allele surfing on waves of range expansions from South-East to 
North-West Europe, rather than as a result of positive selection (Peischl et al. 2016). 

Calcium 

Suggested adaptation in calcium-associated genes has also been associated with recent 
changes in the human diet, rather than underlying soil levels. This is the tentatively 
suggested selective driver of the putative parallel adaptation in the TRPV6 gene in non-
African populations, as inferred by extended haplotype homozygosity, but with little 
supporting evidence (Hughes et al. 2008). Alternatively, since vitamin D is required to 
absorb calcium from the diet, and vitamin D synthesis in turn depends on UV exposure, 
it has also been suggested that lower UV levels may drive adaptations to increase 
calcium absorption. This gains support from the correlation between signatures of 
positive selection in calcium-associated genes with the latitude of northern European 
populations (Mathieson and Terhorst 2022). 

1.7.3.1. Public Health Connotations 

Global soil micronutrient levels are changing as a result of climate change, rising 𝐶𝑂2 
levels and over-farming (see Fig. 1.10; (Shahid et al. 2018; Dhaliwal et al. 2019; Hassani 
et al. 2021)). This, alongside increased migration and mobility of global populations, 
means that many populations will likely encounter micronutrient levels for which they 
lack adaptations, or even have adaptations to regulate in the opposite and now 
deleterious direction (the “evolutionary mismatch” scenario (Manus 2018). It is 
therefore a matter of global health to understand how varying micronutrient levels, 
especially deficiencies and toxicities, may interact with different genetic backgrounds.  

Many public health policies have benefited from an understanding of the adaptive 
history and modern phenotypic consequences of populations. For example, it is now UK 
Public Health policy to strongly recommend those of self-identified African and South 
Asian descent to take vitamin D supplements in their diet, more so than those of 
European descent (http://www.gov.uk). This stems from the recognition that lighter 
skin pigmentation is an adaptation to decreased UV levels, allowing the body to absorb 
more UV and maintain vitamin D synthesis (Carlberg 2022). Those of darker skin 
pigmentation, but who live in environments where UV levels are lower, are therefore 
more susceptible to decreased UV absorption and deficient vitamin D levels.  

It is important to note that such policies operate at a population level, and an 
understanding of a population’s adaptive history offers an understanding of health risk 
at only the population level, rather than for each individual. Historically, there have 
been issues with conflating this subtle, but key, distinction. For example, sickle cell 
disease has long been considered a “black disease” given its prevalence in West African 
populations (a result of the causal allele conferring malaria resistance when 
heterozygous (Esoh and Wonkam 2021)). This has resulted in many instances of 
misdiagnosis, where general symptoms experienced by those of individuals of African 
ancestry have been falsely attributed to sickle-cell, as well as diagnoses of sickle cell 
unconsidered in those of non-African ancestry (Yudell et al. 2016). Similarly, cystic 

http://www.gov.uk/
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fibrosis is underdiagnosed in those of African ancestry due to its reputation of a “white 
disease” (Yudell et al. 2016). Ultimately, this results in delayed medical treatment and 
significant emotional and physical distress of the individual, and serves as a warning of 
using population level generalisations at the individual level.  

1.8. Micronutrients in Wider Biology 

Much of the research into micronutrient biology, outside of human health, has been 
done in the frame of agricultural science (Welch and Graham 2005; Shukla et al. 2009; 
Singh 2009; Bouis and Welch 2010). High and healthy crop yields rely on the correct 
proportions of micronutrients, particularly manganese, molybdenum, nickel, zinc and 
iron, as well as arsenic, cadmium, lead and tin potentially playing an essential role at 
lower concentrations (Alloway 2013). Animal farming also relies on optimum levels of 
copper, manganese, molybdenum, zinc and iron, as well as chromium, cobalt, selenium 
and vanadium (Alloway 2013). Whilst the role of micronutrients in agriculture is 
outside the scope of this thesis, it is worth noting the key role that research on 
understanding the micronutrient conditions of global soils and biofortification will play 
in meeting the increased demands of a growing human population and addressing 
global health inequalities (Tulchinsky 2010; Dhaliwal et al. 2019; Hassani et al. 2021). 

Still, the acquisition, absorption and digestion of these key dietary components have 
affected many aspects of organism evolution, some of which have been reviewed here: 
(McWilliams 2011; Swanson et al. 2016; Xu et al. 2021). When considering the role 
micronutrients play in adaptive evolution across species, is important to note that the 
exact levels required of each micronutrient, or even what is classified as a 
micronutrient, may vary over divergent taxa. For example, in plants, phosphorus is 
considered a macronutrient since it contributes a significant amount of energy and 
resources for plant growth, but in humans is considered a micronutrient since it is 
needed in much smaller quantities and is involved in more specific metabolic processes 
(Alloway 2013). Therefore, the adaptive response and compensatory mechanisms of 
these taxa facing phosphorus deficiency or toxicity can be expected to substantially 
vary. 

The micronutrients which are essential in the diet versus those that can be synthesised 
by the organism also differs amongst taxa; some species are able to synthesise some 
micronutrients within the body that other taxa may be forced to consume via the diet, 
increasing their reliance on, for example, local soils or foodstuffs. A notable example of 
this is the changing reliance on dietary vitamin C across vertebrates. Taxa such as 
teleost fishes, anthropoid primates (the group that includes humans) as well as some 
bat, rodent and bird species have lost the ability to synthesis vitamin C in vitro owing to 
mutations in GLO (Cui et al. 2011; Drouin et al. 2011). Many hypotheses exist for why 
this gene has been pseudogenised across these taxa, the most relevant to human 
evolutionary history being that the increased availability of ascorbate-rich fruit in the 
diet of ancestral anthropoid primate ancestors rendered in vitro synthesis superfluous 
(Hornung and Biesalski 2019).  

Despite there being biological necessity for most human-classified micronutrients 
across wider organisms, the range of functional roles and differential reliance on the 
uptake of different micronutrients makes it difficult to extract specific evolutionary 
trends across broad groups of taxa. Still, selenium in wider vertebrate evolution, 
specifically in respect to its catalytic role in selenoproteins, is well elucidated. Here, we 
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give an overview of selenoprotein evolution and provide this as an additional example 
to explore how micronutrients may affect genome evolution across non-human species.  

1.8.1. Selenoprotein Evolution 

Selenium is an essential micronutrient for vertebrates, with an especially narrow range 
over which it is nutritionally optimal (see Table 1.2; (Sarangi et al. 2017)). Selenium 
levels above or below this range result in deficiencies and toxicities across vertebrates, 
as reported in humans and many agricultural species. For example, in humans, mild 
deficiencies can result in reduced immune function, lower fertility and cognitive decline, 
with extreme deficiencies, as identified in some areas of China, resulting in diseases of 
the heart and bone (Shi et al. 2021; Xu et al. 2022). In ruminants, white muscle disease 
is associated with extreme selenium deficiency, with less extreme deficiencies leading 
to reduced fertility and incidence of mastitis and metritis (Spears and Weiss 2008; 
Hefnawy and Tórtora-Pérez 2010; Sordillo 2013). Farmed animals have also been 
shown to suffer from selenium poisoning, as a result of living on toxic soils or from 
excess selenium in feed (Giri et al. 2021). 

Dietary selenium intake in vertebrates depends on the underlying selenium content and 
bioavailability of the local environment, where consumed plants grow or animals feed. 
Aquatic environments generally act as a sink for land selenium and diets of aquatic 
vertebrates are consequently very high in selenium (May et al. 2008; Sarangi et al. 
2017). This results in a vastly different degree of selenium exposure between land and 
aquatic species. By extension, land and aquatic species encounter drastically different 
selective pressures surrounding their selenium intake and regulation. Still, soils across 
the globe can vary a hundredfold in their selenium content (Sarangi et al. 2017), and 
terrestrial vertebrates may also encounter substantially different levels of selenium in 
the diet. 

The biological role of selenium is mediated via the amino acid selenocysteine (Sec), 
which is the key residue of selenoproteins. Selenocysteine is the 21st amino acid, only 
having been identified in 1974 and lacking a clear mechanism of its production and 
incorporation into proteins until the 1980s (Stadtman 1974; Chambers et al. 1986). Sec 
is encoded by an in-frame UGA codon, which usually acts as a stop codon (Chambers et 
al. 1986). However, the presence of a SElenoCysteine Insertion Sequence (SECIS) 
element, alongside various cofactors, redirects the translation of the UGA stop codon 
into Sec (Berry et al. 1992). The SECIS structure can be identified in the 3’UTR of the 
mRNA in selenoproteins in eukaryotes and archaea (Labunskyy et al. 2014), and is often 
used to identify the Sec codons that most databases otherwise classify as the end of an 
open reading frame (Romagné et al. 2014; Sarangi et al. 2017).  

Selenocysteine mediates the catalysis of selenoproteins, governed by the unique 
enzymatic properties of selenium. Most of the functionally characterised selenoproteins 
have roles in redox regulation, whilst the function of many others remain either 
unknown or not fully elucidated (Mariotti et al. 2012). When knocked out in mice, the 
loss of selenoproteins can result in death (e.g., in the case of TR1, TR3 and GPX4) or 
reduced fitness (Matsui et al. 1996; Yant et al. 2003; Conrad et al. 2004; Jakupoglu et al. 
2005; Peters et al. 2006; Fomenko et al. 2009), strongly supporting their biological 
necessity. Selenoproteins have also been suggested to play a role in maintaining 
immune response, male reproduction and cancer prevention in humans (Arnér and 
Holmgren 2006; Hatfield et al. 2006; Papp et al. 2007). 
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Selenocysteine itself is utilised in a range of catalytic redox reactions, including 
repairing oxidised methionines in proteins, removal of hydroperoxides, regulating 
activation of thyroid hormones and regulating reductions of thioredoxin (Santesmasses 
et al. 2020). Often the catalytic ability of selenocysteine is compared to cysteine, its 
analogous amino acid which differs only its replacement of selenium by sulfur, and is a 
point mutation away from the Sec codon (Cys encoded by UGC and UGT codons (Sarangi 
et al. 2017)). Directly substituting Sec for Cys has been shown to reduce the catalytic 
ability of an enzyme by 5% (Stadtman 1996), reflecting the decreased reactivity and 
nucleophilicity of Cys (Arnér 2010). The greater catalytic potential of Sec in comparison 
to Cys has also been suggested to be a result of its increased resistance to oxidation 
stress (Snider et al. 2013) and its activity across a wider range of pH conditions and 
substrates (Gromer et al. 2003). Indeed, the unique role of Sec, and low exchangeability 
between Sec and Cys, is supported by the inferred strong evolutionary constraint acting 
on selenocysteine in selenoproteins (Castellano et al. 2009).  

Still, the exchange of Sec to Cys has been inferred to have occurred numerous times 
during vertebrate evolution (see Figure 1.12), begging the question as to what 
evolutionary mechanisms allow the loss of such a catalytically powerful residue. 
Compensatory mutations have been shown to restore catalytic ability, although only at 
50% of the catalytic rate of the corresponding selenoenzyme (as for the Thioredoxin 
reducatase of Drosophila melanogaster; (Gromer et al. 2003)). The sulfur-containing Cys 
may also compensate for its lower catalytic activity via its higher expression than Sec 
(since the Sec translation is comparatively inefficient; (Liu et al. 2012)) or its escape 
from the limitations of relying on rare selenium in place of common environment sulfur. 
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Figure 1.12. Evolution of the vertebrate selenoproteome.  The ancestral vertebrate 
selenoproteome given in dark red at the root of the tree. Unique selenoproteins in 
vertebrates are underlined. Novel selenoproteins created by duplications are given in 
green, loss is given in grey. Exchanges from Sec to Cys given in blue (bar SelW2c in 
pufferfish, where Sec is replaced by arginine). Number of selenoproteins predicted in each 
species given on the right. Taken from (Mariotti et al. 2012). 
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1.8.1.1. Selenoproteome Diversity 

Vertebrate species have selenoproteomes containing 24 to 38 selenoproteins, derived 
from the a common ancestral selenoproteome of size 28 (Castellano et al. 2009; Mariotti 
et al. 2012). Comparative analyses of nucleotide and protein sequences have inferred a 
complex history of exchanges from Sec to Cys in the catalytic site of selenoproteins, as 
well as multiple selenoprotein duplications, throughout vertebrate history (Mariotti et 
al. 2012). This includes proteins that have exchanged Sec for Cys in multiple vertebrate 
lineages (as is the case of GPX6, losing Sec many times across mammalian lineages); 
proteins that were generated through duplications of selenoproteins but now lack Sec 
in all organisms (e.g., GPX5, RdX12; likely losing their Sec residue before the duplicated 
gene haplotype became fixed); and repeated duplications of selenoproteins in multiple 
selenoprotein families, with change or gain of function (e.g., in the GPX and TR families) 
(Fig. 1.12; (Mariotti et al. 2012)).  

The repeated selenoprotein duplications across bony fish lineages is also highlighted, 
particularly in the zebrafish, and is inferred to be a result of fourteen distinct events 
(Mariotti et al. 2012). It has been suggested that the larger selenoproteome in fish is 
associated to the increased amount of selenium in their aquatic environments (Sarangi 
et al. 2017). As a consequence of this environmental abundance of selenium, fish may 
have evolved a greater dependence on selenium, supported by their maintenance of 
selenium transporting mechanisms in the body (Lobanov et al. 2007; Sarangi et al. 
2018). 

In summary, selenoprotein diversity has been linked to the broad environmental levels 
of selenium experienced by divergent vertebrate taxa (particularly contrasting the 
selenoproteome between terrestrial and aquatic vertebrate taxa (Sarangi et al. 2018)), 
as well as to the unique catalytic role of Sec (Castellano et al. 2009). Through analysis of 
selenoproteome size and conservation of individual selenoproteins, the exact selective 
pressures governing macroevolution of selenoproteins can be explored.  

Understanding the role of environmental selenium versus the catalytic role of Sec in 
shaping genomic diversity across taxa should also integrate selenium-associated 
evolution at the micro-scale, that is within individual species (as previously discussed 
within the frame of modern human populations, see Section 1.7.3). Whilst it is clear 
that dietary selenium has uniquely shaped vertebrate evolution, the exact evolutionary 
dynamics, including those selective drivers, remain an exciting part of evolutionary 
biology, molecular and population genetics.
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Chapter 2: The Power and Limitations of 

Identifying Local Adaptation in Modern 

Humans  
2.1. Overview 

Local adaptation has occurred throughout the evolutionary history of modern humans as 
a result of the highly varied environments and selective pressures of which our species 
encounters (Fan et al. 2016; Rees et al. 2020). However, the genomic nature of local 
adaptation is highly variable in regards to the strength of selection, the origin and number 
of alleles under selection, and the timing of the onset of selection (see Chapter 1). Hence, 
local adaptation cannot be solely characterised by strong, uniform signatures of positive 
selection (historically often described as a “hard sweep”). Instead, local adaptation is 
likely also accompanied by weaker signatures of positive selection: those left by selection 
on standing variation or by selection on multiple genes, as likely in complex trait 
adaptation (historically often described as a “soft sweep”; (Pritchard et al. 2010; Peter et 
al. 2012; Hermisson and Pennings 2017)). Many of the current methods to identify the 
signatures that positive selection leaves on the genome (see Chapter 1) are poorly-
equipped to identify these subtler signatures, and it is unclear which methods are the 
most powerful in identifying local adaptation mediated by selection on, for example, 
standing variation or multiple genes.  

Here I explore the power of different approaches to identify the genomic signatures of 
soft sweeps, including new methods that have not extensively been tested. To do so, I 
design a simulation framework that models local adaptation on one of four major human 
populations using SLiM (Haller and Messer 2019), modelling weak selection occurring on 
segregating alleles at one of four timepoints (1kya, 5kya, 10kya and 40kya). I then test 
the accuracy of allele-frequency differentiation, haplotype-based and tree-recording 
methods to identify such instances of positive selection. I also test their power to identify 
polygenic selection by comparing these methods in the gene set method 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 (Daub 
et al. 2013). I show the high power of the allele-differentiation statistic 𝐹𝑆𝑇  and tree-
recording method 𝑅𝑒𝑙𝑎𝑡𝑒 in identifying local adaptation as recent as 10,000 years old, 
both at the monogenic and polygenic level. On the contrary, I show that the power of 
haplotype-based statistics is insufficient in identifying selection events mediated by weak 
selection on standing variation.  

2.2. Background 

Positive natural selection drives adaptive evolution across all organisms, increasing the 
frequency of traits that convey a fitness advantage. These traits may be fixed across a 
species or vary over populations and individuals, often correlating with local selective 
pressures (Darwin and Wallace 1858; Savolainen et al. 2013). Human adaptation to such 
local environmental pressures, hereby referred to as local adaptation, has been shown to 
play a role in the modest genetic and phenotypic differentiation that exists between 
populations (Key et al. 2018; Rees et al. 2020). Most notably this includes adaptations in 
response to local diet, hypoxia, temperature, UV levels and pathogen load, amongst others 
(see Chapter 1; (Lamason et al. 2005; Norton et al. 2007; Tishkoff et al. 2007a; Genovese 
et al. 2010; Yi et al. 2010; Jacobs et al. 2013; Bigham and Lee 2014; Vernot and Akey 2014; 
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Fumagalli et al. 2015; Schlebusch et al. 2015; White et al. 2015; Minster et al. 2016; 
McManus et al. 2017; Key et al. 2018)). 

Often, human populations are exposed to novel selective pressures when migrating into 
new environments (particularly when those environments are extreme, such as those at 
high altitude or with extreme temperatures (Ilardo and Nielsen 2018)). Whilst modern 
humans have long since inhabited variable African environments (inhabited since the 
origin of our modern species approximately 200,000 years ago, (White et al. 2003; 
Dusseldor et al. 2013)), many global environments were only colonised following the 
“Out of Africa” migration (50-70,000 years ago, (Soares et al. 2012; Haber et al. 2019)). 
This preceded major human expansions to Oceania (Bowler et al. 2003), Eurasia (Fu et al. 
2014; Seguin-Orlando et al. 2014) and the Americas (Raghavan, DeGiorgio, et al. 2014; 
Raghavan, Skoglund, et al. 2014; Rasmussen, Anzick, et al. 2014). In even more recent 
time, the emergence of novel cultural practices has also resulted in the rapid exposure of 
novel selective pressures, such as those emerging following the agricultural revolution 
approximately 10,000 years ago. 

2.2.1. Genomic Signatures of Local Adaptation 

The timepoint of selection is one factor that contributes to the genomic signatures of 
positive selection. These signatures also largely depend on the mode of adaptation, such 
as the origin of the selected allele or the degree of polygenicity, where some modes result 
in subtler signatures that are more challenging to identify (see Chapter 1). When local 
adaptation occurs in populations with extreme demographic histories, such as 
bottlenecks or partially resolved admixture events, these signatures are more elusive still 
as they can be masked by neutral processes that may appear as under selection, or we 
may simply lack an understanding of how signatures may present under such histories 
(Peter et al. 2012; Gopalan et al. 2022).   

To understand the signatures of positive selection, selection has historically been 
categorised as either a “hard sweep” or “soft sweep” (Pritchard et al. 2010; Peter et al. 
2012; Hermisson and Pennings 2017). The “hard sweep” model describes strong 
selection on a de novo mutation which results in the rapid increase of frequency of the 
advantageous allele, together with a battery of signatures of positive selection (Pritchard 
et al. 2010; Schrider and Kern 2016). Whilst this long underpinned classic ideas of 
selection, many have suggested the importance and prevalence of “soft sweeps” in human 
evolution (Hermisson and Pennings 2005, 2017; Prezeworski et al. 2005; Pritchard et al. 
2010), of which recent studies have demonstrated (Schrider and Kern 2016, 2017). These 
“soft sweeps” are the result of slow increases in allele frequency due to weak selection, 
or selection that acts on already segregating alleles (selection on standing variation, or 
SSV (Hermisson and Pennings 2005, 2017; Peter et al. 2012)).  

SSV has been proposed to be a particularly likely mode of selection in local adaptation, 
especially if the allele has been maintained in the population due to balancing selection 
(and therefore necessarily affects phenotype and fitness (Andrés 2011; Rees et al. 2020)). 
However, the signatures of SSV can be particularly difficult to identify. Since the mutation 
is evolving under drift before the onset of selection, which may indeed be the major 
proportion of the mutation’s lifetime, the adaptive allele is likely present on diverse 
genetic backgrounds and therefore lacks the signatures of linked variation that 
accompany “hard sweeps” (see Chapter 1).  
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It is also expected that polygenic adaptation may be common in human local adaptation 
(indeed, with evidence to suggest so (Hancock, Alkorta-Aranburu, et al. 2010; Daub et al. 
2013, 2013; Berg and Coop 2014; White et al. 2015)) since many complex traits are 
polygenic in nature. Polygenic selection is driven by small shifts in allele frequency which 
occur across groups of phenotypically-related genes (those that all contribute to the same 
phenotype) and interact to shift the phenotype in the adaptive direction (Le Corre and 
Kremer 2012). Polygenic adaptation thereby leaves many, weak signatures along the 
genome, and is challenging to uniformly characterise. The degree of polygenicity varies 
across traits, with genes responsible for a phenotype potentially ranging in number from 
few to thousands (Daub et al. 2013; Berg and Coop 2014; White et al. 2015; Zhang et al. 
2015; Boyle et al. 2017; Mathieson 2021). Further, genes associated with a trait may not 
all respond similarly to selection due to differences in effect size (Berg and Coop 2014; 
Mathieson 2021), and some genes may show stronger, almost monogenic signatures of 
positive selection (Wagner and Zhang 2011; Fraïsse et al. 2019). This may also be the case 
under traits where many of the functionally associated genes have deleterious pleiotropy, 
resulting in selection acting on few alleles (Chevin and Hospital 2008). 

2.2.2. Identifying Signatures of Local Adaptation 

Hence, identifying local adaptation can often become a quest to identify subtle and 
variable signatures of positive selection across an unknown number of genes. Many 
methods identify particular aspects of the signatures of positive selection, summarised 
into a single statistic. These can then be used to identify the loci which show outlier values 
according to the empirical background of the genome, and hence are the most likely 
candidates for selection. Commonly used statistics summarise allele frequency 
differentiation (Weir and Cockerham 1984), haplotype length (Voight et al. 2006; Sabeti 
et al. 2007; Ferrer-Admetlla et al. 2014; Szpiech et al. 2021) or patterns of the site 
frequency spectrum (Tajima 1989; Excoffier et al. 2013). However, many of these 
classical methods have been designed to identify strong, monogenic signatures of positive 
selection (Sabeti et al. 2006; Pritchard et al. 2010; Hermisson and Pennings 2017), and 
may lack the power in identifying the signatures that accompany SSV.  Methods based in 
allele frequency differentiation are the broad exception to this and can be used with much 
success in identifying SSV, since they do not rely on linked variation (Weir and 
Cockerham 1984; Yi et al. 2010; Yassin et al. 2016; Crawford et al. 2017; Librado and 
Orlando 2018; Schmidt et al. 2019). 

Tree-recording methods (Rasmussen, Hubisz, et al. 2014; Kelleher et al. 2019; Speidel et 
al. 2019; Hubisz and Siepel 2020) show increasing promise to identify the subtler 
signatures of selection that accompany both SSV and polygenic selection. These methods 
can be used to build individual genealogies along the whole length of the genome, and 
reconstruct the evolutionary history of each site (where histories differ according to 
recombination break points). In theory, positive selection can then be identified not by 
way of summarising the genealogy or evolutionary history into a statistic, but by direct 
inference from the genealogy itself. By avoiding the collapse of complicated evolutionary 
patterns into a single statistic, albeit remaining an inference, it is likely that these 
methods are better suited to identifying weaker signatures of positive selection that are 
not characterised by rapid allele frequency change or unusually long haplotypes. Indeed, 
tree-recording methods have already been shown to have success in identifying both 
monogenic and polygenic selection in humans (Kelleher et al. 2019; Speidel et al. 2019).  
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Methods to identify polygenic selection often rely on a good understanding of the genetic 
bases of phenotypic traits, such as the effect sizes of each SNP, as estimated by GWAS, on 
the candidate trait under selection (Berg and Coop 2014; Field et al. 2016; Berg, Zhang, 
et al. 2019; Zeng et al. 2021). Methods which integrate such effect sizes (e.g., searching 
for alleles with similar effects and positive covariance (Berg and Coop 2014; Berg, Zhang, 
et al. 2019)) are far the most common when identifying polygenic selection, but they have 
been shown to overestimate the signature of polygenic adaptation if population 
stratification is not fully accounted for (Berg, Harpak, et al. 2019; Sohail et al. 2019). Gene 
set methods, those that combine the signatures from multiple genes within a functional 
set (such as biological pathways; (Subramanian et al. 2005; Daub et al. 2013, 2017)), do 
not require the same trait information of a population, and are potentially more robust 
to biases emerging from hidden population sub-structure. Some such methods, e.g., 
𝑆𝑈𝑀𝑆𝑇𝐴𝑇 (which simply sums summary statistic across the gene set, see Section 1.6.5.2; 
(Daub et al. 2013)), can integrate any summary statistic. This makes them highly 
customisable and open to using selection statistics that have been shown to be more 
powerful under the hypothesised dynamics of selection of which they are being used to 
investigate. 

It is important to understand the power of each of these aforementioned methods to 
identify positive selection, particularly under modes of selection that leave subtle 
signatures on the genome of which they were not designed to detect. Hence, it is 
especially important to ask how power to detect SSV varies between methods, and how 
it may be affected by the strength of selection, in combination with varied timepoints of 
selection and population histories. Whilst this is imperative for all methods, it is 
especially pertinent for recent methods in the field, such as tree-recording methods, since 
their power and limitations in identifying the genomic signatures of positive selection 
have not been widely explored. In regards to identifying polygenic selection, it is further 
interesting to ask how the variance of signatures of positive selection, and the number of 
trait-associated genes acting under selection, may affect the power of commonly used 
methods.  

2.2.3. Study Overview 

Here, I build a simulation framework to assess the power of methods to identify local 
adaptation. Using the forward simulator SLiM (Haller and Messer 2019), I model 
selection on a 100kbp genomic region, where selection is both weak and acting on already 
segregating variants (SSV). I model the demographic history of four major global 
populations and specify that selection occurs locally on one population at one of four 
timepoints (1kya, 5kya, 10kya, 40kya; thereby testing the power to detect signatures left 
by recent selection, selection surrounding agricultural change and selection surrounding 
major migrations to new environments).  

I test the power of the recent tree-recording 𝑅𝑒𝑙𝑎𝑡𝑒 method (Speidel et al. 2019) against 
five traditional neutrality tests, including those based on allele frequency differentiation 
(𝐹𝑆𝑇  (Weir and Cockerham 1984)) and haplotype-length (𝑖𝐻𝑆, 𝑛𝑆𝐿, 𝑋𝑃𝐸𝐻𝐻 and 𝑋𝑃𝑛𝑆𝐿 
(Voight et al. 2006; Sabeti et al. 2007; Ferrer-Admetlla et al. 2014; Szpiech et al. 2021)). 
Here, the haplotype-based methods are expected to have low power (given that they were 
not designed to identify selection on standing variation) and instead serve to 
contextualise the power of 𝑅𝑒𝑙𝑎𝑡𝑒  and its comparison to 𝐹𝑆𝑇 .  I then integrate these 
individual methods into the gene set method 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 (Daub et al. 2013), and test the 
power of identifying local, polygenic selection. I show high power of two methods to 
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identify local adaptation in modern humans:  𝐹𝑆𝑇  and the 𝑅𝑒𝑙𝑎𝑡𝑒 , including when 
integrated into the gene set method 𝑆𝑈𝑀𝑆𝑇𝐴𝑇. To my knowledge, this study is the most 
comprehensive exploration to date of the power of 𝑅𝑒𝑙𝑎𝑡𝑒 to identify positive selection 
(as well as of the more recently developed 𝑛𝑆𝐿 and 𝑋𝑃𝑛𝑆𝐿 statistics) and allows valuable 
insight into the power and limitations of identifying local adaptation when using top-
performing methods.  

2.3. Methods 
2.3.1. Simulation Design 

2.3.1.1. The Genomic Model 

The forward-simulator SLiM (Haller and Messer 2019) was used to simulate genomic 
segments of approximately 100,000 base pairs. Each segment was initiated with random 
nucleotides across its length and included exon, intron and non-coding regions 
(organised according to the SLiM guidance (Haller and Messer 2019)). Variable 
recombination rates were also specified across this region, modelled according to the 
inferred distribution of recombination rates in the human genome (as calculated from 
chr15 of the 929 individuals of the HGDP dataset (Bergström et al. 2020), see Fig S2.1), 
with 100 different recombination rates given across this region. According to this 
distribution, and in line with the relevant literature (Barroso et al. 2019), a gamma 
distribution of mean 1.311 and shape parameter 0.509 was used to draw recombination 
rates. The mutation rate was uniform throughout the 100kb region, specified as 1.25 ×
10−8 per generation and following the Jukes-Cantor model. 

2.3.1.2. The Demographic Model 

I simulate the demographic history of four metapopulations: African, European, East 
Asian and American. This model is the combination of two pre-existing demographic 
models, one which represents the history of African, European and East Asian 
populations (Gravel et al. 2011) and one which exclusively models American 
demographic history (Gravel et al. 2013). I integrate the inferred demographic history of 
the Puerto Rican population from the latter into the former model, and use as the proxy 
of an American population (see Fig. 2.1).  

These simulated populations broadly approximate the demographic history of each 
metapopulation but do not accurately represent the demographic history of every 
individual population within that metapopulation.  The model does however include 
major bottlenecks present in the history of each metapopulation, and therefore 
approximates the breadth of demographic history amongst modern human populations.  
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Figure 2.1: Schematic illustration of the demographic model used in the simulations. 
A combination of the demographic models from Gravel et al. 2011, 2013. showing the 
demographic histories of African, European, East Asian and American populations. 

 

 
2.3.1.3. Initiation of Selection 

The onset of selection was set at one of four timepoints (1kya, 5kya, 10kya and 40kya) in 
only one of the four metapopulations. A single polymorphic allele segregating in the focal 
population is tagged and given a selection coefficient drawn from a uniform distribution 
between 0.001 and 0.005. This tagged allele must be within the middle 10,000 bp of the 
simulated 100kb genomic region to ensure haplotype information is not lost at the edges 
of the region. The tagged allele must also be at a frequency between 0.1-0.15 at the onset 
of selection to decrease the probability that it is lost due to drift. If no suitable allele exists, 
or the allele is still lost during the simulation’s subsequent run, the simulation is 
terminated and restarted using the next available seed. 

This model simulates weak, variable, selection acting on previously existing genetic 
variation (SSV). Each successful simulation run can then be used as a proxy for weak 
selection acting on a single genomic region, analogous to a gene region or haplotype. 
Polygenic selection can also be modelled by grouping multiple simulation together in sets 
(as a set of “loci”), where selection coefficients are weak and variable across loci.  

2.3.2. The Simulation Run 

An initial burn-in period was simulated between 1.66mya and 70kya to allow the 
ancestral population to reach mutation-drift equilibrium. Here, beneficial, neutral or 
deleterious mutations were initiated in the exon regions, where the selection coefficients 
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of deleterious mutations were drawn from a gamma distribution (mean: -0.03 and shape 
parameter: 0.2; (Boyko et al. 2008; Kim et al. 2017)) and beneficial mutations drawn from 
an exponential distribution (mean: 0.01, capped at 0.05; (Orr 2003; Brajesh et al. 2019)). 
Neutral mutations also can appear in the intron and non-coding regions.  

To reduce CPU time, simulations were rescaled by a factor 5 to reduce the number of 
simulated individuals (reducing 7310 individuals to 1462). Here, 𝜇, 𝑟 and 𝑠  (mutation 
rate, recombination rate and selection coefficients respectively) were scaled up whilst 𝑁𝑒 
was scaled down, which maintains the necessary population-genetic parameters of 
𝑁𝑒𝜇, 𝑁𝑒𝑟 and 𝑁𝑒𝑠  ((Liu et al. 2010; Lynch and Ho 2020) and expected site frequency 
spectrum; see Fig S2.2). The generational time was also down-scaled by the same factor 
to account for the fact that genetic drift occurs faster in smaller populations (Kimura and 
Ohta 1969). This rescaling reduced the CPU time by over a factor 20.  

The VCF output from the burn-in was then expanded to 14,474 individuals via random 
mating in the first generation. This represents the ancestral African population at 70kya, 
which then undergoes population splits, expansions and migrations as described in Fig. 
2.1. During this stage of the simulation, only a singular beneficial mutation is initiated at 
one time-point in one of the four metapopulations (the focal population). This eliminates 
the risk of stochastically occurring positive selection events on untagged mutations 
masking the focal selection events.  

For each scenario (the combination of one selection timepoint in one metapopulation), 
10,000 simulations were run on the requirement that the tagged mutation remains 
polymorphic in the focal population. For each run, VCF files of 50 individuals for each 
metapopulation were generated as output, alongside the position, selection coefficient 
and final frequency of the tagged mutation. A CSV files was also generated containing 
information on the inclusive upper bound position of each recombination rate, which was 
converted to a standard genetic map format, where recombination rate is given in cM/Mb, 
using the following formula: 

 

𝑔𝑝𝑜𝑠𝑛+1 =  
(𝑝𝑝𝑜𝑠𝑛+1 − 𝑝𝑝𝑜𝑠𝑛 × 𝑟𝑟𝑎𝑡𝑒𝑛+1)

106
+ 𝑔𝑝𝑜𝑠𝑛 

 
2.3.3. Use of Simulation Output 

2.3.3.1. Application of Methods to Identify Selection 

I chose to apply six methods to identify the genetic signatures of positive selection. Four 
of these methods use haplotype structure to infer SNPs with evidence of positive selection, 
but do so in subtly different ways. 𝑖𝐻𝑆 and 𝑛𝑆𝐿  both consider the length of haplotype 
homozygosity (where extended haplotype homozygosity is indicative of alleles rapidly 
rising in frequency, as expected under strong positive selection), but 𝑖𝐻𝑆 measures 
length as the recombination distance, whereas 𝑛𝑆𝐿  measures length as the number of 
segregating sites (Voight et al. 2006; Ferrer-Admetlla et al. 2014). 𝑛𝑆𝐿 is an edit of 𝑖𝐻𝑆, a 
commonly used method to identify positive selection, and has been suggested to be more 
powerful when detecting selective sweeps on standing variation (Ferrer-Admetlla et al. 
2014). 𝑋𝑃𝐸𝐻𝐻 and 𝑋𝑃𝑛𝑆𝐿  are extensions of these two methods (of 𝑖𝐻𝑆  and 𝑛𝑆𝐿 
respectively), and compare the haplotype homozygosity between two populations to 
identify SNPs with unusually long haplotype length in one population (Sabeti et al. 2007; 
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Szpiech et al. 2021). The remaining two methods used here include one which uses allele 
differentiation between populations to identify evidence of positive selection ( 𝐹𝑆𝑇; (Weir 
and Cockerham 1984)) and one that uses the inferred trajectory of an allele through its 
history to infer the probability of positive selection (𝑅𝑒𝑙𝑎𝑡𝑒 (Speidel et al. 2019)). 𝑅𝑒𝑙𝑎𝑡𝑒 
first infers local trees along the genome (where unique trees are separated by 
recombination breakpoints); it uses a Hidden Markov Model to reconstruct a 
chromosome as a mosaic of other samples and iteratively clusters the samples most likely 
to have been copied from each other together (resulting in the final inferred tree; (Speidel 
et al. 2019). It then maps mutations onto each tree and simultaneously estimates branch 
lengths, mutation rates and effective population size to re-infer the trees, which can then 
be used to estimate effective population sizes of subpopulations, cross-coalescence rates 
between populations and the likelihood of a variant’s trajectory under neutrality. 

All haplotype-based statistics were calculated using the 𝑆𝐸𝐿𝑆𝐶𝐴𝑁 programme (Szpiech 
and Hernandez 2014) and normalised according to SNP frequency. For 𝑋𝑃𝐸𝐻𝐻  and 
𝑋𝑃𝑛𝑆𝐿, calculations were repeated for each combination of focal population with the 
three remaining populations. 𝑉𝐶𝐹𝑇𝑂𝑂𝐿𝑆 (Danecek et al. 2011) was used to calculate 𝐹𝑆𝑇  
according to the Weir and Cockerham (1984) method (Weir and Cockerham 1984), again 
repeated for combinations of focal population with the three remaining populations. The 
𝑅𝑒𝑙𝑎𝑡𝑒 programme (Speidel et al. 2019) was ran according to suggested default 
parameters and used to calculate the probability of a variant’s trajectory (analogous to a 
p-value to indicate selection), given its inferred genealogy. 

For the calculation of haplotype-based statistics, the “--trunk-ok” parameter was used in 
𝑆𝐸𝐿𝑆𝐶𝐴𝑁 (Szpiech and Hernandez 2014), which specifies that the statistic should still be 
calculated despite the extended haplotype homozygosity failing to decay to the suggested 
threshold of 0.05. This is due to the discrete size of the simulated genomic region, and 
results in the data in the end tails of haplotype decay being lost. I compared the 
distribution of 𝑖𝐻𝑆  data from the initial simulated 100kbp genomic regions under 
selection to 300kbp simulated genomic regions under selection and of matched seed, and 
observe the distributions not to be statistically different (Wilcoxon test; 𝑍 =
1.361414, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.1734), concluding that the length of the simulated genomic regions 
does not significantly affect the calculation of the haplotype-based statistics.  

Finally, I use the gene-set enrichment method 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 (Daub et al. 2013) as the 
method to identify polygenic selection. Gene sets of various sizes (10, 20, 40, 60) were 
built by random sampling of simulated gene regions, and varying the proportion of gene 
regions under selection compared to neutrality (20%, 40%, 60%, 80% and 100% gene 
regions under a selection), hereafter referred to as polygenic adaptation gene sets. 
Following the calculation of the test statistics above, the strongest score (in the direction 
of selection) for each gene region is taken and summed across gene sets. Hence, this 
method considers the signatures of positive selection on potentially small effect 
mutations across the entire gene set, and has been shown to be more powerful than gene 
set enrichment analysis in identifying polygenic selection (Tintle et al. 2009). 

2.3.3.2. Isolating Signatures of Positive Selection 

I use empirical neutral distributions, built from the output values calculated on neutral 
simulations, to identify SNPs with evidence of positive selection for each of the six 
methods. To build these distributions, I use the same burn-in simulations and consequent 
simulations (using the seed numbers of each successful simulation run, see Section 
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2.3.2), but with no onset of positive selection in any metapopulation. I then apply the 
same six methods on these neutral simulations, and build a distribution from the 
subsequent output values (normalised where appropriate, see Section 2.3.3.1) for 
10,000 of these neutral simulations. SNPs are identified as having evidence of positive 
selection, according to each method separately, if they fall in the 5% tail of the empirical 
neutral distribution for the respective method. The potential for bias in this methodology 
is recognised, given that I do not condition on the maintenance of the focal SNP being at 
same frequency in the neutral simulations as under the simulations including selection.  

I use an analogous method to build the neutral distribution corresponding to  𝑆𝑈𝑀𝑆𝑇𝐴𝑇 
values; I generate 1000 random gene sets (for each gene set size of 10, 20, 40 and 60), 
calculate the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 value across these gene sets as described in Section 2.3.3.1, and 
from these values build the neutral distribution. Gene sets with 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 values in the 
5% tail of these empirical neutral distributions are similarly assigned evidence of positive 
selection, again separately for each method integrated into the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 framework. 

I also evaluate the use of a neutral distribution to identify SNPs using the 𝑅𝑒𝑙𝑎𝑡𝑒 method 
(Speidel et al. 2019). This programme outputs the probability of positive selection in the 
form of a −𝑙𝑜𝑔10𝑝𝑣𝑎𝑙𝑢𝑒 (where the 𝑝𝑣𝑎𝑙𝑢𝑒 corresponds to the probability of a variant 
spreading to its modern observed frequency) and previous work has explicitly used this 
transformed 𝑝𝑣𝑎𝑙𝑢𝑒 as evidence of selection (Speidel et al. 2019). Here, I ask if using the 
tails of the empirical neutral distribution to identify SNPs with extreme  −𝑙𝑜𝑔10𝑝𝑣𝑎𝑙𝑢𝑒𝑠 
as those with evidence of selection is more accurate, as well as if it reduces the difference 
in power between populations of differing demographic histories (see Section 2.4.1). 

2.3.3.3. Evaluating Accuracy of Methods to Identify Positive 

Selection 

I evaluated the accuracy of each method to identify monogenic selection in three ways:  

1) By calculating the percentage of true selected SNPs that fall in the 5% empirical tail of the 
neutral distribution (as described in Section 2.3.3.1).   

2) By calculating the percentage of SNPs with the strongest evidence of selection (most 
extreme statistic value) within a simulated gene region that is the true selected SNP;  

3)  By calculating the average distance from the SNP with the strongest evidence of selection 
to the selected SNP (where physical distance can be treated as an approximation of 
genetic distance, but should not be considered synonymous).  

Therefore, I asked the suitability of each method to:  

1) Identify SNPs under selection as showing evidence of selection (according to the 5% 
empirical tail) 

2) Identify SNPs under selection as the most likely candidate of selection 
3) Identify the area of the gene region under selection  

 
The 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 method (Daub et al. 2013) was evaluated by assessing the percentage of 
polygenic adaptation gene-sets that fall in the 5% tail of the empirical neutral distribution, 
as described in Section 2.3.3.1. This was repeated for all conditions (all gene-set sizes 
and proportions of genes under selection in the gene set), and allows the evaluation of 
which proportion of a gene set under selection results in appreciable power.  

I caution that whilst the accuracies calculated for the European, East Asian and American 
populations are useful for observing patterns across methods and time, these populations 
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should not be directly compared to each other. This is because I condition on the selected 
allele to persist to the end of the simulation. While this is a necessary condition widely 
used in comparable power analyses, it does result in differential biases across 
populations (since differences in demography result in differences in the probability of 
an allele to survive to the time of sampling). Therefore, the final set of simulated genomic 
regions is thus informative but not perfectly comparable across demographic histories 
and populations.  

2.4. Results 
2.4.1. Optimising the Relate Method 

The 𝑅𝑒𝑙𝑎𝑡𝑒 programme (Speidel et al. 2019) outputs the probability of a variant 
spreading to its modern observed frequency in the form of a −𝑙𝑜𝑔10𝑝𝑣𝑎𝑙𝑢𝑒, where a 
value lower than −1.30103 indicates a probability, or p-value, of less than 5% and can be 
taken as evidence of selection. However, power is not independent of the effective 
population size of the population, and hinders comparisons across populations. I 
therefore test if using the tails of a neutral distribution to identify selected SNPs 1) results 
in an increase in power in some populations and 2) decreases the differences in power 
across different populations. To do so, I compared the number of selected SNPs that were 
below the −𝑙𝑜𝑔10𝑝𝑣𝑎𝑙𝑢𝑒 threshold of −1.30103 to those identified using the 5% tail of 
the empirical neutral distribution (built from the −𝑙𝑜𝑔10𝑝𝑣𝑎𝑙𝑢𝑒𝑠 calculated from neutral 
simulations; see Section 2.3.3.2) for selection initiated in each metapopulation at each 
timepoint. 

On average, there is higher accuracy (defined here as the number of selected SNPs 
identified, akin to a true positive rate or sensitivity) when identifying the selected SNPs 
using the tail of the empirical neutral distribution, rather than using the raw computed p-
values of 𝑅𝑒𝑙𝑎𝑡𝑒  (Fig. 2.4.1). This does not remove the difference in power across 
populations, the highest power is still observed when identifying selected SNPs in the 
African metapopulation, but does decrease the power differences across populations. 
Hence, the neutral distribution of 𝑅𝑒𝑙𝑎𝑡𝑒 should be used to identify candidate SNPs and I 
opt to apply this approach when evaluating the power of 𝑅𝑒𝑙𝑎𝑡𝑒 in downstream analysis.  

Power is also not independent of the sample size of the population, with lower sample 
sizes reducing the power of methods to identify selection (Subramanian 2016; Serdar et 
al. 2021). Hence, I also suggest that when using smaller sample sizes, using the tails of an 
empirical neutral distribution to identify selected SNPs may more notably increase the 
accuracy in comparison to using the raw computed p-values. To assess this, I carried out 
an additional analysis; I compared the accuracy of both methods to identify selected SNPs 
when decreasing the sample size from 50 individuals (as used in all following analysis) 
to 25 individuals. I observe, as expected, that the relative increase in accuracy when using 
the empirical neutral distribution to identify selected SNPs is higher with the smaller 
sample sizes. For example, for selection acting at 40kya in the African population, using 
the neutral distribution increases the accuracy by 16.9% for a sample size of 50 
individuals and by 24.8% for a sample size of 25 individuals (Fig. 2.2). This further 
demonstrates the higher accuracy of 𝑅𝑒𝑙𝑎𝑡𝑒  when using the tail of the neutral 
distribution to identify SNPs under selection and this approach would be suitable when 
using smaller sample sizes.  

However, here I have only evaluated the number of selected SNPs within the tail of the 
empirical neutral distribution, and the tail will also falsely identify neutral sites as those 
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under selection. Still, these tails are enriched in true targets of selection, and correctly 
identify just below 50% of selected SNPs (using the 5% tail) in the best scenario (Fig 2.2).  

 

 

Figure 2.2:  Selected SNPs identified as under selection according to two methods. The 
percentage of selected SNPs that are identified as under selection (acting at timepoints 1kya, 
5kya, 10kya and 40kya) as defined by falling in the 5% tail of the neutral distribution 
(Distribution) and as defined by the raw computed p-values of 𝑅𝑒𝑙𝑎𝑡𝑒 (Raw P-Value), given 
for samples sizes of 25 and 50 individuals.  

 

 
2.4.2. Identifying Monogenic Selection 

I now evaluate the accuracy of each method to identify monogenic selection in three ways, 
as outlined in Section 2.3.3.3. I first evaluated the ability of each method to identify 
selected SNPs as those with evidence of selection (i.e., lying in the 5% tail of the empirical 
neutral distribution for each method, enriched in true targets of selection). I hence 
calculated the percentage of selected SNPs within this tail for each method, including 
𝑅𝑒𝑙𝑎𝑡𝑒 as informed from Section 2.4.1. 

The highest accuracy, strikingly so, was obtained when using the 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇  methods 
to identify positive selection (Fig. 2.3, Fig. 2.4). The haplotype-based methods show 
highly reduced accuracy in comparison, but it appears that the accuracy of haplotype-
based methods which use the number of segregating sites as a proxy for distance 
( 𝑛𝑆𝐿 and 𝑋𝑃𝑛𝑆𝐿 ) is higher than those based on recombination distance ( 𝑖𝐻𝑆 and 
𝑋𝑃𝐸𝐻𝐻). By measuring the haplotype length in terms of segregating sites rather than 
recombination distance, 𝑛𝑆𝐿 and 𝑋𝑃𝑛𝑆𝐿 are more robust to recombination rate variation 
(with 𝑖𝐻𝑆  shown to be biased towards identifying outliers in regions of low 
recombination (Voight et al. 2006)). Moreover, using the number of segregating sites 
incorporates more information on the local genealogy (Ferrer-Admetlla et al. 2014), and 
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these methods are also somewhat more robust to varying demographic histories of 
populations.   

I also highlight two main observations true for all methods: the highest accuracy is for the 
oldest selection simulated (selection initiated at 40kya) and for selection identified in 
African individuals (shown in Fig. 2.3, Fig. 2.4). Indeed, this is as expected; both recent 
selection and selection acting in populations with reduced 𝑁𝑒  is typically harder to 
identify (Field et al. 2016; Subramanian 2016; Serdar et al. 2021). Further, for the cross-
population statistics ( 𝐹𝑆𝑇 , 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿; see Fig. 2.4), the accuracy is higher when 
comparing populations with more recent population splits, most likely reflecting the 
reduced noise from neutral genetic differentiation in the empirical neutral background 
(da Silva Ribeiro et al. 2022). Finally, the overall low percentage of tagged variants 
identified as under selection is noted. Given the small selection coefficients modelled (as 
low as 0.001 and only as high as 0.005), the extremely recent selection modelled in some 
cases (1kya or 5kya) and the unsuitability of some methods in identifying selection on 
standing variation (i.e., haplotype-based methods), this is reasoned as somewhat 
expected. These simulations are most useful in specifically comparing the 𝑅𝑒𝑙𝑎𝑡𝑒 method 
to the well-established 𝐹𝑆𝑇  statistic, where the haplotype-based methods provide an 
expected lower limit of power for selection on standing variation.   

 

  

Fig. 2.3: Tagged variants identified as under selection. The percentage of tagged 
variants that are identified as under selection (acting at timepoints 1kya, 5kya, 10kya and 
40kya in the African (red), European (blue), East Asian (green) or American (gold) 
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population), as defined by falling in the 5% tail of the neutral distribution of  𝑖𝐻𝑆, 𝑛𝑆𝐿 and 
𝑅𝑒𝑙𝑎𝑡𝑒.  

 

 

Fig. 2.4: Tagged variants identified as under selection for cross-population methods. 
The percentage of tagged variants that are identified as under selection (acting at 
timepoints 1kya, 5kya, 10kya and 40kya in the African (red), European (blue), East Asian 
(green) or American (gold) population), as defined by falling in the 5% tail of the neutral 
distribution of the cross-population statistics 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿  and 𝐹𝑆𝑇  (given for three 
population comparisons, where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). 
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Given that the tails of empirical neutral distributions contain both selected and neutral 
targets (despite a general enrichment of selected targets), the SNPs with the strongest 
evidence of positive selection may instead be isolated as the strongest candidate SNPs. 
Hence, I now evaluate the ability of each method to identify the selected SNP as that with 
the strongest evidence of positive selection. To do so, I calculate the percentage of 
selected SNPs with the strongest evidence of selection, that with the most extreme outlier 
value of the calculated statistic, within each simulated gene region.  

The highest accuracy to identify positive selection is also observed here when using the 
𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇 methods, with the percentage of selected SNPs identified again highest for 
selection acting on the African metapopulation (shown in Fig. 2.5). For selection acting 
on all metapopulations, this accuracy is also again highest when selection acts further 
back in time (corresponding figures for selection on European, East Asian and American 
populations now shown in as supplementary figures since they display the same patterns 
as shown for the analysis of selection on the African population; Figs. S2.3-5).  

However, the highest percentage of selected SNPs identified as showing the strongest 
evidence of positive selection according to all methods is only at 10.69% (according to 
𝑅𝑒𝑙𝑎𝑡𝑒  when selection is acting at 40kya and in the African metapopulation). This 
demonstrates the difficulty and general inaccuracy of any of these methods to identify 
SSV at the exact site, using this approach.  

 

 

Fig. 2.5: Further analysis of methods identifying selection. Top panel shows the 
percentage of tagged variants that are the SNP with the strongest evidence of positive 
selection across timepoints in the African population for A) 𝑖𝐻𝑆, 𝑛𝑆𝐿 and 𝑅𝑒𝑙𝑎𝑡𝑒 and B) the 
cross-population statistics 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿  and 𝐹𝑆𝑇  (given for three population 
comparisons, where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). Bottom 
panel shows the average distance between the tagged variant and the top-ranking SNP for 
C) 𝑖𝐻𝑆, 𝑛𝑆𝐿 and 𝑅𝑒𝑙𝑎𝑡𝑒 and D) the cross-population statistics 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿 and 𝐹𝑆𝑇. 
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Finally, and as an extension from the analysis preceding, I then evaluate the accuracy of 
these methods to identify positive selection on the region surrounding the selected SNP, 
if not the selected SNP itself. For each method, I calculate the average physical distance 
from the SNP under selection to the SNP demonstrating the strongest evidence for 
selection. This is an approximation for genetic distance and recognised as less accurate 
than calculating linkage disequilibrium with the selected SNP. Still,  𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇  again 
demonstrate the highest accuracy in terms of identifying regions surrounding selected 
SNPs, showing the shortest distance between the selected SNP and that with the strongest 
evidence of selection (given for selected acting in the African population; Fig. 2.5; other 
metapopulation accuracy calculations are shown in Figs. S2.3-5). Also, as in line with 
previous analysis, accuracy remains higher when selection is further back in time and in 
the African population (Fig. 2.5; Figs. S2.3-5). 

I therefore conclude that 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇  are most suitable for identifying selected SNPs 
(under SSV at these timepoints) in comparison to the haplotype-based methods tested 
here. SSV occurs on multiple haplotype backgrounds, especially when selection is acting 
on SNPs long after their emergence in a population, and selected SNPs are therefore found 
in significantly variable haplotypes. This lack of haplotype homozygosity reduces the 
power of haplotype-based methods to identify such selection. However, SSV still results 
in allele frequency differentiation (as identified by 𝐹𝑆𝑇) and an unusually rapid spread of 
the selected SNP through the population (as identified by 𝑅𝑒𝑙𝑎𝑡𝑒). Moreover, 𝑅𝑒𝑙𝑎𝑡𝑒 
evaluates the probability of positive selection according to the history of each locus (in 
theory, complete and accurate history but, in reality, only inferred to the point of the 
common ancestor of all sampled populations), and therefore integrates more fully the 
complex evolutionary patterns compared to summary statistics, which prove important 
when considering the subtle signatures of SSV.  

In summary, using the tails of the neutral distributions of 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇 results in the 
highest percentage of selected SNPs with evidence of selection and, whilst they are not 
able to accurately identify the exact selected SNP, they show moderate accuracy in 
suggesting the region containing the selected SNP. 

2.4.2.1. The Effect of Frequency 

Given that 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇  have the highest power to identify selected SNPs as those with 
evidence of selection, I now ask how the derived allele frequency (DAF) of the selected 
SNP may limit the power of these methods i.e., at which DAF does accuracy appear to 
significantly drop. This is under the assumption that power to identify selected SNPs is 
highest at the highest DAF values, since these are the SNPs that likely show the most 
extreme allele frequency differentiation and trajectory through time (which are 
signatures of positive selection identified by 𝐹𝑆𝑇  and 𝑅𝑒𝑙𝑎𝑡𝑒 , respectively). I use the 
previously calculated number of selected SNPs that are identified as showing evidence of 
selection (according to the 5% tail of the neutral distribution for either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇), 
conditioning on the DAF of the selected SNP, to compare how the proportion of selected 
SNPs identified as showing evidence of positive selection varies over different DAF values 
(Fig 2.6).  

As expected, I observe the highest proportion of selected SNPs identified as showing 
evidence of selection, according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 , at the highest DAF values (shown 
for selection acting at 40kya in the African metapopulation in Fig. 2.6, shown for all other 
metapopulations in Fig. S2.6). According to 𝑅𝑒𝑙𝑎𝑡𝑒 , the proportion of selected SNPs 
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identified as showing evidence of positive selection is at 49.53% when considering 
selected SNPs of all DAF values (for selection acting at 40kya in the African 
metapopulation). The proportion of correctly identified selected SNPs is higher than this 
baseline proportion when the DAF of the selected SNP is over 0.5 (Fig. 2.6). For 𝐹𝑆𝑇, the 
proportion of selected SNPs identified as showing evidence of positive selection is at ~60-
67% (depending on the cross-population comparison, for selection acting at 40kya in the 
African metapopulation) when considering selected SNPs of all DAF values. Here, 
however, the proportion of identified selected SNPs is higher when the DAF is over 0.4 
(Fig. 2.6). I therefore conclude that the previously demonstrated accuracies can only be 
expected for these given DAF values or higher, and show that the accuracy drops 
significantly when considering positive selection acting on SNPs of lower DAF. I also 
conclude that 𝐹𝑆𝑇  is a little more robust to DAF variation, in comparison to 𝑅𝑒𝑙𝑎𝑡𝑒. Still, 
there are very few cases of low DAF (<20%) given that the simulations condition on the 
tagged variant being at 10% frequency or higher, and these results may therefore be 
noisy at lower DAF bins.  

 

 

 

Fig. 2.6: Selected SNPs identified as under selection according to derived allele 
frequency. The proportion of selected SNPs identified as under selection, partitioned by the 
DAF of the selected SNP. Given for selected SNPs identified according to the 5% tail of the 
neutral distributions of 𝑅𝑒𝑙𝑎𝑡𝑒  (A) and 𝐹𝑆𝑇  (B; given for three population comparisons, 
where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). Shown for selection acting 
at 40kya for the African population.  
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2.4.3. Identifying Polygenic Selection 

2.4.3.1. Accuracy of the SUMSTAT Method 

I now evaluate the accuracy of each of the methods to identify polygenic selection acting 
on gene sets using the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 framework (Daub et al. 2013). These gene sets are built 
from either 10, 20, 40 or 60 simulated gene regions, where each gene region has a single 
SNP under positive selection (where all selection acting on a gene set is initiated at the 
same time in the same metapopulation). I identify gene sets as showing evidence for 
polygenic adaptation if the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 value of that gene set (the sum of the most extreme 
outlier values for each statistic, see Section 2.3.3.1) falls in the 5% tail of the empirical 
neutral distribution for the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 summed values integrating the respective statistic. 

Reflecting the analysis of power to identify monogenic selection, I first observe 
remarkably high accuracy when using the 𝐹𝑆𝑇 method across all timepoints (shown for 
selection acting in the African population in Fig. 2.7; all other metapopulation analysis 
given in Fig. S2.10), and when using 𝑅𝑒𝑙𝑎𝑡𝑒 method (shown for selection acting in the 
African population in Fig. 2.7; all other metapopulation analysis given in Fig. S2.7). 
However, the power of 𝑅𝑒𝑙𝑎𝑡𝑒 is high only when selection is initiated at 40kya. Hence, I 
again recommend the use of these two methods to identify selection, but caution 𝑅𝑒𝑙𝑎𝑡𝑒 
loses power when selection is acting more recently across a gene set. 

I also observe the general trend that increasing the size of the gene set increases the 
power to identify polygenic adaptation (the 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇  results summarised in Fig. 
2.7, all methods across all metapopulations given in Fig. S2.7-12). Since gene set 
methods effectively combine signatures from multiple genes, here as a sum, it is thus 
expected that increased numbers of genes under selection increases the accuracy of these 
methods.   

 

 

Fig. 2.7: Gene sets identified as under polygenic selection. The percentage of gene sets 
identified as being under selection (according to the 5% tail of the neutral distributions) 
using the  𝑆𝑈𝑀𝑆𝑇𝐴𝑇 method integrating  𝑅𝑒𝑙𝑎𝑡𝑒 (A) and 𝐹𝑆𝑇 (B; given for three population 
comparisons, where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). Shown for 
selection acting at 40kya for the African population. 
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I now evaluate how sensitive 𝑅𝑒𝑙𝑎𝑡𝑒 and  𝐹𝑆𝑇  are to identifying selected SNPs under 
different selection coefficients, repeating the prior analysis but conditioning on the 
selection coefficients of all selected SNPs in a gene set.  

I observe that 𝑅𝑒𝑙𝑎𝑡𝑒 is more sensitive to the selection coefficients of the selected SNPs 
compared to 𝐹𝑆𝑇  (when selection is acting at 40kya in the African metapopulation; Fig. 
2.8, all other metapopulation analysis for selection at 40kya given in Fig. S2.13-17). For 
example, for selection acting in the African metapopulation at 40kya, 𝑅𝑒𝑙𝑎𝑡𝑒 drops from 
identifying 94.2% of polygenic adaptation gene sets with size 10 when the selection 
coefficients are between 0.005 and 0.004 to only identifying 9.3% when the selection 
coefficients are between 0.001 and 0.002 (when selection coefficients are uniformly 
distributed, 𝑅𝑒𝑙𝑎𝑡𝑒   identifies 59.1% of gene sets as showing evidence of polygenic 
selection, see Fig. 2.7). Comparatively, for selection acting in the African metapopulation 
at 40kya,  𝐹𝑆𝑇  identifies 100% of polygenic adaptation gene sets with size 10 when the 
selection coefficients are between 0.005 and 0.004 and identifies 99.1% when the 
selection coefficients are between 0.001 and 0.002 (when selection coefficients are 
uniformly distributed,  𝐹𝑆𝑇   identifies 100% of gene sets as showing evidence of polygenic 
selection, see Fig. 2.7). Hence, I caution that 𝑅𝑒𝑙𝑎𝑡𝑒 is considerably less accurate when 
selection is weaker across a gene set. 

Indeed, 𝐹𝑆𝑇   within the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 framework is almost always at an accuracy of 100%, 
implying that this may be a trivial evaluation of  𝐹𝑆𝑇′𝑠 power. Instead, the power of  𝐹𝑆𝑇   
within a gene set could be more informatively evaluated at lower selection coefficients or 
gene set sizes (given that the broad pattern of decreased accuracy at lower gene set sizes 
and selection coefficients remains).  
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Fig. 2.8: Gene sets identified as under polygenic selectiona according to selection 
coefficient. The percentage of gene sets identified as being under selection (according to 
the 5% tail of the neutral distributions) using the  𝑆𝑈𝑀𝑆𝑇𝐴𝑇 method integrating  𝑅𝑒𝑙𝑎𝑡𝑒 
(A) and 𝐹𝑆𝑇 (B; given for three population comparisons, where AFR=Africa; EUR=Europe; 
EAS=East Asia; AMR=America), partitioned by selection coefficient of the tagged variant 
(given for timepoints of selection of 1kya, 5kya, 10kya, 40kya). Shown for selection acting 
on the African population. 

 

2.4.3.2. Gene Sets of Both Neutral and Selected Genes 

Finally, I consider the more realistic case where not all genes within a functional-related 
gene set evolve under the same selection, due to  pleiotropy or other genomic constraints 
(Wagner and Zhang 2011; Fraïsse et al. 2019). Hence, I now evaluate the ability of  
𝑅𝑒𝑙𝑎𝑡𝑒 and  𝐹𝑆𝑇 , the most promising gene set methods, to identify gene sets as under 
polygenic selection when not all genes within a gene set experience selection. To do so, I 
vary the proportion of gene regions under positive selection, conditioning on only 20%, 
40%, 60% and 80% of genes within a gene set as under selection.  

As expected, I observe the highest accuracy when identifying selection on larger gene sets 
with the highest proportion of selected genes. When using 𝑅𝑒𝑙𝑎𝑡𝑒 , and for selection 
starting at 40kya, the most marked increase in accuracy is when the proportion of 
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selected genes in the gene set is over 60%, and is particularly high when the gene sets are 
larger than 40 (Fig. 2.9, Fig S2.18). 𝐹𝑆𝑇  shows substantially higher accuracy at more 
recent timepoints, with gene sets containing only 40% of genes under selection showing 
impressive accuracy (given that gene sets are larger than 40 genes, Fig. 2.9, Fig S2.4.19-
22). 

 

 

Fig. 2.9: Gene sets with varying proportions of genes under selection identified as 
under polygenic selection. The percentage of gene sets identified as being under selection 
according to the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇  method, according to the proportion of the gene set under 
selection and given for timepoints of selection of 1kya, 5kya, 10kya, 40kya. Panel A 
corresponds to the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇  method integrating 𝑅𝑒𝑙𝑎𝑡𝑒 ; panel B corresponds to the 
𝑆𝑈𝑀𝑆𝑇𝐴𝑇  method integrating 𝐹𝑆𝑇  (given for three population comparisons, where 
AFR=Africa, EUR=Europe, EAS=East Asia, AMR=America). 
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Hence, I conclude that, when using 𝑅𝑒𝑙𝑎𝑡𝑒 and  𝐹𝑆𝑇  within the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇  framework, 
power is one again highest for selection furthest back in time and for selection acting in 
the African metapopulation, as well as for larger gene sets with the highest proportions 
of genes under selection. Whilst I do recommend the use of 𝑅𝑒𝑙𝑎𝑡𝑒  in the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 
framework, I caution that it is more sensitive to selection occurring at different 
timepoints and at different strengths in comparison to  𝐹𝑆𝑇 . It is likely that this is a 
product of the slightly higher power of  𝐹𝑆𝑇  to identify selected SNPs in individual gene 
regions as showing evidence of selection (Fig. 2.4) in comparison to 𝑅𝑒𝑙𝑎𝑡𝑒 (Fig. 2.3).  

2.5. Discussion 

Common methods to identify positive selection are designed to identify related but subtly 
different signatures of selection. Summary statistics focus on identifying the signatures 
of allele frequency differentiation between populations, extended haplotype length or 
changes to the site frequency spectrum when compared with neutral expectations 
(Tajima 1989; Voight et al. 2006; Sabeti et al. 2007; Bhatia et al. 2013; Excoffier et al. 2013; 
Ferrer-Admetlla et al. 2014; Szpiech et al. 2021). More recent methods also focus on 
identifying selection events via the allele trajectory through time, inferred from 
reconstructed genealogies of loci across the genome (where such genealogies can now be 
inferred using the genomes of thousands of individuals; (Field et al. 2016; Kelleher et al. 
2019; Speidel et al. 2019)).  

However, the extent of these signatures or patterns of positive selection, and more 
importantly how accurately they are able to be drawn away from the neutral background 
of the genome, can vary wildly according to the exact dynamics of a selection event. The 
methods which aim to identify positive selection therefore present different accuracies 
according to relevant parameters such as the timepoint of selection, the demographic 
history of the population or the number and nature of alleles under selection. Forward 
simulation programmes, such as SLiM (Haller and Messer 2019), can explicitly model 
positive selection under these varied dynamics, and therefore facilitate the testing of 
these methods under different selective scenarios. In particular, SLiM is highly scriptable 
and therefore allows sophisticated customisation, well suited to modelling complicated 
genetic or selection scenarios, and is highly efficient, allowing the high numbers of 
simulations to be run in relatively little time (Haller and Messer 2019).  

I designed a novel simulation framework using SLiM to test the accuracy of different 
methods to identify local adaptation in modern humans. I included selection events 
beginning at four timepoints in modern human history, two of which likely presented 
novel selective pressures to human populations: 10kya (approximate date of the 
Neolithic transition from a hunter-gathering to agricultural lifestyle (Latham 2013)) and 
40kya (approximate date of major migrations to Eurasia (Seguin-Orlando et al. 2014)). 
The development from hunter-gatherer societies to those based on agriculture brought 
with it large changes to the human diet, as well as significant increases in population 
density resulting in increased risk of communicable diseases and zoonotic pathogens. 
Major migrations into varied Eurasian environments (and beyond) from approximately 
40kya exposed colonising populations to novel temperatures and altitudes, as well as, in 
some cases, significantly altering the dietary composition and pathogen risk (Yi et al. 
2010; Fumagalli et al. 2015; Mathieson et al. 2015a; White et al. 2015; Key et al. 2018). 
Hence, local adaptation events in modern humans are hypothesised to be driven in 
various populations at these timepoints. The remaining timepoints, 1kya and 5kya, were 
chosen to test the limits of all methods in identifying very recent selection.  
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The simulation framework also explicitly models selection that occurs on already 
segregating genetic diversity, or SSV. This mode of selection has been suggested to 
underlie some instances of local adaptation in modern humans but often remains elusive 
in the genome (Hermisson and Pennings 2005; Prezeworski et al. 2005; Schrider and 
Kern 2016, 2017). SSV has been particularly suggested to be the dominant mode of 
adaptation for populations rapidly encountering novel environments (Schrider and Kern 
2016, 2017; Hermisson and Pennings 2017), since low frequency alleles maintained in an 
expanding population would have mediated faster adaptation than de novo mutations (de 
Filippo et al. 2016; Hermisson and Pennings 2017).  

Finally, I extended the framework to consider polygenic selection, grouping the simulated 
genomic regions into polygenic adaptation gene sets. Polygenic selection has been 
suggested to be prevalent in human evolutionary history given that it likely underpins 
the  adaptation of complex traits, such as those relating to immunity, diet and metabolism 
(Pritchard et al. 2010). However, the weak and varied signatures of selection spread over 
different genomic regions, characteristic of polygenic selection, are also often difficult to 
confidently identify (but not impossible; (Fumagalli et al. 2011; White et al. 2015; Nédélec 
et al. 2016; Berg, Harpak, et al. 2019; Berg, Zhang, et al. 2019; Roca-Umbert et al. 2022)). 
Hence, by designing the simulations to model both SSV and polygenic adaptation, and 
using selection coefficients that represent weak selection (0.001 < 𝑠 < 0.005), I am able 
to evaluate the methods with the highest power to identify the local adaptation events 
that are likely present, but remain somewhat elusive, in our history. 

From these simulations, I identify two methods which demonstrate the highest power in 
identifying local adaptation in modern humans (𝐹𝑆𝑇and the 𝑅𝑒𝑙𝑎𝑡𝑒) and compare them 
to the weaker performing haplotype-based methods. I specify that the power of 𝐹𝑆𝑇and 
the 𝑅𝑒𝑙𝑎𝑡𝑒 is primarily demonstrated only in the cases of older selection, that occurring 
more than 10kya, and is particularly observed in those populations with high 𝑁𝑒 (and by 
consequence, having higher genetic diversity). Despite their high power to identify strong 
signatures of selection (Voight et al. 2006; Sabeti et al. 2007; Ferrer-Admetlla et al. 2014; 
Huerta-Sánchez et al. 2014; Szpiech et al. 2021), all haplotype methods used here have 
low power to identify weak selection on standing variation. The diverse genetic 
backgrounds of which the adaptive allele is on, and the weak selection simulated, result 
in the absence of long and uniform haplotypes within a population. Hence, it is expected 
that the power of haplotype-based methods is so low under this particular selective 
scenario.  

2.5.1. 𝑭𝑺𝑻 

𝐹𝑆𝑇 has the highest power to identify selected SNPs as those with evidence of selection 
over each timepoint of selection, and appears to be more suited to identifying selection 
across a range of metapopulations in comparison to 𝑅𝑒𝑙𝑎𝑡𝑒 (which has larger differences 
in power across the metapopulations). The increased power of 𝐹𝑆𝑇 likely comes from its 
cross-population approach; by comparing allele frequency across populations, this 
method is able to more accurately identify positive selection isolated to one population. 
Whilst 𝑅𝑒𝑙𝑎𝑡𝑒 identifies SNPs with an unusual inferred trajectory through time, it does 
not compare between populations and therefore cannot integrate this comparison into 
its assessment of the likelihood of allele trajectory.  
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2.5.2. 𝑹𝒆𝒍𝒂𝒕𝒆 

𝑅𝑒𝑙𝑎𝑡𝑒 integrates the entire inferred history of the allele to calculate the probability of a 
variant having its inferred spread through a population. Since I use the tails of the neutral 
distribution to identify selected sites, here I explicitly identify those sites with an 
unusually rapid spread through a population relative to all other neutral sites in that 
population. It has been previously suggested that methods that more fully integrate the 
history of an allele, such as these genealogical methods, are more suited to identifying 
weaker selection, as they do not depend on a single strong signature in modern genomes, 
and do not remove key information (which may indicate selection) when summarising 
complex patterns into a single statistic.  Indeed, I show that this is a powerful approach 
when identifying weak SSV when the onset of selection is older than 10kya. 

However, the power of 𝑅𝑒𝑙𝑎𝑡𝑒 remains low when identifying selection at 5kya or 1kya. I 
believe that this, in part, is due to 𝑅𝑒𝑙𝑎𝑡𝑒 inferring the probability of selection of an allele 
since the appearance of the mutation. This means that the underlying assumption of 
selection is that it occurs immediately on the birth of a mutation, assuming SDN rather 
than SSV (as simulated here). When selection occurs further back in time, the birth of the 
mutation and onset of selection are likely to be significantly closer, perhaps 
indistinguishable, compared to the long period of neutrality a variant may have before a 
selection onset at 5kya or 1kya. Hence, signatures of SSV may be lost within the trajectory 
of the allele over its lifetime. The output of 𝑅𝑒𝑙𝑎𝑡𝑒 can be customised, however, to output 
the probability of positive selection from a specified number of generations ago. Rather 
than using the raw −𝑙𝑜𝑔10𝑝𝑣𝑎𝑙𝑢𝑒 to evaluate the evidence of selection at this timepoint 
(which will be adversely affected by the lower power to identify selection at more recent 
timepoints), I suggest using the tail of the empirical background distribution of 
probabilities inferred from the same timepoint to identify the likelihood of selection on a 
SNP. In theory, this would identify the SNPs along the genome with the most unusual 
trajectory from the given timepoint. Still, this relies on assumptions of the timing of 
selection; identifying SNPs with evidence of positive selection whilst simultaneously 
suggesting the timing of the selection is considerably more sophisticated (but has been 
attempted; (Stern et al. 2019)). 

The power of 𝑅𝑒𝑙𝑎𝑡𝑒  also differs amongst metapopulations of different demographic 
histories, with the simulated African metapopulation having markedly higher power in 
comparison to the other metapopulations. The reduction in power to identify positive 
selection in the European, East Asian and American populations, biased by the simulation 
design but remaining informative (see Section 2.3.3.1), is likely due to the decreased 𝑁𝑒 
and consequent decreased genetic diversity (not independent from the bottlenecks in 
their demographic histories). In turn, this reduces the number of lineages in the 
genealogies of each selected SNP. Since the 𝑅𝑒𝑙𝑎𝑡𝑒 test for selection conditions on these 
lineages (Speidel et al. 2019), a reduction in lineages likely reduces the power to identify 
selection. As alluded to in Section 2.5.1, a cross-population approach (comparing the 
trajectories between populations) may reduce the power imbalances between 
populations.   

Further, I demonstrate that whilst 𝑅𝑒𝑙𝑎𝑡𝑒 is vulnerable to low sample sizes, the number 
of selected SNPs identified can be increased by using the tails of the empirical neutral 
distribution rather than the raw probability output, as previously used (Speidel et al. 
2019). Hence, I suggest that this is the most powerful way of using this method to identify 
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positive selection, and recommend this method particularly when identifying selection in 
populations with low 𝑁𝑒.  

2.5.3. 𝑭𝑺𝑻 and 𝑹𝒆𝒍𝒂𝒕𝒆 in Identifying Polygenic Adaptation 

The relatively high accuracy of 𝐹𝑆𝑇  and 𝑅𝑒𝑙𝑎𝑡𝑒 is also demonstrated when considering 
local selection on a polygenic adaptation gene set, as evaluated using 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 (Daub et 
al. 2013). As expected, I show that the accuracy of these methods increases with larger 
gene set size, since many small shifts in the test statistic are needed to significantly shift 
the sum value to the tail of the empirical neutral distribution. When using 𝑅𝑒𝑙𝑎𝑡𝑒  to 
identify polygenic selection according to the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇  framework, gene sets should 
have approximately 60% or more of their genes as under selection for appreciable power. 
This proportion can drop to approximately 40% when using  𝐹𝑆𝑇. I therefore suggest that, 
even though there is higher power to identify polygenic selection on larger gene sets, it is 
the proportion of genes under selection that is most important in governing the power of 
the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇  approach. Hence, the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇  approach is limited to identifying 
polygenic selection on gene sets where the majority of genes are responding to selective 
pressures.  

I also show that the power of 𝐹𝑆𝑇 to identify polygenic selection remains high even when 
selection acting on the gene set is weak (0.001 < 𝑠 < 0.002; (Turchin et al. 2012)). In 
contrast, the power of 𝑅𝑒𝑙𝑎𝑡𝑒 to identify polygenic selection on gene sets appears to be 
considerably more sensitive to the selection coefficients than 𝐹𝑆𝑇. When selection is this 
weak, the allele trajectory is likely too similar to that expected under neutral drift and 
𝑅𝑒𝑙𝑎𝑡𝑒 is unable to draw this signature out from the rest of the genome. The programme’s 
underlying assumption of SDN, or inference of the probability of selection of variant since 
its appearance, likely further hinders the identification of weak selection; the effect of 
weak selection on the trajectory of a variant segregating neutrally for some time is not 
strong enough to characterise the entire lifetime of a variant as being under selection 
(especially if the time of the variant evolving under neutrality is very long). Hence, I again 
suggest that the current assumptions of 𝑅𝑒𝑙𝑎𝑡𝑒 place some limitations on its ability to 
identify SSV.  

2.5.4. Limitations and Future Directions 

I demonstrate the power of 𝐹𝑆𝑇 and the 𝑅𝑒𝑙𝑎𝑡𝑒 method to identify weak positive selection 
acting on standing variation as recent as 10,000 years ago, but recognise that the 
inferences from these simulations are limited by a few key factors. I simplify the 
mutational landscape to only one positive mutation and do not consider the effects of 
pleiotropy and epistasis, which may limit the response of a genomic region under 
selection (and is particularly relevant when considering polygenic selection on a gene 
set). I also use a relatively simply demographic model, and caution that the demographic 
history of each metapopulation does not accurately represent that of all populations 
within that region. Finally, since weak to moderate selection coefficients are used 
(Turchin et al. 2012), the estimates of power of these methods are conservative, and may 
indeed be significantly higher when identifying stronger SSV (and certainly under strong 
SDN). 

I show that the present methodological toolkit is well-equipped to identify selection 
surrounding the timepoints of major migratory events into non-African environments 
(~40kya) and large cultural changes (i.e., the Neolithic revolution, ~10kya). However, it 
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is clear that issues of accuracy remain when identifying more recent selection. Mass 
disease, continued dietary change and even temperature fluctuations (Allentoft et al. 
2015; Mathieson et al. 2015a; Demény et al. 2019) have continued to exert significant 
selective pressure on human populations in the last 5000 years, but there are few, if any, 
methods that are reliably able to identify that but the very strongest selection (Rees et al. 
2020). It is likely that the use of ancient genomes will significantly help in identifying this 
recent selection, since they can provide direct insight into past allele frequency. Given 
enough samples, ancient DNA can thus pinpoint the timing of rapid allele frequency 
change and inform inferences on the timing of selection events.  

Still, I highlight here the promise of tree-based statistics. Tree-based methods to identify 
positive selection are in their relative infancy, but here I already demonstrate their ability 
to identify weak selection as recent as 10kya. Methods that are similar or derived from 
𝑅𝑒𝑙𝑎𝑡𝑒 may prove more powerful if the underlying assumption of SDN can be removed, 
or they are able to integrate assumptions on the onset of selection to identify unusual 
trajectories, relative to the empirical neutral background, following this point. By 
integrating ancient DNA into these methods, either to constrain the inferred tree as in 
(Wohns et al. 2022) or to suggest the onset of selection, these methods will likely continue 
to improve.  

It remains that by considering the entire inferred history of an allele, and hence avoiding 
the collapse of complex evolutionary patterns into a singular value, the field has a 
powerful way to identify subtle signatures of selection, and one that will likely progress 
rapidly. Indeed, current packages to identify the signatures of positive selection on tree 
sequences are already highly customisable (Kelleher et al. 2019) and may well be 
developed under recent, SSV assumptions. Ultimately, focusing on allele trajectory over 
time (as inferred by tree-based methods), as well as allele frequency differentiation, are 
the most promising avenues to identify weak SSV, since the rise in allele frequency 
characterises all positive selection.  

Finally, I suggest that many studies may benefit from integrating simulations of a similar 
design: those that explicitly model target populations’ demographic history (more so 
than done here) to identify the methods with the highest power to detect positive 
selection at hypothesised timepoints. Naturally, this requires a clear, if not approximate, 
understanding of the study population’s demographic history, and I recognise the 
barriers in accurately modelling these. However, if such demographic histories can be 
confidently inferred, simulations such as these allow a considerably more informed view 
on which methods are most powerful in identifying hypothesised selection events and 
may aid the identification of previously elusive signatures of positive selection.  

2.6. Conclusions  

Using a novel simulation framework that models weak selection on standing variation in 
individual metapopulations, I demonstrate allele-differentiation and tree-recording 
methods as having the highest power to identify the genetic signatures of local adaptation 
in modern humans up to 40,000 years ago. These findings extend to polygenic selection 
using a gene set method, and I observe a significant drop in accuracy when selection 
starts less than 10,000 years ago.  
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Chapter 3: Signatures of Adaptation to 
Micronutrient-Associated Genes in Modern 

Humans 
 
3.1. Overview 

Trace minerals, macrominerals and vitamins are essential dietary components for 
human health, with pathologies occurring below or above their narrow, recommended 
range (Tako 2019; De Groote et al. 2021). These micronutrients accumulate in the diet 
according to the local soils, which affect the micronutrient composition in plants and 
their consumers (von Wandruszka 2006; Hurst et al. 2013; De Groote et al. 2021). 
Indeed, micronutrient soil levels are highly variable across the globe, with both local 
pockets and wide-spread regions of soil that are deficient or toxic for any given 
micronutrient (Karimov et al. 2009; Hurst et al. 2013; Hengl et al. 2017; Nell and van 
Huyssteen 2018; De Groote et al. 2021). Hence, human populations occupying different 
environments are exposed to varying levels of these essential micronutrients, which 
may act as a local selective pressure to drive adaptations in the genes involved in their 
metabolism, uptake or transport.  

In this study, I use methods based on allele frequency differentiation and recently 
developed tree-recording methods (Weir and Cockerham 1984; Speidel et al. 2019) to 
infer signatures of natural selection across 276 micronutrient-associated genes, linked 
to the uptake, metabolism or regulation of 13 micronutrients in 40 diverse modern 
human populations (Bergström et al. 2020). I show that such signatures are present 
across many global populations and micronutrient categories, and the strongest 
signatures of natural selection recapitulate known geology and endemic deficiencies in 
modern human populations. I do not see evidence for micronutrient-associated 
adaptation being mediated by polygenic selection and suggest that micronutrient-
associated adaptation is largely mediated by monogenic or oligogenic selection. Finally, 
I propose the micronutrient-associated gene sets and individual micronutrient-
associated genes with the strongest evidence of positive selection in global populations. 

3.2. Background 

Diet is a dominant selective pressure across all organisms, driving adaptation to uptake, 
regulate and metabolise key dietary components (Perry et al. 2007; Drouin et al. 2011; 
Li and Zhang 2014; Wu 2022). In modern humans, diets are highly diverse across the 
globe (Fumagalli et al. 2015; Fan et al. 2016; Rees et al. 2020) and hence exert 
differential selective pressures amongst different populations. This can result in local 
adaptation: genetic adaptation in specific populations, or groups of populations, that 
results in a local adaptive phenotype.  

Indeed, dietary drivers of local adaptation are well-recorded in modern humans, driven 
either by environmental or cultural differences in the local diet amongst populations. 
These adaptations may be driven by novel sources of nutrition (such as lactase (Tishkoff 
et al. 2007a)), toxic substances (such as alcohol or toxic metals (Osier et al. 2002; Han et 
al. 2007; Schlebusch et al. 2015), differing proportions of key macronutrients (such as 
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fatty acids or starch (Perry et al. 2007; Fumagalli et al. 2015)) or nutritional abundance 
(such as highly variable dietary conditions (Minster et al. 2016)). 

3.2.1. Micronutrients in the Human Diet 

Micronutrients, which include trace minerals, macrominerals and vitamins, are a key 
component of the human diet and a likely selective pressure in modern humans. With 
the exception of vitamin D, micronutrients cannot be synthesised by the human body, 
and therefore must be absorbed via the diet. Moreover, the healthy range of 
micronutrient levels in the diet is very narrow (Renwick 2006), particularly for trace 
minerals (which are recommended at daily levels of 50micrograms to 18milligrams 
(Mertz 1981)). For example, the recommended levels of the trace mineral level zinc are 
8-11mg (De Groote et al. 2021) with deficiency being induced when consuming daily 
levels as high as 5mg (Prasad 2013). Macrominerals, whilst recommended in higher 
amounts than trace minerals (daily recommendations >100mg (Tako 2019)), are still 
required at much narrower levels than macronutrients.  

Micronutrient deficiencies are relatively prevalent (Caballero 2002; Xia et al. 2005; 
Renwick 2006; Shenkin 2006; Bhutta and Salam 2012; Biban and Lichiardopol 2017; De 
Groote et al. 2021), with iron and iodine-deficiencies most common across the globe 
and estimated to affect approximately 25% of the world’s population (Bhutta and Salam 
2012; Bailey et al. 2015). Micronutrient toxicity is comparatively rarer, and is usually a 
result of over-supplementation (Renwick 2006; Pike and Zlotkin 2019). Common 
adverse effects resulting from toxicity include gastrointestinal distress, nausea, 
vomiting and diarrhoea, as well as increased interaction with non-essential chemicals 
(Peraza et al. 1998; Pike and Zlotkin 2019). 

Micronutrient deficiencies vary in their exact pathology, but all increase the risk of 
various metabolic, infectious and respiratory diseases, as well as often impairing mental 
and physical development (Caballero 2002; Tulchinsky 2010; Prasad 2013; Biban and 
Lichiardopol 2017). Common pathologies resulting from trace mineral and 
macromineral deficiency include anaemia (resulting from iron deficiency across many 
populations (Caballero 2002)), goitre (iodine-deficiency, commonly reported in 
mountainous or some forest environments (Dormitzer et al. 1989; Niepomniszcze et al. 
2009; Biban and Lichiardopol 2017)), and the heart and bone diseases Keshan and 
Kashin-Beck diseases (linked to selenium-deficiency, endemic to selenium-deficient 
areas of China (Moreno-Reyes et al. 2001; Xia et al. 2005)).  

3.2.2. Micronutrients in Human Local Adaptation 

The essentiality of micronutrients in the human diet, alongside serious pathologies that 
accompany deficient levels, mean that dietary micronutrients are a strong candidate 
selective pressure within human evolution and hence may drive local adaptation. 
Moreover, this selective pressure has likely been differentially exerted over populations. 
Whilst today omission of key food groups can result in micronutrient deficiencies, for 
much of human history the levels of dietary micronutrients was determined by those 
available in the local consumed animal and plant products. In turn, this was heavily 
influenced by the geology and micronutrient composition of the local soil (Sillanpaeae 
1982; Hurst et al. 2013; Prasad 2013). Since soil levels can vary widely even between 
proximal localities, on the level of the individual populations rather than across 
continents (e.g., extremely selenium, zinc and iodine-deficient soils in areas of China, 
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Ethiopia and Central Africa, respectively; Cifor, 2006; De Groote et al., 2021; Dhaliwal et 
al., 2019; Dormitzer et al., 1989; Hengl et al., 2017; Xia et al., 2005) this may have 
resulted in relatively fine-scale local adaptation to micronutrient uptake, regulation or 
metabolism.  

Indeed, selenium-deficient soil in East Asia has been associated with adaptation in 
selenium-associated genes, particularly in DIO2, SelS, GPx1, CELF1 and SEPHS2 (White et 
al. 2015). A correlation between zinc levels in soil and crops in East Asia with a 
particular haplotype of the zinc-associated gene SLC30A9 has also been inferred (Zhang 
et al. 2015a). Finally, iodine-deficient soil in rainforest environments have been 
suggested to drive potential signatures of positive selection in TRIP4 and IYD genes in 
the Biaka population (Herráez et al. 2009). This adaptive scenario is supported by the 
lower incidence of goitre in rainforest pygmy populations compared to the 
neighbouring Bantu populations (42.9% compared to 9.1%; (Dormitzer et al. 1989). 

Dietary micronutrient levels are not only affected by the local soil, but also by the exact 
content of the diet, more closely tied to cultural differences and dietary evolution 
amongst populations. The rapid changes in the diet during the Neolithic revolution 
included a reduction in nutrient-rich animal products in favour of a cereal-based diet, 
dominated by staple crops and lacking key nutrients such as iron and calcium (Diamond 
2002; Naugler 2008). Such recent dietary changes have also then been suggested to 
drive adaptation in iron and calcium-associated genes, namely HFE and TRPV6 in 
European populations (although the former has also been suggested to be a result of 
allele-surfing: the geographic spread and increase in frequency of alleles during a range 
expansion that may mimic the signatures of positive selection (Akey et al. 2004; 
Distante et al. 2004; Ye et al. 2015; Peischl et al. 2016)). Agricultural practices born 
from the Neolithic revolution may also deplete soils of key micronutrients (Diamond 
2002), and populations may then have also experienced increased micronutrient-
associated stress, as a result of decreased micronutrients in the soil and therefore diet.  

Hence, dietary micronutrient levels are not only a strong candidate selective pressure in 
human evolution, but one that may be exerted differentially amongst populations to 
ultimately result in local adaptation. This may be driven by the micronutrient content of 
global soils, cultural evolution of diet or the development of human agricultural 
practices (although, it is unclear the extent of micronutrient depletion farming would 
have imposed before very recent times).  

Still, here three additional selective drivers are mentioned, unrelated to local soil or 
cultural evolution, suggested to be driving particular examples of micronutrient-
associated adaptation in modern humans. The first is the degree of UV exposure 
experienced by a population. Whilst level of ingested calcium depends on the content of 
the diet, the extent of calcium absorption relies on adequate vitamin D levels, which in 
turn is produced on exposure of UV light (Carlberg 2022). Because of this, it has been 
suggested that the low UV levels in some populations, specifically northern European 
populations, instead act as the selective driver for calcium uptake (Mathieson and 
Terhorst 2022). The second proposed selective driver is the pathogen stress 
experienced by a population: reducing intracellular levels of zinc and iron has been 
suggested to be an adaptive response that starves pathogens of their essential 
micronutrients, thereby reducing the risk of serious infection (Engelken et al. 2014; 
Pietrangelo 2015). Finally, ambient temperature has been suggested to have driven 
iron-related adaptation in European populations, as a connection between the 
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thermoregulatory role of iron and the colder temperatures experienced by populations 
within Europe compared to Africa (Heath et al. 2016a). 

It is therefore clear that a multitude of questions remain surrounding micronutrient-
associated adaptation in humans. This includes to what extent such proposed 
adaptation has played in human genomic variation (and in response to which 
micronutrients) and which exact selective pressures are most likely to be driving 
potential micronutrient-associated adaptation events. It is also unclear if micronutrient-
associated adaptation may be polygenic in nature (as suggested by some studies (White 
et al. 2015; Zhang et al. 2015a)), and how this may vary across micronutrients.  

At the time of writing, there has been no comprehensive study that investigates 
adaptation in modern humans across micronutrients and across global populations, 
thus limiting our knowledge to individual studies exploring specific micronutrient-
associated adaptation. From these existing studies, it is not possible to fully evaluate the 
role dietary micronutrients have played in driving human genetic adaptation, and not 
able to compare the role of each micronutrient in such genetic adaptation. Moreover, 
many previous studies have been carried out in limited population cohorts and do not 
fully represent the geographic and genetic diversity of modern humans, and hence are 
not able to comprehensively evaluate the geographic distribution of potential 
adaptations. Finally, the current literature shows considerable bias towards particular 
micronutrients or genes, and there is little known about adaptation to the still-essential 
micronutrients, such as magnesium or phosphorus.  

3.2.3. Study Overview  

Here, I carry out a comprehensive study exploring selection in just under 300 genes 
associated with the uptake, metabolism or regulation of 13 trace minerals and 
macrominerals. I use simulation-informed methods (see Chapter 2) of allele-frequency-
differentiation (𝐹𝑆𝑇; (Weir and Cockerham 1984)) and genealogical inference (𝑅𝑒𝑙𝑎𝑡𝑒; 
(Speidel et al. 2019)) to identify instances of local adaptation across 40 genetically and 
geographically diverse modern human populations (Bergström et al. 2020). 

I show that signatures of natural selection are present for many micronutrient-
associated genes in many global populations, in some cases supported by known soil 
levels and dietary deficiencies in modern human populations. I find no evidence that 
selection acts over entire micronutrient gene-sets, and infer that adaptation is more 
likely oligogenic than polygenic in nature. I also identify the populations and the 
candidate genes with the strongest evidence of having undergone positive selection in 
response to micronutrient levels, and ultimately suggest that dietary micronutrients 
have played a role in shaping the genetic diversity of our species.  

3.3. Methods 
3.3.1. Micronutrient-Associated Gene Sets 

I curate gene sets associated with the uptake, regulation and metabolism of 13 
micronutrients: selenium, copper, iron, zinc, iodine, manganese, molybdenum, calcium, 
phosphorus, magnesium, sodium, chloride and potassium. This includes all trace 
minerals (N=7; selenium, copper, iron, zinc, iodine, manganese, molybdenum) and 
macrominerals (N=6; calcium, phosphorus, magnesium, sodium, chloride, potassium) 
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with the exception of fluoride and sulfur, which were omitted due to limited literature 
surrounding their functionally-associated genes in modern humans.   

Gene sets (see Table 3.1) were manually created from relevant databases (e.g., Human 
Metabolome Database (Wishart et al. 2007)) and a literature search using key terms 
including “human health”, “metabolism”, “adaptation” for each specified micronutrient. 
The literature used includes clinical studies, functional biochemical studies and studies 
identifying signatures of natural selection (see Table S3.1). Signatures of natural 
selection have only been identified in genes associated with selenium, zinc, iron, calcium 
and iodine, and such genes make up only a small proportion of the gene sets (see Table 
S3.1). Hence, the ascertainment bias from this literature search is in this regard as 
minor. 

In total, 276 micronutrient-associated genes (MA-genes) were identified, 263 of which 
are autosomal. After the filtering step that removes segments of the genome of low 
reliability (according to a positive mask, see Section 3.3.3 (Bergström et al. 2020)), 269 
genes remain. The micronutrient-associated gene sets vary in size (see Table 3.1), 
somewhat reflecting the number of genes associated with specific micronutrient uptake 
and metabolism, but also recognised as reflecting a bias of the available literature by 
micronutrient. This is considered during the following analysis, e.g., how this may affect 
the proportions of genes showing signatures of positive selection in each gene set (see 
Section 3.4.3). 

Notably, some genes are associated with multiple micronutrients (common overlaps are 
between selenium and iodine, sodium and potassium, and calcium and phosphorus; see 
Table S3.1). For some analyses, cut-down micronutrient gene sets where there exists 
no overlap are used, and each gene is only assigned to its most strongly associated 
micronutrient, according to the available literature (see Table S3.1).  
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Table 3.1: The total number of genes used in this study associated with the 
uptake, metabolism or regulation of 13 micronutrients. Number of genes for 
each MA-gene set given as a total (“Total Set”), the number of genes following the 
removal of any masked gene regions (“Post-mask”) and when cutting down gene 
sets to remove any overlap, assigning each gene to its most supported associated 
micronutrient set (“Cut-down”).  

 

  Number of 
Associated Genes 

  

 Micronutrient Total Set Post-mask Cut-down 

Trace Minerals Selenium 61 59 59 

 Copper 11 11 9 

 Iron 44 44 44 

 Zinc 46 45 42 

 Iodine 18 18 14 

 Manganese 7 7 4 

 Molybdenum 5 5 5 

Macrominerals Calcium 23 21 17 

 Phosphorus 16 16 14 

 Magnesium 19 19 15 

 Sodium 20 20 17 

 Chloride 25 23 22 

 Potassium 11 11 7 

 

 
3.3.1.1. Distribution of Micronutrient-Associated Genes 

The gene regions for each of the MA-genes were extracted from the 𝑒𝑛𝑠𝑒𝑚𝑏𝑙 database 
(Yates et al. 2020), and those which have overlapping gene regions or are less than 
10kbp apart were identified (see Table S3.2). Any signatures of positive selection 
identified in these overlapping gene regions are treated as possible signatures for either 
gene region, rather than assigning to a single MA-gene. I verify that the MA-genes are, 
on average, randomly distributed along the human genome using 𝐶ℎ𝑟𝑜𝑚𝑜𝑀𝑎𝑝 (Fig. 
S3.1; (Anand and Rodriguez Lopez 2022)). 
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Since elevated allele frequencies can lead to false positives in selection scans (Buffalo 
and Coop 2020), I also evaluate whether the distribution of derived allele frequencies 
across micronutrient gene sets are significantly higher than the genomic background. 
For each micronutrient gene set, I sample the equivalent number of SNPs from chr1 of 
22 Yoruba individuals (Bergström et al. 2020) and compare the distribution of allele 
frequencies between the SNPs in the gene set and this background distribution using a 
Mann-Whitney test.  

Only four micronutrient gene sets have a significantly different allele frequency 
distribution compared to the genomic background (copper, magnesium, sodium and 
molybdenum; MW test, 𝑝 < 0.05; see Table S3.3). The differences between the 
micronutrient set and genomic background are either negligible (e.g., the mean allele 
frequency difference between the background and the magnesium and sodium gene 
sets) or the mean allele frequency is lower in the gene set than in the background 
distribution (e.g., copper), so these differences are treated as irrelevant to this study. 
The remaining difference, the significantly higher allele frequency in the Molybdenum 
gene set (n=5) than in the background distribution, appears to be driven by the GPHN 
and MOCS2 genes (possibly as a result of positive selection, as suggested in Section 
3.4.3).  

3.3.1.2. Generating Matched Neutral Gene Sets 

A database of neutral gene regions matched to each MA-gene set is generated, 
accounting for the number, length and SNP density of genes within each set. For each 
MA-gene, I sample 1,500 gene regions of equivalent length from the human genome 
beginning at the starting genomic coordinate of a random human gene. I retain the 
1,000 gene regions with the SNP densities closest to each associated MA-gene (SNP 
densities sampled from the genomes of Yoruba individuals (Bergström et al. 2020)). 
This results in a random set of gene regions (proxy MA-gene regions, now referred to as 
pMA-gene regions) which represent the genomic background, approximately matched 
in length and SNP density to the MA-genes. 

The SNP density (number of SNPs above 5% in the Yoruba individuals) of seven MA-
genes fall above the 95th percentile of the SNP density of their respective pMA-gene 
regions, where the 95th percentile is calculated from the cumulative frequency 
distribution (CDF). These seven MA-genes are thus noted as SNP-dense genes: SELENOO 
(selenium-associated), EPAS1 (iron-associated; high SNP-density likely explained by its 
introgression from Denisovans (Huerta-Sánchez et al. 2014)), MT1A and MT1F (zinc-
associated), SCNN1D (sodium and potassium-associated), SLC8A1 (calcium-associated) 
and CLCN7 (chloride-associated) (see Table S3.4). Still, these SNP-dense genes do not 
cluster by micronutrient. Calcium is the only MA-gene set with SNP densities, over the 
entire gene set, that are significantly shifted towards higher SNP density than the 
background (inferred from the distribution of CDF values; see Table S3.5, Fig. S3.2). 
This seems to be driven by a clustering of CDF values around 0.5-0.7, hence the 
deviation is not considered extreme.  Moreover, there is no deviation across all other 
gene sets. 
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3.3.2. The Population Dataset 

I use 929 full human genomes from the HGDP dataset (as published by (Bergström et al. 
2020)), which encompasses 54 populations across Africa, the Middle-east, Europe, East 
Asia, Central-South Asia, Oceania and the Americas and represents a significant 
proportion of human ethnic and cultural diversity. Since low sample sizes can 
significantly reduce the power to identify the genomic signatures of positive selection 
(see Chapter 2; (Subramanian 2016; Serdar et al. 2021)), I aim to merge populations 
with sample sizes below 20 with their geographically closest populations. In these 
cases, the signatures of fine scale positive selection in response to extremely localised 
micronutrient soil levels may be lost, but this a necessary step to maintain adequate 
power to identify positive selection that may be shared across these geographically 
close populations. 

Population analysis was carried out to verify that this criterion agreed in all cases with 
patterns of population differentiation. I calculated principal components (𝑃𝐶𝑠; linear 
combinations of the initial SNP data) for each metapopulation using 𝑝𝑙𝑖𝑛𝑘 (Purcell et al. 
2007), having thinned for linkage disequilibrium (pruning 𝑟2 values above 0.2) and 
using windows of 50kbp and window step size of 10bp (see Fig. S3.3.3-9). I also carried 
out clustering analyses on chr14, chosen due to its middling size in the genome, using 
the 𝑎𝑑𝑚𝑖𝑥𝑡𝑢𝑟𝑒 programme (Alexander et al. 2009) and the same linkage disequilibrium 
filtering for a varying number of clusters on the African, European, East Asian and 
American populations to aid population grouping (see Fig. S3.3.10-13). This analysis 
confirmed that grouping by geography agrees with population differentiation, with two 
exceptions (see below), and I hence group according to this criterion.  

When grouped, the final dataset comprised of 913 individuals from 40 populations, of 
which 10 are a result of merging (see Fig. 3.1, Table S3.6). Two merged populations do 
not follow geography (Bantu-speaking population and the Xibo-Mongolian population), 
but instead reflect recent migrations (Bai et al. 2014; Patin et al. 2017; Hou et al. 2022). 
Two populations were removed from the analysis (Columbian, n=7; Cambodian, n=9) 
since they do not group naturally geographically or genetically. Despite their small 
sample size, the San population (n=6) was retained in the final dataset given their 
relatively distinct genetic variation.  
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Figure 3.1: Map of the populations in this dataset. The final populations, including 
merged populations, used in this study (large circles: dark orange = African; dark green = 
Middle-East; blue = European; pink = Central-South Asia; light green = East Asian; gold = 
American; purple = Oceania). Smaller red circles indicate the location of original 
populations merged together. 

 

3.3.3. Methods to Identify the Genomic Signatures of 

Positive Selection 

Two methods are used (as suggested from the work undertaken in Chapter 2) to isolate 
the genetic signatures of events of positive selection in single loci. I calculate the 𝐹𝑆𝑇 
values across the autosomal genome according to the Weir & Cockerham method in 
𝑉𝐶𝐹𝑇𝑂𝑂𝐿𝑆 (Weir and Cockerham 1984; Danecek et al. 2011) pairwise for all 
populations vs Yoruba, as well as for all African population pairs. I then filtered to retain 
only biallelic sites and remove indels, and removed sites with low coverage, mapping 
quality and excess heterozygosity (Bergström et al. 2020).  

The 𝑅𝑒𝑙𝑎𝑡𝑒 programme was also implemented across the autosomal genome (Speidel et 
al. 2019), which requires phased input data in the format haps/sample. I filtered 
according to the same criteria given above (as well as removing SNPS with more than 
10% missing data (Danecek et al. 2011)), before phasing using 𝑆𝐻𝐴𝑃𝐸𝐼𝑇2 (Delaneau et 
al. 2013). During phasing, I used the advised parameters of 0.3Mb window size and 200 
conditioning states (number of conditioning haplotypes used during the phasing 
process; (Delaneau et al. 2013)). I identified eight chromosomes (chr9, 12 or 21) with 
more than 10% of data missing, but these are randomly distributed amongst individuals 
and therefore remain in the dataset. 

The phased input files were then prepared for tree reconstruction according to the pre-
processing steps in the 𝑅𝑒𝑙𝑎𝑡𝑒 pipeline (Speidel et al. 2019). This includes flipping 
haplotypes according to an ancestral state (as taken from 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 (Yates et al. 2020)), 
generating additional SNP annotations (the alleles upstream and downstream, as well 
as the number of carriers of the derived allele in each population, which are necessary 
for later estimates of population size using 𝑅𝑒𝑙𝑎𝑡𝑒 (Speidel et al. 2019)) and adjusting 
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distances between SNPs (according to a genomic mask from (Bergström et al. 2020)). 
Following this, 𝑅𝑒𝑙𝑎𝑡𝑒 was then used to reconstruct trees along the genome using the 
sample of 913 individuals (see Section 3.3.2). The effective population sizes throughout 
time, branch lengths and mutation rate were then simultaneously estimated to re-infer 
a tree for each locus. Finally, the programme was used to calculate the probability of 
variants at each locus rising to its observed frequency today, as given as a 
−𝑙𝑜𝑔10𝑝𝑣𝑎𝑙𝑢𝑒. 

The 𝑅𝑒𝑙𝑎𝑡𝑒 programme was also used to calculate the probabilities of positive selection 
acting on alleles on the X chromosome, with the following edits to the previously 
outlined method. I used the “phasing chromosome X” pipeline in 𝑆𝐻𝐴𝑃𝐸𝐼𝑇2 (which 
requires sex data) and remove one individual who has 75% of SNPs missing on their X 
chromosome (HGDP01208; Oroqen population). 𝑅𝑒𝑙𝑎𝑡𝑒 is then ran as previously 
described but using the haploid input data files, treating each female as two haploid 
samples and each male as one haploid sample. 

3.3.4. Isolating Monogenic Signatures of Positive Selection 

 The 𝐹𝑆𝑇  and 𝑅𝑒𝑙𝑎𝑡𝑒 probabilities for each MA-gene were extracted, where the former is 
given as a value between 0 and 1 (where 0 indicates no genetic differentiation and 1 
indicates complete differentiation) and the latter is given as a −𝑙𝑜𝑔10𝑝𝑣𝑎𝑙𝑢𝑒 (where 
−1.30103 is equivalent to a 𝑝𝑣𝑎𝑙𝑢𝑒 of 0.05, interpreted here as, given the variant’s 
inferred trajectory, the probability of the variant acting under neutrality as 0.05). 𝐹𝑆𝑇 
and 𝑅𝑒𝑙𝑎𝑡𝑒 probabilities are extracted for each MA-gene region, as well as for the 10kbp 
regions up- and downstream in order to capture additional signatures of positive 
selection outside the gene region but that may still be related to its function (i.e., as the 
case with variants surrounding LCT conferring lactase persistence, albeit on an 
unusually long haplotype (Tishkoff et al. 2007)).  

I use the empirical genome-wide background, built from all SNPs along the genome, for 
each population (or population pair in the case of 𝐹𝑆𝑇) to identify SNPs that fall in the 
tails of the 𝐹𝑆𝑇 and 𝑅𝑒𝑙𝑎𝑡𝑒 empirical distribution. Here, I assign SNPs with selection 
values in 0.1% tail as those with evidence of selection. When considering signatures of 
positive selection across an entire gene set, I also include SNPs with selection values in 
the 5% tail, as signatures of positive selection are expected to be weaker under 
polygenic adaptation. Whilst the −𝑙𝑜𝑔10𝑝𝑣𝑎𝑙𝑢𝑒 of 𝑅𝑒𝑙𝑎𝑡𝑒 can be transformed and used 
explicitly as a 𝑝𝑣𝑎𝑙𝑢𝑒, I choose to use the tail of the empirical distribution to identify 
candidate targets of positive selection since I have shown that this increases accuracy 
when using sample sizes under 50 (see Chapter 2).  

The signatures of positive selection identified by these two methods are related but 
subtly different. The tail of the empirical  𝐹𝑆𝑇 distribution contains sites that are the 
most highly differentiated between populations (and hence can be expected to be 
enriched with targets of positive selection, since such differentiation is unlikely, 
although not impossible, under neutrality). A key subtly of 𝐹𝑆𝑇  ,therefore, is that it can 
only identify signatures of positive selection that have arisen following the split of the 
two populations used in each pairwise calculation. 𝑅𝑒𝑙𝑎𝑡𝑒, however, identifies sites that 
have risen to an unusual frequency, given their age and the number of lineages present 
when they first arose, over the entire inferred history of the locus in a given population 
(in reality, this is up to the time of the common ancestor of all populations used in the 
genealogical inference). When using the empirical distribution to identify outliers as 
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done so here, this is specifically identifying SNPs which have an unusually fast spread 
compared to all other SNPs within this population’s inferred history (and hence can also 
be expected to be enriched for targets of positive selection).  Therefore, the combination 
of these statistics allows, in theory, the identification of adaptation that has occurred 
differentially between populations and within the specific inferred history of an 
individual population.  

3.3.5. Isolating Polygenic Signatures of Positive Selection 

I assess if the entire MA-gene set is significantly enriched with signatures of positive 
selection, as identified by either 𝐹𝑆𝑇  or 𝑅𝑒𝑙𝑎𝑡𝑒. I use a 𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 test to compare the 
number of SNPs at the 5% significance level to the neutral expectation (5% of all SNPs 
in the gene set). I repeat this for SNPs at the 1% significance level (where the neutral 
expectation is now 1% of all SNPs in the gene set). Finally, to more explicitly test for an 
excess of signatures of positive selection in each functionally-related set, I repeat this 
individually for each MA-gene set separately, testing for an enrichment of SNPs at the 
5% significance level (for signatures of positive selection identified by either  𝐹𝑆𝑇 or 
𝑅𝑒𝑙𝑎𝑡𝑒). 

The gene-set enrichment method 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 (Daub et al. 2013) is then applied to 
investigate the signatures of polygenic adaptation on individual MA-gene sets. Here, I 
extract the most extreme 𝐹𝑆𝑇  and 𝑅𝑒𝑙𝑎𝑡𝑒 probabilities for each MA-gene, and sum these 
across micronutrient gene sets to generate a summed MA-gene set value for each 
statistic. The summed MA-gene set values are then compared to the background set 
summed values generated from 1,000 neutral gene sets. The neutral gene sets are built 
from a random combination of the pMA-genes (see Section 3.3.1.1) corresponding to 
each MA-gene within the test MA-gene set. A 𝑃𝑦𝑡ℎ𝑜𝑛 script is then used to identify MA-
gene set summed values that fall in the 5% tail of this background distribution, as 
generated from these neutral set values (see Supplementary Note S3.1). 

3.4. Results 
3.4.1. Patterns of Adaptation in Micronutrient-Associated 

Genes 

I begin by exploring the signatures of local positive selection across the entire 
micronutrient gene set. Since both monogenic and polygenic signatures of selection are 
of interest, I extract the SNPs within the 5% tail of the empirical distribution of either 
𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 for each MA-gene and for each population. As an additional precautionary 
step, I only consider MA-genes with more than five SNPs within the tail of the respective 
empirical distribution. I then identify the SNP with the strongest signature of positive 
selection in each MA-gene, which is considered the strongest candidate target SNP. I 
observe SNPs with these signatures of positive selection across all micronutrient 
categories and across populations of all major global geographic areas (see 𝑅𝑒𝑙𝑎𝑡𝑒 
results in Fig. 3.2A,  𝐹𝑆𝑇  results in Fig. 3.3A). Notably, many MA-genes contain SNPs 
which fall in the extreme 0.1% tail of the empirical distribution of either 𝑅𝑒𝑙𝑎𝑡𝑒  or  𝐹𝑆𝑇, 
the threshold for individual genes showcasing evidence for positive selection. 

Prior to exploring these individual signatures of positive selection, and in recognition 
that not each SNP in the tails of the empirical background distribution is necessarily a 
true target of positive selection, I first investigate if there is an excess of signatures of 
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positive selection across the entire MA-gene set. Hence, I ask if there are more SNPs 
than expected at the 0.1% tail (i.e., showing significant evidence of positive selection) 
and the 5% tail (i.e., showing weak evidence of positive selection, as expected for 
example for polygenic adaptation within a gene set only) within each population.  

Compared to neutral expectations, there is a significant excess of SNPs within the 0.1% 
tail of the empirical distribution of both 𝑅𝑒𝑙𝑎𝑡𝑒 or  𝐹𝑆𝑇 in many of the populations (Fig. 
3.4). This excess is observed in more populations for 𝐹𝑆𝑇  than 𝑅𝑒𝑙𝑎𝑡𝑒. Moreover, a 
majority of populations also show a significant excess of SNPs within the 5% tail of the 
 𝐹𝑆𝑇 empirical distribution, but no populations show a significant excess of SNPs within 
the 5% tail of the 𝑅𝑒𝑙𝑎𝑡𝑒 empirical distribution. Still, this does not exclude the presence 
of strong signatures of positive selection across many genes in individual MA-gene sets 
(addressed in Section 3.4.3). Despite the limitations of this simple approach, which fails 
to account for the genomic structure of the SNPs (see Section 3.4.3) this analysis 
suggests higher than expected differentiation of MA-genes among populations, in line 
with expectations of positive selection within this gene set.  

I now use the signatures of positive selection summarised in Fig. 3.2 and Fig. 3.3 to 
address preliminary questions. I first ask if the signatures of positive selection identified 
on MA-genes appear to be randomly distributed amongst micronutrients and 
populations, or if they cluster within certain micronutrient gene sets and/or certain 
populations. If signatures of positive selection cluster within a group of biologically 
related genes, i.e., a MA-gene set, this can suggest adaptation of the corresponding 
micronutrient-associated function. In addition, if signatures of positive selection within 
a MA-gene set cluster in certain populations, this can indicate which populations may 
have undergone genetic adaptation. As an extension of this, I also ask if the geographical 
distribution of signatures of positive selection indicate whether putative adaptation to 
micronutrients is strictly local (i.e., on the level of individual populations or continents) 
or more global (spread across multiple continents). 

I first ask these questions with respect to the signatures of positive selection as 
identified by 𝑅𝑒𝑙𝑎𝑡𝑒. Here, many signatures within the same MA-gene set are observed 
very locally (e.g., phosphorus-associated genes in the American Pima population) whilst 
others cluster across continental regions (e.g., selenium-associated genes in East Asia). 
Other MA-genes show strikingly widespread geographic signatures of selection (e.g., 
those identified in zinc-associated genes in non-African populations). Therefore, 
modern humans may have a history of both geographically global and local 
micronutrient-associated adaptations. Finally, the number of MA-genes exhibiting 
signatures of positive selection within each MA-gene set is highly variable, suggesting 
that the degree of polygenicity of micronutrient-associated adaptation likely also varies 
amongst micronutrients (polygenicity addressed in Section 3.4.3). 

Before I ask the same questions with respect to the signatures of positive selection 
identified by 𝐹𝑆𝑇, the signatures identified by 𝐹𝑆𝑇  must be considered to differ from the 
above signatures of positive selection identified by 𝑅𝑒𝑙𝑎𝑡𝑒. Whilst 𝑅𝑒𝑙𝑎𝑡𝑒 identifies 
SNPs with a trajectory improbable under neutrality, here 𝐹𝑆𝑇 identifies SNPs which are 
most highly differentiated in each individual population to the Yoruba population. 
Hence, for most pairwise combinations in this study, 𝐹𝑆𝑇 is used to identify SNPs with 
unusual differentiation between African (Yoruba) and non-African populations. 
Therefore, 𝐹𝑆𝑇  may capture signatures of positive selection localised to an individual 
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population, as well as signatures of positive selection that reflect adaptation in an 
ancestral non-African population or the Yoruba population.  

Many signatures of positive selection identified by 𝐹𝑆𝑇 within the same MA-gene set are 
also observed both very locally (e.g., iron-associated genes in the Oceanian Bougainville 
and America Pima populations) or at the continental (e.g., calcium-associated genes in 
Europe and Central-South Asia) level. The most striking difference between the 𝐹𝑆𝑇 and 
𝑅𝑒𝑙𝑎𝑡𝑒 signatures of positive selection however is that, in general, the 𝐹𝑆𝑇 signatures are 
shared over more populations, particularly non-African populations, compared to those 
of 𝑅𝑒𝑙𝑎𝑡𝑒 (see Fig. 3.3A). This is especially observed in some selenium, magnesium, zinc 
and phosphorus-associated genes, and indicative of potential associated selection 
events swiftly preceding, overlapping with or following the Out of Africa migration.  

Finally, to consider the allele frequency differentiation between African populations 
that may indicate local adaptation events within Africa (and remove the limitation of 
only identifying extreme differentiation from Yoruba), the 𝐹𝑆𝑇 analysis is expanded to 
consider all cross-African population pairs (see Fig. 3.3B). Once more, signatures of 
positive selection are concentrated in certain micronutrient gene sets in individual 
populations (e.g., calcium-associated genes in the African Biaka population), but do not 
show same widespread geographic distribution of signatures of positive selection as 
observed in Fig 3.3A. This is as expected, since these African populations do not have 
the same degree of shared history compared to non-Africans.  
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Figure 3.2: Relate signatures of positive selection over populations. A) Strength of 
𝑅𝑒𝑙𝑎𝑡𝑒 signatures of positive selection across all MA-genes (x-axis, coloured by 
micronutrient) and all populations (y-axis, grouped by metapopulation). The darkness of 
the blocks (see left legend) reflects the strength of the signature (5%, 1%, 0.5%, 0.3%, 
0.1% tails of the empirical distribution shown) with the darkest blocks indicating SNPs at 
the 0.1% tail. B) Strength of 𝑅𝑒𝑙𝑎𝑡𝑒 signatures of positive selection across all MA-genes 
grouped according to the population clustering (right dendrogram) as calculated from the 
significance of the most extreme 𝑅𝑒𝑙𝑎𝑡𝑒 probabilities over all MA-genes. 
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Figure 3.3: 𝑭𝑺𝑻 Signatures of positive election over populations A) Strength of 𝐹𝑆𝑇 
selection signatures of positive selection across all MA-genes (x-axis, coloured by dominant 
micronutrient association) and all 𝐹𝑆𝑇 pairwise comparisons with Yoruba (y-axis, grouped 
by metapopulation). B) Strength of 𝐹𝑆𝑇 selection signatures across all MA-genes (x-axis, 
coloured by dominant micronutrient association) and all 𝐹𝑆𝑇 pairwise comparisons 
amongst African populations (pairwise comparisons for each panel are those between the 
title population and those listed on the y-axis). The darkness of the blocks (see left legend) 
reflects the strength of the signature (5%, 1%, 0.5%, 0.3%, 0.1% tails of the empirical 
distribution shown) with the darkest blocks indicating SNPs at the 0.1% tail. 
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Figure 3.4: Populations showing a significant excess or deficit of SNPs of MA-genes. 
Significant excess or deficit as identified within the 0.1% and 5% tails of the empirical 
distribution of  A) 𝑅𝑒𝑙𝑎𝑡𝑒 and B) 𝐹𝑆𝑇 (populations with 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05 as calculated by a 
𝑐ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑡𝑒𝑠𝑡 comparing the number of SNPs observed in the respective tail to the 
number of expected SNPs: either 0.1% or 5% of the total SNPs). Grey shows a significant 
deficit (less SNPs in the tail than expected), purple and orange show a significant excess 
(more SNPs in the tail than expected, for 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇  respectively). 

 
 
3.4.2. Adaptation Across Locality 

I now investigate if the signatures of positive selection reflect the geography of the 
populations. To do so, I only use the signatures of positive selection identified by 
𝑅𝑒𝑙𝑎𝑡𝑒, to avoid the loss of fine-scale local adaptation possible with the use of 𝐹𝑆𝑇 
(which here most explicitly captures differentiation from the African Yoruba 
population).  

For each population, each MA-gene is represented by the 𝑝𝑣𝑎𝑙𝑢𝑒 of the SNP with the 
strongest evidence for selection. I then cluster all populations according to the 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 
across all MA-genes using the hclust package of 𝑅; see Fig. 3.2B. From this, I can explore 
if the signatures over all MA-genes groups populations by geography and, by extension, 
which populations exhibit genetic signatures that are unusual compared to its 
geographically (and genetically) closest populations.  

In general, populations group with geographically proximal populations; groups are 
formed from European and Central-South Asian populations; African and Middle-
Eastern populations; northern East Asian populations and southern East Asian 
populations. Hence, this grouping mostly reflects shared ancestry. Interestingly, the 
American populations fail to cluster together (Fig. 3.2B). These populations are 
geographically further apart when compared to other continental groups (with the 
three American populations occupying land in Northern, Central and Southern America 
see Fig. 3.1) and it is thus possible that the different environmental conditions 
experienced by each population have resulted in the differential genetic signatures here, 
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rather than shared ancestry or demographic history. Still, this remains only a 
speculation and an interesting outlier to the broad pattern of population clustering.  

I now focus on the SNPs with evidence of positive selection (within the 0.1% tail of the 
empirical distribution of 𝑅𝑒𝑙𝑎𝑡𝑒) and test if they show the same extent of geographical 
structure, and how this compares between MA-gene sets. For each MA-gene set, I 
calculate the mean number of MA-genes showing significant evidence of positive 
selection in each metapopulation, calculate the standard deviation (to represent the 
variance within each metapopulation) and normalise the mean over each micronutrient 
category (to compare between micronutrients). From this, I am able to preliminarily 
investigate if the evidence of positive selection associated with each micronutrient 
appears to be shared across continental space, or if they may instead be localised within 
individual populations3. 

The number of MA-genes showing evidence of positive selection are, on average, highly 
variable within metapopulations (large standard deviations; see Table 3.2). Regionally 
and genetically-close populations do not show similar numbers of MA-genes with 
signatures of positive selection within each MA-gene set, indicating that the strongest 
signatures of selection are at the local scale. A potential exception to this is the number 
of selenium-associated genes with evidence of positive selection, which is the highest 
(with the lowest variance) in the African metapopulation, followed by the East Asian 
metapopulation (with a comparatively low variance compared to other populations). 
This is in accordance with selenium-associated selective pressures shared over many 
populations in these continents (Hurst et al. 2013; White et al. 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
3 We advise that because of the low number of populations within certain metapopulation groups, the 
results of this analysis should be focused on the European, Central-South Asian and East Asian 
metapopulations. 
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Table 3.2: Summary statistics for each MA-gene set by metapopulation. Mean, 
normalised mean, standard deviation (“SD”) and maximum (“Max.”) number of MA-genes 
with 𝑅𝑒𝑙𝑎𝑡𝑒 signatures of positive selection (within the 0.1% tail of the empirical 
distribution) for each micronutrient gene set across each metapopulation. San population 
was removed from the African metapopulation due to its sample size (n=6). Se=selenium, 
Cu=copper, Fe=iron, Mg=magnesium, Zn=zinc, Na=sodium, Ca=calcium, I=iodine, 
Cl=chloride, K=potassium, P=phosphorus, Mn=manganese, Mb=molybdenum. 

 

 Mean  Normalised 
mean  

SD Max.    Mean  Normalised 
mean  

SD Max.    Mean  Normalised 
mean  

SD Max. 

Se      Cu      Fe     

Africa 6.60 0.35 0.89 8  Africa 0.6 0.04 0.55 1  Africa 2.6 0.11 1.52 5 

Middle-
East 

3.75 -0.01 1.50 5  Middle-
East 

0.5 0.09 0.58 1  Middle-
East 

2.25 0.05 2.63 6 

Europe 4.29 0.06 2.14 7  Europe 0.29 -0.02 0.49 1  Europe 2.43 0.08 1.13 4 

Central-
South 
Asia 

3.56 -0.03 2.24 6  Central-
South 
Asia 

0.33 0 0.71 2  Central-
South 
Asia 

1.56 -0.07 0.73 3 

East 
Asia 

4.78 0.12 1.39 7  East 
Asia 

0.33 0 0.5 1  East 
Asia 

2.56 0.1 1.42 4 

America 1.33 -0.36 0.58 2  America 0 0.17 0 0  America 1.33 -0.11 1.53 3 

Oceania 2.5 -0.17 0.71 3  Oceania 0 0.17 0 0  Oceania 1 -0.16 1.41 2 

                 

 

 

Mean  Normalised 
mean  

SD Max.    Mean  Normalised 
mean  

SD Max.    Mean  Normalised 
mean  

SD Max. 

Mg      Zn      Na     

Africa 2 0.145 1 3  Africa 4.2 0.26 0.84 5  Africa 1.4 -0.05 1.14 3 

Middle-
East 

1.75 0.08 1.26 3  Middle-
East 

2.5 -0.03 0.58 3  Middle-
East 

2.25 0.19 0.96 3 

Europe 1 -0.11 1.55 3  Europe 3.29 0.10 1.11 5  Europe 2.72 0.28 1.25 4 

Central-
South 
Asia 

1.44 0.01 0.88 3  Central-
South 
Asia 

2.78 0.02 1.78 6  Central-
South 
Asia 

1.89 0.08 1.70 4 

East 
Asia 

1.22 -0.05 1.48 4  East 
Asia 

2.89 0.04 2.02 6  East 
Asia 

1.22 -0.09 0.67 2 

America 2 0.15 1.73 3  America 1 -0.28 1.73 3  America 0.67 -0.23 0.58 1 

Oceania 0.5 -0.23 0.71 1  Oceania 2 -0.11 0 2  Oceania 1 -0.15 0 1 
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 Mean  Normalised 
mean  

SD Max.    Mean  Normalised 
mean  

SD Max.    Mean  Normalised 
mean  

SD Max. 

Ca      I      Cl     

Africa 4 0.24 1.22 5  Africa 1.6 0.04 1.14 3  Africa 2.8 -0.21 1.30 4 

Middle-
East 

3 0.07 0.82 4  Middle-
East 

1.25 -0.032 0.96 2  Middle-
East 

2.25 0.10 1.5 4 

Europe 3.14 0.10 1.35 5  Europe 2 0.12 1.15 3  Europe 2.29 0.10 0.76 3 

Central-
South 
Asia 

2.22 -0.06 1.20 5  Central-
South 
Asia 

1.44 0.01 0.88 3  Central-
South 
Asia 

2.22 0.09 1.64 5 

East 
Asia 

2.78 0.04 1.86 6  East 
Asia 

1.11 -0.06 0.79 2  East 
Asia 

1.67 -0.02 1.22 3 

America 1.33 -0.21 0.58 2  America 2 0.12 2.65 5  America 0.67 -0.22 0.58 1 

Oceania 1.5 -0.18 0.71 2  Oceania 0.5 -0.18 0.71 1  Oceania 0.5 -0.25 0.71 1 

                 

 Mean  Normalised 
mean  

SD Max.    Mean  Normalised 
mean  

SD Max.    Mean  Normalised 
mean  

SD Max. 

K      P      Mn     

Africa 1 0 0.71 2  Africa 1.80 0.14 1.79 4  Africa 0.4 0.05 0.55 1 

Middle-
East 

1.5 0.25 1 2  Middle-
East 

1.5 0.06 0.58 2  Middle-
East 

0 -0.15 0 0 

Europe 1.43 0.22 0.79 2  Europe 1.14 -0.03 0.69 2  Europe 0.57 0.14 0.53 1 

Central-
South 
Asia 

0.89 -0.06 0.78 2  Central-
South 
Asia 

0.78 -0.12 0.67 2  Central-
South 
Asia 

0.44 0.07 0.53 1 

East 
Asia 

0.56 -0.22 0.53 1  East 
Asia 

0.67 -0.15 0.87 2  East 
Asia 

0.33 0.02 0.71 2 

America 0.67 -0.17 0.58 1  America 1.33 0.02 1.53 3  America 0.33 0.02 0.58 1 

Oceania 1 0 0 1  Oceania 1.5 0.06 2.12 3  Oceania 0 -0.15 0 0 

                 

 Mean  Normalised 
mean  

SD Max.              

Mb                 

Africa 0.4 0.19 0.55 1             

Middle-
East 

0.25 0.04 0.5 1             

Europe 0.29 0.08 0.49 1             

Central-
South 
Asia 

0.22 0.01 0.44 1             

East Asia 0.33 0.12 0.5 1             

America 0 -0.21 0 0             

Oceania 0 -0.21 0 0             
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3.4.3. Assessing the Polygenicity of Selection 

3.4.3.1. Adaptation over Individual MA-Gene Sets 

There is some, but limited, evidence of positive selection across the entire MA-gene set, 
as well as multiple MA-genes within the same individual MA-gene sets exhibiting 
evidence of positive selection (Section 3.4.1). It is hence possible that individual MA-
gene sets have undergone oligogenic or polygenic adaptation in response to 
micronutrient-associated pressures, which has resulted in the limited excess of 
significant SNPs over all MA-genes. To explore this possibility, I test each MA-gene set 
individually for an excess of SNPs with signatures of positive selection. I evaluate if the 
number of SNPs in the 5% tail of the empirical distribution of either 𝐹𝑆𝑇  or 𝑅𝑒𝑙𝑎𝑡𝑒 
(using the less stringent tail since weaker signatures of positive selection can be 
expected to accompany polygenic adaptation) is higher than the expected 5% of total 
SNPs for each micronutrient gene set (Fig. 3.5).   

An excess of significant SNPs within multiple micronutrient gene sets is observed in 
many populations (and suggesting that power is gained when examining each MA-gene 
set individually). This includes an extreme excess of significant SNPs according to both 
𝐹𝑆𝑇  and 𝑅𝑒𝑙𝑎𝑡𝑒 in the molybdenum gene set, in European, Central-South Asian, Middle-
Eastern and some African populations (Fig. 3.5B). This appears to be driven by the high 
number of significant SNPs of the GPHN and MOCS2 genes, two of the only five genes in 
this gene-set. Hence, this excess of significant SNPs is likely a result of linkage 
disequilibrium and I caution against interpreting this as a signal of polygenic 
adaptation. Since the excess of significant SNPs in the molybdenum gene set is so 
extreme when compared to other gene sets, the molybdenum gene set is removed from 
Fig. 3.5A before evaluating the other excesses of significant SNPs amongst populations. 

An excess of significant SNPs identified by 𝑅𝑒𝑙𝑎𝑡𝑒 is observed in all MA-gene sets, bar 
iron, for at least one population (despite only four populations showing an excess of 
significant SNPs identified by 𝑅𝑒𝑙𝑎𝑡𝑒 when considering all MA-genes, see Section 3.4.1, 
Fig. 3.4). This includes an excess of significant SNPs in six populations for each of 
copper, zinc and calcium-associated genes and five populations for iodine-associated 
genes; an excess of significant SNPs in the selenium-associated genes in two East Asian 
populations (Yakut and Xibo-Mongolian); and high significant excesses of significant 
SNPs in the MA-gene sets of individual populations (e.g., 79% more significant SNPs 
than expected in iodine-associated genes in the American Maya, and 104% more 
significant SNPs than expected in manganese-associated genes in the American Surui-
Karitiana). Whilst the role of linkage disequilibrium in driving these cases of excess 
significant SNPs cannot be discounted, they remain interesting signatures of which 
warrant further exploration.   

Some of these cases of excess significant SNPs are also captured by the analogous 𝐹𝑆𝑇 
analysis. For example, there is also an excess of significant SNPs in many populations for 
the copper, zinc, calcium and iodine-associated genes sets, as well as an excess number 
of significant SNPs in the iodine-associated genes of the Maya (Fig 3.5). Moreover, the 
populations with an excess of significant SNPs as identified by 𝐹𝑆𝑇  in selenium-
associated genes also includes the East Asian Yakut and Xibo-Mongolian populations 
(and extends to all other populations of East Asia). When an excess of significant SNPs is 
observed according to both the 𝑅𝑒𝑙𝑎𝑡𝑒 and  𝐹𝑆𝑇  signatures of positive selection, these 
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populations are stronger candidates for undergoing polygenic adaptation in response to 
the levels of their respective micronutrients.  

Finally, recapitulating the observations from Fig. 3.4, the excess of significant SNPs 
according to the 𝐹𝑆𝑇  signatures of positive selection are more widespread than those 
identified according to 𝑅𝑒𝑙𝑎𝑡𝑒. This is particularly the case for the zinc, iodine and 
potassium gene sets, which show the strongest evidence for unusual differentiation 
from the African Yoruba population at the gene set level. Such differentiation between 
the African Yoruba and multiple non-African populations may be the result of selection 
on these gene sets in the Yoruba population, or more ancient selection in an ancestral 
non-African population. 

 

 

Figure 3.5: Populations showing a significant excess or deficit of SNPs of MA-genes 
for each MA-gene set.The excess of significant SNPs, as identified within the 5% tails 

of the empirical distribution of 𝑅𝑒𝑙𝑎𝑡𝑒 and  𝐹𝑆𝑇, for each population and micronutrient 

gene set. Significance calculated by a 𝑐ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑡𝑒𝑠𝑡 (comparing the number of 
SNPs observed in the 5% tail to the expected 5% of total SNPs); grey shows a 
significant deficit (less SNPs in the tail than expected), purple and orange show a 

significant excess (more SNPs in the tail than expected, for 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇 
respectively). A) gives the results for all gene sets excluding molybdenum; B) 
includes the molybdenum gene set. 

 

 

3.4.3.2. Polygenic Adaptation over Individual MA-Gene Sets 

For each gene set, the analysis thus far only tests if there is an excess of significant SNPs 
over all genes within a micronutrient gene set, and does not explicitly test if there are 
signatures of positive selection over a significant proportion of all genes within a gene 
set. The latter case would be the expectation under a classic model of polygenic 
adaptation. To investigate if the signatures of positive selection across micronutrient 
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gene sets agree with such a model, and if there is further evidence of which is necessary 
for a more conclusive claim of polygenic adaptation, I carry out the gene set method 
𝑆𝑈𝑀𝑆𝑇𝐴𝑇 (Daub et al. 2013).  

𝑆𝑈𝑀𝑆𝑇𝐴𝑇 is first applied using the full micronutrient gene sets (i.e., some overlap 
between gene sets; see Tables S3.1), summing the most significant 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 over all 
MA-genes within a gene set, and comparing this to the neutral background (see Section 
3.3.5). For most MA-gene sets, multiple populations have summed MA-gene set values 
in the 5% extreme tail of the neutral distribution of 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 values integrating either 
𝐹𝑆𝑇  or 𝑅𝑒𝑙𝑎𝑡𝑒 signatures of positive selection (Tables S3.7-8). The strongest evidence of 
polygenic adaptation is observed in the phosphorus gene set of the Pima population 
(𝑝𝑣𝑎𝑙𝑢𝑒: 0.000013 , 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 integrating 𝑅𝑒𝑙𝑎𝑡𝑒 signatures of positive selection), 
which was also suggested from Fig. 3.2.  

Other populations with the strongest evidence of polygenic adaptation in response to 
micronutrient-associated pressures are those with 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 values significant for the 
same micronutrient gene set when integrating either 𝐹𝑆𝑇  or 𝑅𝑒𝑙𝑎𝑡𝑒 signatures of 
positive selection. This is the case for the selenium, sodium and potassium gene sets (for 
one, seven and nine populations respectively; see Table S3.9). Here, the selenium gene 
set is significant when integrating either statistic in the Xibo-Mongolian, further 
suggesting a degree of polygenic adaptation in response to selenium-associated 
pressures in this population (as suggested in other East Asian populations from 
previous studies (Hurst et al. 2013; White et al. 2015). 

However, the significance of 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 gene set values are all below the multiple testing 

threshold (
0.05

40×13
, or 𝑝 ≤ 9.62𝑒−5). Moreover, when repeating the 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 method on 

the cut-down micronutrient gene sets (i.e., those with no overlap, in order to avoid false 
positives in one gene set driven by signatures associated with another micronutrient), 
virtually all 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 significant signatures disappear (excluding the selenium gene set 
in the Xibo-Mongolian; see Table S3.10-11). This indicates that the limited signatures 
of polygenic adaptation inferred from 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 are strongly influenced by a small 
number of genes, those that are functionally associated with multiple micronutrients. 
Therefore, at the given power of these methods, there is insufficient evidence for a 
classic model of polygenic adaptation amongst micronutrient gene sets, where selection 
acts over the entirety, of significant proportion of a gene set.  

Still, the polygenic analysis thus far, and the presence of signatures of positive selection 
across multiple MA-genes for virtually all micronutrient sets, does suggest that 
micronutrient-associated adaptation may be frequently mediated by more than one 
gene. Hence, I suggest the presence of polygenic adaptation on the scale of fewer genes, 
otherwise referred to as oligogenic adaptation. To explore this, and to further 
understand if the evidence of positive selection on MA-genes ever stretches across the 
majority of any MA-gene set, I calculate the proportions of MA-genes showing 
signatures of positive selection in each MA-gene set according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 in 
each population. 

Indeed, the proportions of MA-genes showing evidence of positive selection is never 
above 50% for any micronutrient gene set, using either the 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇  evidence for 
selection (where few are above 20% when considering the 𝑅𝑒𝑙𝑎𝑡𝑒 signatures of positive 
selection; see Fig. 3.6A). Notably, this includes the case of the selenium gene set in the 
Xibo-Mongolian population (although, this is somewhat biased by the large selenium 
gene set size, n=59), and could further suggest that the previously calculated 
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𝑆𝑈𝑀𝑆𝑇𝐴𝑇 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 are a result of strong evidence of selection amongst only a few 
genes. From this, and the other results presented in this section, I conclude that the 
signatures of positive selection are not shared over the majority of any MA-gene set and, 
by extension, adaptation is likely mediated by only a small number of genes and unlikely 
to be classically polygenic in nature.  

 

 
Fig. 3.6: Proportion of MA-gene sets with signatures of positive selection.  A) and B) 
show the proportion of each micronutrient gene set that have signatures in the 0.1% tail 
for 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇  selection values, respectively. Keys below the panels show the 
proportion of genes within a gene set with such signatures. 𝐹𝑆𝑇  gene sets do not include 
genes on the X chromosome. C) and D) show the populations with MA-gene sets with more 
than 20% of their genes exhibiting signatures of positive selection, with these MA-gene sets 
represented by the colours (given in the key below) in the population’s corresponding 
circle.  

3.4.4. Candidate Populations for Micronutrient Adaptation 

I propose the populations that are most likely to have undergone micronutrient-
associated adaptation via two main avenues. I first identify the populations that show 
the highest proportion of MA-genes with signatures of positive selection in each 
micronutrient category, hence assuming a degree of oligogenic adaptation. Of the 40 
populations, 25 have at least one micronutrient gene set with >  20% of genes showing 
signatures of positive selection according to either the 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 empirical 
distributions (see Fig. 3.6C, D). This includes the iodine-associated genes in the 
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American Maya (27.8% and 25% of genes showing signatures of positive selection 
according to 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 , respectively), calcium-associated genes in  Central-south 
Asian populations and the East Asian She-Miao-Tujia (the latter having 28.6% of genes 
identified with signatures of positive selection, the highest 𝑅𝑒𝑙𝑎𝑡𝑒 proportion), and 
chloride in African populations, particularly the San (50%, the highest 𝐹𝑆𝑇  proportion). 

For the second approach, I extend this by only now considering the MA-genes with the 
very strongest evidence of selection for each population, according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 
𝐹𝑆𝑇 signatures of positive selection. I extract the MA-genes with the top five strongest 
signatures of selection (which may be more than five MA-genes when the signatures are 
of the same strength) and identify populations which show a clustering of these 
strongest signatures according to micronutrient category (see Fig. 3.7, Tables S3.12-
13). Hence, I identify populations with repeatedly strong evidence for adaptation 
associated with the same micronutrient.  

Five of the six highest ranked MA-genes in the Central-South Asian Hazara, according to 
the 𝑅𝑒𝑙𝑎𝑡𝑒 signatures of positive selection, are associated with selenium (with other 
populations showing high numbers of selenium-associated genes with this strong 
evidence of positive selection being the East Asian Oroqen-Hezhen-Daur and the African 
Mbuti and San populations). Other populations showing multiple top-ranking genes 
assigned to the same micronutrient include the American Pima (many phosphorus-
associated genes), Middle-Eastern Bedouin and European Basque and French (all 
showing many iron-associated genes) and the African Mandenka and East-Asian Dai-
Lahu (both showing many calcium-associated genes). I therefore present these 
populations as candidates for undergoing adaptation in response to these respective 
micronutrient levels.     

The highest-ranking MA-genes according to 𝐹𝑆𝑇, however, show a far more striking 
geographic pattern. Here, zinc-associated genes are amongst the top five ranks of MA-
genes for the majority of Eurasian populations, particularly for Asian populations. This 
is suggestive of shared selection across these populations or, considering the signatures 
of positive selection identified by 𝐹𝑆𝑇 being those of differentiation between these 
populations and the African Yoruba population, possibly selection acting on zinc-
associated genes following the Out of Africa migration. Selenium-associated genes also 
commonly rank as the MA-genes with the strongest evidence of selection according to 
𝐹𝑆𝑇, particularly in some East Asian and African populations, and may also indicate 
positive selection shared across continents.  

In summary of the consideration of polygenic adaptation, I show that many populations 
in different global areas demonstrate evidence for mediating micronutrient-associated 
pressures via adaptations of multiple genes. This evidence stems from either 1) 
populations showing more evidence of selection across their gene set than expected 
under neutrality (as calculated by the excess of significant SNPs and 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 analysis, 
see Section 3.4.3); 2) populations exhibiting signatures of positive selection across 
what is deemed an unusual number of MA-genes within a MA-gene set; 3) or the 
strongest evidence of positive selection within a population observed in multiple MA-
genes within the same MA-gene set. Notably, the iodine-gene set of the American Maya 
fulfils all three of these criteria, and I suggest this population as the strongest candidate 
for undergoing micronutrient-associated adaptation. Ultimately, I propose that 
populations are more suitably described as undergoing oligogenic adaptation rather 
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than polygenic adaptation, and largely mediate micronutrient-associated selective 
pressures via only a small number of genes. 

 

 

 

Fig. 3.7:  The MA-genes with the top five strongest signatures of positive selection. 
For each population, the micronutrient categories are given, coloured according to the key 
below, for the MA-genes with the top five strongest signatures of positive selection 
according to A) 𝑅𝑒𝑙𝑎𝑡𝑒 and B) 𝐹𝑆𝑇 selection values.  
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3.4.5. Candidate Target Genes for Positive Selection 

Having identified the populations with the strongest evidence of positive selection 
(under the assumption of oligogenic adaptation) the MA-genes with the strongest 
evidence of positive selection are now considered. These candidate genes may make up 
the hypothesised small number of genes driving gene-set signatures (see Sections 
3.4.3-4) or represent a monogenic signature of selection. 

To identify the individual MA-genes most likely to have responded to micronutrient-
associated selective pressures, I first extracted the MA-genes and their corresponding 
populations which have evidence of positive selection above the multiple-testing 

threshold (
0.05

40×269
, or 𝑝 ≤ 4.65𝑒−6).  21 of the 40 populations show at least one MA-gene 

with signatures at this threshold according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇, distributed over 15 
MA-genes associated with all micronutrients bar selenium, copper, manganese and 
molybdenum (Table 3.3). Of these 15 genes, SLC12A1 (associated with potassium, 
sodium and chloride), PDE7B (associated with phosphorus) and ATP2B2 (associated 
with calcium) show these strong signatures shared across populations, with the former 
two showing strong signatures of positive selection particularly in Middle-eastern and 
European/Central-south Asian populations. The absence of these strong signatures in 
other populations does not mean that selection in those populations should be 
discounted, only that the evidence for selection is weaker.  

 

Table 3.3: Populations and their MA-genes with p-values below the multiple testing 
threshold of 𝟒. 𝟔𝟓𝒆−𝟔  (given in bold). Given alongside their associated micronutrient 
and accompanied by the p-value calculated by the other method to identify selection. 

 

Population Gene Micronutrient 𝑹𝒆𝒍𝒂𝒕𝒆 
Significance 

𝑭𝑺𝑻 
Significance 

San GALNT3 phosphorus 0.0849 3.5e-6 
Mandenka ATP2B2 calcium 0.000187 7.75e-8 
Palestinian SLC12A1 sodium, 

chloride, 
potassium 

0.000137 6.37e-7 

 THRB iodine 3.23e-6 0.00159 
Druze SLC12A1 sodium, 

chloride, 
potassium 

3.61e-05 
 

2.97e-7 

 PDE7B phosphorus 0.000586 8.16e-7 
Bedouin SLC12A1 sodium, 

chloride, 
potassium 

0.00571 
 

1.25e-6 

Adygei SLC12A1 sodium, 
chloride, 

potassium 

0.00481 
 

2.01e-6 

BergamoItalian-
Tuscan 

SLC12A1 sodium, 
chloride, 

potassium 

0.0128 
 

1.58e-6 
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 PDE7B phosphorus 0.000678 2.92e-6 
Sardinian ATP2B2 calcium 2.10e-7 0.000969 

 PDE7B phosphorus 0.00366 7.02e-7 
Basque SLC12A1 sodium, 

chloride, 
potassium 

0.000855 2.00e-6 

 PDE7B phosphorus 0.00522 2.00e-6 
 HIF1A iron 2.43e-6 0.000249 

French SLC12A1 sodium, 
chloride, 

potassium 

 7.65e-7 

 SCNN1D sodium, 
potassium 

1.87e-6 0.000684 
 

 PDE7B phosphorus 0.000500 4.28e-6 
Orcadian PDE7B phosphorus 0.00194 2.24e-6 
Russian SLC12A1 sodium, 

chloride, 
potassium 

0.000519 1.40e-6 

 SLC4A5 sodium 3.83e-6 0.000160 
Makrani SLC39A11 zinc 1.40e-6 0.0003304 

 SLC39A4 zinc 0.0934 3.95e-6 
Balochi SLC12A1 sodium, 

chloride, 
potassium 

0.0129 1.76e-6 

Brahui SLC12A1 sodium, 
chloride, 

potassium 

0.00106 1.07e-6 

 MECOM magnesium 1.26e-6 0.000225 
 PDE7B phosphorus 0.000618 1.53e-6 

Kalash SLC12A1 sodium, 
chloride, 

potassium 

0.0504 2.56e-6 

Uygur FXYD2 magnesium 2.80e-6 0.00923 
Yakut FTMT iron 3.37e-6 0.000827 
Han SLC30A9 zinc 0.00228 3.55e-6 

She-Miao-Tujia MLN phosphorus 4.27e-6 0.00460 
Pima ATP2B2 calcium 9.06e-6 0.00253 

 
A MA-gene may still be considered a candidate for positive selection if consistently 
ranking amongst the MA-genes with the strongest evidence of selection over many 
populations, even if not reaching the multiple testing threshold within a single 
population. Hence, I also isolate the top-ranking MA-genes for each population and 
compare amongst all populations (Table S3.12-13). Many populations share the same 
MA-gene as that with the top-ranking evidence of positive selection, to the extent that 
only nine different MA-genes are represented as the top-ranking MA-gene across all 
non-African populations (according to the 𝐹𝑆𝑇 signatures of positive selection). This 
includes SLC12A1 and PDE7B, but also the zinc-associated SLC30A9 and SLC39A4, across 
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many and all Asian populations, respectively. The highest-ranking MA-genes according 
to the 𝑅𝑒𝑙𝑎𝑡𝑒 selection values are more variable, but PRKG1 (selenium-associated, with 
the strongest signature of selection over four East Asian populations), ATP2B2, SLC8A3 
and SLC8A1 (calcium-associated), SLC39A11 (zinc-associated) and HIF1A (iron-
associated) are also shared as the highest-ranking MA-gene over multiple populations.  

Hence, I present these genes as strong candidates for mediating micronutrient-
associated adaptation shared across multiple populations. I particularly suggest 
SLC12A1, PDE7B, SLC30A9, SLC39A4, ATP2B2, SLC3A11 and HIF1A as likely candidates of 
positive selection since, alongside the sharing of top-ranking signatures of positive 
selection amongst populations, they bypass the most stringent threshold in at least one 
population (see Table 3.3).  

Finally, I consider the MA-genes which show signatures of positive selection shared 
across many populations but do not reach either the most stringent threshold or rank as 
exhibiting the strongest evidence within a population. MA-genes identified here, but not 
by the previous two criteria, may still represent candidates for monogenic adaptation, 
but I propose that their slightly weaker signatures of positive selection could more 
likely represent their role in mediating oligogenic adaptation shared across populations. 
In total, 49 MA-genes show 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 signatures of positive selection in ten or more 
populations (Fig. 3.8, Table S3.14), which is the final set of candidate genes mediating 
adaptation shared across populations in response to micronutrient-associated 
pressures, either at the monogenic or oligogenic level.  

Of these, EEFSEC, PRKG1 (selenium-associated), SLC39A11, SLC39A4, SLC30A9, GPR39, 
SLC39A11 (zinc-associated), ATP2B2 (calcium-associated), AQP6 (chloride-associated), 
DCDC1 (magnesium-associated), PDE7B (phosphorus-associated), TSHR (iodine-
associated) and SLC12A1 (sodium, potassium and chloride-associated) share signatures 
of positive selection identified by  𝐹𝑆𝑇 in 20 or more non-African populations, thereby 
showing shared unusual differentiation to the African Yoruba population. There are 
limited signatures of positive selection identified by 𝐹𝑆𝑇 calculated between Yoruba and 
the remaining African populations for these same genes, hence these signatures may 
represent shared positive selection acting on a non-African common ancestor (rather 
than on positive selection acting on Yoruba). In support of a singular selection event, I 
also observe that it is the same SNP identified as having the strongest evidence of 
positive selection in over 10 populations in SLC39A11 (rs11077654; in 10 populations 
according to 𝑅𝑒𝑙𝑎𝑡𝑒), SLC39A4 (rs1871534; in 35 populations according to 𝐹𝑆𝑇), PDE7B 
(rs7753890; in 35 populations according to 𝐹𝑆𝑇) and SLC12A1 (rs2413887; in 18 
different populations according to 𝐹𝑆𝑇). I therefore propose that SLC39A11, SLC39A4, 
PDE7B and SLC12A1 are the strongest candidate genes for mediating micronutrient-
associated adaptation surrounding or swiftly following the Out-of-Africa migration.  

3.5. Discussion 

Diet is highly variable across human populations, dictated by food availability, culture 
and soil geology (Xia et al. 2005; Tishkoff et al. 2007a; Minster et al. 2016; Hengl et al. 
2017; Dhaliwal et al. 2019; De Groote et al. 2021). It has long been known that diet has 
played a role in human evolution (Osier et al. 2002; Han et al. 2007; Perry et al. 2007; 
Tishkoff et al. 2007a; Fumagalli et al. 2015; Schlebusch et al. 2015; White et al. 2015; 
Zhang et al. 2015a; Roca-Umbert et al. 2022), but the extent and dynamics of the selective 
impact of many dietary components remains unknown. Micronutrients are an essential 
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component of the human diet which, alongside their variability across global soils (Xia et 
al. 2005; Hengl et al. 2017; Dhaliwal et al. 2019; De Groote et al. 2021) makes them a 
strong candidate for driving local adaptation in modern humans. 

Here, I present the first study to comprehensively investigate adaptation in response to 
the levels of 13 essential micronutrients across 40 modern human populations spanning 
every major area of the globe. Using the manually curated novel gene sets associated with 
each micronutrient, totalling 276 genes, I am able to evaluate the evidence of positive 
selection at the level of the entire MA-gene set, each individual MA-gene set and at the 
level of individual MA-genes. Hence, I am able to comprehensively evaluate the 
hypothesis that adaptation to micronutrients has driven genetic adaptation in modern 
human populations, either at the strictly local or at the more global scale.  

3.5.1. Evidence for Micronutrient-Associated Adaptation 

Firstly, signatures of natural selection are present across all micronutrient categories, 
and observed in all 40 of the global populations. There is a significant excess of signatures 
of positive selection across the entire MA-gene set in the majority of populations (Section 
3.4.1), as well in individual MA-gene sets (Section 3.4.3). These excesses of signatures 
of positive selection, the co-occurrence of signatures of positive selection amongst many 
genes within functionally-related gene sets (Section 3.4.3-4), and the strong signatures 
of positive selection identified in individual MA-genes (Section 3.4.5) suggest the 
presence of, perhaps extensive, adaptation in modern humans associated with 
micronutrients.  

Moreover, the geographical distribution of the signatures of positive selection are often 
supported by known soil deficiencies and toxicities across localities (Silvertooth et al. 
2001; Vyshpolsky et al. 2008; Hurst et al. 2013; Ryan et al. 2013; White et al. 2015; Nell 
and van Huyssteen 2018; Hou et al. 2022). Previous studies have identified relationships 
between the signatures of positive selection and the environment of candidate 
populations (i.e., the soil levels of the relevant micronutrient), some of is recapitulated 
here (Hurst et al. 2013; White et al. 2015; Zhang et al. 2015a). I also identify additional 
novel cases where the signatures of positive selection within certain populations are 
supported by the known soil composition of their respective environment (see Section 
3.5.3-4). Since the micronutrient composition of local soil affects the levels of 
micronutrients uptaken in the diet, this study provides preliminary link between this 
selective driver and signatures of micronutrient-associated adaptation. 

3.5.2. Polygenicity of Micronutrient-Associated Adaptation 

I find no significant evidence for classical models of polygenic adaptation for the genes in 
the micronutrient-associated gene sets. Rather, I suggest that micronutrient adaptation 
is likely often oligogenic in nature. In particular, this is likely for adaptation in response 
to selenium, calcium and zinc dietary levels given that these gene sets repeatedly show 
high numbers of genes exhibiting signatures of selection, but none at the level of 
documented cases of human polygenic adaptation (Pritchard et al. 2010; Daub et al. 2013; 
Berg and Coop 2014; Field et al. 2016; Berg, Harpak, et al. 2019; Berg, Zhang, et al. 2019) 
or across the majority of genes with a gene set (Section 3.4.3).  

The limited signatures of polygenic adaptation are due to one of two reasons. The first is 
that there is indeed limited selection over each micronutrient gene set due to deleterious 
pleiotropy, which can limit the adaptative potential of some genes. Since many of the MA-
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genes within each gene set have a multitude of roles surrounding not only micronutrient 
regulation (Monteiro et al. 2015), it is likely that such pleiotropy constrains polygenic 
adaptation within these gene sets.  

In contrast, the limited signatures of polygenic adaptation observed may simply reflect 
the limitations of the methods used in this study. In Chapter 2, 𝐹𝑆𝑇 and  𝑅𝑒𝑙𝑎𝑡𝑒 are shown 
to have the highest power to identify local adaptation mediated by standing variation at 
both the monogenic and polygenic level (compared to haplotype-based methods to 
identify positive selection) but this power is still limited in some populations and for 
more recent selection. Indeed, using the best inferred method is not synonymous with 
identifying all signatures of positive selection, and I can only suggest that more true 
signatures of positive selection have been identified than if using such tested haplotype 
methods.  

Still, it remains that the evidence for positive selection identified in the selenium, zinc and 
calcium gene sets, amongst other micronutrients, is dominated by strong signatures on 
only a few functionally-related genes. Hence, and in consideration of the above 
limitations, I propose that the term oligogenic adaptation is better suited when 
addressing adaptation to micronutrients in modern humans. This is as a generalisation 
of the observed signatures of positive selection across micronutrients and populations, 
and polygenicity of adaptation amongst MA-gene sets and populations is likely more 
intricate than can be fully appreciated in a study of this design.  

3.5.3. Candidate Populations under Oligogenic Adaptation 

I first identify populations as the most likely to have undergone micronutrient-associated 
adaptation under the assumptions of oligogenic adaptation (populations with MA-gene 
sets showing a higher number of genes exhibiting signatures of positive selection are 
more likely to have undergone adaptation in response to a micronutrient-associated 
selective force). This approach also allows the implicit comparison of the likelihood of 
micronutrient-associated adaptation amongst populations, as well as ranking the 
likelihood of adaptation to each micronutrient within each population. This is as a 
powerful method to consider natural selection amongst different populations and 
functionally-related gene sets. 

Here I outline the MA-gene sets which show multiple signatures of positive selection 
amongst different genes in populations which live on soils with toxic or deficient levels 
of the micronutrient of interest. Discussion of the molybdenum gene set (which shows an 
excess of significant SNPs across a number of populations, isolated to two genes) is 
omitted here, given that the levels of molybdenum in soils and molybdenum 
deficiency/toxicity in humans is so poorly categorised.  

There is an enrichment of signatures of positive selection amongst selenium-associated 
genes in East Asian populations (Xia et al. 2005). These signatures agree with previous 
studies, which have suggested polygenic or oligogenic adaptation in selenium 
metabolism in East Asian populations (White et al. 2015). I also identify enrichment of 
selenium-associated signatures of positive selection in African populations, who too live 
on selenium deficient soil, particularly in Malawi (Hurst et al. 2013; Ibrahim et al. 2019; 
Ligowe et al. 2020). Hence, this is in support of selenium-deficient soils driving signatures 
of positive selection in multiple selenium-associated genes, and suggest parallel 
adaptation to selenium-associated selective pressures amongst these two 
metapopulations. 
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The phosphorus-enriched signatures of positive selection of the American Pima 
population, who live on what is now Arizona, also co-occur with known phosphorus 
deficiencies in the local soil (or more accurately, co-occur with the low bioavailability of 
phosphorus from calcareous soil (Silvertooth et al. 2001; von Wandruszka 2006)). 
Salinity in African soils has been known to be highly variable and reaching both the 
deficient and toxic level (Nell and van Huyssteen 2018; Shahid et al. 2018; Hassani et al. 
2021), potentially driving the observed adaptive signatures in various African 
populations. Still, it is difficult to confidently infer how much of contemporary soil 
deficiencies of either phosphorus or chloride is due to recent agricultural practices (see 
Section 3.5.6; (Nell and van Huyssteen 2018; Shahid et al. 2018; Dhaliwal et al. 2019; 
Hassani et al. 2021)). 

The Maya population of America also show an unusual excess of signatures of positive 
selection in iodine-associated genes, inferred from the number of significant SNPs within 
this gene set and the number of individual genes with (top-ranking) signatures of iodine-
associated positive selection. However, there is insufficient soil data to evaluate the if 
signatures of positive selection are supported by unusual iodine composition of local soils 
here. Still, iodine deficiency is prevalent in Mexico, which encompasses the region of the 
Maya population. In the modern Mexican population, the prevalence of goitre, the 
swelling of the thyroid gland caused by iodine deficiency, is at 54.6% (Hetzel and 
Nutrition 1988). However, no studies have been carried out to establish if there is a lower 
prevalence of goitre in the native Maya population (as would be expected under the 
proposed iodine-associated adaptation).  

I have presented here the best examples of signatures of positive selection in MA-gene 
sets in populations supported by either unusual soil composition or endemic deficiencies 
of the associated micronutrient. Since the level of micronutrients across global soils, 
particularly at the level of individual population regions, is not comprehensively known, 
I only explore the potential support of some genetic signatures from corresponding soil 
micronutrient levels. Moreover, micronutrient-associated deficiencies can also result 
from general malnutrition and socio-economic status, and I am cautious in presenting 
this data as representing the selective drivers of putative adaptation. A more 
comprehensive understanding of local soil environment and susceptibility of 
micronutrient-associated disease by ancestry may reveal further informative 
correlations of genetic signatures and soil or disease within this dataset.  

3.5.4. Candidate Populations under Monogenic Adaptation 

Further candidate populations under micronutrient-associated adaptation were 
identified as those that show especially strong signatures of positive selection in 
individual MA-genes. 21 populations show MA-genes with evidence of selection at the 
most stringent threshold (multiple-testing threshold; 𝑝𝑣𝑎𝑙𝑢𝑒 < 4.65𝑒−6). This suggests 
that selection on individual micronutrient-associated genes can be strong, and 
corresponding allele frequency change very quick. This is not only similar to the many 
supported cases of monogenic adaptation to diet in humans (Tishkoff et al. 2007; 
Mathieson et al. 2015; Schlebusch et al. 2015; Minster et al. 2016; Mathieson and 
Mathieson 2018) but also in line with the assessment of limited polygenic adaptation.  

I propose monogenic adaptation (or at least adaptation primarily mediated by one gene) 
in response to iron-associated pressures in two populations: the European Basque 
population (mediated by HIF1A) and the East Asian Yakut population (mediated by 
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FTMT). This agrees with previous studies suggesting iron-associated adaptation in 
various Eurasian populations but it remains unclear whether this is driven by the 
suggested soil levels, changes to the diet driven by the Neolithic transition or cold 
ambient temperatures (Distante et al. 2004; Ye et al. 2015; Heath et al. 2016b, 2016a).  

Similarly, I propose magnesium-associated adaptation in two Central-South Asian 
populations, which show strong signatures of positive selection in two different 
magnesium-associated genes: MECOM in the Brahui and FXYD2 in the Ugyur. Indeed, a 
mutation of the FXYD2 gene has been linked to hypomagnesemia (Sha et al. 2008), 
potentially a consequence of adaptation to the well-categorised magnesium dominant 
soil of Central Asia (Vyshpolsky et al. 2008; Karimov et al. 2009). MECOM has not been 
explicitly linked to magnesium response, but has been associated with osteoporotic 
fractures (Hwang et al. 2013). Since magnesium is associated with bone density and 
prevents the onset of osteoporosis (Castiglioni et al. 2013), it is possible that this variant 
also confers hypomagnesemia.  

Micronutrient-associated adaptation mediated by these genes may occur in populations 
other than those with the strongest signatures, but these are not presented here. Similarly, 
and analogous to that addressed in Section 3.5.3, many other genes bypassing the most 
stringent threshold have been identified, but only those with the strongest supporting 
evidence from soil data, functional role or surrounding literature are mentioned here.  
Still, the MA-genes bypassing this stringent threshold encompass nine micronutrient 
categories, and I suggest that strong local selection in response to micronutrient-
associated selective pressures has indeed played a role in shaping human genetic 
variation.  

3.5.5. Candidate Genes Mediating Widespread Adaptation 

Whilst the signatures of positive selection do suggest that local, rather than more global, 
adaptation is more common in micronutrient-associated adaptation, some MA-genes 
show strong signatures (often bypassing the most stringent threshold) shared across 
multiple populations across the globe, and therefore exhibit evidence of widespread 
selection. This includes the zinc-associated genes SLC39A11, SLC39A4 and SLC30A9; the 
phosphorus-associated gene PDE7B; the calcium-associated ATP2B2; and the SLC12A1 
gene associated with potassium, sodium and chloride metabolism. Widespread 
adaptation has previously been identified in zinc-transporter genes, including SLC39A4 
and SLC30A9 (Zhang et al. 2015a; Engelken et al. 2016; Roca-Umbert et al. 2022), but 
adaptive signatures of the remaining genes in modern humans has not currently been 
recorded. Because of their potential importance in human dietary adaptation, I discuss 
each of these genes below. 

PDE7B is a phosphodiesterase with variants associated with phosphorus serum levels 
(Kestenbaum et al. 2010) but primarily identified as playing a key role in cancer 
development (Cao et al. 2019; Sun et al. 2020) (and, interestingly, the silkiness of chicken 
feathers (Li et al. 2019)). Whilst the contemporary levels of phosphorus are heavily 
affected by agricultural practices (Dhaliwal et al. 2019; Alewell et al. 2020), there is a 
broad pattern of increased soil phosphorus in non-African environments, perhaps 
pertaining to this widespread signature (He et al. 2021).  

The solute carrier gene SLC12A1 is less easily associated with one particular 
micronutrient, since this gene mediates metabolism and transport of sodium, potassium 
and chloride. Still, in this study, its dominant micronutrient association is assigned as 
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sodium, since it accounts for much of the salt reabsorption in the kidneys (Markadieu and 
Delpire 2014). Mutations in SLC12A1 result in Bartter’s syndrome, which is an autosomal 
recessive disorder produced by the removal of too much salt from the body (Gagnon and 
Delpire 2013). Given that excess salt results in a significant increase of the risk of high 
blood pressure and associated co-morbidities (Hunter et al. 2022), it is possible that such 
mutations acting to remove salt may have been adaptive in environments characterised 
by hyper-saline soils, which are common at least in contemporary times (Nell and van 
Huyssteen 2018; Shahid et al. 2018; Hassani et al. 2021).  

The plasma membrane calcium ATPase ATP2B2 plays a key role in human health, 
associated with various cardiovascular diseases and deafness, amongst other conditions 
(Stafford et al. 2017). It also plays a critical role in intracellular calcium homeostasis and 
has also been associated with the calcium absorption pathways of laying hens (Gloux et 
al. 2019). However, given its association with multiple human diseases, it is unclear if the 
adaptive signatures observed here can be confidently associated with dietary calcium. 

Since the signatures of positive selection of these genes are observed over most non-
African populations, it is possible that the observed signatures of positive selection are a 
result of adaptation in an ancestral Out of Africa population. Indeed, soil in the Middle-
East has been shown to be both zinc-deficient and hyper-saline (Ryan et al. 2013; Shahid 
et al. 2018), potentially driving the suggested widespread selection in the zinc-associated 
genes SLC39A11, SLC39A4 and SLC30A9 and the sodium-associated gene SLC12A1. Still, is 
also possible that other factors (such as different novel pathogens or temperatures 
increasing the selective pressure for pathogen-starvation or thermoregulation (Engelken 
et al. 2014; Pietrangelo 2015; Heath et al. 2016a)) drive these shared signatures of 
positive selection amongst non-Africans.  

3.5.6. Summary 

In summary, I show that signatures of positive selection associated with essential 
micronutrients exist in many geographic areas and multiple micronutrient categories. I 
also suggest that micronutrient-associated adaptation is primarily mediated by the 
genetic changes in a small number of micronutrient-associated genes. Known 
micronutrient soil levels support proposed adaptation of micronutrient-associated genes, 
and micronutrients may have played an important selective role in modern humans, 
potentially shaping the genomic variation of our species. 

Still, the power of this comprehensive approach also coincides with some key limitations. 
This study is a broad overview into the nature of micronutrient-associated adaptation, 
but is not able to explore adaptation in specific micronutrient categories at depth. Here, I 
only outline the strongest signatures of positive selection in populations with additional 
support for micronutrient-associated adaptation (i.e., from known soil composition, 
known endemic deficiencies or functional information of individual genes showcasing the 
signatures of positive selection), which biases the findings to this available data. Whilst 
impossible for a study of this design, individual and in-depth exploration of the signatures 
of positive selection identified for each micronutrient will more fully elucidate the role of 
individual micronutrients in modern human adaptation. 

Moreover, contemporary soil and public health data cannot confidently be said to 
represent the ancestral micronutrient-associated selective pressures experienced by a 
population, since they are heavily impacted by modern agricultural practices and modern 
health inequality (Diamond 2002; Bhutta and Salam 2012; Bailey et al. 2015). The data 
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currently available can only evaluate some proposed links between soil as a selective 
pressure and proposed adaptation, and agreement between genetic signatures and 
micronutrient soil levels cannot be taken as conclusive evidence for adaptation. 

It is clear that the signatures of positive selection identified within different 
micronutrient gene sets are highly variable, and likely represent a highly dynamic history 
of selection across these vital dietary components. This includes variable degrees of 
suggested polygenicity, variable geographic distribution of signatures of positive 
selection and variable genes suggested to mediate the same micronutrient-associated 
selective pressure between different localities. I therefore propose that adaptation in 
response to micronutrient-associated pressures present but limited in human 
evolutionary history, and highly complex across populations and micronutrient 
categories. 

3.6. Conclusion 

I infer the likely role of dietary micronutrients as a selective force across human 
populations and suggest that the adaptive responses to these selective forces have 
contributed to human genetic variation and population differentiation. I provide 
evidence that adaptation in response to micronutrients in the diet is most likely at the 
monogenic and oligogenic level. I show that in some cases the evidence of genetic 
adaptations is supported by local soil geology and suggest the micronutrients, including 
individual genes, with the strongest evidence of selection, and of which warrant further 
study. 
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Chapter 4: Evolutionary History of 
Micronutrient-Associated Genes in Modern 

Humans 
 

4.1. Overview 

Modern human populations have encountered a wide range of selective pressures over 
their history, often a result of environmental change, large-scale migrations into novel 
environments or cultural changes, some of which are linked to the diet (Perry et al. 2007; 
Tishkoff et al. 2007; Naugler 2008; Huerta-Sánchez et al. 2014; Fumagalli et al. 2015; 
Schlebusch et al. 2015; White et al. 2015; Engelken et al. 2016; Minster et al. 2016; Key et 
al. 2018; Rees et al. 2020). In previous work (Chapter 3), I infer that micronutrient levels 
in the diet have acted as a differential selective pressure across human populations and 
suggest that micronutrient-associated adaptation has contributed to shaping modern 
human genetic variation.  

Here, I highlight five micronutrients (zinc, calcium, selenium, iron and iodine) which 
show particularly strong evidence for having evolved under natural selection across 
human populations, and across associated genes. I use a combination of signatures of 
positive selection that were previously identified (Chapter 3), gene network analysis, 
haplotype analysis and tree-based methods to explore the nature of putative selection 
events. This includes investigating the co-occurrence of signatures of positive selection 
on candidate genes across populations and inferring the most likely geographical origin 
and time of onset of proposed positive selection. Inferring the latter allows the suggestion 
of putative main selective drivers of micronutrient-associated adaptation, and how they 
may vary over populations and micronutrients.  

I suggest that the same small groups of genes often mediate micronutrient-associated 
adaptation across populations, with additional genes further contributing to an adaptive 
response in some individual populations. However, I also identify outliers to this general 
trend, where different populations appear to mediate such adaptation via different 
groups of micronutrient-associated genes. From the geographical distribution of 
signatures of natural selection and the estimated timeframe or origin of positive selection, 
I propose that soil levels have largely driven adaptation in response to micronutrient 
levels, but identify potential examples of micronutrient-associated adaptation more 
closely surrounding the Neolithic transition, providing some evidence for the role of more 
recent dietary change in driving micronutrient-associated adaptation. 

4.2. Background 

Modern humans have been exposed to a plethora of selective pressures throughout their 
evolutionary history, particularly those pertaining to pathogens, diet and abiotic 
environmental factors like UV exposure or temperature (Perry et al. 2007; Tishkoff et al. 
2007; Vernot and Akey 2014; Schlebusch et al. 2015; White et al. 2015; Minster et al. 2016; 
McManus et al. 2017; Key et al. 2018; Rees et al. 2020). Moreover, these selective 
pressures are often differentially exerted across populations, a by-product of our species 
unique colonisation of global and highly varied, sometimes extreme, environments 
(Ilardo and Nielsen 2018).  
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Such selective pressures can result in population-specific adaptations (Savolainen et al. 
2013), which leave complex signatures of natural selection on modern genomes (Sabeti 
et al. 2006; Pritchard et al. 2010; Rees et al. 2020). Many studies have focused on 
identifying these signatures in populations across the globe (Sabeti et al. 2002; Ilardo and 
Nielsen 2018; Rees et al. 2020), resulting in a catalogue of suggested local adaptation 
targets in modern humans and, for some putative targets, their respective drivers of 
selection. Still, in many cases, the exact dynamics of selection, such as the onset or 
selective pressure, remain a question.  

There has been some success in linking environmental or cultural pressures to identified 
signatures of natural selection across populations. For example, signatures of selection 
identified in genes associated with hypoxia resistance in populations living at high 
altitude or frequent diving (Ilardo et al. 2018), arsenic-resistance in an Argentinian 
population living on arsenic-toxic soil (Schlebusch et al. 2015) or temperature-sensation 
across populations living at northern latitudes (Key et al. 2018). However, in many cases, 
the selective pressures driving adaptation are still under debate. This includes the nature 
of the selective pressure(s) driving signatures of positive selection on genes associated 
with short stature in some rainforest populations, proposed to be driven by 
thermoregulatory pressures, locomotory advantages or a consequence of adaptation to 
iodine-deficiency (Herráez et al. 2009; Perry and Dominy 2009; Venkataraman et al. 
2018); strong signatures identified  in the EDAR gene in East Asian populations associated 
with hair thickness, tooth and ear shape, sweat gland density and chin protrusion, but 
with no clear selective driver (Sabeti et al. 2007; Fujimoto et al, 2008; Adhikari et al, 2015; 
Reyes-Reali et al, 2018, Speidel et al. 2019, Kataoka et al, 2021); and even the strong 
signatures upstream of the LCT conferring lactase persistence in European and African 
populations, long associated with the Neolithic transition but with frequency increases 
appearing to be considerably younger (Gerbault et al. 2011; Sverrisdóttir et al. 2014; 
Mathieson et al. 2015; Burger et al. 2020; Evershed et al. 2022).  

4.2.1. Micronutrients as a Selective Pressure 

Adaptation in response to micronutrient levels and metabolism has been identified in 
human populations in previous work (Engelken et al., 2014, 2016; Herráez et al., 2009; 
Kovacs et al., 2013; White et al., 2015; Ye et al., 2015; Zhang et al., 2015a), and in the work 
described in Chapter 3. This adaptation has been suggested to be driven by various 
factors, most commonly the content of micronutrients in local soil (thereby the levels 
being absorbed into the diet through consumed plant and animal matter) or cultural 
evolution of the diet.  

Indeed, much of the current collection of work has proposed that the putative 
micronutrient-associated adaptation is driven by the micronutrient levels in local soil, 
particularly relating to selenium, zinc and iodine-metabolism in previous literature (Cifor 
2006; Herráez et al. 2009; Hurst et al. 2013; White et al. 2015; Zhang et al. 2015a) and 
selenium, magnesium, phosphorus and chloride-metabolism in the work described in 
Chapter 3. Endemic pathologies, particularly when partnered with accompanying soil 
data, can also be assumed to be a by-product of insufficient soil concentrations or 
decreased bioavailability of trace minerals, and may also reflect a soil-related selective 
pressure (Cifor 2006; von Wandruszka 2006; Hurst et al. 2013), as is suggested in 
Chapter 3 in regards to putative adaptation in response to iodine.  
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Still, the extent of the role that local soils have played in driving micronutrient-associated 
signatures of positive selection remains a question for many individual cases of putative 
micronutrient-associated adaptation.  For example, previous studies have noted the 
widespread signatures of adaptation of zinc-transporter genes in European populations 
(Engelken et al. 2014; Zhang et al. 2015a; Roca-Umbert et al. 2022), which is also 
suggested in Chapter 3. It is currently unclear if the shared signatures of positive 
selection across European populations in zinc-transporter genes reflect convergent 
adaptation to many different soils inhabited by non-African populations, or an adaptation 
to a soil environment inhabited by a common non-African ancestral population. In the 
latter case, this soil environment may be that within the Middle-East, since these were 
the environments colonised by migrating human populations Out-of-Africa (Ryan et al. 
2013).   

Signatures of positive selection identified in micronutrient-associated genes may instead 
be driven by selective pressures other than micronutrient level (or more explicitly, 
bioavailability) in local soils. Cultural changes and differences in diets amongst 
populations may affect the levels of certain micronutrients consumed, and, in theory, 
impose selective pressures in maintaining optimum intake or metabolism of 
micronutrients. The Neolithic transition, beginning approximately 10kya, resulted in 
major changes in human societies, including those relating to food growth and acquisition 
(Dobrovolskaya 2005; Perry et al. 2007; Naugler 2008). In particular, the Neolithic 
transition and switch to agriculture has been associated with reduced iron and calcium 
in the human diet, amongst other key micronutrients (Diamond 2002; Naugler 2008; 
Gerbault et al. 2011). Agricultural practices also deplete soils of many micronutrients, 
including zinc, copper and iron (Diamond 2002; Dhaliwal et al. 2019), which may act as 
an additional driver of adaptation in micronutrient metabolism in more recent human 
history. 

Other suggested selective drivers of micronutrient-associated adaptation include 
pathogen stress and temperature regulation (see Section 1.7.3). Hence, whilst many 
selective drivers have been suggested to explain proposed micronutrient-associated 
adaptation, there remains no clear consensus on many individual cases. 

4.2.2. Timepoint and Polygenicity of Micronutrient-

Associated Adaptation 

Alongside pinpointing the exact selective driver behind proposed micronutrient-
associated adaptation, the timepoint and polygenicity of micronutrient-associated 
adaptation should also be considered. In particular, the timepoint of positive selection 
acting on micronutrient-associated genes is particularly interesting for two main reasons: 
1) no study has explicitly investigated the timepoint of proposed micronutrient-
adaptation and 2) the timepoint of the onset of selection and the selective driver are 
intrinsically linked. If the onset of selection can be accurately inferred, this facilitates the 
identification of plausible selective drivers, such as micronutrient-deficient or toxic soils 
inhabited by a common non-African ancestral population (or other environmental stress, 
such as pathogen load, experienced by a common non-African ancestral population), 
more recently colonised soils (or more recently encountered environmental stress), or 
even more recent Neolithic changes to diet or agriculture.  

The number and identity of genes that may contribute to adaptation in response to 
micronutrient levels is also an interesting and important question. Signatures of positive 
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selection do not stretch over the entire micronutrient gene sets, and I propose that the 
adaptation across many sets of micronutrient-associated genes is likely to be oligogenic 
rather than polygenic in nature (Chapter 3). Still, given the nature of the study in Chapter 
3, this remains only a broad overview and remains to be fully investigated.   

4.2.3. Focal Micronutrient-Associated Gene Sets 

In this study, I focus on five individual micronutrient-associated gene sets, which allows 
a more in-depth analysis, and consequent understanding, of the signatures of positive 
selection identified on these micronutrient-associated genes. By choosing to explore 
adaptation in response to only five micronutrients, I am also more clearly able to compare 
the signatures of positive selection amongst different micronutrient-associated genes 
and contextualise the inferences.  

I focus on the gene sets associated with zinc, calcium, selenium, iron and iodine, chosen 
for two main reasons (as informed by the work undertaken in Chapter 3). The first is 
that these gene sets show some of the strongest evidence of positive selection (according 
to the signatures of positive selection across multiple genes; signatures of positive 
selection in the same gene(s) shared across many populations; or signatures of positive 
selection in individual gene(s) which bypass the most stringent threshold). The second is 
that the signatures of positive selection in these micronutrient-associated gene sets vary 
in their geographic range, with some signatures of positive selection isolated in individual 
populations, where others are shared across continental groups. Hence, these gene sets 
demonstrate geographical breadth of signatures of positive selection and proposed 
selection. A final, additional reason is that, in comparison to other micronutrients, there 
is also relatively more data about the global soil concentrations of these micronutrients 
than others (e.g., zinc, selenium, iron and iodine), which can provide supporting evidence 
to the claim of natural selection (Xia et al. 2005; Cifor 2006; Herráez et al. 2009; Hurst et 
al. 2013; Ryan et al. 2013).  

These highlighted micronutrients are also particularly relevant to human health, with 
deficiencies of zinc, iodine and iron being the most common across the globe (25% of the 
world’s population expected to be affected by either iron or iodine deficiency and 17% at 
risk from zinc deficiency (Bhutta and Salam 2012; Bailey et al. 2015; Khan et al. 2022)). 
Calcium and selenium deficiencies are also common, with dietary levels of calcium being 
estimated as deficient in approximately 50% of the world’s population (Shlisky et al. 2022) 
and selenium deficiency affecting up to one billion people worldwide (Jones et al. 2017). 
In some populations, deficiencies of any of these five micronutrients are so common that 
they result in endemic pathologies, such as is the case with iron-associated anaemia and 
iodine-associated goitre (recorded across multiple global populations (Kelly and 
Snedden 1960; Dormitzer et al. 1989; Manning et al. 2012; Stevens et al. 2022)), and the 
cardiomyopathies and bone disorders recorded in selenium-deficient areas of China (Xia 
et al. 2005).  

4.2.4. Study Overview 

Using the results in Chapter 3, I first explore and compare the geographic distribution of 
the strongest signatures of positive selection in each micronutrient set and identify which 
genes have the strongest evidence of selection amongst global populations. I then explore 
and compare the proposed oligogenic adaptation in genes associated with zinc, calcium 
and selenium, and how the groups of genes that mediate micronutrient-associated 
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adaptation may differ across the globe. I also ask if the signatures of positive selection 
shared over many global populations, primarily in zinc, calcium and selenium-associated 
genes, are most likely driven by the same ancestral selective pressure. With this, I suggest 
which genes may have undergone adaptation swiftly following or surrounding the Out of 
Africa migration (Soares et al. 2012; Haber et al. 2019; Tucci and Akey 2019). Finally, I 
infer the most likely onset of selection for calcium and iron-associated genes and suggest 
whether changes in the diet related to the Neolithic transition (Dobrovolskaya 2005; 
Naugler 2008) or migrations into environments with varying soil levels have most likely 
driven this suggested selection. 

The signatures of positive selection in zinc, selenium and calcium-associated genes form 
networks of only a few genes which are often shared by multiple individual populations, 
globally or within the same metapopulation. In contrast, the signatures of positive 
selection on iron and iodine-associated genes appear more unique to individual 
populations, and suggest that associated adaptation is more locally concentrated across 
populations. Finally, I suggest that the geographic and temporal origins of adaptation in 
response to micronutrient-levels are highly varied. Ultimately, I propose that both 
migrations into new environments, and corresponding novel soil composition, and recent 
agricultural and dietary change have played a role in shaping the adaptive response of 
micronutrient-associated genes across modern human populations. 

4.3. Methods 
4.3.1. Datasets 

4.3.1.1. The Micronutrient-Associated Genes Dataset 

I use gene-sets associated with the uptake, regulation and metabolism of the trace 
minerals selenium (n=61), zinc (n=46), iron (n=44), and iodine (n=18) and the 
macromineral calcium (n=23). The literature and databases used to curate these gene 
sets are described in Section 3.3.1. Zinc, calcium, selenium, iron and iodine-associated 
genes are hereafter referred to as ZCSII-associated genes. The abbreviation MA-genes 
(micronutrient-associated genes) and pMA-genes (proxy micronutrient genes, which act 
as the neutral background see Section 3.3.1.2) are also used in this chapter. 

Following the application of a positive mask that removes segments of the genome of low 
reliability (see section 3.3.3 (Bergström et al. 2020)), 182 genes remain (176 of which 
are autosomal; see Table S4.1). Five genes are associated in the literature with two of 
these micronutrients: SLC11A1 is associated with both iron and zinc; DIO1, DIO2, DIO3 
and SECISBP2 are associated with both selenium and iodine. 

I verify that the SNPs in these gene sets do not have a significantly different allele 
frequency distribution compared to the genomic background inferred from chr1 of the 
Yoruban individuals (see Table S3.3 and Section 3.3.1.1). In terms of SNP density, five 
genes have high SNP density when compared to the generated pMA-gene regions (see 
Section 3.3.1.2, Table S3.4): SELENOO (selenium-associated), EPAS1 (iron-associated, 
introgressed from Denisovans in East Asians (Huerta-Sánchez et al. 2014)), MT1A and 
MT1F (zinc-associated) and SLC8A1 (calcium-associated). Finally, according to 𝐸𝑛𝑠𝑒𝑚𝑏𝑙 
(Yates et al. 2020), eleven of the ZCSII-genes overlap or are less than 10kbp apart:  the 
zinc-associated genes MT1F, MT1G and MT1H, the zinc-associated pair CA1 and CA3, and 
the selenium-associated pairs of genes of LHFPL2 and ARSB, DMGDH and BHMT2, GPx5 
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and GPx6 (see Table S3.3.2). Any signatures of positive selection in these overlapping 
gene regions are therefore treated as possible signatures for either gene region.  

4.3.1.2. The Population Dataset 

I use a dataset of 913 individuals from the HGDP dataset (as published by (Bergström et 
al. 2020)), including populations in Africa, the Middle-East, Europe, East Asia, Central-
South Asia, Oceania and the Americas, as described in Chapter 3. These individuals are 
grouped into 40 populations (see Table S3.6, Fig. 3.1), either from the populations 
specified from (Bergström et al. 2020) or following population analysis and geographic 
proximity (see Section 3.3.2, Fig. S3.3-9, S3.10-13).  

4.3.2. Methods to Identify Positive Selection 

The methods to identify signatures of positive selection are identical to those described 
in Chapter 3: 𝑅𝑒𝑙𝑎𝑡𝑒  (Speidel et al. 2019) and 𝐹𝑆𝑇  (as calculated for all population 
combinations with Yoruba, as well as for all population pairs within Africa (Weir and 
Cockerham 1984)). All information on these methods, pre-processing and filtering are 
given in Section 3.3.3.  

As a brief summary, SNPs are extracted from the candidate genes (and their 10kb regions 
up- and downstream) which fall in the 0.1% tail of either the 𝐹𝑆𝑇 and 𝑅𝑒𝑙𝑎𝑡𝑒 empirical 
genome-wide background and treat those SNPs as having evidence for selection. Here, I 
also identify SNPs which fall in the 0.01% tail of either the 𝐹𝑆𝑇  and 𝑅𝑒𝑙𝑎𝑡𝑒  empirical 
distribution, and assign those SNPs as having strong evidence for selection of which to 
focus the analysis. Analogous to Chapter 3, I also extract SNPs which exhibit signatures 
of positive selection at the multiple-testing threshold of 4.65 × 10−6  used in Section 
3.4.5, which is the most stringent threshold and identifies the SNPs with strongest 
evidence of selection in this study. 

4.3.3. Gene Networks 

Gene networks are built to identify which genes frequently share signatures of positive 
selection in the same populations. To do so, I first identify pairs of genes that share 
signatures in the 0.1% tail of the 𝑅𝑒𝑙𝑎𝑡𝑒  empirical distribution for two or more 
populations. Here, I only consider signatures of positive selection according to 𝑅𝑒𝑙𝑎𝑡𝑒 to 
avoid simply capturing groups of genes that are differentiated from the Yoruba 
population. Gene networks are then built using the 𝐺𝐺𝑎𝑙𝑙𝑦 package in 𝑅 (Schloerke et al. 
2021), where genes are connected if they share signature of positive selection in two or 
more populations and the strength of the connection is proportional to the number of 
populations in which their signatures co-occur. 

4.3.4. Haplotype Networks 

Haplotype networks are built surrounding focal, candidate SNPs using 𝑃𝑂𝑃𝐴𝑅𝑇 (Leigh 
and Bryant 2015). For genes that I identify as having strong evidence of positive selection, 
I assign focal SNPs as those with the evidence of positive selection shared over the highest 
number of populations or those representing regions of the candidate gene with clusters 
of signatures of positive selection (according to both 𝐹𝑆𝑇 and 𝑅𝑒𝑙𝑎𝑡𝑒 evidence of selection; 
see Table S4.2). I choose to manually assign focal SNPs using this criterion, rather than a 
systematic approach, since any one criterion does not best represent the SNPs with the 
strongest evidence of selection across all genes of interest. 
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I then extract regions of 10kb and 20kb around these focal SNPs (masking genomic 
regions with low reliability (as inferred by (Bergström et al. 2020)), filtering for sites with 
MAF < 0.05, removing indels and only retaining biallelic sites) and phase these regions 
with 𝑆𝐻𝐴𝑃𝐸𝐼𝑇2  (Delaneau et al. 2013). The phased files are then reformatted to the 
required input file format of 𝑃𝑂𝑃𝐴𝑅𝑇 (Leigh and Bryant 2015), of which are used to build 
a median joining tree network.  

4.3.5. Inferring Time of Selection 

I infer the timing of selection on iron and calcium-associated genes to address the 
hypothesis that recent changes to the diet (i.e., those surrounding the Neolithic transition) 
drove putative iron and calcium-associated adaptation. I first reconstruct the allele 
trajectories of focal SNPs of the iron and calcium-associated genes that are identified as 
having the strongest evidence of selection. Here, focal SNPs are identified as outlined in 
Section 4.3.4 (see Table S4.3).  

I estimate the onset of selection using two programmes: 𝑅𝑒𝑙𝑎𝑡𝑒 (Speidel et al. 2019) and 
𝐶𝐿𝑈𝐸𝑆 (Stern et al. 2019). 𝐶𝐿𝑈𝐸𝑆 estimates the timing and strength of selection using a 
hidden Markov model, treating inferred local trees as the observed state and the allele 
frequency trajectory as the hidden state. Before using this programme, I reformat the 
inferred genealogies generated using 𝑅𝑒𝑙𝑎𝑡𝑒 into the 𝐶𝐿𝑈𝐸𝑆 input format 𝑛𝑒𝑤𝑖𝑐𝑘, which 
resembles the format of  𝐴𝑅𝐺𝑊𝐸𝐴𝑉𝐸𝑅  (Rasmussen, Hubisz, et al. 2014). I then use 
𝐶𝐿𝑈𝐸𝑆  to infer allele frequency across time, and jointly estimate the strength and 
likelihood of selection beginning at 500, 1000, 1500 and 2000 generations ago 
(corresponding to 14kya, 28kya, 42kya and 56kya when using a generation time of 28 
years (Speidel et al. 2019)) for each focal SNP. Here, log-likelihoods of over 4 are treated 
as moderate evidence of selection, in line with previous literature (Stern et al. 2019). I 
then use 𝑅𝑒𝑙𝑎𝑡𝑒  to trace the focal SNP’s frequency across its lifetime and infer the 
timepoints surrounding striking frequency increases to evaluate the inferences from 
𝐶𝐿𝑈𝐸𝑆. 

4.4. Results 
4.4.1. Adaptive Signatures Across Micronutrients 

Since there is limited evidence of polygenic adaptation (see Chapter 3), I first explore the 
geographical distribution of the strong signatures of positive selection on individual 
genes for each MA-gene set. In the following sections, the geographic distribution of the 
signatures of positive selection over each ZSCII-associated gene set are briefly recapped 
and compared (see Fig. 4.1, Fig. 4.2; full lists of genes with signatures in the 0.1% tail of 
the empirical distributions of 𝐹𝑆𝑇 and 𝑅𝑒𝑙𝑎𝑡𝑒 are given in Tables S4.3-13).  I then verify 
if stronger signatures of positive selection maintain this geographic distribution. To do 
so, I identify SNPs that are in the 0.01% tail of the empirical distributions of 𝐹𝑆𝑇  and 
𝑅𝑒𝑙𝑎𝑡𝑒 (i.e., using a threshold that is a magnitude more stringent), as well as those with 
signatures at the most stringent threshold as used in Chapter 3 ( 4.65 × 10−6  ; see 
Section 3.4.5).  

The strongest signatures of positive selection are discussed, including what they suggest 
regarding the degree of polygenicity and geographic range of proposed adaptation, for 
each micronutrient gene set below. I also consider if the strongest signatures of positive 
selection isolated to a small number of populations are likely to be truly representing 
ultra-local selection events, or if there is only power to identify the signatures of positive 
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selection in certain populations. To evaluate this, I ask if the genes with the strongest 
signatures of positive selection have signatures in the less stringent 1% tail of the 
empirical 𝑅𝑒𝑙𝑎𝑡𝑒 distributions in other populations. Here, I only explore the signatures of 
positive selection inferred by 𝑅𝑒𝑙𝑎𝑡𝑒 since the signatures inferred by 𝐹𝑆𝑇 simply identify 
genes that are highly differentiated from the Yoruba population, and therefore are less 
geographically informative. 

 

 

 

Fig. 4.1: Number of ZCSII-genes with Relate signatures of positive selection.  
Signatures of positive selection (SNPs in the 0.1% tail of the 𝑅𝑒𝑙𝑎𝑡𝑒 empirical distribution) 
for each population, given separately for genes associated with zinc, calcium, selenium, iron 
and iodine. Population names are given in the top left map. 
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Fig. 4.2: Number of ZCSII-genes with 𝑭𝑺𝑻 signatures of positive selection.  Signatures 
of positive selection (SNPs in the 0.1% tail of the 𝐹𝑆𝑇   empirical distribution) for each 
population, given separately for genes associated with zinc, calcium, selenium, iron and 
iodine. Population names are given in the top left map. 

 

 
4.4.1.1. Zinc 

In comparison to all other ZCSII-associated gene sets, the zinc-associated gene set (n=46) 
shows the highest number of genes with signatures of positive selection shared amongst 
many populations (Tables S4.4-5)). Of these zinc-associated genes, 16 show strong 
signatures of selection (Table 4.1). Many of these genes are zinc-transporters (e.g., 
SLC39A4, SLC30A9, SLC39A11, SLC39A12, SLC30A7, SLC30A8, SLC30A1, SLC39A10, 
SLC39A14 and SLC30A10, see Table 4.1), with three exhibiting significant signatures at 
the most stringent threshold (𝑝𝑣𝑎𝑙𝑢𝑒 < 4.65 × 10−6). GPR39, not a zinc-transporter gene, 
but associated with zinc-dependent signalling, also exhibits signatures of positive 
selection in all metapopulations bar Oceania, hence also presenting strong evidence for 
selection (Table 4.1). 

For some of these candidate genes, the signatures of positive selection appear to be 
isolated to only one population, suggesting that either selection is ultra-local, or the 
thresholds are so stringent that nearly-significant signatures of positive selection in 
nearby populations are missed. When I consider those nearly-significant signatures 
(those in the 1% tail of the empirical distribution of 𝑅𝑒𝑙𝑎𝑡𝑒), all zinc-transporter genes 
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highlighted here (none of which are genomic neighbours) have nearly-significant or 
significant signatures of positive selection in more than 12 populations (Table 4.2). 
Given that these significant or nearly-significant signatures of positive selection are 
shared amongst many populations, and are observed in a functionally-related gene set 
previously shown to have an excess of significant SNPs according to both 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇 
(Chapter 3), I therefore suggest that this is indicative of widespread adaptation in 
response to a zinc-associated selective pressure.  

I now consider the genes with strong signatures of positive selection, inferred either from 
𝑅𝑒𝑙𝑎𝑡𝑒  or 𝐹𝑆𝑇 , across many populations (Table 4.1), and are therefore the strongest 
candidates for widespread adaptation: SLC39A4, SLC30A9, SLC39A11 and GPR39. For 
three of these genes, SLC39A4, SLC30A9 and GPR39, the widespread strong signatures of 
positive selection are inferred from 𝐹𝑆𝑇  (SLC39A4 across almost all Eurasian populations; 
SLC30A9 across almost all East Asian and some Central-South Asian populations; GPR39 
across many European and Central-South Asian populations (Table 4.4.1). In two 
instances, the evidence of positive selection bypasses the most stringent threshold 
(𝑝𝑣𝑎𝑙𝑢𝑒 < 4.65 × 10−6) : SLC39A4 in the Makrani (𝐹𝑆𝑇  𝑝𝑣𝑎𝑙𝑢𝑒 = 3.95 × 10−6 ) and 
SLC30A9 in the Han (𝐹𝑆𝑇  𝑝𝑣𝑎𝑙𝑢𝑒 = 3.55𝑒 × 10−6).  

There is no evidence of positive selection for SLC39A4, SLC30A9 or GPR39 within Yoruba 
as inferred by  𝑅𝑒𝑙𝑎𝑡𝑒 (𝑝𝑣𝑎𝑙𝑢𝑒𝑠  are not within the 0.1% or 1% tail of the empirical 
distribution), and therefore the differentiation from Yoruba, as captured by 𝐹𝑆𝑇  , is 
unlikely to represent selection within the Yoruba population. There are also no significant 
signatures of positive selection inferred for any of these three genes in any other African 
populations according to 𝑅𝑒𝑙𝑎𝑡𝑒, with the exception of GPR39 identified within the 0.1% 
tail of the empirical distribution in the Mbuti population. Hence, I suggest that that the 
strong signatures of positive selection identified in these particular zinc-associated genes, 
which reach the most stringent threshold in two instances, are most likely a signal of Out-
of-Africa positive selection in response to zinc.  

The final zinc-associated candidate for widespread adaptation, SLC39A11, has strong 
signatures of positive selection amongst many populations, as inferred using 𝑅𝑒𝑙𝑎𝑡𝑒 
rather than 𝐹𝑆𝑇 . Again, the strongest signature is captured in the Makrani population 
( 𝑝𝑣𝑎𝑙𝑢𝑒 = 1 × 10−6 ), but there are significant and nearly-significant signatures of 
positive selection amongst the majority of populations (see Table 4.2). I also then suggest 
that the signature of positive selection identified in the Makrani is not indicative to an 
ultra-local selection event, but is simply the strongest identified signature of a 
widespread selection event.   

Hence, I suggest that zinc-associated adaptation, primarily mediated by the zinc-
transporter genes given in Table 4.1, is most likely a result of widespread selection. This 
is most likely a selection event in the ancestors of non-Africans, and present SLC39A4, 
SLC30A9, SLC39A11 and GPR39 as the strongest candidates for mediating such proposed 
zinc-associated adaptation. Moreover, given that many zinc-associated genes show 
significant or nearly-significant signatures of positive selection within populations (most 
clearly observed in Russian, Uygur, Kalash and Burusho populations, see Fig. 5.2, Table 
S4.2), I also suggest that zinc-adaptation is oligogenic in nature, and that multiple genes 
may be involved in mediating zinc-associated selective pressures. 
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Table 4.1: Zinc-associated genes with p-values < 𝟏𝟎−𝟓.  P-values as calculated from the 
empirical distribution of either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 . P-values less than 4.65 × 10−6 (see Section 
3.4.5) highlighted in bold.  

 

Gene Population 𝑹𝒆𝒍𝒂𝒕𝒆 Significance 𝑭𝑺𝑻 Significance 
SLC39A4 San  9.96e-5 
 Druze  1.02e-5 
 Palestinian  2.85e-5 
 Adygei  2.30e-5 
 Basque  1.41e-5 
 BergamoItalian-Tuscan  8.84e-6 
 French  5.58e-6 
 Orcadian  3.19e-5 
 Russian  6.43e-6 
 Sardinian  1.33e-5 
 Balochi  2.89e-5 
 Brahui  7.98e-6 
 Burusho  8.76e--6 
 Hazara  7.24e-6 
 Kalash  1.72e-5 
 Makrani  3.95e-6 
 Pathan  5.47e-6 
 Sindhi  1.03e-5 
 Dai-Lahu  7.82e-5 
 Han  4.34e-5 
 Japanese  6.69e-5 
 Oroqen-Hezhen-Daur  3.99e-5 
 Naxi-Yi  9.03e-5 
 NorthernHan-Tu  5.98e-5 
 She-Miao-Tujia  4.75e-5 
 Xibo-Mongolian  5.49e-5 
 Yakut  3.57e-5 
GPR39 Mbuti  9.97e-5 
 Bedouin  5.59e-5 
 Druze  3.23e05 
 Palestinian  3.72e-5 
 BergamoItalian-Tuscan  8.94e-5 
 French  5.35e-5 
 Russian  6.47e-5 
 Sardinian  5.57e-5 
 Brahui  2.63e-5 
 Burusho  5.78e-5 
 Hazara  9.24e-5 
 Pathan  4.37e-5 
 Sindhi  5.83e-5 
 Japanese 7.5e-5  
SLC30A9 Bantu-speaking  2.83e-5 
 Burusho  5.38e-5 
 Hazara  2.23e-5 
 Pathan  6.08e-5 
 Dai-Lahu  2.12e-5 
 Han  3.55e-6 
 Oroqen-Hezhen-Daur  1.51e-5 
 NorthernHan-Tu  7.01e-5 
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 She-Miao-Tujia  2.05e-5 
 Xibo-Mongolian  2.66e-5 
 Yakut  1.71e-5 
 Maya  8.30-5 
SLC39A11 Bantu-speaking 3.33e-5  
 Palestinian 1.48e-5  
 French 9.13e-5  
 Balochi 1.55e-5  
 Kalash  9.98e-5 
 Makrani 1.4e-6  
 Sindhi  2.99e-5 
 Naxi-Yi 8.43e-5  
 NorthernHan-Tu 3.90e-5  
 She-Miao-Tujia 2.41e-5  
SLC39A12 Mandenka  4.04e-5 
 Makrani 2.4e-5  
SLC30A7 Bantu-speaking 8.8e-5  
 Pathan 9.46e-5  
SCAMP5 Yoruba 4.17e-5  
MTF1 Mandenka 1.04e-5  
CA1 Mozabite 7.15e-6  
SLC30A8 BergamoItalian-Tuscan 4.48e-5  
SLC30A1 Russian 1.32e-5  
SLC39A10 Kalash 1.21e-5  
CAR13 Bantu-speaking  8.23e05 
SLC39A14 Palestinian  5.81e-5 
SLC30A10 Orcadian  9.97e-5 
MTF2 Hazara  9.77e-5 

 

 

Table 4.2: The number (“No.”) and name of the populations (“Populations”) with 
signatures of positive selection. Signatures of positive selection as identified by the 1% or 
0.1% tail of the empirical background distribution of 𝑅𝑒𝑙𝑎𝑡𝑒, for all zinc-associated genes 
with p-values < 10−5 in at least one population (Table 4.1) 

 

Gene 1% tail   0.1% tail  

 No. Populations No. Populations 

SLC39A4 6 
Mandenka, Mozabite, Palestinian, 

Bedouin, BergamoItalian-Tuscan, Maya 
0 

 
  

 

SLC30A9 18 
Palestinian, Druze, Adygei, 

BergamoItalian-Tuscan, French, 
Orcadian, Russian, Makrani, Sindhi, 

Brahui, Pathan, Burusho, Kalash, Uygur, 
Xibo-Mongolian, Yakut, Maya, Papuan 

7 
Orcadian, Makrani, Sindhi, 

Brahui, Pathan, Uygur, Papuan 

GPR39 21 
San, Mbuti, Biaka, Mozabite, Palestinian, 

Bedouin, Sardinian, Basque, Russian, 
Sindhi, Balochi, Pathan, Yakut, Japanese, 
Han, She-Miao-Tujia, Naxi-Yi, Dai-Lahu, 
Surui-Karitiana, Papuan, Bougainville 

5 
Mbuti, Mozabite, Japanese, She-

Miao-Tujia, Dai-Lahu 
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SLC39A11 33 
San, Bantu-speaking, Mbuti, Biaka, 

Yoruba, Mozabite, Palestinian, Druze, 
Bedouin, Adygei, BergamoItalian-Tuscan, 

Sardinian, Basque, French, Orcadian, 
Russian, Makrani, Sindhi, Balochi, Brahui, 

Hazara, Burusho, Kalash, Xibo-
Mongolian, Yakut, Japanese, Han, 

NorthernHan-Tu, She-Miao-Tujia, Naxi-
Yi, Maya, Surui-Karitiana, Bougainville 

27 
Bantu-speaking, Biaka, 

Palestinian, Druze, Bedouin, 
Adygei, BergamoItalian-Tuscan, 

Sardinian, Basque, French, 
Orcadian, Russian, Makrani, 

Sindhi, Balochi, Brahui, Hazara, 
Burusho, Kalash, Xibo-

Mongolian, Japanese, Han, 
NorthernHan-Tu, She-Miao-

Tujia, Naxi-Yi, Surui-Karitiana, 
Bougainville 

SLC39A12 23 San, Bantu-speaking, Palestinian, 
Bedouin, Adygei, BergamoItalian-Tuscan, 

Basque, French, Orcadian, Russian, 
Makrani, Sindhi, Brahui, Pathan, Kalash, 

Yakut, Japanese, Han, She-Miao-Tujia, 
Naxi-Yi, Dai-Lahu, Maya, Bougainville 

3 
BergamoItalian-Tuscan, Makrani, 

Brahui 

SLC30A7 15 Bantu-speaking, Mandenka, Bedouin, 
Hazara, Pathan, Burusho, Uygur, Xibo-

Mongolian, Oroqen-Hezhen-Daur, Yakut, 
Japanese, Han, NorthernHan-Tu, Naxi-Yi, 

Maya 

3 
Bantu-speaking, Bedouin, Pathan 

SCAMP5 5 Yoruba, Orcadian, Pathan, Yakut, She-
Miao-Tujia 

1 Yoruba 

MTF1 6 San, Mandenka, Palestinian, Oroqen-
Hezhen-Daur, Japanese, Han 

1 Mandenka 

CA1 7 Bantu-speaking, Biaka, Mozabite, 
Palestinian, Druze, Basque, Papuan 

1 Mozabite 

SLC30A8 22 San, Bantu-speaking, Biaka, Yoruba, 
Mandenka, Mozabite, Palestinian, Adygei, 
BergamoItalian-Tuscan, French, Russian, 
Balochi, Pathan, Kalash, Xibo-Mongolian, 
Oroqen-Hezhen-Daur, Yakut, Japanese, 

She-Miao-Tujia, Naxi-Yi, Pima, Surui-
Karitiana 

8 
Bantu-speaking, Yoruba, 

Mozabite, Adygei, 
BergamoItalian-Tuscan, French, 

Kalash, Japanese 

SLC30A1 25 San, Bantu-speaking, Biaka, Yoruba, 
Mandenka, Palestinian, Adygei, 

BergamoItalian-Tuscan, Sardinian, 
Basque, French, Orcadian, Russian, 

Makrani, Sindhi, Balochi, Brahui, Hazara, 
Burusho, Kalash, NorthernHan-Tu, She-

Miao-Tujia, Naxi-Yi, Maya, 
PapuanHighlands_PapuanSepi 

8 
Biaka, Adygei, Basque, Orcadian, 
Burusho, Kalash, NorthernHan-

Tu, Naxi-Yi 

SLC39A10 12 
Biaka, Bedouin, BergamoItalian-Tuscan, 

Sardinian, French, Russian, Sindhi, 
Balochi, Brahui, Kalash, Naxi-Yi, Surui-

Karitiana 

2 
Kalash, Surui-Karitiana 

CAR13 4 Biaka, Palestinian, Druze, Papuan 1 Druze 

SLC39A14 13 San, Yoruba, Mandenka, Mozabite, Druze, 
Bedouin, BergamoItalian-Tuscan, 

Makrani, Brahui, Kalash, Japanese, Naxi-
Yi, Pima 

1 Brahui 

SLC30A10 24 
San, Bantu-speaking, Biaka, Yoruba, 

Mandenka, Palestinian, Adygei, 
BergamoItalian-Tuscan, Basque, French, 

9 
Biaka, Adygei, Basque, Orcadian, 

Russian, Burusho, Kalash, 
NorthernHan-Tu, Naxi-Yi 
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Orcadian, Russian, Makrani, Sindhi, 
Balochi, Brahui, Hazara, Burusho, Kalash, 
NorthernHan-Tu, She-Miao-Tujia, Naxi-

Yi, Maya, Papuan 

MTF2 14 
Yoruba, Mandenka, Bedouin, Sardinian, 
Russian, Sindhi, Balochi, Hazara, Kalash, 
Xibo-Mongolian, Oroqen-Hezhen-Daur, 
Han, NorthernHan-Tu, She-Miao-Tujia 

3 
Mandenka, Xibo-Mongolian, 

NorthernHan-Tu 

 

 
4.4.1.2. Calcium 

Similar to the zinc gene set (n=46), the calcium gene set (n=23) also contains genes with 
signatures of positive selection shared over populations spanning each major global area 
(Table 4.3). However, in comparison to zinc-associated genes, the signatures of positive 
selection over calcium-associated genes are 1) shared over fewer populations and 2) 
more frequently inferred by 𝑅𝑒𝑙𝑎𝑡𝑒 rather than 𝐹𝑆𝑇. Hence, in comparison to zinc, there 
is not the same preliminary evidence for selection on an ancestral non-African population, 
which is now explored.  

ATP2B2 and SLC8A1 show evidence for positive selection over the most populations. Of 
these two genes, ATP2B2 shows the strongest evidence of selection, with signatures of 
positive selection identified at the most stringent threshold (𝑝𝑣𝑎𝑙𝑢𝑒 < 4.65 × 10−6) in 
two populations (Mandenka; 𝐹𝑆𝑇  𝑝𝑣𝑎𝑙𝑢𝑒 = 7.75 × 10−8 ; Sardinian; 𝑅𝑒𝑙𝑎𝑡𝑒 𝑝𝑣𝑎𝑙𝑢𝑒 =
2.1 × 10−7). Moreover, the strong signatures of positive selection in ATP2B2 are observed 
in eleven populations spanning all metapopulations bar East Asia (Table 4.3) and 
significant and nearly-significant signatures of positive selection, as inferred by 𝑅𝑒𝑙𝑎𝑡𝑒, 
are observed in 33 populations, including five African populations. Therefore, ATP2B2 is 
a strong candidate gene for near-global selection in modern humans, possibly responding 
to calcium-associated selective pressures. 

There does not appear to be an excess of strong differentiation to Yoruba, as calculated 
by 𝐹𝑆𝑇 , at the gene set level in Eurasia (Fig 4.2). Further, there are more population-
specific signatures of positive selection at the gene set level, as captured by either 𝑅𝑒𝑙𝑎𝑡𝑒 
or 𝐹𝑆𝑇 , than in zinc-related genes (Fig. 4.1-2; Table S4.6-7). In particular, many calcium-
associated genes exhibit evidence of selection in the Biaka and Bantu-speaking 
populations of Africa, the She-Miao-Tujia and Japanese of East Asia, the Kalash of Central-
South Asia and the French of Europe (Fig. 4.1-2). Hence, whilst some calcium-associated 
genes, e.g., ATP2B2, may have undergone widespread adaptation, it appears that 
oligogenic adaptation in response to calcium levels is less widespread, and may only be 
present in a few independent populations.  
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Table 4.3: Calcium-associated genes with p-values < 𝟏𝟎−𝟓. P-values calculated from the 
empirical distribution of either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 . P-values less than 4.65 × 10−6 (see Section 
3.4.5) highlighted in bold.  

 

Gene Population 𝑹𝒆𝒍𝒂𝒕𝒆 Significance 𝑭𝑺𝑻 Significance 
ATP2B2 Mandenka  7.75e-8 
 Bedouin  8.84e-5 
 Mozabite 1.38e-5 9.73e-5 
 French 7.51e-5 7.13e-5 
 Sardinian 2.1e-7  
 Burusho 9.35e-5  
 Makrani 4.97e-5  
 Pathan 2.08e-5  
 Uygur 5.23e-5  
 Pima 9.06e-6  
 Papuan 1.97e-5  
SLC8A1 Biaka  3.05e-5 
 Mandenka  3e-5 
 BergamoItalian-Tuscan 4.48e-5  
 Makrani 2.4e-5  
 Dai-Lahu 7.39e-5  
 Maya 4.17e-5  
 Papuan 1.26e-5  
SLC8A3 Dai-Lahu 4.43e-5  
 NorthernHan-Tu 3.9e-5  
 Xibo-Mongolian 6.74e-5  
KCNJ10 Bantu-speaking  1.38e-5 
 Mandenka  3.01e-5 
ATP2B4 Biaka  8.39e-5 
 Mozabite  8.32e-5 
DGKD Biaka 1.97e-5  
SLC12A3 Kalash 2.21e-5  

 

 

Table 4.4: The number (“No.”) and name of the populations (“Populations”) with 
signatures of positive selection. Signatures of positive selection identified by the 1% or 
0.1% tail of the empirical background distribution of 𝑅𝑒𝑙𝑎𝑡𝑒 , for all calcium-associated 
genes with p-values < 10−5 in at least one population (Table 4.3) 

 

Gene 1% tail   0.1% tail  

 No. Populations No. Populations 

ATP2BP2 6 
San, Mbuti, Biaka, Yoruba, Mandenka, 

Mozabite, Palestinian, Bedouin, 
BergamoItalian-Tuscan, Sardinian, Basque, 

French, Orcadian, Russian, Makrani, 
Brahui, Hazara, Pathan, Burusho, Kalash, 
Uygur, Xibo-Mongolian, Oroqen-Hezhen-

Daur, Japanese, Han, NorthernHan-Tu, 
She-Miao-Tujia, Naxi-Yi, Dai-Lahu, Pima, 

Surui-Karitiana, Papuan, Bougainville 

8 

 
  

Mozabite, Druze, Bedouin, 
BergamoItalian-Tuscan, 

Sardinian, French, Sindhi, She-
Miao-Tujia 
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SLC8A1 32 
San, Bantu-speaking, Mbuti, Biaka, Yoruba, 

Mandenka, Palestinian, Druze, Bedouin, 
Adygei, BergamoItalian-Tuscan, Sardinian, 
French, Russian, Makrani, Balochi, Hazara, 

Pathan, Burusho, Kalash, Uygur, Xibo-
Mongolian, Oroqen-Hezhen-Daur, Yakut, 

Japanese, NorthernHan-Tu, She-Miao-
Tujia, Naxi-Yi, Dai-Lahu, Maya, Surui-

Karitiana, Papuan 

26 
Bantu-speaking, Biaka, Yoruba, 
Mandenka, Palestinian, Druze, 

Bedouin, Adygei, 
BergamoItalian-Tuscan, 

Sardinian, French, Russian, 
Makrani, Balochi, Hazara, Pathan, 

Kalash, Uygur, Yakut, Japanese, 
She-Miao-Tujia, Naxi-Yi, Dai-
Lahu, Maya, Surui-Karitiana, 

Papuan 

SLC8A3 22 
Biaka, Yoruba, Mandenka, Palestinian, 

Druze, BergamoItalian-Tuscan, Sardinian, 
Orcadian, Sindhi, Balochi, Brahui, Pathan, 
Burusho, Kalash, Xibo-Mongolian, Yakut, 

Japanese, NorthernHan-Tu, She-Miao-
Tujia, Naxi-Yi, Dai-Lahu, Surui-Karitiana 

10 
Mandenka, Pathan, Burusho, 

Kalash, Xibo-Mongolian, 
Japanese, NorthernHan-Tu, She-

Miao-Tujia, Naxi-Yi, Dai-Lahu 

KCNJ10 8 
Mbuti, Mandenka, Palestinian, Druze, 

French, Brahui, Burusho, Naxi-Yi 0 
 

ATP2B4 14 Biaka, Yoruba, Mozabite, Druze, Bedouin, 
BergamoItalian-Tuscan, Sardinian, French, 

Sindhi, Hazara, Pathan, Xibo-Mongolian, 
She-Miao-Tujia, Pima 

8 
Mozabite, Druze, Bedouin, 

BergamoItalian-Tuscan, 
Sardinian, French, Sindhi, She-

Miao-Tujia 

DGKD 19 San, Bantu-speaking, Biaka, Yoruba, 
Mozabite, Palestinian, Bedouin, Orcadian, 

Russian, Makrani, Sindhi, Brahui, Burusho, 
Kalash, Oroqen-Hezhen-Daur, Yakut, 

Japanese, Naxi-Yi, Maya 

5 
Biaka, Orcadian, Russian, Kalash, 

Japanese 

SLC12A3 10 Mandenka, BergamoItalian-Tuscan, 
Sardinian, French, Russian, Burusho, 

Kalash, Xibo-Mongolian, Yakut, She-Miao-
Tujia 

1 Kalash 

 

 
4.4.1.3. Selenium 

The selenium gene set (n=61) also contains genes with signatures of positive selection 
which are frequently shared across populations of every major global region (Table S4.8-
9), but the individual evidence for positive selection in these genes is often weaker than 
that observed in zinc or calcium-associated genes. Many signatures of positive selection 
are identified according to the 𝑝𝑣𝑎𝑙𝑢𝑒 of 0.001 for either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇, but many fail to 
reach the 𝑝𝑣𝑎𝑙𝑢𝑒 threshold of 0.0001 (indicating strong signatures of positive selection; 
Table 4.5), and none reach the most stringent threshold of 4.65 × 10−6.   

African and East Asian populations often have the highest number of selenium-associated 
genes exhibiting evidence of positive selection (Fig. 4.1-2), consistent with a model of 
oligogenic selenium-associated adaptation in these regions. Still, East Asian populations 
do not appear to have a particular excess of strong signatures of positive selection when 
compared with European populations (Table 4.5), with the exception of those observed 
in PRKG1. Hence, individual genes may largely mediate selenium-associated adaptation 
(e.g., PRKG1), but many other additional genes, exhibiting weaker signatures of positive 
selection, may also be involved in the adaptative process (in agreement with the 
polygenic or oligogenic adaptation of selenium metabolism suggested in (White et al. 
2015)). 
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The strongest signatures of positive selection in selenium-associated genes differ 
between African and East Asian populations: PRKG1 shows signatures of positive 
selection in East Asian populations whereas LRP8 and LHFPL2 only carry strong 
signatures (at the 0.0001 𝑝𝑣𝑎𝑙𝑢𝑒 threshold) in African populations (Table 4.5). This is 
consistent with different genes mediating adaptation to selenium across these different 
metapopulations. However, there are significant and nearly-significant signatures of 
positive selection, as inferred by 𝑅𝑒𝑙𝑎𝑡𝑒,  in PRKG1, LRP8 and LHFPL2 in both East Asian 
and African populations (Table 4.6). This may indicate that the same groups of genes 
mediate adaptation in response to selenium levels, but the genes that primarily mediate 
this adaptation may differ between metapopulations. 

 

Table 4.5: Selenium-associated genes with p-values < 𝟏𝟎−𝟓. P-values calculated from 
the empirical distribution of either 𝑅𝑒𝑙𝑎𝑡𝑒  or 𝐹𝑆𝑇 . P-values less than 4.65 × 10−6   (see 
Section 3.4.5) highlighted in bold.  

 

Gene Population 𝑹𝒆𝒍𝒂𝒕𝒆 Significance 𝑭𝑺𝑻 Significance 
PRKG1 Bantu-speaking  2.11e-5 
 Palestinian 6.83e-5  
 Hazara 5.56e-5  
 Han 6.54e-5  
 Naxi-Yi 2.17e-5  
 She-Miao-Tujia  2.05e-5 
 Xibo-Mongolian  1e-5 
SGCD Biaka 8.77e-5  
 Mbuti 8.72e-5  
 Palestinian 9.50e-5  
 BergamoItalian-Tuscan  1.07e-5 
 Makrani  1.18e-5 
 Papuan  5.36e-5 
AKAP6 Mozabite 4.16e-5  
 Adygei 4.62e-5  
 Yakut 7.62e-5  
 Surui-Karitiana 3.96e-5  
EEFSEC Bantu-speaking  2.53e-5 
 Bedouin  8.33e-5 
 Mozabite  1.29e-5 
 Basque 5.59e-5  
LHFPL2 Bantu-speaking  4.99e-6 
 Biaka  8.33e-5 
 Mbuti  7.44e-5 
 San  3.08e-5 
LRP8 Bantu-speaking 8.8e-5  
 Mandenka 1.04e-5  
 San 2.15e-5  
SELENOS Russian  4.01e-5 
 Brahui  8.04e-5 
 Hazara  1.86e-5 
KCNMA1 NorthernHan-Tu 3.9e-5  
 Yakut 1.46e-5  
SLCY Mozabite 9.09e-5  
TXNDR3 Basque 4.79e-5  
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SECISBP2 Sardinian 3.27e-5  
AKR7L Burusho 9.83e-6  
GPx2 Makrani 9.61e-6  
TXNRD2 Mandenka  9.72e-5 
TRU-TCA2-1 Mbuti  6.63e-5 
ARSB Orcadian  7.92e-5 
SELENOM Yoruba 5.87e-6  
SELENOP Pathan 4.09e-5  
SELENOW Japanese  6.91e-5 
SEPHS2 Xibo-Mongolian  2.66e-5 

 

 

Table 4.6: The number (“No.”) and name of the populations (“Populations”) with 
signatures of positive selection. Signatures of positive selection identified by the 1% or 
0.1% tail of the empirical background distribution of 𝑅𝑒𝑙𝑎𝑡𝑒, for all selenium-associated 
genes with p-values < 10−5 in at least one population (Table 4.5) 

 
Gene 1% tail   0.1% tail  

 No. Populations No. Populations 

PRKG1 30 
Bantu-speaking, Biaka, Yoruba, Mandenka, 

Palestinian, Bedouin, Adygei, Sardinian, 
Basque, French, Orcadian, Russian, Sindhi, 
Balochi, Brahui, Hazara, Pathan, Burusho, 
Kalash, Xibo-Mongolian, Oroqen-Hezhen-
Daur, Yakut, Japanese, Han, NorthernHan-

Tu, She-Miao-Tujia, Naxi-Yi, Dai-Lahu, 
Surui-Karitiana, Papuan 

24 

 
  

Bantu-speaking, Biaka, Yoruba, 
Mandenka, Palestinian, Bedouin, 

Adygei, Sardinian, Basque, 
Sindhi, Balochi, Hazara, Pathan, 

Burusho, Kalash, Xibo-
Mongolian, Oroqen-Hezhen-
Daur, Yakut, Japanese, Han, 
NorthernHan-Tu, She-Miao-

Tujia, Naxi-Yi, Dai-Lahu 

SGCD 29 
Bantu-speaking, Mbuti, Biaka, Mozabite, 

Palestinian, Druze, Bedouin, Adygei, 
BergamoItalian-Tuscan, Sardinian, Basque, 

French, Sindhi, Hazara, Pathan, Burusho, 
Kalash, Uygur, Oroqen-Hezhen-Daur, 

Yakut, Japanese, Han, NorthernHan-Tu, 
She-Miao-Tujia, Naxi-Yi, Dai-Lahu, Pima, 

Papuan, Bougainville 

21 
Bantu-speaking, Mbuti, Biaka, 
Mozabite, Palestinian, Druze, 

Bedouin, BergamoItalian-Tuscan, 
Sardinian, Basque, Sindhi, 
Hazara, Burusho, Oroqen-
Hezhen-Daur, Yakut, Han, 

NorthernHan-Tu, She-Miao-
Tujia, Naxi-Yi, Dai-Lahu, 

Bougainville 

AKAP6 25 
Bantu-speaking, Biaka, Yoruba, Mandenka, 

Mozabite, Palestinian, Druze, Bedouin, 
Adygei, BergamoItalian-Tuscan, Sardinian, 
Basque, Orcadian, Sindhi, Pathan, Burusho, 

Uygur, Xibo-Mongolian, Oroqen-Hezhen-
Daur, Yakut, NorthernHan-Tu, 

NorthernHan-Tu, Naxi-Yi, Maya, Surui-
Karitiana, Papuan 

20 
Bantu-speaking, Biaka, Yoruba, 

Mandenka, Mozabite, Palestinian, 
Druze, Bedouin, Adygei, 
BergamoItalian-Tuscan, 

Sardinian, Basque, Burusho, 
Xibo-Mongolian, Oroqen-

Hezhen-Daur, Yakut, 
NorthernHan-Tu, Naxi-Yi, Surui-

Karitiana, Papuan 

EEFSEC 18 
San, Bantu-speaking, Mbuti, Biaka, Yoruba, 

Mozabite, Palestinian, Bedouin, Adygei, 
Basque, French, Makrani, Sindhi, Balochi, 
Burusho, She-Miao-Tujia, Dai-Lahu, Surui-

Karitiana 

5 
Bantu-speaking, Mbuti, Adygei, 

Basque, Balochi 

LHFPL2 28 Mbuti, Biaka, Yoruba, Mandenka, Mozabite, 
Palestinian, Bedouin, Adygei, 

BergamoItalian-Tuscan, Basque, French, 

4 
Biaka, Mandenka, Japanese, Maya 
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Orcadian, Russian, Makrani, Sindhi, 
Balochi, Brahui, Hazara, Pathan, Uygur, 
Xibo-Mongolian, Oroqen-Hezhen-Daur, 

Yakut, Japanese, She-Miao-Tujia, Naxi-Yi, 
Dai-Lahu, Maya 

LRP8 15 Bantu-speaking, Yoruba, Mandenka, 
Mozabite, Russian, Makrani, Sindhi, 

Balochi, Brahui, Burusho, Xibo-Mongolian, 
Japanese, She-Miao-Tujia, Dai-Lahu, 

Papuan 

5 
Bantu-speaking, Yoruba, 
Mandenka, Balochi, Xibo-

Mongolian 

SELENOS 15 San, Biaka, Yoruba, Mandenka, Palestinian, 
Basque, Russian, Balochi, Burusho, Uygur, 

Xibo-Mongolian, Oroqen-Hezhen-Daur, 
NorthernHan-Tu, Dai-Lahu, Pima 

5 Biaka, Yoruba, Palestinian, 
Balochi, NorthernHan-Tu 

KCNMA1 23 San, Mbuti, Biaka, Yoruba, Mandenka, 
Adygei, BergamoItalian-Tuscan, Sardinian, 
French, Russian, Makrani, Sindhi, Burusho, 

Xibo-Mongolian, Yakut, Japanese, Han, 
NorthernHan-Tu, She-Miao-Tujia, Naxi-Yi, 

Dai-Lahu, Pima, Bougainville 

16 Mbuti, Biaka, Yoruba, Mandenka, 
Adygei, BergamoItalian-Tuscan, 
Russian, Sindhi, Xibo-Mongolian, 

Yakut, Japanese, Han, 
NorthernHan-Tu, She-Miao-

Tujia, Naxi-Yi, Dai-Lahu 

SCLY 8 Bantu-speaking, Biaka, Mozabite, 
Palestinian, Bedouin, French, Russian, 

Brahui 

4 Bantu-speaking, Mozabite, 
Russian 

TXNRD3 15 Bantu-speaking, Biaka, Mozabite, Druze, 
Bedouin, Adygei, Basque, Orcadian, 

Russian, Balochi, Brahui, Hazara, Pathan, 
Yakut, Han 

3 
Mozabite, Adygei, Basque 

SECISBP2 13 Bantu-speaking, Biaka, Yoruba, Mandenka, 
Druze, Sardinian, Russian, Sindhi, Balochi, 

Kalash, Yakut, Pima, Maya 

3 
Mandenka, Sardinian, Russian 

AKR7L 6 
French, Makrani, Balochi, Burusho, Naxi-

Yi, Dai-Lahu 1 
Burusho 

GPx2 15 San, Bantu-speaking, Mandenka, Druze, 
Bedouin, Adygei, BergamoItalian-Tuscan, 

Sardinian, Orcadian, Makrani, Balochi, 
Brahui, Burusho, Xibo-Mongolian, 

Japanese 

4 BergamoItalian-Tuscan, Makrani, 
Balochi, Brahui 

TXNRD2 18 San, Bantu-speaking, Biaka, Mandenka, 
Mozabite, Palestinian, Druze, Bedouin, 

French, Russian, Hazara, Xibo-Mongolian, 
Oroqen-Hezhen-Daur, Yakut, Japanese, 

Han, Dai-Lahu, Papuan 

1 Dai-Lahu 

TRU-
TCA2-1 

1 
Yoruba 

0 
 

ARSB 16 
Yoruba, Mandenka, Mozabite, French, 

Sindhi, Hazara, Burusho, Xibo-Mongolian, 
Oroqen-Hezhen-Daur, Japanese, Han, 

NorthernHan-Tu, She-Miao-Tujia, Naxi-Yi, 
Dai-Lahu, Papuan 

5 
Hazara, Burusho, Xibo-

Mongolian, Oroqen-Hezhen-
Daur, Japanese 

SELENOM 10 
San, Yoruba, BergamoItalian-Tuscan, 

Basque, Oroqen-Hezhen-Daur, JapaneseTu, 
NorthernHan-Tu, She-Miao-Tujia, Naxi-Yi, 

Pima 

1 
Yoruba 
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SELENOP 10 
Bantu-speaking, Mbuti, Mandenka, 

Bedouin, BergamoItalian-Tuscan, Hazara, 
Pathan, Kalash, Uygur, Xibo-Mongolian 

5 
Bantu-speaking, Mandenka, 

Hazara, Pathan, Xibo-Mongolian 

SELENO
W 

7 
Yoruba, Bedouin, Brahui, Pathan, Xibo-

Mongolian, Yakut, Papuan 0 
 

SEPHS2 4 
Burusho, Xibo-Mongolian, NorthernHan-

Tu, Maya 0 
 

 
 

 
4.4.1.4. Iron 

In contrast to zinc, calcium and selenium-gene sets, the iron-associated gene set (n=44) 
shows signatures of positive selection that are less widespread amongst global regions 
or metapopulations. However, individual iron-associated genes show very strong 
evidence of positive selection that is somewhat shared over populations (Table 4.7). In 
particular, ARHGEF3 and FTMT show strong signatures of positive selection according to 
both 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇  in many Eurasian populations. This includes evidence of selection at 
the most stringent threshold for FTMT in the Yakut population of East Asia ( 𝑅𝑒𝑙𝑎𝑡𝑒 
𝑝𝑣𝑎𝑙𝑢𝑒 = 3.37 × 10−6 ) and for HIF1A in the Basque population of Europe ( 𝑅𝑒𝑙𝑎𝑡𝑒 
𝑝𝑣𝑎𝑙𝑢𝑒 = 2.43 × 10−6 ). It therefore appears that ARHGEF3, FTMT and HIF1A mediate 
iron-associated adaptation amongst different Eurasian populations. However, the 
significant and nearly-significant signatures of positive selection as inferred by 𝑅𝑒𝑙𝑎𝑡𝑒 
are observed across Eurasia (Table 4.8), and hence these may not be strictly local 
adaptive responses, and may indeed be shared amongst Eurasian populations. 

The strong signatures of positive selection identified at the RHOA gene appear to be more 
strongly indicative of a local response. These strong signatures of positive selection are 
identified in four East Asian populations, potentially consistent with an East-Asian 
response to an iron-associated selective pressure. Indeed, significant or nearly-
significant signatures of positive selection (inferred by 𝑅𝑒𝑙𝑎𝑡𝑒) are only inferred in East 
Asian populations (Table 4.8). Hence, I suggest that the signatures of positive selection 
identified in RHOA represent an East-Asian specific adaptative response, potentially 
associated with iron levels.  

There is additional evidence for some populations mediating iron-adaptation via an 
oligogenic response; the Biaka and Druze populations show a high number of signatures 
of positive selection as calculated by 𝑅𝑒𝑙𝑎𝑡𝑒, and the Bantu-speaking, Mandenka, Pima 
and Bougainville populations show a high number of signatures of positive selection as 
calculated by 𝐹𝑆𝑇 (Table. S4.10-11). The genes driving these signatures often differ from 
those identified as having strong evidence of selection (Table 4.7), and therefore these 
populations may mediate iron-associated pressures via small groups of different iron-
associated genes. Hence, both a monogenic and oligogenic adaptive response to iron-
associated selective pressures may be present amongst populations. 
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Table 4.7: Iron-associated genes with p-values < 𝟏𝟎−𝟓 . P-values calculated from the 
empirical distribution of either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 . P-values less than 4.65 × 10−6  (see Section 
3.4.5) highlighted in bold.  

 

Gene Population 𝑹𝒆𝒍𝒂𝒕𝒆 Significance 𝑭𝑺𝑻 Significance 
ARHGEF3 Bedouin  3.43e-5 
 Palestinian  2.55e-5 
 Basque 2.47e-5  
 Balochi  2.34e-5 
 Brahui  6.51e-5 
 Makrani  8.2e-5 
 Dai-Lahu 6.80e-5  
FTMT Adygei  7.54e-5 
 Brahui 1.92e-5  
 Dai-Lahu  4.85e-5 
 Yakut 3.37e-6  
RHOA Han  8.62e-5 
 Japanese  6.91e-5 
 NorthernHan-Tu  9.99e-5 
 She-Miao-Tujia  1.38e-5 
TMPRSS6 Biaka 7.18e-5  
 Maya  4.9e-5 
 Bougainville  8.23e-5 
 Papuan  9.64e-5 
HIF1A Basque 2.43e-6  
 Sindhi 2.28e-5  
C19orf12 Adygei 2.01e-5  
CFAP251 Adygei 9.28e-5  
SLC40A1 Uygur 1.62e-5  
PLA2G6 Uygur 7.10e-5  
TAOK1 Bantu-speaking  3.42e-5 
FTL Mandenka  1.99e-5 
HJV Mandenka  2.91e-5 
TFRC Bougainville  3.80e-5 
ACO1 Papuan  5.36e-5 

 

 

Table 4.8: The number (“No.”) and name of the populations (“Populations”) with 
signatures of positive selection. Signatures of positive selection identified by the 1% or 
0.1% tail of the empirical background distribution of 𝑅𝑒𝑙𝑎𝑡𝑒, for all iron-associated genes 
with p-values < 10−5 in at least one population (Table 4.7) 

 

Gene 1% tail   0.1% tail  

 No. Populations No. Populations 

ARHGEF3 19 
San, Bantu-speaking, Biaka, Mozabite, 

Bedouin, Adygei, BergamoItalian-Tuscan, 
Sardinian, Basque, Makrani, Hazara, Kalash, 

Oroqen-Hezhen-Daur, Yakut, Han, 
NorthernHan-Tu, Dai-Lahu, Maya, Papuan 

8 

 
  

Bantu-speaking, Biaka, Adygei, 
Basque, Hazara, Oroqen-Hezhen-

Daur, Dai-Lahu, Maya 
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FTMT 22 
San, Mandenka, Druze, Adygei, Basque, 

French, Orcadian, Russian, Makrani, Sindhi, 
Balochi, Brahui, Pathan, Burusho, Uygur, 

Xibo-Mongolian, Yakut, Han, NorthernHan-
Tu, She-Miao-Tujia, Naxi-Yi, Pima 

12 
Mandenka, Druze, Adygei, 

Orcadian, Russian, Makrani, 
Balochi, Brahui, Xibo-Mongolian, 

Yakut, NorthernHan-Tu, She-
Miao-Tujia 

RHOA 3 
Xibo-Mongolian, Han, NorthernHan-Tu 

3 
Xibo-Mongolian, Han, 

NorthernHan-Tu Papuan 

TMPRSS6 14 
San, Bantu-speaking, Biaka, Mozabite, 
Palestinian, Druze, Bedouin, Balochi, 

Brahui, Hazara, Burusho, Xibo-Mongolian, 
Surui-Karitiana, Papuan 

2 
Biaka, Druzee 

HIF1A 25 Biaka, Yoruba, Mozabite, Palestinian, 
Adygei, BergamoItalian-Tuscan, Sardinian, 

Basque, French, Orcadian, Russian, 
Makrani, Sindhi, Brahui, Hazara, Pathan, 

Burusho, Kalash, Xibo-Mongolian, Japanese, 
NorthernHan-Tu, She-Miao-Tujia, Maya, 

Papuan, Bougainville 

10 
Biaka, Yoruba, Mozabite, 

BergamoItalian-Tuscan, Basque, 
French, Sindhi, Pathan, Burusho, 

Papuan 

C19orf12 10 San, Biaka, Yoruba, Druze, Adygei, Basque, 
Orcadian, Sindhi, Brahui, Japanese 

2 
Adygei, Orcadian 

CFAP251 11 Mbuti, Palestinian, Bedouin, Adygei, 
BergamoItalian-Tuscan, French, Russian, 

Kalash, Oroqen-Hezhen-Daur, 
NorthernHan-Tu, She-Miao-Tujia 

2 Adygei, Kalash 

SLC40A1 14 Bantu-speaking, Biaka, Palestinian, Druze, 
BergamoItalian-Tuscan, Basque, Makrani, 
Uygur, Xibo-Mongolian, Oroqen-Hezhen-

Daur, Yakut, Japanese, Han, She-Miao-Tujia 

5 BergamoItalian-Tuscan, Uygur, 
Oroqen-Hezhen-Daur, Yakut, 

Japanese 

PLA2G6 13 San, Mbuti, Biaka, Palestinian, Druze, 
BergamoItalian-Tuscan, Makrani, Balochi, 

Pathan, Kalash, Uygur, Yakut, 
NorthernHan-Tu 

3 Mbuti, Uygur, Yakut 

TAOK1 6 Bantu-speaking, Biaka, Hazara, Han, She-
Miao-Tujia, Dai-Lahu 

1 
Han 

FTL 2 Mozabite, Dai-Lahu 0 
 

HJV 0 
 

0 
 

TFRC 7 Mbuti, Yoruba, Oroqen-Hezhen-Daur, 
Yakut, NorthernHan-Tu, She-Miao-Tujia, 

Surui-Karitiana 

2 
NorthernHan-Tu, She-Miao-Tujia 

ACO1 12 San, Biaka, Yoruba, Mandenka, Mozabite, 
Makrani, Brahui, Pathan, Xibo-Mongolian, 

Oroqen-Hezhen-Daur, Yakut, Han 

2 Biaka, Yakut 
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4.4.1.5. Iodine 

In comparison to all other zinc, calcium, selenium and iron-associated gene sets, there are 
more limited signatures of positive selection within the iodine-associated gene set (n=18), 
particularly when isolating the strong signatures of positive selection (Table 4.9). These 
signatures of positive selection are also considerably less widespread compared to those 
of the previous micronutrient gene sets, but are still observed amongst some isolated 
African, European, Middle-Eastern and Central-South Asian populations (Table 4.9). 
THRB shows the strongest signature of positive selection (bypassing the most stringent 
threshold; 𝑅𝑒𝑙𝑎𝑡𝑒  𝑝𝑣𝑎𝑙𝑢𝑒 = 3.23 × 10−6 ) in the Palestinian population of the Middle-
East, but this population does not appear to show evidence for positive selection at the 
gene set level (Tables S4.12-13). Given this strong signature in the Palestinian 
population and the number of nearly-significant signatures of positive selection (Table 
4.10), THRB is the strongest candidate gene for iodine-associated adaptation.   

Still, the more geographically concentrated signatures of positive selection, and the 
geographic patterns of signatures of positive selection across all populations (Fig. 4.1-2), 
hence suggest that iodine-associated adaptation is more localised in comparison to zinc, 
calcium, selenium and iron.  

The Maya population of the Americas and Uygur population of Central-South Asia have 
the strongest evidence of iodine-associated selection at the gene set level (Fig. 4.1-2). 
Five and four genes are identified with signatures of positive selection in the Maya 
according to 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇, respectively, and five genes are identified with signatures of 
positive selection in the Uygur according to 𝐹𝑆𝑇.  However, for the latter population, this 
includes signatures of positive selection identified in the DIO1 and DIO2 genes, which are 
also associated with selenium metabolism, and therefore these signatures may instead 
capture selenium-associated adaptation. There are also no iodine-associated genes 
identified with signatures of positive selection in the Uygur population according to 
𝑅𝑒𝑙𝑎𝑡𝑒. Hence, the Maya populations presents the strongest evidence for adaptation in 
response to iodine levels. 

Further, of the iodine-associated genes exhibiting signatures of positive selection in the 
Maya (as inferred using 𝑅𝑒𝑙𝑎𝑡𝑒), four also show signatures of positive selection in the 
Mbuti population (Tables S4.12-13). Three of these genes are thyroid receptors (THRA, 
THRB, TRIP4) and are associated with both iodine metabolism and growth pathways. 
Given the short stature of these populations and strong signatures of positive selection 
shared on genes known to affect height, this provides some support for the link between 
iodine-associated adaptation and short stature (as suggested in (Herráez et al. 2009)).  

 

Table 4.9: Iodine-associated genes with p-values < 𝟏𝟎−𝟓. P-values calculated from the 
empirical distribution of either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇 . P-values less than 4.65 × 10−6  (see Section 
3.4.5) highlighted in bold.  

 

Gene Population 𝑹𝒆𝒍𝒂𝒕𝒆 Significance 𝑭𝑺𝑻 Significance 
TSHR Mandenka  8.17e-5 
 Palestinian  7.98e-5 
THRB Sardinian 2.94e-5  
 Palestinian 3.23e-6  
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TRIP4 Mbuti  3.96e-5 
TPO Mozabite 2.5e-5  
SLCO1C1 BergamoItalian-Tuscan 7.78e-5  
SLC5A5 Orcadian 9.83e-5  
SECISBP2 Sardinian 3.27e-5  
SLC16A2 Brahui 1.51e-5  

 

 

Table 4.10: The number (“No.”) and name of the populations (“Populations”) with 
signatures of positive selection. Signatures of positive selection identified by the 5% or 
0.1% tail of the empirical background distribution of 𝑅𝑒𝑙𝑎𝑡𝑒, for all iodine-associated genes 
with p-values < 10−5 in at least one population (Table 4.9) 

 

Gene 1% tail   0.1% tail  

 No. Populations No. Populations 

TSHR 17 
Bantu-speaking, Biaka, Yoruba, Mandenka, 

Palestinian, Druze, Sardinian, Basque, 
French, Orcadian, Russian, Balochi, Pathan, 

Burusho, Uygur, Maya, Papuan 

2 

 
  

Basque, Maya 

THRB 27 
San, Bantu-speaking, Biaka, Mozabite, 

Palestinian, Druze, BergamoItalian-
Tuscan, Sardinian, Basque, French, 

Orcadian, Russian, Sindhi, Brahui, Hazara, 
Pathan, Burusho, Kalash, Xibo-Mongolian, 
Yakut, Japanese, She-Miao-Tujia, Naxi-Yi, 

Dai-Lahu, Pima, Maya, Surui-Karitiana 

12 
Bantu-speaking, Palestinian, 
Sardinian, Orcadian, Sindhi, 

Burusho, Kalash, Xibo-
Mongolian, Naxi-Yi, Dai-Lahu, 

Maya, Surui-Karitiana 

TRIP4 15 
San, Bantu-speaking, Yoruba, Mozabite, 

Palestinian, Druze, BergamoItalian-
Tuscan, Russian, Makrani, Japanese, Han, 

Tu, NorthernHan-Tu, Dai-Lahu, Pima, 
Maya 

3 
Mozabite, Han, Maya 

TPO 4 
Mandenka, Mozabite, Bedouin, Makrani 

1 
Mozabite 

SLCO1C1 20 Mbuti, Biaka, Yoruba, Mandenka, Mozabite, 
Palestinian, Druze, BergamoItalian-

Tuscan, Basque, Sindhi, Balochi, Brahui, 
Hazara, Pathan, Burusho, Oroqen-Hezhen-
Daur, Yakut, Japanese, Han, NorthernHan-

Tu 

11 
Biaka, Palestinian, 

BergamoItalian-Tuscan, Basque, 
Sindhi, Balochi, Brahui, Hazara, 
Burusho, Oroqen-Hezhen-Daur, 

Han 

SLC5A5 10 Bantu-speaking, Biaka, Yoruba, Mozabite, 
French, Orcadian, Pathan, Kalash, 

NorthernHan-Tu, Naxi-Yi 

1 
Orcadian 

SECISBP2 13 Bantu-speaking, Biaka, Yoruba, Mandenka, 
Druze, Sardinian, Russian, Sindhi, Balochi, 

Kalash, Yakut, Pima, Maya 

3 Mandenka, Sardinian, Russian 

SLC16A2 9 Bantu-speaking, Mandenka, Mozabite, 
Brahui, Yakut, Han, NorthernHan-Tu, She-

Miao-Tujia, Naxi-Yi 

1 Brahui 
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4.4.2. Co-Occurring Signatures of Positive Selection 

If genes are functionally linked and frequently co-demonstrate signatures of positive 
selection within populations, this may indicate groups of genes responding to the same 
selective pressure in different human groups (Berg and Coop 2014; Berg, Zhang, et al. 
2019; Lewis et al. 2020).  Hence, to identify potential pathways for micronutrient 
response, or which groups of genes may be co-adapting, networks are built representing 
genes that share signatures of positive selection (as inferred using 𝑅𝑒𝑙𝑎𝑡𝑒) over the same 
populations (Fig 4.3). Observations from these networks are summarised below. 

 

 

 

Figure 4.3: Gene networks for zinc, selenium, calcium, iron and iodine-associated 
genes. Genes are connected if they share signatures of positive selection as identified using 
𝑅𝑒𝑙𝑎𝑡𝑒 in two or more populations; thickness of the connecting lines corresponds to the 
number of populations where signatures of positive selection are shared.  
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The zinc-associated gene network recapitulates Section 4.4.1.1, emphasising the 
prevalence of signatures of positive selection in zinc-transporter genes in the SLC30 and 
SLC39 families and the likelihood of multiple zinc-associated genes mediating an adaptive 
response. I observe the central role of SLC39A11, and identify frequently co-occurring 
signatures of positive selection between this gene and SLC30A8, SLC30A10 and SLC30A1. 
The co-occurring signatures of positive selection amongst these genes are identified 
amongst African, European, Central-South Asian and East Asian populations, and hence 
this network of genes may mediate widespread zinc-associated adaptation. Given that 
there are also less frequent co-occurring signatures of positive selection amongst other 
zinc-transporter genes (Table 4.2), it is possible that some zinc-transporter genes might 
be interchangeable in their ability to mediate adaptation or that the genomic nature of 
adaptation in response to zinc levels is diverse over populations. Still, as outlined in 
Section 4.4.1.1, I suggest that many zinc transporter genes are involved in mediating the 
adaptive response to zinc levels, but some zinc-transporter genes have stronger evidence 
or a more strongly supported role in such adaptation.  

In the calcium and selenium gene sets, some smaller groups of genes show frequently co-
occurring signatures of positive selection. In the calcium gene set, ATP2B2 and SLC8A1 
particularly share signatures of positive selection in the same populations, alongside less 
frequent co-occurring signatures between these genes and SLC8A3 and TRPM2.  

The selenium gene set also appears to show a central network of genes co-exhibiting 
signatures of positive selection in the same populations (SGCD, AKAP6, PRKG1 and 
KCNMA1), which thus may largely mediate adaptation in response to selenium levels. 
These co-occurring signatures are observed in close populations and populations from 
very different regions (e.g., they co-occur in multiple African, Middle-Eastern, European, 
Central-South Asian and East Asian populations), hence appearing to be a gene set 
globally mediating adaptation. However, there are many other co-occurring signatures of 
positive selection amongst other selenium-associated genes (often shared in multiple 
African, Central-South Asian and East Asian populations; see Table 4.6). Whilst there are 
a large number of selenium-associated genes in this study, these observations are also in 
accordance with the suggested oligogenic or polygenic nature of selenium-associated 
adaptation (White et al. 2015): here, adaptation may be primarily mediated by allele 
frequency changes in a small network of genes exhibiting strong evidence of selection 
(Section 4.4.1.3), accompanied by more moderate allele frequency changes in additional, 
perhaps more constrained, selenium-associated genes. 

The iron gene network partitions into three clusters, with the top candidate genes (FTMT, 
RHOA, HIF1A and ARHGEF3) split over two of these clusters. This demonstrates that 
signatures of positive selection do not often co-occur between the same genes across 
different populations, and it appears that the genes which mediate iron-adaptation may 
differ across different populations, as discussed in Section 4.4.1.4. The connection of 
FTMT and RHOA in the network, due to shared signatures of positive selection in only 
East Asian populations, is a product of RHOA only exhibiting signatures of positive 
selection in East Asian populations.  

Finally, there are no frequently co-occurring signatures of positive selection amongst 
iodine-associated genes, further supporting isolated pockets of adaptation via different 
genes as suggested in Section 4.4.1.5. 
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4.4.3. Geographically Global Patterns of Adaptation 

Some ZCSII-associated genes, particularly zinc-associated genes, exhibit a high degree of 
differentiation from Yoruba (as calculated from 𝐹𝑆𝑇 ) in many non-African populations 
(Section 4.4.1), which is interpreted as a shared signature of positive selection. I suggest 
that this is most likely due to positive selection on a common non-African ancestral 
population (such as a migrating Out of Africa population), rather than positive selection 
in many non-African populations. Other ZCSII-associated genes show signatures of 
positive selection that are concentrated at the metapopulation level, e.g., the selenium-
associated signatures shared amongst populations in East-Asia, which may also be due to 
a shared selective pressure or positive selection having acted on a common ancestral 
population of East Asians.  

To investigate this further, haplotype networks of identified genes of interests are built, 
partitioning haplotypes by metapopulation. This helps us to visualise the genetic 
variation across populations, and infer if putative selection was likely on the same (or 
very similar haplotypes) or on very different haplotypes. Thus, most explicitly, these 
haplotype networks distinguish between putative selection on de novo mutation (the 
same haplotype background) and putative selection on standing variation (various 
haplotype backgrounds).  However, if different metapopulations show uniform but 
divergent haplotypes, this suggests convergent selection between these metapopulations, 
rather than a shared selection event in the common ancestor of these metapopulations. 
These haplotype networks can also be used to identify potential recombination amongst 
haplotypes, which will be represented by cycles in the network.  

Genes of interest are identified as those with signatures of positive selection, particularly 
identified by 𝐹𝑆𝑇,  in the most populations (Fig. S4.1), and hypothesise that these genes 
may have undergone adaptation in an ancestral non-African population. Haplotypes of 
length 10kb and 20kb were built around a focal SNP (Table S4.2) which are chosen as 
described in Section 4.3.4.  

4.4.3.1. Adaptation Out of Africa 

The zinc-associated genes showing strong differentiation with respect to Yoruba in many 
populations (SLC39A4, GPR39, SLC30A9, SLC39A11 and SLC39A14) all show more diverse 
haplotypes in African populations (red in Fig 4.4-5; Figs. S4.2-11) compared to non-
African populations (as expected from increased genetic diversity in Africans (Campbell 
and Tishkoff 2008; Tucci and Akey 2019)). The focal SNPs of SLC30A9 and SLC39A11 are 
found in identical, or highly similar, haplotypes at high-frequency in non-African 
populations, in line with expectations under positive selection increasing the frequency 
of a beneficial allele in an ancestral non-African population (Fig 4.4, where the exact 
haplotypes carrying the focal, putatively selected variant for SLC30A9 is shown in Fig 4.5). 
Here, I suggest that selection is most likely from a low-frequency allele (either from a de 
novo mutation or an allele segregating at low frequency). The ATP2B2 and ATP2B4 genes 
both show identical or highly similar haplotypes shared amongst the majority of non-
Africans (Fig 4.6; Figs. S4.12-17). The cluster of closely related, similar haplotypes 
(particularly observed for ATP2B4) indicate that selection may have acted on more varied 
genetic backgrounds and therefore more suggestive of selection acting on standing 
variation.  
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However, the remaining focal SNPs of zinc-associated genes are found in multiple clusters 
of identical or highly related haplotypes shared amongst non-Africans but of which are 
highly divergent from each other (see Fig 4.4, Figs. S4.4.2-11). This divergence of 
common haplotypes, partnered with no clear sorting amongst metapopulations, suggests 
that if selection was indeed present, it most likely acted on different genetic backgrounds 
(i.e., selection on standing variation, where segregating SNPs were likely at appreciable 
frequencies), perhaps in an ancestral non-African population.  

 

 

 
 

Fig 4.4: Haplotype networks built from the 20kb region surrounding focal SNPs of 
zinc-associated genes. Shown for SLC30A9 (position: 42004040), SLC39A4 (position: 
144414297) and 10kb surrounding the focal SNP of the zinc-associated gene SLC39A11 
(position: 73010373).  
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Fig 4.5: Haplotype networks with labelled sequences built from the 20kb region 
surrounding focal SNP (position: 73010373) of SLC39A11.  Sequences containing the 
focal SNP with the putatively selected variant are seq_16, seq_17, seq_21, seq_22, seq_23, 
seq_24, seq_25, seq_26, seq_30. Gene chosen for its relative visual clarity when viewing 
sequence numbers. 

 

 

Fig 4.6: Haplotype networks built from the regions surrounding focal SNPs of 
calcium-associated genes. Shown for ATP2B2 (position: 10636328; 20kb region) and 
10kb ATP2B4 (position: 203667951; 10kb region) 
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4.4.3.2. Adaptation within Metapopulations 

The focal SNPs of the selenium-associated genes PRKG1, EEFSEC and AKAP6 are within 
haplotypes which appear to cluster, at least in some degree, by metapopulation. 
Specifically, these SNPs are found within identical or highly similar haplotypes in 
particularly East Asian and African individuals (pink in Fig 4.7, Figs S4.18-26), but 
within otherwise variable haplotypes in other metapopulations (Fig 4.7, Figs. S4.18-26). 
Most strikingly, the selenium-associated gene SGCD shows an identical haplotype 
carrying the focal and putatively selected variant at high frequency in the East Asian 
metapopulation (“seq 18” as labelled in Fig 4.8). 

This pattern of genetic variation (i.e., uniform haplotype structure within individual 
metapopulations) is as would be expected for selection acting convergently on these 
genes in East Asian and African populations, rather than shared amongst all populations. 
The divergence of some haplotypes of high frequency amongst either East Asian or 
African individuals also suggests that the selected allele was present in multiple 
haplotypes when selection started, suggesting SSV and an appreciable frequency of the 
selected allele.    

The haplotypes containing the focal SNPs of the iron-associated gene ARHGEF3 also 
appear to group by metapopulation (particularly in East Asian populations), in support 
of selection focused in Eurasia and not a result of a selection event in an ancestral non-
African population. Given that the haplotypes are more diverse, I suggest that selection, 
if present, was selection on standing variation within these populations (Fig S4.27-32). 

 

 

 

Fig 4.7: Haplotype networks built from the 20kb region surrounding focal SNPs of 
selenium-associated genes. Shown for EEFSEC (position: 128412869), SGCD (position: 
156057959), PRKG1 (position: 51471686) and AKAP6 (position: 32446036) 
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Fig 4.8: Haplotype networks with labelled sequences built from the 20kb region 
surrounding focal SNP (position: 156057959) of SGCD.  Sequences containing the focal 
SNP with the putatively selected variant are seq_13, seq_15, seq_16, seq_18, seq_20, seq_22, 
seq_23, seq_24, seq_27, seq_28, seq_29. Gene chosen for its relative visual clarity when 
viewing sequence numbers. 

 

 

4.4.4. Estimating the Onset of Selection 

I now question whether signatures of positive selection identified on candidate genes 
were more likely driven by selective pressures exerted when encountering new 
environments, or as a result of more recent cultural changes. This analysis is heavily 
computationally intensive, so it was not possible to run it for all genes and micronutrients. 
I focus on calcium (ATP2B2, ATP2B4, SLC8A1, SLC8A2 and SLC8A3) and iron-associated 
genes (FTMT, ARHGEF3, HIF1A and SLC40A1) with the strongest evidence of selection, 
since levels of these micronutrients have suggested to have been particularly affected by 
the transition to the Neolithic diet (Dobrovolskaya 2005; Naugler 2008; Gerbault et al. 
2011, 2011).  

To answer this question, I first identify new focal SNPs (given in Table S4.3) which are 
chosen as described in Section 4.3.4. 𝐶𝐿𝑈𝐸𝑆 is then used (Stern et al. 2019) to infer the 
log-likelihood ratio of selection acting at one of four different timepoints (14kya, 28kya, 
42kya and 56kya: timepoints that encompass the time just following the Out of Africa 
migration, the time of migrations into new Eurasian environments, and the time just 
preceding the Neolithic transition) (Figs. S4.33-51). I then verify the onset of selection 
suggested by this programme by the allele trajectories through time as reconstructed 
using 𝑅𝑒𝑙𝑎𝑡𝑒 (Speidel et al. 2019).   
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4.4.4.1. Onset of Calcium-Associated Selection 

The evidence of positive selection inferred from 𝐶𝐿𝑈𝐸𝑆 largely agrees with previously 
described evidence from 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇; evidence for positive selection (log-likelihood 
ratios of selection > 4 ) is inferred across all focal SNPs of the candidate calcium-
associated genes and in many populations with previously identified signatures of 
positive selection (Table 4.11). For some genes, novel signatures of positive selection are 
identified in some populations, i.e., those not identified using 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇  (indicated in 
Table 4.11). 

The highest log-likelihood ratios of selection are observed in the Middle-Eastern 
Mozabite (ATP2B2 and ATP2B4) and Bedouin (SLC8A1 and SLC8A2) populations, with 
estimated selection coefficients of ~0.003. The strongest selection coefficients (also 
accompanied by log-likelihood ratios indicative of selection) across the entire set of 
calcium focal SNPs and populations are observed in the Central-South Asian Makrani 
(ATP2B2, s~0.0087) and the European Orcadian (SLC8A3, s~0.0057) populations. This 
latter population does not have a previously identified signature of positive selection in 
this gene according to 𝑅𝑒𝑙𝑎𝑡𝑒  or 𝐹𝑆𝑇 , but does have a nearly-significant signatures of 
positive selection according to 𝑅𝑒𝑙𝑎𝑡𝑒  (Table 4.4). Hence, this provides additional 
support for these populations undergoing calcium-associated adaptation.  

If only including the focal SNPs and populations for which 𝐶𝐿𝑈𝐸𝑆 suggests selection (log-
likelihood ratios of selection > 4), the log-likelihood ratio of positive selection generally 
increases further back in time. However, there is often very little difference between 
inferred log-likelihood ratios of selection at the 42kya and 56kya timepoints (Fig. 4.9, 
Figs. S4.33-42), and so the exact onset of proposed selection cannot be confidently 
proposed. Moreover, the evidence of selection is compared at relatively close timepoints 
with limited data for each locus, and therefore only broad patterns can be examined here. 
These inferences are considered with the inferred allele frequency trajectories calculated 
using 𝑅𝑒𝑙𝑎𝑡𝑒 to suggest that the onset of selection is more likely around 40 – 30kya in the 
majority of populations with significant signatures of positive selection, suggesting that 
selection could have accompanied the colonising of new Eurasian environments. 

The allele frequency increase of the focal SNPs is, in most populations, inferred to have 
begun earlier than 10kya. But exceptions are observed in ATP2B4 and SLC8A3. The 
Middle-Eastern populations, particularly the Mozabite, show additional sharp increases 
of frequency of the focal SNPs of ATP2B4 (positions: 20364823, 203667951) around 
10kya. There are sharp increases of the frequency of a focal SNP of SLC8A3 (position: 
70182346) in the Mozabite and Pima populations between 10kya and 5kya. These results 
suggest that besides widespread positive selection before 10kya, additional later 
calcium-associated adaptations may have occurred in particular (particularly the 
Mozabite) populations, possibly due to major dietary changes. 
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Table 4.11: Populations with log-likelihood ratios of selection > 𝟒 for calcium-
associated genes of interest. Calculated for given times of the onset of selection (“Time”) 
and shown alongside their inferred selection coefficients, for focal SNPs of calcium-
associated genes of interest. Populations marked with * do not have previously identified 
signatures of selection (identified by the 0.1% tail of the empirical distribution of either 
𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇). 

 

Gene Position Population Time (kya) Log 
Likelihood 
Ratios 

Selection 
Coefficient 

ATP2B2 10604833 Mozabite 56 6.8143 0.00288 
   42 6.7209 0.00293 
   28 6.0841 0.00308 
   14 4.7436 0.00386 
  Sardinian 54 6.1902 0.003 
   42 6.1464 0.0032 
   28 5.5478 0.00305 
  Makrani 56 5.8721 0.00864 
   42 5.8704 0.00864 
   28 5.8537 0.00869 
   14 5.7553 0.00981 
  Bedouin 56 5.1878 0.00222 
   42 5.1107 0.00228 
   28 4.4327 0.00237 
  Basque 56 4.7394 0.00659 
   42 4.7382 0.00059 
   28 4.7232 0.00659 
   14 4.3041 0.00671 
  Palestinian 56 4.1905 0.00203 
   42 4.0711 0.00205 
ATP2B4 20364823 Mozabite 28 5.1804 0.0038 
   42 5.1205 0.00298 
   56 4.6161 0.00278 
   14 4.158 0.00601 
  Mandenka* 56 4.585 0.00219 
   42 4.5796 0.00228 
   28 4.2572 0.00269 
  Druze 42 4.1131 0.00237 
   56 4.1117 0.00221 
  Yoruba* 56 4.0166 0.00166 
 203667951 Druze 56 5.483 0.00226 
   42 5.0879 0.00228 
   28 4.1476 0.00247 
  Bedouin 56 5.4379 0.00211 
   42 5.1408 0.00232 
   28 4.0238 0.0025 
  Sindhi 56 4.6668 0.0019 
SLC8A1 40584510 Bedouin 56 7.5284 0.00226 
   42 7.0133 0.00225 
   28 5.752 0.00242 
   14 5.0701 0.00337 
  Basque* 56 4.3386 0.00254 
   42 4.2241 0.00269 
  Makrani 56 4.3009 0.00226 
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   42 4.0505 0.00234 
SLC8A1 40394610 Hazara 56 5.2674 0.00322 
   42 5.2519 0.00327 
   28 5.0758 0.0041 
  Yakut 56 4.5985 0.00242 
   42 4.3783 0.00254 
SLC8A2 47428756 Bedouin 56 6.3259 0.00234 
   42 6.2555 0.00238 
   28 5.1166 0.00283 
 47437107 Brahui 56 4.8037 0.00166 
   42 4.3034 0.00173 
SLC8A3 70175561 Orcadian* 56 5.8316 0.00576 
   42 5.8307 0.00576 
   28 5.8133 0.00574 
   14 4.7667 0.00596 
  French* 56 4.5841 0.00238 
   42 4.488 0.00247 
  NorthernHan-Tu 56 4.3755 0.00284 
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Fig. 4.9: Inferred likelihood ratios of selection and allele frequency over time for 
calcium-associated genes of interest. Left: Inferred log likelihood ratios for ATP2B2, 
ATP2B4 and SLC8A3 focal SNPs for populations with pvalues < 0.05, as calculated according 
to the empirical distributions of either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both 
selection methods (solid lines). Right: Inferred frequency trajectory of the same focal SNP 
for populations of interest (other populations omitted for clarity). Colours represent 
metapopulations: blue = Europe; dark-green = Middle-East; pink = Central-South Asia; light-
green = East Asia; yellow = America; purple = Oceania; dark-orange = Africa. 
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4.4.4.2. Onset of Iron-Associated Selection 

The evidence of positive selection inferred from 𝐶𝐿𝑈𝐸𝑆 (log-likelihood ratios of selection 
> 4) again largely supports previously described evidence from 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇 (Table 
4.12). The strongest evidence of positive selection inferred from 𝐶𝐿𝑈𝐸𝑆 is for the focal 
SNP of HIF1A (position: 61709502) in the Palestinian population, where the log-
likelihood ratios for selections is > 7 for selection acting at 28ky, 42kya and 56kya (the 
highest log-likelihood ratio value and is therefore strongest evidence of selection as 
calculated by 𝐶𝐿𝑈𝐸𝑆  over all calcium and iron-associated SNPs; Table 4.12). The 
strongest evidence of positive selection, as inferred by 𝐶𝐿𝑈𝐸𝑆 , for other focal SNPs 
include FTMT in the Brahui (position: 121846819; log-likelihood ratio= 6.50) and HIF1A 
in the Basque (position: 61741756; log-likelihood ratio= 5.09, distinct from other 
populations; see Fig. 4.10).  

Again, very small differences between log-likelihood ratios of selection calculated for the 
timepoints 28kya, 42kya and 56kya are observed across most populations. Populations 
of interest, inferred as such from Table 4.12 and their allele frequency trajectories, do 
show a general increase in frequency of the focal SNPs around 20kya – 30kya (Fig 4.8; 
Figs. S4.43-51). This, and the uniformity of log-likelihood ratios across 28-52kya, could 
suggest a slightly later onset of selection in iron-associated genes compared to that 
inferred for the majority of calcium-associated genes (estimated as 30-40kya in the 
majority of populations), perhaps as a result of more recent and smaller scale migrations 
into Eurasian environments. This agrees with the Eurasian-specific signatures of positive 
selection in iron-associated genes, see Section 4.4.1.4. 

On the other hand, allele frequency increases are inferred to be very recent for the focal 
SNPs of some populations. The focal SNP of HIF1A (position: 61741756) in the Basque 
population is inferred to increase rapidly in frequency between 10kya and 5kya, as does 
the FTMT focal SNP (position: 121846819) in the Mozabite population. The log-likelihood 
ratios observed in the focal SNP of the HIF1A gene in the Basque population suggest that 
this population might have undergone recent iron-associated adaptation. Finally, very 
sharp increases of the focal SNP of ARHGEF3 (position: 57043874) are observed in the 
Maya and Dai-Lahu population at 20kya. Whilst log-likelihood ratios are under 4 (given 
as 2.7194-3.922 in the Maya across the four timepoints, 2.1397-2.4992 in the Dai-Lahu), 
this increase is at the level of which could suggest selection acting at this time on the 
ancestors of these populations. 
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Table 4.12: Populations with log-likelihood ratios of selection > 𝟒 of iron-associated 
genes of interest. Calculated for given times of the onset of selection (“Time”) and shown 
alongside their inferred selection coefficients, for given focal SNPs of iron-associated genes 
of interest. Populations marked with * do not have previously identified signatures of 
selection (identified by the 0.1% tail of the empirical distribution of either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇). 

 

Gene Position Population Time (kya) Log 
Likelihood 
Ratio 

Selection 
Coefficient 

FTMT 121846819 Brahui 56 6.4986 0.0024 
   42 6.063 0.00245 
   28 5.1155 0.00273 
   14 4.0101 00042 
  Druze 56 5.4083 0.0021 
   42 4.8906 0.00206 
  Yakut 56 5.1566 0.00286 
   42 4.9626 0.00303 
  Hazara* 56 4.235 0.00242 
   42 4.1336 0.00249 
HIF1A 61687412 She-Miao-Tujia 56 4.2687 0.00256 
 6170952 Palestinian 56 8.7594 0.00302 
   42 8.7443 0.00303 
   28 7.8056 0.00302 
   14 5.0698 0.00352 
  Sindhi 56 5.0616 0.0019 
   42 4.5131 0.00187 
  Pathan 56 4.403 0.00198 
 61741756 Basque 56 5.0855 0.00314 
   42 4.9233 0.00315 
   14 4.0508 0.00586 
   28 4.0096 0.00354 
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Fig. 4.10: Inferred likelihood ratios of selection and allele frequency over time for 
iron-associated genes of interest. Left: Inferred log likelihood ratios for ARHGEF3, FTMT, 
HIF1A and SLC40A1 focal SNPs for populations with pvalues < 0.05, as calculated according 
to the empirical distributions of either either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to 
both selection methods (solid lines). Right: Inferred frequency trajectory of the same focal 
SNP for populations of interest (other populations omitted for clarity). Colours represent 
metapopulations: blue = Europe; dark-green = Middle-East; pink = Central-South Asia; light-
green = East Asia; yellow = America; purple = Oceania; dark-orange = Africa. 
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4.5. Discussion 

Micronutrient levels in the diet have been inferred as likely drivers of selection across 
modern human populations (Engelken et al. 2014, 2016; Sverrisdóttir et al. 2014; White 
et al. 2015; Ye et al. 2015; Zhang et al. 2015a), a hypothesis that is supported by the work 
presented in Chapter 3. In that chapter, I propose that micronutrient-associated 
adaptation has contributed to modern human genetic diversity (Chapter 3) and outlined 
which micronutrients had the strongest evidence for acting as a selective driver during 
the history of our species.  

In this chapter, the previous evidence is re-visited to discuss five micronutrients, 
investigating the associated signatures of positive selection and the evolutionary history 
of these genes in further detail. Deficient levels of these five micronutrients, four trace 
minerals (zinc, selenium, iron, iodine) and one macromineral (calcium), result in a series 
of severe health issues, of which are common across modern human populations and 
perhaps also within our evolutionary history (Kelly and Snedden 1960; Xia et al. 2005; 
Manning et al. 2012; Bailey et al. 2015; Khan et al. 2022; Shlisky et al. 2022). These 
micronutrients are not only likely selective drivers, but their associated genes present 
good evidence for having undergone adaptation in modern human populations (Chapter 
3), and are hence good candidates to further explore. I thus ask which genes are most 
likely to mediate micronutrient-associated adaptation and in which populations, how 
adaptation of different genes may co-occur, and the most likely timing of such adaptation 
(extrapolating to infer the most likely selective drivers). 

I show that the inferred signatures of positive selection are often the strongest in only a 
few genes of a given micronutrient-associated gene set, building on the work undertaken 
in Chapter 3 suggesting that micronutrient-associated adaptation is likely oligogenic in 
nature. In some cases, the candidate genes showing the strongest evidence of positive 
selection have signatures shared over global geographic regions, as expected if selection 
occurred on populations ancestral to these extant populations. In other micronutrient-
associated genes, particularly those associated with iron and iodine, signatures are more 
geographically restricted as if positive selection occurred in local pockets across the globe. 
Finally, from the inferred allele frequency trajectories and likelihood of selection onset 
over time, the most likely timing of adaptation associated with two micronutrients (iron 
and calcium) is inferred. The specifics of these inferences for each micronutrient are 
summarised below. 

4.5.1. Zinc 

Signatures of positive selection have been identified in multiple zinc-transporter genes 
in many previous studies (e.g., (Engelken et al. 2014; Zhang et al. 2015a; Roca-Umbert et 
al. 2022)). Much of this literature has highlighted SLC30A9 and SLC39A4 as those with the 
strongest evidence of selection (Engelken et al. 2014; Zhang et al. 2015a), which is 
recapitulated here. Both SLC39A4 and SLC30A9 show strong signatures of positive 
selection (as calculated by 𝐹𝑆𝑇) across many populations, where the evidence of selection 
is strongest in the Makrani of Central South Asia (SLC39A4) and Han of East Asia 
(SLC30A9). The Makrani population live in modern-day Pakistan, where zinc deficiency 
is prevalent (22.1%) and up to 96.1% of grain samples are zinc-deficient (Rehman et al. 
2020; Ishfaq et al. 2021). Equally, zinc levels are low in the calcareous soil of China (Karim 
et al. 2012), and approximately 100 million people are affected by zinc deficiency in this 
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region (Ma et al. 2008). These recorded deficiencies are in agreement with these 
populations facing strong selective pressure from zinc levels.  

I identify ten further zinc-transporter genes showing signatures of positive selection that 
are identified amongst all metapopulations excluding Oceania: SLC39A4, SLC30A9, 
SLC39A11, SLC39A12, SLC30A7, SLC30A8, SLC30A1, SLC39A10, SLC39A14 and SLC30A10 
(randomly distributed across the genome, hence these are not shared signatures). Again, 
strong signatures of positive selection are observed in the Makrani population, 
particularly in SLC39A11.  

However, these shared signatures of positive selection do not necessarily represent the 
independent adaptive responses of individual populations to varied zinc content in soils 
across the globe. Rather, the sharing of signatures of positive selection across populations 
most likely reflects a shared selective pressure experienced by many populations (or by 
a common ancestor of many populations). I conclude this given 1) the signatures of 
positive selection shared across such a number of populations and 2) the number of 
nearly-significant signatures of positive selection in zinc-transporter genes.  

Some zinc transporter genes may play a greater role in mediating zinc-associated 
adaptation amongst global populations. Indeed, a previous study has suggested that zinc-
associated adaptation is largely mediated by only a few zinc transporter genes (Roca-
Umbert et al. 2022). This study suggested a general enrichment of signatures of positive 
selection amongst zinc-associated genes (Roca-Umbert et al. 2022), but only explored the 
signatures of positive selection in metapopulations and individual South Asian 
populations, using a combination of 𝐹𝑆𝑇  and haplotype-based methods. However, here, 
signatures of positive selection are identified at a finer resolution (in individual 
populations rather than populations grouped as a metapopulation) and use an additional 
method (𝑅𝑒𝑙𝑎𝑡𝑒; more sensitive to the signatures of selection on standing variation than 
haplotype-based methods, see Chapter 2). Hence, this study has greater power to 
identify more subtle and local adaptation.  

I identify the SLC39A11, SLC30A8, SLC30A10 and SLC30A1 zinc-transporter genes as 
frequently sharing signatures of positive selection amongst the same populations, and 
therefore could represent a common, global network to mediate zinc adaptation. 
However, strong signatures of positive selection amongst other zinc-transporter genes in 
individual populations are still observed, as summarised in Section 4.4.1.1. Hence, whilst 
there may be only a few zinc-transporter genes which are largely responsible for zinc-
associated adaptation amongst human populations, additional zinc-transporter genes 
mediate further adaptation, perhaps more uniquely to individual populations.  

Indeed, since the zinc-transporter genes carry out a diverse range of biochemical roles 
within the human body, including structural, regulatory or catalytic roles (Kambe et al. 
2015), it is likely that adaptation on some zinc-transporter genes is pleiotropically 
constrained (Wagner and Zhang 2011; Fraïsse et al. 2019; Mauro and Ghalambor 2020). 
If pleiotropic constraints vary over zinc-transporter genes (a consideration outside the 
scope of this study), this could, in theory, result in only a few zinc-transporter genes 
commonly responding to selective pressures (with other zinc-transporter genes possibly 
compensating for any resulting biochemical changes). SLC39A8 has been shown to be 
highly pleiotropic (associated with Crohn’s disease, blood pressure, body mass index and 
schizophrenia, amongst other traits (Costas 2018)), but the degree of pleiotropy over 
other zinc-transporter genes remains unclear.  
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Finally, I turn to exploring the geographic and temporal origin of the inferred shared 
positive selection on zinc-associated genes. The strong signatures of positive selection 
shared amongst many non-African populations, partnered with the highly similar non-
African haplotypes of SLC39A11 and SLC30A9, suggest that the shared selection event on 
these genes may have been on an ancestral non-African population, most likely from an 
allele segregating at low frequency.  I propose that this could have been a population 
migrating out of Africa and living in the Arabian Peninsula (Soares et al. 2012; Haber et 
al. 2019; Beyer et al. 2021). The Middle-East, especially Iran, is known to have particularly 
iron and zinc-deficient soils (Ryan et al. 2013), has a history of zinc deficiency disorders 
(such as severely stunted growth (Halsted et al. 1972; Prasad 2013)) and was the first 
place where human zinc deficiency was recognised in the 1960s (Halsted et al. 1972; 
Gibson 2012; Prasad 2013). Adaptation to regulate zinc levels may have thus occurred in 
an ancestral population living on, and eating from, these deficient soils, and potentially 
repeated on additional zinc-reporter genes in populations living on elsewhere deficient 
soils (such as those identified particularly in South Asia, where other populations 
exhibiting strong signatures of positive selection on zinc-transporter genes reside, e.g., 
the Makrani (Wessells and Brown 2012; Roca-Umbert et al. 2022)). 

The possible exception to this is seen in SLC39A4. Previous studies have suggested that 
proposed adaptation on SLC39A4, and its near fixation in West Africa, is due to increased 
pathogen stress driving lower zinc uptake (Engelken et al. 2014; Zhang et al. 2015a). 
Indeed, whilst strong signatures of positive selection are identified in SLC39A4, these 
were identified via their degree of differentiation to Yoruba, as calculated by 𝐹𝑆𝑇, and only 
six populations give nearly-significant signatures of positive selection according to 
𝑅𝑒𝑙𝑎𝑡𝑒.  There are also fewer uniform haplotypes in non-Africans in comparison to the 
other candidate zinc-transporter genes. For these reasons, I am more cautious in 
suggesting that this zinc-transporter was under the same ancestral selective pressures 
on SLC39A11 and SLC30A9.  

4.5.2. Selenium 

Somewhat similar to the case of zinc-associated genes, there is a clear network of 
selenium-associated genes which often share signatures of positive selection over 
multiple populations: SGCD, AKAP6, PRKG1 and KCNMA1. All four of these genes have 
intron SNPs associated with selenium regulation (Savas et al. 2010). Moreover, there 
appears to an epistatic effect between this group of genes, with SNP-SNP interaction 
indicated between AKAP6 and SGCD and between AKAP6 and KCNMA1 (Savas et al. 2010), 
implying that mutations in these genes may interact to regulate selenium levels, and 
support their role as an adaptive gene network. 

However, other selenium-associated genes show additional signatures of positive 
selection in individual populations. This, partnered with the frequency of signatures of 
positive selection on different selenium-associated genes but the relative lack of strong 
signatures, suggests that adaptation in response to selenium-associated pressures is truly 
oligogenic in nature (but not extending to polygenic, as investigated in Chapter 3). Still, 
here I focus on the groups of selenium-associated genes co-exhibiting signatures of 
positive selection amongst the same metapopulations.  

PRKG1, AKAP6, SGCD and EEFSEC all show signatures of positive selection in East Asian 
populations, as well as near identical haplotypes shared in individuals of this 
metapopulation (particularly observed in the haplotypes of PRKG1). Many East Asian 
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populations are known to be living on extremely selenium-deficient soil and hence under 
selenium-deficiency stress (Xia et al. 2005; White et al. 2015). It is thus possible that this 
group of genes primarily mediates adaptation in response to selenium-associated 
pressures in East Asia. 

In African populations, who also often live on selenium-deficient soil (Hurst et al. 2013; 
Ibrahim et al. 2019), the genes exhibiting shared strong signatures of positive selection 
are LRP8 and LHFPL2. LRP8 is a receptor of the selenoprotein P (SELENOP), determines 
the hierarchy of selenium supply to various organs under deficiency (Sarangi et al. 2018) 
and has been shown to increase mRNA concentrations following SELENOP knock-out 
induced deficiency (Pietschmann et al. 2014). The function of LHFPL2 is less clear, but a 
role in selenium metabolism has been suggested by its association with toenail and blood 
selenium concentrations (identified in a previous genome-wide association study 
(Cornelis et al. 2015)).   

Here, I have identified novel candidate genes for population-specific selenium-associated 
adaptation. The population differences of the strongest signatures of positive selection 
are consistent with East Asian and African populations having potentially adapted to 
selenium stress arising from selenium-deficient soils, but primarily through genetic 
changes in different groups, or networks, of genes.  

4.5.3. Iodine 

The iodine-associated genes showing strong signatures of positive selection are the least 
shared amongst populations in comparison to the other micronutrients examined here, 
and I suggest that potential adaptation to iodine is more focused to individual populations, 
rather than shared amongst populations. However, here I outline one key exception. 

The Maya population of the Americas and the Mbuti population of Central Africa both 
share signatures of positive selection in four iodine-associated genes, three of which are 
thyroid-receptors (THRA, THRB, TRIP4). Given the high levels of goitre in modern 
Mexicans (Kelly and Snedden 1960), it is possible that the Maya experienced a low-iodine 
environment in their ancestral home. Rainforest populations, including those of Central 
Africa, are also known to be living on soils deficient in iodine (Cifor 2006) and the Mbuti 
may have been exposed to a similar iodine deficiency selective pressure. What is most 
intriguing here, is both populations’ distinctive short stature (height < 160cm (Perry and 
Dominy 2009)) which may be mediated by these three thyroid-receptors (Rose 1995; 
Moran and Chatterjee 2015; Xu et al. 2016). A substantially lower rate of goitre is 
recorded in the short-statured Efe population compared to neighbouring Bantu-speaking 
populations (Dormitzer et al. 1989), where both populations live in similarly low-iodine 
soils, presenting a further link between short stature and resistance to iodine deficiency. 
Hence, the characteristically short stature of these populations may be tightly linked to 
iodine metabolism. 

Other populations exhibiting signatures of genetic adaptation in iodine-associated genes 
include the Palestinian (signatures of positive selection bypassing the most stringent 
threshold in the THRB gene) and the Uygur population (where multiple iodine-associated 
genes exhibit signatures of positive selection).  This latter population live in the now 
Xinjiang Uygur Autonomous Region of Northern China, which includes areas of severely 
iodine deficient soils (likely as a result from to its distance from the ocean (Yang et al. 
2021)). Urine iodine levels have been shown to be significantly different in Uygur and 
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Han Chinese pregnant women (Renaguli et al. 2018), suggesting a potentially different 
metabolic reaction to iodine in these populations.  

4.5.4. Calcium 

Multiple populations also exhibit signatures of calcium-associated adaptation, inferred 
by multiple genes showing strong signatures of positive selection. These include the 
Biaka and Bantu-speaking populations of Africa, the She-Miao-Tujia and Japanese of East 
Asia, the Kalash of Central-South Asia and the French of Europe. However, it is unclear if 
the putative calcium-associated adaptation could be due to cultural or environmental 
factors, (i.e., cultural differences in diet or underlying soil composition), since data on the 
calcium levels in these soils is sparse. 

The strongest signature of positive selection of this entire thesis (see Chapter 3) is 
observed in the calcium-associated ATP2B2 gene of the African Mandenka. It has 
previously been shown that Gambian populations, many of whom have Mandenka 
ancestry, have low calcium urinary excretion under low calcium intake, which has been 
suggested to maintain bone health even under low-calcium diets (Aspray et al. 2005; 
Redmond et al. 2015). The Mandenka live throughout West Africa (countries with the 
highest number of individuals with Mandenka ancestry include Senegal, Mali, Guinea and 
The Gambia (Currat et al. 2002)) and whilst there has been some indication of reduced 
calcium in some West African soils, this has not yet been linked explicitly to the Mandenka 
population (Issaka et al. 1996; Baumann et al. 2021).  

However, strong signatures of positive selection have been identified on this gene 
amongst the majority of populations in this study.  ATP2B2 is thus proposed as strong 
candidate for having undergone widespread adaptation in modern humans (rather than 
isolated to the Mandenka population), most likely as a result of selection on standing 
variation. Still, as outlined in Chapter 3, it is difficult to confidently associate these 
signatures with calcium-associated selective pressures, given the role this gene plays in 
many human diseases. 

I investigate the timing of proposed selection on this gene and four other calcium-
associated genes (ATP2B4, SLC8A1, SLC8A2 and SLC8A3) by combining the inferred log-
likelihood ratios of selection and the allele trajectories of focal SNPs. For the majority of 
populations with signatures of positive selection, I suggest that the onset of selection was 
approximately 40kya and hence could reflect selection in an early non-African population. 
Given the lack of soil data for calcium levels, including that of soils in the Arabian 
Peninsula, it is not possible to confidently link these genomic signatures to selection in a 
migrating Out of Africa population, although it is worth noting that the majority of the 
results do not support selection accompanying Neolithic changes to the diet.  

The exception to this is observed in the Mozabite population; the high log-likelihood ratio 
of selection and frequency trajectories of the focal SNPs of ATP2B4 and SLC8A3 suggest 
that selection could have started approximately 10 – 5kya. Both of these genes control 
calcium transport, with the former associated with the calcium absorption of laying hens 
(Gloux et al. 2019), and it is thus possible that adaptation in response to calcium in the 
diet occurred in the Mozabite population. This may be a result of Neolithic dietary 
changes surrounding this time point. This agrees with previous studies suggesting 
calcium adaptation in the Mozabite (Hughes et al. 2008). Finally, very recent increases in 
frequency of the focal SNP of SLC8A3 are inferred in the American Pima population 
(between 10 – 5kya). Interestingly, and in agreement with calcium-associated selective 
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pressures in this population, the traditional diet of this population is high in iron but low 
in calcium (Greenhouse 1981).  

4.5.5. Iron 

Finally, iron-associated genes also show signatures of positive selection that appear to 
co-occur with the timing of major human migrations, albeit possibly a little more recent 
than for calcium. For the iron-associated genes of interest, steep increases in allele 
frequency occurring at 30 – 20kya are inferred, broadly agreeing with the estimated log 
likelihood ratios of selection estimated over time. The more recent inferred onsets of 
selection compared to calcium-associated genes, alongside the geographical partitioning 
of strong signatures of positive selection (such as those unique to East Asian populations 
in the RHOA gene), also suggests that such adaptation may have been driven by the novel 
environmental conditions of different Eurasian environments, rather than a common 
environment encountered immediately following the exit from Africa. By extension, 
adaptation in response to iron levels is also more likely to be largely driven by novel 
environmental pressures, such as soil levels, rather than recent changes in diet.  

The signatures of positive selection identified in the iron storage protein FTMT, which 
plays a central role in protecting mitochondria from iron excess (Levi et al. 2021), suggest 
selection around ~30 – 20kya in the Yakut population (inhabiting modern day Siberia). 
Increases of frequency of the focal SNP of the ARHGEF3 gene, which regulates iron intake 
and erythroid cell maturation (Serbanovic-Canic et al. 2011), are also inferred in the 
American Maya population at this time (estimated as ~20kya). This latter time is the 
approximate time of the stasis of ancestral American populations in the Bering Strait 
(Raghavan, DeGiorgio, et al. 2014; Raghavan, Skoglund, et al. 2014). Hence, iron-
associated adaptation may be driven by environmental factors experienced by 
populations living in the Siberia. In the absence of data on the iron content of these soils 
this can only be speculated.  

Previous literature has suggested iron-associated adaptation in European populations 
(Distante et al. 2004; Ye et al. 2015), of which some support is presented here. The HIF1A 
gene especially, a hypoxia-inducible factor that plays a role in iron homeostasis (Shah and 
Xie 2014) exhibits both strong signatures of positive selection and very recent inferred 
frequency increases (between 10 – 5kya) in the Basque population of Europe. Notably, 
this is a novel target of iron-associated selection considering the existing literature. 
Finally, in support of the micronutrient-associated adaptation in the Mozabite 
surrounding the time of the Neolithic transition and associated dietary changes, there are 
signatures of positive selection and a striking increase of allele frequency of the focal SNP 
of the FTMT gene between 10 – 5kya in the Mozabite population. However, the signatures 
of positive selection identified in Mozabite this study may be conflated with those arising 
from admixture of this North African population with Europeans (Hughes et al. 2008), 
and this would benefit from further investigation.   

4.5.6. Strengths and Limitations 

As informed from previous work (Chapter 3), I identify the micronutrients with the 
strongest evidence of acting as a selective driver in human evolutionary history and 
investigate the geographic distribution and strength of their associated signatures of 
positive selection in populations across the globe. I consider co-occurrence of signatures, 
haplotype diversity and inferred allele frequency over time to better elucidate the 
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evolutionary history of genes within five micronutrient-associated gene sets, and suggest 
the most likely origins of putative selection, in both space and time. By exploring the 
signatures of positive selection on only five micronutrient-associated gene sets, I am able 
to focus the analysis to a degree not possible in Chapter 3, identifying similarities and 
differences between the genomic adaptation of different human populations, and use 
computationally intensive methods (e.g., 𝐶𝐿𝑈𝐸𝑆 (Stern et al. 2019)) to provide further 
support of and information on putative adaptation scenarios.  

Whilst the focus on only five micronutrients in this chapter removes some limitations of 
the comprehensive approach of Chapter 3, some remain. As addressed in Chapter 3, 
there is limited information on soil information or contemporary health data which, if 
available, would more clearly allow an evaluation on the link between the micronutrient 
content in the diets of ancestral populations and putative signatures of micronutrient-
associated adaptation. Also, each SNP identified as having a signature of positive selection 
is not necessarily a true target of selection, and the methods to identify selection will 
naturally result in both false positives and false negatives. To mediate this, I consider of 
signatures of positive selection at the gene set level and evaluate the presence of nearly-
significant signatures of positive selection.  

Finally, the exact functional role of micronutrient-associated genes must be considered.  
Many of the micronutrient-associated genes explored here are responsible for many 
functions in the human body, and signatures of positive selection identified may not be 
strictly related to micronutrient metabolism. There may also be multiple stressors which 
have resulted in the identified adaptive signatures, as suggested in the case of zinc-
associated adaptation (e.g., driven by soil levels and/or pathogen resistance). I can thus 
only suggest the most likely micronutrient-associated drivers according to inferences of 
time of selection (e.g., if they most closely coincide with migrations to novel environments, 
and therefore potential soil-related stress, or the Neolithic transition, and therefore 
cultural changes to diet) but confidently teasing apart the individual selective drivers of 
these cases of proposed adaptation will take significant further work and functional 
analysis, and may not be easily summarised across large numbers of populations. 

4.5.7. Summary 

When signatures of positive selection coincide with soil and public health data, as is the 
case for some of the strongest examples here, there is good reason to suggest that they 
likely underlie adaptation in response to micronutrient levels. Whilst contemporary 
public health data for micronutrient deficiencies does not necessarily reflect underlying 
soil levels and is often tightly linked to national food or economic inequality (Shenkin 
2006; Bhutta and Salam 2012; Bailey et al. 2015), and modern-day soil levels are not 
necessarily indicative of the ancestral environment (owing to farming and other 
agricultural practices (Shahid et al. 2018; Dhaliwal et al. 2019; Alewell et al. 2020)), I 
present evidence that soil composition has contributed to driving population-specific 
adaptation to micronutrient levels, alongside potential additional cultural dietary drivers.  

I particularly propose that Middle-Eastern geology has driven micronutrient-associated 
adaptation in an ancestral non-African population, hence playing an important role in 
shaping the genomic diversity of many modern human populations. The role of 
environment-induced adaptation in Middle-Eastern populations is considerably 
understudied considering the likely importance of this environment in driving 
adaptations in populations migrating Out-of-Africa, and consequent likely implications 
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(including those possibly surrounding differential health outcomes, see Chapter 1) for 
all non-African populations. Here, I outline one example of how this environment may 
have shaped non-African genomic diversity, but suggest that many more exist and 
warrant significant further study.  

I also propose cases where populations have responded to the same micronutrient-
associated stresses in soil levels via adaptation of the same or similar genes (as suggested 
in the adaptive response to high elevation in human populations (Foll et al. 2014; Huerta-
Sánchez et al. 2014; Ilardo and Nielsen 2018)). Most notably, I propose this in the 
response of Maya and Mbuti populations to iodine-deficient soils, and further suggest this 
as a causal link to short stature in these populations. I also identify cases where 
populations have responded to the same micronutrient-associated stresses via 
adaptation of different sets of genes, most notably the response of many African and East 
Asian populations to selenium-deficient soils. Finally, there is limited evidence that the 
dietary changes in the Neolithic drove widespread calcium or iron-associated adaptation, 
but there are some cases where selection on calcium or ion-associated genes is inferred 
to be more recent, coinciding with major dietary changes in human history.  

To more comprehensively understand micronutrient-associated adaptation, future 
studies would benefit from a deeper understanding of ancestral soil environments and 
differences in the prevalence of micronutrient-associated pathologies of modern 
populations according to ancestry. Alongside functional analysis on candidate genes 
regarding their role in their associated micronutrient regulation or metabolism, this will 
more clearly pinpoint the selective drivers of such adaptive signatures.  

4.6. Conclusion 

Here, I build on previous work (Chapter 3) to more thoroughly investigate the signatures 
of positive selection identified on the genes associated with five micronutrients: zinc, 
calcium, selenium, iron and iodine. I identify the groups of micronutrient-associated 
genes which have the strongest evidence for mediating micronutrient-associated 
selective pressures in human populations across the globe, and suggest that populations 
may evolve through different genomic routes to the same micronutrient-associated 
pressures. I give evidence for older selection events in ancestral non-African populations, 
particularly in zinc-associated adaptation in the Middle-East, and present a small number 
of micronutrient-associated adaptation events that more likely surround the Neolithic 
dietary transition.  
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Chapter 5: Ancient Loss of Catalytic 
Selenocysteine Spurred Convergent Evolution in 

a Mammalian Oxidoreductase  
 

This chapter is based upon the work undertaken in the preprint: Ancient loss of catalytic 
selenocysteine spurred convergent adaptation in a mammalian oxidoreductase 
(Rees et al. 2023). Where specified, some work was primarily undertaken by collaborators. 
 

5.1. Overview 

Catalytic residues are often conserved in proteins, with mutations that occur at or close 
to key sites frequently reducing catalytic activity and corresponding fitness of the enzyme 
(Sharir-Ivry and Xia 2021). When such deleterious mutations persist, they often 
demonstrate evolutionary trajectories which either recover catalytic function or open 
new protein functions (Jensen 1976; Gromer et al. 2003; Jayaraman et al. 2022). Here, we 
investigate the evolutionary and functional trajectories that follow the loss of the key 
catalytic residue in a mammalian oxidoreductase.  

Selenocysteine (Sec), the 21st amino acid specified by the genetic code, is a rare selenium-
containing residue found in the catalytic site of selenoprotein oxidoreductases. These 
proteins mediate the essential biological effects of the rare trace element selenium 
(explored in terms of its role in modern human health and adaptation in Chapters 1, 3, 
4). Sec is analogous to the common cysteine (Cys) amino acid but its selenium atom offers 
physical-chemical properties not provided by the corresponding sulfur atom in Cys. 
Hence, exchanges of Sec to Cys in the catalytic sites of vertebrate selenoproteins are often 
under strong purifying selection (Castellano et al. 2009). Whilst the presence of both Sec 
and Cys orthologues are rare, these are observed in Glutathione Peroxidase 6 (GPX6), 
which has independently exchanged Sec for Cys less than one hundred million years ago 
in several mammalian lineages.  

We reconstructed and assayed ancient GPX6 enzymes before and after the loss of Sec, 

alongside the modern mouse protein, and found them to have lost their classic ability to 

reduce hydroperoxides using glutathione (GSH). This loss of function, however, was 

accompanied by additional amino acid changes in the catalytic domain, with protein 

sites showing signatures of adaptive convergence across distant lineages abandoning 

Sec in GPX6. This demonstrates a narrow evolutionary path when sulfur in Cys impairs 

catalysis, with pleiotropy and epistasis likely driving the observed convergent evolution 

and triggering enzymatic properties beyond those in classic GPXs.  

 

5.2. Background 

Selection does not act equally over all sites of a protein; those sites with functional 
importance, or contributing to the stability of a protein, are under stronger selective 
pressure to conserve their vital roles (Sharir-Ivry and Xia 2021). Catalytic residues, those 
that lower the activation energy of reactions and thereby increase enzymatic turnover, 
are a key example of such largely conserved sites, and show slower rates of evolution 
compared to other sites within a protein. Catalytic sites have even been show to exert a 
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strong gradient of conservation on nearby sites, such that the degree of conservation on 
a site increases with the closeness to the key catalytic residue (Sharir-Ivry and Xia 2021).  

Mutations that occur in these evolutionary constrained active sites, or indeed in nearby 
sites, typically reduce catalytic activity (a proxy for fitness in enzymes; (Carter and Wells 
1988; Loeb et al. 1989; Rennell et al. 1991)) and are frequently removed by purifying 
selection. Still, these deleterious mutations may occur and persist, with their effects often 
mediated by compensatory mutations that restore catalytic ability, and therefore fitness 
of an enzyme (Jensen 1976; Gromer et al. 2003; Cha et al. 2013). Such compensatory 
mutations, often occurring near the deleterious mutation, improve the fitness of a protein 
when accompanying a deleterious mutation but are otherwise neutral or even slightly 
deleterious (Davis et al. 2009).  

Therefore, such compensatory changes reflect a specific form of intragenic epistasis, 
whereby they increase the fitness of a deleterious mutation to either become neutral or 
advantageous, and increase the possibility of its fixation in the population (Davis et al. 
2009; Jayaraman et al. 2022). These compensatory mutations may either precede or 
follow the deleterious mutation event, restoring fitness or effectively preventing the loss 
of fitness on the onset of the deleterious mutation (Jayaraman et al. 2022), and their 
onsets may be considerably spread around the appearance of the deleterious mutation 
(Jayaraman et al. 2022). Whilst the evolutionary landscape of such mutations is therefore 
highly complex, the role of compensatory mutations in recovering fitness has been 
implicated across a wide range of biological scenarios, including following fixation of 
deleterious mutations in small populations, restoring antibiotic or pesticide resistance, 
and repairing ancestral catalytic ability (Jensen 1976; Gromer et al. 2003; Whitlock et al. 
2003; Maisnier-Patin and Andersson 2004; Cha et al. 2013; Larsson and Flach 2022).  

In other cases, deleterious mutations may prompt evolutionary trajectories that open the 
protein to novel functions (Jensen 1976; Gromer et al. 2003; Covert et al. 2013). Whilst 
gene duplication often precedes the appearance of new adaptations, which often evolve 
as a result of one or both gene copies being released from their previous functional 
constraint (Hughes 1997), deleterious mutations may also allow adaptations that were 
previously unavailable by way of interacting with a conditionally beneficial mutation 
(Lenski et al. 2003; Covert et al. 2013). Indeed, this has been implicated in the evolution 
of many novel enzymes and their functions, including cystallins of the eye, isocitrate 
dehydrogenase of the Krebs cycle and novel organophosphorus hydrolase activity 
mediating insecticide resistance (Piatigorsky and Wistow 1991; Dean and Golding 1997; 
Newcomb et al. 1997).  

As outlined, protein evolution following a deleterious mutation at their active site 
depends heavily on intragenic epistasis, whether that is an evolutionary trajectory which 
repairs original function or helps traverse fitness space to develop a novel function. 
Mutational trajectories are limited by the enzyme’s sequence (with pleiotropy further 
limiting trajectories that improve one enzymatic property but compromise another 
(Weinreich et al. 2006; Storz 2016)). This is best represented in orthologous proteins, 
whose sequence conservation among species provides similar genetic backgrounds to 
mutations (Lunzer et al. 2010; Shah et al. 2015). Ultimately, this can result in narrow 
fitness trajectories of such similar proteins, and give rise to convergent, or parallel, 
changes across closely related lineages (Weinreich et al. 2006; Storz 2016).  

 



Ancient Loss of Catalytic Selenocysteine Spurred Convergent Evolution 
 

 170 

5.2.1. Selenoprotein Evolution 

Here, we investigate the loss of a key catalytic residue in the selenoprotein Glutathione 
Peroxidase 6 (GPX6). In this protein, there has been sporadic replacement throughout 
mammalian history of selenocysteine (Sec) with cysteine (Cys) at the catalytic site. This 
is expected to result in an immediate loss of catalytic ability, as previously shown for this 
amino acid exchange (Axley et al. 1991; Berry et al. 1992; Lee et al. 2000; Johansson et al. 
2005; Arnér 2010; Kim et al. 2015; Reich and Hondal 2016). Since this protein is unique 
in its family for containing both Sec and Cys as its key catalytic residue in contemporary 
mammals, with other GPX proteins exclusively containing either Sec (GPX1, 2, 3 and 4) or 
Cys (GPX5, 7 and 8; (Mariotti et al. 2012), it presents good opportunity to infer the 
evolutionary trajectories that follow a deleterious mutation at a unusual catalytic site, in 
direct comparison to the orthologues without such a mutation.  

Sec is the 21st amino acid and the defining catalytic residue of selenoproteins, a family of 
proteins that uses and mediates the biological effects of the rare trace element selenium. 
Selenium is an essential micronutrient in many organisms and is responsible for a wealth 
of vital biochemical functions (Labunskyy et al. 2014). It is particularly associated with 
development, immune response and reproduction (Köhrle 2000; Rayman 2012), and 
deficiencies in humans result in a range of pathologies, including those outlined above 
and, in extreme cases, heart and bone diseases such as those endemic to selenium-
deficient areas of China (Xia et al. 2005).  

The selenium-containing amino acid Sec is unusually encoded by a UGA stop codon, and 
its insertion requires a Sec insertion sequence (SECIS) element to redefine this codon to 
specify Sec insertion (Berry et al. 1992). This stem loop structure is in the 3’UTR of the 
mRNA in selenoproteins in mammals, as well as all other eukaryotes and archaea 
(Labunskyy et al. 2014). Selenoproteins using such a molecular structure are rare, with 
only 25 selenoproteins making up the selenoproteome in humans (Kryukov et al. 2003). 
This number is mostly conserved in mammals (Mariotti et al. 2012), but shows a general 
decrease in non-mammal organisms (e.g., only 3 selenoproteins in Drosphila 
melanogaster (Castellano et al. 2001)), with the exception of aquatic organisms which 
often have a larger selenoproteome (Lobanov et al. 2007).  

Sec is often a key catalytic residue at the active site of enzymes and plays a key role in 
catalytic redox reactions, including reductions of thioredoxin, activation and inactivation 
of thyroid hormones, repairing oxidised methionines in proteins and removal of 
hydroperoxides (the latter as in the GPX family (Santesmasses et al. 2020)). Whilst Sec’s 
role is often considered unique, many selenoproteins have been found with this catalytic 
residue entirely replaced by Cys (UGU or UGC), the analogous amino acid containing a 
sulfur-containing thiol group in place of the selenium-containing selenol group of Sec 
(Stadtman 1996).  

However, such Sec-to-Cys substitutions across orthologous selenoproteins, as seen in 
mammalian GPX6, are rare (Castellano et al. 2005). There is a low exchangeability of Sec 
and Cys in catalysis, where Cys displays lower catalytic activity, nucleophilicity and 
efficiency as a leaving group when compared to Sec (Axley et al. 1991; Berry et al. 1992; 
Lee et al. 2000; Johansson et al. 2005; Arnér 2010; Kim et al. 2015; Reich and Hondal 
2016). Hence, the exchange of Sec to Cys is often deleterious and strong purifying 
selection limits these exchanges in nature. When exchanges between Sec and Cys do occur 
and become fixed, these are often following gene duplications that may release the 
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duplicated gene from its catalytic functional restraint (Mariotti et al. 2012; Magadum et 
al. 2013).  

Indeed, all Cys-containing proteins of the vertebrate GPX family are a result of 
duplications in early history: GPX5Cys from GPX3Sec duplication (around 300 Mya); 
GPX8Cys from GPX7Cys or GPX4Sec duplication (likely 450 Mya); GPX7Cys from GPX4Sec 
duplication (more than 1,000 Mya) (Hedges 2002; Castellano et al. 2009; Trenz et al. 
2021).  

5.2.2. Study Overview 

The presence of both the Sec and Cys-containing orthologues of GPX6 is therefore highly 
unusual, particularly in vertebrates, and allows us to ask the immediate evolutionary 
response to such an exchange. We first consider if, in view of the deleterious nature of 
losing Sec, the exchange between Sec and Cys results in the emergence of compensatory 
mutations that act to repair catalytic ability, as demonstrated by (Gromer et al. 2003) in 
Drosophila, and if these compensatory mutations are shared over all Cys-containing 
mammalian lineages.  

We also consider if the functional pathway of GPX6Cys changes as a result of the exchange 
of its key catalytic residue. Whilst GPX proteins, which contain either Sec or Cys at their 
defining catalytic site, all protect the cell from oxidative damage (Tosatto et al. 2008), 
they do so via different pathways. Classic GPXSec activity reduces hydroperoxides, 
particularly hydrogen and lipid peroxides, with glutathione (GSH) as a cofactor (Trenz et 
al. 2021). GPXCys proteins, on the other hand, have evolved a preference for other 
cofactors, for example thioredoxin in GPX5Cys or protein disulfide isomerase (PDI) in 
GPX7Cys and GPX8Cys (Nguyen et al. 2011). These Cys-containing proteins not only act on 
alternative substrates for peroxidation but may also have additional functions, including 
signalling and oxidative protein folding  (Nguyen et al. 2011; Taylor et al. 2013; Buday 
and Conrad 2021). We hence also ask if the Cys-containing orthologues of GPX6 also 
develop novel functional pathways, on account of their lower catalytic turnover.  

By reconstructing GPX6 protein evolution throughout mammalian history, we are first 
able to identify five independent losses of Sec in mammals, surrounded by a burst of 
amino acid changes in the catalytic domain. An unusual number of the amino acid changes 
that accompany Sec loss are shared across distant lineages, indicating a narrow 
evolutionary path, likely mediated by pleiotropy and epistasis, available to proteins when 
the sulfur-containing Cys impairs catalysis. We also reconstruct and assay ancient 
enzymes before and after Sec loss in the Eumuroida lineage, and find them to have lost 
their classic ability to reduce hydroperoxides using glutathione (GSH). Hence, such a 
narrow evolutionary path seems to trigger enzymatic properties beyond those in classic 
GPXs, reappraising function rather than recovering previous catalytic ability. Thus, these 
findings are an unusual example of adaptive convergence towards unexplored 
oxidoreductase functions during mammalian evolution. 

5.3. Methods 
5.3.1. GPX Sequences 

The GPX6 coding sequences and proteins for 22 present-day mammal species were 
obtained from 𝑆𝑒𝑙𝑒𝑛𝑜𝐷𝐵 2.0 (now available at selenodb.crg.eu; (Romagné et al. 2014)) 
and 𝐸𝑛𝑠𝑒𝑚𝑏𝑙  (Yates et al. 2020), chosen for their availability and breadth across the 
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mammalian tree (Table S5.1).The 𝐸𝑛𝑠𝑒𝑚𝑏𝑙 species tree (available at www.ensembl.org) 
was used to give the phylogeny of these mammals with the exception of the walrus, which 
was added according to various additional sources (Higdon et al. 2007). These species 
include nine mammals where GPX6 contains Cys in the place of Sec. 

The orthologous GPX6 coding sequences and proteins were aligned using 𝑀𝐴𝐹𝐹𝑇 (Katoh 
et al. 2019). The posterior probability of each individual aligned position was then 
calculated using a modified version of 𝐻𝑀𝑀𝐸𝑅 (Potter et al. 2018), which first converts 
each protein multiple alignment into a Hidden Markov Model before using a forward-
backward algorithm to perform posterior decoding (Durbin et al. 1998). The calculated 
posterior probability integrates the uncertainty of the alignment around an aligned 
position, representing our degree of confidence in each individual aligned protein residue 
or gap in a multiple alignment.  

Positions with an average posterior probability below 0.95 were then removed, due to 
concerns of misalignment, and not included in further analysis using 𝑃𝐴𝑀𝐿 (Yang 2007). 
The removed positions are, in general, found surrounding gaps or points of sequence 
divergence, which both contribute to alignment uncertainty. Nevertheless, our 
probabilistic approach allowed us to keep regions containing gaps or amino acid 
differences that were confidently aligned in the multiple alignments.  

The coding sequences for other members of the GPX family (four GPX proteins where all 
species have Sec (GPX1, 2, 3 and 4) and three GPX proteins where all species contain Cys 
(GPX5, 7 and 8)), were also obtained from SelenoDB 2.0 (Romagné et al. 2014) or, if not 
available, from 𝐸𝑛𝑠𝑒𝑚𝑏𝑙 (Yates et al. 2020) (Table S5.1). These proteins are aligned 
following the methodology as described above. 

5.3.2. Ancestral Reconstruction of GPX Proteins 

5.3.2.1. Inferring the Loss of Sec 

The ancestral sequences of GPX6 for our set of 22 mammals were reconstructed using the 
mammalian tree of these species, their present-day sequences and the 𝑃𝐴𝑀𝐿 package 
(Yang 2007). We used this package to infer the sequence of all ancestral nodes across the 
mammalian tree and pinpoint the inferred independent losses of Sec throughout the 
mammalian lineage. The independent losses of Sec within the lineages leading to the 
walrus and cat were inferred according to the most parsimonious scenario when 
accounting for the presence of Sec in the Ursidae lineage (included as bear in Fig. 5.1). 
The approximate ages of lineages with Sec loss are collected from various sources 
describing split times in the mammalian phylogeny (Huchon et al. 2002; Steppan et al. 
2004; Higdon et al. 2007; Hallström and Janke 2008; Chatterjee et al. 2009; Nyakatura 
and Bininda-Emonds 2012).  

Further to the 𝑃𝐴𝑀𝐿  inference, we also inferred the ancestral sequences using two 
additional programs: 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 𝑣1.1 (Diallo et al. 2010) and 𝐹𝑎𝑠𝑡𝑀𝐿 (Moshe and Pupko 
2019). 𝐹𝑎𝑠𝑡𝑀𝐿  has options to use either amino acid or nucleotide sequences of 
contemporary species as input to infer the ancestral sequences, whereas 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 𝑣1.1 
(alongside 𝑃𝐴𝑀𝐿) only uses the nucleotide sequences for inferences. Hence, using both 
𝐹𝑎𝑠𝑡𝑀𝐿 input methods, this gives four inferred sets of sequences for all ancestral nodes. 
The four inferred sequences were then aligned using 𝑀𝐴𝐹𝐹𝑇 (Katoh et al. 2019) and the 
residue with the most support was taken as the consensus residue for each site. 

http://www.ensembl.org/
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5.3.2.2. Ancestral Proteins Along the Eumuroida 

Lineage 

Following our inference of ancestral sequences, we were then able to reconstruct three 
ancient proteins along the Eumuroida lineage, where Eumuroida includes rats, mice and 
closely related rodents (see Figure 5.1). These proteins are: 1) the protein just prior to 
the loss of Sec in the ancestor of Eumuroida (Eu-GPX6Sec); 2) the same ancestral protein 
but with Sec exchanged for Cys (Eu-GPX6Cys); and 3) the protein at the derived end of the 
Eumuroida branch, now containing the additional 25 sites that have changed along the 
Eumuroida branch (Eu-GPX6Cys+25).  

As previously described, the residue with most support from the four inferred sequences 
was taken as the consensus residue for each site, with the exception of site 54 in Eu-
GPX6Cys+25. Here, the consensus residue was taken as “Q” (Glutamine, CAA) despite the 
methods used suggesting “H” (Histidine, CAT or CAC) since “H” is not present at this site 
for any of the contemporary species. Of the 217 amino acid sites, 208 (95.85%) were 
resolved unanimously across the four inference methods. Of the remaining nine sites that 
were inferred differently across the methods, seven (3.23% of total sites) of these sites 
differed across the inference of the Eu-GPX6Sec protein and two (0.92% of total sites) 
differed across the inference of the Eu-GPX6Cys+25. We use these consensus sequences to 
provide the final Eu-GPX6Sec and Eu-GPX6Cys+25 proteins, with sites calculated as having 
an average posterior probability below 0.9 (as calculated using 𝐻𝑀𝑀𝐸𝑅 (Potter et al. 
2018)) removed from subsequent 𝑃𝐴𝑀𝐿 analysis. 

5.3.3. Inferring Rate of Evolution 

We use the 𝑑𝑁/𝑑𝑆  ratio as a quantification of the rate of evolution and strength of 
selection acting on proteins, where 𝑑𝑁 is the rate of non-synonymous substitutions per 
non-synonymous sites and 𝑑𝑆  is the rate of synonymous substitutions per synonymous 
sites. All 𝑑𝑁/𝑑𝑆  ratios were computed using the 𝐶𝑂𝐷𝐸𝑀𝐿  package from 𝑃𝐴𝑀𝐿  (Yang 
2007), using the aligned GPX6 coding sequences and mammalian tree topology. The UGA 
codon encoding the Sec amino acid was considered an ambiguity character and not 
included in the 𝑑𝑁/𝑑𝑆  calculation, hence making our calculations conservative when 
comparing the rate of evolution in proteins that have exchanged Sec for Cys to those who 
have maintained Sec.   

5.3.3.1. 𝒅𝑵/𝒅𝑺 Ratios in GPX Proteins 

We first calculated independent 𝑑𝑁/𝑑𝑆 ratios for each branch in the GPX6 mammalian 
phylogeny using the free-ratio model (model=1) in 𝑃𝐴𝑀𝐿. This allows the 𝑑𝑁/𝑑𝑆 ratio to 
vary amongst the branches of the phylogenetic tree and was used to compare the rate of 
evolution in the lineages that retain Sec and those that have exchanged Sec for Cys. Given 
this preliminary comparison, the 𝐶𝑂𝐷𝐸𝑀𝐿 branch model (model = 2) was then used to 
explicitly test our hypothesis of a faster rate of evolution in lineages where Sec was lost. 

The 𝐶𝑂𝐷𝐸𝑀𝐿 branch model (model=2) allows us to specify the number of independent 
𝑑𝑁/𝑑𝑆 ratios across set groups of branches. We used this model to compare the 𝑑𝑁/𝑑𝑆 

ratios between three groups of branches: the branches with Sec (Fig 5.1; solid red 
branches), the branches where Sec is exchanged for Cys (Fig 5.1; dashed green branches) 
and the branches where Cys is maintained (Fig 5.1; solid green branches). Hence, we ask 
if the 𝑑𝑁/𝑑𝑆 ratio was significantly different in lineages at the time surrounding the loss 



Ancient Loss of Catalytic Selenocysteine Spurred Convergent Evolution 
 

 174 

of Sec compared to lineages where Sec was not lost, or where Cys was maintained (under 
the assumption that any fitness reduced as a result of the loss of Sec had since been 
recovered).  

Once 𝑑𝑁/𝑑𝑆  ratios across the three groups of branches had been calculated, we 
compared this branch model to the null model (M0 model, model=0), which estimates a 
singular 𝑑𝑁/𝑑𝑆  value for all branches. We compare the likelihood of each of the two 
models to give a likelihood ratio, which was used to calculate the significance of the 
difference in fit between the two models in the form of a 𝑝𝑣𝑎𝑙𝑢𝑒. Hence, we explicitly ask 
if three 𝑑𝑁/𝑑𝑆 ratios across the tree is a significantly more likely fit than the null model 
of a singular 𝑑𝑁/𝑑𝑆 ratio across all branches.  

We repeated this analysis for all other genes in the GPX family, comparing 𝑑𝑁/𝑑𝑆 ratios 
calculated over the three groups of their analogous branches (those analogous branches 
that have lost Sec, maintained Sec or maintained Cys in the GPX6 phylogeny) to the null 
model of one 𝑑𝑁/𝑑𝑆 over the entire phylogeny. 

5.3.3.2. 𝒅𝑵/𝒅𝑺 Ratios in Protein Domains in GPX 

Proteins 

We then separated the protein into its three domains: N-terminus, GPX domain and C-
terminus (as defined in the 𝑃𝐹𝐴𝑀 database (Mistry et al. 2021)) to further explore how 
evolutionary rates may vary over the protein. Of these three domains, the GPX domain is 
considered essential for the catalytic activity of the enzyme, alongside the C-terminus 
which also contributes to catalytic function (Toppo et al. 2008). We repeated the analysis 
outlined above separately for each of the three domains of GPX6, as well as for the three 
domains of each of the additional GPX genes. 

5.3.3.3. 𝒅𝑵/𝒅𝑺 Ratios in GPX3 

We found an additional two GPX proteins unexpectedly lacking the Sec residue: GPX3 in 
both the Hoffman’s two-toed sloth and the kangaroo rate. Here, the Sec has been 
exchanged for either glutamine (in the case of the sloth) or for serine (in the case of the 
kangaroo rat). Because of these exchanges, we removed the sloth-GPX3 and kangaroo rat-
GPX3 from the branch model analysis of 𝑑𝑁/𝑑𝑆 rates in GPX3 (but maintained in the 
following branch-site analysis, see Section 5.3.4).  

5.3.4. Inferring Selection on the GPX6 Sites 

We used the Site model in 𝑃𝐴𝑀𝐿 (Yang 2007) to test for selection acting on individual 
sites across the entire tree, comparing model 7  (beta; model = 0 , NSsites=7) to model 8 
(beta plus selection; model =0, NSsites=8). Here, model 7 is the null model of a beta 
distributed variable selective pressure across sites, whereas model 8 is the beta 
distributed model plus positive selection. Given that there was a significant difference 
between these models, we then tested for selection acting on sites in the GPX domain 
along specified branches across the tree. We used the Branch-Site model (model=2, 
NSsites=2) to calculate the probability of each site of foreground branches (as specified 
in the model) being under selection according to 𝑃𝐴𝑀𝐿’s Bayes Empirical Bayes (BEB) 
inference method (Yang et al. 2005). 

This model allows the 𝑑𝑁/𝑑𝑆 ratio to vary both amongst sites and amongst the specified 
foreground and background branches, classifying the sites into those that have 𝑑𝑁/𝑑𝑆 
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values that remain the same on the foreground and background branches (𝜔 < 1 or 𝜔 =
1  in both branches) and those that differ amongst the branches ( 𝜔 < 1  or 𝜔 = 1  in 
background branches and 𝜔 > 1 in foreground branches), outputting the proportion of 
each site class. This method then calculates the posterior probability of each site being 
under selection in the foreground branches, whilst accounting for sampling errors by 
using a Bayesian prior (Yang et al., 2005). This model is compared to the corresponding 
null model, which is the same in all ways apart from the fixation of 𝜔2. 

We first use this model to infer the probability of selection acting on sites along the 
branches where Sec was inferred to be lost for the GPX domain only. Having found 
significant evidence for selection on particular sites within this region, we then extended 
this model to test along the entire protein region for the same foreground branches. Given 
this test yielded a non-significant result, we repeated the model to test for selection 
shared on sites along the entire protein region on the most closely related branches.   

Since significant evidence is observed for selection acting on the same sites across the 
more closely related lineages where Sec was inferred to be lost (the branch leading to 
squirrel monkey-marmoset (Cys-primate branch), the Eumuroida branch and the branch 
leading to rabbit; see Fig. 5.1), we then test if these probabilities are enriched in certain 
subsets of sites using Mann-Whitney U tests.  

5.3.5. Identifying Convergent Changes 

5.3.5.1. Convergence Across Cys-branches 

Convergent changes in GPX6 across lineages were identified using 𝐶𝑂𝑁𝑉𝐸𝑅𝐺2 (Zhang 
and Kumar 1997). The definition of convergent amino acid changes used here includes 
sites that have changed from a different ancestral amino acid to the same derived amino 
acid and sites that have changed from the same ancestral amino acid to the same derived 
amino acid (other studies may refer to these as parallel changes, see Section 1.2.2).  

Convergent changes were identified between the GPX6Cys lineages: either the branches 
where Sec was exchanged for Cys or the species branches where Cys was maintained. The 
observed frequency of these convergent changes was then compared with the expected 
frequency of convergent changes, also calculated using 𝐶𝑂𝑁𝑉𝐸𝑅𝐺2.  

Since the pathway to recover catalytic activity may not be limited to the same amino acid 
changes but still may be restricted to particular sites in the protein, we edited the 
𝐶𝑂𝑁𝑉𝐸𝑅𝐺2 programme to also identify convergent site changes which do not result in 
the same amino acid across branches (hence, simply identifying sites that show repeated 
amino acid changes across lineages). Such identified sites are also included in our 
definition of convergent sites hereinafter.  

Where the sequences for the species containing Cys in GPX6 were available, the 
equivalent analyses were run on the Sec-containing GPX proteins (GPX1, 2, 3 and 4) and 
the Cys-containing proteins (GPX7 and 8). We advise that the focus should be on the 
convergence results for GPX3 and GPX5 for two reasons: 1) these proteins are the 
immediate paralogues to GPX6; and 2) the gaps in the other proteins do not allow, we 
believe, a full representation of the potential instances of convergence. 

5.3.5.2. Simulating Expected Convergence 

The evolution of the GPX6 protein sequence across our mammalian phylogeny was 
simulated using 𝑆𝑒𝑞 − 𝐺𝑒𝑛 (Rambaut and Grassly 1997). This simulation begins with the 
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inferred ancestral sequence at the base of our mammalian clade and runs until all modern 
mammalian proteins are evolved, using the JTT model of amino acid substitution (Jones 
et al, 2008). Tree lengths were given by the rate of amino acid changes along each branch 
of the mammalian tree as from the calculated 𝑑𝑁  value in the 𝐶𝑂𝐷𝐸𝑀𝐿 package from 
𝑃𝐴𝑀𝐿 (Yang 2007). Hence, the simulation recreates chance amino acid exchanges along 
each branch at its observed rate.  

Each simulation was run 1,000 times and, for each simulation run, 𝐶𝑂𝑁𝑉𝐸𝑅𝐺2 (Zhang 
and Kumar 1997) was used to identify convergent site changes between the lineages 
where Sec was lost for Cys. The distribution of convergent changes under this expected 
rate of amino acid exchange is then plotted, and compared to the observed number of 
convergent site changes. Equivalent simulations were run for all other GPX proteins, and 
we further compared the observed and expected number of convergent site changes for 
these proteins.  

To confirm that the higher number of observed convergent changes relative to our 
expectation are focused within the functional GPX domain, and that are conclusions aren’t 
simply an artefact of elevated evolutionary rate, we also repeated these simulations on 
only this domain (tree lengths given by the rate of amino acid changes from the GPX 
domain only).  

5.3.5.3. Selection Across Convergent Sites 

We asked if the convergent sites are enriched for posterior probabilities of selection by 
comparing the posterior probabilities of selection acting on convergent sites to the 
remaining sites in the GPX protein. Here, we use the posterior probabilities of selection 
as calculated acting on sites in the branches leading to Cys-primate branch, the 
Eumuroida branch and the branch leading to rabbit (BEB results of the Branch-Site Model, 
see Section 5.3.4) and exclude convergent sites only identified using either the cat or 
walrus terminal branches, since they are excluded from the probability calculation. To 
test for enrichment, we use a Mann-Whitney U test to account for the non-parametric 
data.  

5.3.5.4. Convergence Across Eumuroida 

Given that the highest level of convergence is identified between the basal Eumuroida and 
it’s genetically closest GPX6Cys lineages, particularly the rabbit lineage, we further focus 
on the Eumuroida convergent sites. We use the inferred ancestral GPX sequences 
(Section 5.3.2) to identify 25 sites, excluding the Sec-to-Cys site, that change only over 
the Eumuroida branch. Of these sites, we identify 14 sites that show signatures of 
convergence across GPX6Cys lineages (to the exclusion of those identified from cat and 
walrus (Zhang and Kumar 1997)). We also infer a further 22 amino acid sites (19 
substitutions and a 3 C-terminal extension) that changed between the end of the 
Eumuroida branch and the modern mouse GPX6 protein; m-GPX6Cys+22. 𝐶𝑂𝑁𝑉𝐸𝑅𝐺2 was 
again used to identify which of these 19 substitutions demonstrate signatures of 
convergence across GPX6Cys lineages. 

We test for enrichment of selection signatures (following the methodology outlined in 
Section 5.3.5.2) in the fifteen sites showing signatures of convergence along the 
Eumuroida lineage and the eight sites showing signatures of convergence on the branch 
just preceding the modern mouse protein.  
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5.3.5.5. Reconstructing Phylogenies According to 

Convergence 

Using 𝑃𝐻𝑌𝑀𝐿 (Guindon et al. 2010), we reconstructed the mammalian tree given: a) the 
full GPX6 protein, b) the N-terminal of GPX6, c) the GPX domain of GPX6, d) the N-terminal 
of GPX6, e) the 26 sites that change across the Eumuroida branch (including the 14 sites 
that show changes across the Eumuroida branch and convergent changes across 𝐺𝑃𝑥6𝐶𝑦𝑠 

branches.This was repeated for comparison using the full GPX3 and GPX5 proteins. 

5.3.6. Assessing Catalytic Activity in Ancient and Modern 

Proteins 

The following work was undertaken by collaborators: Qing Cheng (Karolinska Institutet), 
Elias SJ Arnér (Karolinska Institutet, National Institute of Oncology), Martin Floor 
(Universitat de Vic - Universitat Central de Catalunya, Barcelona Supercomputing Center 
(BSC)), Baldomero Oliva Miguel (Universitat Pompeu Fabra), Jordi Villà-Freixa 

(Universitat de Vic - Universitat Central de Catalunya, Institut de Recerca i Innovació en 
Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC)). 

5.3.6.1. Experimental Assessment of Catalytic Activity 

Work undertaken by Qing Cheng and Elias SJ Arnér.  

The Eu-GPX6Sec, Eu-GPX6Cys and Eu-GPX6Cys+25 proteins were reconstructed from 
heterologous expression in Escherichia coli. A mutant E. coli strain that does not recognise 
UAG as a STOP codon was used, which results in a much higher yield of Eu-GPX6Sec than 
would otherwise be produced by E. coli with standard genetic code decoding. The 
catalytic activity of each protein, and the modern mouse protein, was evaluated by 
measuring the peroxidation activity on H2O2 with GSH.  

5.3.6.2. Simulating Catalytic Activity 

Work undertaken by Martin Floor, Baldomero Oliva Miguel and Jordi Villà-Freixa. 

Structures for the GPX6 orthologs and nodes of the ancestral sequence reconstructions 
were built using 𝐴𝑙𝑝ℎ𝑎𝐹𝑜𝑙𝑑2  (Jumper et al. 2021). All protein sequences considered 
cysteines at their catalytic positions, given the inability to represent non-canonical 
residues for the “ab initio” model construction. We ran protein-ligand binding energy 
landscape explorations using the 𝑃𝐸𝐿𝐸 software (Borrelli et al. 2005) for each protein 
structure, with ligands for the simulation being glutathione and glutathione disulfide.  

Simulations were first run to discover catalytic poses with low global energies; the 
catalytic distance was considered as the closest sulphur-sulphur distance between the 
catalytic cysteine and the glutathione sulphur atoms. The lowest binding energy poses, 
filtered by a catalytic distance threshold below 4Å, were used to run a second 𝑃𝐸𝐿𝐸 
simulation, thus focusing on exploring this catalytic minimum binding energy 
configuration. Each simulation comprised 95 replicas of 100 equilibration steps that 
constrained the ligand to its starting position, followed by 1,000 𝑃𝐸𝐿𝐸 steps without any 
constraint over the ligand coordinates. 

All simulation trajectories for the same ligand were simultaneously analysed using all 
ligand positions aligned to a common protein reference structure. A Time-structure 
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Independent Component Analysis (TICA) was built to find the common slowest-relaxing 
feature combination (Molgedey and Schuster 1994) with the 𝑃𝑦𝐸𝑀𝑀𝐴 library (Scherer 
et al. 2015). Finally, and separately for each protein and ligand simulation, the 
probabilities of visiting the slowest TICA coordinate (IC1) according to the catalytic 
distance (S-S) were plotted as a free energy map. 

5.4. Results 
5.4.1. Rate of Evolution Surrounding the Loss of Sec 

We inferred five independent losses of Sec in GPX6Sec (Fig. 5.1, dashed green branches) 
across 22 mammals by reconstructing the ancestral sequence at each node of their 
phylogeny with 𝑃𝐴𝑀𝐿 (Yang et al. 2005). These losses all occur in the last 64 million 
years (approximate times given in Fig. 5.1; (Huchon et al. 2002; Steppan et al. 2004; 
Hallström and Janke 2008; Chatterjee et al. 2009; Nyakatura and Bininda-Emonds 
2012) and have resulted in multiple GPX6Cys lineages. 

 

Fig. 5.1: Phylogenetic trees of the GPX family.  A) The phylogeny of the GPX family in 
Eukaryotes (based on (Mariotti et al. 2012)), including the dates of the duplications 
leading to GPX7Cys, GPX8Cys and GPX5Cys and their older, single substitutions of Sec to Cys 
that resulted in enzymes with new properties. B) The topology of the phylogeny of the 22 
mammals in our analysis. In red, GPX6Sec branches, in green, GPX6Cys ones. Dashed green 
branches represent GPX6Cys lineages where Sec was lost. Dotted red branch indicates the 
Bear GPX6Sec lineage, which was not used in the analysis due to sequence quality issues. 
The GPX6Cys Eumuroida clade, a specific group of muroid rodents, is boxed. Approximate 
ages given by (Huchon et al. 2002; Steppan et al. 2004; Higdon et al. 2007; Hallström and 
Janke 2008; Chatterjee et al. 2009; Nyakatura and Bininda-Emonds 2012). 
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To measure the rate of evolution and approximate the degree of natural selection, we 
calculated independent 𝑑𝑁/𝑑𝑆 ratios for each branch in the mammalian tree, including 
ancestral branches (Fig. 5.1), and found higher 𝑑𝑁/𝑑𝑆  ratios in GPX6Cys lineages 
compared to neighbouring GPX6Sec lineages (Fig. S5.1). Hence, we infer faster evolution 
along the branches containing Cys in the place of Sec, which we then explicitly tested 
using the Branch model likelihood ratio test in 𝑃𝐴𝑀𝐿 (Yang 2007).  

When contrasting the 𝑑𝑁/𝑑𝑆 ratios of GPX6Cys lineages in the branches where Sec was 
lost (Fig. 5.1; dashed green branches) to GPX6Cys lineages in the branches inheriting this 
loss (Fig. 5.1, solid green branches) and GPX6Sec lineages (Fig. 5.1, solid red branches), 
we indeed observe a higher 𝑑𝑁/𝑑𝑆  ratio surrounding the times where Sec was 
substituted for Cys (LR test; P = 0.002; 𝑑𝑁/𝑑𝑆 = 0.370 dashed green versus 0.279 solid 
green versus 0.217 solid red branches in Fig. 5.1). Since our analysis excluded the Sec to 
Cys change, this suggests that a burst of amino acid evolution accompanied the loss of Sec. 

5.4.1.1. Rate of Evolution Across Protein Domains 

However, the higher 𝑑𝑁/𝑑𝑆 value observed across GPX6Cys lineages is still under 1, which 
is the threshold value often taken to confidently suggest positive selection is acting to 
increase the rate of evolution. Whilst the 𝑑𝑁/𝑑𝑆 ratio reaching this threshold value of 1 
is unexpected in the case of otherwise strong constraint acting along a protein, 
particularly in the expected case of strongly conserved catalytic domains, it is possible 
that the inflated 𝑑𝑁/𝑑𝑆 value is instead a result of relaxed constraint, rather than positive 
selection necessarily acting surrounding the loss of Sec. 

To further explore if the elevated 𝑑𝑁/𝑑𝑆 ratios were in line with the  proposed positive 
selection, we repeated the previous likelihood ratio test over the three domains of the 
protein: the N-terminus, the GPX domain and the C-terminus (Mistry et al. 2021). Hence, 
we explicitly evaluate if the increased rate of evolution in the GPX6Cys lineages is focused 
to the protein’s functional region. In the case of the GPX family of proteins, the GPX 
domain and, to a lesser extent, the C-terminus domain are essential for the activity of the 
enzyme and therefore noted as the functional regions. These domains both contain two 
key catalytic residues (U/C and Q in the GPX domain; W and N in the C-terminus domains) 
which together make the catalytic tetrad conserved across all GPX6Sec and GPX6Cys 

lineages (Toppo et al. 2008; Tosatto et al. 2008; Cheng and Arnér 2017). In contrast, the 
N-terminus is not thought essential to catalysis. 

Reflecting this functional importance, we find that the GPX and N-terminus domains of 
GPX6Sec lineages to be most and least constrained, respectively, based on their 𝑑𝑁/𝑑𝑆 
ratios (Table 5.1). However, the 𝑑𝑁/𝑑𝑆 ratio of the GPX domain is, unlike the N- and C-
terminus, significantly larger in GPX6Cys lineages at the time Sec was lost (LR test; P = 2 ×
10−5 ; where 𝑑𝑁/𝑑𝑆 = 0.384 in the dashed green, 0.186 in the solid green, 0.130 in the 
solid red branches in Fig 5.1). This is in further support of increased evolutionary change 
focused in the active GPX domain surrounding the time when Sec is abandoned in 
catalysis. 
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Table 5.1: 𝒅𝑵/𝒅𝑺 Ratios Calculated Across GPX proteins. 𝑑𝑁/𝑑𝑆 ratios calculated for 
lineages where GPX6 has “Sec” (Fig. 5.1, solid red branches), has “Exchanged Sec for Cys” 
(Fig. 5.1, dashed green branches) or “Inherited Cys” (Fig. 5.1, solid green branches), and 
the number of identified convergent sites between lineages where GPX6 has gained Cys (Fig. 
5.1, dashed green branches). 𝑑𝑁/𝑑𝑆 ratios and number of identified convergent sites for the 
GPX domain in other GPX proteins. The likelihood ratio test contrasts one ratio for all 
branches (null hypothesis) to different ratios among groups of branches. P-values are 
obtained from a 𝜒2 distribution with d.f = 2.  *P < 0.05; **P < 0.005; ***P < 0.0005. In bold 
when significant and accompanied by sites under convergent evolution across GPX6Cys 
lineages. 

  
 
 

  

 

    
 
 
Convergent 
sites 

Protein Region  Sec  
 

Exchanged 
Sec for Cys 

Inherited 
Cys 

     All  P-value  Number  

            
GPX6Cys 

Full 
length 

 0.217 0.370 0.279 0.256   0.002**  22  

 N-
terminus 

 0.436 0.411 0.671 0.460   0.268  3  

 GPX 
domain 

 0.130 0.384 0.186 0.184   2x10-5***  12  

 C-
terminus 

 0.174 0.258 0.250 0.203  0.157  7  

            
            
GPX1Sec 

GPX 
domain 

 0.064 0.040 0.069 0.060  0.534  0  
GPX2Sec  0.075 0.042 0.038 0.060  0.191  0  
GPX3Sec  0.094 0.108 0.056 0.091  0.439  1  
GPX4Sec  0.062 0.007 0.203 0.061  1x10

−4***
  0  

GPX5Sec  0.233 0.145 0.219 0.212  0.227  4  
            
GPX7Cys GPX 

domain  
 0.083 0.080 0.117 0.088  0.712  0  

GPX8Cys  0.223 0.155 0.198 0.207  0.616  0  

 

 
5.4.1.2. Rate of Evolution in the GPX Family 

To validate that this observation is exclusive to GPX6Cys, and therefore indicative of faster 
evolution associated with the Sec to Cys exchange rather than increased rate of evolution 
in the GPX domain due to its overall antioxidant function (Tian et al. 2021), we compared 
the rate of evolution in this domain to other enzymes in the GPX family.  

We found no evidence of 𝑑𝑁/𝑑𝑆 inflation (Table 5.1, Table S5.2) across the GPX domain 
in the other GPX proteins for the analogous lineages where Sec was lost in GPX6 
(analogous dashed green branches from Fig 5.1). Hence, neither Cys-containing GPX 
proteins nor the lineages where Cys is lost in GPX6 are otherwise inferred to display an 
inflated 𝑑𝑁/𝑑𝑆 value.  

 In GPX4Sec, we do see a significant inflation in the  𝑑𝑁/𝑑𝑆 of the analogous lineages which 
have inherited Cys in GPX6 (analogous solid green branches from Fig 5.1) but we view 
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this as largely unrelated to the Sec to Cys exchange. Hence, we suggest that the 𝑑𝑁/𝑑𝑆 
ratio of the GPX domain in GPX6Cys surrounding the time of the loss of Sec is unusually 
large for proteins of the GPX family. 

5.4.2. Signatures of Adaptive Convergence 

We now ask whether there is evidence for adaptive convergence on individual sites 
surrounding the time of Sec loss. We first use the Branch-Site test in 𝑃𝐴𝑀𝐿 (Yang 2007) 
to ask if sites in the GPX domain show evidence for positive selection in the branches 
where Sec was lost (Fig. 5.1, dashed green branches) compared to all other branches. We 
see a significant enrichment of sites with such signatures (LR test; P = 0.046; Table S5.3), 
indicating the presence of sites in the GPX domain that show repeated changes 
(interpreted by this test as under positive selection) in GPX6Cys lineages where Sec was 
inferred to have been lost. 

However, this Branch-Site test is non-significant when testing over the entire GPX6 
protein. We reason that over more diverged lineages, epistasis limits the likelihood of the 
same sites showing repeated changes (Lunzer et al. 2010), and hence increases the 
probability of a false negative result of this test for positive selection. Indeed, we see that 
over the three most closely related lineages (branches leading to Eumuroida, rabbit and 
Cys-primate branch), this test results in a significant result over the entire protein (LR 
test; P = 0.008; Table S5.3). Most explicitly, this supports that changes of the same sites 
surround the loss of Sec in lineages with the most similar genetic backgrounds, likely due 
to the less differential role of epistasis over these lineages.  

5.4.2.1. Convergent Sites Between Cys-branches 

To more thoroughly explore which sites show repeated changes along the GPX6 
phylogeny, we identify sites which show such convergent changes using 𝐶𝑂𝑁𝑉𝐸𝑅𝐺2 
(Zhang and Kumar 1997). We see that convergence between lineages where Sec was lost 
(Fig. 5.1, dashed green branches) was the highest (Table S5.4), where the highest 
number of convergent sites are found in the GPX domain and the least in the N-terminus 
(54.6% in the GPX domain, followed by 31.8% and 13.6% in the C-terminus and N-
terminus respectively). This approximately matches the lengths of each domain (113 
sites of the GPX domain compared to the 65 and 39 sites of the C-terminus and N-
terminus, respectively) despite the highest rate of amino acid changes being observed in 
the N-terminus (Table 5.1). 

Moreover, convergence is largely subdued in the GPX6Cys lineages inheriting the loss of 
Sec (Fig. 5.1, solid green branches) and minimal in the GPX6Sec lineages, as well as for the 
other GPX proteins (Tables S5.5-11; Fig. S5.2). Further, simulations of protein evolution 
(modelled using 𝑆𝑒𝑞 − 𝑔𝑒𝑛 (Rambaut and Grassly 1997)), incorporating the accelerated 
rate of amino acid change in GPX6Cys sequences, fail to reproduce the pattern of 
convergence observed between these lineages at the time of Sec loss (Fig. S5.3). This 
remains true even when using the further accelerated rate of evolution as calculated in 
the GPX domain (Fig. S5.4). Further, these simulations also show that the few, weak 
convergence signatures in other GPX proteins are under expectations, based on their 
respective rate of amino acid change (Figs. S5.5-11). GPX3 and GPX5 are the most 
suitable GPX proteins to compare here owing to their more complete coding sequences, 
but we do stress that the overall pattern of convergence between the analogous lineages 
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to those containing Cys in GPX6 in all non-GPX6 proteins is that of much reduced 
convergence.  

We observe that the highest level of convergence is between the basal Eumuroida (Fig. 
5.1, dashed green line in box) and its genetically closer GPX6Cys lineages, particularly the 
rabbit (Fig. S5.2, Table S5.4). Of the 25 sites that change alongside the loss of Sec in the 
root of Eumuroida (Fig. 5.2, dashed green branch), 14 also show a site change in at least 
one of the other GPX6Cys lineages (Fig. 5.2, green box). These sites with convergent 
signatures are, again, mostly focused in the GPX catalytic domain (64.3%; Table S5.4) 
and enriched for signatures of positive selection that we observe along the branches 
leading to Eumuroida, rabbit and Cys-primates (as calculated by 𝑃𝐴𝑀𝐿 (Yang 2007); M-
W U test, P = 1.573𝑒 − 7), further supporting that these sites show an unusual degree of 
repeated change over these lineages. We also find an enrichment of signatures of positive 
selection, albeit weaker, in convergent sites in the GPX6Cys lineages following the loss of 
Sec (M-W U test, P=0.007) (Fig. 5.2, solid green branch),) but not preceding it, in 
agreement with adaptive convergence concentrated around the Sec to Cys exchange.  

 

 
Fig. 5.2: Topology of the phylogeny of the Eumuroida GPX6Cys clade. Eumuroida GPX6Cys 
clade given as the green branches, with the Jerboa GPX6Sec lineage, red branch, as an 
outgroup. Amino acid exchanges showing signatures of convergence (𝐶𝑂𝑁𝑉𝐸𝑅𝐺2; (Zhang 
and Kumar 1997)) across GPX6Cys lineages for each branch given in the boxes. Sites that 
have repeatedly changed in the GPX6Cys lineages towards similar or the same amino acid 
are shown in bold (green box).. Further, the * denotes sites with a posterior probability of 
positive selection in the upper 90th percentile across the GPX domain in GPX6Cys lineages, 
which are significantly enriched at the time Sec was abandoned.  
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5.4.2.2. Phylogenetic Signatures of Convergence 

Since adaptive convergence can mimic shared ancestry, it can often distort the topology 
of the species phylogeny (Edwards 2009). We find this to be the case here, with the tree 
reconstructed from the GPX domain (using 𝑃𝐻𝑌𝑀𝐿  (Guindon et al. 2010)) showing 
decreased divergence between the rabbit and Eumuroida clade (Fig. S5.12D). This is also 
observed, to a lesser extent, when reconstructing from the also catalytically relevant C-
terminus (Fig. S5.12E), but not observed with the N-terminus domain (Fig. S5.12C) nor 
with other GPX proteins (Fig. S5.13). 

If we reconstruct the mammalian phylogeny using the 15 convergent sites changing at 
the root of Eumuroida (Fig. 5.3, 14 identified in the dashed green box plus the Sec-to-Cys 
site) approximately 23-26 million years ago (Huchon et al. 2002), we see a striking 
departure from the species tree (Fig. 5.3). Despite their large divergences across the tree, 
the GPX6Cys species form two clades, as expected under the scenario of adaptive 
convergence. One clade is formed from the rabbit and Eumuroida, sharing a most recent 
common ancestry to the exclusion of all other species despite an approximately 64-
million-year divergence (Hallström and Janke 2008). The remaining GPX6Cys lineages, 
which diverged approximately 100 million years ago (Hallström and Janke 2008), are 
then grouped also within a singular clade. 

 

 

Figure 5.3: Phylogenetic tree of GPX6 reconstructed from convergent sites. Topology 
of the phylogenetic tree, with midpoint rooting, from the 14 convergent sites accompanying 
the Sec to Cys substitution (Fig. 5.2, green box) in the basal Eumuroida GPX6Cys lineage (Fig. 
5.2, dashed green branch). In sharp contrast to the species phylogeny (Fig. 5.4.1B), the 
GPX6Sec lineages now form two clades. 
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5.4.3. Catalytic Activity of GPX Proteins 

Given the observed signatures of adaptive convergence in the Eumuroida, we now focus 
on exploring the functional consequences of such changes in this lineage. We 
reconstructed three ancient proteins (Fig. 5.2), approximately dated to 23-26 million 
years ago, at the root of this clade and assessed them experimentally and computationally, 
alongside a fourth modern mouse protein.  

These proteins are: 1) the ancestral protein before the loss of Sec, Eu-GPX6Sec, taken from 
the common ancestor of the Eumuroida and Jerboa species 26 million years ago (Huchon 
et al. 2002); 2) the same ancestral protein with Cys instead of Sec, Eu-GPX6Cys; 3) the 
ancestral but later-day protein with Cys and 25 other amino acids changes, Eu-GPX6Cys+25, 
taken from the common ancestor of the Eumuroida species 23 million years ago (where 
15 of 26 these amino acid changing sites, including the Cys site, have signatures of 
adaptive convergence; Fig. 5.2); and 4) the present-day mouse protein, m-GPX6Cys+22, 
with 22 additional amino acid changes (19 substitutions and a 3 C-terminal extension) 
from Eu-GPX6Cys+25 and no clear signatures of adaptive convergence (Fig. 5.2). In the 
latter protein, we also mutated the enzyme to contain either Sec or redox inactive serine 
(Ser) for comparisons of activity with the Sec- and Cys-variants. 

The following work was carried out by our collaborators, as outlined in Section 6.3.6. 

The reconstructed ancient and modern proteins were produced as recombinant proteins 
heterologously expressed in Escherichia coli. The Sec insertion system in bacteria is non-
compatible with mammalian selenoprotein-encoding genes, hampering the production 
of proteins with Sec; thus, we employed a recently-developed method utilizing UAG 
redefined as a Sec codon in a release factor-1 deficient E. coli host strain lacking other 
UAG codons (Cheng and Arnér 2017).  

We first compared the catalytic activity of Eu-GPX6Sec and Eu-GPX6Cys with H2O2 as the 
peroxide substrate and GSH as the reducing agent, with the expectation that substitution 
of Sec for Cys would lower its turnover (Axley et al. 1991; Berry et al. 1992; Johansson et 
al. 2005; Kim et al. 2015). Indeed, the ancient Eu-GPX6Sec protein displays the classic 
peroxidase activity of Sec-containing GPX enzymes, whereas Eu-GPX6Cys, had almost no 
activity for this reaction (Fig. 5.4A). 

The large drop in catalysis from Eu-GPX6Sec to Eu-GPX6Cys coincides with signatures of 
convergent adaptive evolution along the basal Eumuroida lineage (Fig. 5.2), initially 
suggesting a functional role of the accompanying amino acid changes to the loss of Sec. 
To ask if the additional 25 additional changes along the basal Eumuroida lineage 
recovered catalysis of this protein, we then measured the catalytic activity in Eu-
GPX6Cys+25 on H2O2 with GSH. Remarkably, classic GPX activity was not recovered (Fig. 
5.4B). Finally, we turned to the extant m-GPX6Cys+22 protein (Fig. 5.4.2), which is 90% 
identical to Eu-GPX6Cys+25. Surprisingly, this Cys-containing variant also lacks classic GPX 
activity with H2O2 and GSH (Fig. 5.4C). 
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Fig. 5.4: Experimental assessment of catalytic function of GPX6 proteins. (A) 
Experimental assessment of peroxidase reaction with H2O2 as a substrate for ancient Eu-
GPX6Sec (red) and Eu-GPX6Cys (green). NADPH consumption by GR is indicated by the 
decrease in absorbance at 340 nm over time in the coupled assay (see Section 5.3.6 for 
further details). (B) Equivalent assay for ancient Eu-GPX6Cys+25 (green), which has very 
limited activity compared to human GPx1 (red) used here as a positive control. (C) 
Equivalent assay for modern m-GPX6Cys+22 (green), again with scant activity, which is 
recovered once this protein is mutated to contain Sec, m-GPX6Sec+22 (red). 
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Together, this suggests that the inferred adaptive amino acid changes along this protein’s 
evolution do not act to recapitulate Sec activity. However, this classic GPX activity is re-
acquired when Cys is mutated back into Sec, producing the synthetic m-GPX6Sec+22 variant 
(Fig. 5.4C). Indeed, our computational analysis suggests that the binding of GSH and 
overall structures of the enzymes (Fig. 5.5A) have not been adversely affected by the 
acquisition of Cys and that convergent amino acid substitutions are mainly located in the 
enzyme’s surface (Fig. 5.5B). This is the case for the other GPX6Cys lineages, suggesting 
that all GPX6Cys mammals are able to recover classic GPX function with Sec (Fig. S5.14). 

 

 

Figure. 5.5: Computational analysis of GPX6 catalytic function. A). Free energy profiles 
for the docking of glutathione to Eu-GPX6Cys (left), Eu-GPX6Cys+25 (centre) and m-
GPX6Cys+22 (right). The x-axis represents the distance between the catalytic cysteine 
sulphur atom and the ligand’s sulphur atom, while the Y-axis shows the slowest TICA 
coordinate (IC1). The vertical dashed line represents a 4Å distance, with the free energy 
minimum in the three enzymes within this reactive catalytic distance. B) Convergence 
patterns (Fig 2a) from Eu-GPX6Cys to Eu-GPX6Cys+25 (top) and from Eu-GPX6Cys+25 to m-
GPX6Cys+22 (Mouse-GPX6) (bottom). Sites converging towards similar (magenta) or the 
same (red) amino acids are shown with their sequence position. The catalytic cysteine 
(yellow) is shown with the glutathione best binding energy conformation (green) sampled 
during docking simulations.  
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5.5. Discussion 

The exchange of Sec for Cys in selenoproteins has long been linked to a reduction in 
catalytic activity, explained by the unique enzymatic properties of selenium in Sec. These 
include increased reactivity and nucleophilicity leading to improved catalysis (Arnér 
2010), broader range of substates and pH in which catalysis is possible (Gromer et al. 
2003) and perhaps increased resistance to oxidation (Snider et al. 2013). Whether these 
properties can always be reproduced by sulfur in Cys is unclear (Johansson et al. 2005) 
but the strong purifying selection on Sec sites in vertebrates (Castellano et al. 2009) 
suggests that not every reaction catalysed by Sec can be supported by Cys, at least not 
without some variation in these enzymatic properties.  

Previous studies have shown that the catalytic activity conferred by Sec can be somewhat 
recovered with compensatory mutations following its exchange to Cys, but these may not 
restore full catalytic activity, with mutations in the Thioredoxin reductase of Drosophila 
melanogaster compensating no more than 50% of the catalytic rate in the human enzyme 
with Sec (Kanzok et al. 2001; Gromer et al. 2003). Still, Sec typically has low expression 
(Liu et al. 2012), possible due to inefficiencies in the Sec recoding process (Mehdi et al. 
2013), and proteins with Cys may compensate in the way of increased expression rather 
than explicitly improving catalytic ability.  

GPX6 presents a rare opportunity to investigate the evolutionary outcomes following the 
loss of the catalytically powerful Sec, and allows us to ask whether catalytic ability is lost, 
recovered or exchanged in modern Cys-containing orthologues. Here, we reconstruct 
ancient mammalian GPX6 proteins before and after the loss of Sec, and compare the 
evolutionary activity and mutational trajectories surrounding and following the 
exchange to Cys to that of lineages that have preserved Sec. We also experimentally 
reconstruct and assay the inferred ancient proteins in the Eumuroida lineage, alongside 
the experimental assay of the modern mouse protein, and present evidence towards the 
functional trajectory of this protein over its evolution.  

5.5.1. Adaptive Convergence in 𝑮𝑷𝑿𝟔𝑪𝒚𝒔 

We demonstrate that substituting Sec for Cys in GPX6, and thereby abandoning selenium 
for sulfur in catalysis, leads to a burst of evolutionary activity in lineages sharing this 
exchange. These amino acid changes are not only concentrated in the functional domain 
but are often shared across GPX6Cys lineages, suggesting a narrow evolutionary exchange 
for GPX6 to recover functionality when losing Sec. This is likely limited by intragenic 
epistasis with linked sites, supported by increased convergence between our most closely 
related lineages, and the assumed preservation of other enzymatic properties expected 
to be important for overall activity (Fraïsse et al. 2019; Sharir-Ivry and Xia 2021). 
Importantly, such signatures of adaptive convergence are not observed in other GPX 
proteins.  

5.5.2. Function of 𝑮𝑷𝑿𝟔𝑪𝒚𝒔 

However, we also show that whilst typical GPX activity is lost with the loss of Sec, it is not 
regained with the following mutations shared over Cys-lineages. This, especially 
considering the signatures of adaptive convergence, is unlikely to reflect non-
functionality of modern GPX6Cys proteins, since the modern mouse protein has been 
shown to be expressed in the mouse embryo, testis, olfactory epithelium and brain 
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(Kryukov et al. 2003; Shema et al. 2015; Goltyaev et al. 2020) and when knocked down 
results in a deleterious neurological phenotype (Shema et al. 2015). We instead suggest 
that GPX6Cys proteins show evolutionary trajectories towards novel properties, as 
suggested to have occurred with GPX5Cys, GPX7Cys and GPX8Cys enzymes that lost Sec 
much earlier (Herbette et al. 2007; Chen et al. 2016; Trenz et al. 2021). 

Moreover, since the modern mouse GPX6Cys protein is able to recover classic GPX function 
with Sec (also computationally suggested for other mammalian GPX6Cys proteins), it is 
possible that its loss has resulted in subtly different enzymatic properties, whilst devoid 
of its classic function. This is also in agreement with what is known of the other Cys-
containing GPXs, which act on alternative substrates for peroxidation (Nguyen et al. 2011; 
Taylor et al. 2013; Buday and Conrad 2021). Only comprehensive functional 
characterizations of these individual GPX6Cys enzymes in mammals will provide insights 
into the exact functional consequences of the observed convergent evolutionary 
trajectories, be that relating to peroxidation activity or otherwise. Further work may also 
aim to resolve the likely evolutionary order of shared amino acid changes across 
mammalian GPX6Cys lineages, providing insight into the epistatic interactions underlying 
such functional evolution.  

5.5.3. Summary 

In summary, we present the first evidence for molecular convergence of changes in 
proteins when abandoning unusual selenium in catalysis for common sulfur, hence 
ablating activity. These concerted changes follow a narrow path, maintaining some 
enzymatic properties and possibly adding new ones. Because multiple non-vertebrate 
species have completely abandoned enzymatic selenium for sulfur, we wonder whether 
other convergent adaptations leading to uncharted functions remain hidden in nature. 

5.6. Conclusion 

We reconstruct the evolutionary and functional trajectories of the mammalian GPX6 
protein following its loss of its main catalytic residue selenocysteine. We show that 
signatures of adaptive convergence follow the exchange of selenocysteine for cysteine, 
but typical GPX catalytic activity is not recovered. Hence, we suggest that GPX6Cys proteins 
have gained yet unidentified abilities, acquired more recently, independently and 
convergently across lineages, instead of simply recovering the catalytic rate of their 
previous reaction.
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Chapter 6: Discussion  
6.1. Overview 

In this thesis I have explored the role of micronutrients in genetic adaptation and in 
shaping genetic diversity in modern humans and wider mammals. I have considered the 
microevolution and macroevolution of genes associated with the uptake, metabolism 
and regulation of micronutrients, with particular attention to the adaptive, local 
response of human populations to micronutrient-associated selective pressures. 

In Chapter 1 I outlined the key theories relating to adaptive genome evolution. I then 
gave an overview of modern human evolutionary history, before summarising the 
current evidence for local adaptation across different modern human populations. I 
summarised the dominant methods used to identify local genetic adaptation, and 
presented the argument for micronutrient levels in the diet as a key selective driver in 
human populations. Throughout my discussions of human local adaptation, I referenced 
the issues of sampling biases and gaps amongst populations, particularly how this can 
contribute to differential health outcomes and clinical care. Finally, I described what is 
currently known on selenoprotein evolution, outlining the functional importance and 
evolution across vertebrates of the 21st amino acid selenocysteine. 

In Chapter 2, I used a simulation framework to model local adaptation in four major 
human populations. I used this framework to test the power of different methods to 
identify the genomic signatures of positive selection on standing genetic variation, or 
“soft sweeps”, at both the monogenic and polygenic level. I showed that the allele-
differentiation statistic 𝐹𝑆𝑇  and recently developed genealogical method 𝑅𝑒𝑙𝑎𝑡𝑒 have the 
highest power to identify local adaptation by selection on standard variation, including 
at times as recent as 10kya. Conversely, I report that, as expected, the haplotype-based 
methods often have low power to detect positive selection on standing variation on our 
simulated scenarios. These simulations are, to our knowledge, the most comprehensive 
evaluation to date of the power of the 𝑅𝑒𝑙𝑎𝑡𝑒 method to identify the genomic signatures 
of positive selection, and I emphasise the promise of tree-recording methods in 
identifying more elusive signatures of positive selection. I also use these simulations to 
demonstrate the power of using an empirical neutral distribution to identify SNPs with 
signatures of positive selection according to 𝑅𝑒𝑙𝑎𝑡𝑒, and recommend this approach 
when using small sample sizes and when investigating the signatures of positive 
selection in multiple populations with different demographic histories. 

I use these simulations to inform the methodology of Chapters 3 and 4. In Chapter 3, I 
use 𝐹𝑆𝑇 and 𝑅𝑒𝑙𝑎𝑡𝑒 to investigate the signatures of natural selection in 40 diverse 
modern human populations across 276 micronutrient-associated genes for 13 
micronutrients. This is the most comprehensive analysis of micronutrient-associated 
adaptation in modern humans to date, and allows the comparison of signatures of 
positive selection at multiple levels: amongst populations, amongst micronutrient 
categories and amongst individual micronutrient-associated genes. I show the presence 
of signatures of positive selection in genes associated with multiple different 
micronutrients, and across many geographic areas. I identify the populations and 
candidate genes with the strongest evidence for having undergone micronutrient-
associated genetic adaptation, and show that some of these proposed adaptations are in 
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agreement with micronutrient soil levels and dietary deficiencies in contemporary 
populations. I find no evidence for classic polygenic models of positive selection, and 
instead infer that selection driven by micronutrient-associated selective pressures is 
more likely oligogenic than polygenic in nature. Ultimately, I propose that micronutrient 
levels in the diet are an important selective force in modern humans, and have 
contributed to the shaping of our genetic variation.  

Chapter 4 is a natural extension to Chapter 3, where I focus on five micronutrients to 
discuss in detail the strength of evidence of positive selection, geographic breadth of 
putative positive selection, inferred polygenicity of the selective response, and 
relevance to contemporary human health issues. I identify the most likely genes which 
have mediated adaptive responses to micronutrient-associated pressures amongst 
populations, and identify the cases where the proposed genes differ between 
geographically separated populations. I use a combination of methods to explore the 
potential origin and timing of positive selection acting on these micronutrient-
associated genes, and present evidence for a zinc-associated adaptation event in the 
Middle-East swiftly following the Out-of-Africa migration. I do identify a small number 
of cases where micronutrient-associated adaptation more likely occurred around the 
Neolithic, and propose that the selective drivers behind micronutrient-associated 
adaptation are likely not limited to soil composition.  

Finally, in Chapter 5 I explore the role of the micronutrient selenium in the evolution of 
a mammalian protein. We present the first evidence for molecular convergent evolution 
in proteins when exchanging selenocysteine for cysteine, inferring a narrow mutational 
path when losing the selenium-containing amino acid. Alongside suggested adaptive 
convergence, we show that there is also a loss of classic catalytic function when losing 
selenocysteine, and hypothesise that new enzymatic properties have been acquired by 
the GPX6 protein upon selenium loss. We propose the development of a novel functions 
across this selenoprotein, and further suggest the potential role of adaptive convergent 
evolution of non-vertebrate selenoproteins.   

6.2. Local Adaptation in Modern Humans 

Local adaptation has been inferred to have contributed to the modest genetic variation 
of our species.  Identifying unknown instances of local adaptation in modern humans 
will thus contribute to a more comprehensive understanding of the evolutionary origin 
of human genetic diversity, particularly of diversity that contributes to population 
differences, which is particularly important when differentiated alleles may contribute 
to health inequality in contemporary populations. Here, I focus on, in my view, the most 
important open questions and future directions of the field, in light of the current 
literature and work developed in this thesis. 

6.2.1. Selection on Standing Variation 

The importance of selection on standing variation in modern humans has long been 
discussed (Hermisson and Pennings 2005, 2017; Prezeworski et al. 2005; Pritchard et 
al. 2010). However, with few recent exceptions (Schrider and Kern 2016, 2017), the 
confident inference of its role in human evolutionary history has been limited by the 
difficulty in identifying its individual genomic targets.  

The low effective mutation rate in modern humans places a natural limitation on 
adaptation via de novo mutation (Hahn 2018). Segregating alleles, maintained by 
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balancing selection or drift, may more commonly mediate novel selective pressures, 
often encountered by humans when migrating to new environments. More than this, the 
extensive history of admixture in modern humans has allowed the frequent exchange of 
genetic variants that, whilst not truly novel, may be novel to the population receiving 
gene flow and thereby also facilitate local adaptation (but will not be addressed in detail 
here; (Ahlquist et al. 2021; Gopalan et al. 2022)). Hence, much of human local 
adaptation may be represented in the genome by subtle signatures of positive selection, 
particularly those driven by selection acting on alleles already segregating in a 
population, and therefore remain unidentified and undocumented. It must now be 
considered that the current bank of accepted or strongly supported examples of human 
local adaptation is considerably biased towards those conferred by de novo mutations 
(Pritchard et al. 2010; Schrider and Kern 2016; Rees et al. 2020) and, by extension, does 
not accurately represent the breadth of local adaptation in modern humans.  

Thus, it is clear that the methods aiming to identify positive selection and consequent 
adaptation in human populations, especially with the aim of identifying new targets of 
positive selection, should be designed to consider SSV (not least because a wealth of 
methods already exist to identify selection on de novo mutation; (Weir and Cockerham 
1984; Tajima 1989; Voight et al. 2006; Sabeti et al. 2007; Yi et al. 2010; Ferrer-Admetlla 
et al. 2014; Yassin et al. 2016; Crawford et al. 2017; Schmidt et al. 2019; Szpiech et al. 
2021)). This likely include methods that, unlike classic summary statistics, do not 
simplify evolutionary history into a singular statistic value, but rather consider a more 
“full perspective”. This may be in the way of integrating many patterns (including 
summary statistics) across loci, as in ABC or machine learning methods (Peter et al. 
2012; Key et al. 2014, 2018; Pybus et al. 2015; Schrider and Kern 2016, 2017, 2018). 
Alternatively, this may be by considering the full history of a locus as in tree-recording 
methods (in reality, history as inferred up to the point of the common ancestor of 
sampled individuals; (Kelleher et al. 2019; Speidel et al. 2019; Hubisz and Siepel 
2020b)). The key similarity in methods more suited to identifying SSV is their utilisation 
of the complexity of evolutionary patterns, which I suggest is the most appropriate 
avenue for identifying the weaker, and more variable, signatures of selection on 
standing variation.    

Identifying SSV in human local adaptation likely also requires developments tangential 
to the field of genomics. Given the subtly of the signatures of SSV, and the increased 
difficulty in differentiating those signatures out from the neutral background of the 
genome, it is easy to imagine that the evidence for SSV is often weaker and less 
convincing. Thus, the importance of providing additional support to proposed selection 
on standing variation by other means, or additional orthogonal evidence, cannot be 
over-emphasised. This may be by identifying the same signatures of positive selection in 
different datasets or by use of different methods (although, some methods may be very 
closely related), or by functional assessment of the putatively adaptive variant, as 
addressed in the following section (Section 6.2.3). Perhaps the strongest supporting 
evidence for local adaptation is that of correlation of genomic signatures to proposed 
environmental factors, which independently may be viewed as evidence for positive 
selection (see Section 6.2.2 for further discussion).  

In terms of complex trait adaptation through polygenic adaptation, which may also be 
in-part driven by SSV, additional supporting evidence for adaptation may be given by 
the polygenic signatures of positive selection concentrated within a functional gene set 
or inferred directional change of a trait in a given population (Daub et al. 2013; Speidel 
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et al. 2019). However, the genetic architecture of complex traits may vary over 
populations (Mathieson 2021), in turn resulting in potentially different genes mediating 
adaptation amongst populations. Here, the importance of including diverse and under-
studied populations in studies of genomic adaptation is further emphasised (addressed 
more fully in Section 6.2.5).  

6.2.2. Environment as a Selective Driver 

Correlations between signatures of positive selection and environmental factors can 
provide further support for claims of human local adaptation, given that the correlation 
is more extreme than what could be explained by shared ancestry (Fumagalli et al. 
2011; Schlebusch et al. 2015; Key et al. 2018). For candidate genes demonstrating 
signatures of positive selection along a geographic cline, a correlation between such 
genomic signatures and an environmental factor along the same cline may indicate a 
likely selective pressure.  

However, whilst some environmental factors are well-recorded across the globe (such 
as temperature, precipitation or UV, as available at www.worldclim.org), global 
documentation of other environmental factors relevant to human adaptation is often 
lacking. This includes soil composition and micronutrient content, as addressed in 
Chapters 3 & 4. In these cases, data (if even available) must often be integrated over 
different studies to provide a more global view of environmental variation, which is not 
always possible or reliable if data has come from studies of different designs or using 
different methods of data recording.  

Moreover, the available data is often only at the resolution of the country or continental 
region, and does not represent fine-scale environmental variation. Local adaptation in 
modern humans to soils containing toxic levels of arsenic has been suggested in a 
singular region of Argentina (Schlebusch et al. 2015), and other such fine-scale 
adaptation to local environment, soil or otherwise, likely exist in other populations. 
However, without high-resolution environmental data across different environments, it 
is difficult to 1) form hypotheses of human local adaptation in response to environment; 
2) contextualise identified signatures of positive selection; 3) validate signatures of 
positive selection (particularly important when signatures are more subtle). Therefore, 
limited environmental data can now be thought to actively restrict progress in our 
understanding the adaptive response of humans to their local environment.  

A more comprehensive understanding of environmental factors throughout the globe 
may also identify where genetic variation, or genetic adaptations, are shared by 
populations experiencing the same environmental selective pressures. Adaptive 
convergence has previously been suggested in humans in response to high elevation (Yi 
et al. 2010; Bigham and Lee 2014; Huerta-Sánchez et al. 2014; Crawford et al. 2017) and 
in response to low-iodine soils in Chapters 3 & 4. Given how the same environmental 
selective pressures may be experienced across geographically disparate populations, 
and given the high degree of sharing of genetic variants amongst modern human 
populations, one can also hypothesise that other examples of convergent adaptation are 
likely to exist in humans.  
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6.2.3. Functional Evidence of Signatures of Positive 

Selection 

Signatures of positive selection, however confidently identified, can be difficult to 
interpret without a clear adaptive function. Even if correlations exist between 
environmental factors and signatures of positive selection, it remains important to 
verify that putatively adaptive alleles are indeed driving an adaptive phenotype. Again, 
such functional information is especially important when considering weak signatures 
of positive selection (more so when environmental data is not available).  

Given that many genes play a role in different functions, it is difficult to confidently link 
signatures of positive selection with the proposed adaptive phenotype without full 
functional assessment of the putatively selected allele. An overview of promising 
functional approaches is given in Chapter 1 (Section 1.6.6) but includes integrating 
transcriptomics, metabolic and microbiotic datasets; high-throughput assays and 
potentially stem-cell technology (Kilpinen et al. 2017; Downes et al. 2019; Hwang et al. 
2019; Zhou et al. 2022). 

However, these functional approaches must also consider that the function of putatively 
adaptive alleles have the potential to differ amongst different genetic backgrounds. This 
is particularly pertinent when considering complex trait adaptation, where many alleles 
conferring adaptation may differ amongst different populations (Pritchard et al. 2010; 
Boyle et al. 2017; Mathieson 2021). Hence, I yet again emphasise the need for including 
more diverse cohorts of populations not only in studies of local adaptation, but also in 
those explicitly considering molecular function. 

6.2.4. Importance of Studies over Diverse Populations 

In recent years, there has been an explosion of genomic data of modern humans, 
including that from ancient DNA (Racimo et al. 2015; Wohns et al. 2022). Despite this, 
there is still a clear bias towards certain populations in studies of human genetic 
diversity, particularly towards Europeans in GWAS (Sirugo et al. 2019). This imbalanced 
representation of human populations has no doubt led to a biased representation of the 
genetic diversity of modern humans and the failure to capture a non-trivial portion of 
the genetic variation within our species. This makes the aim of understanding the origin 
and function of the genetic diversity of modern humans impossible, and does not allow 
a full fully informed evaluation of the contribution of genetic variation to population 
phenotypic differences, including those of traits relevant to health. In the dawn of 
personalised and genomic medicine, the failure to document and understand the genetic 
variation of all populations has the potential to substantially contribute to 
contemporary health inequalities (outlined in Chapter 1; Section 1.4.3).  

Indeed, multiple well-supported examples of local adaptation in modern humans have 
direct contemporary health consequences (Kwiatkowski 2005; Genovese et al. 2010; 
Wang et al. 2012; Clemente et al. 2014; Mathieson et al. 2015a; Minster et al. 2016; Key 
et al. 2018).  This includes adaptations that 1) increase the risk of various metabolic 
disorders in a contemporary environment; 2) cause various inherited disorders; 3) 
result in differences in the efficacy of treatment for non-inherited disorders (see 
Section 1.4.2 for further details and discussion). 
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More thorough population sampling may allow the identification of other examples of 
local adaptation pertinent to modern health, potentially mediated by novel adaptive 
variants in currently undocumented or poorly sampled populations. Moreover, 
increased sample size of poorly sampled populations will increase the power of 
population genetics methods to identify variants mediating adaptation, and will further 
facilitate an understanding of 1) the role of local selective drivers in human adaptation; 
2) the genomic response to selective pressures; and 3) the relationship between genetic 
variation and adaptive phenotype (particularly important when such an adaptive 
phenotype can affect disease risk or progression).  

Finally, the inclusion of under-represented populations in GWAS is particularly vital in 
providing a deeper understanding of polygenic adaptation and the genetic architecture 
of complex phenotypes. Complex traits are expected to be driven by variants that may 
differ amongst populations (Pritchard et al. 2010; Mathieson 2021) but many of the 
alleles inferred to carry a risk for a complex disease phenotype are currently inferred 
through Euro-centric GWAS and therefore cannot be expected to be replicated across 
diverse populations (Sirugo et al. 2019). Thus, we currently lack reliable estimates of 
risk for many complex diseases amongst many populations which, if used in clinical 
care, can result in poorly informed medical decisions and increased health risk. It is 
clear that this disproportionally affects under-studied populations (Sirugo et al. 2019) 
and is the strongest incentive to including more diverse populations in any study 
exploring complex traits or polygenic adaptation.  

6.2.5. Summary 

Progress in the field of local adaptation, in my view, relies on three main factors. The 
first is the development of methodology integrating entire (or more complete) 
evolutionary patterns to identify more subtle signatures of positive selection, including 
selection on standing variation. This will improve our understanding of human genetic 
variation and identify currently undocumented or only putative cases of local 
adaptation. The second is the integration of complimentary data, such as environment 
and functional data, which will supply the necessary support for currently 
undocumented or only putative examples of local adaptation. The final is the most 
important factor, and can be considered the rate-limiting step across all aspects of local 
adaptation progress: increased sampling of undocumented and understudied 
populations. This is not only necessary to understand the genetic diversity of our 
species, including that driven by local adaptation, but is fundamental in understanding 
the relationship between genetic variation and medically-relevant traits amongst global 
populations.  

6.3. Selenium in Macroevolution 

Selenium has long been known to play a key catalytic role in selenoproteins, being the 
defining element of their constituent amino acid, selenocysteine (Chambers et al. 1986; 
Stadtman 1996). The evolutionary constraint acting on the selenocysteine in 
selenoproteins, and the consequent low exchangeability between selenocysteine and 
cysteine in these proteins, has also suggested selenium as an important element 
throughout vertebrate evolution (Castellano et al. 2009), Indeed, in Chapter 5, we show 
that losing selenium may drive a mammalian protein to develop currently unknown 
functions, rather than performing the same functions available to a protein containing 
selenium.  
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This then drives a collection of key questions pertaining to the function of this Cys-
containing protein and selenoproteome diversity, and how that may be related to the 
loss of a selenium-containing amino acid. If there is indeed a completely novel function 
in GPX6 following the loss of Sec, we can also ask: do other selenoproteins compensate 
for the loss of classic activity? Alternatively, if the Cys-containing GPX6 is able to 
continue peroxidation by acting on different substrates as suggested in other 
selenoproteins losing selenocysteine (Nguyen et al. 2011; Taylor et al. 2013; Buday and 
Conrad 2021), one can ask: do the losses of Sec in those proteins drive the same level of 
convergence as observed in GPX6 (as described in Chapter 5)? This is only a small set 
of open questions, but the answers to these (and others) rely on 1) further functional 
assessment of Cys-containing selenoproteins and 2) a greater understanding of the 
genetic diversity of the other selenoproteins in mammalian lineages where 
selenoproteins have been lost or maintained.  

Understanding the role of selenium in macroevolution should also include non-
mammalian taxa. It has been suggested that the higher levels of selenium in the aquatic 
environment of fish has increased their dependence on this rare element (Sarangi et al. 
2017), ultimately resulting in their large selenoproteome (Castellano et al. 2009; 
Mariotti et al. 2012). It can be expected that evolutionary pathways and functional 
consequences following the loss of selenocysteine (and selenium) may differ from that 
of mammals: the larger dependence on environmental selenium may have locked this 
taxon into maintaining selenoprotein function, and less novel functions may evolve in 
comparison to mammals. Alternatively, the larger selenoproteome may result in more 
successful functional compensation by selenoproteins maintaining Sec, and the 
development of new functions may be less constrained than inferred in mammals. 
Again, understanding the loss or gain of protein function following the loss of selenium 
requires both extensive functional analysis and an understanding of the genetic 
diversity of the entire selenoproteome of taxa, rather than individual selenoproteins.  

6.4. Thesis Conclusion 

In this thesis, I have explored the role micronutrients have played in both micro and 
macroevolution, particularly in driving local adaptation in modern humans. Ultimately, I 
present work that demonstrates the importance of considering micronutrients in the 
evolution of our species and across wider biology. Finally, I highlight the recent 
developments that present the most promise in furthering our understanding of human 
local adaptation, and outline the key limiting factors.  
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Appendices 
 

Chapter 2: Supplementary Material 

Figure S2.1: The empirical distribution of recombination rate modelled from chromosome 
15 from the HGDP dataset (Bergström et al. 2020). The gamma and exponential distributions 
fitted (blue and red, respectively).  

 

Figure S2.2: Example of the site frequency spectrum calculated from the VCF files given at 
the end of the burn-in simulation. Appears as expected in humans. 
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Fig. S2.3: Further analysis investigating selection in European populations. Top panel shows 
the percentage of tagged variants that are the SNP with the strongest evidence of selection across 
timepoints in the European population for A) 𝑖𝐻𝑆, 𝑛𝑆𝐿 and 𝑅𝑒𝑙𝑎𝑡𝑒 and B) the cross-population 
statistics 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿 and 𝐹𝑆𝑇  (given for three population comparisons, where AFR=Africa; 
EUR=Europe; EAS=East Asia; AMR=America). Bottom panel shows the average distance between 
the tagged variant and the top-ranking SNP for C) 𝑖𝐻𝑆, 𝑛𝑆𝐿 and 𝑅𝑒𝑙𝑎𝑡𝑒 and D) the cross-
population statistics 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿 and 𝐹𝑆𝑇. 

 

Fig. S2.4: Further analysis investigating selection in East Asian populations. Top panel 
shows the percentage of tagged variants that are the SNP with the strongest evidence of 
selection across timepoints in the East Asian population for A) 𝑖𝐻𝑆, 𝑛𝑆𝐿 and 𝑅𝑒𝑙𝑎𝑡𝑒 and B) 
the cross-population statistics 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿 and 𝐹𝑆𝑇  (given for three population 
comparisons, where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). Bottom 
panel shows the average distance between the tagged variantsand the top-ranking SNP for 
C) 𝑖𝐻𝑆, 𝑛𝑆𝐿 and 𝑅𝑒𝑙𝑎𝑡𝑒 and D) the cross-population statistics 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿 and 𝐹𝑆𝑇. 
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Fig. S2.5: Further analysis investigating selection in American populations. Top panel shows 
the percentage of tagged variants that are the SNP with the strongest evidence of selection across 
timepoints in the American population for A) 𝑖𝐻𝑆, 𝑛𝑆𝐿 and 𝑅𝑒𝑙𝑎𝑡𝑒 and B) the cross-population 
statistics 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿 and 𝐹𝑆𝑇 (given for three population comparisons, where AFR=Africa; 
EUR=Europe; EAS=East Asia; AMR=America). Bottom panel shows the average distance between 
the tagged variant and the top-ranking SNP for C 𝑖𝐻𝑆, 𝑛𝑆𝐿 and 𝑅𝑒𝑙𝑎𝑡𝑒 and D) the cross-population 
statistics 𝑋𝑃𝐸𝐻𝐻, 𝑋𝑃𝑛𝑆𝐿 and 𝐹𝑆𝑇 
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Fig. S2.6: The proportion of selected SNPs identified as under selection. Partitioned 
by the DAF of the tagged variant, for A) 𝑅𝑒𝑙𝑎𝑡𝑒 and B) 𝐹𝑆𝑇 (given for three population 
comparisons, where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). Given for 
selection acting at 40kya for the European (blue), East Asian (green) and American 
(yellow) populations.  There are few cases of low DAF (<20%) given that the simulations 
condition on the tagged variant being at 10% frequency or higher, and these results may 
therefore be noisy at lower DAF bins. 
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Fig. S2.7: The percentage of gene sets identified as being under selection according 
to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating 𝑹𝒆𝒍𝒂𝒕𝒆 values. For the gene set sizes of 10, 20, 40 
and 60. Shown for selection acting on four different timepoints on four different 
populations (as shown).  
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Fig. S2.8: The percentage of gene sets identified as being under selection according 
to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating 𝒊𝑯𝑺 values. For the gene set sizes of 10, 20, 40 
and 60. Shown for selection acting on four different timepoints on four different 
populations (as shown).  
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Fig. S2.9: The percentage of gene sets identified as being under selection according 
to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating 𝒏𝑺𝑳 value. For the gene set sizes of 10, 20, 40 and 
60. Shown for selection acting on four different timepoints on four different populations 
(as shown).  
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Fig. S2.10: The percentage of gene sets identified as being under selection according 
to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating 𝑭𝑺𝑻 values. For the gene set sizes of 10, 20, 40 and 
60. Shown for selection acting on four different timepoints on four different populations 
for three population comparisons (given for three population comparisons, where 
AFR=Africa, EUR=Europe, EAS=East Asia, AMR=America). 
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Fig. S2.11: The percentage of gene sets identified as being under selection according to the 
𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating 𝑿𝑷𝑬𝑯𝑯 values. For the gene set sizes of 10, 20, 40 and 60. 
Shown for selection acting on four different timepoints on four different populations for three 
population comparisons (given for three population comparisons, where AFR=Africa, EUR=Europe, 
EAS=East Asia, AMR=America). 
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Fig. S2.12: The percentage of gene sets identified as being under selection according 
to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating 𝑿𝑷𝒏𝑺𝑳 values. For the gene set sizes of 10, 20, 40 
and 60. Shown for selection acting on four different timepoints on four different 
populations for three population comparisons (given for three population comparisons, 
where AFR=Africa, EUR=Europe, EAS=East Asia, AMR=America).  
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Fig. S2.13: The percentage of gene sets identified as being under selection, 
according to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating 𝑹𝒆𝒍𝒂𝒕𝒆 values partitioned by 
selection coefficient of the tagged variant. Shown for selection acting on gene set sizes 
of 10, 20, 40 and 60, acting at 1kya, 5kya, 10kya, 40kya on four different populations.  
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Fig. S2.14: The percentage of gene sets identified as being under selection, 
according to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating African 𝑭𝑺𝑻 values partitioned by 
selection coefficient of the tagged variant. Shown for selection acting on the African 
population at 1kya, 5kya, 10kya, 40kya , on gene set sizes of 10, 20, 40 and 60. Given for 
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia, 
AMR=America. 
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Fig. S2.15: The percentage of gene sets identified as being under selection, 
according to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating European 𝑭𝑺𝑻 values partitioned by 
selection coefficient of the tagged variant. Shown for selection acting on the European 
population at 1kya, 5kya, 10kya, 40kya , on gene set sizes of 10, 20, 40 and 60. Given for 
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia, 
AMR=America. 
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Fig. S2.16: The percentage of gene sets identified as being under selection, 
according to 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating East Asian 𝑭𝑺𝑻 values partitioned by 
selection coefficient of the tagged variant. Shown for selection acting on the East Asian 
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for 
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia, 
AMR=America. 
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Fig. S2.17: The percentage of gene sets identified as being under selection, 
according to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating American 𝑭𝑺𝑻 values partitioned by 
selection coefficient of the tagged variant.. Shown for selection acting on the American 
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for 
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia, 
AMR=America. 
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Fig. S2.18: The percentage of gene sets identified as being under selection, 
according to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating 𝑹𝒆𝒍𝒂𝒕𝒆 values, partitioned by 
proportion of gene set under selection. Shown for selection acting on gene set sizes of 
10, 20, 40 and 60, acting at 1kya, 5kya, 10kya, 40kya on four different populations. 
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Fig. S2.19: The percentage of gene sets identified as being under selection, 
according to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating African 𝑭𝑺𝑻 values partitioned by 
proportion of gene set under selection. Shown for selection acting on the African 
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for 
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia, 
AMR=America. 
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Fig. S2.20: The percentage of gene sets identified as being under selection, 
according to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating European 𝑭𝑺𝑻 values partitioned by 
proportion of gene set under selection. Shown for selection acting on the European 
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for 
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia, 
AMR=America. 
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Fig. S2.21: The percentage of gene sets identified as being under selection, 
according to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating East Asian 𝑭𝑺𝑻 values partitioned by 
proportion of gene set under selection. Shown for selection acting on the East Asian 
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for 
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia, 
AMR=America. 
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Fig. S2.22: The percentage of gene sets identified as being under selection, 
according to the 𝑺𝑼𝑴𝑺𝑻𝑨𝑻 method integrating American 𝑭𝑺𝑻 values partitioned by 
proportion of gene set under selection. Shown for selection acting on the American 
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for 
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia, 
AMR=America. 
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Chapter 3: Supplementary Material 
 
Notes 
 
Note S3.1: The code used to identify MA-gene sets with SUMSTAT summed values in 
the 5% tail of the background distribution. As generated from the SUMSTAT summed 
values generated from 1,000 neutral gene sets containing pMA-genes.  

 
import pandas as pd 

import numpy as np 

from scipy.stats import norm 

 

pops=["BantuSouthAfrica_BantuKenya", "Biaka","Yoruba", 

"Mandenka", "Mbuti", "San", "Bedouin", "Druze", "Mozabite", 

"Palestinian", "Adygei", "Basque", "BergamoItalian_Tuscan", 

"French", "Orcadian", "Russian", "Sardinian", "Balochi", 

"Brahui", "Burusho", "Hazara", "Kalash", "Makrani", "Pathan", 

"Sindhi", "Uygur", "Dai_Lahu", "Han", "Japanese", 

"Oroqen_Hezhen_Daur", "Naxi_Yi", "NorthernHan_Tu", 

"She_Miao_Tujia", "Xibo_Mongolian", "Yakut", "Maya", "Pima", 

"Surui_Karitiana", "Bougainville", 

"PapuanHighlands_PapuanSepik"] 

 

newfile=[] 

for x in pops: 

  dist = 

pd.read_csv("/home/ssd/jrees/significant/relate/sumstat/all/{}

_neutral_summed".format(x), header=None) 

  mean = np.mean(dist[0]) 

  std = np.std(dist[0]) 

   

  

file=pd.read_csv("/home/ssd/jrees/significant/relate/sumstat/a

ll_micros_summed_pop", header=None, sep=" ") 

  score = file.loc[file[0]=="{}".format(x)][1].values[0] 

  prob = norm(mean, std).cdf(score) 

  newfile.append(prob)  

   

file['Probability'] = newfile 

np.savetxt("/home/ssd/jrees/significant/relate/sumstat/all_mic

ros_summed_pop", file, fmt = '%s %f %f',header="Population Sum 

Probability", comments="") 
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Tables 
Table S3.1: All micronutrient-associated genes used in this study associated with 
the uptake, metabolism or regulation of 13 micronutrients. When genes are 
associated with multiple micronutrients, their most supported association given in 
“Micronutrient” with secondary or tertiary associations given in “Other Associations”. 
Genes removed following the positive mask (Bergström et al., 2020) indicated in the 
“Removed During Pruning” column. Gene regions as taken from 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 (Yates et al., 
2020) and suggested from the literature (“Reference”). 

 

Micronutrie
nt 

Gene Name  Gene 
Abbreviati

on 

Chr
. 

Gene 
Start 

Gene End Other 
Associatio

ns 

Evidenc
e of 

selectio
n 

Remove
d 

During 
Pruning 

Primary Ref 

Selenium Glutathione Peroxidase 1 GPX1 3 49357176 49358358  Yes  (White et al., 
2015) 

Selenium Glutathione Peroxidase 2 GPX2 14 64939152 64942905    (White et al., 
2015) 

Selenium Glutathione Peroxidase 3 GPX3 5 15102043
8 

15102899
2 

 Yes  (White et al., 
2015) 

Selenium Glutathione Peroxidase 4 GPX4 19 1103926 1106791    (White et al., 
2015) 

Selenium Glutathione Peroxidase 6 GPX6 6 28503296 28528215    (White et al., 
2015) 

Selenium Iodothyronine Deiodinase 1 DIO1 1 53891239 53911086 iodine   (White et al., 
2015) 

Selenium Iodothyronine Deiodinase 2 DIO2 14 80197526 80387757 iodine Yes  (White et al., 
2015) 

Selenium Iodothyronine Deiodinase 3 DIO3 14 10156135
1 

10156345
2 

iodine   (White et al., 
2015) 

Selenium Selenoprotein F SELENOF 1 86862445 86914424    (White et al., 
2015) 

Selenium Selenoprotein H SELENOH 11 57741250 57743554    (White et al., 
2015) 

Selenium Selenoprotein I SELENOI 2 26308547 26395891    (White et al., 
2015) 

Selenium Selenoprotein K SELENOK 3 53884417 53891962    (White et al., 
2015) 

Selenium Selenoprotein M SELENOM 22 31104772 31120069    (White et al., 
2015) 

Selenium Selenoprotein N SELENON 1 25800176 25818221    (White et al., 
2015) 

Selenium Selenoprotein O SELENOO 22 50200979 50217616    (White et al., 
2015) 

Selenium Selenoprotein T SELENOT 3 15060287
5 

15063044
5 

   (White et al., 
2015) 

Selenium Selenoprotein V SELENOV 19 39515113 39520686    (White et al., 
2015) 

Selenium Selenoprotein W SELENOW 19 47778585 47784686    (White et al., 
2015) 

Selenium Methionine Sulfoxide 
Reductase B1  

MSRB1 16 1938210 1943326    (White et al., 
2015) 

Selenium Thioredoxin Reductase 1 TXNRD1 12 10421577
9 

10435030
7 

   (White et al., 
2015) 

Selenium Thioredoxin Reductase 2 TXNRD2 22 19875517 19941820    (White et al., 
2015) 

Selenium Thioredoxin Reductase 3 TXNRD3 3 12660705
9 

12665512
4 

   (White et al., 
2015) 

Selenium Glutathione Peroxidase 5 GPX5 6 28525881 28534955   Yes (White et al., 
2015) 

Selenium Glutathione Peroxidase 7 GPX7 1 52602371 52609051    (White et al., 
2015) 

Selenium Glutathione Peroxidase 8 GPX8 5 55160167 55167297    (White et al., 
2015) 

Selenium Selenoprotein P SELENOP 5 42799880 42887392    (White et al., 
2015) 

Selenium LDL Receptor Related 
Protein 8 

LRP8 1 53242364 53328469    (White et al., 
2015) 

Selenium LDL Receptor Related 
Protein 2 

LRP2 2 16912710
9 

16936253
4 

   (White et al., 
2015) 

Selenium Selenocysteine Lyase SCLY 2 23806092
4 

23809941
3 

   (White et) 
al., 2015) 

Selenium Selenium Binding Protein 1  SELENBP1 1 15136430
4 

15137270
7 

copper Yes  (White et al., 
2015) 

Selenium Phosphoseryl-TRNA Kinase PSTK 10 12295438
1 

12299751
3 

   (White et al., 
2015) 

Selenium O-phosphoseryl-tRNA(Sec) 
Selenium Transferase  

SEPSECS 4 25120014 25160449    (White et al., 
2015) 
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Selenium Seryl-TRNA Synthetase 2 SARS2 19 38915266 38930763    (White et al., 
2015) 

Selenium TRNA-SeC (Anticodon TCA) 
1-1 

TRU-TCA1-1 19 45478602 45478687    (White et al., 
2015) 

Selenium TRNA-SeC (Anticodon TCA) 
2-1 

TRU-TCA2-1 22 44150657 44150742    (White et al., 
2015) 

Selenium TRNA-SeC (Anticodon TCA) 
3-1 

TRU-TCA3-1 17 40117300 40117373    (White et al., 
2015) 

Selenium CUGBP Elav-Like Family 
Member 1 

CELF1 11 47465933 47565569  Yes  (White et al., 
2015) 

Selenium Eurokaryotic Elongation 
Factor, Selenocysteine-TRNA 

Specific  

EEFSEC 3 12815348
1 

12840864
6 

   (White et al., 
2015) 

Selenium Eukaryotic Translation 
Initiation factor 4A3 

EIF4A3 17 80134369 80147151    (White et al., 
2015) 

Selenium ELAV like RNA Binding 
Protein 1 

ELAVL1 19 7958573 8005659    (White et al., 
2015) 

Selenium Ribosomal Protein L30 RPL30 8 98024851 98046469    (White et al., 
2015) 

Selenium SECIS Binding Protein 2 SECISBP2 9 89318500 89359663 iodine   (White et al., 
2015) 

Selenium Selenophosphate synthetase 
1 

SEPHS1 10 13317428 13348298    (White et al., 
2015) 

Selenium TRNA Selenocystein 1 
Associated Protein 1 

TRNAU1AP 1 28553085 28578545    (White et al., 
2015) 

Selenium Exportin 1 XPO1 2 61477849 61538626    (White et al., 
2015) 

Selenium A-Kinase Anchoring Protein 
6 

AKAP6 14 32329298 32837684    (Engelken et 
al., 2016) 

Selenium Fatty Acid Binding Protein 1 FABP1 2 88122982 88128062    (Engelken et 
al., 2016) 

Selenium Calcium-activated Potassium 
Channel Subfamily M Alpha-

1 

KCNMA1 10 76869601 77638369    (Engelken et 
al., 2016) 

Selenium Protein kinase CGMP-
Dependent 1 

PRKG1 10 50990888 52298423    (Engelken et 
al., 2016) 

Selenium Selenoprotein S SELENOS 15 10127081
7 

10127750
0 

 Yes  (Engelken et 
al., 2016) 

Selenium Selenoprotein Synthetase 2 SEPHS2 16 30443631 30445874  Yes  (Engelken et 
al., 2016) 

Selenium Sarcoglycan Delta SGCD 5 15587034
4 

15676778
8 

   (Engelken et 
al., 2016) 

Selenium Thioredoxin TXN 9 11024381
0 

11025650
7 

   (Engelken et 
al., 2016) 

Selenium Aldo-Keto Reductase Family 
7 Like 

AKR7L 1 19265982 19274194    (Wishart et 
al., 2007) 

Selenium Cystathionine Beta-Synthase CBS 21 43053191 43076943   Yes (Dib et al., 
2019) 

Selenium Arylsulfatase B ARSB 5 78777209 78986087    (Dib et al., 
2019) 

Selenium LHFPL Tetraspan Subfamily 
Member 2 

LHFPL2 5 78485215 78770021    (Dib et al., 
2019) 

Selenium Dimethylglycine 
Dehydrogenase  

DMGDH 5 78997564 79236038    (Dib et al., 
2019) 

Selenium Betaine-Homocysteine S-
Methyltransferase 2 

BHMT2 5 79069767 79090069    (Dib et al., 
2019) 

Selenium Betaine-Homocysteine S-
Methyltransferase 2 

BHMT 5 79111809 79132288    (Dib et al., 
2019) 

Selenium Junction Mediating And 
Regulatory Protein, P53 

Cofactor 

JMY 5 79236131 79327211    (Dib et al., 
2019) 

Copper Antioxidant 1 Copper 
Chaperone  

ATOX1 5 15174231
6 

15177253
2 

   (Engelken et 
al., 2016) 

Copper ATPase Copper Transporting 
Alpha 

ATP7A X 77910656 78050395    (Engelken et 
al., 2016) 

Copper ATPase Copper Transporting 
Beta 

ATP7B 13 51930436 52012125    (Engelken et 
al., 2016) 

Copper Copper Metabolism Domain 
Containing 1 

COMMD1 2 61888724 62147247    (Engelken et 
al., 2016) 

Copper X-linked Inhibitor Of 
Apoptosis  

XIAP X 12385972
4 

12391397
9 

   (Wishart et 
al., 2007) 

Copper Solute Carrier Family 31 
Member 1 

SLC31A1 9 11322154
4 

11326449
2 

   (Engelken et 
al., 2016) 

Copper Solute Carrier Family 31 
Member 2 

SLC31A2 9 11315097
6 

11316414
0 

   (Engelken et 
al., 2016) 

Copper Superoxide Dismutase 1 SOD1 21 31659666 31668931    (Engelken et 
al., 2016) 

Copper Coiled-Coil Domain 
Containing 27 

CCDC27 1 3746460 3771645    (Dib et al., 
2019) 

Iron 3-Hydroxybutyrate 
Dehydrogenase 2 

BDH2 4 10307759
2 

10309987
0 

   (Engelken et 
al., 2016) 

Iron Cytochrome D Reductase 1 CYBRD1 2 17152224
7 

17155812
9 

   (Engelken et 
al., 2016) 

Iron Endothelial PAS Domain 
Protein 1 

EPAS1 2 46293667 46386697  Yes  (Engelken et 
al., 2016) 

Iron Ferrochelatase FECH 18 57544377 57586702    (Engelken et 
al., 2016) 
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Iron Ferritin Heavy Chain 1 FTH1 11 61959718 61967634    (Engelken et 
al., 2016) 

Iron Ferritin Light Chain FTL 19 48965309 48966879    (Engelken et 
al., 2016) 

Iron Hepcidin Antimicrobial 
Peptide 

HAMP 19 35280716 35285143    (Engelken et 
al., 2016) 

Iron Hephaestin HEPH X 66162549 66268867    (Engelken et 
al., 2016) 

Iron Homeostatic Iron Regulator HFE 6 26087281 26098343  Yes  (Engelken et 
al., 2016) 

Iron Hemojuveline BMP Co-
Receptor 

HJV 1 14601746
8 

14603674
6 

   (Engelken et 
al., 2016) 

Iron Hypoxia Inducible Factor 1 
Subunit Alpha 

HIF1A 14 61695513 61748259    (Engelken et 
al., 2016) 

Iron Lactotransferrin LTF 3 46435645 46485234    (Engelken et 
al., 2016) 

Iron Ras Homolog Family 
Member A 

RHOA 3 49359145 49412998    (Engelken et 
al., 2016) 

Iron Solute Carrier Family 17 
Member 1 

SLC17A1 6 25782915 25832052    (Engelken et 
al., 2016) 

Iron Solute Carrier Family 40 
Member 1 

SLC40A1 2 18956059
0 

18958375
8 

   (Engelken et 
al., 2016) 

Iron STEAP3 Metalloreductase STEAP3 2 11922383
1 

11926565
2 

   (Engelken et 
al., 2016) 

Iron Transferrin TF 3 13374604
0 

13379664
1 

   (Engelken et 
al., 2016) 

Iron Transferrin Receptor 2 TFR2 7 10062041
6 

10064277
9 

   (Engelken et 
al., 2016) 

Iron Transferrin Receptor TFRC 3 19602718
3 

19608209
6 

   (Engelken et 
al., 2016) 

Iron Transmembrane Serine 
Protease 6 

TMPRSS6 22 37065436 37109713    (Engelken et 
al., 2016) 

Iron Iron-Sulfur Cluster Assembly 
Enzyme 

ISCU 12 10856258
2 

10856938
4 

   (Engelken et 
al., 2016) 

Iron Lipcalin 2 LCN2 9 12814907
1 

12815345
3 

   (Engelken et 
al., 2016) 

Iron Ferritin Mitochondrial FTMT 5 12185188
2 

12185283
3 

   (Wishart et 
al., 2007) 

Iron Aconitase 1 ACO1 9 32384603 32454769    (Muckenthal
er et al., 
2008) 

Iron Aconitase 2 ACO2 22 41469117 41528989    (Muckenthal
er et al., 
2008) 

Iron 5’-Aminolevulinate Synthase 
2 

ALAS2 X 55009055 55030977    (Muckenthal
er et al., 
2008) 

Iron Solute Carrier Family 46 
Member 1 

SLC46A1 17 28394642 28407197    (Muckenthal
er et al., 
2008) 

Iron Solute Carrier Family 11 
Member 1 

SLC11A1 2 21838202
9 

21839689
4 

zinc   (Fishilevich 
et al., 2017) 

Iron Solute Carrier Family 48 
Member 1 

SLC48A1 12 47753916 47782751    (Fishilevich 
et al., 2017) 

Iron Solute Carrier Family 11 
Member 2 

SLC11A2 12 50979401 
51028566 

 magnesium   (Muckenthal
er et al., 
2008) 

Iron HBS1 Like Translational 
GTPase 

HBS1L 6 13496037
8 

13510305
6 

   (Dib et al., 
2019) 

Iron MYB Proto-Oncogene MYB 6 13518130
8 

13521917
3 

   (Dib et al., 
2019) 

Iron Phosphatidylinositol-4,5-
Bisphosphate 3-Kinase 

Catalytic Subunit Gamma 

PIK3CG 7 10686527
8 

10690898
0 

   (Dib et al., 
2019) 

Iron Cilia and Flagella Associated 
Protein 251 

CFAP251 12 12191859
2 

12200392
7 

   (Dib et al., 
2019) 

Iron RHO Guanine Nucleotide 
Exchange Factor 3 

ARHGEF3 3 56727418 57079329    (Dib et al., 
2019) 

Iron TAO Kinase 1 TAOK1 17 29390464 29551904    (Dib et al., 
2019) 

Iron Ceruloplasmin CP 3 14916241
0 

14922182
9 

copper   (Fishilevich 
et al., 2017) 

Iron Pantothenate Kinase 2 PANK2 20 3888839 3929882    (Fishilevich 
et al., 2017) 

Iron Phospholipase A2 Group 6 PLA2G6 22 38111495 38214778    (Fishilevich 
et al., 2017) 

Iron Chromosome 19 Open 
Reading Frame 12 

C19ORF12 19 29698886 29715789    (Fishilevich 
et al., 2017) 

Iron Fatty Acid 2-Hydroxylase FA2H 16 74712955 74774831    (Fishilevich 
et al., 2017) 

Iron WD Repeat Domain 45 WDR45 X 49074433 49101170    (Fishilevich 
et al., 2017) 

Iron ATPase Cation Transporting 
13A2 

ATP13A2 1 16985958 17011928 manganese   (Fishilevich 
et al., 2017) 

Magnesium Solute Carrier Family 41 
Member 1 

SLC41A1 1 20578909
4 

20581374
8 

   (Engelken et 
al., 2016) 
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Magnesium Transient Receptor Potential 
Cation Channel Subfamily M 

Member 6 

TRPM6 9 74722495 74888094    (Houillier, 
2014) 

Magnesium Claudin 16 CLDN16 3 19032254
1 

19041214
3 

   (Houillier, 
2014) 

Magnesium Claudin 19 CLDN19 1 42733093 42740254    (Houillier, 
2014) 

Magnesium Potassium Voltage-Gated 
Channel Subfamily A 

Member 1 

KCNA1 12 4909905 4918256    (Houillier, 
2014) 

Magnesium Cyclin and CBS Domain 
Divalent Metal Cation 
Transport Mediator 2 

CNNM2 10 10291829
4 

10309022
2 

   (Houillier, 
2014) 

Magnesium FXYD Domain Containing Ion 
Transport Regulator 2 

FXYD2 11 11780084
4 

11782869
8 

   (Houillier, 
2014) 

Magnesium Mitochondrial E3 Ubiquitin 
Protein Ligase 1 

MUL1 1 20499448 20508151    (Houillier, 
2014) 

Magnesium Doublecortin Domain 
Containing 1 

DCDC1 11 30830369 31369810    (Houillier, 
2014) 

Magnesium Shroom Family Member 3 SHROOM3 4 76435229 76783253    (Houillier, 
2014) 

Magnesium MDS1 and EVI1 Complex 
Locus 

MECOM 3 16908349
9 

16966377
5 

   (Houillier, 
2014) 

Magnesium Fibroblast Growth Factor 
Receptor 2 

FGFR2 10 12147833
2 

12159845
8 

   (Houillier, 
2014) 

Magnesium 3’-Phosphoadenosine 5’-
Phosphosulfate Synthase 2 

PAPSS2 10 87659613 87747705    (Houillier, 
2014) 

Magnesium ADP Ribosylation Factor like 
GTPase 15 

ARL15 5 53883942 54310582    (Houillier, 
2014) 

Magnesium Epidermal Growth Factor EGF 4 10991288
3 

11001376
6 

   (Fishilevich 
et al., 2017) 

Zinc G Protein-Coupled Receptor 
39 

GPR39 2 13241680
5 

13264658
2 

   (Engelken et 
al., 2016) 

Zinc Interleukin 6 IL6 7 22725884 22732002    (Engelken et 
al., 2016) 

Zinc Interleukin 6 Receptor IL6R 1 15440519
3 

15446945
0 

   (Engelken et 
al., 2016) 

Zinc Metallothionein 1A MT1A 16 56638666 56640087    (Engelken et 
al., 2016) 

Zinc Metallothionein 1E MT1E 16 56625475 56627112    (Engelken et 
al., 2016) 

Zinc Metallothionein 1F MT1F 16 56657731 56660698    (Engelken et 
al., 2016) 

Zinc Metallothionein 1G MT1G 16 56666730 56668065    (Engelken et 
al., 2016) 

Zinc Metallothionein 1H MT1H 16 56669814 56671129    (Engelken et 
al., 2016) 

Zinc Metallothionein 2A MT2A 16 56608584 56609497    (Engelken et 
al., 2016) 

Zinc Metallothionein 4 MT4 16 56565073 56568957    (Engelken et 
al., 2016) 

Zinc Metal Response Element 
Binding Transcription Factor 

1 

MTF1 1 37809574 37859592    (Engelken et 
al., 2016) 

Zinc Metal Response Element 
Binding Transcription Factor 

2 

MTF2 1 93079235 93139079    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 30 
Member 1 

SLC30A1 1 21157156
8 

21157916
1 

   (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 30 
Member 2 

SLC30A2 1 26037252 26046118    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 30 
Member 3 

SLC30A3 2 27253684 27275817    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 30 
Member 4 

SLC30A4 15 45479606 45522755    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 30 
Member 5 

SLC30A5 5 69093949 69131069    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 30 
Member 6 

SLC30A6 2 32165841 32224379    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 30 
Member 7 

SLC30A7 1 10089607
6 

10098175
7 

   (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 30 
Member 8 

SLC30A8 8 11695027
3 

11717671
4 

   (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 30 
Member 9 

SLC30A9 4 41990502 42090461  Yes  (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 1 

SLC39A1 1 15395909
9 

15396818
4 

   (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 10 

SLC39A10 2 19557597
7 

19573770
2 

   (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 11 

SLC39A11 17 72645949 73092712    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 12 

SLC39A12 10 17951839 18043292    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 13 

SLC39A13 11 47407132 47416496    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 2 

SLC39A2 14 20999255 21001871    (Engelken et 
al., 2016) 



Appendices 
 

 258 

Zinc Solute Carrier Family 39 
Member 3 

SLC39A3 19 2732204 2740028    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 4 

SLC39A4 8 14440974
2 

14441684
4 

 Yes  (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 5 

SLC39A5 12 56230049 56237846  Yes  (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 6 

SLC39A6 18 36108531 36129385    (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 7 

SLC39A7 6 33200445 33204439  Yes Yes (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 8 

SLC39A8 4 10225104
1 

10243125
8 

magnesium, 
manganese 

Yes  (Engelken et 
al., 2016) 

Zinc Solute Carrier Family 39 
Member 9 

SLC39A9 14 69398015 69462390    (Engelken et 
al., 2016) 

Zinc Signal Transducer and 
Activator of Transcription 3 

STAT3 17 42313324 42388568    (Engelken et 
al., 2016) 

Zinc Carbonic Anhydrase 1 CA1 8 85327608 85379014    (Dib et al., 
2019) 

Zinc Carbonic Anhydrase 2 CA2 8 85463968 85481493    (Dib et al., 
2019) 

Zinc Carbonic Anhydrase 3 CA3 8 85373436 85449040    (Dib et al., 
2019) 

Zinc Carbonic Anhydrase 13 CA13 8 85220587 85284073    (Dib et al., 
2019) 

Zinc Secretory Carrier Membrane 
Protein 5 

SCAMP5 15 74957219 75021495    (Dib et al., 
2019) 

Zinc KLF Transcription Factor 8 KLF8 X 56232356 56291531    (Dib et al., 
2019) 

Zinc Zinc Finger X-Linked 
Duplicated A 

ZXDA X 57906708 57910820    (Dib et al., 
2019) 

Zinc Zinc Finger X-Linked 
Duplicated B 

ZXDB X 57591652 57597545    (Dib et al., 
2019) 

Sodium Sodium Channel Epithelial 1 
Subunit Alpha 

SCNN1A 12 6346843 6377730 potassium   (Engelken et 
al., 2016) 

Sodium Sodium Channel Epithelial 1 
Subunit Beta 

SCNN1B 16 23278231 23381294 potassium   (Rossier et 
al., 2002) 

Sodium Sodium Channel Epithelial 1 
Subunit Delta 

SCNN1D 1 1280436 1292029 potassium   (Rossier et 
al., 2002) 

Sodium Sodium Channel Epithelial 1 
Subunit Gamma 

SCNN1G 16 23182745 23216883 potassium   (Rossier et 
al., 2002) 

Sodium Nuclear Receptor Subfamily 
3 Group C Member 2 

NR3C2 4 14807876
2 

14844469
8 

   (Rossier et 
al., 2002) 

Sodium Angiotensinogen  AGT 1 23070252
3 

23071412
2 

   (Rossier et 
al., 2002) 

Sodium FXYD Domain Containing Ion 
Transport Regulator 4 

FXYD4 10 43371636 43376335    (Rossier et 
al., 2002) 

Sodium FXYD Domain Containing Ion 
Transport Regulator 3 

FXYD3 19 35115879 35124324    (Rossier et 
al., 2002) 

Sodium FXYD Domain Containing Ion 
Transport Regulator 1 

FXYD1 19 35138808 35143109    (Rossier et 
al., 2002) 

Sodium FXYD Domain Containing Ion 
Transport Regulator 5 

FXYD5 19 35154730 35169881    (Rossier et 
al., 2002) 

Sodium FXYD Domain Containing Ion 
Transport Regulator 7 

FXYD7 19 35143250 35154302    (Rossier et 
al., 2002) 

Sodium Sodium Voltage-Gated 
Channel Beta Subunit 3 

SCN3B 11 12362918
7 

12365524
4 

   (Rossier et 
al., 2002) 

Sodium NEDD4 E3 Ubiquitin Protein 
Ligase 

NEDD4 15 55826922 55993746    (Rossier et 
al., 2002) 

Sodium Serum/Glucocorticoid 
Regulated Kinase 1 

SGK1 6 13416924
6 

13431811
2 

   (Rossier et 
al., 2002) 

Sodium Serine/Threonine Kinase 39 STK39 2 16795402
0 

16824759
5 

   (Freitas, 
2018) 

Sodium G Protein-Coupled Receptor 
Kinase 4 

GRK4 4 2963571 3040760    (Freitas, 
2018) 

Sodium Solute Carrier Family 4 
Member 5 

SLC4A5 2 74216242 74343414    (Freitas, 
2018) 

Calcium Transient Receptor Potential 
Cation Channel Subfamily M 

Member 2 

TRPM2 21 44350163 44443081    (Engelken et 
al., 2016) 

Calcium Transient Receptor Potential 
Cation Channel Subfamily V 

Member 5 

TRPV5 7 14290810
1 

14293374
6 

  Yes (Kovacs et 
al., 2013) 

Calcium Transient Receptor Potential 
Cation Channel Subfamily V 

Member 6 

TRPV6 7 14287120
8 

14288574
5 

 Yes Yes (Hughes et 
al., 2008) 

Calcium Calcium Sensing Receptor CASR 3 12218366
8 

12229162
9 

magnesium, 
phosphorus 

  (Houillier, 
2014) 

Calcium B-Box and SPRY Domain 
Containing 

BSPRY 9 11334954
1 

11337123
3 

   (Khanal & 
Nemere, 

2008) 

Calcium Regulator of G Protein 
Signalling 2 

RGS2 1 19280903
9 

19281227
5 

   (Khanal & 
Nemere, 

2008) 
Calcium Solute Carrier Family 8 

Member 1 
SLC8A1 2 40097270 40611053    (Khanal & 

Nemere, 
2008) 
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Calcium Solute Carrier Family 8 
Member 2 

SLC8A2 19 47428017 47471893    (Khanal & 
Nemere, 

2008) 

Calcium Solute Carrier Family 8 
Member 3 

SLC8A3 14 70044215 70189070    (Khanal & 
Nemere, 

2008) 
Calcium ATPase Plasma Membrane 

Ca2+ Transporting 1 
ATP2B1 12 89588049 89709300    (Freitas, 

2018) 

Calcium ATPase Plasma Membrane 
Ca2+ Transporting 2 

ATP2B2 3 10324023 10708007    (Khanal & 
Nemere, 

2008) 
Calcium ATPase Plasma Membrane 

Ca2+ Transporting 3 
ATP2B3 X 15351767

6 
15358293

9 
   (Khanal & 

Nemere, 
2008) 

Calcium ATPase Plasma Membrane 
Ca2+ Transporting 4 

ATP2B4 1 20362656
1 

20374408
1 

   (Khanal & 
Nemere, 

2008) 

Calcium Parathyroid Hormone  PTH 11 13492054 13496181 potassium   (Khanal & 
Nemere, 

2008) 
Calcium Cytochrome P450 Family 24 

Subfamily A Member 1 
CYP24A1 20 54153446 54173986    (Dib et al., 

2019) 

Calcium GATA Binding Protein 3 GATA3 10 8045378 8075198    (Dib et al., 
2019) 

Calcium Diacylglycerol Kinase Delta DGKD 2 23335450
7 

23347210
4 

   (Dib et al., 
2019) 

Calcium Von Willebrand Factor A 
Domain Containing 8 

VWA8 13 41566835 41961120    (Dib et al., 
2019) 

Calcium Glucokinase Regulator  GCKR 2 27496839 27523684    (Dib et al., 
2019) 

Iodine Thyroid Hormone Receptor 
Interactor 4 

TRIP4 15 64387748 64455303  Yes  (Herráez et 
al., 2009) 

Iodine Iodotyrosine Deiodinase  IYD 6 15036889
2 

15040596
9 

 Yes  (Herráez et 
al., 2009) 

Iodine Solute Carrier Family 5 
Member 5 

SLC5A5 19 17871945 17895174 sodium   (Engelken et 
al., 2016) 

Iodine Solute Carrier Family 16 
Member 10 

SLC16A10 6 11108750
3 

11123119
4 

   (The UniProt 
Consortium, 

2023) 
Iodine Thyroid Hormone Receptor 

Alpha 
THRA 17 40058290 40093867    (The UniProt 

Consortium, 
2023) 

Iodine Thyroid Hormone Receptor 
Beta 

THRB 3 24117153 24495756    (The UniProt 
Consortium, 

2023) 

Iodine Solute Carrier Family 16 
Member 2 

SLC16A2 X 74421493 74533917    (The UniProt 
Consortium, 

2023) 
Iodine Thyroid Stimulating 

Hormone Receptor  
TSHR 14 80954989 81146302    (The UniProt 

Consortium, 
2023) 

Iodine Solute Carrier Organic Anion 
Transporter Family Member 

1C1 

SLCO1C1 12 20695355 20753386    (The UniProt 
Consortium, 

2023) 

Iodine Thyroid Peroxidase TPO 2 1374066 1543711    (Wishart et 
al., 2007) 

Iodine Transthyretin TTR 18 31557010 31599021    (Wishart et 
al., 2007) 

Iodine Serpin Family A Member 7 SERPINA7 X 10603243
5 

10603872
7 

   (Wishart et 
al., 2007) 

Iodine Solute Carrier Family 3 
Member 2 

SLC3A2 11 62856102 62888875    (Wishart et 
al., 2007) 

Iodine Sulfotransferase Family 6B 
Member 1 

SULT6B1 2 37167820 37196598    (Wishart et 
al., 2007) 

Chloride Chloride Voltage-Gated 
Channel 3 

CLCN3 4 16961263
3 

16972367
3 

   (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Voltage-Gated 
Channel 4 

CLCN4 X 10156945 10237660    (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Voltage-Gated 
Channel 5 

CLCN5 X 49922596 50099235    (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Voltage-Gated 
Channel 6 

CLCN6 1 11806096 11848079    (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Voltage-Gated 
Channel 7 

CLCN7 16 1444934 1475084    (Stauber & 
Jentsch, 
2013) 

Chloride CF Transmembrane 
Conductance Regulator 

CFTR 7 11728712
0 

11771597
1 

   (Stauber & 
Jentsch, 
2013) 

Chloride Aquaporin 6 AQP6 12 49967194 49977139    (Stauber & 
Jentsch, 
2013) 

Chloride Anoctamin 3 ANO3 11 26188842 26663289    (Stauber & 
Jentsch, 
2013) 
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Chloride Anoctamin 4 ANO4 12 10071752
6 

10112864
1 

   (Stauber & 
Jentsch, 
2013) 

Chloride Anoctamin 5 ANO5 11 21799934 22283357    (Stauber & 
Jentsch, 
2013) 

Chloride Anoctamin 6 ANO6 12 45215987 45440404    (Stauber & 
Jentsch, 
2013) 

Chloride Anoctamin 7 ANO7 2 24118850
9 

24122537
7 

   (Stauber & 
Jentsch, 
2013) 

Chloride Bestrophin 1 BEST1 11 61950063 61965515    (Stauber & 
Jentsch, 
2013) 

Chloride G Protein-Coupled Receptor 
89A 

GPR89A 1 14560798
8 

14567065
0 

  Yes (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Intracellular 
Channel 1 

CLIC1 6 31730581 31739763   Yes (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Intracellular 
Channel 2 

CLIC2 X 15527621
1 

15533465
7 

   (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Intracellular 
Channel 3 

CLIC3 9 13699460
8 

13699656
8 

   (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Intracellular 
Channel 4 

CLIC4 1 24745382 24844321    (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Intracellular 
Channel 5 

CLIC5 6 45880827 46080348    (Stauber & 
Jentsch, 
2013) 

Chloride Chloride Intracellular 
Channel 6 

CLIC6 21 34669389 34718227    (Stauber & 
Jentsch, 
2013) 

Chloride Solute Carrier Family 17 
Member 7 

SLC17A7 19 49429401 49442360    (Stauber & 
Jentsch, 
2013) 

Chloride Solute Carrier Family 12 
Member 2 

SLC12A2 5 12808376
6 

12818967
7 

   (Wishart et 
al., 2007) 

Chloride Chloride Voltage-Gated 
Channel Kb 

CLCNKB 1 16043736 16057308    (Jain et al., 
2013) 

Chloride Barttin CLCNK Type 
Accessory Subunit Beta 

BSND 1 54998933 55017172    (Jain et al., 
2013) 

Potassium Potassium Inwardly 
Rectifying Channel 

Subfamily J Member 10 

KCNJ10 1 15999865
1 

16007016
0 

calcium   (Jain et al., 
2013) 

Potassium Cytochrome P450 Family 11 
Subfamily B Member 1 

CYP11B1 8 14287235
6 

14287984
6 

   (Jain et al., 
2013) 

Potassium Cytochrome P450 Family 11 
Subfamily B Member 2 

CYP11B2 8 14291055
9 

14291784
3 

   (Jain et al., 
2013) 

Potassium Hydroxysteroid 11-Beta 
Dehydrogenase 2 

HSD11B2 16 67430652 67437553 sodium   (Jain et al., 
2013) 

Potassium Solute Carrier Family 12 
Member 1 

SLC12A1 15 48178438 48304078 sodium, 
chloride 

  (Jain et al., 
2013) 

Potassium Potassium Inwardly 
Rectifying Channel 

Subfamily J Member 1 

KCNJ1 11 12883631
5 

12886737
3 

   (Jain et al., 
2013) 

Potassium Solute Carrier Family 12 
Member 3 

SLC12A3 16 56865207 56915850 calcium, 
magnesium 

  (Jain et al., 
2013) 

Phosphorus Solute Carrier Family 34 
Member 1 

SLC34A1 5 17737923
5 

17739884
8 

calcium   (Chang & 
Anderson, 

2017) 

Phosphorus Solute Carrier Family 34 
Member 2 

SLC34A2 4 25648011 25678748    (Chang & 
Anderson, 

2017) 

Phosphorus Solute Carrier Family 34 
Member 3 

SLC34A3 9 13723075
7 

13723655
5 

calcium   (Chang & 
Anderson, 

2017) 

Phosphorus Fibroblast Growth Factor 23  FGF23 12 4368227 4379712    (Chang & 
Anderson, 

2017) 

Phosphorus Polypeptide N-
Acetylgalactosaminyltransfe

rase 3 

GALNT3 2 16574758
8 

16579465
9 

   (Chang & 
Anderson, 

2017) 

Phosphorus Alkaline Phosphatase, 
Biomineralization 

Associated 

ALPL 1 21509397 21578410    (Dib et al., 
2019) 

Phosphorus NBPF Member 3 NBPF3 1 21440128 21485005    (Dib et al., 
2019) 

Phosphorus Phosphodiesterase 7B PDE7B 6 13585170
1 

13619557
4 

   (Dib et al., 
2019) 

Phosphorus LEM Domain Nuclear 
Envelope Protein 2 

LEMD2 6 33771202 33789130    (Dib et al., 
2019) 

Phosphorus Motilin MLN 6 33794673 33804003    (Dib et al., 
2019) 

Phosphorus Inositol 1,4,5-Triphosphate 
Receptor Type 3 

ITPR3 6 33620365 33696574    (Dib et al., 
2019) 
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Phosphorus Mitochondrial Matrix Import 
Factor 23  

CCDC58 3 12235959
1 

12238323
1 

   (Dib et al., 
2019) 

Phosphorus Fibroblast Growth Factor 6 FGF6 12 4428155 4445614    (Dib et al., 
2019) 

Phosphorus RAD51 Associated Protein 1 RAD51AP1 12 4538798 4560048    (Dib et al., 
2019) 

Manganese Superoxide Dismutase 2 SOD2 6 15966906
9 

15974518
6 

   (Engelken et 
al., 2016) 

Manganese Solute Carrier Family 30 
Member 10 

SLC30A10 1 21968542
7 

21995864
7 

zinc, 
magnesium 

  (Dib et al., 
2019) 

Manganese Cytochrome P450 12c1 12C1 3 13085059
5 

13101671
2 

   (Horning et 
al., 2015) 

Manganese Solute Carrier Family 39 
Member 14 

SLC39A14 8 22367249 22434129 zinc   (Horning et 
al., 2015) 

Molybdenum Major Facilitator 
Superfamily Domain 

Containing 5 

MFSD5 12 53251251 53254406    (Engelken et 
al., 2016) 

Molybdenum Molybdenum Cofactor 
Synthesis 1 

MOCS1 6 39899578 39934551    (Reiss & 
Hahnewald, 

2011) 

Molybdenum Molybdenum Cofactor 
Synthesis 2 

MOCS2 5 53095679 53110063    (Reiss & 
Hahnewald, 

2011) 

Molybdenum Molybdenum Cofactor 
Sulfurase 

MOCOS 18 36187497 36272157    (Fishilevich 
et al., 2017) 

Molybdenum Gephyrin GPHN 14 66507407 67181803    (Reiss & 
Hahnewald, 

2011) 

 
 
 

Table S3.2: All micronutrient-associated genes which are less than 10kbp (“Nature 
of Overlap” = “±𝟏𝟎𝒌𝒃𝒑”) or have overlapping gene regions as given by 𝒆𝒏𝒔𝒆𝒎𝒃𝒍𝒆 

(“Nature of Overlap” = “𝒆𝒏𝒔𝒆𝒎𝒃𝒍𝒆”) 
 

Overlapping 
Genes 

   Overlap (bp) Nature of 
Overlap 

GPx1 (selenium) RHOA (iron) 787 ±10𝑘𝑏𝑝 
LHFPL2 (selenium) ARSB (selenium) 7188 ±10𝑘𝑏𝑝 
LEMD2 (phosphorus) MLN (phosphorus) 5543 ±10𝑘𝑏𝑝 
MT1F (zinc) MT1G (zinc) 6032 ±10𝑘𝑏𝑝 
MT1G (zinc) MT1H (zinc) 1749 ±10𝑘𝑏𝑝 
FXYD1 (sodium) FXYD7 (sodium) 141 ±10𝑘𝑏𝑝 
FXYD7 (sodium) FXYD5 (sodium) 428 ±10𝑘𝑏𝑝 

DMGDH (selenium) BHMT2 (selenium) 166271 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 
GPx5 (selenium) GPx6 (selenium) 2334 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 
CA1 (zinc) CA3 (zinc) 5578 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 

BEST1 (chloride) FT1H (zinc) 5797 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 
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Table S3.3: Details on the allele frequency distribution of all micronutrient-
associated gene sets. The number of SNPs over all genes in a given gene set (calculated 
from the Yoruba population),  mean, median and standard deviation of the allele 
frequency distribution of all micronutrient-associated gene sets, the difference to that of 
the background (allele frequency distribution of chr1 of the Yoruba population; mean=
0.345, median= 0.227, standard deviation= 0.290), and the significance calculated when 
comparing these distributions (unpaired Wilcoxon test).  
 
 

 Number 
of SNPs 

Mean Difference to 
Background 
Mean 

Median Difference 
to 
Background 
Median 

Standard 
Deviation 

Difference to 
Background 
Standard 
Deviation 

Significance 

Selenium 17614 0.337 -0.008 0.227 0.000 0.282 -0.008 0.057 

Copper 1409 0.315 -0.030 0.182 -0.045 0.279 -0.011 0.000854
3 

Iron 6476 0.343 -0.002 0.227 0.000 0.292 0.002 0.6131 

Magnesium 7862 0.356 0.011 0.227 0.000 0.293 0.003 0.03418 

Zinc 7755 0.356 0.011 0.227 0.000 0.297 0.007 0.1861 

Sodium 5016 0.327 -0.018 0.205 -0.023 0.284 -0.006 0.001019 

Calcium 6978 0.344 -0.001 0.205 -0.023 0.293 0.003 0.6302 

Iodine 4035 0.351 0.006 0.250 0.023 0.290 0.000 0.2436 

Chloride 8514 0.337 -0.008 0.227 0.000 0.281 -0.009 0.9225 

Potassium 1682 0.342 -0.003 0.250 0.023 0.276 -0.014 0.1838 

Phosphorus 2662 0.344 -0.001 0.205 -0.023 0.294 0.004 0.8334 

Manganese 2152 0.348 0.003 0.205 -0.023 0.289 -0.001 0.08396 

Molybdenum 1390 0.427 0.082 0.273 0.045 0.305 0.015 2.20E-16 

 
 
 

Table S3.4: Micronutrient genes enriched for SNP-density. Enrichment given as over 
95% quantile of the cumulative density function drawn from the distribution formed from 
generated neutral gene regions.  
 

Micronutrient Gene SNPs Calculated CDF 

Selenium SELENOO 1083 0.99776 

Iron EPAS1 2829 0.97643 

Zinc MT1A 584 0.97112 

Zinc MT1F 631 0.98755 

Sodium, Potassium SCNN1D 807 0.95443 

Calcium SLC8A1 13155 0.98523 

Chloride CLCN7 1388 0.99038 
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Table S3.5: The mean of the CDF position for each micronutrient gene set.  The 
significance of the difference given from a normal distribution centred at 0.5 (s.d.=0.25;  
wilcox-test).  Drawn from the distribution formed from generated neutral gene regions.  
 

Micronutrient Mean Significance 

Selenium 0.52796 0.09295 

Copper 0.46716 0.3253 

Iron 0.53543 0.6813 

Magnesium 0.50585 0.9858 

Zinc 0.48324 0.454 

Sodium 0.59495 0.09706 

Calcium 0.63266 0.01754 

Iodine 0.50401 0.8116 

Chloride 0.58836 0.1014 

Potassium 0.54300 0.5248 

Phosphorus 0.61845 0.03211 

Manganese 0.41585 0.3144 

Molybdenum 0.532746 0.6065 

 
 
 

Table S3.6: Populations used in this study.  Defined by (Bergström et al., 2020). 
 

Metapopulation Group name Populations Sample Size 

Africa Mbuti Mbuti 13 

 Biaka Biaka 22 

 San San 6 

 Bantu-speaking Bantu(Kenya), Bantu(SouthAfrica) 19 

 Yoruba Yoruba 22 

 Mandenka Mandenka 22 

Middle-East Mozabite Mozabite 27 

 Palestinian Palestinian 46 

 Druze Druze 42 

 Bedouin Bedouin 46 

Europe BergamoItalian-Tuscan Bergamo_Italian, Tuscan 21 

 Russian Russian 25 

 Adygei Adygei 16 

 Orcadian Orcadian 15 

 French French 28 

 Basque Basque 23 

 Sardinian Sardinian 28 

 Russian Russian 25 
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East-Asia Xibo-Mongolian Mongolian, Xibo 18 

 NorthernHan-Tu NorthernHan, Tu 20 

 Naxi-Yi Naxi, Yi 18 

 She-Miao-Tujia She, Miao, Tujia 29 

 Oroqen-Hezhen-Daur Oroqen, Hezhen, Daur 27 

 Dai-Lahu Dai, Lahu 17 

 Han Han 33 

 Japanese Japanese 27 

 Yakut Yakut 25 

Central-South Asia Hazara  Hazara 19 

 Uygur Uygur 10 

 Makrani Makrani 25 

 Sindhi Sindhi 24 

 Balochi Balochi 24 

 Brahui Brahui 25 

 Burusho Barusho 25 

 Kalash Kalash 22 

 Pathan Pathan 24 

Oceania Papuan Papuan (Sepik), Papuan(Highlands) 17 

 Bougainville Bougainville 11 

Americas Pima Pima 13 

 Maya Maya 21 

 Surui-Karitiana Surui, Karitiana 20 

 
 
Table S3.7: Micronutrient-associated gene sets with significantly different summed 
selection values. According to the gene set method 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 integrating 𝑅𝑒𝑙𝑎𝑡𝑒 
selection values. Partitioned by significance.  
 

Micronutrient Population Significance  

Phosphorus Pima 0.000013 < 0.0001 

Sodium Adygei 0.000029  
Potassium French 0.000322 < 0.001 

Iodine Maya 0.000325  
Sodium Brahui 0.00115 <0.01 

Potassium BergamoItalian_Tuscan 0.002963  
Sodium Bougainville 0.003455  

Potassium Bougainville 0.003722  

Sodium Russian 0.004935  
Sodium Pathan 0.004951  
Sodium San 0.0057  
Sodium Orcadian 0.005823  
Sodium French 0.006133  
Iodine Mozabite 0.006333  

Calcium Mozabite 0.007348  

Iodine Russian 0.009037  

Sodium NorthernHan_Tu 0.010827 <0.05 
Sodium BergamoItalian_Tuscan 0.01141  
Sodium Basque 0.011611  

Potassium NorthernHan_Tu 0.014566  
Sodium Dai_Lahu 0.01592  
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Potassium Russian 0.017106  

Potassium Druze 0.018052  

Calcium Sardinian 0.018387  
Calcium Pima 0.018616  
Sodium Sindhi 0.021039  

Potassium Xibo_Mongolian 0.021087  
Selenium Xibo_Mongolian 0.02171  

Magnesium Surui_Karitiana 0.023716  
Potassium Mandenka 0.02482  

Potassium Sindhi 0.027062  

Potassium Palestinian 0.033025  
Potassium Mozabite 0.033461  
Manganese Naxi_Yi 0.034193  

Zinc Naxi_Yi 0.03529  
Potassium Sardinian 0.035508  

Phosphorus Yoruba 0.036495  

Iodine Orcadian 0.036859  

Copper Sardinian 0.037657  
Calcium Japanese 0.038349  

Potassium Kalash 0.038729  
Phosphorus PapuanHighlands_PapuanSepik 0.04091  

Calcium Maya 0.042026  
Potassium Pathan 0.044689  

Calcium Pathan 0.044822  

Potassium Yoruba 0.045052  

Phosphorus Pathan 0.046086  
Calcium Orcadian 0.047252  

 
 
 

Table S3.8: Micronutrient-associated gene sets with significantly different summed 
selection values. According to the gene set method 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 integrating 𝐹𝑆𝑇 selection 
values. Partitioned by significance.  
 
 

Micronutrient Population Significance  
Potassium BantuSouthAfrica_BantuKenya 0.000043 < 0.0001 

Sodium Makrani 0.00048 < 0.001 
Calcium Mandenka 0.000912  
Calcium Biaka 0.001264 < 0.01 

Potassium Orcadian 0.001556  
Potassium Surui_Karitiana 0.001698  
Potassium Russian 0.002343  

Zinc Kalash 0.004891  
Potassium Palestinian 0.005466  

Phosphorus Mandenka 0.006715  
Sodium Surui_Karitiana 0.0068  

Potassium Mozabite 0.008791  
Potassium French 0.0088  
Potassium Kalash 0.009572  
Selenium Xibo_Mongolian 0.00993  

Potassium Pima 0.012051 <0.05 
Sodium French 0.013281  

Zinc Uygur 0.016652  
Sodium Orcadian 0.016658  
Sodium Russian 0.017819  

Potassium Basque 0.018501  
Potassium Bedouin 0.01917  

Sodium BergamoItalian_Tuscan 0.020302  
Potassium Adygei 0.021671  

Iron Mandenka 0.022027  
Potassium Makrani 0.022717  
Potassium Brahui 0.022756  

Sodium Sindhi 0.024379  
Sodium Basque 0.024715  

Selenium Japanese 0.025141  
Potassium Sardinian 0.026595  

Sodium Brahui 0.026743  
Magnesium Biaka 0.027088  
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Sodium Adygei 0.028808  
Potassium BergamoItalian_Tuscan 0.029975  
Selenium Pima 0.031199  
Selenium Surui_Karitiana 0.032171  

Potassium Sindhi 0.032643  
Selenium Han 0.033762  
Selenium She_Miao_Tujia 0.037054  
Selenium Oroqen_Hezhen_Daur 0.038023  

Potassium Balochi 0.038248  
Potassium Dai_Lahu 0.042516  
Potassium Burusho 0.042705  

Sodium Kalash 0.043516  
Potassium Pathan 0.046447  

Sodium Biaka 0.047979  
Potassium San 0.048742  
Potassium Maya 0.048774  

 
 
 
Table S3.9: Micronutrient-associated gene sets with significantly different summed 
selection values. According to the gene set method 𝑆𝑈𝑀𝑆𝑇𝐴𝑇 integrating both 𝑅𝑒𝑙𝑎𝑡𝑒 
and  𝐹𝑆𝑇 selection values. 
 

Micronutrient Population 𝑅𝑒𝑙𝑎𝑡𝑒 Significance 𝐹𝑆𝑇  Significance 

Selenium Xibo-Mongolian 0.02171 0.00993 
Sodium Adygei 0.000029 0.028808 
Sodium Basque 0.011611 0.024715 
Sodium BergamoItalian-Tuscan 0.01141 0.020302 
Sodium French 0.006133 0.013281 
Sodium Orcadian 0.005823 0.016658 
Sodium Russian 0.004935 0.017819 
Sodium Brahui 0.00115 0.026743 
Sodium Sindhi 0.021039 0.024379 

Potassium Mozabite 0.033461 0.008791 
Potassium Palestinian 0.033025 0.005466 
Potassium BergamoItalian-Tuscan 0.002963 0.029975 
Potassium French 0.000322 0.0088 
Potassium Russian 0.017106 0.0088 
Potassium Sardinian 0.035508 0.026595 
Potassium Kalash 0.038729 0.009572 
Potassium Sindhi 0.027062 0.032643 
Potassium Pathan 0.044689 0.046447 

 
 
 
Table S3.10: Micronutrient-associated gene sets, as cut down to remove overlap, 
with significantly different summed selection values. According to the gene set method 
𝑆𝑈𝑀𝑆𝑇𝐴𝑇 integrating 𝑅𝑒𝑙𝑎𝑡𝑒 selection values. Partitioned by significance.  
 

Micronutrient Population Significance  
Phosphorus Pima 0.005012 < 0.01 

Selenium Xibo_Mongolian 0.02171 < 0.05 
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Table S3.11: Micronutrient-associated gene sets, as cut down to remove overlap, 
with significantly different summed selection values. According to the gene set method 
𝑆𝑈𝑀𝑆𝑇𝐴𝑇 integrating 𝐹𝑆𝑇 selection values. Partitioned by significance.  
 

Micronutrient Population Significance  

Selenium Xibo_Mongolian 0.00993 < 0.01 
Iron Mandenka 0.022027  

Selenium Japanese 0.025141  
Selenium Pima 0.031199  
Selenium Surui_Karitiana 0.032171  
Selenium Han 0.033762  
Selenium She_Miao_Tujia 0.037054  
Selenium Oroqen_Hezhen_Daur 0.038023 < 0.05 

 
 
Table S3.12: The five MAGs for each population with the strongest evidence for 
selection, as indicated by 𝑹𝒆𝒍𝒂𝒕𝒆 selection values. When taking the only five MAGs 
would cut-off genes with the same significance value, more genes are given.   
 

Population Gene Micronutrient Significance 
San PRKG1 selenium 0.0011774 

 AKAP6 selenium 0.0011774 
 SGCD selenium 0.0011774 
 SELENOP selenium 0.0011774 
 ATP7B copper 0.0011774 
 TSHR iodine 0.0011774 
 TRPM6 magnesium 0.0011774 
 TXNRD3 selenium 0.0011774 
 ANO4 chloride 0.0011774 
 FECH Iron 0.0011774 
 SLC8A3 calcium 0.0011774 
 STK39 sodium 0.0011774 
 PSTK selenium 0.0011774 

Bantu-speaking SHROOM3 magnesium 7.7e-6 
 SLC39A11 zinc 3.3e-5 
 GALNT3 phosphorus 5.52e-5 
 LRP8 selenium 8.8e-5 
 SLC30A7 zinc 8.8e-5 

Mbuti SGK1 selenium 6.77e-5 
 SGCD selenium 8.72e-5 
 ANO3 chloride 0.00012945 
 EEFSEC selenium 0.00020261 
 KCNMA1 calcium, potassium 0.00020261 

Biaka DGKD calcium 1.97e-5 
 NEDD4 sodium 3.93e-5 
 SKG1 selenium 4.81e-5 
 TMPRSS6 iron 7.18e-5 
 SGCD selenium 8.77e-5 

Yoruba SELENOM selenium 5.87e-6 
 SLC12A1 sodium, chloride, potassium 1.33e-5 
 SCAMP5 zinc 4.17e-5 
 CNNM2 magnesium 5.12e-5 
 VWA8 calcium 0.00011987 

Mandenka LRP8 selenium 1.04e-5 
 MTF1 zinc 1.04e-5 
 TRPM2 calcium 2.11e-5 
 SLC8A1 calcium 7.52e-5 
 ANO3 chloride 7.52e-5 

Mozabite CA1 zinc 7.15E-06 
 ATP2B2 calcium 1.38E-05 
 FGFR2 magnesium 2.50E-05 
 TPO iodine 2.50E-05 
 SLC12A1 sodium, chloride, potassium 2.54E-05 

Palestinian THRB iodine 3.23E-06 
 SLC39A11 zinc 1.48E-05 
 CLCN3 chloride 2.62E-05 
 PRKG1 selenium 6.83E-05 
 SLC4A5 sodium 9.26E-05 
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 GALNT3 phosphorus 9.26E-05 
Druze SLC12A1 sodium, chloride, potassium 3.61E-05 

 FGFR2 magnesium 6.67E-05 
 GPHN molybdenum 9.60E-05 
 WDR45 iron 0.00010661 
 SHROOM3 magnesium 0.00021632 

Bedouin COMMD1 copper 2.38E-05 
 EPAS1 iron 0.00013935 
 HBS1L iron 0.0002138 
 PRKG1 selenium 0.00022585 
 TRPM6 magnesium 0.00022585 

Adygei C19orf12 iron 2.01E-05 
 AKAP6 selenium 4.62E-05 
 CFAP251 iron 9.28E-05 
 SLC30A8 zinc 0.00015855 
 ARHGEF3 iron 0.00015855 

BergamoItalian-Tuscan SCNN1G sodium, potassium 1.11E-05 
 SGK1 selenium 1.20E-05 
 SLC8A1 calcium 4.48E-05 
 SLC30A8 zinc 4.48E-05 
 SLCO1C1 iodine 7.78E-05 

Sardinian ATP2B2 calcium 2.10E-07 
 THRB iron 2.94E-05 
 SECISBP2 selenium, iodine 3.27E-05 
 SLC8A1 calcium 0.00012589 
 VWA8 selenium 0.0002822 
 SOD1 copper 0.0002822 

Basque HIF1A iron 2.43E-06 
 ARHGEF3 iron 2.47E-05 
 TXNRD3 selenium 4.79E-05 
 EEFSEC selenium 5.59E-05 
 SLC34A2 phosphorus 8.55E-05 

French SCNN1D sodium, potassium 1.87E-06 
 ANO3 chloride 4.56E-05 
 ATP2B2 calcium 7.51E-05 
 SLC39A11 zinc 9.13E-05 
 SLC12A1 sodium, chloride, potassium 0.00022405 

Orcadian GPHN molybdenum 9.83E-05 
 SLC5A5 sodium, iodine 9.83E-05 
 SLC39A11 zinc 0.00011567 
 CYP24A1 calcium 0.00011567 
 FTMT iron 0.00012535 

Russian SLC4A5 sodium 3.83E-06 
 SCNN1D sodium, potassium 6.81E-06 
 SLC30A1 zinc 1.32E-05 
 KCNMA1 calcium, potassium 0.000137 
 SLC39A11 zinc 0.00015104 

Makrani SLC39A11 zinc 1.40E-06 
 GPx2 selenium 9.61E-06 
 SLC8A1 calcium 2.40E-05 
 SLC39A12 zinc 2.40E-05 
 ATP2B2 calcium 4.97E-05 

Sindhi HIF1A iron 2.28E-05 
 HSD11B2 iron 9.68E-05 
 SLC39A11 zinc 0.00015917 
 ANO6 chloride 0.00027978 
 SLC30A9 zinc 0.00031178 

Balochi PDE7B phosphorus 1.20E-05 
 SLC39A11 zinc 1.55E-05 
 SLC4A5 sodium 2.23E-05 
 HSD11B2 iron 9.32E-05 
 PRKG1 selenium 0.000145 

Brahui MECOM magnesium 1.23E-06 
 SLC4A5 sodium 1.08E-05 
 SLC16A2 iodine 1.51E-05 
 FTMT iron 1.92E-05 
 GPx2 selenium 0.00010148 
 SGK1 selenium 0.00010148 

Hazara PRKG1 selenium 5.56E-05 
 ARSB selenium 0.00017433 
 SELENOP selenium 0.00017433 
 TXNRD1 selenium 0.00017433 
 LRP2 selenium 0.00034417 
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 CLIC5 chloride 0.00034417 
Pathan ANO3 chloride 1.76E-05 

 ATP2B2 calcium 2.08E-05 
 SELENOP selenium 4.09E-05 
 SLC12A1 sodium, chloride, potassium 5.81E-05 
 SLC30A7 zinc 9.46E-05 

Burusho AKR7L selenium 9.83E-06 
 FGFR2 magnesium 4.75E-05 
 ATP2B2 calcium 9.35E-05 
 SLC39A11 zinc 0.00012304 
 SLCO1C1 iodine 0.00012304 

Kalash SLC39A10 zinc, magnesium, manganese 1.21E-05 
 STK39 sodium 1.97E-05 
 

SLC12A3 
calcium, magnesium, 

potassium 2.21E-05 
 PRKG1 selenium 0.00014809 
 MECOM magnesium 0.00014809 
 BSND chloride 0.00014809 

Uygur FXYD2 magnesium 2.80E-06 
 SLC40A1 iron 1.62E-05 
 ATP2B2 calcium 5.23E-05 
 PLA2G6 iron 7.10E-05 
 SLC30A9 zinc 0.0002744 
 SLC8A1 calcium 0.0002744 

Xibo-Mongolian SLC8A3 calcium 6.74E-05 
 KCNMA1 calcium, potassium 0.00016803 
 PRKG1 selenium 0.0002743 
 ANO3 chloride 0.0002743 
 MT1H/F/G zinc 0.0002743 
 SELENOP selenium 0.0002743 

Oroqen-Hezhen-Daur SLC40A1 iron 0.00023563 
 PRKG1 selenium 0.00023563 
 ARSB selenium 0.00023563 
 AKAP6 selenium 0.00023563 
 ARHGEF3 iron 0.00023563 
 SLCO1C1 iodine 0.00023563 

Yakut FTMT iron 3.37E-06 
 KCNMA1 calcium, potassium 1.46E-05 
 AKAP6 selenium 7.62E-05 
 GPx7 selenium 0.00013104 
 IL6R zinc 0.00013508 

Japanese GPR39 zinc 7.51E-05 
 LHFPL2 selenium 0.00015814 
 SLC40A1 iron 0.0001792 
 DGKD calcium 0.00020117 
 ATP2B2 selenium 0.0002387 

Han PRKG1 selenium 6.54E-05 
 SCNN1D sodium, potassium 7.33E-05 
 TRIP4 iodine 0.00013754 
 SLCO1C1 iodine 0.00013754 
 CFTR chloride 0.00013754 

NorthernHan-Tu SLC39A11 zinc 3.90E-05 
 SLC8A3 calcium 3.90E-05 
 KCNMA1 calcium, potassium 3.90E-05 
 PRKG1 selenium 0.00015139 
 PDE7B phosphorus 0.0001716 

She-Miao-Tujia MLN phosphorus 4.27E-06 
 ITPR3 phosphorus 1.93E-05 
 SLC39A11 zinc 2.41E-05 
 PRKG1 selenium 0.00013476 
 FTMT iron 0.00021508 

Naxi-Yi PRKG1 selenium 2.17E-05 
 MOCS2 molybdenum 2.17E-05 
 SLC39A11 zinc 8.43E-05 
 SLC39A8 zinc, magnesium, manganese 0.00016511 
 SLC8A3 calcium 0.00037186 
 SELENOI selenium 0.00037186 
 IL6 zinc 0.00037186 
 SLC30A10 zinc, magnesium, manganese 0.00037186 

Dai-Lahu ITPR3 phosphorus 4.43E-05 
 SLC8A3 calcium 4.43E-05 
 TRPM6 magnesium 6.09E-05 
 ARHGEF3 iron 6.80E-05 
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 SLC8A1 calcium 7.39E-05 
Pima ATP2B2 iron 9.06E-06 

 ITPR3 phosphorus 8.09E-05 
 TRNAU1AP selenium 0.00018445 
 MLN phosphorus 0.00053942 
 LEMD2 phosphorus 0.00053942 

Maya SLC8A1 calcium 4.17E-05 
 TRPM6 magnesium 5.25E-05 
 ATP2B1 calcium 0.00015384 
 ARL15 magnesium 0.00015794 
 TSHR iodine 0.00027492 
 THRA iodine 0.00027492 

Surui-Karitiana AKAP6 selenium 3.96E-05 
 CLDN16 magnesium 0.00012466 
 SLC39A10 zinc 0.00014355 
 SLC39A8 zinc, magnesium, manganese 0.00020085 
 MECOM magnesium 0.00041299 
 THRB iodine 0.00041299 
 SLC39A11 zinc 0.00041299 

Papuan SLC8A1 calcium 1.26E-05 
 ATP2B2 calcium 1.97E-05 
 DIO2 selenium, iodine 0.00027674 
 HIF1A iron 0.00027674 
 HBS1L iron 0.00027674 
 SCNN1B sodium, potassium 0.00027674 
 LEMD2 phosphorus 0.00027674 

Bougainville CLDN16 magnesium 0.00021637 
 SGCD selenium 0.00021637 
 NR3C2 sodium 0.0002471 
 SLC39A11 zinc 0.000375 
 ATP2B2 calcium 0.000375 
 SLC30A6 zinc 0.000375 
 CYP11B2 potassium 0.000375 

 

 
Table S3.13: The five MAGs for each population with the strongest evidence for 
selection, as indicated by 𝑭𝑺𝑻 selection values. When taking the only five MAGs would 
cut-off genes with the same significance value, more genes are given.   
 

Population Gene Micronutrient Significance 
San GALNT3 phosphorus 3.50E-06 

 SCNN1G sodium, potassium 6.30E-06 
 LRP8 selenium 2.15E-05 
 LHFPL2 selenium 3.08E-05 
 ANO7 chloride 7.75E-05 

Bantu-speaking LHFPL2 selenium 4.99E-06 
 SLC12A1 sodium, chloride, potassium 5.06E-06 
 KCNJ10 calcium, potassium 1.38E-05 
 PRKG1 selenium 2.11E-05 
 EEFSEC selenium 2.53E-05 

Mbuti TRIP4 iodine 3.96E-05 
 PDE7B phosphorus 5.94E-05 
 TRU-TCA2-1 selenium 6.63E-05 
 LHFPL2 selenium 7.44E-05 
 MECOM magnesium 7.44E-05 

Biaka SLC8A1 calcium 3.05E-05 
 ANO7 chloride 5.40E-05 
 LHFPL2 selenium 8.33E-05 
 ATP2B4 calcium 8.39E-05 
 EEFSEC selenium 0.00010422 

Mandenka ATP2B2 calcium 7.75E-08 
 STK39 sodium 1.96E-05 
 FTL iron 1.99E-05 
 HJV iron 2.91E-05 
 SLC8A1 calcium 3.00E-05 

Mozabite SLC12A1 sodium, chloride, potassium 7.35E-06 
 EEFSEC calcium 1.29E-05 
 PDE7B phosphorus 3.23E-05 
 COMMD1 copper 7.20E-05 
 ATP2B4 calcium 8.32E-05 
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Palestinian SLC12A1 sodium, chloride, potassium 6.37E-07 
 PDE7B phosphorus 1.76E-05 
 ARHGEF3 iron 2.55E-05 
 SLC39A4 zinc 2.85E-05 
 GPR39 zinc 3.72E-05 

Druze SLC12A1 sodium, chloride, potassium 2.97E-07 
 PDE7B phosphorus 8.16E-07 
 SLC39A4 zinc 1.02E-05 
 GPR39 zinc 3.23E-05 
 MECOM magnesium 5.36E-05 

Bedouin SLC12A1 sodium, chloride, potassium 1.25E-06 
 PDE7B phosphorus 1.37E-05 
 SLC4A5 sodium 1.81E-05 
 ARHGEF3 iron 3.43E-05 
 GPR39 zinc 5.59E-05 

Adygei SLC12A1 sodium, chloride, potassium 2.01E-06 
 PDE7B phosphorus 2.05E-05 
 SLC39A4 zinc 2.30E-05 
 FTMT iron 7.54E-05 
 EEFSEC selenium 0.00010962 

BergamoItalian-Tuscan SLC12A1 sodium, chloride, potassium 1.58E-06 
 PDE7B phosphorus 2.92E-06 
 SLC39A4 zinc 8.84E-06 
 SGCD selenium 1.07E-05 
 GPR39 zinc 8.94E-05 

Sardinian PDE7B phosphorus 7.02E-07 
 SLC12A1 sodium, chloride, potassium 6.86E-06 
 SLC39A4 zinc 1.33E-05 
 GPR39 zinc 5.57E-05 
 MECOM magnesium 6.35E-05 

Basque SLC12A1 sodium, chloride, potassium 2.00E-06 
 PDE7B phosphorus 2.00E-06 
 SLC4A5 sodium 9.52E-06 
 SLC39A4 zinc 1.41E-05 
 GPR39 zinc 0.00013401 

French SLC12A1 sodium, chloride, potassium 7.65E-07 
 PDE7B phosphorus 4.28E-06 
 SLC39A4 zinc 5.58E-06 
 AQP6 chloride 3.41E-05 
 GPR39 zinc 5.35E-05 

Orcadian PDE7B phosphorus 2.24E-06 
 SLC12A1 sodium, chloride, potassium 4.80E-06 
 SLC39A4 zinc 3.19E-05 
 ARSB selenium 7.92E-05 
 SCNN1A sodium, potassium 9.97E-05 
 SLC30A10 zinc, magnesium, manganese 9.97E-05 

Russian SLC12A1 sodium, chloride, potassium 1.40E-06 
 PDE7B phosphorus 5.27E-06 
 SLC39A4 zinc 6.43E-06 
 SLC4A5 sodium 1.89E-05 
 SELENOS selenium 4.01E-05 

Makrani SLC39A4 zinc 3.95E-06 
 PDE7B phosphorus 6.15E-06 
 SLC12A1 sodium, chloride, potassium 7.37E-06 
 SGCD selenium 1.18E-05 
 SGK1 selenium 3.59E-05 

Sindhi PDE7B phosphorus 9.11E-06 
 SLC39A4 zinc 1.03E-05 
 CLCNKB chloride 2.19E-05 
 SLC39A11 zinc 2.99E-05 
 GPR39 zinc 5.83E-05 

Balochi SLC12A1 sodium, chloride, potassium 1.76E-06 
 SGK1 selenium 5.44E-06 
 PDE7B phosphorus 7.28E-06 
 ARHGEF3 iron 2.34E-05 
 SLC39A4 zinc 2.89E-05 

Brahui SLC12A1 sodium, chloride, potassium 1.07E-06 
 PDE7B phosphorus 1.53E-06 
 SLC39A4 zinc 7.98E-06 
 GPR39 zinc 2.63E-05 
 SLC4A5 sodium 4.93E-05 

Hazara SLC39A4 zinc 7.24E-06 
 SELENOS selenium 1.86E-05 
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 SLC30A9 zinc 2.23E-05 
 GPR39 zinc 9.24E-05 
 MTF2 zinc 9.77E-05 

Pathan SLC39A4 zinc 5.47E-06 
 SLC12A1 sodium, chloride, potassium 1.12E-05 
 GPR39 zinc 3.47E-05 
 PDE7B phosphorus 4.92E-05 
 SLC30A9 zinc 6.08E-05 

Burusho SLC12A1 sodium, chloride, potassium 6.07E-06 
 SLC39A4 zinc 8.76E-06 
 PDE7B phosphorus 2.74E-05 
 SLC30A9 zinc 5.38E-05 
 GPR39 zinc 5.78E-05 

Kalash SLC12A1 sodium, chloride, potassium 2.56E-06 
 SLC39A4 zinc 1.72E-05 
 PDE7B phosphorus 5.19E-05 
 SLC39A11 zinc 9.98E-05 
 GPR39 zinc 0.00013799 
 EEFSEC selenium 0.00013799 

Uygur SLC39A4 zinc 5.66E-05 
 DCDC1 magnesium 0.00012776 
 PDE7B phosphorus 0.0001421 
 SLCO1C1 iodine 0.00019682 
 CA3 zinc 0.00019682 
 PRKG1 selenium 0.00019889 

Xibo-Mongolian PRKG1 selenium 1.00E-05 
 SLC30A9 zinc 2.66E-05 
 SEPHS2 selenium 2.66E-05 
 SLC39A4 zinc 5.49E-05 
 HSD11B2 iron 6.97E-05 

Oroqen-Hezhen-Daur SLC30A9 zinc 1.51E-05 
 SLC39A4 zinc 3.99E-05 
 HSD11B2 iron 6.38E-05 
 PDE7B phosphorus 0.00012113 
 KCNMA1 calcium, potassium 0.00015128 

Yakut SLC30A9 zinc 1.71E-05 
 SLC39A4 zinc 3.57E-05 
 PRKG1 selenium 0.00010185 
 ANO5 chloride 0.00018071 
 DIO1 selenium, iodine 0.0002481 

Japanese SLC39A4 zinc 6.69E-05 
 RHOA iron 6.91E-05 
 SELENOW selenium 6.91E-05 
 SLC30A9 zinc 0.00014582 
 CLCNKB chloride 0.00017725 

Han SLC30A9 zinc 3.55E-06 
 SLC39A4 zinc 4.34E-05 
 RHOA iron 8.62E-05 
 CLCNKB chloride 0.00013356 
 ITPR3 phosphorus 0.00016139 

NorthernHan-Tu SLC39A4 zinc 5.98E-05 
 SLC30A9 zinc 7.01E-05 
 RHOA iron 9.99E-05 
 PRKG1 selenium 0.00011442 
 SEPHS2 selenium 0.00020983 

She-Miao-Tujia RHOA iron 1.38E-05 
 SLC30A9 zinc 2.05E-05 
 PRKG1 selenium 2.05E-05 
 SLC39A4 zinc 4.75E-05 
 CLCNKB chloride 0.00014865 

Naxi-Yi SLC39A4 zinc 9.03E-05 
 ITPR3 phosphorus 9.03E-05 
 SLC30A9 zinc 0.00010709 
 SEPHS2 selenium 0.00010969 
 PRKG1 selenium 0.0001864 

Dai-Lahu SLC30A9 zinc 2.12E-05 
 FTMT iron 4.85E-05 
 PDE7B phosphorus 5.98E-05 
 SLC39A4 zinc 7.82E-05 
 SEPHS1 selenium 0.00013178 

Pima PDE7B phosphorus 0.00010471 
 GPx3 selenium 0.00010471 
 CLCN3 chloride 0.00010471 
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 RHOA iron 0.00010471 
 SLC40A1 iron 0.00010471 
 STAT3 zinc 0.00010471 
 SLC39A11 zinc 0.00010471 
 SLC30A2 zinc 0.00010471 
 SELENON selenium 0.00010471 

Maya FGFR2 magnesium 2.29E-05 
 PDE7B phosphorus 3.53E-05 
 TMPRSS6 iron 4.90E-05 
 SLC30A9 zinc 8.30E-05 
 GPx3 selenium 0.00014139 

Surui-Karitiana PDE7B phosphorus 0.00012002 
 GPx3 selenium 0.00012002 
 THRB iodine 0.00012002 
 SGCD selenium 0.00012002 
 SCNN1B sodium, potassium 0.00012002 
 SLC30A9 zinc 0.00012002 

Papuan ACO1 chloride 5.36E-05 
 SGCD selenium 5.36E-05 
 TMPRSS6 iron 9.64E-05 
 SLC39A11 zinc 9.64E-05 
 SLC30A9 zinc 0.00025195 
 CLCN3 chloride 0.00025195 

Bougainville TFRC iron 3.80E-05 
 DCDC1 magnesium 3.80E-05 
 SLC30A9 zinc 8.23E-05 
 TMPRSS6 iron 8.23E-05 
 SCNN1G sodium, potassium 8.23E-05 
 SLC41A1 magnesium 8.23E-05 

 
 
Table S3.14: MAG showing signatures in the 0.1% tail (for both 𝑹𝒆𝒍𝒂𝒕𝒆 and 𝑭𝑺𝑻 
selection values) for multiple populations. 
 

 
𝑹𝒆𝒍𝒂𝒕𝒆    𝑭𝑺𝑻   

Gene Micronutrient Number of 
Repeats 

 Gene Micronutrient Number 
of 
Repeats 

Zinc SLC39A11 27  Zinc SLC39A4 37 
Calcium SLC8A1 26  Phosphorus PDE7B 37 
Calcium ATP2B2 26  Zinc GPR39 32 
Selenium PRKG1 24  Chloride AQP6 32 
Selenium SGCD 21  Magnesium DCDC1 29 
Selenium AKAP6 20  Selenium EEFSEC 27 
Selenium KCNMA1 16  Zinc SLC30A9 26 
Chloride ANO3 16  Calcium ATP2B2 25 
Phosphorus PDE7B 15  Zinc SLC39A11 24 
Sodium, potassium SCNN1D 13  Selenium PRKG1 24 
Sodium, potassium, 
chloride SLC12A1 12 

 
Iodine TSHR 23 

Magnesium MECOM 12 
 Sodium, potassium, 

chloride SLC12A1 22 
Iron FTMT 12  Selenium SGCD 22 
Iodine THRB 12  Magnesium MECOM 21 
Iodine SLCO1C1 11  Selenium AKAP6 19 
Sodium SGK1 10  Iron ARHGEF3 19 
Iron HIF1A 10  Selenium SELENOS 18 
Calcium TRPM2 10  Sodium SLC4A5 17 
Calcium SLC8A3 10  Chloride ANO5 17 
Selenium SELENOF 9  Sodium SGK1 16 
Zinc SLC30A8 8  Selenium, iodine DIO1 16 
Sodium SLC4A5 8  Calcium ATP2B4 16 
Phosphorus ITPR3 8  Molybdenum GPHN 15 
Zinc, manganese, 
magnesium SLC30A10 8 

 
Zinc, manganese SLC39A14 14 

Magnesium FGFR2 8  Chloride CLCNKB 14 
Iron ARHGEF3 8  Chloride CFTR 13 
Chloride CFTR 8  Calcium SLC8A2 13 
Calcium ATP2B4 8  Selenium SEPHS2 12 
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Zinc SLC30A9 7  Selenium LRP8 12 
Molybdenum GPHN 7  Iodine THRB 12 
Iodine SULT6B1 7  Calcium SLC8A1 12 
Chloride ANO5 7  Zinc SLC30A2 11 
Calcium VWA8 7  Sodium HSD11B2 11 
Selenium LRP2 6  Selenium SELENOI 11 
Magnesium TRPM6 6  Phosphorus ITPR3 11 
Iodine SLC16A10 6  Magnesium FGFR2 11 
Chloride ANO5 7  Iron RHOA 11 
Chloride ANO6 6  Iron FTMT 11 
Zinc GPR39 5  Zinc MTF2 10 
Sodium NR3C2 5  Selenium, iodine DIO2 10 
Selenium SELENOS 5  Chloride CLCN3 10 
Selenium SELENOP 5  Selenium ARSB 9 
Selenium SELENOI 5  Phosphorus NBPF3 9 
Selenium LRP8 5  Iodine SLCO1C1 9 
Selenium EEFSEC 5  Sodium, potassium SCNN1D 8 
Selenium ARSB 5  Sodium, potassium SCNN1B 8 
Phosphorus MLN 5  Selenium SEPHS1 8 
Magnesium ARL15 5  Selenium LHFPL2 8 
Iron SLC40A1 5  Selenium KCNMA1 8 
Chloride CLCN6 5  Iron TMPRSS6 8 
Chloride CLCN3 5  Iron SLC40A1 8 
Calcium DGKD 5  Iron EPAS1 8 
Zinc SLC39A3 4  Zinc SLC39A8 7 
Sodium HSD11B2 4  Sodium, potassium SCNN1A 7 
Selenium LHFPL2 4  Selenium TXNRD2 7 
Selenium GPx2 4  Manganese, magnesium SLC39A8 7 
Potassium HSD11B2 4  Iron TMPRSS6 8 
Phosphorus GALNT3 4  Iron HIF1A 7 
Magnesium SHROOM3 4  Selenium GPx3 6 
Magnesium CLDN16 4  Copper COMMD1 6 
Iron EPAS1 4  Chloride ANO4 6 
Copper CCDC27 4  Calcium CYP24A1 6 
Chloride CLCN7 4  Zinc, iron SLC11A1 5 
Zinc SLC39A9 3  Zinc CA1 5 
Zinc SLC39A12 3  Selenium SELENOW 5 
Zinc SLC30A7 3  Selenium SELENON 5 
Zinc SLC30A6 3  Iron LTF 5 
Zinc MTF2 3  Iron CFAP251 5 
Zinc CA3 3  Copper CCDC27 5 
Sodium STK39 3  Chloride ANO7 5 
Sodium SCNN1B 3  Zinc STAT3 4 
Selenium TXNRD3 3  Zinc SLC30A3 4 

Selenium TXNRD1 3 
 Zinc, manganese, 

magnesium SLC30A10 4 
Selenium, iodine SECISBP2 3  Selenium JMY 4 
Selenium SCLY 3  Selenium DMGDH 4 
Selenium, iodine DIO2 3  Magnesium TRPM6 4 
Potassium SCNN1B 3  Magnesium SLC41A1 4 
Phosphorus SLC34A2 3  Magnesium EGF 4 
Phosphorus LEMD2 3  Iron LCN2 4 
Iron SLC48A1 3  Iron ACO1 4 
Iron RHOA 3  Zinc SCAMP5 3 
Iron PLA2G6 3  Zinc IL6R 3 
Iron PANK2 3  Sodium NR3C2 3 
Iodine TTR 3  Manganese ATP2C1 3 
Iodine TRIP4 3  Magnesium ARL15 3 
Copper COMMD1 3  Iron TFRC 3 
Calcium GATA3 3  Iron FTH1 3 
Calcium ATP2B1 3  Chloride SLC12A2 3 
Zinc SLC39A8 2  Chloride CLIC4 3 
Zinc SLC39A10 2  Chloride BEST1 3 
Zinc MT1H 2  Chloride ANO3 3 
Zinc MT1G 2  Zinc SLC39A9 2 
Zinc MT1F 2  Zinc SLC39A2 2 
Zinc MT1A 2  Zinc SLC39A13 2 
Zinc IL6R 2  Zinc SLC39A12 2 
Sodium SCN3B 2  Zinc SLC30A8 2 
Sodium NEDD4 2  Zinc CAR13 2 
Selenium SEPSECS 2  Zinc CA3 2 
Selenium GPx7 2  Sodium STK39 2 
Selenium ELAVL1 2  Selenium TRU-TCA2-1 2 
Potassium CYP11B2 2  Selenium GPx2 2 
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Phosphorus FGF6 2  Potassium SCNN1G 2 
Molybdenum MOCS2 2  Phosphorus GALNT3 2 
Manganese, magnesium SLC39A8 2  Phosphorus CASR 2 
Manganese ATP2C1 2  Magnesium SHROOM3 2 
    Magnesium KCNA1 2 
Magnesium CNNM2 2  Magnesium CASR 2 
Iron TMPRSS6 2  Iron STEAP3 2 
Iron TFRC 2  Iron HJV 2 
Iron SLC17A1 2  Iron FTL 2 
Iron MYB 2  Iodine TRIP4 2 
Iron LCN2 2  Iodine THRA 2 
Iron HBS1L 2  Iodine SULT6B1 2 
Iron FA2H 2  Chloride CLCN6 2 
Iron CFAP251 2  Calcium TRPM2 2 
Iron C19orf12 2  Calcium SLC8A3 2 
Iron ACO1 2  Calcium KCNJ10 2 
Iodine TSHR 2  Calcium GCKR 2 
Iodine THRA 2  Calcium CASR 2 
Iodine IYD 2     
Copper ATP7B 2     
Copper ATP7A 2     
Chloride SLC12A2 2     
Chloride CLIC5 2     
Chloride CLCNKB 2     
Chloride BSND 2     
Chloride ANO4 2     
Calcium SLC8A2 2     
Calcium CYP24A1 2     
       
Chloride ANO4 2     
Calcium SLC8A2 2     
Calcium CYP24A1 2     
Calcium SLC8A2 2     
Calcium CYP24A1 2     

 

 
Figures 

 
Figure S3.1: Distribution of all micronutrient-associated genes along the human 
genome. Broadly randomly distributed with any overlaps given in Table S4.3.2. 

 



Appendices 
 

 276 

 
 
Figure S3.2: Distribution of the calculated CDF value. As drawn from the distribution 
formed from generated neutral gene regions and includes the mean of cumulative density 
function (CDF) position. 
 
 

 
Figure S3.3: Principal component analysis of African individuals. From the  
(Bergström et al., 2020), showing PC1 and PC2. 
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Figure S3.4: Principal component analysis of Middle-eastern individuals. From  
(Bergström et al., 2020), showing PC1 and PC2, having removed outlier individuals 
 

 
Figure S3.5: Principal component analysis of European individuals. From the 
(Bergström et al., 2020), showing PC1 and PC2, having removed outlier individuals. 
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Figure S3.6: Principal component analysis of Central-South Asian individuals. From 
the  (Bergström et al., 2020), showing PC1 and PC2, having removed outlier individuals 

 
Figure S3.7: Principal component analysis of East Asian individuals. From the  
(Bergström et al., 2020), showing PC1 and PC2 
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Figure S3.8: Principal component analysis of American individuals. From the 
(Bergström et al., 2020), showing PC1 and PC2, having removed outlier individuals 

 

Figure S3.9: Principal component analysis of Oceanic individuals. From the  
(Bergström et al., 2020), showing PC1 and PC2. 
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Figure S3.10: Admixture analysis of African individuals. From the (Bergström et al., 
2020) for 2 and 3 k clusters. 
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Figure S3.11: Admixture analysis of European individuals. From the (Bergström et al., 
2020) for 2 and 3 k clusters. 
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Figure S4.3.12: Admixture analysis of East Asian individuals. From the  (Bergstrom et 
al, 2020) for 2, 3 and 4 k clusters. 
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Chapter 4: Supplementary Material 
 
Tables 
 
Table S4.1: All micronutrient-associated genes used in this study associated with 
the uptake, metabolism or regulation of selenium, zinc, iron, iodine and calcium. 
When genes are associated with multiple micronutrients, this is given in the “Other 
Associations” column. Genes removed following the positive mask (Bergström et al., 2020) 
indicated in the “Removed During Pruning” column. Gene regions as taken from 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 
(Yates et al., 2020) and suggested from the literature (“Reference”). 

 

Micronutrient Gene Chromosome Gene Start Gene End Other 
Associations 

Removed 
During 

Pruning 

Ref 

Selenium GPx1 3 49357176 49358358   (White et al., 
2015) 

Selenium GPx2 14 64939152 64942905   (White et al., 
2015) 

Selenium GPx3 5 151020438 151028992   (White et al., 
2015) 

Selenium GPx4 19 1103926 1106791   (White et al., 
2015) 

Selenium GPx6 6 28503296 28528215   (White et al., 
2015) 

Selenium DIO1 1 53891239 53911086 iodine  (White et al., 
2015) 

Selenium DIO2 14 80197526 80387757 iodine  (White et al., 
2015) 

Selenium DIO3 14 101561351 101563452 iodine  (White et al., 
2015) 

Selenium SELENOF 1 86862445 86914424   (White et al., 
2015) 

Selenium SELENOH 11 57741250 57743554   (White et al., 
2015) 

Selenium SELENOI 2 26308547 26395891   (White et al., 
2015) 

Selenium SELENOK 3 53884417 53891962   (White et al., 
2015) 

Selenium SELENOM 22 31104772 31120069   (White et al., 
2015) 

Selenium SELENON 1 25800176 25818221   (White et al., 
2015) 

Selenium SELENOO 22 50200979 50217616   (White et al., 
2015) 

Selenium SELENOT 3 150602875 150630445   (White et al., 
2015) 

Selenium SELENOV 19 39515113 39520686   (White et al., 
2015) 

Selenium SELENOW 19 47778585 47784686   (White et al., 
2015) 

Selenium MSRB1 16 1938210 1943326   (White et al., 
2015) 

Selenium TXNRD1 12 104215779 104350307   (White et al., 
2015) 

Selenium TXNRD2 22 19875517 19941820   (White et al., 
2015) 

Selenium TXNRD3 3 126607059 126655124   (White et al., 
2015) 

Selenium GPx5 6 28525881 28534955  Yes (White et al., 
2015) 

Selenium GPx7 1 52602371 52609051   (White et al., 
2015) 
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Selenium GPx8 5 55160167 55167297   (White et al., 
2015) 

Selenium SELENOP 5 42799880 42887392   (White et al., 
2015) 

Selenium LRP8 1 53242364 53328469   (White et al., 
2015) 

Selenium LRP2 2 169127109 169362534   (White et al., 
2015) 

Selenium SCLY 2 238060924 238099413   (White et) al., 
2015) 

Selenium SELENBP1 1 151364304 151372707   (White et al., 
2015) 

Selenium PSTK 10 122954381 122997513   (White et al., 
2015) 

Selenium SEPSECS 4 25120014 25160449   (White et al., 
2015) 

Selenium SARS2 19 38915266 38930763   (White et al., 
2015) 

Selenium TRU-TCA1-
1 

19 45478602 45478687   (White et al., 
2015) 

Selenium TRU-TCA2-
1 

22 44150657 44150742   (White et al., 
2015) 

Selenium TRU-TCA3-
1 

17 40117300 40117373   (White et al., 
2015) 

Selenium CELF1 11 47465933 47565569   (White et al., 
2015) 

Selenium EEFSEC 3 128153481 128408646   (White et al., 
2015) 

Selenium EIF4A3 17 80134369 80147151   (White et al., 
2015) 

Selenium ELAVL1 19 7958573 8005659   (White et al., 
2015) 

Selenium RPL30 8 98024851 98046469   (White et al., 
2015) 

Selenium SECISBP2 9 89318500 89359663 iodine  (White et al., 
2015) 

Selenium SEPHS1 10 13317428 13348298   (White et al., 
2015) 

Selenium TRNAU1AP 1 28553085 28578545   (White et al., 
2015) 

Selenium XPO1 2 61477849 61538626   (White et al., 
2015) 

Selenium AKAP6 14 32329298 32837684   (Engelken et 
al., 2016) 

Selenium FABP1 2 88122982 88128062   (Engelken et 
al., 2016) 

Selenium KCNMA1 10 76869601 77638369   (Engelken et 
al., 2016) 

Selenium PRKG1 10 50990888 52298423   (Engelken et 
al., 2016) 

Selenium SELENOS 15 101270817 101277500   (Engelken et 
al., 2016) 

Selenium SEPHS2 16 30443631 30445874   (Engelken et 
al., 2016) 

Selenium SGCD 5 155870344 156767788   (Engelken et 
al., 2016) 

Selenium TXN 9 110243810 110256507   (Engelken et 
al., 2016) 

Selenium AKR7L 1 19265982 19274194   (Wishart et al., 
2007) 

Selenium CBS 21 43053191 43076943  Yes (Dib et al., 
2019) 

Selenium ARSB 5 78777209 78986087   (Dib et al., 
2019) 

Selenium LHFPL2 5 78485215 78770021   (Dib et al., 
2019) 

Selenium DMGDH 5 78997564 79236038   (Dib et al., 
2019) 

Selenium BHMT2 5 79069767 79090069   (Dib et al., 
2019) 

Selenium BHMT 5 79111809 79132288   (Dib et al., 
2019) 

Selenium JMY 5 79236131 79327211   (Dib et al., 
2019) 
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Iron BDH2 4 103077592 103099870   (Engelken et 
al., 2016) 

Iron CYBRD1 2 171522247 171558129   (Engelken et 
al., 2016) 

Iron EPAS1 2 46293667 46386697   (Engelken et 
al., 2016) 

Iron FECH 18 57544377 57586702   (Engelken et 
al., 2016) 

Iron FTH1 11 61959718 61967634   (Engelken et 
al., 2016) 

Iron FTL 19 48965309 48966879   (Engelken et 
al., 2016) 

Iron HAMP 19 35280716 35285143   (Engelken et 
al., 2016) 

Iron HEPH X 66162549 66268867   (Engelken et 
al., 2016) 

Iron HFE 6 26087281 26098343   (Engelken et 
al., 2016) 

Iron HJV 1 146017468 146036746   (Engelken et 
al., 2016) 

Iron HIF1A 14 61695513 61748259   (Engelken et 
al., 2016) 

Iron LTF 3 46435645 46485234   (Engelken et 
al., 2016) 

Iron RHOA 3 49359145 49412998   (Engelken et 
al., 2016) 

Iron SLC17A1 6 25782915 25832052   (Engelken et 
al., 2016) 

Iron SLC40A1 2 189560590 189583758   (Engelken et 
al., 2016) 

Iron STEAP3 2 119223831 119265652   (Engelken et 
al., 2016) 

Iron TF 3 133746040 133796641   (Engelken et 
al., 2016) 

Iron TFR2 7 100620416 100642779   (Engelken et 
al., 2016) 

Iron TFRC 3 196027183 196082096   (Engelken et 
al., 2016) 

Iron TMPRSS6 22 37065436 37109713   (Engelken et 
al., 2016) 

Iron ISCU 12 108562582 108569384   (Engelken et 
al., 2016) 

Iron LCN2 9 128149071 128153453   (Engelken et 
al., 2016) 

Iron FTMT 5 121851882 121852833   (Wishart et al., 
2007) 

Iron ACO1 9 32384603 32454769   (Muckenthaler 
et al., 2008) 

Iron IREP2 15 78437431 78501453   (Muckenthaler 
et al., 2008) 

Iron ACO2 22 41469117 41528989   (Muckenthaler 
et al., 2008) 

Iron ALAS2 X 55009055 55030977   (Muckenthaler 
et al., 2008) 

Iron SLC46A1 17 28394642 28407197   (Muckenthaler 
et al., 2008) 

Iron SLC11A1 2 218382029 218396894 zinc  (Fishilevich et 
al., 2017) 

Iron SLC48A1 12 47753916 47782751   (Fishilevich et 
al., 2017) 

Iron SLC11A2 12 50979401  51028566   (Muckenthaler 
et al., 2008) 

Iron HBS1L 6 134960378 135103056   (Dib et al., 
2019) 

Iron MYB 6 135181308 135219173   (Dib et al., 
2019) 

Iron PIK3CG 7 106865278 106908980   (Dib et al., 
2019) 

Iron CFAP251 12 121918592 122003927   (Dib et al., 
2019) 

Iron ARHGEF3 3 56727418 57079329   (Dib et al., 
2019) 

Iron TAOK1 17 29390464 29551904   (Dib et al., 
2019) 
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Iron CP 3 149162410 149221829   (Fishilevich et 
al., 2017) 

Iron PANK2 20 3888839 3929882   (Fishilevich et 
al., 2017) 

Iron PLA2G6 22 38111495 38214778   (Fishilevich et 
al., 2017) 

Iron C19orf12 19 29698886 29715789   (Fishilevich et 
al., 2017) 

Iron FA2H 16 74712955 74774831   (Fishilevich et 
al., 2017) 

Iron WDR45 X 49074433 49101170   (Fishilevich et 
al., 2017) 

Iron ATP13A2 1 16985958 17011928   (Fishilevich et 
al., 2017) 

Zinc GPR39 2 132416805 132646582   (Engelken et 
al., 2016) 

Zinc IL6 7 22725884 22732002   (Engelken et 
al., 2016) 

Zinc IL6R 1 154405193 154469450   (Engelken et 
al., 2016) 

Zinc MT1A 16 56638666 56640087   (Engelken et 
al., 2016) 

Zinc MT1E 16 56625475 56627112   (Engelken et 
al., 2016) 

Zinc MT1F 16 56657731 56660698   (Engelken et 
al., 2016) 

Zinc MT1G 16 56666730 56668065   (Engelken et 
al., 2016) 

Zinc MT1H 16 56669814 56671129   (Engelken et 
al., 2016) 

Zinc MT2A 16 56608584 56609497   (Engelken et 
al., 2016) 

Zinc MT4 16 56565073 56568957   (Engelken et 
al., 2016) 

Zinc MTF1 1 37809574 37859592   (Engelken et 
al., 2016) 

Zinc MTF2 1 93079235 93139079   (Engelken et 
al., 2016) 

Zinc SLC11A1 2 218382029 218396894 iron  (Fishilevich et 
al., 2017) 

Zinc SLC30A1 1 211571568 211579161   (Engelken et 
al., 2016) 

Zinc SLC30A2 1 26037252 26046118   (Engelken et 
al., 2016) 

Zinc SLC30A3 2 27253684 27275817   (Engelken et 
al., 2016) 

Zinc SLC30A4 15 45479606 45522755   (Engelken et 
al., 2016) 

Zinc SLC30A5 5 69093949 69131069   (Engelken et 
al., 2016) 

Zinc SLC30A6 2 32165841 32224379   (Engelken et 
al., 2016) 

Zinc SLC30A7 1 100896076 100981757   (Engelken et 
al., 2016) 

Zinc SLC30A8 8 116950273 117176714   (Engelken et 
al., 2016) 

Zinc SLC30A9 4 41990502 42090461   (Engelken et 
al., 2016) 

Zinc SLC39A1 1 153959099 153968184   (Engelken et 
al., 2016) 

Zinc SLC39A10 2 195575977 195737702   (Engelken et 
al., 2016) 

Zinc SLC39A11 17 72645949 73092712   (Engelken et 
al., 2016) 

Zinc SLC39A12 10 17951839 18043292   (Engelken et 
al., 2016) 

Zinc SLC39A13 11 47407132 47416496   (Engelken et 
al., 2016) 

Zinc SLC39A2 14 20999255 21001871   (Engelken et 
al., 2016) 

Zinc SLC39A3 19 2732204 2740028   (Engelken et 
al., 2016) 

Zinc SLC39A4 8 144409742 144416844   (Engelken et 
al., 2016) 
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Zinc SLC39A5 12 56230049 56237846   (Engelken et 
al., 2016) 

Zinc SLC39A6 18 36108531 36129385   (Engelken et 
al., 2016) 

Zinc SLC39A7 6 33200445 33204439  Yes (Engelken et 
al., 2016) 

Zinc SLC39A8 4 102251041 102431258   (Engelken et 
al., 2016) 

Zinc SLC39A9 14 69398015 69462390   (Engelken et 
al., 2016) 

Zinc STAT3 17 42313324 42388568   (Engelken et 
al., 2016) 

Zinc SLC30A10 1 219685427 219958647   (Dib et al., 
2019) 

Zinc SLC39A14 8 22367249 22434129   (Horning et al., 
2015) 

Zinc CA1 8 85327608 85379014   (Dib et al., 
2019) 

Zinc CA2 8 85463968 85481493   (Dib et al., 
2019) 

Zinc CA3 8 85373436 85449040   (Dib et al., 
2019) 

Zinc CAR13 8 85220587 85284073   (Dib et al., 
2019) 

Zinc SCAMP5 15 74957219 75021495   (Dib et al., 
2019) 

Zinc KLF8 X 56232356 56291531   (Dib et al., 
2019) 

Zinc ZXDA X 57906708 57910820   (Dib et al., 
2019) 

Zinc ZXDB X 57591652 57597545   (Dib et al., 
2019) 

Calcium TRPM2 21 44350163 44443081   (Engelken et 
al., 2016) 

Calcium TRPV5 7 142908101 142933746  Yes (Kovacs et al., 
2013) 

Calcium TRPV6 7 142871208 142885745  Yes (Hughes et al., 
2008) 

Calcium CASR 3 122183668 122291629   (Houillier, 
2014) 

Calcium BSPRY 9 113349541 113371233   (Khanal & 
Nemere, 

2008) 
Calcium RGS2 1 192809039 192812275   (Khanal & 

Nemere, 
2008) 

Calcium SLC8A1 2 40097270 40611053   (Khanal & 
Nemere, 

2008) 
Calcium SLC8A2 19 47428017 47471893   (Khanal & 

Nemere, 
2008) 

Calcium SLC8A3 14 70044215 70189070   (Khanal & 
Nemere, 

2008) 
Calcium ATP2B2 3 10324023 10708007   (Khanal & 

Nemere, 
2008) 

Calcium ATP2B3 X 153517676 153582939   (Khanal & 
Nemere, 

2008) 
Calcium ATP2B4 1 203626561 203744081   (Khanal & 

Nemere, 
2008) 

Calcium PTH 11 13492054 13496181   (Khanal & 
Nemere, 

2008) 
Calcium CYP24A1 20 54153446 54173986   (Dib et al., 

2019) 
Calcium GATA3 10 8045378 8075198   (Dib et al., 

2019) 
Calcium DGKD 2 233354507 233472104   (Dib et al., 

2019) 
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Calcium VWA8 13 41566835 41961120   (Dib et al., 
2019) 

Calcium GCKR 2 27496839 27523684   (Dib et al., 
2019) 

Calcium KCNJ10 1 159998651 160070160   (Jain et al., 
2013) 

Calcium SLC12A3 16 56865207 56915850   (Jain et al., 
2013) 

Calcium SLC34A1 5 177379235 177398848   (Chang & 
Anderson, 

2017) 
Calcium SLC34A3 9 137230757 137236555   (Chang & 

Anderson, 
2017) 

Iodine DIO1 1 53891239 53911086 selenium  (White et al., 
2015) 

Iodine DIO2 14 80197526 80387757 selenium  (White et al., 
2015) 

Iodine DIO3 14 101561351 101563452 selenium  (White et al., 
2015) 

Iodine TRIP4 15 64387748 64455303   (Herráez et al., 
2009) 

Iodine IYD 6 150368892 150405969     
Iodine SLC5A5 19 17871945 17895174   (Engelken et 

al. 2016) 
Iodine SLC16A10 6 111087503 111231194   (The UniProt 

Consortium 
2023) 

Iodine THRA 17 40058290 40093867   (The UniProt 
Consortium 

2023) 
Iodine THRB 3 24117153 24495756   (The UniProt 

Consortium 
2023) 

Iodine SLC16A2 X 74421493 74533917   (The UniProt 
Consortium 

2023) 
Iodine TSHR 14 80954989 81146302   (The UniProt 

Consortium 
2023) 

Iodine SLCO1C1 12 20695355 20753386   (The UniProt 
Consortium 

2023) 
Iodine SECISBP2 9 89318500 89359663 selenium  (White et al. 

2015) 
Iodine TPO 2 1374066 1543711   (Wishart et al. 

2007) 
Iodine TTR 18 31557010 31599021   (Wishart et al. 

2007) 
Iodine SERPINA7 X 106032435 106038727   (Wishart et al. 

2007) 
Iodine SLC3A2 11 62856102 62888875   (Wishart et al. 

2007) 
Iodine SULT6B1 2 37167820 37196598   (Wishart et al. 

2007) 

 

Table S4.2: ZCSII-associated genes and their associated focal SNPs showing high 
repetition of selection signatures. “Gene Repetition”; given for both 𝑅𝑒𝑙𝑎𝑡𝑒 and 
𝐹𝑆𝑇selection values.  

 

Micronutrient Gene Gene Repetition  Focal SNP 
Position 𝑹𝒆𝒍𝒂𝒕𝒆 𝑭𝑺𝑻 

Zinc SLC39A4 1 14 chr8:144414297 
 GPR39 5 32 chr2:132638916 
 SLC30A9 7 26 chr4:42004040 
    chr4:42031397 
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    chr4:42066213 
    chr4:42093983 
 SLC39A11 27 24 chr17:73010373 
    chr17:72716374 
 SLC39A14 1 14 chr8:22404076 
    chr8:22416174 

Calcium ATP2B2 26 25 chr3:10453703 
    chr3:10636328 
 ATP2B4 8 16 chr1:203648263 
    chr1:203667951 
 SLC8A2 2 13 chr19:47428756 
    chr19:47437107 

Selenium EEFSEC 5 27 chr3:128412869 
 PRKG1 24 24 chr10:51576270 
    chr10:51471686 
 SGCD 21 22 chr5:156708844 
    chr5:156057959 
 AKAP6 20 19 chr14:32542441 
    chr14: 32446036 
    chr14: 32453376 
 DIO1 0 16 chr1:53920598 

Iron ARHGEF3 8 19 chr3:56761998 
Iodine TSHR 2 23 chr14:80962759 

    chr14:81006112 
    chr14:81071140 
 THRB 12 12 chr3: 24110895 
    chr3: 24342863 

 

Table S4.3: Iron and Calcium-associated genes and their associated focal SNPs 
showing high repetition of selection signatures.  “Gene Repetition”; given for 
both 𝑅𝑒𝑙𝑎𝑡𝑒 and 𝐹𝑆𝑇selection values.  

 

Micronutrient Gene Gene Repetition  Focal SNP 
Position 𝑹𝒆𝒍𝒂𝒕𝒆 𝑭𝑺𝑻 

Calcium ATP2B2 26 25 chr3:10456514 
    chr3:10604833 
 ATP2B4 8 16 chr1:203648263 
    chr1:203667951 
 SLC8A1 26 12 chr2:40394610 
    chr2:40584510 
 SLC8A2 2 13 chr19:47428756 
    chr19:47437107 
 SLC8A3 10 2 chr14:70182346 
    chr14:70175561 

Iron ARHGEF3 8 19 chr3:56761998 
    chr3:57043874 
 HIF1A 10 7 chr14:61687412 
    chr14:61709502 
    chr14:61741756 
 FTMT 12 11 chr5:121846819 
    chr5:121853801 
 SLC40A1 5 8 chr2:189577426 
    chr2:189591670 
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Table S4.4: The Zinc-associated genes within the 0.1% tail, as indicated by the 
𝑹𝒆𝒍𝒂𝒕𝒆 selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑹𝒆𝒍𝒂𝒕𝒆 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Bantu-speaking SLC39A11 3.33E-05 

  SLC30A7 8.80E-05 
  IL6R 0.00019916 
  SLC30A8 0.00049756 
  MT1A 0.00066041 
 Biaka CA2-CA3 0.00036806 
  SLC39A11 0.00046393 
  SLC30A10 0.00063683 
 Yoruba SCAMP5 4.17E-05 
  SLC39A3 0.00027082 
  SLC30A8 0.00044064 
 Mandenka MTF1 1.04E-05 
  SLC39A3 0.0005911 
  MTF2 0.00078435 
  SLC30A6 0.00082188 
 Mbuti MT1F-MT1G-MT1H 0.00032824 
  GPR39 0.00056904 

Middle-East Bedouin SLC39A11 0.00072923 
  SLC30A7 0.00076938 
 Druze SLC39A11 0.0002821 
  CAR13 0.00070799 
  CA3 0.00090627 
 Mozabite CA1 7.15E-06 
  SLC30A8 0.00019367 
  GPR39 0.00056815 
 Palestinian SLC39A11 1.48E-05 
  STAT3 0.00071861 

Europe Adygei SLC30A8 0.00015855 
  SLC30A10 0.00027645 
  SLC39A11 0.00074135 
 Basque SLC30A10 0.0001034 
  SLC39A11 0.00092046 
 BergamoItalian-Tuscan SLC30A8 4.48E-05 
  SLC39A12 0.00041253 
  SLC39A11 0.000771 
  MT1A 0.000771 
  MT1E 0.000771 
 French SLC39A11 9.13E-05 
  SLC30A8 0.00072794 
 Orcadian SLC39A11 0.00011567 
  SLC30A10 0.00021496 
  SLC30A9 0.00081243 
 Russian SLC30A1 1.32E-05 
  SLC39A11 0.00015104 
  SLC30A6 0.00037718 
 Sardinian SLC39A11 0.00044753 
  MT2A 0.00066616 

Central-South Asia Balochi SLC39A11 
 1.55E-05 

 Brahui SLC39A11 0.00061849 
  SLC39A3 0.00061849 
  CA3 0.00090293 
  SLC30A9 0.00092172 
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  SLC39A12 0.00093274 
  SLC39A14 0.00094336 
 Burusho SLC39A11 0.00012304 
  SLC30A10 0.00039715 
 Hazara SLC39A11 0.00076257 
 Kalash SLC39A10 1.21E-05 
  SLC30A8 0.0005821 
  SLC39A11 0.00074226 
  SLC30A10 0.00085796 
 Makrani SLC39A11 1.40E-06 
  SLC39A12 2.40E-05 
  SLC30A9 0.00036417 
 Pathan SLC30A7 9.46E-05 
  SLC39A3 0.00037334 
  SLC30A9 0.00065901 
 Sindhi SLC39A11 0.00015917 
  SLC30A9 0.00031178 
 Uygur SLC30A9 0.0002744 

East Asia Dai-Lahu GPR39 0.00065143 
 Han SLC39A11 0.0005133 
 Japanese GPR39 7.51E-05 
  SLC30A8 0.00052042 
  SLC39A11 0.00058404 
  SLC39A9 0.0007399 
 Naxi-Yi SLC39A11 8.43E-05 
  SLC39A8 0.00016511 
  IL6 0.00037186 
  SLC30A10 0.00037186 
  SLC39A9 0.00064471 
 Northern-Han SLC39A11 3.90E-05 
  SLC30A10 0.00065104 
  MTF2 0.00065104 
 She-Miao-Tujia SLC39A11 2.41E-05 
  SLC11A1 0.00033635 
  GPR39 0.00086595 
 Xibo-Mongolian MT1F-MT1G-MT1H 0.0002743 
  MTF2 0.00052523 
  SLC39A11 0.00087309 
 Yakut IL6R 0.00013508 
  SLC30A4 0.00096514 

Americas Surui-Karitiana SLC39A10 0.00014355 
  SLC39A8 0.00020085 
  SLC39A11 0.00041299 

Oceania Bougainville SLC39A11 0.000375 
  SLC30A6 0.000375 
 Papuan SLC30A9 0.00028702 
  SLC39A9 0.00077394 
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Table S4.5: The Zinc-associated genes within the 0.1% tail, as indicated by the 
𝑭𝑺𝑻  selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑹𝒆𝒍𝒂𝒕𝒆 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Bantu-speaking SLC30A9 2.83E-05 

  CAR13 8.23E-05 
  SLC39A12 0.00011711 
  SLC39A11 0.00029278 
 Biaka SLC39A9 0.00019231 
  SCAMP5 0.00024413 
  SLC30A10 0.00043508 
  SLC30A5 0.00072876 
  SLC39A4 0.00086389 
  SLC39A5 0.0008651 
 Mandenka SLC39A12 4.04E-05 
  SLC39A13 0.0002323 
  STAT3 0.00056251 
  SLC39A2 0.000744 
 Mbuti GPR39 9.97E-05 
  SLC39A4 0.00015312 
  SLC39A13 0.00018123 
  SLC39A11 0.00050677 
 San SLC39A4 9.96E-05 
  SLC39A11 0.00010416 
  SLC39A2 0.00021486 
  SLC11A1 0.00024216 

Middle-East Bedouin GPR39 5.59E-05 
  SLC39A14 0.00023457 
  SLC39A4 0.00030943 
  SLC39A11 0.00033089 
  CA1 0.00048109 
 Druze SLC39A4 1.02E-05 
  GPR39 3.23E-05 
  SLC39A14 0.00041768 
  SLC39A11 0.00071243 
  CA1 0.0007683 
 Mozabite CA3 0.0002021 
  SLC39A4 0.00020628 
  SLC39A11 0.00028293 
  CA1 0.00028765 
  GPR39 0.00036971 
 Palestinian SLC39A4 2.85E-05 
  GPR39 3.72E-05 
  SLC39A14 5.81E-05 
  CA1 0.0004049 
  SLC39A11 0.00064181 
  SCAMP5 0.00080733 

Europe Adygei SLC39A4 2.30E-05 
  SLC30A9 0.00011976 
  SLC39A8 0.0001604 
  GPR39 0.00016129 
  SLC39A11 0.00034286 
  SLC30A2 0.00060677 
 Basque SLC39A4 1.41E-05 
  GPR39 0.00013401 
  SLC39A11 0.00032407 
  SLC39A14 0.00099308 
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 BergamoItalian-Tuscan SLC39A4 8.84E-06 
  GPR39 8.94E-05 
  SLC30A9 0.00030164 
  SLC39A14 0.00052329 
  SLC30A8 0.00064347 
  SLC39A11 0.00068438 
 French SLC39A4 5.58E-06 
  GPR39 5.35E-05 
  SLC39A14 0.00051554 
 Orcadian SLC39A4 3.19E-05 
  SLC30A10 9.97E-05 
  GPR39 0.00028039 
  SLC39A11 0.00047506 
  SLC30A9 0.00080692 
  SCAMP5 0.00080692 
 Russian SLC39A4 6.43E-06 
  GPR39 6.47E-05 
  SLC30A10 0.0001957 
  SLC39A8 0.00033289 
  SLC39A14 0.00037319 
  MTF2 0.00058517 
  SLC39A11 0.00073398 
 Sardinian SLC39A4 1.33E-05 
  GPR39 5.57E-05 
  SLC39A14 0.0009194 

Central-South Asia Balochi SLC39A4 2.89E-05 
  GPR39 0.00013587 
  SLC30A2 0.00017753 
  SLC39A11 0.00022464 
  SLC39A14 0.00032267 
  SLC30A9 0.00066326 
 Brahui SLC39A4 7.98E-06 
  GPR39 2.63E-05 
  SLC39A11 0.00045037 
  SLC39A14 0.00047577 
  SLC30A9 0.00084037 
  SLC11A1 0.00085518 
 Burusho SLC39A4 8.76E-06 
  SLC30A9 5.38E-05 
  GPR39 5.78E-05 
  SLC39A11 0.00020162 
  MTF2 0.00035538 
  SLC30A8 0.00039795 
  SLC39A14 0.00053656 
  SLC30A2 0.0009226 
 Hazara SLC39A4 7.24E-06 
  SLC30A9 2.23E-05 
  GPR39 9.24E-05 
  MTF2 9.77E-05 
  SLC39A14 0.00085186 
 Kalash SLC39A4 1.72E-05 
  SLC39A11 9.98E-05 
  GPR39 0.00013799 
  MTF2 0.0002331 
  SLC30A9 0.00033323 
  SLC39A14 0.00044862 
  SLC30A10 0.00085675 
 Makrani SLC39A4 3.95E-06 
  SLC11A1 0.0002031 
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  GPR39 0.00021093 
  SLC39A11 0.00033045 
  SLC30A9 0.00055087 
  SLC39A14 0.00071355 
 Pathan SLC39A4 5.47E-06 
  GPR39 3.47E-05 
  SLC30A9 6.08E-05 
  MTF2 0.00028829 
  SLC39A11 0.00040321 
  SLC39A14 0.00044799 
  SLC30A2 0.00066599 
  SLC11A1 0.00076262 
 Sindhi SLC39A4 1.03E-05 
  SLC39A11 2.99E-05 
  GPR39 5.83E-05 
  SLC30A2 0.00027912 
  SLC30A9 0.00050259 

East Asia Dai-Lahu SLC30A9 2.12E-05 
  SLC39A4 7.82E-05 
  GPR39 0.00047748 
  SLC30A3 0.00073958 
  SLC39A8 0.00089389 
 Han SLC30A9 3.55E-06 
  SLC39A4 4.34E-05 
  GPR39 0.00020004 
  MTF2 0.00075658 
 Japanese SLC39A4 6.69E-05 
  SLC30A9 0.00014582 
  GPR39 0.00044395 
  MTF2 0.00071933 
  SLC39A8 0.00077016 
 Oroqen-Hezhen-Daur SLC30A9 1.51E-05 
  SLC39A4 3.99E-05 
  SLC30A2 0.00039712 
  GPR39 0.00056561 
 Naxi-Yi SLC39A4 9.03E-05 
  SLC30A9 0.00010709 
  SLC39A8 0.00031326 
  GPR39 0.00042359 
  MTF2 0.00052899 
  SLC30A3 0.00065973 
 NorthernHan-Tu SLC39A4 5.98E-05 
  SLC30A9 7.01E-05 
  SLC39A8 0.00035757 
  GPR39 0.00056756 
  IL6R 0.00092879 
  SLC30A3 0.00098103 
 She-Miao-Tujia SLC30A9 2.05E-05 
  SLC39A4 4.75E-05 
  GPR39 0.00034618 
  MTF2 0.0006867 
 Xibo-Mongolian SLC30A9 2.66E-05 
  SLC39A4 5.49E-05 
  GPR39 0.0002492 
  SLC30A3 0.0004534 
  IL6R 0.00064751 
 Yakut SLC30A9 1.71E-05 
  SLC39A4 3.57E-05 
  SLC30A2 0.0003788 
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  GPR39 0.00091171 
Americas Maya SLC30A9 8.30E-05 

  STAT3 0.00028013 
  SLC39A11 0.00038942 
  SLC30A2 0.00043729 
  GPR39 0.00049596 
  SLC39A4 0.00074664 
 Pima STAT3 0.00010471 
  SLC39A11 0.00010471 
  SLC30A2 0.00010471 
  SLC39A4 0.00083811 
 Surui-Karitiana SLC30A9 0.00012002 
  SLC30A2 0.00030537 
  SLC39A9 0.00050277 
  SLC39A11 0.00052132 
  SLC39A4 0.00077086 
  SLC39A8 0.0008551 
  STAT3 0.0009046 

Oceania Bougainville SLC30A9 8.23E-05 
  GPR39 0.00034338 
  SLC39A11 0.00040821 
  SLC39A4 0.00043659 
 Papuan SLC39A11 9.64E-05 
  SLC30A9 0.00025195 
  SLC39A4 0.00032253 

 

Table S4.6: The Calcium-associated genes within the 0.1% tail, as indicated by the 
𝑹𝒆𝒍𝒂𝒕𝒆 selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑹𝒆𝒍𝒂𝒕𝒆 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Bantu-speaking SLC8A2 0.00011146 

  SLC8A1 0.00023012 
  CYP24A1 0.00044936 
  ATP2B1 0.00080919 
 Biaka DGKD 1.97E-05 
  SLC34A3 0.00027589 
  ATP2B2 0.00030009 
  TRPM2 0.00050177 
  SLC8A1 0.0005978 
 Mandenka VWA8 0.00011987 
  ATP2B2 0.00018742 
  TRPM2 0.00026067 
  SLC8A1 0.00063471 
 Mbuti ATP2B2 0.00048462 
  RGS2 0.00048462 

Middle-East Bedouin ATP2B2 0.00022835 
  ATP2B4 0.00053567 
  SLC8A1 0.00086055 
 Druze SLC8A1 0.00025185 
  ATP2B4 0.00030962 
 Mozabite ATP2B2 1.38E-05 
  VWA8 0.0001365 
  ATP2B4 0.00019367 
  CASR 0.00071448 
 Palestinian ATP2B2 0.00017141 
  TRPM2 0.00071861 
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  SLC8A1 0.00073645 
  ATP2B3 0.00080695 

Europe Adygei SLC8A1 0.00057084 
  GATA3 0.00074135 
 Basque ATP2B2 1.35E-04 
 BergamoItalian-Tuscan SLC8A1 4.48E-05 
  ATP2B4 0.00041253 
  TRPM2 0.00049621 
  ATP2B2 0.00054845 
 French ATP2B2 7.51E-05 
  ATP2B4 0.00050016 
  SLC8A1 0.00072794 
  TRPM2 0.00072794 
  ATP2B1 0.00072794 
 Orcadian CYP24A1 0.00011567 
  ATP2B2 0.00059697 
  DGKD 0.00081243 
 Russian ATP2B2 0.00027103 
  DGKD 0.00084244 
  SLC8A1 0.00088073 
 Sardinian ATP2B2 2.10E-07 
  SLC8A1 0.00012589 
  VWA8 0.0002822 
  ATP2B4 0.00065672 

Central-South Asia Balochi VWA8 0.00085698 
  SLC8A1 0.00091688 
 Brahui SLC8A2 0.00032201 
 Burusho ATP2B2 9.35E-05 
  SLC8A3 0.00038816 
 Hazara SLC8A1 0.00067934 
 Kalash SLC12A3 2.21E-05 
  DGKD 0.0005821 
  SLC8A1 0.00085796 
  SLC8A3 0.00096965 
  ATP2B2 0.00096965 
 Makrani SLC8A1 2.40E-05 
  ATP2B2 4.97E-05 
 Pathan ATP2B2 2.08E-05 
  SLC8A1 0.00025819 
  SLC8A3 0.0004843 
 Sindhi VWA8 0.00036757 
  ATP2B4 0.00089124 
 Uygur ATP2B2 5.23E-05 
  SLC8A1 0.0002744 

East Asia Dai-Lahu SLC8A3 4.43E-05 
  SLC8A1 7.39E-05 
 Han TRPM2 0.00017549 
  ATP2B2 0.00065698 
 Japanese DGKD 0.00020117 
  ATP2B2 0.0002387 
  SLC8A3 0.00049776 
  TRPM2 0.00053484 
  SLC8A1 0.0007534 
 Oroqen-Hezhen-Daur TRPM2 0.00075899 
 Naxi-Yi SLC8A3 0.00037186 
  VWA8 0.00042524 
  ATP2B2 0.0004816 
  SLC8A1 0.00066865 
 NorthernHan-Tu SLC8A3 3.90E-05 
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 She-Miao-Tujia TRPM2 0.00021958 
  GATA3 0.00024253 
  ATP2B4 0.00024253 
  SLC8A3 0.00072692 
  ATP2B2 0.00083491 
  SLC8A1 0.00086595 
 Xibo-Mongolian SLC8A3 6.74E-05 
  ATP2B2 0.00052523 
  GATA3 0.00087309 
 Yakut SLC8A1 0.000452 

Americas Maya SLC8A1 4.17E-05 
  ATP2B1 0.00015384 
 Pima ATP2B2 9.06E-06 
 Surui-Karitiana SLC8A1 0.00065956 

Oceania Bougainville ATP2B2 0.000375 
 Papuan SLC8A1 1.26E-05 
  ATP2B2 1.97E-05 

 

Table S4.7: The Calcium-associated genes within the 0.1% tail, as indicated by the 
𝑭𝑺𝑻  selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑭𝑺𝑻 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Bantu-speaking KCNJ10 1.38E-05 

  ATP2B4 0.00017082 
  CYP24A1 0.00084385 
  ATP2B2 0.00085097 
  SLC34A3 0.00085097 
  SLC8A1 0.000922 
 Biaka SLC8A1 3.05E-05 
  ATP2B4 8.39E-05 
  CYP24A1 0.00044008 
  GCKR 0.00050054 
  GATA3 0.00051639 
  RGS2 0.00087852 
  ATP2B2 0.00095405 
  TRPM2 0.00098545 
 Mandenka ATP2B2 7.75E-08 
  SLC8A1 3.00E-05 
  KCNJ10 3.01E-05 
  GCKR 0.00032727 
 Mbuti ATP2B4 0.00099714 
 San TRPM2 0.00024216 
  SLC8A1 0.00029778 
  ATP2B2 0.00080396 

Middle-East Bedouin ATP2B2 8.84E-05 
  ATP2B4 0.00020166 
  CYP24A1 0.00071441 
  SLC8A2 0.00086433 
 Druze ATP2B2 0.00035581 
  SLC8A2 0.00078781 
 Mozabite ATP2B4 8.32E-05 
  ATP2B2 9.73E-05 
 Palestinian ATP2B2 0.0003236 
  ATP2B4 0.00038601 
  CYP24A1 0.00094864 

Europe Adygei ATP2B4 0.00038826 
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  ATP2B2 0.00057071 
  SLC8A2 0.00077579 
 Basque ATP2B2 0.00026722 
  ATP2B4 0.00068692 
  SLC8A2 0.00086331 
 BergamoItalian-Tuscan ATP2B4 0.0002526 
  ATP2B2 0.00037792 
  SLC8A2 0.00050789 
 French ATP2B2 7.13E-05 
  SLC8A1 0.0002476 
  ATP2B4 0.00031481 
  SLC8A2 0.00073577 
 Orcadian ATP2B2 0.00035948 
  SLC8A2 0.00060977 
 Russian ATP2B2 0.0001368 
  ATP2B4 0.00018927 
 Sardinian SLC8A2 0.00014296 
  SLC8A1 0.00050004 
  ATP2B4 0.00073068 
  ATP2B2 0.00096944 

Central-South Asia Balochi ATP2B4 0.0001541 
  ATP2B2 0.00035706 
 Brahui ATP2B2 0.00067809 
  SLC8A1 0.00099182 
 Burusho ATP2B4 0.00048762 
  ATP2B2 0.0009027 
  SLC8A2 0.00093919 
 Kalash SLC8A2 0.00083374 
 Makrani SLC8A1 0.00065854 
  ATP2B4 0.00086095 
  ATP2B2 0.00087364 
 Pathan ATP2B4 0.00039607 
  SLC8A2 0.00041262 
  ATP2B2 0.00081051 
 Sindhi SLC8A1 0.0003684 
  ATP2B2 0.00078334 
  SLC8A2 0.00082772 
 Uygur ATP2B4 0.00029722 
  SLC8A1 0.00034663 
  SLC8A2 0.00038054 
  SLC8A3 0.00067718 

East Asia Han CYP24A1 0.00070583 
  ATP2B2 0.00090958 
 Japanese CASR 0.00076711 
 Oroqen-Hezhen-Daur CYP24A1 

 
0.00082205 

 Naxi-Yi CASR 0.0007695 
 NorthernHan-Tu ATP2B2 0.00060215 
 Yakut ATP2B2 0.0008125 

Americas Maya SLC8A1 0.0008765 
 Pima CASR 0.0018747 
 Surui-Karitiana SLC8A1 0.0008551 

Oceania Papuan ATP2B2 0.00060372 
  SLC8A3 0.00081085 
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Table S4.8: The Selenium-associated genes within the 0.1% tail, as indicated by the 
𝑹𝒆𝒍𝒂𝒕𝒆 selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑹𝒆𝒍𝒂𝒕𝒆 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Bantu-speaking LRP8 8.80E-05 

  PRKG1 0.00011146 
  EEFSEC 0.00016167 
  AKAP6 0.00019916 
  SCLY 0.00066041 
  SGCD 0.00069572 
  SELENOP 0.00080919 
 Biaka SGCD 8.77E-05 
  SELENOS 0.00011324 
  LHFPL2 0.00014782 
  AKAP6 0.00027589 
  KCNMA1 0.00032071 
  PRKG1 0.0005978 
 Yoruba SELENOM 5.87E-06 
  PRKG1 0.00016458 
  LRP8 0.00072398 
  AKAP6 0.00078661 
  KCNMA1 0.00078661 
  SELENOS 0.00082895 
 Mandenka LRP8 1.04E-05 
  LHFPL2 0.00011467 
  SECISBP2 0.00027311 
  LRP2 0.00034801 
  KCNMA1 0.00053903 
  AKAP6 0.0005911 
  SELENOP 0.00071216 
  PRKG1 0.00094662 
 Mbuti SGCD 8.72E-05 
  KCNMA1 0.00020261 
  EEFSEC 0.00020261 
  TXNRD1 0.00032824 
  SELENOI 0.00077346 
  LRP2 0.00089587 

Middle-East Bedouin PRKG1 0.00022585 
  AKAP6 0.00060058 
  SGCD 0.00062467 
 Druze AKAP6 0.00037687 
  SGCD 0.00069323 
 Mozabite AKAP6 4.16E-05 
  SCLY 9.09E-05 
  GPx7 0.00028962 
  TXNRD3 0.00057637 
  

SGCD 0.00062854 
 Palestinian PRKG1 6.83E-05 
  SGCD 9.50E-05 
  SELENOF 0.00010856 
  AKAP6 0.00019775 
  SELENOS 0.00071861 

Europe Adygei AKAP6 4.62E-05 
  KCNMA1 0.0001784 
  PRKG1 0.00058113 
  EEFSEC 0.00065646 
  TXNRD3 0.00078344 
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 Basque TXNRD3 4.79E-05 
  EEFSEC 5.59E-05 
  AKAP6 0.00035174 
  SELENOF 0.00040146 
  SGCD 0.00040146 
  PRKG1 0.00047061 
 BergamoItalian-Tuscan KCNMA1 0.00018138 
  SGCD 0.00067804 
  AKAP6 0.000771 
  GPx2 0.0008142 
 French SELENOF 0.00097709 
 Orcadian SELENOF 0.00021496 
  SEPSECS 0.00069701 
 Russian KCNMA1 0.000137 
  SELENOF 0.00015104 
  SEPSECS 0.00015828 
  SCLY 0.00026209 
  SECISBP2 0.00040399 
  LRP2 0.00086052 
  TXNRD1 0.00087605 
 Sardinian SECISBP2 3.27E-05 
  PRKG1 0.0003378 
  SELENOF 0.00047208 
  AKAP6 0.00052747 
  SGCD 0.00065672 

Central-South Asia Balochi PRKG1 0.000145 
  LRP8 0.00027678 
  SELENOS 0.00027678 
  GPx2 0.00029206 
  EEFSEC 0.00035898 
  ELAVL1 0.00085698 
 Brahui GPx2 0.00010148 
  LRP2 0.00025177 
  SELENOF 0.00076429 
 Burusho AKR7L 9.83E-06 
  PRKG1 0.00012555 
  ELAVL1 0.00023813 
  AKAP6 0.00051078 
  ARSB 0.00064344 
  SGCD 0.00069345 
 Hazara PRKG1 5.56E-05 
  ARSB 0.00017433 
  SELENOP 0.00017433 
  TXNRD1 0.00017433 
  LRP2 0.00034417 
  SGCD 0.0004472 
 Kalash PRKG1 0.00014809 
 Makrani GPx2 9.61E-06 
  DIO2 0.00028549 
 Pathan SELENOP 4.09E-05 
  SELENOF 0.00012857 
  LRP2 0.00013172 
  PRKG1 0.00025819 
 Sindhi KCNMA1 0.00036757 
  SGCD 0.00063874 
  SELENOF 0.00089124 
  PRKG1 0.00089124 

East Asia Dai-Lahu PRKG1 0.00025059 
  SGCD 0.00025059 
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  KCNMA1 0.0008572 
  TXNRD2 0.00087044 
 Han PRKG1 6.54E-05 
  KCNMA1 0.00023142 
  SGCD 0.00033036 
 Japanese LHFPL2 0.00015814 
  KCNMA1 0.00033413 
  PRKG1 0.00049776 
  ARSB 0.00049776 
  SELENOI 0.00052042 
 Oroqen-Hezhen-Daur PRKG1 0.00023563 
  ARSB 0.00023563 
  AKAP6 0.00023563 
  SGCD 0.00036709 
 Naxi-Yi PRKG1 2.17E-05 
  SELENOI 0.00037186 
  AKAP6 0.00041152 
  KCNMA1 0.00047387 
  SGCD 0.00071255 
 NorthernHan-Tu KCNMA1 3.90E-05 
  PRKG1 0.00015139 
  SELENOI 0.0003887 
  AKAP6 0.0003887 
  SELENOS 0.0003887 
  SGCD 0.00079954 
 She-Miao-Tujia PRKG1 0.00013476 
  KCNMA1 0.00024725 
  SGCD 0.000598 
 Xibo-Mongolian KCNMA1 0.00016803 
  PRKG1 0.0002743 
  SELENOP 0.0002743 
  LRP8 0.00052523 
  ARSB 0.00052523 
  AKAP6 0.00087309 
 Yakut KCNMA1 1.46E-05 
  AKAP6 7.62E-05 
  GPx7 0.00013104 
  DIO2 0.00050707 
  SEPHS1 0.00058843 
  SGCD 0.00072576 
  PRKG1 0.00096514 

Americas Maya LHFPL2 0.00075386 
 Pima TRNAU1AP 0.00018445 
  SELENOI 0.00077597 
 Surui-Karitiana AKAP6 3.96E-05 

Oceania Bougainville SGCD 0.00021637 
  DMGDH 0.00039673 
  BHMT 0.00039673 
 Papuan DIO2 0.00027674 
  AKAP6 0.00063515 
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Table S4.9: The Selenium-associated genes within the 0.1% tail, as indicated by the 
𝑭𝑺𝑻  selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑭𝑺𝑻 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Bantu-speaking LHFPL2 4.99E-06 

  PRKG1 2.11E-05 
  EEFSEC 2.53E-05 
  SGCD 0.00017082 
  GPx3 0.00018601 
  KCNMA1 0.00025396 
  TXNRD2 0.0004741 
  ARSB 0.00050132 
  SELENOI 0.00080305 
  TRU-TCA1-1 0.00095671 
 Biaka LHFPL2 8.33E-05 
  EEFSEC 0.00010422 
  SELENOI 0.00011036 
  SGCD 0.00045229 
  LRP8 0.00066915 
  SEPHS2 0.00071412 
  KCNMA1 0.00094741 
 Mandenka TXNRD2 9.72E-05 
  SARS2 0.00015415 
  SGCD 0.00040891 
  RPL30 0.00054919 
  EIF4A3 0.00063262 
  ARSB 0.00070512 
 Mbuti TRU-TCA2-1 6.63E-05 
  LHFPL2 7.44E-05 
  SELENOH 0.000126 
  ARSB 0.0002288 
  CELF1 0.00030309 
  SEPHS1 0.00052952 
  SELENOI 0.00062595 
  TRU-TCA3-1 0.00062595 
 San LRP8 2.15E-05 
  LHFPL2 3.08E-05 
  SGCD 0.00010027 
  GPx3 0.00037697 
  PSTK 0.00037697 
  AKAP6 0.00077386 
  JMY 0.00077386 

Middle-East Bedouin EEFSEC 8.33E-05 
  AKAP6 0.00025165 
  LHFPL2 0.0004813 
  SGCD 0.00050928 
  LRP8 0.00056435 
  PRKG1 0.00066552 
  JMY 0.00066587 
  GPx4 0.00070823 
  TXNRD2 0.00089399 
 Druze EEFSEC 0.00016841 
  SGCD 0.00017835 
  AKAP6 0.00071065 
  LHFPL2 0.0007289 
  SELENOS 0.00076221 
  ARSB 0.00090391 
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  TXNRD2 0.00091089 
 Mozabite EEFSEC 1.29E-05 
  TXNRD2 0.00026529 
  AKAP6 0.00065171 
  SGCD 0.00074499 
 Palestinian JMY 0.00013105 
  LHFPL2 0.00021016 
  AKAP6 0.00025078 
  DIO1 0.0003277 
  DIO2 0.00046738 
  PRKG1 0.00079409 
  ARSB 0.00087271 
  TXNRD2 0.00088318 

Europe Adygei EEFSEC 0.00010962 
  SELENOS 0.00038826 
  AKAP6 0.00062343 
  LRP8 0.0009683 
 Basque SELENOS 0.00061776 
  AKAP6 0.00061776 
  LRP8 0.0006782 
  EEFSEC 0.00068692 
  DIO1 0.00070659 
  PRKG1 0.00095054 
  SGCD 0.00096781 
 BergamoItalian-Tuscan SGCD 1.07E-05 
  EEFSEC 0.0001355 
  AKAP6 0.00036307 
  DIO2 0.00068438 
  PRKG1 0.00077155 
  LRP8 0.00081451 
 French SGCD 0.00023628 
  SELENOS 0.00044557 
  TXNRD3 0.00054689 
  DIO2 0.00063582 
  DIO1 0.0006635 
  LRP8 0.00086606 
  EEFSEC 0.00087608 
 Orcadian ARSB 7.92E-05 
  EEFSEC 0.00017297 
  GPx2 0.0002503 
  SGCD 0.0002571 
  LRP8 0.00038381 
  AKAP6 0.00040702 
  GPx3 0.00060977 
 Russian SELENOS 4.01E-05 
  LRP8 0.00012788 
  EEFSEC 0.00021035 
  AKAP6 0.0002722 
  SGCD 0.00033211 
  PRKG1 0.00053471 
  DMGDH 0.00076172 
  DIO1 0.00092937 
 Sardinian EEFSEC 0.00013033 
  AKAP6 0.00018068 
  KCNMA1 0.00060425 
  LRP2 0.00075641 
  SCLY 0.00097505 
 Balochi SELENOS 0.00015839 
  EEFSEC 0.00032175 
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  SGCD 0.00044376 
  PRKG1 0.0004747 
  SELENON 0.00088683 
 Brahui SELENOS 8.04E-05 
  AKAP6 0.0001368 
  EEFSEC 0.00033199 
  SGCD 0.0004361 
  DIO2 0.00064879 
  PRKG1 0.00067809 
 Burusho DIO1 0.00013009 
  AKAP6 0.00020316 
  DIO2 0.00039795 
  EEFSEC 0.00042983 
  SELENOS 0.00066096 
 Hazara SELENOS 1.86E-05 
  EEFSEC 0.000255 
  DIO1 0.00041576 
  PRKG1 0.00054207 
  SELENOI 0.00060433 
  ARSB 0.0008675 
 Kalash EEFSEC 0.00013799 
  SELENOS 0.0002105 
  DIO1 0.00032655 
  LRP8 0.00047725 
  DIO2 0.00058909 
  ARSB 0.00097016 
  DMGDH 0.00097016 
 Makrani SGCD 1.18E-05 
  SELENOS 0.00013145 
  AKAP6 0.00022042 
  PRKG1 0.0002227 
  GPx2 0.00025279 
  EEFSEC 0.00029101 
  DIO2 0.00042861 
 Pathan DIO1 0.00027736 
  AKAP6 0.00028829 
  SGCD 0.00054401 
  EEFSEC 0.00056375 
  SELENOS 0.00061362 
  PRKG1 0.00069817 
  SEPHS1 0.00079032 
 Sindhi SELENOS 0.00013278 
  EEFSEC 0.00029401 
  AKAP6 0.00031698 
  DIO1 0.00046362 
  SELENON 0.00047021 
  PRKG1 0.0007474 
  SEPHS1 0.00091271 
 Uygur PRKG1 0.00019889 
  SEPHS1 0.00025021 
  EEFSEC 0.00029722 
  LRP8 0.00044421 
  DIO1 0.00057239 
  SELENOS 0.00062677 
  DIO2 0.00062677 
  SGCD 0.00077625 
  ARSB 0.00091985 

East Asia Dai-Lahu SEPHS1 0.00013178 
  PRKG1 0.00041625 
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  SELENOI 0.00045413 
  SEPHS2 0.00054729 
  DMGDH 0.00089389 
  BHMT2 0.00089389 
 Han DIO1 0.00024443 
  SELENOI 0.00030395 
  EEFSEC 0.00041875 
  PRKG1 0.00045551 
  TXNRD2 0.00067604 
  SEPHS2 0.00068557 
  SELENOW 0.0007888 
  SELENON 0.00080415 
 Japanese SELENOW 6.91E-05 
  SEPHS2 0.00023089 
  PRKG1 0.00037851 
  DIO1 0.00047758 
  SELENOI 0.00051479 
  EEFSEC 0.00055858 
  KCNMA1 0.00096672 
 Oroqen-Hezhen-Daur KCNMA1 0.00015128 
  SELENOI 0.00029749 
  SELENOW 0.00035763 
  DIO1 0.00041683 
  SEPHS2 0.00047206 
  PRKG1 0.00066189 
  SELENOS 0.00085593 
 Naxi-Yi SEPHS2 0.00010969 
  PRKG1 0.0001864 
  SELENOW 0.00036851 
  SEPHS1 0.00048678 
  SELENOI 0.00057711 
  SELENOS 0.0008885 
 NorthernHan-Tu PRKG1 0.00011442 
  SEPHS2 0.00020983 
  DIO1 0.00035868 
  SELENOS 0.00042754 
  SEPHS1 0.00060159 
  EEFSEC 0.00073565 
  SELENOI 0.00098636 
  KCNMA1 0.00098636 
 She-Miao-Tujia PRKG1 2.05E-05 
  SELENOI 0.00037182 
  EEFSEC 0.00052419 
  GPx1 0.00056207 
  KCNMA1 0.00090569 
 Xibo-Mongolian PRKG1 1.00E-05 
  SEPHS2 2.66E-05 
  SELENOI 0.00042129 
  SELENOW 0.00048511 
  SEPHS1 0.00058305 
  DMGDH 0.00060539 
  EEFSEC 0.00079502 
  JMY 0.00087862 
 Yakut PRKG1 0.00010185 
  DIO1 0.0002481 
  SEPHS2 0.00031133 
  EEFSEC 0.00049965 
  AKAP6 0.00058379 
  SELENOS 0.00095554 
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  KCNMA1 0.00099665 
Americas Maya GPx3 0.00014139 

  SGCD 0.00031806 
  DIO1 0.00062126 
  DIO2 0.00067055 
  SEPHS2 0.00083053 
 Pima GPx3 0.00010471 
  SELENON 0.00010471 
  SGCD 0.00044989 
  SEPHS2 0.00044989 
  PRKG1 0.00066221 
  DIO2 0.00086237 
 Surui-Karitiana GPx3 0.00012002 
  SGCD 0.00012002 
  SEPHS2 0.00027794 
  LHFPL2 0.00030537 
  AKAP6 0.00052132 
  SELENON 0.00059791 
  SELENOM 0.00090882 

Oceania Bougainville AKAP6 0.00017199 
  SGCD 0.00034338 
  DIO2 0.00034338 
  LRP8 0.00034338 
  TRU-TCA2-1 0.00062923 
 Papuan SGCD 5.36E-05 
  PRKG1 0.00070944 
  KCNMA1 0.00081085 

 

Table S4.10: The Iron-associated genes within the 0.1% tail, as indicated by the 
𝑹𝒆𝒍𝒂𝒕𝒆 selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑹𝒆𝒍𝒂𝒕𝒆 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Biaka TMPRSS6 7.18E-05 

  ACO1 0.00030009 
  ARHGEF3 0.00046393 
  MYB 0.00046393 
  HIF1A 0.00048144 
 Yoruba HIF1A 0.00035819 
  SLC48A1 0.00063471 
  PANK2 0.00082895 
 Mandenka HAMP 0.00012474 
  FTMT 0.00015476 
 Mbuti ACO2 0.00032824 
  PLA2G6 0.00077346 

Middle-East Bedouin EPAS1 0.00013935 
  HBS1L 0.0002138 
 Druze WDR45 0.00010661 
  CP 0.0002821 
  FTMT 0.00058571 
  FA2H 0.00058571 
  TMPRSS6 0.00058571 
  SLC48A1 0.00080002 
 Mozabite HIF1A 0.00078773 

Europe Adygei C19orf12 2.01E-05 
  CFAP251 9.28E-05 
  ARHGEF3 0.00015855 
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  FTMT 0.00099437 
 Basque HIF1A 2.43E-06 
  ARHGEF3 2.47E-05 
  MYB 0.00085462 
 BergamoItalian-Tuscan HIF1A 0.00041253 
  LTF 0.00046929 
  SLC40A1 0.00049621 
 French HIF1A 0.00026554 
  SLC11A2 0.00085614 
 Orcadian FTMT 0.00012535 
  C19orf12 0.00021496 
  EPAS1 0.00059697 
 Russian FTMT 0.00084244 
 Sardinian FA2H 0.00052747 

Central-South Asia Balochi EPAS1 0.00027678 
  FTMT 0.00091688 
 Brahui FTMT 1.92E-05 
  PANK2 0.00061849 
  EPAS1 0.00094336 
 Burusho HIF1A 0.0002737 
  PANK2 0.00064344 
 Hazara ARHGEF3 0.00046092 
 Kalash CFAP251 0.0005821 
 Makrani FTMT 0.00050511 
 Pathan HIF1A 0.00029385 
 Sindhi HIF1A 2.28E-05 
 Uygur SLC40A1 1.62E-05 
  PLA2G6 7.10E-05 

East Asia Dai-Lahu ARHGEF3 6.80E-05 
  LCN2 0.00051035 
 Han LCN2 0.00047733 
  RHOA 0.00047733 
  TAOK1 0.00051001 
 Japanese SLC40A1 0.0001792 
 Oroqen-Hezhen-Daur SLC40A1 0.00023563 
  ARHGEF3 0.00023563 
 NorthernHan-Tu RHOA 0.0003887 
  FTMT 0.00065104 
  TFRC 0.00074298 
 She-Miao-Tujia FTMT 0.00021508 
  SLC11A1 0.00033635 
  TFRC 0.00072692 
 Xibo-Mongolian RHOA 0.00052523 
  FTMT 0.0009191 
  SLC17A1 0.00098995 
 Yakut FTMT 3.37E-06 
  SLC40A1 0.00042053 
  PLA2G6 0.00042053 
  ACO1 0.00096514 

Americas Maya ARHGEF3 0.00028516 
  SLC48A1 0.00036477 
  TF 0.00047791 
 Pima SLC17A1 0.00071578 

Oceania Papuan HIF1A 0.00027674 
  HBS1L 0.00027674 
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Table S4.11: The Iron-associated genes within the 0.1% tail, as indicated by the 
𝑭𝑺𝑻  selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑭𝑺𝑻 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Bantu-speaking TAOK1 3.42E-05 

  ATP13A2 0.00019915 
  HJV 0.00025213 
  CFAP251 0.00031076 
  TFRC 0.00048283 
  ARHGEF3 0.00081567 
 Biaka ARHGEF3 0.00050083 
  FTL 0.00074618 
 Mandenka FTL 1.99E-05 
  HJV 2.91E-05 
  LCN2 0.0001794 
  TMPRSS6 0.00050372 
  ACO1 0.00059993 
  TF 0.00097832 
 Mbuti SLC11A2 0.00037127 
  LTF 0.00051764 
 San ACO2 0.00021486 
  SLC11A1 0.00024216 
  ARHGEF3 0.00030976 
  ACO1 0.00077386 

Middle-East Bedouin ARHGEF3 3.43E-05 
  LCN2 0.00075733 
  LTF 0.00079045 
 Druze ARHGEF3 0.00035974 
  EPAS1 0.00045537 
  FTH1 0.00090651 
  LCN2 0.00091089 
 Mozabite ARHGEF3 0.00044427 
  MYB 0.00057807 
 Palestinian ARHGEF3 2.55E-05 
  LCN2 0.00044637 
  EPAS1 0.0005172 
  HIF1A 0.00084412 
  CFAP251 0.00084851 

Europe Adygei FTMT 7.54E-05 
  TMPRSS6 0.00023855 
  ARHGEF3 0.00027147 
  EPAS1 0.00080734 
 Basque ARHGEF3 0.00016136 
  HIF1A 0.00024923 
  FTMT 0.00040115 
  FTH1 0.00078535 
 BergamoItalian-Tuscan LTF 0.00018177 
  ARHGEF3 0.00058054 
  HIF1A 0.00059546 
  FTMT 0.00087207 
 French CFAP251 0.00013879 
  ARHGEF3 0.0002749 
  EPAS1 0.0008926 
  HIF1A 0.00095844 
 Orcadian SLC40A1 0.0005459 
  ARHGEF3 0.00067044 
  EPAS1 0.00080548 



Appendices 
 

 309 

 Russian SLC40A1 0.00044697 
 Sardinian FTMT 0.00063005 
  FTH1 0.00095923 

Central-South Asia Balochi ARHGEF3 2.34E-05 
  FTMT 0.00032236 
  HIF1A 0.00060766 
 Brahui ARHGEF3 6.51E-05 
  FTMT 0.00031265 
  SLC11A1 0.00085518 
 Burusho ARHGEF3 0.00029444 
 Hazara ARHGEF3 0.00012885 
 Kalash TMPRSS6 0.00027137 
  LTF 0.00027137 
  HFE 0.00029735 
  ARHGEF3 0.00033265 
 Makrani ARHGEF3 8.20E-05 
  SLC11A1 0.0002031 
  FTMT 0.00075807 
 Pathan SLC11A1 0.00076262 
  FTMT 0.00098729 
 Sindhi TMPRSS6 0.00039545 
  EPAS1 0.00079401 
 Uygur SLC11A1 0.00023123 
  LTF 0.00038054 
  SLC40A1 0.00064543 
  HBS1L 0.00067718 

East Asia Dai-Lahu FTMT 4.85E-05 
  RHOA 0.00066748 
  EPAS1 0.00076375 
 Han RHOA 8.62E-05 
  FTMT 0.00080415 
  STEAP3 0.00082102 
 Japanese RHOA 6.91E-05 
 Naxi-Yi SLC40A1 0.00019231 
  RHOA 0.00038495 
  CFAP251 0.00078732 
  SLC17A1 0.00080911 
  FECH 0.00098344 
 NorthernHan-Tu RHOA 9.99E-05 
 She-Miao-Tujia RHOA 1.38E-05 
  ARHGEF3 0.00040273 
  TFRC 0.00079686 
  SLC40A1 0.00079686 
 Xibo-Mongolian 

RHOA 0.00015719 
  SLC40A1 0.00101931 
 Yakut CFAP251 0.00071529 
  FTMT 0.00082692 
  SLC40A1 0.00085024 

Americas Maya TMPRSS6 4.90E-05 
  RHOA 0.00020031 
  SLC40A1 0.00024802 
  TF 0.00099565 
 Pima RHOA 0.00010471 
  SLC40A1 0.00010471 
  SLC48A1 0.00018886 
  TMPRSS6 0.00030107 
  HIF1A 0.00030813 
  EPAS1 0.00085055 
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  ACO2 0.00086237 
 Surui-Karitiana RHOA 0.00023151 
  C19orf12 0.00030537 
  STEAP3 0.00030537 

Oceania Bougainville TFRC 3.80E-05 
  TMPRSS6 8.23E-05 
  ACO1 0.00016154 
  RHOA 0.00072992 
  HIF1A 0.00096615 
 Papuan ACO1 5.36E-05 
  TMPRSS6 9.64E-05 

 

 

Table S4.12: The Iodine-associated genes within the 0.1% tail, as indicated by the 
𝑹𝒆𝒍𝒂𝒕𝒆 selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑹𝒆𝒍𝒂𝒕𝒆 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Bantu-speaking TTR 0.00016167 

  THRB 0.00069572 
  SLC16A10 0.00029907 
 Biaka SLCO1C1 0.00010211 
  SULT6B1 0.00014782 
 Mandenka SECISBP2 0.00027311 
  TTR 0.00034801 
  SECISBP2 0.00027311 
 Mbuti SULT6B1 0.00032824 

Middle-East Druze SULT6B1 0.00064949 
 Mozabite TPO 2.50E-05 
  TRIP4 0.00024191 
 Palestinian THRB 3.23E-06 
  SLCO1C1 0.00086115 

Europe Basque SLCO1C1 0.00035174 
  TSHR 0.00085462 
 BergamoItalian-Tuscan SLCO1C1 7.78E-05 

 
 French SULT6B1 0.00072794 
  SLC16A10 0.00072794 
  IYD 0.00075574 
 Orcadian SLC5A5 9.83E-05 
  THRB 0.00059697 
  SULT6B1 0.00066424 
 Russian SLC16A10 0.00026039 
  SECISBP2 0.00040399 
  SULT6B1 0.00040441 
 Sardinian THRB 2.94E-05 
  SECISBP2 3.27E-05 

Central South Asia Balochi SLCO1C1 0.00065848 
 Brahui SLC16A2 1.51E-05 
  SLCO1C1 0.00061849 
 Burusho SLCO1C1 0.00012304 
  THRB 0.0004254 
  SLC16A10 0.00094037 
 Hazara SLCO1C1 0.00076257 
 Kalash THRB 0.00019232 
  SLC16A10 0.00079475 
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 Makrani DIO2 0.00028549 
 Pathan SLC16A10 0.00069635 
 Sindhi THRB 0.00063874 
  SLCO1C1 0.0009536 

East Asia Dai-Lahu THRB 0.0008572 
 Han TRIP4 0.00013754 
 Han SLCO1C1 0.00013754 
 Oroqen-Hezhen-Daur SLCO1C1 0.00023563 
 Naxi-Yi THRB 0.00082179 
 She-Miao-Tujia TTR 0.0003107 
 Xibo-Mongolian THRB 0.00052523 
  THRA 0.00052917 
 Yakut DIO2 0.00050707 
  IYD 0.00072576 

Americas Maya TSHR 0.00027492 
  THRA 0.00027492 
  THRB 0.00031588 
  TRIP4 0.00036477 
  SULT6B1 0.00081017 
 Surui-Karitiana THRB 0.00041299 

Oceania Papuan 
DIO2 

0.00027674 
 

 

Table S4.13: The Iodine-associated genes within the 0.1% tail, as indicated by the 
𝑭𝑺𝑻  selection values for each population.  Ordered by most significant. 

 

Region Population Gene 𝑭𝑺𝑻 𝑷 − 𝒗𝒂𝒍𝒖𝒆 
Africa Bantu-speaking THRB 0.00025396 

  SLC16A10 0.00081068 
 Biaka THRB 0.00079522 
 Mandenka TSHR 8.17E-05 
  IYD 0.00043594 
  SLCO1C1 0.000744 
 Mbuti TRIP4 3.96E-05 
  THRB 0.00020352 
  THRA 0.00070607 
 San TSHR 0.00080396 

Middle-East Bedouin TSHR 0.00059462 
 Druze TSHR 0.00037124 
 Mozabite THRB 0.00063856 
  TSHR 0.00066246 
 Palestinian TSHR 7.98E-05 
  DIO1 0.0003277 
  DIO2 0.00046738 

Europe Adygei TSHR 0.00023855 
  THRB 0.00041932 
  SLCO1C1 0.00096203 
 Basque DIO1 0.00070659 
  TSHR 0.00079007 
 BergamoItalian-Tuscan DIO2 0.00068438 
 French DIO2 0.00063582 
  DIO1 0.0006635 
  TSHR 0.0009121 
 Orcadian THRB 0.00044048 
 Russian TSHR 0.00073514 
  TTR 0.00088984 
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  DIO1 0.00092937 
Central-South Asia Balochi THRB 0.00064082 

  TSHR 0.00080388 
 Brahui TSHR 0.00031802 
  DIO2 0.00064879 
 Burusho DIO1 0.00013009 
  DIO2 0.00039795 
  THRA 0.0006907 
 Hazara DIO1 0.00041576 
  TSHR 0.00045968 
  SLCO1C1 0.00078412 
 Kalash TSHR 0.00016414 
  DIO1 0.00032655 
  DIO2 0.00058909 
 Makrani DIO2 0.00042861 
  THRB 0.00054441 
 Pathan DIO1 0.00027736 
  TSHR 0.00029277 
  SLCO1C1 0.00097803 
 Sindhi DIO1 0.00046362 
  SLCO1C1 0.00080735 
 Uygur SLCO1C1 0.00019682 
  THRB 0.00021962 
  TSHR 0.00044421 
  DIO1 0.00057239 
  DIO2 0.00062677 

East Asia Han DIO1 0.00024443 
  TSHR 0.00044923 
  THRB 0.00066537 
 Japanese DIO1 0.00047758 
  SULT6B1 0.00048852 
  TSHR 0.00055913 
  SLCO1C1 0.00075499 
 Oroqen-Hezhen-Daur DIO1 0.00041683 
  TSHR 0.00049137 
 NorthernHan-Tu DIO1 0.00035868 
  TSHR 0.00075354 
 She-Miao-Tujia TSHR 0.00056207 
 Xibo-Mongolian SLCO1C1 0.00093924 
 Yakut DIO1 0.0002481 
  SULT6B1 0.00090321 

Americas Maya DIO1 0.00062126 
  TSHR 0.00062176 
  DIO2 0.00067055 
  TRIP4 0.00083053 
 Pima SLCO1C1 0.00018886 
  THRB 0.00018886 
  DIO2 0.00086237 
 Surui-Karitiana THRB 0.00012002 
  TSHR 0.00023151 

Oceania Bougainville DIO2 0.00034338 
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Figures 

 

Figure S4.1: ZCSII-associated genes showing repeated signatures in the 0.1% tail. 
Shown for A) 𝑅𝑒𝑙𝑎𝑡𝑒 or B) 𝐹𝑆𝑇  selection values, with the number of populations showing 
such signatures given by the x-axis. 

 

 

Figure S4.2: Haplotype network built from the 20kb region surrounding the 
chr8:144414297 SNP of SLC39A4  
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Figure S4.3: Haplotype network built from the 20kb region surrounding the 
chr2:132638916 SNP of GPR39 
 

 
Figure S4.4: Haplotype network built from the 20kb region surrounding the 
chr4:42004040 SNP of SLC30A9 

Figure S4.5: Haplotype network built from the 20kb region surrounding the 
chr4:42031397 SNP of SLC30A9 
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Figure S4.6: Haplotype network built from the 20kb region surrounding the 
chr4:42066213 SNP of SLC30A9 
 

 
Figure S4.7: Haplotype network built from the 20kb region surrounding the 
chr4:42093983 SNP of SLC30A9 

 
 
Figure S4.8: Haplotype network built from the 10kb region surrounding the 
chr17:73010373 SNP of SLC39A11 
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Figure S4.9: Haplotype network built from the 10kb region surrounding the 
chr17:72716374 SNP of SLC39A11 
 

 
 
 
Figure S4.10: Haplotype network built from the 20kb region surrounding the 
chr8:22404076 SNP of SLC39A14 
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Figure S4.11: Haplotype network built from the 20kb region surrounding the 
chr8:22416174 SNP of SLC39A14 
 

 
 
 
Figure S4.12: Haplotype network built from the 20kb region surrounding the 
chr3:10453703 SNP of ATP2B2 
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Figure S4.13: Haplotype network built from the 10kb region surrounding the 
chr3:10636328 SNP of ATP2B2 
 
 
 

 
 
 
 

 
Figure S4.14: Haplotype network built from the 20kb region surrounding the 
chr1:203648263 SNP of ATP2B4 
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Figure S4.15: Haplotype network built from the 10kb region surrounding the 
chr1:203667951 SNP of ATP2B4 

Figure S4.16: Haplotype network built from the 20kb region surrounding the 
chr19:47428756 SNP of SLC8A2 

 
Figure S4.17: Haplotype network built from the 20kb region surrounding the 
chr19:47437107 SNP of SLC8A2 
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Figure S4.18: Haplotype network built from the 20kb region surrounding the 
chr3:128412869 SNP of EEFSEC 

 
 
 

Figure S4.19: Haplotype network built from the 20kb region surrounding the 
chr10:51576270 SNP of PRKG1 
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Figure S4.20: Haplotype network built from the 20kb region surrounding the 
chr10:51471686 SNP of PRKG1 
 

 
 
 
 
Figure S4.21: Haplotype network built from the 20kb region surrounding the 
chr5:156708844 SNP of SGCD 



Appendices 
 

 322 

 

 
Figure S4.22: Haplotype network built from the 20kb region surrounding the 
chr5:156057959 SNP of SGCD 
 

 
 
 
 
 

 
Figure S4.23: Haplotype network built from the 20kb region surrounding the 
chr14:32542441 SNP of AKAP6 
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Figure S4.24: Haplotype network built from the 20kb region surrounding the chr14: 
32446036 SNP of AKAP6 

 
 
Figure S4.25: Haplotype network built from the 20kb region surrounding the chr14: 
32453376 SNP of AKAP6 
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Figure S4.26: Haplotype network built from the 20kb region surrounding the 
chr1:53920598 SNP of DIO1 

 

 
Figure S4.27: Haplotype network built from the 20kb region surrounding the 
chr3:56761998 SNP of ARHGEF3 
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Figure S4.28: Haplotype network built from the 20kb region surrounding the 
chr14:80962759 SNP of TSHR 

 
 
Figure S4.29: Haplotype network built from the 20kb region surrounding the 
chr14:81006112 SNP of TSHR 
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Figure S4.30: Haplotype network built from the 20kb region surrounding the 
chr14:81071140 SNP of TSHR 

 
Figure S4.31: Haplotype network built from the 20kb region surrounding the 
chr3:24110895 SNP of THRB 

 
Figure S4.32: Haplotype network built from the 20kb region surrounding the chr3: 
24342863 SNP of THRB 
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Figure S4.33: Inferred log likelihood ratios for focal SNP of ATP2B2 (position: 
chr3:10456514). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 
 

Figure S4.34: Inferred log likelihoods ratios for focal SNP of ATP2B2 (position: 
chr3:10604833). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 
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Figure S4.35: Inferred log likelihood ratios for focal SNP of ATP2B4 (position: 
chr1:203648263). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 

 
Figure S4.36: Inferred log likelihood ratios for focal SNP of ATP2P4 (position: 
chr1:203667951). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 
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Figure S4.37: Inferred log likelihood ratios for focal SNP of SLC8A1 (position: 
chr2:40394610). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 

 
Figure S4.38: Inferred log likelihood ratios for focal SNP of SLC8A1 (position: 
chr2:40584510). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 
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Figure S4.39: Inferred log likelihood ratios for focal SNP of SLC8A2 (position: chr19: 
47428756). For populations with selection values in the 5% tail for that SNP according to 
either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods (solid lines). 
Colours represent metapopulations: blue = Europe; dark-green = Middle-East; pink = 
Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; dark-
orange = Africa. 

 
Figure S4.40: Inferred log likelihood ratios for focal SNP of SLC8A2 (position: chr19: 
47437107). For populations with selection values in the 5% tail for that SNP according to 
either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods (solid lines). 
Colours represent metapopulations: blue = Europe; dark-green = Middle-East; pink = 
Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; dark-
orange = Africa. 
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Figure S4.41: Inferred log likelihood ratios for focal SNP of SLC8A3 (position: 
chr14:70182346). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 

 
Figure S4.42: Inferred log likelihood ratios for focal SNP of SLC8A3 (position: 
chr14:70175561). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 
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Figure S4.43: Inferred log likelihood ratios for focal SNP of ARHGEF3 (position: 
chr3:56761998). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 

 
Figure S4.44: Inferred log likelihood ratios for focal SNP of ARHGEF3 (position: 
chr3:57043874). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 
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Figure S4.45: Inferred log likelihood ratios for focal SNP of HIF1A (position: 
chr14:61687412). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 

 
Figure S4.46: Inferred log likelihood ratios for focal SNP of HIF1A (position: 
chr14:61709502). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 
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Figure S4.47: Inferred log likelihood ratios for focal SNP of HIF1A (position: 
chr14:61741756). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 

 
Figure S4.48: Inferred log likelihood ratios for focal SNP of FTMT (position: 
chr5:121846819). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 
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Figure S4.49: Inferred log likelihood ratios for focal SNP of FTMT (position: 
chr5:121853801). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 

 

Figure S4.50: Inferred log likelihood ratios for focal SNP of SLC40A1 (position: 
chr2:189577426). For populations with selection values in the 5% tail for that SNP 
according to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods 
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East; 
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; 
dark-orange = Africa. 
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Figure S4.51: Inferred log likelihood ratios for focal SNP of SLC40A1 (position: chr2: 
189591670). For populations with selection values in the 5% tail for that SNP according 
to either 𝑅𝑒𝑙𝑎𝑡𝑒 or 𝐹𝑆𝑇(dashed lines) or according to both selection methods (solid lines). 
Colours represent metapopulations: blue = Europe; dark-green = Middle-East; pink = 
Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; dark-
orange = Africa. 
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Chapter 5: Supplementary Material 
 
Tables 
 
Table S5.1: List of mammalian GPX coding sequences used for this study. Latin names 
given in the GPX6Sec/Cys row. 
 

GPX Protein Coding Sequences Included 

GPX6Sec/Cys Bushbaby (Otolemur garnettii), Cat (Felis catus), 
Chimpanzee (Pan troglodytes), Chinese hamster 
(Cricetulus griseus), Cow (Bos taurus), Elephant 
(Loxodonta africana), Golden hamster 
(Mesocricetus auratus), Guinea pig (Cavia 
porcellus), Horse (Equus caballus),  Human (Homo 
sapiens), Jerboa (Jaculus jaculus), Kangaroo rat 
(Dipodomys ordii), Macaque (Macaca mulatta), 
Marmoset (Callithrix jacchus), Mouse (Mus 
musculus), Pig (Sus scrofa), Rabbit (Oyctolagus 
cuniculus), Rat (Rattus norvegicus),  Squirrel 
(Ictidomys tridecemlineatus), Squirrel monkey 
(Saimiri boliviensis), Tarsier (Carlito syrichta), 
Walrus (Odobenus rosmarus). 

GPX1Sec Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Elephant, 
Golden hamster, Human, Jerboa, Kangaroo rat, Macaque, 
Mouse, Pig, Rabbit, Rat, Squirrel, Squirrel monkey, Tarsier 

GPX2Sec Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Dog, 
Elephant, Golden hamster, Guinea pig, Horse, Human, Jerboa, 
Kangaroo rat, Macaque, Marmoset, Mouse, Pig, Rabbit, Rat, 
Squirrel, Squirrel monkey 

GPX3Sec Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Dog, 
Elephant, Golden hamster, Guinea pig, Horse, Human, Jerboa, 
Macaque, Marmoset, Mouse, Pig, Rabbit, Rat, Squirrel, Tarsier 

GPX4Sec Cat, Chimpanzee, Chinese hamster, Cow, Elephant, Gibbon, 
Golden hamster, Guinea pig, Horse, Human, Kangaroo rat, 
Macaque, Mouse, Mouse lemur, Pig, Rat, Squirrel, Squirrel 
monkey 

GPX5Cys Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Dog, 
Elephant, Golden hamster, Guinea pig, Horse, Human, Jerboa, 
Kangaroo rat, Macaque, Marmoset, Mouse, Pig, Rabbit, Rat, 
Squirrel, Squirrel monkey, Tarsier, Walrus 

GPX7Cys Bushbaby, Chimpanzee, Chinese hamster, Cow, Dog, Elephant, 
Golden hamster, Guinea pig, Horse, Human, Jerboa, Kangaroo 
rat, Macaque, Marmoset, Mouse, Rabbit, Rat, Squirrel, Tarsier 

GPX8Cys Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Elephant, 
Golden hamster, Guinea pig, Horse, Human, Jerboa, Kangaroo 
rat, Macaque, Marmoset, Mouse, Panda, Pig, Rabbit, Rat, 
Squirrel, Squirrel monkey, Tarsier 
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Table S5.2: dN/dS ratios for the GPX family and protein regions. Given for lineages 
where GPX6 has Sec (Fig. 1, solid red branches), exchanged Sec for Cys (Fig. 1, dashed green 
branches) or inherited Cys (Fig. 1, solid green branches). In some lineages for which PAML 
estimates very few synonymous changes compared to the non-synonymous changes, 
unnaturally large dN/dS values can occur; these are marked with a #. The dN/dS ratio for 
all branches is the null hypothesis (one ratio for all branches) used in the likelihood ratio 
test contrasting the two previous ones. P-values are obtained based on a 𝜒2  distribution 
with d.f=2.  In bold, significant P-values. 
 
 

        dN/dS in branches where GPX6 
has 

Protein Region  Sec  
 

Cys after 
Sec was lost 

Inherited 
Cys 

     All  P-value 

         
GPX1Sec Full length  0.080 0.045 0.087 0.074  0.115 
 N-terminus  0.043 0.009 0.190 0.034  0.046 
 GPX  0.064 0.040 0.069 0.060  0.534 
 C-terminus  0.085 0.052 0.114 0.081  0.328 
         
GPX2Sec Full length  0.069 0.029 0.041 0.055   0.024 
 N-terminus  0.032 0.001 0.001 0.032  0.999 
 GPX  0.075 0.042 0.038 0.060  0.191 
 C-terminus  0.055 0.017 0.048 0.043  0.100 
         
GPX3Sec Full length  0.132 0.131 0.077 0.125  0.222  
 N-terminus  0.241 0.038 0.461 0.181  0.022 
 GPX  0.094 0.108 0.056 0.091  0.439 
 C-terminus  0.105 0.195 0.058 0.114  0.161 
         
GPX4Sec Full length  0.071 0.073 0.112 0.076   0.380 
 N-terminus  0.108 0.018 0.123 0.082  0.264 
 GPX  0.062 0.007 0.203 0.061  1x10−4 
 C-terminus  0.043 0.003 0.033 0.030  0.126 
         
GPX5Cys Full length  0.294 0.258 0.429 0.305   0.061 
 N-terminus  0.678 0.634 0.959 0.716  0.716 
 GPX  0.233 0.145 0.219 0.212  0.227 
 C-terminus  0.237 0.225 0.358 0.250  0.379 
         
GPX7Cys Full length  0.141 0.086 0.157 0.137  0.377 
 N-terminus  0.190 #999 0.005 0.122  0.070 
 GPX  0.083 0.080 0.117 0.088  0.712 
 C-terminus  0.185 0.080 0.224 0.178  0.242 
         
GPX8Cys Full length  0.228 0.156 0.156 0.203  0.199 
 N-terminus  0.169 0.195 0.112 0.158  0.775 
 GPX  0.223 0.155 0.198 0.207  0.616 
 C-terminus  0.217 0.161 0.104 0.194  0.486 
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Table S5.3: Foreground branches tested using the branch-site model. The amino acid 
sites inferred as under selection using the Bayes Empirical Bayes inference listed when 
supported by a P-value < 0.05. P-values are obstained based on a 𝜒2 distribution with d.f=1. 
Posterior probabilities of selection are shown in parehtneses, in bold face when P > 0.9. All 
foreground branches used here are lineages where Sec was exchanged for Cys (Fig 1, dashed 
green branches) 
 
 
 

Region Foreground branches P-value Sites under selection 

    

GPX domain Eumuroida, Rabbit, Primate, 
Cat, Walrus 

0.046 45 (0.783); 46 (0.571); 50 (0.946); 
52 (0.936); 56 (0.950); 57 (0.513); 
62 (0.995); 63 (0.535); 70 (0.552); 
74 (0.992); 75 (0.573); 77 (0.975); 
83 (0.995); 91 (0.728); 110 (0.937); 
126 (0.947); 143 (0.799); 149 
(0.606) 

    
    

Full protein Eumuroida, Rabbit 0.006 16 (0.741); 45 (0.913); 56 (0.895); 
74 (0.992); 77 (0.942); 83 (0.992); 
126 (0.822); 171 (0.784); 214 
(0.573); 215 (0.668) 

 Eumuroida, Rabbit, Primate 0.008 16 (0.988); 45 (0.858); 56 (0.935); 
63 (0.501); 73 (0.503); 74 (0.991); 
77 (0.971); 83 (0.988); 110 
(0.925); 126 (0.937); 149 (0.554); 
171 (0.757); 189 (0.520); 207 
(0.502); 212 (0.758); 214 (0.698); 
215 (0.682); 216 (0.822) 

 Eumuroida, Rabbit, Primate, 
Cat,  

0.054  

 Eumuroida, Rabbit, Primate, 
Walurs 

0.050  

 Eumuroida, Rabbit, Primate, 
Cat, Walrus 

0.127  
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Table S5.4: Convergent (sites change to the same amino acid) and pseudo-convergent 
(sites change to different amino acids) sites identified between GPX𝟔𝑪𝒚𝒔 lineages by 

CONVERG2. The two left-most columns are the branches between which convergent or 
pseudo-convergent sites are identified. The number gives the amino acid site where 
convergence is identified; the brackets represent the (ancestral amino acids on both 
branches, derived amino acids on both branches) in the order of the branches. Here, (SM-M) 
stands for the Squirrel monkey – marmoset internal branch, (GH-CH) stands for the Golden 
hamster – Chinese hamster internal branch and (rat-mouse) represents the rat-mouse 
internal branch. The branch names given in green indicate the branches upon which we 
have inferred the Sec-to-Cys exchange to have occurred. Convergent sites are in bold, all 
other sites are pseudo-convergent.  
 
 

(SM-M) Eumuroida 15 
(GG,SA) 

166 
(SK,NE) 

       
  

(SM-M) Rabbit 15 (GG,SS) 34 (GG, 
NE) 

62 
(HH,PY) 

91 (FF, 
LL) 

110 
(TK,AR) 

166 
(SK,NR) 

212 
(EE,AK) 

  
  

(SM-M) Cat 26 
(NK,DT) 

48 
(NN,SS) 

62 
(HH,PV) 

90 
(NP,SR) 

91 
(FF,LY) 

166 
(SS,ND) 

190 
(DD,HN) 

 
  

(SM-M) Walrus 91 (FF,LS) 
        

  

(SM-M) Golden 
hamster 

48 
(NN,ST) 

          

(SM-M) Chinese 
hamster 

62 
(HH,PY) 

          

(SM-M) (Rat-mouse) 48 
(NN,SD) 

90 (QN,PS)          

Eumuroida  Rabbit 15 
(GG,AS) 

45 (LL,KR) 56 
(KK,QQ) 

83 
(AA,TR) 

92 
(GG,NS) 

143 
(KK,NN) 

165 
(SS,TP) 

166(KK,E
R) 

167 
(QQ,HH) 

171 
(EE,D
D)  

 

Eumuroida  Cat 70 
(TT,SS) 

143 
(KK,NN) 

165 
(SS,TP) 

166 
(KS,ED) 

207(KK,Q
R) 

    
  

Eumuroida  Walrus 165 
(SS,TA) 

        
  

Eumuroida  Squirrel 
monkey 

48 (LL,KF) 63 (VV,II)          

Eumuroida  Marmoset 70 
(TT,SS) 

          

Eumuroida  Rat 127 
(FY,YF) 

          

Eumuroida  Chinese 
hamster 

27 
(MA,AE) 

          

Eumuroida  (Rat-mouse) 27 
(MA,AS) 

45 (LK,KN) 165 
(ST,PT) 

        

Rabbit Cat 62 
(HH,YV) 

91 (FF,LY) 143 
(KK,NN) 

165 
(SS,PP) 

166 
(KS,RD) 

      

Rabbit Walrus 51 
(YY,DH) 

91 (FF,LS) 165 
(SP,PA) 

        

Rabbit Squirrel 
monkey 

45 (LL,FR)           

Rabbit Marmoset 73 
(GG,AS) 

208 
(SS,AA) 

         

Rabbit Mouse 51 
(YY,DF) 

200 
(KQ,AH) 

         

Rabbit Rat 36 
(TT,SA) 

192 
(VV,IA) 

         

Rabbit Golden 
hamster 

36 
(TT,SA) 

          

Rabbit Chinese 
hamster 

62 
(HH,YY) 

189 
(PP,TS) 

         

Rabbit (Rat-mouse) 11 (PP,LS) 45 (LK,RN) 160 
(ST,PP) 

200 
(KK,AQ) 

       

Rabbit (GH-CH) 167 
(QH,HY) 

171 
(ED,DN) 

         

Cat Walrus 91 (FF,YS) 165 
(SS,PA) 

         

Cat Squirrel 
monkey 

34 
(KK,TN) 

50 (EE,GD)          

Cat Marmoset 70 
(TT,SS) 

          

Cat Golden 
hamster 

48 
(NN,TS) 

          

Cat Chinese 
hamster 

62 
(HH,YV) 

          

Cat (Rat-mouse) 48 
(NN,SD) 

90 (PQ,RP) 165 
(ST,PP) 
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Walrus Mouse 51 
(YY,HF) 

54 
(QQ,PN) 

         

Walrus (Rat-mouse) 165 
(ST,AP) 

          

Walrus  (GH-CH) 54 
(QQ,PP) 

          

Squirrel 
monkey 

(Rat-mouse) 45 
(LK,FN) 

          

Marmoset Rat 94 (IT,TS)           

Marmoset (Rat-mouse) 94 (II,TT)           

Mouse (Rat-mouse) 200 
(QK,HQ) 

          

Mouse (GH-CH) 54 
(QQ,NP) 

          

Rat Golden 
hamster 

36 
(TT,AA) 

          

Rat (Rat-mouse) 94 (TI,ST) 205 (IT,VI)          

Golden 
hamster 

(Rat-mouse) 48 
(NN,TD) 

          

Chinese 
hamster 

(Rat-mouse) 27 
(AA,ES) 

          

 
 
Table S5.5: Convergent and pseudoconvergent sites in GPX1 between the GPX𝟔𝑪𝒚𝒔 

lineages, where the sequences were also available, as identified by CONVERG2. The 
two left-most columns are the branches between which convergent or pseudo-convergent 
lineages are identified. The number gives the amino acid site where convergence is 
identified; the brackets represent (ancestral amino acids on both branches, derived amino 
acids on both branches) in the order of the branches. Here, (SM-M) stands for the Squirrel 
monkey – marmoset internal branch, (GH-CH) stands for the Golden hamster – Chinese 
hamster internal branch and (rat-mouse) represents the rat-mouse internal branch. The 
branch names given in green indicate the branches upon which we have inferred the Sec-
to-Cys exchange in GPX6𝐶𝑦𝑠  to have occurred. Strict convergent sites are given in bold; all 

other sites are pseudo-convergent.  
 

Rabbit Mouse 177 (PP,SS)         

Rabbit Rat 138 (AA,SS) 175 (QQ,KK)        

Rabbit Golden hamster 10 (SS,NN) 41 (RK,ER)        

Cat (Mouse-Rat) 108 (EE,QN)         

Rat Golden hamster 4 (TT,AA) 
 
        

   
 
Table S5.6: Convergent and pseudoconvergent sites in GPX2 between the GPX𝟔𝑪𝒚𝒔 

lineages, where the sequences were also available, as identified by CONVERG2. The 
two left-most columns are the branches between which convergent or pseudo-convergent 
lineages are identified. The number gives the amino acid site where convergence is 
identified; the brackets represent the (ancestral amino acids on both branches, derived 
amino acids on both branches) in the order of the branches. Here, (SM-M) stands for the 
Squirrel monkey – marmoset internal branch, (GH-CH) stands for the Golden hamster – 
Chinese hamster internal branch and (rat-mouse) represents the rat-mouse internal 
branch. The branch names given in green indicate the branches upon which we have 
inferred the Sec-to-Cys exchange in GPX6𝐶𝑦𝑠  to have occurred. Strict convergent sites are 

given in bold; all other sites are pseudo-convergent.  
 

Rabbit Mouse 47 (EQ,QE)  
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Table S5.7: Convergent and pseudoconvergent sites in GPX3 between the GPX𝟔𝑪𝒚𝒔 

lineages, where the sequences were also available, as identified by CONVERG2. The 
two left-most columns are the branches between which convergent or pseudo-convergent 
lineages are identified. The number gives the amino acid site where convergence is 
identified; the brackets represent the (ancestral amino acids on both branches, derived 
amino acids on both branches) in the order of the branches. Here, (SM-M) stands for the 
Squirrel monkey – marmoset internal branch, (GH-CH) stands for the Golden hamster – 
Chinese hamster internal branch and (rat-mouse) represents the rat-mouse internal 
branch. The branch names given in green indicate the branches upon which we have 
inferred the Sec-to-Cys exchange in GPX6𝐶𝑦𝑠  to have occurred. Here, the marmoset branch 

is given as a branch where the Sec-to-Cys exchange in GPX6𝐶𝑦𝑠  has been estimated, given 

that the squirrel monkey sequence is unavailable for this protein. Strict convergent sites 
are given in bold; all other sites are pseudo-convergent.  
 

Marmoset Eumuroida 5 (VV,MM) 172 (SA,LS)        

Marmoset Rabbit 33 (VI,LV)         

Marmoset Cat 5 (VV,MG)         

Marmoset (GH-CH) 33 (VI,LV)         

Eumuroida Rabbit 135 (VV,IM)         

Eumuroida Cat 5 (VV,MG)         

Rabbit Cat 126 (GG,NN) 152 (II,VV)        

Rabbit Chinese hamster 152 (II,VK)         

Rabbit (GH-CH) 33 (II,VV) 107 (FF,VV)        

Cat Mouse 154 (II,LV)         

Cat Chinese hamster 152 (II,VK)         

Cat (GH-CH) 154 (II,LV)         

Mouse (GH-CH) 154 (II,VV)         

   
 
 
Table S5.8. Convergent and pseudoconvergent sites in GPX4 between the  
GPX𝟔𝑪𝒚𝒔 lineages, where the sequences were also available, as identified by 

CONVERG2  
 
No convergent sites found. 
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Table S5.9: Convergent and pseudoconvergent sites in GPX5 between the GPX𝟔𝑪𝒚𝒔 

lineages, where the sequences were also available, as identified by CONVERG2. The 
two left-most columns are the branches between which convergent or pseudo-convergent 
lineages are identified. The number gives the amino acid site where convergence is 
identified; the brackets represent (ancestral amino acids on both branches, derived amino 
acids on both branches)) in the order of the branches. Here, (SM-M) stands for the Squirrel 
monkey – marmoset internal branch, GH-CH) stands for the Golden hamster – Chinese 
hamster internal branch and (rat-mouse) represents the rat-mouse internal branch. The 
branch names given in green indicate the branches upon which we have inferred the Sec-
to-Cys exchange in GPX6𝐶𝑦𝑠  to have occurred. Strict convergent sites are given in bold; all 

other sites are pseudo-convergent.  
 

(SM-M) Rabbit 140 (RR,QL)         

(SM-M) Cat 5 (KK,RN) 140 (RR,QQ)        

(SM-M) Walrus 18 (AT,MS) 29 (QQ,RR)        

(SM-M) Squirrel monkey 151 (LV,VE)         

(SM-M) Marmoset 145 (SL,LI)         

(SM-M) Mouse 151 (LL,VM)         

(SM-M) Golden hamster 5 (KK,RT)         

(SM-M) Chinese hamster 151 (LL,VM)         

(SM-M) (GH-CH) 18 (AS,MA) 148 (TS,AA)        

Eumuroida Rabbit 48 (AA,IS)         

Eumuroida Cat 130 (DD,NN)         

Eumuroida Mouse 130 (DN,ND)         

Eumuroida Rat 52 (SL,LT)         

Eumuroida Golden hamster 17 (FL,LF) 48 (AI,IM) 103 (AV,VA)       

Eumuroida (Mouse-rat) 109 (SY,YF)         

Rabbit Cat 82 (EE,GK) 140 (RR,LQ)        

Rabbit Squirrel monkey 0 (KQ,QK)         

Rabbit  Rat  13 (DD,NN) 86 (KK,NE)        

Rabbit  Golden hamster 0 (KK,QR) 48 (AI,SM)        

Rabbit (Mouse-rat) 65 (GG,KK) 67 (YY,FF)        

Cat Mouse 83 (KK,TN) 130 (DN,ND)        

Cat Golden hamster 5 (KK,NT)         

Walrus Marmoset 21 (GK,EE)         

Walrus (Mouse-rat) 26 (QQ,PP)         

Walrus (GH-CH) 18 (TS,SA)         

Squirrel monkey Mouse 151 (VL,EM)         

Squirrel monkey Golden hamster 0 (QK,KR)         

Squirrel monkey Chinese hamster 151 (VL,EM)         

Marmoset Chinese hamster 94 (SS,AA)         

Mouse Chinese hamster  151 (LL,MM)         

Mouse (Mouse-rat) 104 (TS,MT) 155 (NK,SN)        

Golden hamster (GH-CH) 101 (IT,VI)         
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Table S5.10: Convergent and pseudoconvergent sites in GPX7 between the GPX𝟔𝑪𝒚𝒔 

lineages, as identified by CONVERG2. The two left-most columns are the branches 
between which convergent or pseudo-convergent lineages are identified. The number gives 
the amino acid site where convergence is identified; the brackets represent (ancestral 
amino acids on both branches, derived amino acids on both branches) in the order of the 
branches. Here, (SM-M) stands for the Squirrel monkey – marmoset internal branch, (GH-
CH) stands for the Golden hamster – Chinese hamster internal branch and (rat-mouse) 
represents the rat-mouse internal branch. The branch names given in blue indicate the 
branches upon which we have inferred the Sec-to-Cys exchange in GPX6𝐶𝑦𝑠  to have 

occurred. Here, the marmoset branch is given as a branch where the Sec-to-Cys exchange 
in GPX6𝐶𝑦𝑠  has been estimated, given that the squirrel monkey sequence is unavailable for 

this protein Strict convergent sites are given in bold, all other sites are pseudo-convergent.  
 

Marmoset Mouse 95 (AA,SD)         

Marmoset (GH-CH) 95 (AA,SD)         

Eumuroida Rabbit 109 (SS,PP)         

Eumuroida Chinese hamster 116 (HR,RQ)         

Rabbit Mouse 30 (HY,RH)         

Mouse (GH-CH) 49 (SS,TT) 95 (AA,DD) 111 (EE,AQ)       

 
 
 
Table S5.11: Convergent and pseudoconvergent sites in GPX8 between the GPX𝟔𝑪𝒚𝒔 

lineages, as identified by CONVERG2. The two left-most columns are the branches 
between which convergent or pseudo-convergent lineages are identified. The number gives 
the amino acid site where convergence is identified; the brackets represent (ancestral 
amino acids on both branches, derived amino acids on both branches) in the order of the 
branches. Here, (SM-M) stands for the Squirrel monkey – marmoset internal branch, (GH-
CH) stands for the Golden hamster – Chinese hamster internal branch and (rat-mouse) 
represents the rat-mouse internal branch. The branch names given in blue indicate the 
branches upon which we have inferred the Sec-to-Cys exchange in GPX6𝐶𝑦𝑠  to have 

occurred. Strict convergent sites are given in bold; all other sites are pseudo-convergent.  
 

Eumuroida (GH-CH) 12 (LF,FY)         

Rabbit (GH-CH) 121 (VI,IV)         

Mouse Chinese hamster 59 (KK,QR)         

Rat (Mouse-rat) 18 (QL,EQ)         

Chinese hamster (GH-CH) 51 (MK,TM)         
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Figures 

 
Figure S5.1: Phylogeny of the 22 mammals in our analysis. In red, GPX6Sec branches, in 
green, GPX6Cys ones. Branch lengths are proportional to their corresponding dN/dS as 
estimated by the free-ratio model in PAML (Yang, 2007). In some lineages, PAML estimates 
very few synonymous changes compared to non-synonymous changes and this results in an 
unnaturally large dN/dS value. These branches are assigned a dN/dS ratio of 1 and coloured 
grey, with the actual ratio estimated by PAML is given in parenthesis (#). Branches with 
dN/dS values given as less than 0.01 are not labelled. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 

Figure S5.2: Schematic diagram demonstrating the convergence between branches 
in GPX6 where Sec was inferred to have been lost. Connection thickness is proportional 
to the number of convergent sites identified. When a species protein is unavailable, the node 
is in grey. Pri = primate branch (leading to squirrel monkey and marmoset; Fig 1); Eum= 
Eumuroida; Rab = Rabbit; Wal = Walrus; Cat = Cat; SqM = Squirrel monkey; Mar = Marmoset 
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Figure S5.3: Schematic representation of the number of observed convergences in the 
GPX6 protein between lineages where Sec is lost for Cys. Thickness of the line represents 
the number of convergent changes (left). Expected distribution of convergent changes in the 
full GPX6 protein between lineages where Sec is lost for Cys according to our Seq-Gen 
simulations, where the observed numbers of convergent changes are given by coloured lines 
(right).  

 

 
Figure S5.4: Expected distribution of convergent changes in the GPX domain of the 
GPX6. Given between lineages where Sec is lost for Cys according to our Seq-Gen simulations, 
where the observed numbers of convergent changes are given by coloured lines.  
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Figure S5.5: Schematic representation of the number of observed convergence in the 
GPX1 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of 
the line represents the number of convergent changes (left). Expected distribution of 
convergent changes in GPX1 between lineages where Sec is lost for Cys in GPX6 according 
to our Seq-Gen simulations, where the observed numbers of convergent changes are given 
by coloured lines (right).  

 

 
 
Figure S5.6: Schematic representation of the number of observed convergence in the 
GPX2 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of 
the line represents the number of convergent changes (left). Expected distribution of 
convergent changes in GPX2 between lineages where Sec is lost for Cys in GPX6 according 
to our Seq-Gen simulations, where the observed numbers of convergent changes are given 
by coloured lines (right).  
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Figure S5.7: Schematic representation of the number of observed convergence in the 
GPX3 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of 
the line represents the number of convergent changes (left). Expected distribution of 
convergent changes in GPX3 between lineages where Sec is lost for Cys in GPX6 according 
to our Seq-Gen simulations, where the observed numbers of convergent changes are given 
by coloured lines (right).  
 

 
Figure S5.8: Schematic representation of the number of observed convergence in the 
GPX4 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of 
the line represents the number of convergent changes (left). Expected distribution of 
convergent changes in GPX4 between lineages where Sec is lost for Cys in GPX6 according 
to our Seq-Gen simulations, where the observed numbers of convergent changes are given 
by coloured lines (right).  
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Figure S5.9: Schematic representation of the number of observed convergence in the 
GPX5 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of 
the line represents the number of convergent changes (left). Expected distribution of 
convergent changes in GPX5 between lineages where Sec is lost for Cys in GPX6 according 
to our Seq-Gen simulations, where the observed numbers of convergent changes are given 
by coloured lines (right).  
 
 

 
Figure S5.10: Schematic representation of the number of observed convergence in the 
GPX7 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of 
the line represents the number of convergent changes (left). Expected distribution of 
convergent changes in GPX7 between lineages where Sec is lost for Cys in GPX6 according 
to our Seq-Gen simulations, where the observed numbers of convergent changes are given 
by coloured lines (right).  
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Figure S5.11: Schematic representation of the number of observed convergence in the 
GPX8 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of 
the line represents the number of convergent changes (left). Expected distribution of 
convergent changes in GPX8 between lineages where Sec is lost for Cys in GPX6 according 
to our Seq-Gen simulations, where the observed numbers of convergent changes are given 
by coloured lines (right). 
 

Figure S5.12: Topology of the phylogenetic tree for GPX6, with midpoint rooting, 
constructed using PHYML. Shown for the a) full GPX6 protein; b) the 26 sites that differ 
between Eu-GPX6Sec and Eu-GPX6Cys+25; c) the N-terminal of GPX6; d) the GPX domain of 
GPX6 and e) the C-terminal of GPX6. In red, GPX6Sec branches, in green, GPX6Cys ones. Dashed 
green branches represent GPX6Cys lineages at the time Sec was lost.  
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Figure S5.13: Topology of the phylogenetic trees, with midpoint rooting, constructed 
using PHYML for additional GPX proteins. Shown from the available mammalian 
proteins of a) GPX3 and b) GPX5. In green, GPX6Cys ones. Dashed green branches represent 
GPX6Cys lineages at the time Sec was lost.  
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Figure S5.14: Free energy profiles for the docking of glutathione (left) and 
glutathione disulfide (right) to ancestral and modern GPX6Cys proteins. The x-axis 
represents the distance between the catalytic cysteine sulphur atom and the closest ligand’s 
sulphur atom, while the Y-axis shows the slowest TICA coordinate or the binding free energy. 
The vertical dashed line represents a distance of 4Å. 
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