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Abstract

This thesis explores the role of micronutrients in genetic adaptation, largely focusing on
micronutrients as the selective driver of local adaptation in modern humans. Additionally,
the role of the micronutrient selenium in wider mammalian evolution is also investigated.
Micronutrients are key dietary components in all organisms, needed in small, specific
quantities and involved in a wide variety of essential metabolic processes. In modern
humans, all micronutrients (with the exception of vitamin D) must be absorbed from the
diet, since they cannot be synthesised within the body. Levels of dietary micronutrients
in turn depend on the composition of the soil where plant and animal foodstuffs grow and
feed, and hence can vary widely over different localities. As informed by a novel
simulation framework, [ use the allele-differentiation statistic Fg; and recently developed
genealogical method Relate to identify signatures of natural selection in 40 diverse
modern human populations in 276 genes associated with 13 micronutrients. I show
signatures of positive selection are inferred in many global populations and
micronutrient categories, and show that the strongest signatures of positive selection
agree with known micronutrient composition of local soils and endemic deficiencies in
modern human populations. I found no evidence for classic polygenic models of positive
selection and infer that adaptation in response to micronutrients in the diet is most likely
monogenic or oligogenic in nature. I evaluate the evidence for positive selection in genes
associated with zinc, calcium, selenium, iron and iodine in detail and use a combination
of methods to propose the origin and timing of selection acting on these micronutrient-
associated genes. I propose that micronutrients are an important selective force in
modern humans, and have shaped the genomic variation of our species. I also present the
first evidence for molecular convergent evolution in mammalian proteins losing the
selenium-containing amino acid selenocysteine for the sulphur-containing cysteine.



Impact Statement

There has been significant recent progress in understanding local adaptation amongst
modern human populations, largely pertaining to methodological developments and
increases in available genomic data, of both modern and ancient humans. Still,
important questions and goals remain. This includes 1) evaluating the role of local
adaptation, and respective selective drivers, in human genetic diversity and population
differentiation; 2) evaluating the role of selection on standing variation in modern
humans, which requires identification of subtle signatures of positive selection that can
remain hidden in the genome; 3) addressing the current bias, at the time of writing, of
studied populations, and including under-represented populations in studies of genetic
diversity; and 4) identifying cases of local adaptation that have resulted in average
phenotypic differences between populations in health-related traits.

In this thesis, I explore the role of dietary micronutrients in human local adaptation in
the most comprehensive study to-date, identifying signatures of positive selection in
276 genes associated with 13 different micronutrients in 40 diverse populations.
propose dietary micronutrients as a key selective driver amongst modern human
populations, building on previous literature and suggesting novel cases of
micronutrient-associated adaptation in individual populations or regions. Here, |
address point number 1) and point number 3). I also first identify two methods with
increased power of identifying the subtle signatures of selection on standing variation,
and identify potential instances of micronutrient-associated adaptation driven by
selection on standing variation. This addresses point number 2).

Micronutrients play an essential role in human health, and understanding the
interaction between micronutrient levels in the diet and genetic variation of diverse
modern human populations is vital in understanding the differential risk of
micronutrient deficiency amongst different populations. The signatures of positive
selection identified here implies that different human populations may have, on
average, different metabolic responses to varied dietary micronutrient levels and may
therefore have increased risk of micronutrient deficiency or toxicity. Hence, I also
address point number 4). The work presented here should thus prompt further study
into the phenotypic consequences of such proposed adaptation, particularly under a
changing dietary environment, made likely by changing soil levels under climate change
and over-farming.

In this thesis, [ also explore selenoprotein evolution in mammals, and propose a novel
example of convergent adaptation leading to the development of novel function when a
protein exchanges its catalytic residue selenocysteine to cysteine. This suggests the
evolutionary pathway following the loss of selenocysteine can be narrow, and that other
novel selenoprotein functions may remain currently hidden in nature.
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Introduction

Chapter 1: Introduction
1.1. Overview

Micronutrients are needed by all living organisms to maintain optimal fitness, whether
that is by contributing to healthy growth and development, maintaining immunity or
supporting key metabolic processes (Bhutta and Salam 2012; Bailey et al. 2015;
Monteiro et al. 2015). Hence, micronutrients can drive genomic adaptations to regulate
their metabolism, uptake or synthesis within the body (Herraez et al. 2009; Mariotti et
al. 2012; White et al. 2015; Engelken et al. 2016; Roca-Umbert et al. 2022). Many
micronutrients, including all but one of the micronutrients essential for human health,
cannot be synthesised by the organism, and instead must be absorbed from the diet or
directly from the soil (Hurst et al. 2013; Dhaliwal et al. 2019). The local environment
(which shapes the local diet) may then directly affect or result in micronutrient-
associated adaptation, which may differ on a large scale over different taxa, or even
between populations of the same species (hereby referred to as local adaptation).

In this thesis I explore the role of micronutrients in genetic adaptation, with a particular
focus on exploring local adaptation in modern humans in response to micronutrients
levels in the diet, as well as the greater role of selenium in selenoprotein evolution. This
chapter begins with a brief discussion on the various types of natural selection and the
role they play in genome evolution (Section 1.2). The history of migrations and
admixture of modern humans is then summarised to present appropriate context in
which to consider how the signatures of local adaptation may present in different
human populations (Section 1.3). The majority of this chapter then reviews our current
understanding of local adaptation in modern humans, including common selective
drivers (Section 1.4), the genomics of local adaptation (Section 1.5), and the current
methods used to infer local adaptation events (Section 1.6).

Micronutrients as a specific driver of human local adaptation is then explored (Section
1.7), with discussion of endemic diseases associated with micronutrient deficiency and
toxicity; the variation of micronutrient levels in different soils; and previously identified
instances of adaptation in modern humans in response to micronutrient levels. Finally,
the role of micronutrients in wider biology is briefly explored, before describing the
evolution of selenoproteins in the context of a specific selenium-containing amino acid
(selenocysteine; Section 1.8).

In Chapter 2, a simulation framework that models local adaptation in major human
populations is used to test the power of different methods in identifying signatures of
recent positive selection. The methods identified as having the highest power by these
simulations (Fg; and Relate; (Weir and Cockerham 1984; Speidel et al. 2019) are then
used in Chapter 3 and Chapter 4.

In Chapter 3, the signatures of natural selection in genes (n=276) associated with 13
micronutrients within 40 diverse modern human populations are investigated. In
Chapter 4, the adaptive signatures of genes associated with five micronutrients (zinc,
calcium, selenium, iron and iodine) are further explored to suggest the potential origin
and time of putative selection events, alongside the most likely selective drivers. Finally,
in Chapter 5, the role of the micronutrient selenium in wider evolution is explored, by
reconstructing the history and adaptive signatures surrounding the selenoprotein GPX6
in mammals, which relies on selenium for catalysis. Chapter 6 presents a summary of
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Introduction

this work, contextualising the findings across the field of human local adaptation and
selenium biology.

1.2. Natural Selection

Natural selection is one of the four fundamental forces of evolution, alongside mutation,
genetic drift and gene flow, and drives the evolution and persistence of adaptive
phenotypes within a population. It was first formally defined by Charles Darwin in the
mid-19t century (Darwin 1859), although also independently proposed by and
developed alongside Alfred Russell Wallace (Darwin and Wallace 1858). It continued to
be advanced by many biologists in the following century, most notably by Ronald Fisher
and John Burdon Sanderson Haldane (Fisher 1919; Haldane 1924). Natural selection
refers to the differential reproductive success of individuals within a population,
whereby fitness advantage, or disadvantage, is conferred by underlying genotypes. In
reference to natural selection, the fitness of a genotype is hence the relative fitness (w;
the absolute fitness relative to the fittest genotype). This serves as a measure of the
relative fitness advantage or disadvantage of a genotype, which, within population
genetics studies, is often referred to as the selection coefficient s.

The efficacy of natural selection depends on this relative fitness (s) but also on the
magnitude of genetic drift (Hahn 2018). In populations with a small effective population
size (N,, the value that represents the size of an idealised Wright-Fisher population
showing the same loss of genetic diversity, and is usually lower than the census
population size (Hahn 2018), the effect of genetic drift is larger, and can cause a random
subset of genetic variants to rise to high frequencies, irrespective of their selection
coefficient. The action of natural selection is also heavily interlinked with the remaining
evolutionary forces, gene flow and mutation, both of which introduce new genetic
variants into a population (where mutations are the only source of true novel genetic
variants). Therefore, natural selection must be considered alongside such forces. In
humans, the specie of interest in Chapters 2-4, the role of highly diverse demographic
and migration histories across populations (see Section 1.3) in the efficacy of natural
selection must be considered. More than this, complex histories of migrations and gene
flow must be recognised when considering how genetic diversity may be a result of
either natural selection or neutral processes (see Section 1.5).

Natural selection also underpins the Modern Synthesis evolutionary theory (Huxley
1942) which reconciled Darwin’s concept of natural selection with a population-
oriented view of Mendelian genetics. A key idea here is that whilst natural selection acts
on all individuals, it results in evolution at the population level (where evolution is most
explicitly the change in frequency of alleles within a population). Whilst this theory has
since been further developed, including expanding our view of inheritance to not solely
gene-based but also epigenetic or cultural inheritance (Laland et al. 2015), it still
remains a key framework of which to understand evolution and adaptation.

1.2.1. Selection in Genome Evolution

Both natural selection and neutral evolutionary processes drive the fate of mutations
following their appearance within a population. It is important to consider how natural
selection ultimately contributes to overall genome evolution, and how the role of N, and
mutation fitness may contribute to this.
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Introduction

Broadly speaking, mutations can be categorised as advantageous, deleterious or neutral,
where some weakly deleterious or advantageous mutations may be referred to as
nearly-neutral should they exist in populations dominated by genetic drift (i.e, low

population size; with the upper limit to effective neutrality approximately |N,s| = i

(Loewe and Hill 2010)). The majority of non-neutral mutations are strongly deleterious
(Keightley and Eyre-Walker 2010; Trindade et al. 2010), and are rapidly purged from
populations via purifying selection. Intuitively, it then remains that the majority of the
observed genetic variation is largely a product of advantageous and neutral mutations
(where the latter includes weakly deleterious and weakly advantageous mutations that
behave as neutral when N, is particularly low).

Prior to the 1960s, genome evolution was believed to be primarily driven by positive
selection: selection that increases the frequency of advantageous alleles faster than
what would be expected under neutral drift (Sabeti et al. 2006). Existing
polymorphisms were then believed, although with some contention (Asthana et al,
2005), to reflect balancing selection: selection maintaining multiple alleles within a
population or species, thereby driving advantageous genetic and phenotypic diversity
(Andrés 2011; Bitarello et al. 2018). Implicitly, this represented the view that genetic
differences between populations and species were mostly reflecting their own adaptive
processes (Duret 2008).

However, with the availability of sequence data came the birth of the seminal neutral
theory of evolution, most notably proposed by Mottoo Kimura (Kimura 1968). This
theory states that the vast majority of evolutionary changes at the molecular level are
not in fact a product of positive selection, but rather random fixations of selectively
neutral or nearly neutral mutations. Hence, this makes two key points about how
natural selection affects genome evolution: 1) the great majority of molecular
differences between species is due to nearly neutral substitutions and 2) polymorphic
alternative alleles within species have neutral fitness effects with respect to each other
(with their dynamics dominated by mutation-drift equilibrium) (Hahn 2018).

Whilst this model remains arguably the most dominant explanation of molecular
variation, at both the level of intraspecific genetic variation and interspecific genetic
divergence, and is often used as a null model representing the most parsimonious
scenario across species (Hahn 2018), other models have since been proposed to fully
represent observed patterns of variation. This includes the nearly neutral theory of
molecular evolution which emphasises the role of slightly deleterious mutations (Ohta
1973, 1976), as well as models that emphasise the role of selection on linked neutral
variation, either purifying selection (background selection model; (Charlesworth et al.
1993, 1995)) or positive selection (hitchhiking model; (Smith and Haigh 1974; Kaplan
et al. 1989)). Whilst these models do exhibit key differences, they are united in their
assumption that the majority of polymorphisms are not maintained by positive
selection.

1.2.2. Adaptive Convergence

Positive selection may not be as pervasive in genomes as first thought, but it remains
the driving force behind the prevalence of advantageous traits across species. Whilst
many adaptations are unique to species or populations (Sabeti et al. 2006; Savolainen et
al. 2013), some adaptive phenotypes may be shared although independently acquired.
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This is adaptive convergence: repeated acquisition of the same phenotype from
independent lineages (Storz 2016; He et al. 2020).

Adaptive convergence may be caused by both convergent or parallel changes at the
amino acid level (Storz 2016; He et al. 2020). That is to say, the same phenotypes may
be acquired from substitutions at a particular site from different ancestral amino acids
to the same derived amino acid (convergent substitution) or from sites that have
independently changed from the same ancestral amino acid to the same derived amino
acid (parallel substitution, more common in closely related species) (see Fig. 1.1). In an
extension of this, substitutions at different sites, or indeed variants of different genes,
may even confer the same adaptive phenotype (Witt and Huerta-Sanchez 2019).
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Figure 1.1: Convergent and parallel amino acid changes. Convergent substitutions
from a different ancestral amino acid to the same derived amino acid (a) and parallel
substitutions from the same ancestral amino acid to the same derived amino acid (b) may
lead to acquisition of the same adaptive phenotype. Taken from (Storz 2016).

This variation in acquisition of the same adaptive phenotype reflects the many-to-one
mapping of genotype to phenotype. However, not all genotypes mapping to the same
phenotype necessarily have the same probability of fixation. Probability of fixation of
advantageous mutations once they arise is not only dictated by the strength of selection
and the demography of the population they are in, but by the role of pleiotropy, the
phenomenon where a single mutation or genetic locus affects multiple traits (Solovieff
et al. 2013). For a given set of possible mutations that result in the same phenotypic
response, those which have the lowest degree of deleterious pleiotropy, i.e., those that
have the least deleterious effect on other genetically related functions, have higher
fixation probability (Storz 2016).

Epistasis, or the functional interaction between genes (Phillips 2008), must also be
considered in adaptive convergence. This phenomenon describes how different
mutations have varying fitness depending on the underlying genetic background.
Thereby epistasis also narrows the set of possible mutations that may respond similarly
to selection (Lunzer et al. 2010; Storz 2016), an effect particularly strong in more
divergent species. This is not necessarily independent from the effects of pleiotropy:
mutations that can compensate for the reduction of fitness arising from deleterious
pleiotropy also depend on the genetic background (Solovieff et al. 2013; Storz 2016).
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1.3. Genetic History of Modern Humans
1.3.1. Major Migrations in Human History

Modern humans differ from many other species in that they inhabit almost all areas of
the globe. The history of modern humans is therefore tightly interwoven with a series of
large- and small-scale migration events, which can vary drastically over different
populations. These migration events have profoundly affected the genomic variation
across human populations and therefore must be considered in parallel with the
genomic effects of selection (see Section 1.5).

Modern humans originated in Africa less than 200kya years ago (Reich et al. 2010), and
are identified in the fossil record by a wealth of anatomical traits, particularly those
defined in the crania: a high frontal bone, weak supraorbital torus and small dentition
with canine fossa (Stringer and Andrews 1988; White et al. 2003). The development of
sequencing technology resulted in genetic evidence for an African origin of modern
humans, such as seminal studies showing mitochondrial and Y-chromosome haplotypes
as subsets of those identified within Africa (Soares et al. 2012; Haber et al. 2019) as well
as those demonstrating a decrease in genetic diversity as a function of geographic
distance from East or South Africa (Prugnolle et al. 2005; Ramachandran et al. 2005).
Still, debates remain on the exact region of Africa where modern humans evolved.
Historically, an East African origin has often been suggested, supported by the oldest
anatomically modern human fossils in Ethiopia (Clark et al. 2003; McDougall et al. 2005;
McCarthy and Lucas 2014). However, genetic studies have suggested a variety of
origins, including East Africa as well as Southern and Northern regions (Henn et al.
2011; Blome et al. 2012; Schlebusch et al. 2012; Fadhlaoui-Zid et al. 2013). Still, these
studies are united in their acknowledgement that the complex population history of the
continent complicates any such conclusion.

The Out of Africa migration (Stringer and Andrews 1988), or the event that resulted in
modern humans colonising the world outside of the African continent, is therefore a
substantial migration event in human evolutionary history. That is not to say migrations
only occurred outside of Africa; Africa itself has a rich and varied migration history,
although on the whole is less resolved than the migrations of non-African regions (due
to increased complexity, lower availability of modern and ancient genomes, and
historical bias). Some notable African migrations include the Bantu expansion
(beginning ~5kya at the Cameroon and Nigeria border, eastward to Uganda at ~3kya
and then southwards to Mozambique and South Africa at ~1.8kya and ~1.5kya,
respectively (Beltrame et al. 2016)), the spread of pastoralism into sub-Saharan Africa
(Afroasiatic populations migrating from Ethiopia into Kenya and Tanzania ~5kya (Patin
et al. 2017)) and bidirectional migrations through the Sahel (between east and west
Africa over the past ~8ky (Hirbo et al. 2012)).

Whilst the exact dynamics of the Out of Africa migration are still debated (as more
comprehensively reviewed in (Lopez et al. 2016)), the majority of genetic evidence
places the date of the main body of this migration as approximately 60kya (Zhivotovsky
et al. 2000; Underhill and Kivisild 2007; Shi et al. 2010; Gravel et al. 2011; Harris and
Nielsen 2013). Some archaeological evidence, including modern human teeth identified
in Southern China (~80-120kya; (Liu et al. 2015)) and Australian modern human fossils
(~56-40kya; (Bowler et al. 2003)), suggests an earlier migration through to East Asia
and Oceania (Armitage et al. 2011; Rose et al. 2011). It is important to note that not all
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migrations of modern humans necessarily resulted in descendant extant populations.
Indeed, the early modern human fossils found in the Levant (dated 120-90kya; (Griin et
al. 2005)) are suggested to be a result of an earlier “failed” exodus from Africa (Pope
and Terrell 2007; Hershkovitz et al. 2015; Kuhlwilm et al. 2016).

There are two main suggested routes that modern humans took on the exit from Africa:
the Northern route (through Egypt and Sinai (Luis et al. 2004; Pagani et al. 2015)) and
the Southern route (through Ethiopia, the Bab el Mandeb strait, and the Arabian
Peninsula; (Quintana-Murci et al. 1999; Fernandes et al. 2012; Soares et al. 2012) see
Fig. 1.2). However, there remains no confident consensus from either genetic or
archaeological evidence on which route was taken (L6pez et al. 2016). Some genetic
evidence supports migrations at different timepoints possibly along both routes, with
both migrations resulting in descendant populations today (Lahr and Foley 1994;
Rasmussen et al. 2011; Reyes-Centeno et al. 2014; Tassi et al. 2015). In particular, this
supports the hypothesis that Southeast Asian and Oceanic populations are the
descendants of a first migratory wave Out of Africa estimated as approximately 70-
100kya (Rasmussen et al. 2011; Reyes-Centeno et al. 2014, 2015; Tassi et al. 2015).
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Figure 1.2: Overview of modern human migrations out of Africa. Putative migration
waves Out of Africa, and following migrations, are shown according to various models.
Significant human remains and archaeological sites also given. Taken from (Ldpez et al.
2016).
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All such migrations described here, including the Out of Africa migration, remain
estimations rather than known events, but do represent the general consensus in the
field, although not without uncertainties (particularly surrounding the exact timing of
migration or admixture events). Still, the Out of Africa migration refers to the strongly
supported migration at around 60kya of a population ancestral to modern Eurasians
and Americans (Zhivotovsky et al. 2000; Underhill and Kivisild 2007; Shi et al. 2010;
Gravel et al. 2011; Harris and Nielsen 2013). This ancestral population then expanded
across Eurasia, resulting in a spatially structured modern human population across this
region by 40kya (Fu et al. 2014; Seguin-Orlando et al. 2014). East Asians are also
suggested to have then received gene flow from populations ancestral to Aboriginal
Australians already having colonised Asia following the proposed earlier migration
(Rasmussen et al. 2011). Approximately 20kya, a population descended from East
Asians with substantial north Eurasian gene flow migrated to the Beringian strait,
before migrating downwards into the Americas, eventually giving rise to northern and
southern Native American populations (Raghavan, Skoglund, et al. 2014; Rasmussen,
Anzick, et al. 2014; Moreno-Mayar et al. 2018). Naturally, with such a migration, or
multiple migrations as some work has suggested (including migrations harbouring
Austronesian ancestry (Skoglund et al. 2015)), modern American population history is
characterised by an extreme population bottleneck (Prugnolle et al. 2005;
Ramachandran et al. 2005; Gravel et al, 2013; Fagundes et al, 2018).

The time following the Neolithic transition (10-5kya (Hawkes 1949)) resulted in
multiple population movements and subsequent gene flow, particularly well
documented across Europe. The most notable migrations include that of Anatolian
farmers of the Near East into early western European populations (Haak et al. 2010;
Skoglund et al. 2012; Lazaridis et al. 2014). The admixture between this group and the
hunter-gatherer groups already present in Europe resulted in what is termed the Early
European Farmer population (Mathieson et al. 2015a). This population was later largely
replaced by a population associated with the Yamnaya culture, who migrated into
western Europe from the steppe of Eastern Europe surrounding 3000BC and from
which modern European ancestry is mostly derived (Allentoft et al. 2015; Mathieson
and Terhorst 2022).

The migratory history of modern humans given here is not designed to be fully
comprehensive, but to give an overview of the range of population histories of the
human species. It also must be highlighted that population histories are not
independent from each other following divergence events, as back-migrations were
likely common throughout human history (Gonzalez et al. 2007; Moreno-Mayar et al.
2018). In particular, African and non-African populations are not independent in the
time following the Out of Africa migration(s); migrations from Eurasian populations
back into some African populations are believed to have resulted in the high levels of
non-African ancestry in some regions of Africa (Maca-Meyer et al. 2001; Gonzalez et al.
2007; Pagani et al. 2012; Pickrell et al. 2014). The number and timing of these
migrations remain a question, but must also be considered when exploring African
genetic diversity (Lopez et al. 2016).

1.3.2. Introgression with Archaic Humans

In recent years, it has become clear that there has been extensive admixture with
archaic humans in the evolutionary history of anatomically modern humans (Green et
al. 2010; Reich et al. 2010; Meyer et al. 2012; Priifer et al. 2014). Archaeological
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evidence has long placed Neanderthals across Eurasia (Higham et al. 2014), with more
recent archaeological data placing their sister group Denisovans in the same localities of
Siberia (Reich et al. 2010). With the development of ancient DNA sequencing technology
and analysis has come substantial evidence for gene flow events between these archaic
and modern human populations (see Figure 1.3; (Green et al. 2010; Reich et al. 2010;
Meyer et al. 2012; Castellano et al. 2014; Priifer et al. 2014; Reilly et al. 2022)).

These gene flow events, or introgression events, did not occur between all modern and
archaic populations, and instead were more localised events that have resulted in
different proportions of archaic DNA in the genomes of various modern human
populations. Non-Africans have approximately 1.5-2.1% of DNA of Neanderthal origin,
with this proportion slightly higher in Asian individuals compared to Europeans (Green
et al. 2010; Priifer et al. 2014). Historically, there was the suggestion that this higher
proportion in East Asians was due to a following bottleneck and greater genetic drift in
East Asian population history, rather than a separate pulse of introgression (Keinan et
al. 2007; Skoglund and Jakobsson 2011; Sankararaman et al. 2012). However, more
recent studies have implied a far more complex history of multiple introgression events
across ancient European and Asian populations which may explain these differences
(Villanea and Schraiber 2019; lasi et al. 2021; Schaefer et al. 2021).
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Figure 1.3: Overview of modern human demographic history. A simplified overview of
the demographic history and inferred gene flow events between modern and archaic
humans, including un-named “ghost” populations. Taken from (Reilly et al. 2022).
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By measuring the length of inferred introgressed tracts of DNA, the timing of the
introgression events from Neanderthals into Eurasians is estimated to be approximately
50-60kya, suggested to have occurred in the region of the Middle-East (Sankararaman
etal. 2012; Fu et al. 2014; Seguin-Orlando et al. 2014). This estimated introgression
time supports introgression rather than ancestral population structure as the cause of
Neanderthal ancestry in only non-Africans, which has been proposed as a counter-
explanation. However, if ancient population subdivision in a common ancestral
population of archaic and modern humans drove the observed Neanderthal ancestry in
Eurasians, it would be expected that these tracts would be dated more closely to the
time of Neanderthal-modern human divergence (estimated older than 200kya (Prtifer
et al. 2014)); this is hence discounted by the majority of the field and Neanderthal
introgression remains well supported.

Denisovan ancestry, is predominantly found in Melanesians, Papuans and Australians at
higher proportions of 3-6% (Reich et al. 2010, 2011; Meyer et al. 2012), alongside
smaller proportions found in East Asians (0.2%) (Skoglund and Jakobsson 2011;
Browning et al. 2018). Similar to what is now understood to be the case in Neanderthal-
modern human introgression, it appears that introgression events between Denisovans
and modern humans occurred multiple times in human evolutionary history (Browning
et al. 2018; Jacobs et al. 2019; Schaefer et al. 2021). At least three separate Denisovan
lineages have been inferred to contribute to modern human genetic variation, all of
which appear divergent from each other and likely represent geographically separated
archaic populations (Jacobs et al. 2019).

Finally, more recent studies have suggested that currently unknown archaic human
groups have contributed to the genomes of contemporary populations, including
African populations (Mondal et al. 2019; Wall et al. 2019; Durvasula and Sankararaman
2020; Hubisz and Siepel 2020; Wang et al. 2020). These ghost introgression events are
between modern humans and populations for which we currently have no genomic
data, and therefore remain in most senses unresolved. Still, this not only implies that
modern humans lived contemporaneously and coexisted with multiple groups, but also
suggests a considerably deeper and interwoven history of admixture between modern,
archaic and potentially super-archaic humans (Ahlquist et al. 2021).

1.4. Local Adaptation in Modern Humans

Local adaptation is defined as when, due to genetic differences, individuals from a
population have a higher average fitness in their local environment than those from
other populations of the same species (Rees et al. 2020). This occurs when populations
are exposed to different selective pressures, often tightly related to local environment
(Savolainen et al. 2013; Tiffin and Ross-Ibarra 2014). Ultimately, this population-
specific natural selection results in genetic and phenotypic differentiation between
populations.

Local adaptation in modern humans is of particular interest because, as a species, we
inhabit almost all environments across the globe, including some of which are
considered extreme (Ilardo and Nielsen 2018). Moreover, following the Out of Africa
migration (Soares et al. 2012; Lopez et al. 2016; Haber et al. 2019), humans have
colonised many of these environments rather rapidly (see Section 1.3.1), with novel
environmental conditions expected to exert potentially strong selective pressures.
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Environments within Africa are also incredibly diverse and have the potential to result
in local adaptation events (Fan et al. 2023).

1.4.1. Common Selective Drivers

Many well documented examples of local adaptation within humans exist, and are in
strong support of local adaptation contributing to modern human genetic variation and
differentiation between populations (see Table 1.1; (Rees et al. 2020)). These
adaptations are most commonly shown to be in response to diverse diets (Perry et al.
2007; Tishkoff et al. 2007a; Schlebusch et al. 2012; Fumagalli et al. 2015; White et al.
2015; Minster et al. 2016; Evershed et al. 2022), pathogens (Fumagalli et al. 2011;
Karlsson et al. 2014; Nédélec et al. 2016; McManus et al. 2017), elevation (Yi et al. 2010;
Bigham and Lee 2014; Huerta-Sanchez et al. 2014) and ambient temperature (Key et al.
2018), as well as to mediate local cultural pressures, such as breath-hold diving in the
Bajau (Ilardo et al. 2018). Other local selective pressures were driven by the Neolithic
revolution and development of agriculture, and include dietary changes as well as
increased pathogen risk that accompanied densely packed living conditions and
exposure to zoonotic diseases (Latham 2013; Dominguez-Andrés et al. 2021).

In some cases, these adaptations are convergent in nature, with different populations
developing adaptive phenotypic responses to the same environmental pressure via
different genes. This is most notable in the adaptation to high altitude in Ethiopian,
Andean and Tibetan populations (Bigham and Lee 2014; Witt and Huerta-Sanchez
2019), light skin adaptation in Europeans and East Asians (Norton et al. 2007), and the
adaptation allowing consumption of milk past weaning, independently conferred by
multiple different variants upstream of the LCT gene in African and European
populations (Tishkoff et al. 2007a; Evershed et al. 2022). However, the adaptive
function of other convergent phenotypes remains unclear. For example, the small-
stature phenotype (mean adult height below 152cm) is a characteristic trait of multiple
rainforest hunter-gatherers, living in Central Africa, South America and Southeast Asia
(Perry and Dominy 2009). This trait appears to be under selection, and driven by a
currently unknown, and debated, selective pressure (Herraez et al. 2009; Perry and
Dominy 2009; Venkataraman et al. 2018).
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Table 1.1: Overview of the known genes under local adaptation in human

populations and their proposed selective pressures. °: indicates gene variants that are
a result of adaptive introgression with Neanderthal populations ®: indicates gene variants
that are a result of adaptive introgression with Denisovan populations ¢: selection acting

on structural variations (deletions, insertions, inversions, duplications’ and copy number

variations). Selection noted as across populations indicates that selection is seen

differentially across multiple populations according to the strength of the selective
pressure. Taken from (Rees et al. 2020).

Category | Selective Gene Target(s) Population with | Refs
Pressure Adaptations
Diet | Lactose Post-weaning LCT Eurasians and Africans (Bersaglieri et al, 2004;
Sabeti et al. 2007;
Tishkoff et al. 2007)
Fatty Diets FADS Greenland Inuit (Fumagalli 2015)
High Arsenic levels AS3MT Argentinians (Schlebusch etal. 2015)
Low Selenium levels DI2, SelS, GPX1, GPX3, CELF1, | Chinese (White etal. 2015;
Engelken et al. 2016;
SPSZ, SEPSECS Davy and Castellano
2018)
Toomajian 1.2003;
Low Iron levels HFE Europeans (Toomayian et P
Low lodine levels TRIP4 Central African Pygmies %%%e)z Herrdez etal.
Low Calcium levels TRPV6 Non-Africans (Hughes et al. 2008;
Kovacs etal. 2013a)
Zinc Levels SLC30A9, SLC39A8 East Asians and Africans | (Zhangetal. 20154

Engelken et al. 2016)

Ergothioneine deficiency | IBD5 (SLC22A4, SLC22A5) Europeans (Wangetal. 2012)
Frequent Starvation CREBRF Samoans (Minster etal. 2016)
Alcohol Consumption ADHI1B Asians g?szlggst ill eztoa‘ﬁ gg;)et
Starchy foods AMY1e Across populations (deor;)y and Dominy
Pathogens | Malaria HBB, HBA, HPA, GYPA, GYPB, | Sub-Saharan Africans &"ﬁ:;‘;‘zvft‘:lzz"gf7
GYPC, G6PD, FY Pierron et al. 2018) '
“African Sleeping APOL1 Western Africans (Genovese etal. 2010)
Sickness”
Hepatitis IFNL1, 1L285 Burasians Sovs e 2oty
HIV CULS5, TRIM5, APOBEC3G Biaka glGez gtlazl;- fg‘;‘t’alzhza&it]
General pathogen load ADAM17, ITGAL, LAG3, IL6, Across populations gﬁga‘gfl‘rig ;‘(ﬁ‘l’}li
LRRC19, PON2, 0AS1b, OAS Mendez et al. 2012a,
groups, HLA group?, STATZ" 20125 013 i
STAT2qe, TLR1-TLR6-TLR10¢ 2015a; Nédélec etal.
2016)
Oxidative | High Altitude EGLN1 Andeans, Tibetans (Bigham etal. 2010
Stress Bigham and Le'e 2014)
EPAS1b Tibetans, Han Chinese (i etal 22(()’112: Pigham
Sanchez et al. 2014)
VAV3, ARNT2, THRB Ethiopians (Scheinfeldt etal. 2012)
Breath-Hold Diving PDE10A, BDKRB2 Bajau (Indonesia) (llardo etal. 2018)
Cold | Cold Temperature TRPMS8 Eurasians (Key etal. 2018)
Resistance
Polar Diet CPT1A, LRP5, THADA Siberians (Cardona etal. 2014)
PRKG1 Siberians (Cardona et al. 2014)
TBX15 Greenlandic Inuit (Fumagalli 2015)
UV | Low UV levels SLC24A5, SLC45A2, 0CA1-4, | Across populations (Nakayama etz1. 2006;
Exposure TYRPL DCT; TYR; MCIR“, Hancock, Alkorta- '
HYALZe Paschou <tal 20105
;((a)rllfi,)Novembre, etal.
Low Vitamin D levels DHCR7, NADSYN1 Northern European (Mathieson etal. 2015a)
populations
Height | Undetermined DOCK3, CISH, HESX1, Central African (Perry and Dominy 2009;
Jarvis et al. 2012;
POU1F1 rainforest hunter- Lachance etal. 2012)
gatherers
Undetermined H]ghly po]ygenic Europeans (Turchin, Chiang, Palmer,

Sankararaman, Reich,
Hirschhorn, et al. 2012;
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Berg and Coop 2014;
Mathieson et al. 2015a;
Field et al. 2016; Sanjak
etal. 2018; Berg, Zhang,
etal. 2019; Sohail et al.
2019)

Assorted! | Undetermined EDAR East Asians (Sabeti et al. 2007;

Grossman et al. 2010;
Adhikari et al, 2015;
Reyes-Reali et al, 2018,
Kataoka et al, 2021)

Unknown | Undetermined 17q.21.31 gene regionc Icelandic (Stefansson etal. 2005)

1.4.1.1. Dietary Adaptation

Diet is arguably one of the most notable local selective pressures in humans, with
lactase persistence often identified as representing the strongest signature of selection
in Eurasian populations (Mathieson et al. 2015a; Speidel et al. 2019; Evershed et al.
2022). However, the diversity of diets across the globe is represented by more than the
milk-drinking habits of certain populations. Some other notable differences in diet are
due to underlying environmental conditions or food availability, whilst others are more
tightly associated with cultural or societal developments.

Environments affect the human diet in many ways: not only the surrounding availability
of plant and animal foodstuffs, but also the local soil composition (which affects the
nutrient content in consumed plant and animal matter (Alloway 2013)). Indeed,
adaptation in response to diet caused by environmental factors has been inferred in
modern humans. This includes adaptation to frequent periods of starvation in Samoan
populations (Minster et al. 2016), adaptation to the high fatty acid content found in
Arctic diets (Fumagalli et al. 2015) and various proposed adaptations to deficient or
toxic levels of trace minerals in local soils (Herraez et al. 2009; Schlebusch et al. 2012;
White et al. 2015; Zhang et al. 2015a). These adaptations in response to trace mineral
levels include those of micronutrients essential to the human diet (Shenkin 2006;
Tulchinsky 2010) (see Section 1.7), such as selenium, iodine and zinc (Herraez et al.
2009; White et al. 2015; Zhang et al. 2015a), as well an adaptive response to toxic levels
of arsenic (Schlebusch et al. 2015).

Dietary culture has also been shown to result in local adaptations, particularly following
the agricultural revolution (which resulted in many changes to modern human life
including vastly different diets (Diamond 2002; Naugler 2008; Latham 2013;
Dominguez-Andrés et al. 2021; Evershed et al. 2022)). The increased copy number of
the AMY1 gene in various populations has been proposed as an adaptive response to
increased amounts of starchy foods in agricultural diets (Perry et al. 2007) (although
there has been some debate on the accuracy of determining the copy number of AMY1 in
this study (Ooi et al. 2017)) and lactase persistence is an adaptation associated with the
practice of drinking milk post weaning (Tishkoff et al. 2007a; Evershed et al. 2022).
Deficiencies of alcohol and aldehyde dehydrogenase, which result in reduced alcohol
metabolism and risk of alcoholism, has also been suggested to be adaptive in some way
(Osier etal. 2002; Han et al. 2007, Li et al. 2007), potentially associated with
fermentation practices that arose following agriculture.

1 A derived EDAR variant is associated with thicker hair, tooth and ear shape, sweat gland density and
chin protrusion (Fujimoto et al, 2008; Adhikari et al, 2015; Reyes-Reali et al, 2018, Kataoka et al, 2021).
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1.4.2. Local Adaptation and Health

The history of recent divergences and subsequent admixture amongst human
populations means that the majority of genetic and phenotypic variation is found
within, rather than between, populations (Rees et al. 2020). Still, local adaptation has
resulted in average phenotypic differences amongst populations. Many of these
adaptations are directly relevant to the health of contemporary populations, and result
in population differences in the genetic risk or prevalence of disease.

In some cases, this is due to evolutionary mismatch, or a previously advantageous and
selected trait becoming deleterious in contemporary environments (Manus 2018). The
most notable example of this is seen in Samoan populations, who have a high frequency
of the CREBF gene variant that allows rapid weight gain. This variant was likely
beneficial under frequent starvation conditions, but now, in a modern state of food
abundance, increases the risk of type 2 diabetes and related metabolic disorders
(Minster et al. 2016). Similar issues are seen in Canadian, Greenlandic Inuit, and
Siberian populations with a particular CPT1A gene variant. This variant maintains sugar
homeostasis during a similarly nutrient sparse environment (low carbohydrate intake),
but is now associated to hypoketotic hypoglycaemia and high infant mortality
(Clemente et al. 2014).

Migrations and ecological change may also expose modern populations to novel
environmental conditions to which they have not previously adapted. Relevant
environments here are those that drove the suggested adaptations to trace mineral
levels in the soil (e.g., toxic arsenic levels and low selenium levels (Schlebusch et al.
2015; White et al. 2015)). Individuals that migrate to these environments and lack these
genetic adaptations may face numerous health issues if the respective toxicity or
deficiency is not addressed via other means. Similarly, individuals with such genetic
adaptations who migrate from these environments to other geographic regions may
also be more susceptible to deficiencies or toxicities under the soil conditions of their
new environment.

In other cases, adaptive alleles may have deleterious pleiotropic effects. Malaria
adaptation can be conferred by the HbS variant of the HBB gene; when heterozygous
this allele gives a ten-fold reduction in risk of severe malaria, but results in sickle cell
anaemia when homozygous (Hill et al. 1991; Archer et al. 2018). Other adaptations to
malaria via different genes also often result in deleterious blood-related disorders, such
as G6PD deficiency, <t thalassemia and hemoglobin C (Kwiatkowski 2005). Otherwise,
adaptations to African sleeping sickness, cold ambient temperature and low amino acid
levels have been associated with higher risk or prevalence of chronic kidney disease,
migraine and celiac disease, respectively (Genovese et al. 2010; Wang et al. 2012;
Mathieson et al. 2015a; Key et al. 2018).

There is also some evidence of population-specific adaptation that results in differences
in the outcome of treatment of non-inherited disorders. For example, a derived variant
of IFNL4, which when homozygous results in a loss of the IFN-44 protein, is inferred to
have evolved under positive selection in Eurasian populations and has been associated
with a more rapid clearing of the hepatitis C virus infection (Key et al. 2014). The
African Biaka population also appear to have multiple alleles (CUL5, TRIM5, APOBEC3G)
fixed or at high frequency that appear to confer protection to HIV (Zhao et al. 2012).
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Hence, studies into local adaptation are not only imperative to understanding the
selected, and by extension neutral, proportion of the modern human genome, but are
vital in understanding which populations are most at risk from modern disease or
malnutrition. Moreover, such studies help to identify adapted alleles that are
functionally relevant to critical environmental pressures. In turn, this may allow a
deeper understanding of the genetic basis of human phenotypes, including those
relating to disease or disease risk.

1.4.3. A Note on Diversity in Modern Human Studies

Local genetic differences can contribute to population differences in the genetic basis of
common disease, as well as to response to treatment. Therefore, a comprehensive
understanding of disease progression and treatment in individual populations cannot
be achieved without a fundamental understanding of the underlying genetic diversity of
such a population, including that which may have been driven by local adaption events.
However, it is clear that genetic studies have been historically biased towards European
populations, especially those exploring genetic associations with disease (Sirugo et al.
2019). This bias not only results in a failure to capture the full extent of global genetic
diversity (Popejoy and Fullerton 2016), but also exacerbates global health inequalities
by limiting our knowledge of health-related traits to well-studied populations (Sirugo et
al. 2019).

When population-specific mutations drive disease, a biased understanding of the
genetic drivers of disease to only well-studied populations have been shown to increase
health and diagnosis disparities between populations. This is the case for retinitis
pigmentosa (where over 3000 mutations in 65 genes have been identified in causing
retinitis pigmentosa, but mostly in Europeans (Sirugo et al. 2019)) and cystic fibrosis
(where the most common causal variants differ between European and African
populations (Padoa et al. 1999; Stewart and Pepper 2017)). Moreover, causal mutations
unique to an under-studied population may remain unidentified and the associated
disease underdiagnosed or untreated, as was the case for the mutation driving
transthyretin amyloid cardiomyopathy in African Americans, an underdiagnosed cause
of heart failure (Buxbaum et al. 2006; Sirugo et al. 2019).

More than this, the bias towards certain portions of genetic diversity in human genomic
studies reduces our ability to accurately, and therefore safely, translate genetic research
into clinical care of under-studied populations. Genome-wide association studies
(GWAS) have most commonly been undertaken in European populations (52% of
studies in European populations as of 2018 (see Figure 1.4; (Sirugo et al. 2019)). This
has resulted in estimates of the genetic risk of variants in Europeans, but it is unclear to
what degree the genetic determinants of certain health-related traits are shared by
other populations (Huang et al. 2022). Differences in genetic architecture (as a result of
drift or local selection events in populations of different ancestry (Lim et al. 2014)) as
well as differences in linkage disequilibrium (which can affect the accuracy of
identifying causal variants and varies according to demographic history (Tishkoff et al.
2009)) both heavily contribute to the lack of replication of GWAS-estimated risk values
amongst populations.

Using estimates of risk calculated from one population in another population of
differing ancestry may result in an inaccurate estimation of clinical risk, delayed or lack
of intervention and could falsely prioritise different treatment or drug strategies,
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ultimately most adversely affecting under-studied populations (Sirugo et al. 2019). This,
partnered with the clear bias of precision medicine towards well-studied, particularly
European, populations should emphasise the need for genetic studies across a range of
historically under-represented populations, as well as a recognition of the current
health inequalities facing many populations today.
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Figure 1.4: Summary of GWAS by Ancestry. A summary of the ancestry by GWAS (left)
and by individuals within each GWAS (right), as calculated by the GWAS Catalogue
through January 2019. Taken from (Sirugo et al. 2019).

1.5. Genomics of Local Adaptation
1.5.1. Dynamics of Local Adaptation

Positive selection driving human local adaptation occurs under highly variable and
complex scenarios. Not only is this selection exerted on different populations (or groups
of populations), it also acts on various different phenotypes, at different times, and at
various strengths. More than this, positive selection to drive an adaptive trait can be
exerted on alleles of different origins, and may be either monogenic or polygenic in

nature, of which a summary is given below.

32



Introduction

1.5.1.1. Origin of Selected Allele(s)

The origins of beneficial alleles can be broadly split into those coming from de novo
mutation, from standing variation (or previous polymorphisms within a population) or
introduced into a population via admixture or introgression (Hermisson and Pennings
2005; Peter et al. 2012; Rees et al. 2020). Local adaptation in humans has been
suggested to be mediated from alleles of all three origins, with each form of selection
resulting in subtly different signatures on the genome (see Figure 1.5; (Rees et al.
2020).

Selection on de novo mutation (SDN) acts on a new allele that is immediately
advantageous in its environment, and therefore rapidly increases in frequency in the
population if selection is strong (termed a hard selective sweep (Pritchard et al. 2010;
Rees et al. 2020). Still, there are limits to its occurrence. The adaptive mutation must not
only appear in a population experiencing an at least somewhat unmediated selective
pressure, but also avoid immediate loss from the population due to random genetic
drift. Variants that act as dominants, therefore having an effect in heterozygotes, can
immediately be under strong selection and are less likely to be quickly lost from a
population (Rees et al. 2020).

Selection on standing variation (SSV) differs from SDN in many senses, including the
appearance of the mutation with respect to the onset of selection. Here, previously
segregating alleles become advantageous following a change in selective pressure, often
when encountering a new environment (via change of the current environment or
migrations into novel conditions; (Hermisson and Pennings 2005, 2017; Peter et al.
2012)). Hence, the selected allele is older than the selective pressure. Such an allele may
have been previously maintained in the population by neutral processes (being neutral
or nearly neutral, see Section 1.2.1) or maintained by balancing selection (Andrés
2011; Bitarello et al. 2018). The latter has great potential in contributing alleles for
rapid adaptation in novel conditions, since they by definition affect phenotype and
fitness, and are already maintained at intermediate frequencies (Andrés 2011; de
Filippo et al. 2016; Bitarello et al. 2018).

SSV is considered likely very important in mediating human local adaptation,
specifically in populations rapidly encountering novel environments following the Out
of Africa migration (Hermisson and Pennings 2017; Rees et al. 2020). The sudden onset
of selective pressure in these populations would have given little time for the
emergence of de novo mutations (especially considering the small effective population
size contributing to a low effect mutation rate), and the rapid population growth allows
many low-frequency polymorphisms with selective potential to be maintained in the
population (de Filippo et al. 2016; Hermisson and Pennings 2017). Indeed, a number of
recent studies have suggested that SSV has been prevalent, if not dominant (Hernandez
etal. 2011; Pybus etal. 2015), in human adaptation (Peter et al. 2012; Schrider and
Kern 2017).

Finally, admixture between genetically distinct populations can introduce beneficial
alleles into a population, a process termed adaptive admixture. This has been implied
many times between modern human populations, particularly when gene flow between
populations accompanies cultural exchange (such as alleles conferring lactase
persistence spreading from pastoralists to close-by populations, recorded between both
African and European populations (Tishkoff et al. 2007a; Evershed et al. 2022). Other
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examples include the contribution of the Duffy blood group allele conferring malaria
resistance from an ancient African population to modern Malagasy populations (Pierron
etal. 2018).
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Figure 1.5: A schematic representation of the rise of allele frequency through a
population according to its origin. Stars represent mutations (blue: variant present in
the population prior to selection; yellow: mutation occurring after the onset of selection;
red: mutation present in an archaic population which spreads through a receiving
population following an admixture event). The frequency of each variant in a population
following a selection event is represented by the number of people icons of their respective
colours under each panel. The red walking person icon in the top right represents an
archaic human, which contributes the red variant to a receiving population following an
admixture event. Taken from (Rees et al. 2020).

Adaptive introgression, or the adaptive admixture between modern and archaic
humans, has also been identified as playing a role in mediating local selective pressures
in non-African populations. Since Neanderthal and Denisovans long inhabited Eurasia
before modern humans (a short time after the divergence between archaic and modern
humans; approximately 600,000 years ago (Schaefer et al. 2021)), these archaic
populations had time to develop their own local adaptations, for which different
modern humans could rapidly acquire through various introgression events when first
encountering these novel environments (Reich et al. 2010; Prifer et al. 2014; Rees et al.
2020).

Indeed, whilst many of the non-neutral introgressed alleles were deleterious and
therefore removed by purifying selection in modern humans (Juric et al. 2016), a few
others have been shown to contribute to adaptations related to immune function,
pigmentation and oxidative stress (see Figure 1.6). They have been highlighted in their
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role of conferring virus resistance, particularly against RNA viruses in Europeans
(Enard and Petrov 2018). In some instances, where genetic diversity in of itself is
advantageous, more than one archaic allele is maintained (Dannemann et al. 2016;

Enard and Petrov 2018).
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Figure 1.6: Cartoon representation of the adaptive introgression events from
archaic human populations into modern humans. The red and purple persons indicate
human populations with evidence of adaptive introgression with Neanderthals and
Denisovans, respectively. The gene(s) believed to be under selection given in the linked
boxes, on the lineages where selection is suggested to have occurred. Taken from (Rees et

al. 2020).

1.5.1.2. Polygenicity of Adaptation

Selection may be mediated by one beneficial allele (monogenic selection) or many
beneficial alleles (polygenic selection) (Pritchard et al. 2010). Monogenic selection can
result in strong selection signatures in a single locus, and therefore are often the
simplest signatures to identify in the genome, with most known adaptations monogenic
in nature (e.g., (Perry et al. 2007; Tishkoff et al. 2007a; Minster et al. 2016; Ilardo et al.
2018; Key et al. 2018; Pierron et al. 2018; Evershed et al. 2022)).
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Polygenic selection is characterised by selection acting on multiple adaptive alleles in a
population. This does not necessarily include any one extreme single allele frequency
change, but rather a group of alleles that all show concerted shifts in allele frequencies
to shift the phenotype in the adaptive direction (Pritchard et al. 2010). Which alleles
mediate adaptation depends on stochastic processes and their pleiotropic restraints,
which in turn are specific to their particular genetic background (and therefore also
influenced by epistasis; (Phillips 2008; Solovieff et al. 2013)). Hence, different
populations may show different alleles responding to selection, or at different degrees.

Polygenic adaptation has been proposed to be common in modern humans, since most
traits are likely polygenic, with many alleles mediating phenotypic response. Indeed,
various studies have suggested polygenic selection is prevalent throughout human
history, and it has been proposed to drive adaptations to diet, metabolism, pathogen
resistance and altitude (Fumagalli et al. 2011; Daub et al. 2013; Berg and Coop 2014;
Daub et al. 2015; White et al. 2015; Nédélec et al. 2016; Gouy et al. 2017, 2017; Roca-
Umbert et al. 2022).

1.5.1.3. Epigenetic Local Adaptation

Whilst not directly relevant to the work in this thesis, it should also be stated here that
there is increasing interest in the importance of epigenetics in local adaptation.

Epigenetic response is a somatically heritable change of chemical modification, most
commonly studied being DNA methylation, that does not result in changes in the DNA
sequence. Whilst it is still debated if such chemical modifications are heritable (Heard
and Martienssen 2014), it has been shown that epigenetic responses occur under
changes in the local environment, particularly during development (Gokhman et al.
2017). These modifications can occur much faster than genetic adaptations, and so it
has been proposed that they also may help populations to mediate environmental
pressures over periods as short as a lifetime (Gokhman et al. 2017).

Whilst is it difficult to show that epigenetic changes are adaptive rather than a response
to stress, adaptation and epigenetic change has been linked in populations of Central
Africa. Here, genetic variants associated with methylation variation have been identified
to show signatures of positive selection (Fagny et al. 2015), leading to the suggestion
that epigenetic change allows rapid, plastic mediation of selective pressures before
adaptive alleles can be cemented in the genome.

1.5.2. Signatures of Local Adaptation

Selection events leave distinct patterns, or signatures, in the genome. These signatures
rely heavily on not only the strength and timing of selection, but also the allele origin.
Large allele frequency differentiation in a SNP between populations, more extreme than
could be explained by neutral demographic processes, is considered an almost-
universal signature of strong local adaptation (Rees et al. 2020). However, linked
variation, which can be a powerful tool to identify loci under selection, is highly varied
according to an allele’s selective history.

Alleles that rapidly rise in frequency, as under SDN, exhibit linked haplotypes of low
diversity and many low frequency variants (see Figure 1.7). A selective sweep is
defined by this extended haplotype homozygosity surrounding the selected site,
accompanied by high population differentiation and skews in the site frequency
spectrum (or an excess of high-frequency derived alleles; (Sabeti et al. 2006; Pritchard
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et al. 2010)). Such a rapid rise in frequency also leaves a distinctive pattern on the
allele’s genealogy; a long internal branch with short terminal tips (or a “star”-like
shape) represents the sweep of an advantageous allele through a population (Field et al.
2016). The strength of these signatures is largely dependent on the strength and timing
of selection, with those most striking signatures pertaining to site frequency spectrum,
population differentiation and haplotype homozygosity originating from strong
selection events with an onset surrounding < 80kya, 75-50kya and <30Kkya, respectively
(Sabeti et al. 2006).
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However, under SSV, the signatures of linked variation are usually highly reduced and
less easily distinguishable from the neutral genetic background (Fig. 1.7). This is not
only due to a typically less striking rise in frequency (if the selected allele is already
segregating at intermediate frequencies), but the selection occurring on multiple
haplotype backgrounds (Rees et al. 2020). It is this lack of haplotype homozygosity that
particularly separates the signatures of SSV from SDN. SSV also encompasses a range of
ratios between allele origin and selection onset (e.g., selection acting on an allele swiftly
following its origin compared to selection acting on an allele more than, say, 80,000
years following its origin). This highly varied age and frequency of the segregating allele
further increases the variance of expected linked variation under the umbrella term of
SSV. In some cases, SSV may even resemble, or be considered as, SDN if the onset of
selection closely follows the allele origin or a population bottleneck results in extreme
frequency increase (Wilson et al. 2014).
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The selection signatures arising from adaptive admixture events differ heavily from
those of SDN or SSV, and have a dual aspect to their identification. Admixed or
introgressed segments must be first extracted from shared ancestry or incomplete
lineage sorting (Huerta-Sanchez et al. 2014), before then isolating adaptive segments
from those that are neutral. These admixed or introgressed segments are largely
defined by the timescale and populations of the gene flow event. For example,
introgressed segments are long and unusually similar to archaic segments but appear
young, are accompanied by high levels of linkage disequilibrium and only present in
some modern human populations (Yang, Malaspinas, et al. 2012; Liang and Nielsen
2014; Racimo et al. 2015).

Many of the classic signatures used to identify positive selection are therefore also
present in neutrally introgressed segments, such as long-range LD or population
differentiation (Racimo et al. 2015). The strongest evidence for adaptive introgression
is thus usually considered an unusually high frequency of an introgressed segment
compared to the empirical distribution of introgressed segments throughout the
genome. Similarly, strong evidence for recent adaptive admixture, that between modern
human populations, is often identified by higher proportions of putatively adaptive
ancestry compared to the expected ratio of ancestry components, as well as by
clustering algorithms which classify individuals by their genetic patterns (such as
STRUCTURE or ADMIXTURE (Pritchard et al. 2000; Alexander et al. 2009; Pierron et al.
2018; Wangkumhang and Hellenthal 2018; Secolin et al. 2019). Naturally, identifying
such signatures rely on confident assignment of ancestry components, be that from
modern or archaic humans, and may be biased by limited ancient DNA data of ancestral
human populations.

Finally, local adaptation may be inferred from signatures of polygenic adaptation, which
can be summarised as highly varied and often weak signatures spread over many loci
(see Figure 1.8). Multiple small frequency shifts, which may occur at different
timepoints and can be highly spread throughout the genome, means that polygenic
selection can appear indistinguishable from neutral genetic drift (Pritchard et al. 2010;
Le Corre and Kremer 2012). The highly variable dynamics of polygenic selection, such
as the number of loci under polygenic adaptation, as well as the effect sizes and the
origin of these alleles, also result in selection signatures that may appear very different
from each other. In some cases, even very strong signatures may accompany polygenic
adaptation; alleles with large effect sizes or a small number of alleles without
deleterious pleiotropic effects may sweep to fixation as expected under SDN (Chevin
and Hospital 2008).

The omnigenic model offers an additional explanation as to why polygenic selection is
difficult to identify in modern humans. This model considers that variants across almost
the entire genome can contribute to an adaptive phenotype; these variants are found in
both “core” genes (those which directly affect the phenotype) and “peripheral” genes
(those that indirectly affect the phenotype through interacting networks (Boyle et al.
2017; Mathieson 2021)). The effects of these “core” genes are consistent over different
populations and are therefore more likely to be identified as under positive selection.
However, the effects of “peripheral” genes are governed by their interaction with a
number of other peripheral and core genes. Hence, their effects may differ amongst
studied populations according to the differing allele frequencies across the entire gene
network, and they may constitute the more variable signatures that elude identification
(Mathieson 2021).
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Figure 1.8: Cartoon depiction of polygenic adaptation. Each horizontal bar represents
a haplotype and stars indicate mutations occurring on different genetic backgrounds.
Taken from (Fan et al. 2016).

1.5.2.1. A Note on Hard and Soft Sweeps

Historically, selection signatures have been categorised into either “hard” or “soft”
sweeps (Hermisson and Pennings 2005; Peter et al. 2012; Schrider and Kern 2016,
2017), where hard sweeps represent the rapid rise of frequency resulting from SDN and
soft sweeps represent weaker, and altogether more variable, signatures on the genome.
These soft sweeps may be a result of weak selection, SSV or recurrent mutations,
although the latter is unlikely in humans due to the low effective mutation rate
(Hermisson and Pennings 2005). Many studies have attempted to determine the
relative importance of hard and soft sweeps in human adaptation, more recently using
methods like Approximate Bayesian Computation or Supervised Machine Learning to
compare the proposed incidence of SDN, SSV and polygenic selection (Peter et al. 2012;
Schrider and Kern 2016, 2017).

Whilst there is value in assigning categories to differing dynamics of selection, the
dynamics themselves (e.g., strength, age and frequency of the selected allele) are so
intrinsically heterogeneous that a discrete categorisation will never fully represent
signatures on the genome (Rees et al. 2020). Whilst many have moved away from using
terms such as “hard” or “soft” sweeps (or at least recognise that “soft” can often be
simply interpreted as the definition of all sweeps that aren’t strong enough to be “hard”)
and instead moved to using terms such as SDN and SSV (Peter et al. 2012), often these
terms are still used and may falsely imply a binary, or less variable, nature of selection
in modern humans.

39



Introduction

1.6. Methods to Identify Local Adaptation

Local adaptation can be represented in the genome via a multitude of selection
signatures. Methods, either individually or as a collection within the field, must be able
to identify these various signatures and, by extension, identify the different dynamics of
local adaptation. This includes different strengths and timing of selection, different
allele origins, and different numbers of alleles under selection, all which must be
distinguished from neutral processes.

Random genetic drift can increase the frequency of alleles, sometimes so rapidly that
they can mimic the allele frequency rise seen under positive selection. Demographic
processes, particularly population bottlenecks, can aid this frequency increase (Rees et
al. 2020). Such bottlenecks are not only common in human populations, but many
populations have only a partially resolved demographic model (Gravel et al. 2011,
2013). Without a high degree of certainty surrounding demographic history, it can be
difficult to tease apart past population expansions and admixture with that of positive
selection (Pritchard et al. 2010; Peter et al. 2012).

Purifying selection can also mimic some of the genomic signatures of local adaptation.
Background selection, or the reduced effective population size at sites linked to those
undergoing purifying selection, increases the effect of genetic drift (Charlesworth et al.
1995). This can cause strong genetic differentiation between populations, which is
usually an indicator of local adaptation (Cruickshank and Hahn 2014). There is also
evidence that deleterious introgressed alleles result in heterosis, or hybrid vigour, in
modern humans, again mimicking signatures of adaptation (Kim et al. 2018; Zhang et al.
2020).

1.6.1. Summary Statistics

The most common method to identify signatures of local adaptation is to represent
selection signatures (or particular aspects of the overall signature) as a summary
statistic and compare these to a neutral background. In practice, this involves sampling
many loci throughout the genome, calculating the chosen summary statistic and
identifying the loci with summary statistic values unexpected under neutrality (Sabeti
et al. 2006; Rees et al. 2020). The gold-standard approach would be to have a neutral
expectation based on truly accurate neutral simulations, operating under a fully
resolved demographic model. In reality, this is both highly improbable and impractical
for many studies and populations. A common method is instead to build an empirical
distribution of the summary statistic values throughout the genome and identify loci
with outlier values. It is an important distinction here that those outliers do not
necessarily have signatures unexpected under neutrality, but are strong candidate
targets of selection compared to the rest of the genome (Rees et al. 2020).

Many classical summary statistics used to identify local adaptation aim to identify one of
three signatures of selection (see Figure 1.9): high-frequency derived alleles (or skews
in the site frequency spectrum (Tajima 1989)), population differentiation (Weir and
Cockerham 1984: Yi et al. 2010; Yassin et al. 2016; Crawford et al. 2017; Librado and
Orlando 2018; Schmidt et al. 2019) and degree of haplotype homozygosity (Voight et al.
2006; Sabeti et al. 2007; Ferrer-Admetlla et al. 2014; Szpiech et al. 2021). Since these
aspects of selection signatures are all strong under strong SDN, many classic summary
statistics are well-equipped to identify this type of selection (indeed, reflected in the
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literature of known adaptations (Rees et al. 2020)), but comparatively poorly equipped
at detecting weaker signatures of selection (with some exceptions e.g., (Ferrer-Admetlla
etal. 2014; Garud et al. 2015; Field et al. 2016; Speidel et al. 2019)).
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As previously noted, strong population differentiation can be considered a more
universal signature of adaptation, leading to a particular focus on allele frequency
differentiation methods to identify potentially weaker signatures of selection. This
includes Fgr and similarly operating methods, such as the population branch statistic
(PBS; comparing three pairwise Fg; values between three populations to identify
unusual differentiation (Yi et al. 2010)) and its derivatives (PBS,, PBS,; and PBE
(Yassin et al. 2016; Crawford et al. 2017; Schmidt et al. 2019)). Multiple methods (e.g.,
Bayenv (Glunther and Coop 2013)) continue to add value to using population
differentiation methods to more confidently identify SNPs which are unusually
differentiated by estimating the covariance due to shared ancestry in allele frequencies
between populations.

There has been some development in using composite statistics, or those that combine
multiple summary statistics whilst accounting for correlation between the individual
statistics, to present an overall score for selection (Grossman et al. 2010; Ma et al.
2015). Naturally, the composite score is reduced when any of the individual summary
statistics used are themselves of low value. Hence, these methods have the highest
power in identifying those selective events that result in consistently strong selection
signatures. More than this, combining signatures into a single score in this way can
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make understanding the dynamics of selection less intuitive. Calculating such statistics
individually but manually considering their results together for a candidate locus may
result in a more informed view on the probability and nature of selection.

1.6.1.1. Machine Learning Methods

Machine learning methods integrate spatial patterns along the genome to classify loci
into prespecified models of evolution, such as the exact nature of inferred selective
sweeps (including traditional classifications of “hard” or “soft”, as well as completeness
or timing of the sweep; Pybus et al. 2015; Sheehan and Song 2016; Schrider and Kern
2016, 2017; Kern and Schrider 2018; Sanchez et al. 2020; Gower et al. 2021, Caldas et al,
2022; Qin et al. 2022). In some cases, the spatial patterns of a range of summary
statistics are used to represent the genomic data (Pybus et al. 2015; Sheehan and Song
2016; Schrider and Kern 2016, 2017; Sugden et al. 2018; Mughal and DeGiorgio 2018).
In the case of deep learning algorithms, a particularly promising subset of machine
learning algorithms, a predefined set of summary statistics is not required as input
(LeCun et al, 2015; Sheehan and Song 2016; Kern and Schrider 2018; Sanchez et al,
2020; Gower et al, 2021, Caldas et al, 2022, Qin et al. 2022). Instead, deep learning
methods can effectively use the entirety of the available raw data to learn which
features are most useful for predicting the nature and presence of natural selection,
potentially improving inferences by using the data which would be lost in the process of
calculating summary statistics (Korfmann et al, 2023).

Machine learning methods in their entirety are particularly promising since they are
trained by a range of simulations modelling different selection scenarios, some of which,
e.g., those arising from polygenic adaptation or SSV, are not represented by extreme
patterns in the raw data, including those captured by summary statistics (Pybus et al.
2015; Sheehan and Song 2016; Schrider and Kern 2016, 2017; Kern and Schrider 2018;
Sanchez et al, 2020; Gower et al, 2021, Caldas et al, 2022, Qin et al. 2022). In short, these
methods have the potential to recognise the more subtle genomic signatures that
characterise other strengths or dynamics of selection.

1.6.2. Ancient DNA

Ancient DNA (aDNA) sequencing methods have vastly improved in the 215t century
alone, with available ancient human samples now sequenced in their thousands
(Racimo et al. 2015; Wohns et al. 2022). Whilst many of these are dated to more recent
times (e.g.,, <5000 years ago), there is increasing coverage of ancient human populations
as far back as ~45kya (Skoglund and Mathieson 2018), as well as numerous archaic
human samples dating as more than ~50kya (Green et al. 2010; Reich et al. 2010; Meyer
etal. 2012, 2012; Castellano et al. 2014; Priifer et al. 2014, 2017; Mafessoni et al. 2020).

Ancient DNA is exceptionally powerful in selection studies because it can provide direct
snap-shots of past allele frequencies (Key et al. 2018). This allows the identification of
rapid allele frequency change, and hence potentially suggest the onset of selection;
identify or support proposed selection at individual sites; and allow a deeper
understanding of the role of adaptation and neutrality in creating modern population
differentiation. (Sverrisdéttir et al. 2014; Mathieson et al. 2015a; Mathieson and
Mathieson 2018; Le et al. 2022; Mathieson and Terhorst 2022).

More than this, aDNA is imperative in understanding adaptive admixture or
introgression, where ancient genomes can identify the population origin of alleles and
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identify any regions with an unusually high contribution from one ancestral population,
that which is expected under adaptive admixture (Mathieson et al. 2015a; Racimo et al.
2015). Ultimately, aDNA has played a key role in evaluating the role of gene flow in
neutral and selected genetic diversity, e.g., has allowed identification of loci mediating
adaptation post-admixture in European and American populations (Mathieson et al.
2015a; Lindo et al. 2016), as well as introgressed alleles conferring adaptation in many
non-African populations (Green et al. 2010; Reich et al. 2010; Meyer et al. 2012; Huerta-
Sanchez et al. 2014; Priifer et al. 2014; Racimo et al. 2015).

1.6.3. Tree-based Methods

Many recent advances have been made in genealogical reconstruction methods (Hejase
et al. 2020): those that build individual trees for SNPs along the genome which, in
theory, represent an almost complete history of each locus. Here, the evidence for
selection can then be more directly evaluated from the inferred tree. This is considered
superior to using classical summary statistics to infer selection, since these statistics
complex evolutionary or genomic patterns into a single value (Rees and Andrés 2022).

Tree-based methods to infer selection have been used in a number of programmes for
some time (e.g., ARGweaver and msprime; both continuing to be developed
(Rasmussen, Hubisz, et al. 2014; Kelleher et al. 2016; Hubisz and Siepel 2020;
Baumdicker et al. 2022, Brandt et al, 2022) but only recently have computational
advances allowed the inference of genealogies for large sample sizes (Kelleher et al.
2019; Speidel et al. 2019; Wohns et al. 2022), pushing these methods to the forefront of
the field. Two notable recent methods, Relate and tsinfer, are able to efficiently build
trees from over 1000 samples, including the integration of high-coverage archaic
human samples (Kelleher et al. 2019; Speidel et al. 2019; Wohns et al. 2022). tsinfer
has also been used to infer a “unified genealogy”, one that has been built from 3601
modern and high coverage ancient genomes (alongside using 3589 low-coverage
ancient samples to further constrain and date the tree) and represents the most
complete tree-representation of the genetic history of humans yet (Rees and Andrés
2022; Wohns et al. 2022).

Whilst tsinfer is accompanied by a python package (tskit (Kelleher et al. 2019;
Baumdicker et al. 2022)) that allows manipulation and analysis of the inferred tree
sequences, including calculating summary statistics using the inferred trees, Relate has
a built-in method for inferring selection, and is generally considered more suited to this
analysis (Speidel et al. 2019). Relate first infers a tree for each SNP along the genome
(see Chapter 2), and then simultaneously re-estimates branch lengths, changing
population size through time and mutation rate to refine the tree sequences. Its
selection test uses these inferred trees and allele ages to compare the spread of a
mutation (or the lineage carrying a mutation) to all other lineages, conditioning on the
number of lineages present on the onset of the mutation and outputting a probability of
the mutation’s trajectory under neutrality. This has shown to be successful in
identifying both monogenic and polygenic adaptation (Speidel et al. 2019), and its direct
inference of a mutation’s spread is suggested to be better suited in identifying subtler
instances of selection.
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1.6.4. Environmental Correlations

Arguably the strongest evidence of local adaptation is when correlations are observed
between allele frequencies and environmental factors, given that they are more extreme
than expected under population histories and relatedness (Giinther and Coop 2013).
Bayenv is one such method that is able to account for population structure when
testing for environmental correlations, and has been used to identify human
adaptations along clines of climate, diet and pathogen density (Hancock et al. 2008;
Hancock, Witonsky, etal. 2010, 2011; Fumagalli et al. 2011; Hancock, Clark, et al. 2011).

Otherwise, linear models may be used to ask to what extent shared ancestry and
proposed environmental factors explain the observed allele frequencies, a method that
has been used to infer adaptation to climate, including that of the cold receptor TRPM8
to cold ambient temperature (Raj et al. 2013; Key et al. 2018). Evidence for local
adaptation is also given when functionally relevant genes are inferred to be under
selection in a linked extreme environment (as the case for strong signatures of selection
in AS3MT, a gene associated with arsenic metabolism, in populations living on arsenic-
rich soils of Argentina (Schlebusch et al. 2015)), or when several populations
experiencing similar selective pressures show signatures of selection in the same
gene(s) (as is the case for selection signatures surrounding the LCT gene, that which is
responsible for lactase persistence in multiple pastoralist populations (Tishkoff et al.
2007a; Gerbault et al. 2011; Evershed et al. 2022)).

1.6.5. Identifying Polygenic Selection

Identifying polygenic adaptation is considered far more challenging than identifying
monogenic adaptation, since the signatures of selection are defined by weaker allele
frequency changes spread amongst multiple loci (as well as being highly variable in the
degree of allele frequency change, number of loci and their associated effect sizes). The
most common methods used to identify polygenic selection are derived from genome-
wide association studies (GWAS) (Sabeti et al. 2006; Berg and Coop 2014; Berg, Zhang,
etal. 2019) (see Section 1.6.5.1), alongside a growing use of gene set and gene network
methods (Daub et al. 2013, 2017; Gouy et al. 2017; Gouy and Excoffier 2020) (see
Section 1.6.5.2.).

Additional methods to identify polygenic adaptation, but not explored in detail here,
included statistics such as 2DNS (a McDonald-Kreitman-based test (Daub et al. 2015))
or SDS (Single Density Score; which uses the distances in tree tip branch lengths to infer
selection (Field et al. 2016)). The latter statistic, whilst shown to have good power in
identifying recent selection, is still liable to population stratification when using GWAS
hits (see Section 1.6.5.1).

1.6.5.1. Genome-Wide Association Studies

The increasing availability of genome sequences and catalogues of human genetic
variation makes GWAS a popular choice in identifying polygenic selection (Sabeti et al.
2006). These studies scan for genetic markers over complete genomes that are
associated with a particular trait or disease, and their ultimate objective is to identify
causal genetic variants and estimate their corresponding effect size on such a trait. To
identify polygenic adaptation, the effect sizes calculated from these studies can also be
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used to identify the global sets of alleles that show positive covariance (Berg and Coop
2014; Berg, Zhang, et al. 2019).

However, it has now been suggested that differences in the genetic basis of traits in
populations and hidden population stratification amongst the samples used in these
studies can result in spurious claims of polygenic adaptation (Berg, Harpak, et al. 2019;
Sohail et al. 2019). Still, population stratification is only believed to result in small,
systematic biases, rather than false genome-wide significant associations. Hence, when
testing if derived mutations increasing or decreasing a phenotype are enriched for
evidence of positive selection, one study chose to use only SNPs with genome-wide
significant associations in their analysis (Speidel et al. 2019). This method, which also
only used effect direction rather than effect size, reduces confounding due to population
stratification, but does not completely avoid it (Speidel et al. 2019).

However, it must also be considered that SNPs identified as causal to a trait in one
population may not necessarily be causal in other populations, and can further lead to
false inferences of selection. Many of the recognised issues with using GWAS highlight
the need for wider sampling of human populations in order to understand currently
undocumented genetic variance, and its association with modern traits (see Section
1.4.3).

1.6.5.2. Gene Set Methods

Methods using gene sets, or gene networks, propose to combine the weak signatures
from multiple genes within a meaningful set, such as known biological pathways (Daub
etal. 2013, 2017; Foll et al. 2014; Amorim et al. 2015; Gouy et al. 2017; Gouy and
Excoffier 2020). This can result in a gain of statistical power to detect polygenic
selection, even when the selection on individual genes is weak. These approaches have
given evidence for polygenic adaptation to pathogens (Daub et al. 2013), convergent
adaptation to high-altitude (Foll et al. 2014) and tropical forest environments in
modern humans (Amorim et al. 2015), as well as more ancient selection acting after the
human-chimp split (Daub et al. 2017).

One particular gene-set enrichment test, notable for its simplicity and customisation, is
the SUMSTAT method (Daub et al. 2013). This method uses the sums of test statistics,
compared to neutral gene sets, to detect selection for a given gene set or pathway.
Hence, it specifically looks for the signatures of small effect mutations over a phenotype,
making it highly suitable for identifying polygenic selection. Moreover, whilst this
method has previously used Fg; as the summed test statistic (Daub et al. 2013),
SUMSTAT can integrate any test statistic in its identification process, allowing the use
of more sensitive statistics should they be identified or proposed.

Still, SUMSTAT is naturally limited by its integrated test statistic, and may falsely
identify signatures arising from background selection or relaxation of constraint as
positive polygenic selection (Daub et al. 2013). As well as this, such a method relies on
accurate sets of neutral genes, which in practice are often sets of random genes
throughout the genome that should, but do not necessarily, approximate neutrality.

All gene set or network methods also inherently rely on functionally related sets or
networks of genes, where some genes may be associated with multiple functions and
hence represented in multiple sets or networks (Daub et al. 2013; Gouy etal. 2017). It
can therefore be difficult to tease apart selection on one function from another and,
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given pleiotropic constraints, it is often unrealistic to expect all genes within a gene set
to be exhibiting signatures of polygenic selection.

1.6.6. Determining the Selective Driver

Once local adaptation has been identified, the natural next step is to identify the driving
selective force. In some cases, this is integrated in the identification of local adaptation
itself (e.g., when using environmental data to identify unusual allele correlations,
repeated adaptation of the same genes to similar environments or functional
relationships between putatively selected genes and environment, see Section 1.6.4),
but in most cases additional avenues may be used.

Determining the timing of proposed local adaptation events is a common way of
attempting to identify a putative selective force. Here, aDNA is especially valuable, since
it can help reconstruct the allele frequency through time, constraining estimates of the
onset of selective pressures (Mathieson et al. 2015a; Mathieson and Mathieson 2018; Le
et al. 2022; Mathieson and Terhorst 2022). Due to the increasing availability of samples,
many studies using aDNA to infer selection have been carried out in European
populations. Their results have questioned the proposed link between the development
of agriculture and selection inferred on the FADS locus (linked to fatty acid metabolism),
AMY1 (production of amylase) and LCT (production of lactase) (Sverrisdottir et al.
2014; Mathieson et al. 2015a; Mathieson and Mathieson 2018; Le et al. 2022).

Otherwise, studies may aim to establish the function of putatively selected genes or
genomic elements to suggest the environmental pressure for which they are
responding, often using model organisms (Lamason et al. 2005; Fujimoto et al. 2008).
Such methods have helped elucidate the role of genes such as SLC24A5 (under positive
selection in European populations; affecting pigmentation in zebrafish (Lamason et al.
2005)) and EDAR (under positive selection in Asian populations; affects mammary and
eccrine glands in mice (Fujimoto et al. 2008) and now shown to affect hair thickness,
tooth and ear shape, sweat gland density and chin protrusion in modern humans
(Fujimoto et al, 2008; Adhikari et al, 2015; Reyes-Reali et al, 2018, Kataoka et al, 2021).

Determining the phenotypic trait affected by human variants is considerably more
challenging. Whilst large association studies can propose trait associations (with
recognition of the bias towards more studied and sampled populations), elucidating the
molecular response of selected variants relies on further analyses integrating
transcriptomics, metabolic and microbiota datasets (Rees et al. 2020). SNP-function
may also be categorised with the use of high-throughput assays exploring the effect of
proposed adaptive variants on protein expression, transcription or methylation
(Downes et al. 2019). As stem cell technology improves, it may also become more
commonplace to use pluripotent stem cells and stem cell-derived organoids to
experimentally test the phenotypic consequences of certain gene variants in human
cells (Kilpinen et al. 2017; Hwang et al. 2019). This represents an exciting future avenue
for local adaptation studies, providing additional tools to investigate not only variants
under selection, but the functional consequences of such selection, ultimately necessary
to validate these signatures.

1.7. Micronutrients in the Human Diet

Micronutrients are an essential part of the human diet since, with the exception of
vitamin D, they are not synthesised in the body (Shenkin 2006). Instead, they must be
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consumed via the diet, where the levels of micronutrients in plant and animal foodstuffs
rely heavily on the underlying soil geology (Diamond 2002; White et al. 2015; Dhaliwal

etal. 2019). They play a central role in human metabolism and maintenance of tissue
function, and are particularly important in immunity and healthy growth and
development (Shenkin 2006). Micronutrient levels in the diet outside a very small but
specific healthy range can result in a range of pathologies, many of which are very

common over global or individual populations (see Section 1.7.1).

Micronutrients themselves can be split into two main categories: vitamins (organic
compounds made by plant and animal sources) and minerals (inorganic compounds
absorbed from soil or water; (Tako 2019)). Minerals are further subset into
macrominerals and trace minerals, where macrominerals are needed in slightly higher
levels compared to trace minerals and vitamins (see Table 1.2), but are still required at
far reduced levels compared to macronutrients such as carbohydrates or fats (Prasad
2013; Tako 2019). Here, we focus on the trace minerals and macrominerals in the

human diet.

Table 1.2: Recommended daily amounts (RDA; for adults >19 years old) for all
micronutrients needed for maintaining human health. Given alongside major
sources of each micronutrient. Taken from (Streit 2018; Rowles 2023).

Micronutrient Type Micronutrient Source RDA
Macrominerals Potassium Lentils, acorn squash, 4700mg
bananas
Sodium Salt, processed foods 2300mg
Calcium Milk products, leafy 2000-2500mg
greens, broccoli
Chloride Seaweed, salt, celery 1800-2300mg
Phosphorus Salmon, yogurt, turkey 700mg
Magnesium Almonds, cashews, 310-420mg
black beans
Sulphur Garlic, onions, brussels None established
sprouts, eggs, mineral
water
Trace Minerals Iron Oysters, white beans, 8-18mg
spinach
Zinc Oysters, crab, 8-11mg
chickpeas
Fluoride Fruit juice, water, crab 3-4mg
Manganese Pineapple, pecans, 1.8-2.3mg
peanuts
Molybdenum Beans, lentils, grains, 2000mcg
organ meats
Copper Liver, crabs, cashews 900mcg
lodine Seaweed, cod, yogurt 150mcg
Selenium Brazil nuts, sardines, 55mcg
ham
Vitamins Vitamin A Liver, dairy, fish, sweet 700-900mcg
potatoes, carrots,
spinach
Vitamin B1 (thiamine) Whole grains, meat, 1.1-1.2mg
fish
Vitamin B2 (riboflavin) | Organ meats, eggs, milk 1.1-1.3mg
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Vitamin B3 (niacin) Meat, salmon, leafy 14-16mg
greens, beans
Vitamin B5 Organ meats, 5mg
(pantothenic acid) mushrooms, tuna,
avocado
Vitamin B6 Fish, milk, carrots, 1.3mg
(pyridoxine) potatoes
Vitamin B7 (biotin) Eggs, almonds, spinach, 30mcg
sweet potatoes
Vitamin B9 (folate) Beef, liver, black eyed 400mcg
peas, spinach,
asparagus
Vitamin B12 Clams, fish, meat 2.4mcg
(cobalamin)
Vitamin C (ascorbic Citrus fruits, bell 75-90mg
acid) peppers, Brussels
sprouts
Vitamin D Sunlight, fish oil, milk 600-800IU
Vitamin E Sunflower seeds, wheat 15mg
germ, almonds
Vitamin K Leafy greens, soybeans, 90-120mcg
pumpkin

1.7.1. Micronutrient Deficiency and Toxicity

Micronutrient deficiency is estimated to affect 2 billion people worldwide, with the
majority of these individuals in sub-Saharan Africa and South-Central Asia (Bhutta and
Salam 2012; Bailey et al. 2015). Of these, 178 million are children under 5 and
estimated to have experienced stunted growth from micronutrient deficiency, with 19
million of these predicted to be at such a level of malnutrition to be at a risk of death
(Bhutta and Salam 2012). Often deficiencies co-occur, and may be further coupled with
protein or caloric malnutrition (Bailey et al. 2015). This can complicate the association
between micronutrient deficiency and health, since it most explicitly associates
undernutrition to increased health risk.

Still, micronutrient deficiencies independently result in an increased risk of metabolic,
cardiovascular and infectious diseases (Shenkin 2006; Triggiani et al. 2009; Tulchinsky
2010; Bailey et al. 2015; Biban and Lichiardopol 2017; Khan et al. 2022). During
development, deficiencies may result in stunted growth, mental retardation and an
overall increased risk of morbidity and mortality (Halsted et al. 1972; Yant et al. 2003;
Conrad et al. 2004; Shenkin 2006; Prasad 2013; Bailey et al. 2015). Hence, pregnant
women and children under five are considered the most vulnerable to the long-term
effects of micronutrient deficiency and generally are the focus of public health
intervention strategies. In some cases, intervention strategies have great success and
health disorders may even be reversed with supplementation of the missing
micronutrients. In other cases, particularly when malnutrition occurs at key periods of
development, the health consequences remain permanent (Bailey et al. 2015).
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The most widespread macromineral and trace minerals deficiencies are those
pertaining to iron, iodine and zinc? (Bhutta and Salam 2012; Bailey et al. 2015). Iron is
the most common global deficiency, with approximately 40% of children between 6-59
months and 36% of pregnant women estimated as anaemic in 2019 (Stevens et al.
2022). Anaemia increases the risk of poor maternal and perinatal health, delays growth
and cognitive development, and considerably reduces physical work capacity and
impairs immune and endocrine function (Stevens et al. 2022). Goitre, the swelling of the
thyroid gland as a result of iodine deficiency, is observed in approximately 15.8% of the
global population (Gebremichael et al. 2020). Like iron, extreme iodine deficiency is
tightly associated with impaired cognitive function and mental retardation, particularly
during development. Zinc deficiency, estimated to affect 1.1billion people worldwide,
however, is primarily associated to impaired immune function (Bailey et al. 2015; Khan
et al. 2022). Deficiency is associated with increased risk of diarrhoea and acute
respiratory infections, including the SARS-CoV-2 virus, which are major causes of death
in many global populations (Khan et al. 2022). The major health consequences and
symptoms associated with less common macromineral and trace mineral deficiencies of
interest, alongside their toxicity symptoms, are summarised in Table 1.3.

Micronutrient toxicities generally result in increased gastrointestinal distress, nausea,
vomiting and diarrhoea, with some claims that they can increase the risk of poisoning
from non-essential minerals (Peraza et al. 1998; Pike and Zlotkin 2019). Toxicities have
been identified across many domestic animal and plant species, often a result of the
underlying soil conditions (Becker and Asch 2005; Giri et al. 2021; Kaur and Garg 2021),
but are less commonly recorded in humans compared to micronutrient deficiencies
(Fraga 2005). This may be due in some parts to the decoupling of toxicity from
surrounding malnutrition risk. Hemochromatosis, or the systemic overload of iron
caused by mutations in the HFE, HAMP, H]V, TFR2 and SLC40A1 genes, is the most
common micronutrient toxicity disorder (Brissot et al. 2018). This is most common in
European populations (see Section 1.7.3.) and results in a range of symptoms including
chronic fatigue, joint pain and, in extreme cases, cardiac failure (Naugler 2008; Brissot
etal. 2018).

2 Deficiencies of vitamin A and folate are also very common micronutrient deficiencies and are of a
concern to global health. Vitamin A deficiency is the leading global cause of vision loss (Xu et al. 2021))
and deficiencies of folate, or vitamin B9, is estimated to be associated with 80% of neural tube defects
during pregnancy (fatal or severely disabling birth defects that result in approximately 300,000 cases
worldwide (Wald 2022)).
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Table 1.3: The role of thirteen essential trace minerals and macrominerals.
Given alongside documented symptoms or diseases associated with their respective
deficiencies and toxicities.

Micronutrient Role Deficiency Toxicity References
Symptoms Symptoms

Potassium Nerve Increased blood Neuromuscular (Erdman etal.
transmission, | pressure, fatigue, dysfunctions 2012; Jain etal.
muscle constipation, 2013; Stone et
function polyuria, cardiac 310 53)16; Streit

arrhythmias

Sodium Maintains Impaired cognition, | Increased blood (Geerling and
blood pressure | fatigue, nausea, pressure, Loewy 2008;

weight loss hypertension, Hurley and
cardiovascular Johnson 2015;
morbidity Grillo et al.
2019)

Calcium Bone and teeth | Reduced bone Weight loss, (Sunyecz 2008;
structure and | strength polyuria, heart Calcium etal.
growth, muscle | (osteoporosis), arrhythmias, 2011; Streit
function, blood | defective bone fatigue, soft tissue 2018)
vessel mineralisation and calcifications
contraction bone softening

(osteomalacia)
rickets (in children)

Chloride Maintains fluid | Muscle weakness, Pulmonary (Grossman et
balance, lethargy, loss of irritation and injury | al- 1980; Morim
digestive juices | appetite (gaseous explosure) ;ggzﬂ;uldner

Phosphorus Forms bone Anaemia, muscle Hypotension, (Razzaque
and cell weakness, bone vascular 2011; Streit
membrane pain, osteomalacia, calcification, cardiac 2018)
structure decreased immunity | arrest

Magnesium Enzymatic Nausea, vomiting, Hypotension, (Castiglioni et
reactions, fatigue, weakness, nausea, muscle al. 2013; Al
regulates seizures, muscle weakness ‘;‘z)al";i ’g’i felit
blood pressure | cramps, e

hypocalcemia, él(:lllgreA;;b and
hypokalem%a, 2022)
osteoporosis

Iron Supplies Anaemia (fatigue, Hormonal (Fraga and
muscles with shortness of breath, | abnormalities, Oteiza 2002;
oxygen, dizziness, heart decreased Fraga 2005;
hormone palpitations) immunity, diabetes, Streit 2018;

. . . Stevens et al.
synthesis heart disease, liver 2022)
disease, fatigue,
joint pain

Zinc Growth, Delayed growth, Anaemia, headache, | (Plumetal.

immunity impaired immune abdominal cramps, | 2010; Streit
function, alopecia, nausea 2018; Khan et
diarrhoea, cognitive al. 2022)
decline

Manganese Carbohydrate, | Abnormal bone and Neurological (Horning et al.
amino acid and | cartilage dysfunction 2015; O'Neal
cholesterol development, 52“8‘; E%h;t?git
metabolism 2018)
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delayed wound
healing
Molybdenum Cofactor for Tachycardia, night Hallucinations, (Novotny 2011;
enzyme blindness, seizures, cognitive Reiss and
reactions irritability, decline Hahnewald
childhood death (ifa 2011; Rowles
result of the genetic 2023)
disorder
molybdenum
cofactor deficiency)
Copper Brain and Anaemia, ataxia, low | Vomiting, (Williams
nervous numbers of white abdominal pain, 1983; Ashish et
system blood cells paralysis al. 2013;
function, (neutropenia) Prohaska
) 2014)
connective
tissues
lIodine Thyroid Growth and Nausea, diarrhoea, (Miles 1998;
regulation development vomiting, delirium | Bibanand
impairment, ]ii(;:il;arscior)‘(t)l
; otrel
neurodevelopmental 2018; Southern
deficits, cretinism,
C 1 and Jwayyed
hypothyrmdlsm and 2022)
goitre
Selenium Thyroid Cognitive decline, Metallic taste in (MacFarquhar
regulation, impaired immunity, | mouth, hair and nail | etal. 2010;
reproductive osteoarthritis (eg., loss, nausea, Streit 2018;
health, defence | Kashin-Beck diarrhoea, fatigue, Ibrah.lm etal
against disease), nervous system ég;? )S(hl etal
Sy . - ; Xu etal.
oxidative cardiomyopathy abnormalities 2022)
damage, (e.g., Keshan
potential diseasd), exacerbate
cancer iodine deficiency
prevention
1.7.2. Global Variation of Micronutrient Levels

A significant proportion of contemporary micronutrient deficiency is linked to the
socioeconomic status of individual populations, and significantly associated with global
poverty and undernutrition (Keats et al. 2019). Indeed, the most prevalent cases of
micronutrient deficiency are observed in low-income and middle-income countries
(Keats etal. 2019; Khan et al. 2022). Often, the diets of these countries largely consist of
staple foods that do not sufficiently cover the range of nutrition needed for optimum
health, and may be very low in levels of specific micronutrients (Ishfaq et al. 2021).
Toxicities, however, often result from chemical exposure to the individual, rather than
at a population-wide level (Fraga 2005).

Still, the public health concerns of some populations include particular micronutrient
deficiencies, or even toxicities, driven by the micronutrient levels of their underlying
soil environment. This can result in micronutrient-associated diseases endemic to a
population or region. Here, such a health burden on a population may have been

experienced for considerably longer periods of time, rather than a product of relatively
recent global and societal inequality.
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1.7.2.1. Soil Geology and Micronutrient Levels

Micronutrients are present in soils in a variety of different forms, which vary in their
bioavailability (the extent that they may absorbed and used) to plant and animal
species. They may be present as precipitates, adsorbed onto soil particles, present as
complex ring compounds or simply be part of rocks (primary minerals) or clays
(secondary minerals) (Keefer 1999). Many chemical factors affect the form
micronutrients take in the soil and their corresponding bioavailability, such as other
available elements, pH and organic matter (Dhaliwal et al. 2019; Liu et al. 2021).
Geographical factors also play a role, particularly the surrounding rock types,
topography and distance from the ocean (e.g., coastal regions are noted as particularly
high in iodine and many iodine deficient regions are highly landlocked (Cifor 2006;
Shetaya et al. 2012)). It is important to note that high levels of a micronutrient in a soil
does not directly result in high intake in the human diet, as it is the bioavailability itself
that plays the greatest role.

Given the extreme variety of global environments, soils can be highly variable even
between relatively proximal localities (and also may not align directly with modern
country or region classifications). Whilst there are few comprehensive studies of
micronutrient levels across global soils, and even fewer that compare the levels of
different micronutrients, the global distributions of some micronutrients are well-
explored. Often, this is linked to either the prevalence of human micronutrient-
associated disorders (e.g., the endemic diseases caused by selenium deficiency in East
Asia have prompted many studies investigating selenium levels in local soils (Hurst et
al. 2013; Liu et al. 2021, p. 202)), or their relevance in agriculture, particularly to
optimise plant growth (Diamond 2002; Alloway 2013; Duborska et al. 2022).

Areas of the world with the most notable, and most well resolved, deficient or toxic soils
for different micronutrients are given below, accompanied by their associated endemic
diseases when relevant. These are simply well-documented examples, and should not
be considered the only examples of micronutrient deficiency or toxicity in global soils.
Moreover, there is likely considerable change from the ancestral soil state following the
birth of wide-scale agriculture, and contemporary micronutrient soil levels may not
reflect their levels throughout the majority of time (Diamond 2002).

Selenium

Selenium levels have been shown to be highly variable at both the global and the local
scale. Most notably, selenium-deficient soils have been recorded in areas of East Asia,
particularly along a wide belt stretching across the southwest to northeast of China
(although this also contains pockets of selenium-enriched soils; see Figure 1.10 (Xia et
al. 2005; Liu et al. 2021)). Indeed, endemic diseases related to selenium deficiency have
been identified in particularly rural populations within these regions, such as the
cardiomyopathy Keshan disease and bone disorder Kashin-Beck disease (Shi et al. 2021;
Xu et al. 2022). Otherwise, there is evidence for geospatial variation in selenium levels
across many African soils, with deficiencies particularly highlighted in Malawi (Hurst et
al. 2013; Ligowe et al. 2020), alongside New Zealand, Finland, Australia and some areas
of North and South America (Fig 1.10; (Koivistoinen and Huttunen 1986; Thomson
2004; Jones et al. 2017).
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Figure 1.10: Geographical representation of soil selenium levels. Soil selenium levels
modelled from 1980-1999 (A) and predicted percentage change in soil selenium levels
from 1980-1999 to 2080-2099 (B). Taken from (Jones et al. 2017).

Iodine

lodine deficiency often co-occurs with selenium deficiency in soils, due to their shared
reliance on proximity to aquatic environments (Winkel et al. 2015; Duborska et al.
2022). Soils documented as low in both selenium and iodine include those in Central
Africa, Central and East Asia and pockets in the Americas, amongst others (Lyons 2018).
This often results in the co-occurrence of selenium and iodine-associated disorders.
Moreover, the metabolic pathways which rely on selenium and iodine are often tightly
interlinked (Duborska et al., 2022), where low selenium levels may even exacerbate the
effects of iodine deficiency (Triggiani et al. 2009).

Rainforest environments have been particularly highlighted as being low in iodine,
including those in Central Africa, the wet zones of Sri Lanka and the wet, monsoon delta
regions of Java and Bali (Cifor 2006). Goitre has been reported at high incidence in some
populations living in these environments, including the Bantu population of Central
Africa, which have a 42.9% incidence of goitre (Dormitzer et al. 1989). Other affected
populations include those in Central and South America, with the incidence of goitre at
54.6% in Mexico in the 1980s (Hetzel and Nutrition 1988), and various South and East
Asian populations, where goitre has been treated with iodine supplementation since the
mid 19t century (Miles 1998).
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Zinc

Zinc deficient soils have been identified particularly across the Middle-East (Sillanpaeae
1982; Ryan et al. 2013), as well as India and sub-Saharan Africa (Arunachalam et al.
2013; Kihara et al. 2020), and some areas of China, Indonesia and north-western region
of South America (Prasad 2013). From a survey of over 3500 soils across 29 countries,
Iraq was found to have the highest proportion of zinc-deficient soils (57%) followed by
Turkey (35%) and Pakistan (20%) (Sillanpaeae 1982). Indeed, zinc deficiency also has
the strongest history in the Middle-East, where the first instances of zinc deficiency
were recognised in the 20t century (Halsted et al. 1972; Gibson 2012; Prasad 2013).
Here, the dietary zinc levels were so low that it resulted in extreme stunted growth,
delayed sexual development and recurrent infections that usually resulted in death
before 25 years of age (Halsted et al. 1972; Prasad 2013; Khan et al. 2022).

Sodium and Chloride (Salt)

Hyper-salinity, or excess of salt in soils (associated with levels of both sodium and
chloride, the elemental constituents of salt) often occur in arid zones with low rainfall,
and has been linked to the fall of many agricultural civilisations when it has decimated
crop growth (including multiple times in the history of Iraq (Shahid et al. 2018)). Hence,
it must be noted that the main recorded impact excess salinity has on human health is
the reduction of crop yield and general nutrition, rather than overt micronutrient
deficiencies or toxicities. As well as in Iraq (and other areas of the Middle-East), hyper-
salinity has been reported in the arid regions of South Africa, the Americas and
Australia (Nell and van Huyssteen 2018; Shahid et al. 2018; Hassani et al. 2021), but it is
unclear the degree to which recent agriculture has contributed to the contemporary
excess levels of salt in soils (Hassani et al. 2021).

Phosphorus

Phosphorus levels in the soil are also heavily affected by farming practices, both by use
of fertilizers or by over-farming (Dhaliwal et al. 2019; Alewell et al. 2020). Still,
calcareous soils are known to have low bioavailability of phosphorus (von Wandruszka
2006), as well as low levels of iron (Chen and Barak 1982). There is also a broad pattern
of increased soil phosphorus in non-African soils, particularly across northern areas of
Europe, Asia and the Americas (He et al. 2021).

Micronutrients with Limited Soil Data

The soil levels of the remaining micronutrients of interest (see Table 1.3) are less
clearly elucidated. From the literature, we highlight extremely high levels of magnesium
in some areas of Central Asia (Vyshpolsky et al. 2008; Karimov et al. 2009); low levels of
potassium in Ethiopia and New Zealand (Edmeades et al. 2010; Laekemariam et al.
2018) and potassium-rich soils in India (Naidu et al. 2011); calcium deficiency of the
coastal plain of the south-eastern United States (Adams and Hathcock 1984); low levels
of copper amongst peat soils such as those in Japan, South Africa, Scandinavia and
Russia, amongst others (Alloway and Tills 1984); high levels of molybdenum in
sedimentary based soil but low levels in acidic soils (Barceloux and Barceloux 1999);
and toxic levels of manganese in Puerto-Rico, Brazil, areas of tropical Africa and eastern
Australia (Fernando and Lynch 2015).
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1.7.3. Adaptation to Dietary Micronutrients

Micronutrient levels in the diet are strong candidates for local adaptation in modern
humans for two key reasons. The first is that they are necessary for maintaining
optimum health and development, but with complete reliance on what is absorbed via
the diet (with the exception of vitamin D). Secondly, micronutrient levels are highly
variable across different soil environments, therefore exerting potentially strong
differential selective pressures over modern human populations. This proposed local
adaptation may also be polygenic in nature, given the many genes associated with the
transport and uptake of different dietary components (including micronutrients
(Monteiro et al. 2015)).

Below, a summary of the studies suggesting local adaptation in response to
micronutrient levels is given (see Figure 1.11), proposed to be driven by either
underlying soil levels or cultural factors.

Iodine

Strong signatures of selection, identified using a modified version of the inRsb method
which searches for unusual haplotype homozygosity amongst populations (Tang et al.
2007), in the iodide-dependent thyroid pathways have been inferred in two African
pygmy populations, both of which live on iodine-deficient rainforest soil environments
(Herraez et al. 2009). Since changes to the thyroid hormone have also been shown to
result in short stature, this has been used to suggest that the short-stature of different
populations across the world may be a phenotypic consequence of their adaptation to
their iodine-deficient tropical forest environments.
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high levels opulations
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Figure 1.11: Schematic map of suggested local adaptation events in modern
humans in response to micronutrients. Proposed examples of micronutrient-associated
adaptation in modern humans alongside their suggested driver (Distante et al. 2004;
Hughes et al. 2008; Herraez et al. 2009; Engelken et al. 2014; White et al. 2015; Ye et al.
2015; Zhang et al. 2015a; Engelken et al. 2016; Roca-Umbert et al. 2022). Includes the
instance of selection on HFE in European populations, which has been argued to be a false
positive owing to allele surfing (Peischl et al. 2016). Made by biorender.com.
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Selenium

White et al (2015) suggested that selenium-associated genes (selenoproteins and those
that regulate selenium or selenocysteine, see Section 1.8.1) show evidence of positive
selection in the populations living in regions of the world documented with low
selenium soil levels. These genes were enriched for signatures of differentiation (as
calculated via Fgr (Weir and Cockerham 1984)) in populations of Central South Asia and
East Asia (White et al. 2015). Within this latter region, which has a particularly high
prevalence of extreme selenium deficiency and associated disorders (Xia et al. 2005;
White et al. 2015; Shi et al. 2021; Xu et al. 2022), the enrichment of Fg; signatures were
localised to the populations living on soils of low selenium levels, particularly the
Hezhen, Naxi and Orogen populations of China (White et al. 2015). This study suggested
a polygenic nature of adaptation to selenium levels, which is supported by an additional
study inferring signatures of selective sweeps across three selenium-associated genes in
East Asians (GPX1, GPX3, SELENBP1 (Engelken et al. 2016).

Zinc

Zinc adaptation has also been suggested to be polygenic in nature (Zhang et al. 2015a;
Roca-Umbert et al. 2022). Zinc concentration is regulated in the body by a family of 24
zinc transporters, with this entire gene set inferred to show an unusual degree of
differentiation between Eurasian and African populations (Zhang et al. 2015a; Engelken
etal. 2016; Roca-Umbert et al. 2022). Some zinc transporters also show especially
strong evidence of positive selection. This includes SLC30A9, which has been inferred to
be under selection to regulate zinc levels, but in opposite directions, in East Asians and
Africans (Zhang et al. 2015a). A correlation was shown between the haplotype under
selection and the zinc levels in soil or crops, suggestive of positive selection in response
to the low and high levels of zinc in the diets of Africans and East Asians, respectively.

Other zinc transporters with notable evidence of positive selection include SLC3944,
which appears to be differentiated between West Africans and Eurasians at a level that
is inconsistent with coalescent simulations of neutrality (Engelken et al. 2014). Here,
the African variant of SLC39A44 has been suggested to reduce zinc uptake and
consequent availability in the human body, thereby starving pathogens of zinc. Thus,
suggested as an adaptive response to the pathogen-rich environment of sub-Saharan
Africa (Engelken et al. 2014; Zhang et al. 2015a). This “pathogen-starvation” hypothesis
has not only been suggested in playing a role in zinc regulation, but also notably in the
regulation of iron, amongst other key micronutrients needed for pathogen development
(Pietrangelo 2015).

Iron

Dietary changes in recent human history, particularly those that resulted from the
agricultural revolution approximately 10,000 years ago (Naugler 2008; Brown et al.
2009; Latham 2013), have been suggested to have driven putative adaptation in iron-
associated genes. The early agricultural diet was largely characterised by staple crops
and had reduced nutritional variety, as well as severe reductions of micronutrients such
as iron and calcium (Diamond 2002; Naugler 2008). Indeed, it has been suggested that
the high frequency of the C282Y allele of the HFE gene in Europeans, which results in
hemochromatosis or excess iron levels, is a result of adaptation to dietary iron
deficiency that followed this cultural change (Distante et al. 2004; Naugler 2008).
Parallel adaptation of this gene has also been suggested in East Asian populations,
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driven by traditional, low iron diets, rather than underlying soil levels (Ye et al. 2015).
Others have suggested the putative adaptation of HFE, in European populations, is a
response to the colder European climates, since iron plays a key role in
thermoregulation (Distante et al. 2004). In more recent years, however, there is
growing evidence that the high frequency of the C282Y allele in Northern European
populations is a result of allele surfing on waves of range expansions from South-East to
North-West Europe, rather than as a result of positive selection (Peischl etal. 2016).

Calcium

Suggested adaptation in calcium-associated genes has also been associated with recent
changes in the human diet, rather than underlying soil levels. This is the tentatively
suggested selective driver of the putative parallel adaptation in the TRPV6 gene in non-
African populations, as inferred by extended haplotype homozygosity, but with little
supporting evidence (Hughes et al. 2008). Alternatively, since vitamin D is required to
absorb calcium from the diet, and vitamin D synthesis in turn depends on UV exposure,
it has also been suggested that lower UV levels may drive adaptations to increase
calcium absorption. This gains support from the correlation between signatures of
positive selection in calcium-associated genes with the latitude of northern European
populations (Mathieson and Terhorst 2022).

1.7.3.1. Public Health Connotations

Global soil micronutrient levels are changing as a result of climate change, rising CO,
levels and over-farming (see Fig. 1.10; (Shahid et al. 2018; Dhaliwal et al. 2019; Hassani
et al. 2021)). This, alongside increased migration and mobility of global populations,
means that many populations will likely encounter micronutrient levels for which they
lack adaptations, or even have adaptations to regulate in the opposite and now
deleterious direction (the “evolutionary mismatch” scenario (Manus 2018). It is
therefore a matter of global health to understand how varying micronutrient levels,
especially deficiencies and toxicities, may interact with different genetic backgrounds.

Many public health policies have benefited from an understanding of the adaptive
history and modern phenotypic consequences of populations. For example, it is now UK
Public Health policy to strongly recommend those of self-identified African and South
Asian descent to take vitamin D supplements in their diet, more so than those of
European descent (http://www.gov.uk). This stems from the recognition that lighter
skin pigmentation is an adaptation to decreased UV levels, allowing the body to absorb
more UV and maintain vitamin D synthesis (Carlberg 2022). Those of darker skin
pigmentation, but who live in environments where UV levels are lower, are therefore
more susceptible to decreased UV absorption and deficient vitamin D levels.

[t is important to note that such policies operate at a population level, and an
understanding of a population’s adaptive history offers an understanding of health risk
at only the population level, rather than for each individual. Historically, there have
been issues with conflating this subtle, but key, distinction. For example, sickle cell
disease has long been considered a “black disease” given its prevalence in West African
populations (a result of the causal allele conferring malaria resistance when
heterozygous (Esoh and Wonkam 2021)). This has resulted in many instances of
misdiagnosis, where general symptoms experienced by those of individuals of African
ancestry have been falsely attributed to sickle-cell, as well as diagnoses of sickle cell
unconsidered in those of non-African ancestry (Yudell et al. 2016). Similarly, cystic
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fibrosis is underdiagnosed in those of African ancestry due to its reputation of a “white
disease” (Yudell et al. 2016). Ultimately, this results in delayed medical treatment and
significant emotional and physical distress of the individual, and serves as a warning of
using population level generalisations at the individual level.

1.8. Micronutrients in Wider Biology

Much of the research into micronutrient biology, outside of human health, has been
done in the frame of agricultural science (Welch and Graham 2005; Shukla et al. 2009;
Singh 2009; Bouis and Welch 2010). High and healthy crop yields rely on the correct
proportions of micronutrients, particularly manganese, molybdenum, nickel, zinc and
iron, as well as arsenic, cadmium, lead and tin potentially playing an essential role at
lower concentrations (Alloway 2013). Animal farming also relies on optimum levels of
copper, manganese, molybdenum, zinc and iron, as well as chromium, cobalt, selenium
and vanadium (Alloway 2013). Whilst the role of micronutrients in agriculture is
outside the scope of this thesis, it is worth noting the key role that research on
understanding the micronutrient conditions of global soils and biofortification will play
in meeting the increased demands of a growing human population and addressing
global health inequalities (Tulchinsky 2010; Dhaliwal et al. 2019; Hassani et al. 2021).

Still, the acquisition, absorption and digestion of these key dietary components have
affected many aspects of organism evolution, some of which have been reviewed here:
(McWilliams 2011; Swanson et al. 2016; Xu et al. 2021). When considering the role
micronutrients play in adaptive evolution across species, is important to note that the
exact levels required of each micronutrient, or even what is classified as a
micronutrient, may vary over divergent taxa. For example, in plants, phosphorus is
considered a macronutrient since it contributes a significant amount of energy and
resources for plant growth, but in humans is considered a micronutrient since it is
needed in much smaller quantities and is involved in more specific metabolic processes
(Alloway 2013). Therefore, the adaptive response and compensatory mechanisms of
these taxa facing phosphorus deficiency or toxicity can be expected to substantially
vary.

The micronutrients which are essential in the diet versus those that can be synthesised
by the organism also differs amongst taxa; some species are able to synthesise some
micronutrients within the body that other taxa may be forced to consume via the diet,
increasing their reliance on, for example, local soils or foodstuffs. A notable example of
this is the changing reliance on dietary vitamin C across vertebrates. Taxa such as
teleost fishes, anthropoid primates (the group that includes humans) as well as some
bat, rodent and bird species have lost the ability to synthesis vitamin C in vitro owing to
mutations in GLO (Cui et al. 2011; Drouin et al. 2011). Many hypotheses exist for why
this gene has been pseudogenised across these taxa, the most relevant to human
evolutionary history being that the increased availability of ascorbate-rich fruit in the
diet of ancestral anthropoid primate ancestors rendered in vitro synthesis superfluous
(Hornung and Biesalski 2019).

Despite there being biological necessity for most human-classified micronutrients
across wider organisms, the range of functional roles and differential reliance on the
uptake of different micronutrients makes it difficult to extract specific evolutionary
trends across broad groups of taxa. Still, selenium in wider vertebrate evolution,
specifically in respect to its catalytic role in selenoproteins, is well elucidated. Here, we
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give an overview of selenoprotein evolution and provide this as an additional example
to explore how micronutrients may affect genome evolution across non-human species.

1.8.1. Selenoprotein Evolution

Selenium is an essential micronutrient for vertebrates, with an especially narrow range
over which it is nutritionally optimal (see Table 1.2; (Sarangi et al. 2017)). Selenium
levels above or below this range result in deficiencies and toxicities across vertebrates,
as reported in humans and many agricultural species. For example, in humans, mild
deficiencies can result in reduced immune function, lower fertility and cognitive decline,
with extreme deficiencies, as identified in some areas of China, resulting in diseases of
the heart and bone (Shi et al. 2021; Xu et al. 2022). In ruminants, white muscle disease
is associated with extreme selenium deficiency, with less extreme deficiencies leading
to reduced fertility and incidence of mastitis and metritis (Spears and Weiss 2008;
Hefnawy and Tortora-Pérez 2010; Sordillo 2013). Farmed animals have also been
shown to suffer from selenium poisoning, as a result of living on toxic soils or from
excess selenium in feed (Giri et al. 2021).

Dietary selenium intake in vertebrates depends on the underlying selenium content and
bioavailability of the local environment, where consumed plants grow or animals feed.
Aquatic environments generally act as a sink for land selenium and diets of aquatic
vertebrates are consequently very high in selenium (May et al. 2008; Sarangi et al.
2017). This results in a vastly different degree of selenium exposure between land and
aquatic species. By extension, land and aquatic species encounter drastically different
selective pressures surrounding their selenium intake and regulation. Still, soils across
the globe can vary a hundredfold in their selenium content (Sarangi et al. 2017), and
terrestrial vertebrates may also encounter substantially different levels of selenium in
the diet.

The biological role of selenium is mediated via the amino acid selenocysteine (Sec),
which is the key residue of selenoproteins. Selenocysteine is the 21st amino acid, only
having been identified in 1974 and lacking a clear mechanism of its production and
incorporation into proteins until the 1980s (Stadtman 1974; Chambers et al. 1986). Sec
is encoded by an in-frame UGA codon, which usually acts as a stop codon (Chambers et
al. 1986). However, the presence of a SElenoCysteine Insertion Sequence (SECIS)
element, alongside various cofactors, redirects the translation of the UGA stop codon
into Sec (Berry et al. 1992). The SECIS structure can be identified in the 3’'UTR of the
mRNA in selenoproteins in eukaryotes and archaea (Labunskyy et al. 2014), and is often
used to identify the Sec codons that most databases otherwise classify as the end of an
open reading frame (Romagné et al. 2014; Sarangi et al. 2017).

Selenocysteine mediates the catalysis of selenoproteins, governed by the unique
enzymatic properties of selenium. Most of the functionally characterised selenoproteins
have roles in redox regulation, whilst the function of many others remain either
unknown or not fully elucidated (Mariotti et al. 2012). When knocked out in mice, the
loss of selenoproteins can result in death (e.g., in the case of TR1, TR3 and GPX4) or
reduced fitness (Matsui et al. 1996; Yant et al. 2003; Conrad et al. 2004; Jakupoglu et al.
2005; Peters et al. 2006; Fomenko et al. 2009), strongly supporting their biological
necessity. Selenoproteins have also been suggested to play a role in maintaining
immune response, male reproduction and cancer prevention in humans (Arnér and
Holmgren 2006; Hatfield et al. 2006; Papp et al. 2007).
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Selenocysteine itself is utilised in a range of catalytic redox reactions, including
repairing oxidised methionines in proteins, removal of hydroperoxides, regulating
activation of thyroid hormones and regulating reductions of thioredoxin (Santesmasses
et al. 2020). Often the catalytic ability of selenocysteine is compared to cysteine, its
analogous amino acid which differs only its replacement of selenium by sulfur, and is a
point mutation away from the Sec codon (Cys encoded by UGC and UGT codons (Sarangi
et al. 2017)). Directly substituting Sec for Cys has been shown to reduce the catalytic
ability of an enzyme by 5% (Stadtman 1996), reflecting the decreased reactivity and
nucleophilicity of Cys (Arnér 2010). The greater catalytic potential of Sec in comparison
to Cys has also been suggested to be a result of its increased resistance to oxidation
stress (Snider et al. 2013) and its activity across a wider range of pH conditions and
substrates (Gromer et al. 2003). Indeed, the unique role of Sec, and low exchangeability
between Sec and Cys, is supported by the inferred strong evolutionary constraint acting
on selenocysteine in selenoproteins (Castellano et al. 2009).

Still, the exchange of Sec to Cys has been inferred to have occurred numerous times
during vertebrate evolution (see Figure 1.12), begging the question as to what
evolutionary mechanisms allow the loss of such a catalytically powerful residue.
Compensatory mutations have been shown to restore catalytic ability, although only at
50% of the catalytic rate of the corresponding selenoenzyme (as for the Thioredoxin
reducatase of Drosophila melanogaster; (Gromer et al. 2003)). The sulfur-containing Cys
may also compensate for its lower catalytic activity via its higher expression than Sec
(since the Sec translation is comparatively inefficient; (Liu et al. 2012)) or its escape
from the limitations of relying on rare selenium in place of common environment sulfur.
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Figure 1.12. Evolution of the vertebrate selenoproteome. The ancestral vertebrate
selenoproteome given in dark red at the root of the tree. Unique selenoproteins in
vertebrates are underlined. Novel selenoproteins created by duplications are given in
green, loss is given in grey. Exchanges from Sec to Cys given in blue (bar SelW2c in
pufferfish, where Sec is replaced by arginine). Number of selenoproteins predicted in each
species given on the right. Taken from (Mariotti et al. 2012).
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1.8.1.1. Selenoproteome Diversity

Vertebrate species have selenoproteomes containing 24 to 38 selenoproteins, derived
from the a common ancestral selenoproteome of size 28 (Castellano et al. 2009; Mariotti
et al. 2012). Comparative analyses of nucleotide and protein sequences have inferred a
complex history of exchanges from Sec to Cys in the catalytic site of selenoproteins, as
well as multiple selenoprotein duplications, throughout vertebrate history (Mariotti et
al. 2012). This includes proteins that have exchanged Sec for Cys in multiple vertebrate
lineages (as is the case of GPX6, losing Sec many times across mammalian lineages);
proteins that were generated through duplications of selenoproteins but now lack Sec
in all organisms (e.g., GPX5, RdX12; likely losing their Sec residue before the duplicated
gene haplotype became fixed); and repeated duplications of selenoproteins in multiple
selenoprotein families, with change or gain of function (e.g., in the GPX and TR families)
(Fig. 1.12; (Mariotti et al. 2012)).

The repeated selenoprotein duplications across bony fish lineages is also highlighted,
particularly in the zebrafish, and is inferred to be a result of fourteen distinct events
(Mariotti et al. 2012). It has been suggested that the larger selenoproteome in fish is
associated to the increased amount of selenium in their aquatic environments (Sarangi
et al. 2017). As a consequence of this environmental abundance of selenium, fish may
have evolved a greater dependence on selenium, supported by their maintenance of
selenium transporting mechanisms in the body (Lobanov et al. 2007; Sarangi et al.
2018).

In summary, selenoprotein diversity has been linked to the broad environmental levels
of selenium experienced by divergent vertebrate taxa (particularly contrasting the
selenoproteome between terrestrial and aquatic vertebrate taxa (Sarangi et al. 2018)),
as well as to the unique catalytic role of Sec (Castellano et al. 2009). Through analysis of
selenoproteome size and conservation of individual selenoproteins, the exact selective
pressures governing macroevolution of selenoproteins can be explored.

Understanding the role of environmental selenium versus the catalytic role of Sec in
shaping genomic diversity across taxa should also integrate selenium-associated
evolution at the micro-scale, that is within individual species (as previously discussed
within the frame of modern human populations, see Section 1.7.3). Whilst it is clear
that dietary selenium has uniquely shaped vertebrate evolution, the exact evolutionary
dynamics, including those selective drivers, remain an exciting part of evolutionary
biology, molecular and population genetics.

62



The Power and Limitations of Identifying Local Adaptation in Modern Humans

Chapter 2: The Power and Limitations of
Identifying Local Adaptation in Modern

Humans
2.1. Overview

Local adaptation has occurred throughout the evolutionary history of modern humans as
a result of the highly varied environments and selective pressures of which our species
encounters (Fan et al. 2016; Rees et al. 2020). However, the genomic nature of local
adaptation is highly variable in regards to the strength of selection, the origin and number
of alleles under selection, and the timing of the onset of selection (see Chapter 1). Hence,
local adaptation cannot be solely characterised by strong, uniform signatures of positive
selection (historically often described as a “hard sweep”). Instead, local adaptation is
likely also accompanied by weaker signatures of positive selection: those left by selection
on standing variation or by selection on multiple genes, as likely in complex trait
adaptation (historically often described as a “soft sweep”; (Pritchard et al. 2010; Peter et
al. 2012; Hermisson and Pennings 2017)). Many of the current methods to identify the
signatures that positive selection leaves on the genome (see Chapter 1) are poorly-
equipped to identify these subtler signatures, and it is unclear which methods are the
most powerful in identifying local adaptation mediated by selection on, for example,
standing variation or multiple genes.

Here I explore the power of different approaches to identify the genomic signatures of
soft sweeps, including new methods that have not extensively been tested. To do so, I
design a simulation framework that models local adaptation on one of four major human
populations using SLiM (Haller and Messer 2019), modelling weak selection occurring on
segregating alleles at one of four timepoints (1kya, 5kya, 10kya and 40kya). I then test
the accuracy of allele-frequency differentiation, haplotype-based and tree-recording
methods to identify such instances of positive selection. I also test their power to identify
polygenic selection by comparing these methods in the gene set method SUMSTAT (Daub
et al. 2013). I show the high power of the allele-differentiation statistic Fg; and tree-
recording method Relate in identifying local adaptation as recent as 10,000 years old,
both at the monogenic and polygenic level. On the contrary, I show that the power of
haplotype-based statistics is insufficient in identifying selection events mediated by weak
selection on standing variation.

2.2. Background

Positive natural selection drives adaptive evolution across all organisms, increasing the
frequency of traits that convey a fitness advantage. These traits may be fixed across a
species or vary over populations and individuals, often correlating with local selective
pressures (Darwin and Wallace 1858; Savolainen et al. 2013). Human adaptation to such
local environmental pressures, hereby referred to as local adaptation, has been shown to
play a role in the modest genetic and phenotypic differentiation that exists between
populations (Key et al. 2018; Rees et al. 2020). Most notably this includes adaptations in
response to local diet, hypoxia, temperature, UV levels and pathogen load, amongst others
(see Chapter 1; (Lamason et al. 2005; Norton et al. 2007; Tishkoff et al. 2007a; Genovese
etal. 2010; Yietal. 2010; Jacobs et al. 2013; Bigham and Lee 2014; Vernot and Akey 2014;
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Fumagalli et al. 2015; Schlebusch et al. 2015; White et al. 2015; Minster et al. 2016;
McManus et al. 2017; Key et al. 2018)).

Often, human populations are exposed to novel selective pressures when migrating into
new environments (particularly when those environments are extreme, such as those at
high altitude or with extreme temperatures (Ilardo and Nielsen 2018)). Whilst modern
humans have long since inhabited variable African environments (inhabited since the
origin of our modern species approximately 200,000 years ago, (White et al. 2003;
Dusseldor et al. 2013)), many global environments were only colonised following the
“Out of Africa” migration (50-70,000 years ago, (Soares et al. 2012; Haber et al. 2019)).
This preceded major human expansions to Oceania (Bowler et al. 2003), Eurasia (Fu et al.
2014; Seguin-Orlando et al. 2014) and the Americas (Raghavan, DeGiorgio, et al. 2014;
Raghavan, Skoglund, et al. 2014; Rasmussen, Anzick, et al. 2014). In even more recent
time, the emergence of novel cultural practices has also resulted in the rapid exposure of
novel selective pressures, such as those emerging following the agricultural revolution
approximately 10,000 years ago.

2.2.1. Genomic Signatures of Local Adaptation

The timepoint of selection is one factor that contributes to the genomic signatures of
positive selection. These signatures also largely depend on the mode of adaptation, such
as the origin of the selected allele or the degree of polygenicity, where some modes result
in subtler signatures that are more challenging to identify (see Chapter 1). When local
adaptation occurs in populations with extreme demographic histories, such as
bottlenecks or partially resolved admixture events, these signatures are more elusive still
as they can be masked by neutral processes that may appear as under selection, or we
may simply lack an understanding of how signatures may present under such histories
(Peter et al. 2012; Gopalan et al. 2022).

To understand the signatures of positive selection, selection has historically been
categorised as either a “hard sweep” or “soft sweep” (Pritchard et al. 2010; Peter et al.
2012; Hermisson and Pennings 2017). The “hard sweep” model describes strong
selection on a de novo mutation which results in the rapid increase of frequency of the
advantageous allele, together with a battery of signatures of positive selection (Pritchard
et al. 2010; Schrider and Kern 2016). Whilst this long underpinned classic ideas of
selection, many have suggested the importance and prevalence of “soft sweeps” in human
evolution (Hermisson and Pennings 2005, 2017; Prezeworski et al. 2005; Pritchard et al.
2010), of which recent studies have demonstrated (Schrider and Kern 2016, 2017). These
“soft sweeps” are the result of slow increases in allele frequency due to weak selection,
or selection that acts on already segregating alleles (selection on standing variation, or
SSV (Hermisson and Pennings 2005, 2017; Peter et al. 2012)).

SSV has been proposed to be a particularly likely mode of selection in local adaptation,
especially if the allele has been maintained in the population due to balancing selection
(and therefore necessarily affects phenotype and fitness (Andrés 2011; Rees et al. 2020)).
However, the signatures of SSV can be particularly difficult to identify. Since the mutation
is evolving under drift before the onset of selection, which may indeed be the major
proportion of the mutation’s lifetime, the adaptive allele is likely present on diverse
genetic backgrounds and therefore lacks the signatures of linked variation that
accompany “hard sweeps” (see Chapter 1).
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It is also expected that polygenic adaptation may be common in human local adaptation
(indeed, with evidence to suggest so (Hancock, Alkorta-Aranburu, et al. 2010; Daub et al.
2013, 2013; Berg and Coop 2014; White et al. 2015)) since many complex traits are
polygenicin nature. Polygenic selection is driven by small shifts in allele frequency which
occur across groups of phenotypically-related genes (those that all contribute to the same
phenotype) and interact to shift the phenotype in the adaptive direction (Le Corre and
Kremer 2012). Polygenic adaptation thereby leaves many, weak signatures along the
genome, and is challenging to uniformly characterise. The degree of polygenicity varies
across traits, with genes responsible for a phenotype potentially ranging in number from
few to thousands (Daub et al. 2013; Berg and Coop 2014; White et al. 2015; Zhang et al.
2015; Boyle et al. 2017; Mathieson 2021). Further, genes associated with a trait may not
all respond similarly to selection due to differences in effect size (Berg and Coop 2014;
Mathieson 2021), and some genes may show stronger, almost monogenic signatures of
positive selection (Wagner and Zhang 2011; Fraisse et al. 2019). This may also be the case
under traits where many of the functionally associated genes have deleterious pleiotropy,
resulting in selection acting on few alleles (Chevin and Hospital 2008).

2.2.2. Identifying Signatures of Local Adaptation

Hence, identifying local adaptation can often become a quest to identify subtle and
variable signatures of positive selection across an unknown number of genes. Many
methods identify particular aspects of the signatures of positive selection, summarised
into a single statistic. These can then be used to identify the loci which show outlier values
according to the empirical background of the genome, and hence are the most likely
candidates for selection. Commonly used statistics summarise allele frequency
differentiation (Weir and Cockerham 1984), haplotype length (Voight et al. 2006; Sabeti
et al. 2007; Ferrer-Admetlla et al. 2014; Szpiech et al. 2021) or patterns of the site
frequency spectrum (Tajima 1989; Excoffier et al. 2013). However, many of these
classical methods have been designed to identify strong, monogenic signatures of positive
selection (Sabeti et al. 2006; Pritchard et al. 2010; Hermisson and Pennings 2017), and
may lack the power in identifying the signatures that accompany SSV. Methods based in
allele frequency differentiation are the broad exception to this and can be used with much
success in identifying SSV, since they do not rely on linked variation (Weir and
Cockerham 1984; Yi et al. 2010; Yassin et al. 2016; Crawford et al. 2017; Librado and
Orlando 2018; Schmidt et al. 2019).

Tree-recording methods (Rasmussen, Hubisz, et al. 2014; Kelleher et al. 2019; Speidel et
al. 2019; Hubisz and Siepel 2020) show increasing promise to identify the subtler
signatures of selection that accompany both SSV and polygenic selection. These methods
can be used to build individual genealogies along the whole length of the genome, and
reconstruct the evolutionary history of each site (where histories differ according to
recombination break points). In theory, positive selection can then be identified not by
way of summarising the genealogy or evolutionary history into a statistic, but by direct
inference from the genealogy itself. By avoiding the collapse of complicated evolutionary
patterns into a single statistic, albeit remaining an inference, it is likely that these
methods are better suited to identifying weaker signatures of positive selection that are
not characterised by rapid allele frequency change or unusually long haplotypes. Indeed,
tree-recording methods have already been shown to have success in identifying both
monogenic and polygenic selection in humans (Kelleher et al. 2019; Speidel et al. 2019).
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Methods to identify polygenic selection often rely on a good understanding of the genetic
bases of phenotypic traits, such as the effect sizes of each SNP, as estimated by GWAS, on
the candidate trait under selection (Berg and Coop 2014; Field et al. 2016; Berg, Zhang,
et al. 2019; Zeng et al. 2021). Methods which integrate such effect sizes (e.g., searching
for alleles with similar effects and positive covariance (Berg and Coop 2014; Berg, Zhang,
etal. 2019)) are far the most common when identifying polygenic selection, but they have
been shown to overestimate the signature of polygenic adaptation if population
stratification is not fully accounted for (Berg, Harpak, et al. 2019; Sohail et al. 2019). Gene
set methods, those that combine the signatures from multiple genes within a functional
set (such as biological pathways; (Subramanian et al. 2005; Daub et al. 2013, 2017)), do
not require the same trait information of a population, and are potentially more robust
to biases emerging from hidden population sub-structure. Some such methods, eg.,
SUMSTAT (which simply sums summary statistic across the gene set, see Section 1.6.5.2;
(Daub et al. 2013)), can integrate any summary statistic. This makes them highly
customisable and open to using selection statistics that have been shown to be more
powerful under the hypothesised dynamics of selection of which they are being used to
investigate.

It is important to understand the power of each of these aforementioned methods to
identify positive selection, particularly under modes of selection that leave subtle
signatures on the genome of which they were not designed to detect. Hence, it is
especially important to ask how power to detect SSV varies between methods, and how
it may be affected by the strength of selection, in combination with varied timepoints of
selection and population histories. Whilst this is imperative for all methods, it is
especially pertinent for recent methods in the field, such as tree-recording methods, since
their power and limitations in identifying the genomic signatures of positive selection
have not been widely explored. In regards to identifying polygenic selection, it is further
interesting to ask how the variance of signatures of positive selection, and the number of
trait-associated genes acting under selection, may affect the power of commonly used
methods.

2.2.3. Study Overview

Here, I build a simulation framework to assess the power of methods to identify local
adaptation. Using the forward simulator SLiM (Haller and Messer 2019), I model
selection on a 100kbp genomicregion, where selection is both weak and acting on already
segregating variants (SSV). I model the demographic history of four major global
populations and specify that selection occurs locally on one population at one of four
timepoints (1kya, 5kya, 10kya, 40kya; thereby testing the power to detect signatures left
by recent selection, selection surrounding agricultural change and selection surrounding
major migrations to new environments).

[ test the power of the recent tree-recording Relate method (Speidel et al. 2019) against
five traditional neutrality tests, including those based on allele frequency differentiation
(Fsr (Weir and Cockerham 1984)) and haplotype-length (iHS, nSL, XPEHH and XPnSL
(Voight et al. 2006; Sabeti et al. 2007; Ferrer-Admetlla et al. 2014; Szpiech et al. 2021)).
Here, the haplotype-based methods are expected to have low power (given that they were
not designed to identify selection on standing variation) and instead serve to
contextualise the power of Relate and its comparison to Fg;. [ then integrate these
individual methods into the gene set method SUMSTAT (Daub et al. 2013), and test the
power of identifying local, polygenic selection. I show high power of two methods to
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identify local adaptation in modern humans: Fg and the Relate, including when
integrated into the gene set method SUMSTAT. To my knowledge, this study is the most
comprehensive exploration to date of the power of Relate to identify positive selection
(as well as of the more recently developed nSL and XPnSL statistics) and allows valuable
insight into the power and limitations of identifying local adaptation when using top-
performing methods.

2.3. Methods
2.3.1. Simulation Design
2.3.1.1. The Genomic Model

The forward-simulator SLiM (Haller and Messer 2019) was used to simulate genomic
segments of approximately 100,000 base pairs. Each segment was initiated with random
nucleotides across its length and included exon, intron and non-coding regions
(organised according to the SLiM guidance (Haller and Messer 2019)). Variable
recombination rates were also specified across this region, modelled according to the
inferred distribution of recombination rates in the human genome (as calculated from
chr15 of the 929 individuals of the HGDP dataset (Bergstrom et al. 2020), see Fig $2.1),
with 100 different recombination rates given across this region. According to this
distribution, and in line with the relevant literature (Barroso et al. 2019), a gamma
distribution of mean 1.311 and shape parameter 0.509 was used to draw recombination
rates. The mutation rate was uniform throughout the 100kb region, specified as 1.25 X
1078 per generation and following the Jukes-Cantor model.

2.3.1.2. The Demographic Model

[ simulate the demographic history of four metapopulations: African, European, East
Asian and American. This model is the combination of two pre-existing demographic
models, one which represents the history of African, European and East Asian
populations (Gravel et al. 2011) and one which exclusively models American
demographic history (Gravel et al. 2013). I integrate the inferred demographic history of
the Puerto Rican population from the latter into the former model, and use as the proxy
of an American population (see Fig. 2.1).

These simulated populations broadly approximate the demographic history of each
metapopulation but do not accurately represent the demographic history of every
individual population within that metapopulation. The model does however include
major bottlenecks present in the history of each metapopulation, and therefore
approximates the breadth of demographic history amongst modern human populations.
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Figure 2.1: Schematic illustration of the demographic model used in the simulations.
A combination of the demographic models from Gravel et al. 2011, 2013. showing the
demographic histories of African, European, East Asian and American populations.

2.3.1.3. Initiation of Selection

The onset of selection was set at one of four timepoints (1kya, 5kya, 10kya and 40kya) in
only one of the four metapopulations. A single polymorphic allele segregating in the focal
population is tagged and given a selection coefficient drawn from a uniform distribution
between 0.001 and 0.005. This tagged allele must be within the middle 10,000 bp of the
simulated 100kb genomic region to ensure haplotype information is not lost at the edges
of the region. The tagged allele must also be at a frequency between 0.1-0.15 at the onset
of selection to decrease the probability that it is lost due to drift. If no suitable allele exists,
or the allele is still lost during the simulation’s subsequent run, the simulation is
terminated and restarted using the next available seed.

This model simulates weak, variable, selection acting on previously existing genetic
variation (SSV). Each successful simulation run can then be used as a proxy for weak
selection acting on a single genomic region, analogous to a gene region or haplotype.
Polygenic selection can also be modelled by grouping multiple simulation together in sets
(as a set of “loci”), where selection coefficients are weak and variable across loci.

2.3.2. The Simulation Run

An initial burn-in period was simulated between 1.66mya and 70kya to allow the
ancestral population to reach mutation-drift equilibrium. Here, beneficial, neutral or
deleterious mutations were initiated in the exon regions, where the selection coefficients
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of deleterious mutations were drawn from a gamma distribution (mean: -0.03 and shape
parameter: 0.2; (Boyko etal. 2008; Kim et al. 2017)) and beneficial mutations drawn from
an exponential distribution (mean: 0.01, capped at 0.05; (Orr 2003; Brajesh et al. 2019)).
Neutral mutations also can appear in the intron and non-coding regions.

To reduce CPU time, simulations were rescaled by a factor 5 to reduce the number of
simulated individuals (reducing 7310 individuals to 1462). Here, y,r and s (mutation
rate, recombination rate and selection coefficients respectively) were scaled up whilst N,
was scaled down, which maintains the necessary population-genetic parameters of
N.u,N,r and N,s ((Liu et al. 2010; Lynch and Ho 2020) and expected site frequency
spectrum; see Fig $2.2). The generational time was also down-scaled by the same factor
to account for the fact that genetic drift occurs faster in smaller populations (Kimura and
Ohta 1969). This rescaling reduced the CPU time by over a factor 20.

The VCF output from the burn-in was then expanded to 14,474 individuals via random
mating in the first generation. This represents the ancestral African population at 70kya,
which then undergoes population splits, expansions and migrations as described in Fig.
2.1. During this stage of the simulation, only a singular beneficial mutation is initiated at
one time-point in one of the four metapopulations (the focal population). This eliminates
the risk of stochastically occurring positive selection events on untagged mutations
masking the focal selection events.

For each scenario (the combination of one selection timepoint in one metapopulation),
10,000 simulations were run on the requirement that the tagged mutation remains
polymorphic in the focal population. For each run, VCF files of 50 individuals for each
metapopulation were generated as output, alongside the position, selection coefficient
and final frequency of the tagged mutation. A CSV files was also generated containing
information on the inclusive upper bound position of each recombination rate, which was
converted to a standard genetic map format, where recombination rate is given in cM/Mb,
using the following formula:

(PPOSn+1 — PPOS, X TTAtE,41)
gposn+1 = 106

+ gpos,

2.3.3. Use of Simulation Output
2.3.3.1. Application of Methods to Identify Selection

[ chose to apply six methods to identify the genetic signatures of positive selection. Four
of these methods use haplotype structure to infer SNPs with evidence of positive selection,
but do so in subtly different ways. iHS and nSL both consider the length of haplotype
homozygosity (where extended haplotype homozygosity is indicative of alleles rapidly
rising in frequency, as expected under strong positive selection), but iHS measures
length as the recombination distance, whereas nSL measures length as the number of
segregating sites (Voight et al. 2006; Ferrer-Admetlla et al. 2014). nSL is an edit of iHS, a
commonly used method to identify positive selection, and has been suggested to be more
powerful when detecting selective sweeps on standing variation (Ferrer-Admetlla et al.
2014). XPEHH and XPnSL are extensions of these two methods (of iHS and nSL
respectively), and compare the haplotype homozygosity between two populations to
identify SNPs with unusually long haplotype length in one population (Sabeti et al. 2007;
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Szpiech etal. 2021). The remaining two methods used here include one which uses allele
differentiation between populations to identify evidence of positive selection ( Fgr; (Weir
and Cockerham 1984)) and one that uses the inferred trajectory of an allele through its
history to infer the probability of positive selection (Relate (Speidel et al. 2019)). Relate
first infers local trees along the genome (where unique trees are separated by
recombination breakpoints); it uses a Hidden Markov Model to reconstruct a
chromosome as a mosaic of other samples and iteratively clusters the samples most likely
to have been copied from each other together (resulting in the final inferred tree; (Speidel
et al. 2019). It then maps mutations onto each tree and simultaneously estimates branch
lengths, mutation rates and effective population size to re-infer the trees, which can then
be used to estimate effective population sizes of subpopulations, cross-coalescence rates
between populations and the likelihood of a variant’s trajectory under neutrality.

All haplotype-based statistics were calculated using the SELSCAN programme (Szpiech
and Hernandez 2014) and normalised according to SNP frequency. For XPEHH and
XPnSL, calculations were repeated for each combination of focal population with the
three remaining populations. VCFTOOLS (Danecek et al. 2011) was used to calculate Fgr
according to the Weir and Cockerham (1984) method (Weir and Cockerham 1984), again
repeated for combinations of focal population with the three remaining populations. The
Relate programme (Speidel et al. 2019) was ran according to suggested default
parameters and used to calculate the probability of a variant’s trajectory (analogous to a
p-value to indicate selection), given its inferred genealogy.

For the calculation of haplotype-based statistics, the “--trunk-ok” parameter was used in
SELSCAN (Szpiech and Hernandez 2014), which specifies that the statistic should still be
calculated despite the extended haplotype homozygosity failing to decay to the suggested
threshold of 0.05. This is due to the discrete size of the simulated genomic region, and
results in the data in the end tails of haplotype decay being lost. I compared the
distribution of iHS data from the initial simulated 100kbp genomic regions under
selection to 300kbp simulated genomic regions under selection and of matched seed, and
observe the distributions not to be statistically different (Wilcoxon test; Z =
1.361414, pvalue = 0.1734), concluding that the length of the simulated genomic regions
does not significantly affect the calculation of the haplotype-based statistics.

Finally, 1 use the gene-set enrichment method SUMSTAT (Daub et al. 2013) as the
method to identify polygenic selection. Gene sets of various sizes (10, 20, 40, 60) were
built by random sampling of simulated gene regions, and varying the proportion of gene
regions under selection compared to neutrality (20%, 40%, 60%, 80% and 100% gene
regions under a selection), hereafter referred to as polygenic adaptation gene sets.
Following the calculation of the test statistics above, the strongest score (in the direction
of selection) for each gene region is taken and summed across gene sets. Hence, this
method considers the signatures of positive selection on potentially small effect
mutations across the entire gene set, and has been shown to be more powerful than gene
set enrichment analysis in identifying polygenic selection (Tintle et al. 2009).

2.3.3.2. Isolating Signatures of Positive Selection

[ use empirical neutral distributions, built from the output values calculated on neutral
simulations, to identify SNPs with evidence of positive selection for each of the six
methods. To build these distributions, [ use the same burn-in simulations and consequent
simulations (using the seed numbers of each successful simulation run, see Section

70



The Power and Limitations of Identifying Local Adaptation in Modern Humans

2.3.2), but with no onset of positive selection in any metapopulation. I then apply the
same six methods on these neutral simulations, and build a distribution from the
subsequent output values (normalised where appropriate, see Section 2.3.3.1) for
10,000 of these neutral simulations. SNPs are identified as having evidence of positive
selection, according to each method separately, if they fall in the 5% tail of the empirical
neutral distribution for the respective method. The potential for bias in this methodology
is recognised, given that I do not condition on the maintenance of the focal SNP being at
same frequency in the neutral simulations as under the simulations including selection.

[ use an analogous method to build the neutral distribution corresponding to SUMSTAT
values; I generate 1000 random gene sets (for each gene set size of 10, 20, 40 and 60),
calculate the SUMSTAT value across these gene sets as described in Section 2.3.3.1, and
from these values build the neutral distribution. Gene sets with SUMSTAT values in the
5% tail of these empirical neutral distributions are similarly assigned evidence of positive
selection, again separately for each method integrated into the SUMSTAT framework.

[ also evaluate the use of a neutral distribution to identify SNPs using the Relate method
(Speidel et al. 2019). This programme outputs the probability of positive selection in the
form of a —log10pvalue (where the pvalue corresponds to the probability of a variant
spreading to its modern observed frequency) and previous work has explicitly used this
transformed pvalue as evidence of selection (Speidel et al. 2019). Here, I ask if using the
tails of the empirical neutral distribution to identify SNPs with extreme —log10pvalues
as those with evidence of selection is more accurate, as well as if it reduces the difference
in power between populations of differing demographic histories (see Section 2.4.1).

2.3.3.3. Evaluating Accuracy of Methods to Identify Positive
Selection

[ evaluated the accuracy of each method to identify monogenic selection in three ways:

1) By calculating the percentage of true selected SNPs that fall in the 5% empirical tail of the
neutral distribution (as described in Section 2.3.3.1).

2) By calculating the percentage of SNPs with the strongest evidence of selection (most
extreme statistic value) within a simulated gene region that is the true selected SNP;

3) By calculating the average distance from the SNP with the strongest evidence of selection
to the selected SNP (where physical distance can be treated as an approximation of
genetic distance, but should not be considered synonymous).

Therefore, I asked the suitability of each method to:

1) Identify SNPs under selection as showing evidence of selection (according to the 5%
empirical tail)

2) Identify SNPs under selection as the most likely candidate of selection

3) Identify the area of the gene region under selection

The SUMSTAT method (Daub et al. 2013) was evaluated by assessing the percentage of
polygenic adaptation gene-sets that fall in the 5% tail of the empirical neutral distribution,
as described in Section 2.3.3.1. This was repeated for all conditions (all gene-set sizes
and proportions of genes under selection in the gene set), and allows the evaluation of
which proportion of a gene set under selection results in appreciable power.

[ caution that whilst the accuracies calculated for the European, East Asian and American
populations are useful for observing patterns across methods and time, these populations
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should not be directly compared to each other. This is because I condition on the selected
allele to persist to the end of the simulation. While this is a necessary condition widely
used in comparable power analyses, it does result in differential biases across
populations (since differences in demography result in differences in the probability of
an allele to survive to the time of sampling). Therefore, the final set of simulated genomic
regions is thus informative but not perfectly comparable across demographic histories
and populations.

2.4. Results
2.4.1. Optimising the Relate Method

The Relate programme (Speidel et al. 2019) outputs the probability of a variant
spreading to its modern observed frequency in the form of a —log10pvalue, where a
value lower than —1.30103 indicates a probability, or p-value, of less than 5% and can be
taken as evidence of selection. However, power is not independent of the effective
population size of the population, and hinders comparisons across populations. I
therefore test if using the tails of a neutral distribution to identify selected SNPs 1) results
in an increase in power in some populations and 2) decreases the differences in power
across different populations. To do so, [ compared the number of selected SNPs that were
below the —log10pvalue threshold of —1.30103 to those identified using the 5% tail of
the empirical neutral distribution (built from the —log10pvalues calculated from neutral
simulations; see Section 2.3.3.2) for selection initiated in each metapopulation at each
timepoint.

On average, there is higher accuracy (defined here as the number of selected SNPs
identified, akin to a true positive rate or sensitivity) when identifying the selected SNPs
using the tail of the empirical neutral distribution, rather than using the raw computed p-
values of Relate (Fig. 2.4.1). This does not remove the difference in power across
populations, the highest power is still observed when identifying selected SNPs in the
African metapopulation, but does decrease the power differences across populations.
Hence, the neutral distribution of Relate should be used to identify candidate SNPs and I
opt to apply this approach when evaluating the power of Relate in downstream analysis.

Power is also not independent of the sample size of the population, with lower sample
sizes reducing the power of methods to identify selection (Subramanian 2016; Serdar et
al. 2021). Hence, I also suggest that when using smaller sample sizes, using the tails of an
empirical neutral distribution to identify selected SNPs may more notably increase the
accuracy in comparison to using the raw computed p-values. To assess this, I carried out
an additional analysis; [ compared the accuracy of both methods to identify selected SNPs
when decreasing the sample size from 50 individuals (as used in all following analysis)
to 25 individuals. | observe, as expected, that the relative increase in accuracy when using
the empirical neutral distribution to identify selected SNPs is higher with the smaller
sample sizes. For example, for selection acting at 40kya in the African population, using
the neutral distribution increases the accuracy by 16.9% for a sample size of 50
individuals and by 24.8% for a sample size of 25 individuals (Fig. 2.2). This further
demonstrates the higher accuracy of Relate when using the tail of the neutral
distribution to identify SNPs under selection and this approach would be suitable when
using smaller sample sizes.

However, here [ have only evaluated the number of selected SNPs within the tail of the
empirical neutral distribution, and the tail will also falsely identify neutral sites as those
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under selection. Still, these tails are enriched in true targets of selection, and correctly
identify just below 50% of selected SNPs (using the 5% tail) in the best scenario (Fig 2.2).
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Figure 2.2: Selected SNPs identified as under selection according to two methods. The
percentage of selected SNPs that are identified as under selection (acting at timepoints 1kya,
5kya, 10kya and 40kya) as defined by falling in the 5% tail of the neutral distribution
(Distribution) and as defined by the raw computed p-values of Relate (Raw P-Value), given
for samples sizes of 25 and 50 individuals.

2.4.2. Identifying Monogenic Selection

I now evaluate the accuracy of each method to identify monogenic selection in three ways,
as outlined in Section 2.3.3.3. I first evaluated the ability of each method to identify
selected SNPs as those with evidence of selection (i.e, lying in the 5% tail of the empirical
neutral distribution for each method, enriched in true targets of selection). I hence
calculated the percentage of selected SNPs within this tail for each method, including
Relate as informed from Section 2.4.1.

The highest accuracy, strikingly so, was obtained when using the Relate and Fgr methods
to identify positive selection (Fig. 2.3, Fig. 2.4). The haplotype-based methods show
highly reduced accuracy in comparison, but it appears that the accuracy of haplotype-
based methods which use the number of segregating sites as a proxy for distance
(nSL and XPnSL) is higher than those based on recombination distance (iHS and
XPEHH). By measuring the haplotype length in terms of segregating sites rather than
recombination distance, nSL and XPnSL are more robust to recombination rate variation
(with iHS shown to be biased towards identifying outliers in regions of low
recombination (Voight et al. 2006)). Moreover, using the number of segregating sites
incorporates more information on the local genealogy (Ferrer-Admetlla et al. 2014), and
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these methods are also somewhat more robust to varying demographic histories of
populations.

[ also highlight two main observations true for all methods: the highest accuracy is for the
oldest selection simulated (selection initiated at 40kya) and for selection identified in
African individuals (shown in Fig. 2.3, Fig. 2.4). Indeed, this is as expected; both recent
selection and selection acting in populations with reduced N, is typically harder to
identify (Field et al. 2016; Subramanian 2016; Serdar et al. 2021). Further, for the cross-
population statistics (Fsr, XPEHH, XPnSL; see Fig. 2.4), the accuracy is higher when
comparing populations with more recent population splits, most likely reflecting the
reduced noise from neutral genetic differentiation in the empirical neutral background
(da Silva Ribeiro et al. 2022). Finally, the overall low percentage of tagged variants
identified as under selection is noted. Given the small selection coefficients modelled (as
low as 0.001 and only as high as 0.005), the extremely recent selection modelled in some
cases (1kya or 5kya) and the unsuitability of some methods in identifying selection on
standing variation (ie, haplotype-based methods), this is reasoned as somewhat
expected. These simulations are most useful in specifically comparing the Relate method
to the well-established Fg; statistic, where the haplotype-based methods provide an
expected lower limit of power for selection on standing variation.
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Fig. 2.3: Tagged variants identified as under selection. The percentage of tagged
variants that are identified as under selection (acting at timepoints 1kya, 5kya, 10kya and
40kya in the African (red), European (blue), East Asian (green) or American (gold)
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population), as defined by falling in the 5% tail of the neutral distribution of iHS,nSL and

Relate.
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Fig. 2.4: Tagged variants identified as under selection for cross-population methods.
The percentage of tagged variants that are identified as under selection (acting at
timepoints 1kya, 5kya, 10kya and 40kya in the African (red), European (blue), East Asian

(green) or American (gold) population), as defined by falling in the 5% tail of the neutral
distribution of the cross-population statistics XPEHH,XPnSL and Fgr (given for three

population comparisons, where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America).
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Given that the tails of empirical neutral distributions contain both selected and neutral
targets (despite a general enrichment of selected targets), the SNPs with the strongest
evidence of positive selection may instead be isolated as the strongest candidate SNPs.
Hence, I now evaluate the ability of each method to identify the selected SNP as that with
the strongest evidence of positive selection. To do so, I calculate the percentage of
selected SNPs with the strongest evidence of selection, that with the most extreme outlier
value of the calculated statistic, within each simulated gene region.

The highest accuracy to identify positive selection is also observed here when using the
Relate and Fg; methods, with the percentage of selected SNPs identified again highest for
selection acting on the African metapopulation (shown in Fig. 2.5). For selection acting
on all metapopulations, this accuracy is also again highest when selection acts further
back in time (corresponding figures for selection on European, East Asian and American
populations now shown in as supplementary figures since they display the same patterns
as shown for the analysis of selection on the African population; Figs. S2.3-5).

However, the highest percentage of selected SNPs identified as showing the strongest
evidence of positive selection according to all methods is only at 10.69% (according to
Relate when selection is acting at 40kya and in the African metapopulation). This
demonstrates the difficulty and general inaccuracy of any of these methods to identify
SSV at the exact site, using this approach.
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Fig. 2.5: Further analysis of methods identifying selection. Top panel shows the
percentage of tagged variants that are the SNP with the strongest evidence of positive
selection across timepoints in the African population for A) iHS,nSL and Relate and B) the
cross-population statistics XPEHH,XPnSL and Fsr (given for three population
comparisons, where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). Bottom
panel shows the average distance between the tagged variant and the top-ranking SNP for
C) iHS,nSL and Relate and D) the cross-population statistics XPEHH, XPnSL and Fgr.
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Finally, and as an extension from the analysis preceding, [ then evaluate the accuracy of
these methods to identify positive selection on the region surrounding the selected SNP,
if not the selected SNP itself. For each method, I calculate the average physical distance
from the SNP under selection to the SNP demonstrating the strongest evidence for
selection. This is an approximation for genetic distance and recognised as less accurate
than calculating linkage disequilibrium with the selected SNP. Still, Relate and Fsr again
demonstrate the highest accuracy in terms of identifying regions surrounding selected
SNPs, showing the shortest distance between the selected SNP and that with the strongest
evidence of selection (given for selected acting in the African population; Fig. 2.5; other
metapopulation accuracy calculations are shown in Figs. $2.3-5). Also, as in line with
previous analysis, accuracy remains higher when selection is further back in time and in
the African population (Fig. 2.5; Figs. S2.3-5).

[ therefore conclude that Relate and Fg; are most suitable for identifying selected SNPs
(under SSV at these timepoints) in comparison to the haplotype-based methods tested
here. SSV occurs on multiple haplotype backgrounds, especially when selection is acting
on SNPs long after their emergence in a population, and selected SNPs are therefore found
in significantly variable haplotypes. This lack of haplotype homozygosity reduces the
power of haplotype-based methods to identify such selection. However, SSV still results
in allele frequency differentiation (as identified by Fg;) and an unusually rapid spread of
the selected SNP through the population (as identified by Relate). Moreover, Relate
evaluates the probability of positive selection according to the history of each locus (in
theory, complete and accurate history but, in reality, only inferred to the point of the
common ancestor of all sampled populations), and therefore integrates more fully the
complex evolutionary patterns compared to summary statistics, which prove important
when considering the subtle signatures of SSV.

In summary, using the tails of the neutral distributions of Relate and Fg; results in the
highest percentage of selected SNPs with evidence of selection and, whilst they are not
able to accurately identify the exact selected SNP, they show moderate accuracy in
suggesting the region containing the selected SNP.

2.4.2.1. The Effect of Frequency

Given that Relate and Fg; have the highest power to identify selected SNPs as those with
evidence of selection, | now ask how the derived allele frequency (DAF) of the selected
SNP may limit the power of these methods i.e, at which DAF does accuracy appear to
significantly drop. This is under the assumption that power to identify selected SNPs is
highest at the highest DAF values, since these are the SNPs that likely show the most
extreme allele frequency differentiation and trajectory through time (which are
signatures of positive selection identified by Fsr and Relate, respectively). [ use the
previously calculated number of selected SNPs that are identified as showing evidence of
selection (according to the 5% tail of the neutral distribution for either Relate or Fr),
conditioning on the DAF of the selected SNP, to compare how the proportion of selected
SNPs identified as showing evidence of positive selection varies over different DAF values
(Fig 2.6).

As expected, I observe the highest proportion of selected SNPs identified as showing
evidence of selection, according to either Relate or Fgr, at the highest DAF values (shown
for selection acting at 40kya in the African metapopulation in Fig. 2.6, shown for all other
metapopulations in Fig. S2.6). According to Relate, the proportion of selected SNPs
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identified as showing evidence of positive selection is at 49.53% when considering
selected SNPs of all DAF values (for selection acting at 40kya in the African
metapopulation). The proportion of correctly identified selected SNPs is higher than this
baseline proportion when the DAF of the selected SNP is over 0.5 (Fig. 2.6). For Fgr, the
proportion of selected SNPs identified as showing evidence of positive selection is at ~60-
67% (depending on the cross-population comparison, for selection acting at 40kya in the
African metapopulation) when considering selected SNPs of all DAF values. Here,
however, the proportion of identified selected SNPs is higher when the DAF is over 0.4
(Fig. 2.6). I therefore conclude that the previously demonstrated accuracies can only be
expected for these given DAF values or higher, and show that the accuracy drops
significantly when considering positive selection acting on SNPs of lower DAF. I also
conclude that Fgr is a little more robust to DAF variation, in comparison to Relate. Still,
there are very few cases of low DAF (<20%) given that the simulations condition on the
tagged variant being at 10% frequency or higher, and these results may therefore be
noisy at lower DAF bins.
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Fig. 2.6: Selected SNPs identified as under selection according to derived allele
frequency. The proportion of selected SNPs identified as under selection, partitioned by the
DAF of the selected SNP. Given for selected SNPs identified according to the 5% tail of the
neutral distributions of Relate (A) and Fsr (B; given for three population comparisons,
where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). Shown for selection acting
at 40kya for the African population.
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2.4.3. Identifying Polygenic Selection
2.4.3.1. Accuracy of the SUMSTAT Method

[ now evaluate the accuracy of each of the methods to identify polygenic selection acting
on gene sets using the SUMSTAT framework (Daub et al. 2013). These gene sets are built
from either 10, 20, 40 or 60 simulated gene regions, where each gene region has a single
SNP under positive selection (where all selection acting on a gene set is initiated at the
same time in the same metapopulation). I identify gene sets as showing evidence for
polygenic adaptation if the SUMSTAT value of that gene set (the sum of the most extreme
outlier values for each statistic, see Section 2.3.3.1) falls in the 5% tail of the empirical
neutral distribution for the SUMSTAT summed values integrating the respective statistic.

Reflecting the analysis of power to identify monogenic selection, I first observe
remarkably high accuracy when using the Fg; method across all timepoints (shown for
selection acting in the African population in Fig. 2.7; all other metapopulation analysis
given in Fig. $2.10), and when using Relate method (shown for selection acting in the
African population in Fig. 2.7; all other metapopulation analysis given in Fig. S2.7).
However, the power of Relate is high only when selection is initiated at 40kya. Hence, I
again recommend the use of these two methods to identify selection, but caution Relate
loses power when selection is acting more recently across a gene set.

[ also observe the general trend that increasing the size of the gene set increases the
power to identify polygenic adaptation (the Relate and Fg; results summarised in Fig.
2.7, all methods across all metapopulations given in Fig. $2.7-12). Since gene set
methods effectively combine signatures from multiple genes, here as a sum, it is thus
expected that increased numbers of genes under selection increases the accuracy of these
methods.

A) Relate B) Fst
Africa Africa: AFR_EUR Africa: AFR_EAS Africa: AFR_AMR

60 9 7 9.5

40 6.8 58 93

Gene Set Size

20 52 6.1 7.8

1kya
Skya
10kya
40kya
1kya
Skya
10kya
40ky:
1kya
Skya
10kya
40kya
1kya
5kya
10kya
40kya

Onset of Selection

Fig. 2.7: Gene sets identified as under polygenic selection. The percentage of gene sets
identified as being under selection (according to the 5% tail of the neutral distributions)
using the SUMSTAT method integrating Relate (A) and Fgr (B; given for three population
comparisons, where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). Shown for
selection acting at 40kya for the African population.
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[ now evaluate how sensitive Relate and Fg are to identifying selected SNPs under
different selection coefficients, repeating the prior analysis but conditioning on the
selection coefficients of all selected SNPs in a gene set.

[ observe that Relate is more sensitive to the selection coefficients of the selected SNPs
compared to Fgr (when selection is acting at 40kya in the African metapopulation; Fig.
2.8, all other metapopulation analysis for selection at 40kya given in Fig. $2.13-17). For
example, for selection acting in the African metapopulation at 40kya, Relate drops from
identifying 94.2% of polygenic adaptation gene sets with size 10 when the selection
coefficients are between 0.005 and 0.004 to only identifying 9.3% when the selection
coefficients are between 0.001 and 0.002 (when selection coefficients are uniformly
distributed, Relate identifies 59.1% of gene sets as showing evidence of polygenic
selection, see Fig. 2.7). Comparatively, for selection acting in the African metapopulation
at 40kya, Fgr identifies 100% of polygenic adaptation gene sets with size 10 when the
selection coefficients are between 0.005 and 0.004 and identifies 99.1% when the
selection coefficients are between 0.001 and 0.002 (when selection coefficients are
uniformly distributed, Fg; identifies 100% of gene sets as showing evidence of polygenic
selection, see Fig. 2.7). Hence, I caution that Relate is considerably less accurate when
selection is weaker across a gene set.

Indeed, Fg; within the SUMSTAT framework is almost always at an accuracy of 100%,
implying that this may be a trivial evaluation of Fg;'s power. Instead, the power of Fgr
within a gene set could be more informatively evaluated at lower selection coefficients or
gene set sizes (given that the broad pattern of decreased accuracy at lower gene set sizes
and selection coefficients remains).
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Fig. 2.8: Gene sets identified as under polygenic selectiona according to selection
coefficient. The percentage of gene sets identified as being under selection (according to
the 5% tail of the neutral distributions) using the SUMSTAT method integrating Relate
(A) and Fgr (B; given for three population comparisons, where AFR=Africa; EUR=Europe;
EAS=East Asia; AMR=America), partitioned by selection coefficient of the tagged variant
(given for timepoints of selection of 1kya, 5kya, 10kya, 40kya). Shown for selection acting
on the African population.

2.4.3.2. Gene Sets of Both Neutral and Selected Genes

Finally, I consider the more realistic case where not all genes within a functional-related
gene set evolve under the same selection, due to pleiotropy or other genomic constraints
(Wagner and Zhang 2011; Fraisse et al. 2019). Hence, I now evaluate the ability of
Relate and Fgr, the most promising gene set methods, to identify gene sets as under
polygenic selection when not all genes within a gene set experience selection. To do so, I
vary the proportion of gene regions under positive selection, conditioning on only 20%,
40%, 60% and 80% of genes within a gene set as under selection.

As expected, I observe the highest accuracy when identifying selection on larger gene sets
with the highest proportion of selected genes. When using Relate, and for selection
starting at 40kya, the most marked increase in accuracy is when the proportion of
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selected genes in the gene set is over 60%, and is particularly high when the gene sets are
larger than 40 (Fig. 2.9, Fig S2.18). Fsr shows substantially higher accuracy at more
recent timepoints, with gene sets containing only 40% of genes under selection showing
impressive accuracy (given that gene sets are larger than 40 genes, Fig. 2.9, Fig $2.4.19-
22).
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Fig. 2.9: Gene sets with varying proportions of genes under selection identified as
under polygenic selection. The percentage of gene sets identified as being under selection
according to the SUMSTAT method, according to the proportion of the gene set under
selection and given for timepoints of selection of 1kya, 5kya, 10kya, 40kya. Panel A
corresponds to the SUMSTAT method integrating Relate; panel B corresponds to the
SUMSTAT method integrating Fsr (given for three population comparisons, where
AFR=Africa, EUR=Europe, EAS=East Asia, AMR=America).
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Hence, I conclude that, when using Relate and Fsr within the SUMSTAT framework,
power is one again highest for selection furthest back in time and for selection acting in
the African metapopulation, as well as for larger gene sets with the highest proportions
of genes under selection. Whilst [ do recommend the use of Relate in the SUMSTAT
framework, 1 caution that it is more sensitive to selection occurring at different
timepoints and at different strengths in comparison to Fg. It is likely that this is a
product of the slightly higher power of Fg; to identify selected SNPs in individual gene
regions as showing evidence of selection (Fig. 2.4) in comparison to Relate (Fig. 2.3).

2.5. Discussion

Common methods to identify positive selection are designed to identify related but subtly
different signatures of selection. Summary statistics focus on identifying the signatures
of allele frequency differentiation between populations, extended haplotype length or
changes to the site frequency spectrum when compared with neutral expectations
(Tajima 1989; Voight et al. 2006; Sabeti et al. 2007; Bhatia et al. 2013; Excoffier etal. 2013;
Ferrer-Admetlla et al. 2014; Szpiech et al. 2021). More recent methods also focus on
identifying selection events via the allele trajectory through time, inferred from
reconstructed genealogies of loci across the genome (where such genealogies can now be
inferred using the genomes of thousands of individuals; (Field et al. 2016; Kelleher et al.
2019; Speidel et al. 2019)).

However, the extent of these signatures or patterns of positive selection, and more
importantly how accurately they are able to be drawn away from the neutral background
of the genome, can vary wildly according to the exact dynamics of a selection event. The
methods which aim to identify positive selection therefore present different accuracies
according to relevant parameters such as the timepoint of selection, the demographic
history of the population or the number and nature of alleles under selection. Forward
simulation programmes, such as SLiM (Haller and Messer 2019), can explicitly model
positive selection under these varied dynamics, and therefore facilitate the testing of
these methods under different selective scenarios. In particular, SLiM is highly scriptable
and therefore allows sophisticated customisation, well suited to modelling complicated
genetic or selection scenarios, and is highly efficient, allowing the high numbers of
simulations to be run in relatively little time (Haller and Messer 2019).

I designed a novel simulation framework using SLiM to test the accuracy of different
methods to identify local adaptation in modern humans. I included selection events
beginning at four timepoints in modern human history, two of which likely presented
novel selective pressures to human populations: 10kya (approximate date of the
Neolithic transition from a hunter-gathering to agricultural lifestyle (Latham 2013)) and
40kya (approximate date of major migrations to Eurasia (Seguin-Orlando et al. 2014)).
The development from hunter-gatherer societies to those based on agriculture brought
with it large changes to the human diet, as well as significant increases in population
density resulting in increased risk of communicable diseases and zoonotic pathogens.
Major migrations into varied Eurasian environments (and beyond) from approximately
40kya exposed colonising populations to novel temperatures and altitudes, as well as, in
some cases, significantly altering the dietary composition and pathogen risk (Yi et al.
2010; Fumagalli et al. 2015; Mathieson et al. 2015a; White et al. 2015; Key et al. 2018).
Hence, local adaptation events in modern humans are hypothesised to be driven in
various populations at these timepoints. The remaining timepoints, 1kya and 5kya, were
chosen to test the limits of all methods in identifying very recent selection.
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The simulation framework also explicitly models selection that occurs on already
segregating genetic diversity, or SSV. This mode of selection has been suggested to
underlie some instances of local adaptation in modern humans but often remains elusive
in the genome (Hermisson and Pennings 2005; Prezeworski et al. 2005; Schrider and
Kern 2016, 2017). SSV has been particularly suggested to be the dominant mode of
adaptation for populations rapidly encountering novel environments (Schrider and Kern
2016, 2017; Hermisson and Pennings 2017), since low frequency alleles maintained in an
expanding population would have mediated faster adaptation than de novo mutations (de
Filippo et al. 2016; Hermisson and Pennings 2017).

Finally, I extended the framework to consider polygenic selection, grouping the simulated
genomic regions into polygenic adaptation gene sets. Polygenic selection has been
suggested to be prevalent in human evolutionary history given that it likely underpins
the adaptation of complex traits, such as those relating to immunity, diet and metabolism
(Pritchard et al. 2010). However, the weak and varied signatures of selection spread over
different genomic regions, characteristic of polygenic selection, are also often difficult to
confidently identify (but notimpossible; (Fumagalli etal. 2011; White etal. 2015; Nédélec
et al. 2016; Berg, Harpak, et al. 2019; Berg, Zhang, et al. 2019; Roca-Umbert et al. 2022)).
Hence, by designing the simulations to model both SSV and polygenic adaptation, and
using selection coefficients that represent weak selection (0.001 < s < 0.005), I am able
to evaluate the methods with the highest power to identify the local adaptation events
that are likely present, but remain somewhat elusive, in our history.

From these simulations, I identify two methods which demonstrate the highest power in
identifying local adaptation in modern humans (Fsrand the Relate) and compare them
to the weaker performing haplotype-based methods. I specify that the power of Fgrand
the Relate is primarily demonstrated only in the cases of older selection, that occurring
more than 10Kkya, and is particularly observed in those populations with high N, (and by
consequence, having higher genetic diversity). Despite their high power to identify strong
signatures of selection (Voight et al. 2006; Sabeti et al. 2007; Ferrer-Admetlla et al. 2014;
Huerta-Sanchez et al. 2014; Szpiech et al. 2021), all haplotype methods used here have
low power to identify weak selection on standing variation. The diverse genetic
backgrounds of which the adaptive allele is on, and the weak selection simulated, result
in the absence of long and uniform haplotypes within a population. Hence, it is expected
that the power of haplotype-based methods is so low under this particular selective
scenario.

2.5.1. Fgp

Fsr has the highest power to identify selected SNPs as those with evidence of selection
over each timepoint of selection, and appears to be more suited to identifying selection
across a range of metapopulations in comparison to Relate (which has larger differences
in power across the metapopulations). The increased power of Fg; likely comes from its
cross-population approach; by comparing allele frequency across populations, this
method is able to more accurately identify positive selection isolated to one population.
Whilst Relate identifies SNPs with an unusual inferred trajectory through time, it does
not compare between populations and therefore cannot integrate this comparison into
its assessment of the likelihood of allele trajectory.
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2.5.2. Relate

Relate integrates the entire inferred history of the allele to calculate the probability of a
variant having its inferred spread through a population. Since I use the tails of the neutral
distribution to identify selected sites, here I explicitly identify those sites with an
unusually rapid spread through a population relative to all other neutral sites in that
population. It has been previously suggested that methods that more fully integrate the
history of an allele, such as these genealogical methods, are more suited to identifying
weaker selection, as they do not depend on a single strong signature in modern genomes,
and do not remove key information (which may indicate selection) when summarising
complex patterns into a single statistic. Indeed, I show that this is a powerful approach
when identifying weak SSV when the onset of selection is older than 10kya.

However, the power of Relate remains low when identifying selection at 5kya or 1kya. |
believe that this, in part, is due to Relate inferring the probability of selection of an allele
since the appearance of the mutation. This means that the underlying assumption of
selection is that it occurs immediately on the birth of a mutation, assuming SDN rather
than SSV (as simulated here). When selection occurs further back in time, the birth of the
mutation and onset of selection are likely to be significantly closer, perhaps
indistinguishable, compared to the long period of neutrality a variant may have before a
selection onset at 5kya or 1kya. Hence, signatures of SSV may be lost within the trajectory
of the allele over its lifetime. The output of Relate can be customised, however, to output
the probability of positive selection from a specified number of generations ago. Rather
than using the raw —log10pvalue to evaluate the evidence of selection at this timepoint
(which will be adversely affected by the lower power to identify selection at more recent
timepoints), I suggest using the tail of the empirical background distribution of
probabilities inferred from the same timepoint to identify the likelihood of selection on a
SNP. In theory, this would identify the SNPs along the genome with the most unusual
trajectory from the given timepoint. Still, this relies on assumptions of the timing of
selection; identifying SNPs with evidence of positive selection whilst simultaneously
suggesting the timing of the selection is considerably more sophisticated (but has been
attempted; (Stern et al. 2019)).

The power of Relate also differs amongst metapopulations of different demographic
histories, with the simulated African metapopulation having markedly higher power in
comparison to the other metapopulations. The reduction in power to identify positive
selection in the European, East Asian and American populations, biased by the simulation
design but remaining informative (see Section 2.3.3.1), is likely due to the decreased N,
and consequent decreased genetic diversity (not independent from the bottlenecks in
their demographic histories). In turn, this reduces the number of lineages in the
genealogies of each selected SNP. Since the Relate test for selection conditions on these
lineages (Speidel et al. 2019), a reduction in lineages likely reduces the power to identify
selection. As alluded to in Section 2.5.1, a cross-population approach (comparing the
trajectories between populations) may reduce the power imbalances between
populations.

Further, | demonstrate that whilst Relate is vulnerable to low sample sizes, the number
of selected SNPs identified can be increased by using the tails of the empirical neutral
distribution rather than the raw probability output, as previously used (Speidel et al.
2019). Hence, I suggest that this is the most powerful way of using this method to identify
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positive selection, and recommend this method particularly when identifying selection in
populations with low N,.

2.5.3. Fgr and Relate in Identifying Polygenic Adaptation

The relatively high accuracy of Fgr and Relate is also demonstrated when considering
local selection on a polygenic adaptation gene set, as evaluated using SUMSTAT (Daub et
al. 2013). As expected, I show that the accuracy of these methods increases with larger
gene set size, since many small shifts in the test statistic are needed to significantly shift
the sum value to the tail of the empirical neutral distribution. When using Relate to
identify polygenic selection according to the SUMSTAT framework, gene sets should
have approximately 60% or more of their genes as under selection for appreciable power.
This proportion can drop to approximately 40% when using Fgr. I therefore suggest that,
even though there is higher power to identify polygenic selection on larger gene sets, it is
the proportion of genes under selection that is most important in governing the power of
the SUMSTAT approach. Hence, the SUMSTAT approach is limited to identifying
polygenic selection on gene sets where the majority of genes are responding to selective
pressures.

[ also show that the power of Fg to identify polygenic selection remains high even when
selection acting on the gene set is weak (0.001 < s < 0.002; (Turchin et al. 2012)). In
contrast, the power of Relate to identify polygenic selection on gene sets appears to be
considerably more sensitive to the selection coefficients than Fg;. When selection is this
weak, the allele trajectory is likely too similar to that expected under neutral drift and
Relate is unable to draw this signature out from the rest of the genome. The programme’s
underlying assumption of SDN, or inference of the probability of selection of variant since
its appearance, likely further hinders the identification of weak selection; the effect of
weak selection on the trajectory of a variant segregating neutrally for some time is not
strong enough to characterise the entire lifetime of a variant as being under selection
(especially if the time of the variant evolving under neutrality is very long). Hence, I again
suggest that the current assumptions of Relate place some limitations on its ability to
identify SSV.

2.5.4. Limitations and Future Directions

[ demonstrate the power of Fg; and the Relate method to identify weak positive selection
acting on standing variation as recent as 10,000 years ago, but recognise that the
inferences from these simulations are limited by a few key factors. I simplify the
mutational landscape to only one positive mutation and do not consider the effects of
pleiotropy and epistasis, which may limit the response of a genomic region under
selection (and is particularly relevant when considering polygenic selection on a gene
set). I also use a relatively simply demographic model, and caution that the demographic
history of each metapopulation does not accurately represent that of all populations
within that region. Finally, since weak to moderate selection coefficients are used
(Turchin et al. 2012), the estimates of power of these methods are conservative, and may
indeed be significantly higher when identifying stronger SSV (and certainly under strong
SDN).

[ show that the present methodological toolkit is well-equipped to identify selection
surrounding the timepoints of major migratory events into non-African environments
(~40kya) and large cultural changes (i.e.,, the Neolithic revolution, ~10kya). However, it
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is clear that issues of accuracy remain when identifying more recent selection. Mass
disease, continued dietary change and even temperature fluctuations (Allentoft et al.
2015; Mathieson et al. 2015a; Demény et al. 2019) have continued to exert significant
selective pressure on human populations in the last 5000 years, but there are few, if any,
methods that are reliably able to identify that but the very strongest selection (Rees et al.
2020). It is likely that the use of ancient genomes will significantly help in identifying this
recent selection, since they can provide direct insight into past allele frequency. Given
enough samples, ancient DNA can thus pinpoint the timing of rapid allele frequency
change and inform inferences on the timing of selection events.

Still, I highlight here the promise of tree-based statistics. Tree-based methods to identify
positive selection are in their relative infancy, but here I already demonstrate their ability
to identify weak selection as recent as 10kya. Methods that are similar or derived from
Relate may prove more powerful if the underlying assumption of SDN can be removed,
or they are able to integrate assumptions on the onset of selection to identify unusual
trajectories, relative to the empirical neutral background, following this point. By
integrating ancient DNA into these methods, either to constrain the inferred tree as in
(Wohns etal.2022) or to suggest the onset of selection, these methods will likely continue
to improve.

It remains that by considering the entire inferred history of an allele, and hence avoiding
the collapse of complex evolutionary patterns into a singular value, the field has a
powerful way to identify subtle signatures of selection, and one that will likely progress
rapidly. Indeed, current packages to identify the signatures of positive selection on tree
sequences are already highly customisable (Kelleher et al. 2019) and may well be
developed under recent, SSV assumptions. Ultimately, focusing on allele trajectory over
time (as inferred by tree-based methods), as well as allele frequency differentiation, are
the most promising avenues to identify weak SSV, since the rise in allele frequency
characterises all positive selection.

Finally, I suggest that many studies may benefit from integrating simulations of a similar
design: those that explicitly model target populations’ demographic history (more so
than done here) to identify the methods with the highest power to detect positive
selection at hypothesised timepoints. Naturally, this requires a clear, if not approximate,
understanding of the study population’s demographic history, and I recognise the
barriers in accurately modelling these. However, if such demographic histories can be
confidently inferred, simulations such as these allow a considerably more informed view
on which methods are most powerful in identifying hypothesised selection events and
may aid the identification of previously elusive signatures of positive selection.

2.6. Conclusions

Using a novel simulation framework that models weak selection on standing variation in
individual metapopulations, I demonstrate allele-differentiation and tree-recording
methods as having the highest power to identify the genetic signatures of local adaptation
in modern humans up to 40,000 years ago. These findings extend to polygenic selection
using a gene set method, and [ observe a significant drop in accuracy when selection
starts less than 10,000 years ago.
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Chapter 3: Signatures of Adaptation to
Micronutrient-Associated Genes in Modern
Humans

3.1. Overview

Trace minerals, macrominerals and vitamins are essential dietary components for
human health, with pathologies occurring below or above their narrow, recommended
range (Tako 2019; De Groote et al. 2021). These micronutrients accumulate in the diet
according to the local soils, which affect the micronutrient composition in plants and
their consumers (von Wandruszka 2006; Hurst et al. 2013; De Groote et al. 2021).
Indeed, micronutrient soil levels are highly variable across the globe, with both local
pockets and wide-spread regions of soil that are deficient or toxic for any given
micronutrient (Karimov et al. 2009; Hurst et al. 2013; Hengl et al. 2017; Nell and van
Huyssteen 2018; De Groote et al. 2021). Hence, human populations occupying different
environments are exposed to varying levels of these essential micronutrients, which
may act as a local selective pressure to drive adaptations in the genes involved in their
metabolism, uptake or transport.

In this study, | use methods based on allele frequency differentiation and recently
developed tree-recording methods (Weir and Cockerham 1984; Speidel et al. 2019) to
infer signatures of natural selection across 276 micronutrient-associated genes, linked
to the uptake, metabolism or regulation of 13 micronutrients in 40 diverse modern
human populations (Bergstrom et al. 2020). I show that such signatures are present
across many global populations and micronutrient categories, and the strongest
signatures of natural selection recapitulate known geology and endemic deficiencies in
modern human populations. I do not see evidence for micronutrient-associated
adaptation being mediated by polygenic selection and suggest that micronutrient-
associated adaptation is largely mediated by monogenic or oligogenic selection. Finally,
[ propose the micronutrient-associated gene sets and individual micronutrient-
associated genes with the strongest evidence of positive selection in global populations.

3.2. Background

Diet is a dominant selective pressure across all organisms, driving adaptation to uptake,
regulate and metabolise key dietary components (Perry et al. 2007; Drouin et al. 2011;
Liand Zhang 2014; Wu 2022). In modern humans, diets are highly diverse across the
globe (Fumagalli et al. 2015; Fan et al. 2016; Rees et al. 2020) and hence exert
differential selective pressures amongst different populations. This can result in local
adaptation: genetic adaptation in specific populations, or groups of populations, that
results in a local adaptive phenotype.

Indeed, dietary drivers of local adaptation are well-recorded in modern humans, driven
either by environmental or cultural differences in the local diet amongst populations.
These adaptations may be driven by novel sources of nutrition (such as lactase (Tishkoff
et al. 2007a)), toxic substances (such as alcohol or toxic metals (Osier et al. 2002; Han et
al. 2007; Schlebusch et al. 2015), differing proportions of key macronutrients (such as
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fatty acids or starch (Perry et al. 2007; Fumagalli et al. 2015)) or nutritional abundance
(such as highly variable dietary conditions (Minster et al. 2016)).

3.2.1. Micronutrients in the Human Diet

Micronutrients, which include trace minerals, macrominerals and vitamins, are a key
component of the human diet and a likely selective pressure in modern humans. With
the exception of vitamin D, micronutrients cannot be synthesised by the human body,
and therefore must be absorbed via the diet. Moreover, the healthy range of
micronutrient levels in the diet is very narrow (Renwick 2006), particularly for trace
minerals (which are recommended at daily levels of 50micrograms to 18milligrams
(Mertz 1981)). For example, the recommended levels of the trace mineral level zinc are
8-11mg (De Groote et al. 2021) with deficiency being induced when consuming daily
levels as high as 5mg (Prasad 2013). Macrominerals, whilst recommended in higher
amounts than trace minerals (daily recommendations >100mg (Tako 2019)), are still
required at much narrower levels than macronutrients.

Micronutrient deficiencies are relatively prevalent (Caballero 2002; Xia et al. 2005;
Renwick 2006; Shenkin 2006; Bhutta and Salam 2012; Biban and Lichiardopol 2017; De
Groote et al. 2021), with iron and iodine-deficiencies most common across the globe
and estimated to affect approximately 25% of the world’s population (Bhutta and Salam
2012; Bailey et al. 2015). Micronutrient toxicity is comparatively rarer, and is usually a
result of over-supplementation (Renwick 2006; Pike and Zlotkin 2019). Common
adverse effects resulting from toxicity include gastrointestinal distress, nausea,
vomiting and diarrhoea, as well as increased interaction with non-essential chemicals
(Peraza et al. 1998; Pike and Zlotkin 2019).

Micronutrient deficiencies vary in their exact pathology, but all increase the risk of
various metabolic, infectious and respiratory diseases, as well as often impairing mental
and physical development (Caballero 2002; Tulchinsky 2010; Prasad 2013; Biban and
Lichiardopol 2017). Common pathologies resulting from trace mineral and
macromineral deficiency include anaemia (resulting from iron deficiency across many
populations (Caballero 2002)), goitre (iodine-deficiency, commonly reported in
mountainous or some forest environments (Dormitzer et al. 1989; Niepomniszcze et al.
2009; Biban and Lichiardopol 2017)), and the heart and bone diseases Keshan and
Kashin-Beck diseases (linked to selenium-deficiency, endemic to selenium-deficient
areas of China (Moreno-Reyes et al. 2001; Xia et al. 2005)).

3.2.2. Micronutrients in Human Local Adaptation

The essentiality of micronutrients in the human diet, alongside serious pathologies that
accompany deficient levels, mean that dietary micronutrients are a strong candidate
selective pressure within human evolution and hence may drive local adaptation.
Moreover, this selective pressure has likely been differentially exerted over populations.
Whilst today omission of key food groups can result in micronutrient deficiencies, for
much of human history the levels of dietary micronutrients was determined by those
available in the local consumed animal and plant products. In turn, this was heavily
influenced by the geology and micronutrient composition of the local soil (Sillanpaeae
1982; Hurst et al. 2013; Prasad 2013). Since soil levels can vary widely even between
proximal localities, on the level of the individual populations rather than across
continents (e.g., extremely selenium, zinc and iodine-deficient soils in areas of China,
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Ethiopia and Central Africa, respectively; Cifor, 2006; De Groote et al.,, 2021; Dhaliwal et
al., 2019; Dormitzer et al.,, 1989; Hengl et al., 2017; Xia et al., 2005) this may have
resulted in relatively fine-scale local adaptation to micronutrient uptake, regulation or
metabolism.

Indeed, selenium-deficient soil in East Asia has been associated with adaptation in
selenium-associated genes, particularly in DIOZ, SelS, GPx1, CELF1 and SEPHSZ2 (White et
al. 2015). A correlation between zinc levels in soil and crops in East Asia with a
particular haplotype of the zinc-associated gene SLC30A9 has also been inferred (Zhang
et al. 2015a). Finally, iodine-deficient soil in rainforest environments have been
suggested to drive potential signatures of positive selection in TRIP4 and IYD genes in
the Biaka population (Herraez et al. 2009). This adaptive scenario is supported by the
lower incidence of goitre in rainforest pygmy populations compared to the
neighbouring Bantu populations (42.9% compared to 9.1%; (Dormitzer et al. 1989).

Dietary micronutrient levels are not only affected by the local soil, but also by the exact
content of the diet, more closely tied to cultural differences and dietary evolution
amongst populations. The rapid changes in the diet during the Neolithic revolution
included a reduction in nutrient-rich animal products in favour of a cereal-based diet,
dominated by staple crops and lacking key nutrients such as iron and calcium (Diamond
2002; Naugler 2008). Such recent dietary changes have also then been suggested to
drive adaptation in iron and calcium-associated genes, namely HFE and TRPV6 in
European populations (although the former has also been suggested to be a result of
allele-surfing: the geographic spread and increase in frequency of alleles during a range
expansion that may mimic the signatures of positive selection (Akey et al. 2004;
Distante et al. 2004; Ye et al. 2015; Peischl et al. 2016)). Agricultural practices born
from the Neolithic revolution may also deplete soils of key micronutrients (Diamond
2002), and populations may then have also experienced increased micronutrient-
associated stress, as a result of decreased micronutrients in the soil and therefore diet.

Hence, dietary micronutrient levels are not only a strong candidate selective pressure in
human evolution, but one that may be exerted differentially amongst populations to
ultimately result in local adaptation. This may be driven by the micronutrient content of
global soils, cultural evolution of diet or the development of human agricultural
practices (although, it is unclear the extent of micronutrient depletion farming would
have imposed before very recent times).

Still, here three additional selective drivers are mentioned, unrelated to local soil or
cultural evolution, suggested to be driving particular examples of micronutrient-
associated adaptation in modern humans. The first is the degree of UV exposure
experienced by a population. Whilst level of ingested calcium depends on the content of
the diet, the extent of calcium absorption relies on adequate vitamin D levels, which in
turn is produced on exposure of UV light (Carlberg 2022). Because of this, it has been
suggested that the low UV levels in some populations, specifically northern European
populations, instead act as the selective driver for calcium uptake (Mathieson and
Terhorst 2022). The second proposed selective driver is the pathogen stress
experienced by a population: reducing intracellular levels of zinc and iron has been
suggested to be an adaptive response that starves pathogens of their essential
micronutrients, thereby reducing the risk of serious infection (Engelken et al. 2014;
Pietrangelo 2015). Finally, ambient temperature has been suggested to have driven
iron-related adaptation in European populations, as a connection between the
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thermoregulatory role of iron and the colder temperatures experienced by populations
within Europe compared to Africa (Heath et al. 2016a).

It is therefore clear that a multitude of questions remain surrounding micronutrient-
associated adaptation in humans. This includes to what extent such proposed
adaptation has played in human genomic variation (and in response to which
micronutrients) and which exact selective pressures are most likely to be driving
potential micronutrient-associated adaptation events. It is also unclear if micronutrient-
associated adaptation may be polygenic in nature (as suggested by some studies (White
et al. 2015; Zhang et al. 2015a)), and how this may vary across micronutrients.

At the time of writing, there has been no comprehensive study that investigates
adaptation in modern humans across micronutrients and across global populations,
thus limiting our knowledge to individual studies exploring specific micronutrient-
associated adaptation. From these existing studies, it is not possible to fully evaluate the
role dietary micronutrients have played in driving human genetic adaptation, and not
able to compare the role of each micronutrient in such genetic adaptation. Moreover,
many previous studies have been carried out in limited population cohorts and do not
fully represent the geographic and genetic diversity of modern humans, and hence are
not able to comprehensively evaluate the geographic distribution of potential
adaptations. Finally, the current literature shows considerable bias towards particular
micronutrients or genes, and there is little known about adaptation to the still-essential
micronutrients, such as magnesium or phosphorus.

3.2.3. Study Overview

Here, I carry out a comprehensive study exploring selection in just under 300 genes
associated with the uptake, metabolism or regulation of 13 trace minerals and
macrominerals. I use simulation-informed methods (see Chapter 2) of allele-frequency-
differentiation (Fsr; (Weir and Cockerham 1984)) and genealogical inference (Relate;
(Speidel et al. 2019)) to identify instances of local adaptation across 40 genetically and
geographically diverse modern human populations (Bergstrom et al. 2020).

[ show that signatures of natural selection are present for many micronutrient-
associated genes in many global populations, in some cases supported by known soil
levels and dietary deficiencies in modern human populations. I find no evidence that
selection acts over entire micronutrient gene-sets, and infer that adaptation is more
likely oligogenic than polygenic in nature. I also identify the populations and the
candidate genes with the strongest evidence of having undergone positive selection in
response to micronutrient levels, and ultimately suggest that dietary micronutrients
have played a role in shaping the genetic diversity of our species.

3.3. Methods
3.3.1. Micronutrient-Associated Gene Sets

[ curate gene sets associated with the uptake, regulation and metabolism of 13
micronutrients: selenium, copper, iron, zinc, iodine, manganese, molybdenum, calcium,
phosphorus, magnesium, sodium, chloride and potassium. This includes all trace
minerals (N=7; selenium, copper, iron, zinc, iodine, manganese, molybdenum) and
macrominerals (N=6; calcium, phosphorus, magnesium, sodium, chloride, potassium)
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with the exception of fluoride and sulfur, which were omitted due to limited literature
surrounding their functionally-associated genes in modern humans.

Gene sets (see Table 3.1) were manually created from relevant databases (e.g.,, Human
Metabolome Database (Wishart et al. 2007)) and a literature search using key terms
including “human health”, “metabolism”, “adaptation” for each specified micronutrient.
The literature used includes clinical studies, functional biochemical studies and studies
identifying signatures of natural selection (see Table S$3.1). Signatures of natural
selection have only been identified in genes associated with selenium, zinc, iron, calcium
and iodine, and such genes make up only a small proportion of the gene sets (see Table
$3.1). Hence, the ascertainment bias from this literature search is in this regard as

minor.

In total, 276 micronutrient-associated genes (MA-genes) were identified, 263 of which
are autosomal. After the filtering step that removes segments of the genome of low
reliability (according to a positive mask, see Section 3.3.3 (Bergstrom et al. 2020)), 269
genes remain. The micronutrient-associated gene sets vary in size (see Table 3.1),
somewhat reflecting the number of genes associated with specific micronutrient uptake
and metabolism, but also recognised as reflecting a bias of the available literature by
micronutrient. This is considered during the following analysis, e.g., how this may affect
the proportions of genes showing signatures of positive selection in each gene set (see
Section 3.4.3).

Notably, some genes are associated with multiple micronutrients (common overlaps are
between selenium and iodine, sodium and potassium, and calcium and phosphorus; see
Table S3.1). For some analyses, cut-down micronutrient gene sets where there exists
no overlap are used, and each gene is only assigned to its most strongly associated
micronutrient, according to the available literature (see Table S3.1).
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Table 3.1: The total number of genes used in this study associated with the
uptake, metabolism or regulation of 13 micronutrients. Number of genes for
each MA-gene set given as a total (“Total Set’), the number of genes following the
removal of any masked gene regions (“Post-mask”) and when cutting down gene
sets to remove any overlap, assigning each gene to its most supported associated
micronutrient set (“Cut-down”).

Number of
Associated Genes
Micronutrient Total Set Post-mask Cut-down

Trace Minerals Selenium 61 59 59
Copper 11 11 9
[ron 44 44 44

Zinc 46 45 42
lodine 18 18 14

Manganese 7 7 4

Molybdenum 5 5 5

Macrominerals Calcium 23 21 17
Phosphorus 16 16 14

Magnesium 19 19 15

Sodium 20 20 17

Chloride 25 23 22

Potassium 11 11 7

3.3.1.1. Distribution of Micronutrient-Associated Genes

The gene regions for each of the MA-genes were extracted from the ensembl database
(Yates et al. 2020), and those which have overlapping gene regions or are less than
10kbp apart were identified (see Table $3.2). Any signatures of positive selection
identified in these overlapping gene regions are treated as possible signatures for either
gene region, rather than assigning to a single MA-gene. [ verify that the MA-genes are,
on average, randomly distributed along the human genome using ChromoMap (Fig.
$3.1; (Anand and Rodriguez Lopez 2022)).
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Since elevated allele frequencies can lead to false positives in selection scans (Buffalo
and Coop 2020), I also evaluate whether the distribution of derived allele frequencies
across micronutrient gene sets are significantly higher than the genomic background.
For each micronutrient gene set, [ sample the equivalent number of SNPs from chr1 of
22 Yoruba individuals (Bergstrom et al. 2020) and compare the distribution of allele
frequencies between the SNPs in the gene set and this background distribution using a
Mann-Whitney test.

Only four micronutrient gene sets have a significantly different allele frequency
distribution compared to the genomic background (copper, magnesium, sodium and
molybdenum; MW test, p < 0.05; see Table S$3.3). The differences between the
micronutrient set and genomic background are either negligible (e.g., the mean allele
frequency difference between the background and the magnesium and sodium gene
sets) or the mean allele frequency is lower in the gene set than in the background
distribution (e.g., copper), so these differences are treated as irrelevant to this study.
The remaining difference, the significantly higher allele frequency in the Molybdenum
gene set (n=5) than in the background distribution, appears to be driven by the GPHN
and MOCS2 genes (possibly as a result of positive selection, as suggested in Section
3.4.3).

3.3.1.2. Generating Matched Neutral Gene Sets

A database of neutral gene regions matched to each MA-gene set is generated,
accounting for the number, length and SNP density of genes within each set. For each
MA-gene, | sample 1,500 gene regions of equivalent length from the human genome
beginning at the starting genomic coordinate of a random human gene. I retain the
1,000 gene regions with the SNP densities closest to each associated MA-gene (SNP
densities sampled from the genomes of Yoruba individuals (Bergstrom et al. 2020)).
This results in a random set of gene regions (proxy MA-gene regions, now referred to as
pMA-gene regions) which represent the genomic background, approximately matched
in length and SNP density to the MA-genes.

The SNP density (number of SNPs above 5% in the Yoruba individuals) of seven MA-
genes fall above the 95t percentile of the SNP density of their respective pMA-gene
regions, where the 95t percentile is calculated from the cumulative frequency
distribution (CDF). These seven MA-genes are thus noted as SNP-dense genes: SELENOO
(selenium-associated), EPAS1 (iron-associated; high SNP-density likely explained by its
introgression from Denisovans (Huerta-Sanchez et al. 2014)), MT1A and MT1F (zinc-
associated), SCNN1D (sodium and potassium-associated), SLC8A1 (calcium-associated)
and CLCN7 (chloride-associated) (see Table S$3.4). Still, these SNP-dense genes do not
cluster by micronutrient. Calcium is the only MA-gene set with SNP densities, over the
entire gene set, that are significantly shifted towards higher SNP density than the
background (inferred from the distribution of CDF values; see Table S3.5, Fig. $3.2).
This seems to be driven by a clustering of CDF values around 0.5-0.7, hence the
deviation is not considered extreme. Moreover, there is no deviation across all other
gene sets.
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3.3.2. The Population Dataset

[ use 929 full human genomes from the HGDP dataset (as published by (Bergstrém et al.
2020)), which encompasses 54 populations across Africa, the Middle-east, Europe, East
Asia, Central-South Asia, Oceania and the Americas and represents a significant
proportion of human ethnic and cultural diversity. Since low sample sizes can
significantly reduce the power to identify the genomic signatures of positive selection
(see Chapter 2; (Subramanian 2016; Serdar et al. 2021)), [ aim to merge populations
with sample sizes below 20 with their geographically closest populations. In these
cases, the signatures of fine scale positive selection in response to extremely localised
micronutrient soil levels may be lost, but this a necessary step to maintain adequate
power to identify positive selection that may be shared across these geographically
close populations.

Population analysis was carried out to verify that this criterion agreed in all cases with
patterns of population differentiation. I calculated principal components (PCs; linear
combinations of the initial SNP data) for each metapopulation using plink (Purcell et al.
2007), having thinned for linkage disequilibrium (pruning r? values above 0.2) and
using windows of 50kbp and window step size of 10bp (see Fig. $3.3.3-9). [ also carried
out clustering analyses on chr14, chosen due to its middling size in the genome, using
the admixture programme (Alexander et al. 2009) and the same linkage disequilibrium
filtering for a varying number of clusters on the African, European, East Asian and
American populations to aid population grouping (see Fig. $3.3.10-13). This analysis
confirmed that grouping by geography agrees with population differentiation, with two
exceptions (see below), and I hence group according to this criterion.

When grouped, the final dataset comprised of 913 individuals from 40 populations, of
which 10 are a result of merging (see Fig. 3.1, Table $3.6). Two merged populations do
not follow geography (Bantu-speaking population and the Xibo-Mongolian population),
but instead reflect recent migrations (Bai et al. 2014; Patin et al. 2017; Hou et al. 2022).
Two populations were removed from the analysis (Columbian, n=7; Cambodian, n=9)
since they do not group naturally geographically or genetically. Despite their small
sample size, the San population (n=6) was retained in the final dataset given their
relatively distinct genetic variation.
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o:
N Bedouin She-Miao-Tujia

Figure 3.1: Map of the populations in this dataset. The final populations, including
merged populations, used in this study (large circles: dark orange = African; dark green =
Middle-East; blue = European; pink = Central-South Asia; light green = East Asian; gold =
American; purple = Oceania). Smaller red circles indicate the location of original
populations merged together.

3.3.3. Methods to Identify the Genomic Signatures of
Positive Selection

Two methods are used (as suggested from the work undertaken in Chapter 2) to isolate
the genetic signatures of events of positive selection in single loci. I calculate the Fg
values across the autosomal genome according to the Weir & Cockerham method in
VCFTOOLS (Weir and Cockerham 1984; Danecek et al. 2011) pairwise for all
populations vs Yoruba, as well as for all African population pairs. I then filtered to retain
only biallelic sites and remove indels, and removed sites with low coverage, mapping
quality and excess heterozygosity (Bergstrom et al. 2020).

The Relate programme was also implemented across the autosomal genome (Speidel et
al. 2019), which requires phased input data in the format haps/sample. I filtered
according to the same criteria given above (as well as removing SNPS with more than
10% missing data (Danecek et al. 2011)), before phasing using SHAPEIT?2 (Delaneau et
al. 2013). During phasing, | used the advised parameters of 0.3Mb window size and 200
conditioning states (number of conditioning haplotypes used during the phasing
process; (Delaneau et al. 2013)). I identified eight chromosomes (chr9, 12 or 21) with
more than 10% of data missing, but these are randomly distributed amongst individuals
and therefore remain in the dataset.

The phased input files were then prepared for tree reconstruction according to the pre-
processing steps in the Relate pipeline (Speidel et al. 2019). This includes flipping
haplotypes according to an ancestral state (as taken from ensemble (Yates et al. 2020)),
generating additional SNP annotations (the alleles upstream and downstream, as well
as the number of carriers of the derived allele in each population, which are necessary
for later estimates of population size using Relate (Speidel et al. 2019)) and adjusting

96



Signatures of Adaptation to Micronutrient-Associated Genes in Modern Humans

distances between SNPs (according to a genomic mask from (Bergstrom et al. 2020)).
Following this, Relate was then used to reconstruct trees along the genome using the
sample of 913 individuals (see Section 3.3.2). The effective population sizes throughout
time, branch lengths and mutation rate were then simultaneously estimated to re-infer
a tree for each locus. Finally, the programme was used to calculate the probability of
variants at each locus rising to its observed frequency today, as given as a
—logiopvalue.

The Relate programme was also used to calculate the probabilities of positive selection
acting on alleles on the X chromosome, with the following edits to the previously
outlined method. I used the “phasing chromosome X” pipeline in SHAPEIT2 (which
requires sex data) and remove one individual who has 75% of SNPs missing on their X
chromosome (HGDP01208; Orogen population). Relate is then ran as previously
described but using the haploid input data files, treating each female as two haploid
samples and each male as one haploid sample.

3.3.4. Isolating Monogenic Signatures of Positive Selection

The Fg; and Relate probabilities for each MA-gene were extracted, where the former is
given as a value between 0 and 1 (where 0 indicates no genetic differentiation and 1
indicates complete differentiation) and the latter is given as a —log;opvalue (where
—1.30103 is equivalent to a pvalue of 0.05, interpreted here as, given the variant’s
inferred trajectory, the probability of the variant acting under neutrality as 0.05). Fgr
and Relate probabilities are extracted for each MA-gene region, as well as for the 10kbp
regions up- and downstream in order to capture additional signatures of positive
selection outside the gene region but that may still be related to its function (i.e., as the
case with variants surrounding LCT conferring lactase persistence, albeit on an
unusually long haplotype (Tishkoff et al. 2007)).

[ use the empirical genome-wide background, built from all SNPs along the genome, for
each population (or population pair in the case of Fs;) to identify SNPs that fall in the
tails of the Fgr and Relate empirical distribution. Here, I assign SNPs with selection
values in 0.1% tail as those with evidence of selection. When considering signatures of
positive selection across an entire gene set, I also include SNPs with selection values in
the 5% tail, as signatures of positive selection are expected to be weaker under
polygenic adaptation. Whilst the —log,opvalue of Relate can be transformed and used
explicitly as a pvalue, I choose to use the tail of the empirical distribution to identify
candidate targets of positive selection since [ have shown that this increases accuracy
when using sample sizes under 50 (see Chapter 2).

The signatures of positive selection identified by these two methods are related but
subtly different. The tail of the empirical Fg; distribution contains sites that are the
most highly differentiated between populations (and hence can be expected to be
enriched with targets of positive selection, since such differentiation is unlikely,
although not impossible, under neutrality). A key subtly of Fs; ,therefore, is that it can
only identify signatures of positive selection that have arisen following the split of the
two populations used in each pairwise calculation. Relate, however, identifies sites that
have risen to an unusual frequency, given their age and the number of lineages present
when they first arose, over the entire inferred history of the locus in a given population
(in reality, this is up to the time of the common ancestor of all populations used in the
genealogical inference). When using the empirical distribution to identify outliers as
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done so here, this is specifically identifying SNPs which have an unusually fast spread
compared to all other SNPs within this population’s inferred history (and hence can also
be expected to be enriched for targets of positive selection). Therefore, the combination
of these statistics allows, in theory, the identification of adaptation that has occurred
differentially between populations and within the specific inferred history of an
individual population.

3.3.5. Isolating Polygenic Signatures of Positive Selection

[ assess if the entire MA-gene set is significantly enriched with signatures of positive
selection, as identified by either Fg or Relate. I use a chi squared test to compare the
number of SNPs at the 5% significance level to the neutral expectation (5% of all SNPs
in the gene set). I repeat this for SNPs at the 1% significance level (where the neutral
expectation is now 1% of all SNPs in the gene set). Finally, to more explicitly test for an
excess of signatures of positive selection in each functionally-related set, I repeat this
individually for each MA-gene set separately, testing for an enrichment of SNPs at the
5% significance level (for signatures of positive selection identified by either Fg; or
Relate).

The gene-set enrichment method SUMSTAT (Daub et al. 2013) is then applied to
investigate the signatures of polygenic adaptation on individual MA-gene sets. Here, |
extract the most extreme Fsr and Relate probabilities for each MA-gene, and sum these
across micronutrient gene sets to generate a summed MA-gene set value for each
statistic. The summed MA-gene set values are then compared to the background set
summed values generated from 1,000 neutral gene sets. The neutral gene sets are built
from a random combination of the pMA-genes (see Section 3.3.1.1) corresponding to
each MA-gene within the test MA-gene set. A Python script is then used to identify MA-
gene set summed values that fall in the 5% tail of this background distribution, as
generated from these neutral set values (see Supplementary Note S3.1).

3.4. Results
3.4.1. Patterns of Adaptation in Micronutrient-Associated
Genes

[ begin by exploring the signatures of local positive selection across the entire
micronutrient gene set. Since both monogenic and polygenic signatures of selection are
of interest, I extract the SNPs within the 5% tail of the empirical distribution of either
Relate or Fsr for each MA-gene and for each population. As an additional precautionary
step, I only consider MA-genes with more than five SNPs within the tail of the respective
empirical distribution. I then identify the SNP with the strongest signature of positive
selection in each MA-gene, which is considered the strongest candidate target SNP. I
observe SNPs with these signatures of positive selection across all micronutrient
categories and across populations of all major global geographic areas (see Relate
results in Fig. 3.2A, Fg results in Fig. 3.3A). Notably, many MA-genes contain SNPs
which fall in the extreme 0.1% tail of the empirical distribution of either Relate or Fgr,
the threshold for individual genes showcasing evidence for positive selection.

Prior to exploring these individual signatures of positive selection, and in recognition
that not each SNP in the tails of the empirical background distribution is necessarily a
true target of positive selection, I first investigate if there is an excess of signatures of
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positive selection across the entire MA-gene set. Hence, I ask if there are more SNPs
than expected at the 0.1% tail (i.e., showing significant evidence of positive selection)
and the 5% tail (i.e, showing weak evidence of positive selection, as expected for
example for polygenic adaptation within a gene set only) within each population.

Compared to neutral expectations, there is a significant excess of SNPs within the 0.1%
tail of the empirical distribution of both Relate or Fg; in many of the populations (Fig.
3.4). This excess is observed in more populations for Fg; than Relate. Moreover, a
majority of populations also show a significant excess of SNPs within the 5% tail of the
Fgr empirical distribution, but no populations show a significant excess of SNPs within
the 5% tail of the Relate empirical distribution. Still, this does not exclude the presence
of strong signatures of positive selection across many genes in individual MA-gene sets
(addressed in Section 3.4.3). Despite the limitations of this simple approach, which fails
to account for the genomic structure of the SNPs (see Section 3.4.3) this analysis
suggests higher than expected differentiation of MA-genes among populations, in line
with expectations of positive selection within this gene set.

I now use the signatures of positive selection summarised in Fig. 3.2 and Fig. 3.3 to
address preliminary questions. I first ask if the signatures of positive selection identified
on MA-genes appear to be randomly distributed amongst micronutrients and
populations, or if they cluster within certain micronutrient gene sets and/or certain
populations. If signatures of positive selection cluster within a group of biologically
related genes, i.e., a MA-gene set, this can suggest adaptation of the corresponding
micronutrient-associated function. In addition, if signatures of positive selection within
a MA-gene set cluster in certain populations, this can indicate which populations may
have undergone genetic adaptation. As an extension of this, I also ask if the geographical
distribution of signatures of positive selection indicate whether putative adaptation to
micronutrients is strictly local (i.e., on the level of individual populations or continents)
or more global (spread across multiple continents).

[ first ask these questions with respect to the signatures of positive selection as
identified by Relate. Here, many signatures within the same MA-gene set are observed
very locally (e.g., phosphorus-associated genes in the American Pima population) whilst
others cluster across continental regions (e.g., selenium-associated genes in East Asia).
Other MA-genes show strikingly widespread geographic signatures of selection (e.g.,
those identified in zinc-associated genes in non-African populations). Therefore,
modern humans may have a history of both geographically global and local
micronutrient-associated adaptations. Finally, the number of MA-genes exhibiting
signatures of positive selection within each MA-gene set is highly variable, suggesting
that the degree of polygenicity of micronutrient-associated adaptation likely also varies
amongst micronutrients (polygenicity addressed in Section 3.4.3).

Before I ask the same questions with respect to the signatures of positive selection
identified by Fgr, the signatures identified by Fgr must be considered to differ from the
above signatures of positive selection identified by Relate. Whilst Relate identifies
SNPs with a trajectory improbable under neutrality, here Fg; identifies SNPs which are
most highly differentiated in each individual population to the Yoruba population.
Hence, for most pairwise combinations in this study, Fg; is used to identify SNPs with
unusual differentiation between African (Yoruba) and non-African populations.
Therefore, Fgr may capture signatures of positive selection localised to an individual
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population, as well as signatures of positive selection that reflect adaptation in an
ancestral non-African population or the Yoruba population.

Many signatures of positive selection identified by Fg; within the same MA-gene set are
also observed both very locally (e.g., iron-associated genes in the Oceanian Bougainville
and America Pima populations) or at the continental (e.g., calcium-associated genes in
Europe and Central-South Asia) level. The most striking difference between the Fgr and
Relate signatures of positive selection however is that, in general, the F signatures are
shared over more populations, particularly non-African populations, compared to those
of Relate (see Fig. 3.3A). This is especially observed in some selenium, magnesium, zinc
and phosphorus-associated genes, and indicative of potential associated selection
events swiftly preceding, overlapping with or following the Out of Africa migration.

Finally, to consider the allele frequency differentiation between African populations
that may indicate local adaptation events within Africa (and remove the limitation of
only identifying extreme differentiation from Yoruba), the Fg; analysis is expanded to
consider all cross-African population pairs (see Fig. 3.3B). Once more, signatures of
positive selection are concentrated in certain micronutrient gene sets in individual
populations (e.g., calcium-associated genes in the African Biaka population), but do not
show same widespread geographic distribution of signatures of positive selection as
observed in Fig 3.3A. This is as expected, since these African populations do not have
the same degree of shared history compared to non-Africans.
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Figure 3.2: Relate signatures of positive selection over populations. A) Strength of
Relate signatures of positive selection across all MA-genes (x-axis, coloured by
micronutrient) and all populations (y-axis, grouped by metapopulation). The darkness of
the blocks (see left legend) reflects the strength of the signature (5%, 1%, 0.5%, 0.3%,
0.1% tails of the empirical distribution shown) with the darkest blocks indicating SNPs at
the 0.1% tail. B) Strength of Relate signatures of positive selection across all MA-genes
grouped according to the population clustering (right dendrogram) as calculated from the
significance of the most extreme Relate probabilities over all MA-genes.
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Figure 3.3: F gy Signatures of positive election over populations A) Strength of Fer
selection signatures of positive selection across all MA-genes (x-axis, coloured by dominant
micronutrient association) and all Fg; pairwise comparisons with Yoruba (y-axis, grouped
by metapopulation). B) Strength of Fsr selection signatures across all MA-genes (x-axis,
coloured by dominant micronutrient association) and all Fsr pairwise comparisons
amongst African populations (pairwise comparisons for each panel are those between the
title population and those listed on the y-axis). The darkness of the blocks (see left legend)
reflects the strength of the signature (5%, 1%, 0.5%, 0.3%, 0.1% tails of the empirical
distribution shown) with the darkest blocks indicating SNPs at the 0.1% tail.
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Figure 3.4: Populations showing a significant excess or deficit of SNPs of MA-genes.
Significant excess or deficit as identified within the 0.1% and 5% tails of the empirical
distribution of A) Relate and B) Fgr (populations with pvalue < 0.05 as calculated by a
chi — squared test comparing the number of SNPs observed in the respective tail to the
number of expected SNPs: either 0.1% or 5% of the total SNPs). Grey shows a significant
deficit (less SNPs in the tail than expected), purple and orange show a significant excess
(more SNPs in the tail than expected, for Relate and Fsr respectively).

3.4.2. Adaptation Across Locality

[ now investigate if the signatures of positive selection reflect the geography of the
populations. To do so, I only use the signatures of positive selection identified by
Relate, to avoid the loss of fine-scale local adaptation possible with the use of Fg;
(which here most explicitly captures differentiation from the African Yoruba
population).

For each population, each MA-gene is represented by the pvalue of the SNP with the
strongest evidence for selection. I then cluster all populations according to the pvalues
across all MA-genes using the hclust package of R; see Fig. 3.2B. From this, I can explore
if the signatures over all MA-genes groups populations by geography and, by extension,
which populations exhibit genetic signatures that are unusual compared to its
geographically (and genetically) closest populations.

In general, populations group with geographically proximal populations; groups are
formed from European and Central-South Asian populations; African and Middle-
Eastern populations; northern East Asian populations and southern East Asian
populations. Hence, this grouping mostly reflects shared ancestry. Interestingly, the
American populations fail to cluster together (Fig. 3.2B). These populations are
geographically further apart when compared to other continental groups (with the
three American populations occupying land in Northern, Central and Southern America
see Fig. 3.1) and it is thus possible that the different environmental conditions
experienced by each population have resulted in the differential genetic signatures here,
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rather than shared ancestry or demographic history. Still, this remains only a
speculation and an interesting outlier to the broad pattern of population clustering.

I now focus on the SNPs with evidence of positive selection (within the 0.1% tail of the
empirical distribution of Relate) and test if they show the same extent of geographical
structure, and how this compares between MA-gene sets. For each MA-gene set, |
calculate the mean number of MA-genes showing significant evidence of positive
selection in each metapopulation, calculate the standard deviation (to represent the
variance within each metapopulation) and normalise the mean over each micronutrient
category (to compare between micronutrients). From this, I am able to preliminarily
investigate if the evidence of positive selection associated with each micronutrient
appears to be shared across continental space, or if they may instead be localised within
individual populations3.

The number of MA-genes showing evidence of positive selection are, on average, highly
variable within metapopulations (large standard deviations; see Table 3.2). Regionally
and genetically-close populations do not show similar numbers of MA-genes with
signatures of positive selection within each MA-gene set, indicating that the strongest
signatures of selection are at the local scale. A potential exception to this is the number
of selenium-associated genes with evidence of positive selection, which is the highest
(with the lowest variance) in the African metapopulation, followed by the East Asian
metapopulation (with a comparatively low variance compared to other populations).
This is in accordance with selenium-associated selective pressures shared over many
populations in these continents (Hurst et al. 2013; White et al. 2015).

3 We advise that because of the low number of populations within certain metapopulation groups, the
results of this analysis should be focused on the European, Central-South Asian and East Asian
metapopulations.
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Table 3.2: Summary statistics for each MA-gene set by metapopulation. Mean,
normalised mean, standard deviation (“SD”) and maximum (“Max.”) number of MA-genes
with Relate signatures of positive selection (within the 0.1% tail of the empirical
distribution) for each micronutrient gene set across each metapopulation. San population
was removed from the African metapopulation due to its sample size (n=6). Se=selenium,
Cu=copper, Fe=iron, Mg=magnesium, Zn=zinc, Na=sodium, Ca=calcium, I=iodine,
Cl=chloride, K=potassium, P=phosphorus, Mn=manganese, Mb=molybdenum.

Mean Normalised SD Max. Mean Normalised SD Max. Mean Normalised sD Max.
mean mean mean
Se Cu Fe
Africa 6.60 0.35 0.89 8 Africa 0.6 0.04 0.55 1 Africa 2.6 0.11 1.52 5
Middle- 3.75 -0.01 1.50 5 Middle- 0.5 0.09 0.58 1 Middle- 2.25 0.05 2.63 6
East East East
Europe 4.29 0.06 2.14 7 Europe 0.29 -0.02 0.49 1 Europe 243 0.08 113 4
Central- 3.56 -0.03 2.24 6 Central- 0.33 0 0.71 2 Central- 1.56 -0.07 0.73 3
South South South
Asia Asia Asia
East 4.78 0.12 139 7 East 0.33 0 0.5 1 East 2.56 0.1 1.42 4
Asia Asia Asia
America 1.33 -0.36 0.58 2 America 0 0.17 0 0 America 1.33 -0.11 1.53 3
Oceania 2.5 -0.17 0.71 3 Oceania 0 0.17 0 0 Oceania 1 -0.16 141 2
Mean Normalised SD Max. Mean Normalised SD Max. Mean Normalised SD Max.
mean mean mean
Mg Zn Na
Africa 2 0.145 1 3 Africa 4.2 0.26 0.84 5 Africa 1.4 -0.05 1.14 3
Middle- 1.75 0.08 1.26 3 Middle- 2.5 -0.03 0.58 3 Middle- 2.25 0.19 0.96 3
East East East
Europe 1 -0.11 1.55 3 Europe 3.29 0.10 1.11 5 Europe 272 0.28 1.25 4
Central- 1.44 0.01 0.88 3 Central- 2.78 0.02 1.78 6 Central- 1.89 0.08 1.70 4
South South South
Asia Asia Asia
East 1.22 -0.05 1.48 4 East 2.89 0.04 2.02 6 East 1.22 -0.09 0.67 2
Asia Asia Asia
America 2 0.15 1.73 3 America 1 -0.28 1.73 3 America 0.67 -0.23 0.58 1
Oceania 0.5 -0.23 0.71 1 Oceania 2 -0.11 0 2 Oceania 1 -0.15 0 1
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Mean Normalised SD Max. Mean Normalised SD Max. Mean Normalised sD Max.
mean mean mean
Ca I Cl
Africa 4 0.24 1.22 5 Africa 1.6 0.04 1.14 3 Africa 2.8 -0.21 1.30 4
Middle- 3 0.07 0.82 4 Middle- 1.25 -0.032 0.96 2 Middle- 225 0.10 1.5 4
East East East
Europe 3.14 0.10 1.35 5 Europe 2 0.12 1.15 3 Europe 229 0.10 0.76 3
Central- 222 -0.06 1.20 5 Central- 1.44 0.01 0.88 3 Central- 222 0.09 1.64 5
South South South
Asia Asia Asia
East 2.78 0.04 1.86 6 East 111 -0.06 0.79 2 East 1.67 -0.02 1.22 3
Asia Asia Asia
America 1.33 -0.21 0.58 2 America 2 0.12 2.65 5 America 0.67 -0.22 0.58 1
Oceania 15 -0.18 0.71 2 Oceania 0.5 -0.18 0.71 1 Oceania 0.5 -0.25 0.71 1
Mean Normalised SD Max. Mean Normalised SD Max. Mean Normalised sD Max.
mean mean mean
K P Mn
Africa 1 0 0.71 2 Africa 1.80 0.14 1.79 4 Africa 0.4 0.05 0.55 1
Middle- 1.5 0.25 1 2 Middle- 1.5 0.06 0.58 2 Middle- 0 -0.15 0 0
East East East
Europe 1.43 0.22 0.79 2 Europe 1.14 -0.03 0.69 2 Europe 0.57 0.14 0.53 1
Central- 0.89 -0.06 0.78 2 Central- 0.78 -0.12 0.67 2 Central- 0.44 0.07 0.53 1
South South South
Asia Asia Asia
East 0.56 -0.22 0.53 1 East 0.67 -0.15 0.87 2 East 033 0.02 0.71 2
Asia Asia Asia
America 0.67 -0.17 0.58 1 America 133 0.02 1.53 3 America 0.33 0.02 0.58 1
Oceania 1 0 0 1 Oceania 1.5 0.06 212 3 Oceania 0 -0.15 0 0
Mean Normalised SD Max.
mean
Mb
Africa 0.4 0.19 0.55 1
Middle- 0.25 0.04 0.5 1
East
Europe 0.29 0.08 0.49 1
Central- 0.22 0.01 0.44 1
South
Asia
East Asia 0.33 0.12 0.5 1
America 0 -0.21 0 0
Oceania 0 -0.21 0 0
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3.4.3. Assessing the Polygenicity of Selection
3.4.3.1. Adaptation over Individual MA-Gene Sets

There is some, but limited, evidence of positive selection across the entire MA-gene set,
as well as multiple MA-genes within the same individual MA-gene sets exhibiting
evidence of positive selection (Section 3.4.1). It is hence possible that individual MA-
gene sets have undergone oligogenic or polygenic adaptation in response to
micronutrient-associated pressures, which has resulted in the limited excess of
significant SNPs over all MA-genes. To explore this possibility, I test each MA-gene set
individually for an excess of SNPs with signatures of positive selection. I evaluate if the
number of SNPs in the 5% tail of the empirical distribution of either Fs; or Relate
(using the less stringent tail since weaker signatures of positive selection can be
expected to accompany polygenic adaptation) is higher than the expected 5% of total
SNPs for each micronutrient gene set (Fig. 3.5).

An excess of significant SNPs within multiple micronutrient gene sets is observed in
many populations (and suggesting that power is gained when examining each MA-gene
set individually). This includes an extreme excess of significant SNPs according to both
Fsr and Relate in the molybdenum gene set, in European, Central-South Asian, Middle-
Eastern and some African populations (Fig. 3.5B). This appears to be driven by the high
number of significant SNPs of the GPHN and MOCSZ genes, two of the only five genes in
this gene-set. Hence, this excess of significant SNPs is likely a result of linkage
disequilibrium and I caution against interpreting this as a signal of polygenic
adaptation. Since the excess of significant SNPs in the molybdenum gene set is so
extreme when compared to other gene sets, the molybdenum gene set is removed from
Fig. 3.5A before evaluating the other excesses of significant SNPs amongst populations.

An excess of significant SNPs identified by Relate is observed in all MA-gene sets, bar
iron, for at least one population (despite only four populations showing an excess of
significant SNPs identified by Relate when considering all MA-genes, see Section 3.4.1,
Fig. 3.4). This includes an excess of significant SNPs in six populations for each of
copper, zinc and calcium-associated genes and five populations for iodine-associated
genes; an excess of significant SNPs in the selenium-associated genes in two East Asian
populations (Yakut and Xibo-Mongolian); and high significant excesses of significant
SNPs in the MA-gene sets of individual populations (e.g., 79% more significant SNPs
than expected in iodine-associated genes in the American Maya, and 104% more
significant SNPs than expected in manganese-associated genes in the American Surui-
Karitiana). Whilst the role of linkage disequilibrium in driving these cases of excess
significant SNPs cannot be discounted, they remain interesting signatures of which
warrant further exploration.

Some of these cases of excess significant SNPs are also captured by the analogous Fgr
analysis. For example, there is also an excess of significant SNPs in many populations for
the copper, zinc, calcium and iodine-associated genes sets, as well as an excess number
of significant SNPs in the iodine-associated genes of the Maya (Fig 3.5). Moreover, the
populations with an excess of significant SNPs as identified by Fg; in selenium-
associated genes also includes the East Asian Yakut and Xibo-Mongolian populations
(and extends to all other populations of East Asia). When an excess of significant SNPs is
observed according to both the Relate and Fg; signatures of positive selection, these
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populations are stronger candidates for undergoing polygenic adaptation in response to
the levels of their respective micronutrients.

Finally, recapitulating the observations from Fig. 3.4, the excess of significant SNPs
according to the Fg signatures of positive selection are more widespread than those
identified according to Relate. This is particularly the case for the zinc, iodine and
potassium gene sets, which show the strongest evidence for unusual differentiation
from the African Yoruba population at the gene set level. Such differentiation between
the African Yoruba and multiple non-African populations may be the result of selection
on these gene sets in the Yoruba population, or more ancient selection in an ancestral
non-African population.
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Figure 3.5: Populations showing a significant excess or deficit of SNPs of MA-genes
for each MA-gene set.The excess of significant SNPs, as identified within the 5% tails
of the empirical distribution of Relate and Fs;, for each population and micronutrient
gene set. Significance calculated by a chi — squared test (comparing the number of
SNPs observed in the 5% talil to the expected 5% of total SNPs); grey shows a
significant deficit (less SNPs in the tail than expected), purple and orange show a
significant excess (more SNPs in the tail than expected, for Relate and Fg;
respectively). A) gives the results for all gene sets excluding molybdenum; B)
includes the molybdenum gene set.

3.4.3.2.

For each gene set, the analysis thus far only tests if there is an excess of significant SNPs
over all genes within a micronutrient gene set, and does not explicitly test if there are
signatures of positive selection over a significant proportion of all genes within a gene
set. The latter case would be the expectation under a classic model of polygenic
adaptation. To investigate if the signatures of positive selection across micronutrient

Polygenic Adaptation over Individual MA-Gene Sets
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gene sets agree with such a model, and if there is further evidence of which is necessary
for a more conclusive claim of polygenic adaptation, I carry out the gene set method
SUMSTAT (Daub et al. 2013).

SUMSTAT is first applied using the full micronutrient gene sets (i.e.,, some overlap
between gene sets; see Tables $3.1), summing the most significant pvalues over all
MA-genes within a gene set, and comparing this to the neutral background (see Section
3.3.5). For most MA-gene sets, multiple populations have summed MA-gene set values
in the 5% extreme tail of the neutral distribution of SUMSTAT values integrating either
Fsr or Relate signatures of positive selection (Tables $3.7-8). The strongest evidence of
polygenic adaptation is observed in the phosphorus gene set of the Pima population
(pvalue: 0.000013 ,SUMSTAT integrating Relate signatures of positive selection),
which was also suggested from Fig. 3.2.

Other populations with the strongest evidence of polygenic adaptation in response to
micronutrient-associated pressures are those with SUMSTAT values significant for the
same micronutrient gene set when integrating either Fs; or Relate signatures of
positive selection. This is the case for the selenium, sodium and potassium gene sets (for
one, seven and nine populations respectively; see Table $3.9). Here, the selenium gene
set is significant when integrating either statistic in the Xibo-Mongolian, further
suggesting a degree of polygenic adaptation in response to selenium-associated
pressures in this population (as suggested in other East Asian populations from
previous studies (Hurst et al. 2013; White et al. 2015).

However, the significance of SUMSTAT gene set values are all below the multiple testing

threshold (42':?3, orp < 9.62e~°). Moreover, when repeating the SUMSTAT method on
the cut-down micronutrient gene sets (i.e., those with no overlap, in order to avoid false
positives in one gene set driven by signatures associated with another micronutrient),
virtually all SUMSTAT significant signatures disappear (excluding the selenium gene set
in the Xibo-Mongolian; see Table $3.10-11). This indicates that the limited signatures
of polygenic adaptation inferred from SUMSTAT are strongly influenced by a small
number of genes, those that are functionally associated with multiple micronutrients.
Therefore, at the given power of these methods, there is insufficient evidence for a
classic model of polygenic adaptation amongst micronutrient gene sets, where selection
acts over the entirety, of significant proportion of a gene set.

Still, the polygenic analysis thus far, and the presence of signatures of positive selection
across multiple MA-genes for virtually all micronutrient sets, does suggest that
micronutrient-associated adaptation may be frequently mediated by more than one
gene. Hence, | suggest the presence of polygenic adaptation on the scale of fewer genes,
otherwise referred to as oligogenic adaptation. To explore this, and to further
understand if the evidence of positive selection on MA-genes ever stretches across the
majority of any MA-gene set, I calculate the proportions of MA-genes showing
signatures of positive selection in each MA-gene set according to either Relate or Fgr in
each population.

Indeed, the proportions of MA-genes showing evidence of positive selection is never
above 50% for any micronutrient gene set, using either the Relate or Fg evidence for
selection (where few are above 20% when considering the Relate signatures of positive
selection; see Fig. 3.6A). Notably, this includes the case of the selenium gene set in the
Xibo-Mongolian population (although, this is somewhat biased by the large selenium
gene set size, n=59), and could further suggest that the previously calculated
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SUMSTAT pvalues are a result of strong evidence of selection amongst only a few
genes. From this, and the other results presented in this section, I conclude that the
signatures of positive selection are not shared over the majority of any MA-gene set and,
by extension, adaptation is likely mediated by only a small number of genes and unlikely
to be classically polygenic in nature.
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Fig. 3.6: Proportion of MA-gene sets with signatures of positive selection. A) and B)
show the proportion of each micronutrient gene set that have signatures in the 0.1% tail
for Relate and Fgy selection values, respectively. Keys below the panels show the
proportion of genes within a gene set with such signatures. Fg; gene sets do not include
genes on the X chromosome. C) and D) show the populations with MA-gene sets with more
than 20% of their genes exhibiting signatures of positive selection, with these MA-gene sets
represented by the colours (given in the key below) in the population’s corresponding
circle.

3.4.4. Candidate Populations for Micronutrient Adaptation

[ propose the populations that are most likely to have undergone micronutrient-
associated adaptation via two main avenues. I first identify the populations that show
the highest proportion of MA-genes with signatures of positive selection in each
micronutrient category, hence assuming a degree of oligogenic adaptation. Of the 40
populations, 25 have at least one micronutrient gene set with > 20% of genes showing
signatures of positive selection according to either the Relate or Fgr empirical
distributions (see Fig. 3.6C, D). This includes the iodine-associated genes in the
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American Maya (27.8% and 25% of genes showing signatures of positive selection
according to Relate or Fsr, respectively), calcium-associated genes in Central-south
Asian populations and the East Asian She-Miao-Tujia (the latter having 28.6% of genes
identified with signatures of positive selection, the highest Relate proportion), and
chloride in African populations, particularly the San (50%, the highest Fg proportion).

For the second approach, I extend this by only now considering the MA-genes with the
very strongest evidence of selection for each population, according to either Relate or
Fsr signatures of positive selection. I extract the MA-genes with the top five strongest
signatures of selection (which may be more than five MA-genes when the signatures are
of the same strength) and identify populations which show a clustering of these
strongest signatures according to micronutrient category (see Fig. 3.7, Tables S3.12-
13). Hence, I identify populations with repeatedly strong evidence for adaptation
associated with the same micronutrient.

Five of the six highest ranked MA-genes in the Central-South Asian Hazara, according to
the Relate signatures of positive selection, are associated with selenium (with other
populations showing high numbers of selenium-associated genes with this strong
evidence of positive selection being the East Asian Orogen-Hezhen-Daur and the African
Mbuti and San populations). Other populations showing multiple top-ranking genes
assigned to the same micronutrient include the American Pima (many phosphorus-
associated genes), Middle-Eastern Bedouin and European Basque and French (all
showing many iron-associated genes) and the African Mandenka and East-Asian Dai-
Lahu (both showing many calcium-associated genes). [ therefore present these
populations as candidates for undergoing adaptation in response to these respective
micronutrient levels.

The highest-ranking MA-genes according to Fsr, however, show a far more striking
geographic pattern. Here, zinc-associated genes are amongst the top five ranks of MA-
genes for the majority of Eurasian populations, particularly for Asian populations. This
is suggestive of shared selection across these populations or, considering the signatures
of positive selection identified by Fs being those of differentiation between these
populations and the African Yoruba population, possibly selection acting on zinc-
associated genes following the Out of Africa migration. Selenium-associated genes also
commonly rank as the MA-genes with the strongest evidence of selection according to
Fgr, particularly in some East Asian and African populations, and may also indicate
positive selection shared across continents.

In summary of the consideration of polygenic adaptation, [ show that many populations
in different global areas demonstrate evidence for mediating micronutrient-associated
pressures via adaptations of multiple genes. This evidence stems from either 1)
populations showing more evidence of selection across their gene set than expected
under neutrality (as calculated by the excess of significant SNPs and SUMSTAT analysis,
see Section 3.4.3); 2) populations exhibiting signatures of positive selection across
what is deemed an unusual number of MA-genes within a MA-gene set; 3) or the
strongest evidence of positive selection within a population observed in multiple MA-
genes within the same MA-gene set. Notably, the iodine-gene set of the American Maya
fulfils all three of these criteria, and I suggest this population as the strongest candidate
for undergoing micronutrient-associated adaptation. Ultimately, | propose that
populations are more suitably described as undergoing oligogenic adaptation rather

111



Signatures of Adaptation to Micronutrient-Associated Genes in Modern Humans

than polygenic adaptation, and largely mediate micronutrient-associated selective
pressures via only a small number of genes.
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Fig. 3.7: The MA-genes with the top five strongest signatures of positive selection.
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below, for the MA-genes with the top five strongest signatures of positive selection
according to A) Relate and B) Fr selection values.
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3.4.5. Candidate Target Genes for Positive Selection

Having identified the populations with the strongest evidence of positive selection
(under the assumption of oligogenic adaptation) the MA-genes with the strongest
evidence of positive selection are now considered. These candidate genes may make up
the hypothesised small number of genes driving gene-set signatures (see Sections
3.4.3-4) or represent a monogenic signature of selection.

To identify the individual MA-genes most likely to have responded to micronutrient-
associated selective pressures, I first extracted the MA-genes and their corresponding
populations which have evidence of positive selection above the multiple-testing

threshold (—2

40%269’
with signatures at this threshold according to either Relate or Fgr, distributed over 15

MA-genes associated with all micronutrients bar selenium, copper, manganese and
molybdenum (Table 3.3). Of these 15 genes, SLC12A1 (associated with potassium,
sodium and chloride), PDE7B (associated with phosphorus) and ATP2BZ2 (associated
with calcium) show these strong signatures shared across populations, with the former
two showing strong signatures of positive selection particularly in Middle-eastern and
European/Central-south Asian populations. The absence of these strong signatures in
other populations does not mean that selection in those populations should be
discounted, only that the evidence for selection is weaker.

orp < 4.65e7°). 21 of the 40 populations show at least one MA-gene

Table 3.3: Populations and their MA-genes with p-values below the multiple testing
threshold of 4.65e~° (given in bold). Given alongside their associated micronutrient
and accompanied by the p-value calculated by the other method to identify selection.

Population Gene Micronutrient Relate Fgr
Significance | Significance
San GALNT3 phosphorus 0.0849 3.5e-6
Mandenka ATP2B2 calcium 0.000187 7.75e-8
Palestinian SLC12A1 sodium, 0.000137 6.37e-7
chloride,
potassium
THRB iodine 3.23e-6 0.00159
Druze SLC12A1 sodium, 3.61e-05 2.97e-7
chloride,
potassium
PDE7B phosphorus 0.000586 8.16e-7
Bedouin SLC12A1 sodium, 0.00571 1.25e-6
chloride,
potassium
Adygei SLC12A1 sodium, 0.00481 2.01e-6
chloride,
potassium
Bergamoltalian- SLC12A1 sodium, 0.0128 1.58e-6
Tuscan chloride,
potassium
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PDE7B phosphorus 0.000678 2.92e-6
Sardinian ATP2B2 calcium 2.10e-7 0.000969
PDE7B phosphorus 0.00366 7.02e-7
Basque SLC12A1 sodium, 0.000855 2.00e-6
chloride,
potassium
PDE7B phosphorus 0.00522 2.00e-6
HIF1A iron 2.43e-6 0.000249
French SLC12A1 sodium, 7.65e-7
chloride,
potassium
SCNN1D sodium, 1.87e-6 0.000684
potassium
PDE7B phosphorus 0.000500 4.28e-6
Orcadian PDE7B phosphorus 0.00194 2.24e-6
Russian SLC12A1 sodium, 0.000519 1.40e-6
chloride,
potassium
SLC4A5 sodium 3.83e-6 0.000160
Makrani SLC39A11 zinc 1.40e-6 0.0003304
SLC39A4 zinc 0.0934 3.95e-6
Balochi SLC12A1 sodium, 0.0129 1.76e-6
chloride,
potassium
Brahui SLC12A1 sodium, 0.00106 1.07e-6
chloride,
potassium
MECOM magnesium 1.26e-6 0.000225
PDE7B phosphorus 0.000618 1.53e-6
Kalash SLC12A1 sodium, 0.0504 2.56e-6
chloride,
potassium
Uygur FXYD2 magnesium 2.80e-6 0.00923
Yakut FTMT iron 3.37e-6 0.000827
Han SLC30A9 zinc 0.00228 3.55e-6
She-Miao-Tujia MLN phosphorus 4.27e-6 0.00460
Pima ATP2B2 calcium 9.06e-6 0.00253

A MA-gene may still be considered a candidate for positive selection if consistently
ranking amongst the MA-genes with the strongest evidence of selection over many
populations, even if not reaching the multiple testing threshold within a single
population. Hence, I also isolate the top-ranking MA-genes for each population and
compare amongst all populations (Table $3.12-13). Many populations share the same
MA-gene as that with the top-ranking evidence of positive selection, to the extent that
only nine different MA-genes are represented as the top-ranking MA-gene across all
non-African populations (according to the Fg signatures of positive selection). This
includes SLC12A1 and PDE7B, but also the zinc-associated SLC30A9 and SLC3944, across
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many and all Asian populations, respectively. The highest-ranking MA-genes according
to the Relate selection values are more variable, but PRKG1 (selenium-associated, with
the strongest signature of selection over four East Asian populations), ATPZBZ, SLC8A3
and SLC8A1 (calcium-associated), SLC39A11 (zinc-associated) and HIF1A (iron-

associated) are also shared as the highest-ranking MA-gene over multiple populations.

Hence, [ present these genes as strong candidates for mediating micronutrient-
associated adaptation shared across multiple populations. I particularly suggest
SLC12A1, PDE7B, SLC30A9, SLC39A4, ATP2B2, SLC3A11 and HIF1A as likely candidates of
positive selection since, alongside the sharing of top-ranking signatures of positive
selection amongst populations, they bypass the most stringent threshold in at least one
population (see Table 3.3).

Finally, I consider the MA-genes which show signatures of positive selection shared
across many populations but do not reach either the most stringent threshold or rank as
exhibiting the strongest evidence within a population. MA-genes identified here, but not
by the previous two criteria, may still represent candidates for monogenic adaptation,
but I propose that their slightly weaker signatures of positive selection could more
likely represent their role in mediating oligogenic adaptation shared across populations.
In total, 49 MA-genes show Relate or Fgr signatures of positive selection in ten or more
populations (Fig. 3.8, Table $3.14), which is the final set of candidate genes mediating
adaptation shared across populations in response to micronutrient-associated
pressures, either at the monogenic or oligogenic level.

Of these, EEFSEC, PRKG1 (selenium-associated), SLC39A11, SLC39A4, SLC30A9, GPR39,
SLC39A11 (zinc-associated), ATP2BZ2 (calcium-associated), AQP6 (chloride-associated),
DCDC1 (magnesium-associated), PDE7B (phosphorus-associated), TSHR (iodine-
associated) and SLC12A1 (sodium, potassium and chloride-associated) share signatures
of positive selection identified by Fg; in 20 or more non-African populations, thereby
showing shared unusual differentiation to the African Yoruba population. There are
limited signatures of positive selection identified by Fsr calculated between Yoruba and
the remaining African populations for these same genes, hence these signatures may
represent shared positive selection acting on a non-African common ancestor (rather
than on positive selection acting on Yoruba). In support of a singular selection event, |
also observe that it is the same SNP identified as having the strongest evidence of
positive selection in over 10 populations in SLC39411 (rs11077654; in 10 populations
according to Relate), SLC39A4 (rs1871534; in 35 populations according to Fgr), PDE7B
(rs7753890; in 35 populations according to Fgr) and SLC12A1 (rs2413887; in 18
different populations according to Fsr). I therefore propose that SLC39411, SLC39A4,
PDE7B and SLC12A1 are the strongest candidate genes for mediating micronutrient-
associated adaptation surrounding or swiftly following the Out-of-Africa migration.

3.5. Discussion

Diet is highly variable across human populations, dictated by food availability, culture
and soil geology (Xia et al. 2005; Tishkoff et al. 2007a; Minster et al. 2016; Hengl et al.
2017; Dhaliwal et al. 2019; De Groote et al. 2021). It has long been known that diet has
played a role in human evolution (Osier et al. 2002; Han et al. 2007; Perry et al. 2007;
Tishkoff et al. 2007a; Fumagalli et al. 2015; Schlebusch et al. 2015; White et al. 2015;
Zhang et al. 2015a; Roca-Umbert et al. 2022), but the extent and dynamics of the selective
impact of many dietary components remains unknown. Micronutrients are an essential
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component of the human diet which, alongside their variability across global soils (Xia et
al. 2005; Hengl et al. 2017; Dhaliwal et al. 2019; De Groote et al. 2021) makes them a
strong candidate for driving local adaptation in modern humans.

Here, | present the first study to comprehensively investigate adaptation in response to
the levels of 13 essential micronutrients across 40 modern human populations spanning
every major area of the globe. Using the manually curated novel gene sets associated with
each micronutrient, totalling 276 genes, | am able to evaluate the evidence of positive
selection at the level of the entire MA-gene set, each individual MA-gene set and at the
level of individual MA-genes. Hence, I am able to comprehensively evaluate the
hypothesis that adaptation to micronutrients has driven genetic adaptation in modern
human populations, either at the strictly local or at the more global scale.

3.5.1. Evidence for Micronutrient-Associated Adaptation

Firstly, signatures of natural selection are present across all micronutrient categories,
and observed in all 40 of the global populations. There is a significant excess of signatures
of positive selection across the entire MA-gene set in the majority of populations (Section
3.4.1), as well in individual MA-gene sets (Section 3.4.3). These excesses of signatures
of positive selection, the co-occurrence of signatures of positive selection amongst many
genes within functionally-related gene sets (Section 3.4.3-4), and the strong signatures
of positive selection identified in individual MA-genes (Section 3.4.5) suggest the
presence of, perhaps extensive, adaptation in modern humans associated with
micronutrients.

Moreover, the geographical distribution of the signatures of positive selection are often
supported by known soil deficiencies and toxicities across localities (Silvertooth et al.
2001; Vyshpolsky et al. 2008; Hurst et al. 2013; Ryan et al. 2013; White et al. 2015; Nell
and van Huyssteen 2018; Hou et al. 2022). Previous studies have identified relationships
between the signatures of positive selection and the environment of candidate
populations (i.e., the soil levels of the relevant micronutrient), some of is recapitulated
here (Hurst et al. 2013; White et al. 2015; Zhang et al. 2015a). I also identify additional
novel cases where the signatures of positive selection within certain populations are
supported by the known soil composition of their respective environment (see Section
3.5.3-4). Since the micronutrient composition of local soil affects the levels of
micronutrients uptaken in the diet, this study provides preliminary link between this
selective driver and signatures of micronutrient-associated adaptation.

3.5.2. Polygenicity of Micronutrient-Associated Adaptation

[ find no significant evidence for classical models of polygenic adaptation for the genes in
the micronutrient-associated gene sets. Rather, I suggest that micronutrient adaptation
is likely often oligogenic in nature. In particular, this is likely for adaptation in response
to selenium, calcium and zinc dietary levels given that these gene sets repeatedly show
high numbers of genes exhibiting signatures of selection, but none at the level of
documented cases of human polygenic adaptation (Pritchard etal. 2010; Daub etal. 2013;
Berg and Coop 2014; Field et al. 2016; Berg, Harpak, et al. 2019; Berg, Zhang, et al. 2019)
or across the majority of genes with a gene set (Section 3.4.3).

The limited signatures of polygenic adaptation are due to one of two reasons. The first is
that there is indeed limited selection over each micronutrient gene set due to deleterious
pleiotropy, which can limit the adaptative potential of some genes. Since many of the MA-
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genes within each gene set have a multitude of roles surrounding not only micronutrient
regulation (Monteiro et al. 2015), it is likely that such pleiotropy constrains polygenic
adaptation within these gene sets.

In contrast, the limited signatures of polygenic adaptation observed may simply reflect
the limitations of the methods used in this study. In Chapter 2, Fg; and Relate are shown
to have the highest power to identify local adaptation mediated by standing variation at
both the monogenic and polygenic level (compared to haplotype-based methods to
identify positive selection) but this power is still limited in some populations and for
more recent selection. Indeed, using the best inferred method is not synonymous with
identifying all signatures of positive selection, and I can only suggest that more true
signatures of positive selection have been identified than if using such tested haplotype
methods.

Still, it remains that the evidence for positive selection identified in the selenium, zinc and
calcium gene sets, amongst other micronutrients, is dominated by strong signatures on
only a few functionally-related genes. Hence, and in consideration of the above
limitations, 1 propose that the term oligogenic adaptation is better suited when
addressing adaptation to micronutrients in modern humans. This is as a generalisation
of the observed signatures of positive selection across micronutrients and populations,
and polygenicity of adaptation amongst MA-gene sets and populations is likely more
intricate than can be fully appreciated in a study of this design.

3.5.3. Candidate Populations under Oligogenic Adaptation

[ first identify populations as the most likely to have undergone micronutrient-associated
adaptation under the assumptions of oligogenic adaptation (populations with MA-gene
sets showing a higher number of genes exhibiting signatures of positive selection are
more likely to have undergone adaptation in response to a micronutrient-associated
selective force). This approach also allows the implicit comparison of the likelihood of
micronutrient-associated adaptation amongst populations, as well as ranking the
likelihood of adaptation to each micronutrient within each population. This is as a
powerful method to consider natural selection amongst different populations and
functionally-related gene sets.

Here I outline the MA-gene sets which show multiple signatures of positive selection
amongst different genes in populations which live on soils with toxic or deficient levels
of the micronutrient of interest. Discussion of the molybdenum gene set (which shows an
excess of significant SNPs across a number of populations, isolated to two genes) is
omitted here, given that the levels of molybdenum in soils and molybdenum
deficiency/toxicity in humans is so poorly categorised.

There is an enrichment of signatures of positive selection amongst selenium-associated
genes in East Asian populations (Xia et al. 2005). These signatures agree with previous
studies, which have suggested polygenic or oligogenic adaptation in selenium
metabolism in East Asian populations (White et al. 2015). I also identify enrichment of
selenium-associated signatures of positive selection in African populations, who too live
on selenium deficient soil, particularly in Malawi (Hurst et al. 2013; Ibrahim et al. 2019;
Ligowe et al. 2020). Hence, this is in support of selenium-deficient soils driving signatures
of positive selection in multiple selenium-associated genes, and suggest parallel
adaptation to selenium-associated selective pressures amongst these two
metapopulations.
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The phosphorus-enriched signatures of positive selection of the American Pima
population, who live on what is now Arizona, also co-occur with known phosphorus
deficiencies in the local soil (or more accurately, co-occur with the low bioavailability of
phosphorus from calcareous soil (Silvertooth et al. 2001; von Wandruszka 2006)).
Salinity in African soils has been known to be highly variable and reaching both the
deficient and toxic level (Nell and van Huyssteen 2018; Shahid et al. 2018; Hassani et al.
2021), potentially driving the observed adaptive signatures in various African
populations. Still, it is difficult to confidently infer how much of contemporary soil
deficiencies of either phosphorus or chloride is due to recent agricultural practices (see
Section 3.5.6; (Nell and van Huyssteen 2018; Shahid et al. 2018; Dhaliwal et al. 2019;
Hassani et al. 2021)).

The Maya population of America also show an unusual excess of signatures of positive
selection in iodine-associated genes, inferred from the number of significant SNPs within
this gene set and the number of individual genes with (top-ranking) signatures of iodine-
associated positive selection. However, there is insufficient soil data to evaluate the if
signatures of positive selection are supported by unusual iodine composition of local soils
here. Still, iodine deficiency is prevalent in Mexico, which encompasses the region of the
Maya population. In the modern Mexican population, the prevalence of goitre, the
swelling of the thyroid gland caused by iodine deficiency, is at 54.6% (Hetzel and
Nutrition 1988). However, no studies have been carried out to establish if there is a lower
prevalence of goitre in the native Maya population (as would be expected under the
proposed iodine-associated adaptation).

[ have presented here the best examples of signatures of positive selection in MA-gene
sets in populations supported by either unusual soil composition or endemic deficiencies
of the associated micronutrient. Since the level of micronutrients across global soils,
particularly at the level of individual population regions, is not comprehensively known,
[ only explore the potential support of some genetic signatures from corresponding soil
micronutrient levels. Moreover, micronutrient-associated deficiencies can also result
from general malnutrition and socio-economic status, and I am cautious in presenting
this data as representing the selective drivers of putative adaptation. A more
comprehensive understanding of local soil environment and susceptibility of
micronutrient-associated disease by ancestry may reveal further informative
correlations of genetic signatures and soil or disease within this dataset.

3.5.4. Candidate Populations under Monogenic Adaptation

Further candidate populations under micronutrient-associated adaptation were
identified as those that show especially strong signatures of positive selection in
individual MA-genes. 21 populations show MA-genes with evidence of selection at the
most stringent threshold (multiple-testing threshold; pvalue < 4.65e7°). This suggests
that selection on individual micronutrient-associated genes can be strong, and
corresponding allele frequency change very quick. This is not only similar to the many
supported cases of monogenic adaptation to diet in humans (Tishkoff et al. 2007;
Mathieson et al. 2015; Schlebusch et al. 2015; Minster et al. 2016; Mathieson and
Mathieson 2018) but also in line with the assessment of limited polygenic adaptation.

[ propose monogenic adaptation (or at least adaptation primarily mediated by one gene)
in response to iron-associated pressures in two populations: the European Basque
population (mediated by HIFIA) and the East Asian Yakut population (mediated by
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FTMT). This agrees with previous studies suggesting iron-associated adaptation in
various Eurasian populations but it remains unclear whether this is driven by the
suggested soil levels, changes to the diet driven by the Neolithic transition or cold
ambient temperatures (Distante et al. 2004; Ye et al. 2015; Heath et al. 2016b, 2016a).

Similarly, I propose magnesium-associated adaptation in two Central-South Asian
populations, which show strong signatures of positive selection in two different
magnesium-associated genes: MECOM in the Brahui and FXYDZ in the Ugyur. Indeed, a
mutation of the FXYDZ2 gene has been linked to hypomagnesemia (Sha et al. 2008),
potentially a consequence of adaptation to the well-categorised magnesium dominant
soil of Central Asia (Vyshpolsky et al. 2008; Karimov et al. 2009). MECOM has not been
explicitly linked to magnesium response, but has been associated with osteoporotic
fractures (Hwang et al. 2013). Since magnesium is associated with bone density and
prevents the onset of osteoporosis (Castiglioni et al. 2013), it is possible that this variant
also confers hypomagnesemia.

Micronutrient-associated adaptation mediated by these genes may occur in populations
other than those with the strongest signatures, but these are not presented here. Similarly,
and analogous to that addressed in Section 3.5.3, many other genes bypassing the most
stringent threshold have been identified, but only those with the strongest supporting
evidence from soil data, functional role or surrounding literature are mentioned here.
Still, the MA-genes bypassing this stringent threshold encompass nine micronutrient
categories, and | suggest that strong local selection in response to micronutrient-
associated selective pressures has indeed played a role in shaping human genetic
variation.

3.5.5. Candidate Genes Mediating Widespread Adaptation

Whilst the signatures of positive selection do suggest that local, rather than more global,
adaptation is more common in micronutrient-associated adaptation, some MA-genes
show strong signatures (often bypassing the most stringent threshold) shared across
multiple populations across the globe, and therefore exhibit evidence of widespread
selection. This includes the zinc-associated genes SLC39411, SLC39A4 and SLC30A9; the
phosphorus-associated gene PDE7B; the calcium-associated ATP2BZ2; and the SLC12A1
gene associated with potassium, sodium and chloride metabolism. Widespread
adaptation has previously been identified in zinc-transporter genes, including SLC3944
and SLC30A9 (Zhang et al. 2015a; Engelken et al. 2016; Roca-Umbert et al. 2022), but
adaptive signatures of the remaining genes in modern humans has not currently been
recorded. Because of their potential importance in human dietary adaptation, I discuss
each of these genes below.

PDE7B is a phosphodiesterase with variants associated with phosphorus serum levels
(Kestenbaum et al. 2010) but primarily identified as playing a key role in cancer
development (Cao etal. 2019; Sun et al. 2020) (and, interestingly, the silkiness of chicken
feathers (Li et al. 2019)). Whilst the contemporary levels of phosphorus are heavily
affected by agricultural practices (Dhaliwal et al. 2019; Alewell et al. 2020), there is a
broad pattern of increased soil phosphorus in non-African environments, perhaps
pertaining to this widespread signature (He et al. 2021).

The solute carrier gene SLC12A1 is less easily associated with one particular
micronutrient, since this gene mediates metabolism and transport of sodium, potassium
and chloride. Still, in this study, its dominant micronutrient association is assigned as
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sodium, since it accounts for much of the salt reabsorption in the kidneys (Markadieu and
Delpire 2014). Mutations in SLC12A1 result in Bartter’s syndrome, which is an autosomal
recessive disorder produced by the removal of too much salt from the body (Gagnon and
Delpire 2013). Given that excess salt results in a significant increase of the risk of high
blood pressure and associated co-morbidities (Hunter et al. 2022), it is possible that such
mutations acting to remove salt may have been adaptive in environments characterised
by hyper-saline soils, which are common at least in contemporary times (Nell and van
Huyssteen 2018; Shahid et al. 2018; Hassani et al. 2021).

The plasma membrane calcium ATPase ATPZBZ plays a key role in human health,
associated with various cardiovascular diseases and deafness, amongst other conditions
(Stafford et al. 2017). It also plays a critical role in intracellular calcium homeostasis and
has also been associated with the calcium absorption pathways of laying hens (Gloux et
al. 2019). However, given its association with multiple human diseases, it is unclear if the
adaptive signatures observed here can be confidently associated with dietary calcium.

Since the signatures of positive selection of these genes are observed over most non-
African populations, it is possible that the observed signatures of positive selection are a
result of adaptation in an ancestral Out of Africa population. Indeed, soil in the Middle-
East has been shown to be both zinc-deficient and hyper-saline (Ryan et al. 2013; Shahid
etal. 2018), potentially driving the suggested widespread selection in the zinc-associated
genes SLC39A11, SLC39A4 and SLC30A9 and the sodium-associated gene SLC12A1. Still, is
also possible that other factors (such as different novel pathogens or temperatures
increasing the selective pressure for pathogen-starvation or thermoregulation (Engelken
et al. 2014; Pietrangelo 2015; Heath et al. 2016a)) drive these shared signatures of
positive selection amongst non-Africans.

3.5.6. Summary

In summary, I show that signatures of positive selection associated with essential
micronutrients exist in many geographic areas and multiple micronutrient categories. I
also suggest that micronutrient-associated adaptation is primarily mediated by the
genetic changes in a small number of micronutrient-associated genes. Known
micronutrient soil levels support proposed adaptation of micronutrient-associated genes,
and micronutrients may have played an important selective role in modern humans,
potentially shaping the genomic variation of our species.

Still, the power of this comprehensive approach also coincides with some key limitations.
This study is a broad overview into the nature of micronutrient-associated adaptation,
but is not able to explore adaptation in specific micronutrient categories at depth. Here, I
only outline the strongest signatures of positive selection in populations with additional
support for micronutrient-associated adaptation (i.e, from known soil composition,
known endemic deficiencies or functional information of individual genes showcasing the
signatures of positive selection), which biases the findings to this available data. Whilst
impossible for a study of this design, individual and in-depth exploration of the signatures
of positive selection identified for each micronutrient will more fully elucidate the role of
individual micronutrients in modern human adaptation.

Moreover, contemporary soil and public health data cannot confidently be said to
represent the ancestral micronutrient-associated selective pressures experienced by a
population, since they are heavily impacted by modern agricultural practices and modern
health inequality (Diamond 2002; Bhutta and Salam 2012; Bailey et al. 2015). The data
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currently available can only evaluate some proposed links between soil as a selective
pressure and proposed adaptation, and agreement between genetic signatures and
micronutrient soil levels cannot be taken as conclusive evidence for adaptation.

It is clear that the signatures of positive selection identified within different
micronutrient gene sets are highly variable, and likely represent a highly dynamic history
of selection across these vital dietary components. This includes variable degrees of
suggested polygenicity, variable geographic distribution of signatures of positive
selection and variable genes suggested to mediate the same micronutrient-associated
selective pressure between different localities. I therefore propose that adaptation in
response to micronutrient-associated pressures present but limited in human
evolutionary history, and highly complex across populations and micronutrient
categories.

3.6. Conclusion

[ infer the likely role of dietary micronutrients as a selective force across human
populations and suggest that the adaptive responses to these selective forces have
contributed to human genetic variation and population differentiation. I provide
evidence that adaptation in response to micronutrients in the diet is most likely at the
monogenic and oligogenic level. I show that in some cases the evidence of genetic
adaptations is supported by local soil geology and suggest the micronutrients, including
individual genes, with the strongest evidence of selection, and of which warrant further
study.
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Chapter 4: Evolutionary History of
Micronutrient-Associated Genes in Modern
Humans

4.1. Overview

Modern human populations have encountered a wide range of selective pressures over
their history, often a result of environmental change, large-scale migrations into novel
environments or cultural changes, some of which are linked to the diet (Perry et al. 2007;
Tishkoff et al. 2007; Naugler 2008; Huerta-Sanchez et al. 2014; Fumagalli et al. 2015;
Schlebusch et al. 2015; White et al. 2015; Engelken et al. 2016; Minster et al. 2016; Key et
al. 2018; Rees et al. 2020). In previous work (Chapter 3),  infer that micronutrient levels
in the diet have acted as a differential selective pressure across human populations and
suggest that micronutrient-associated adaptation has contributed to shaping modern
human genetic variation.

Here, I highlight five micronutrients (zinc, calcium, selenium, iron and iodine) which
show particularly strong evidence for having evolved under natural selection across
human populations, and across associated genes. I use a combination of signatures of
positive selection that were previously identified (Chapter 3), gene network analysis,
haplotype analysis and tree-based methods to explore the nature of putative selection
events. This includes investigating the co-occurrence of signatures of positive selection
on candidate genes across populations and inferring the most likely geographical origin
and time of onset of proposed positive selection. Inferring the latter allows the suggestion
of putative main selective drivers of micronutrient-associated adaptation, and how they
may vary over populations and micronutrients.

[ suggest that the same small groups of genes often mediate micronutrient-associated
adaptation across populations, with additional genes further contributing to an adaptive
response in some individual populations. However, I also identify outliers to this general
trend, where different populations appear to mediate such adaptation via different
groups of micronutrient-associated genes. From the geographical distribution of
signatures of natural selection and the estimated timeframe or origin of positive selection,
[ propose that soil levels have largely driven adaptation in response to micronutrient
levels, but identify potential examples of micronutrient-associated adaptation more
closely surrounding the Neolithic transition, providing some evidence for the role of more
recent dietary change in driving micronutrient-associated adaptation.

4.2. Background

Modern humans have been exposed to a plethora of selective pressures throughout their
evolutionary history, particularly those pertaining to pathogens, diet and abiotic
environmental factors like UV exposure or temperature (Perry et al. 2007; Tishkoff et al.
2007; Vernot and Akey 2014; Schlebusch etal. 2015; White et al. 2015; Minster etal. 2016;
McManus et al. 2017; Key et al. 2018; Rees et al. 2020). Moreover, these selective
pressures are often differentially exerted across populations, a by-product of our species
unique colonisation of global and highly varied, sometimes extreme, environments
(Ilardo and Nielsen 2018).
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Such selective pressures can result in population-specific adaptations (Savolainen et al.
2013), which leave complex signatures of natural selection on modern genomes (Sabeti
et al. 2006; Pritchard et al. 2010; Rees et al. 2020). Many studies have focused on
identifying these signatures in populations across the globe (Sabeti et al. 2002; [lardo and
Nielsen 2018; Rees et al. 2020), resulting in a catalogue of suggested local adaptation
targets in modern humans and, for some putative targets, their respective drivers of
selection. Still, in many cases, the exact dynamics of selection, such as the onset or
selective pressure, remain a question.

There has been some success in linking environmental or cultural pressures to identified
signatures of natural selection across populations. For example, signatures of selection
identified in genes associated with hypoxia resistance in populations living at high
altitude or frequent diving (Ilardo et al. 2018), arsenic-resistance in an Argentinian
population living on arsenic-toxic soil (Schlebusch et al. 2015) or temperature-sensation
across populations living at northern latitudes (Key et al. 2018). However, in many cases,
the selective pressures driving adaptation are still under debate. This includes the nature
of the selective pressure(s) driving signatures of positive selection on genes associated
with short stature in some rainforest populations, proposed to be driven by
thermoregulatory pressures, locomotory advantages or a consequence of adaptation to
iodine-deficiency (Herraez et al. 2009; Perry and Dominy 2009; Venkataraman et al.
2018); strong signatures identified in the EDAR gene in East Asian populations associated
with hair thickness, tooth and ear shape, sweat gland density and chin protrusion, but
with no clear selective driver (Sabeti et al. 2007; Fujimoto etal, 2008; Adhikari etal, 2015;
Reyes-Reali et al, 2018, Speidel et al. 2019, Kataoka et al, 2021); and even the strong
signatures upstream of the LCT conferring lactase persistence in European and African
populations, long associated with the Neolithic transition but with frequency increases
appearing to be considerably younger (Gerbault et al. 2011; Sverrisdéttir et al. 2014;
Mathieson et al. 2015; Burger et al. 2020; Evershed et al. 2022).

4.2.1. Micronutrients as a Selective Pressure

Adaptation in response to micronutrient levels and metabolism has been identified in
human populations in previous work (Engelken et al., 2014, 2016; Herraez et al., 2009;
Kovacs etal,, 2013; Whiteetal,, 2015; Yeetal., 2015; Zhang et al,, 2015a), and in the work
described in Chapter 3. This adaptation has been suggested to be driven by various
factors, most commonly the content of micronutrients in local soil (thereby the levels
being absorbed into the diet through consumed plant and animal matter) or cultural
evolution of the diet.

Indeed, much of the current collection of work has proposed that the putative
micronutrient-associated adaptation is driven by the micronutrient levels in local soil,
particularly relating to selenium, zinc and iodine-metabolism in previous literature (Cifor
2006; Herraez et al. 2009; Hurst et al. 2013; White et al. 2015; Zhang et al. 2015a) and
selenium, magnesium, phosphorus and chloride-metabolism in the work described in
Chapter 3. Endemic pathologies, particularly when partnered with accompanying soil
data, can also be assumed to be a by-product of insufficient soil concentrations or
decreased bioavailability of trace minerals, and may also reflect a soil-related selective
pressure (Cifor 2006; von Wandruszka 2006; Hurst et al. 2013), as is suggested in
Chapter 3 in regards to putative adaptation in response to iodine.
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Still, the extent of the role that local soils have played in driving micronutrient-associated
signatures of positive selection remains a question for many individual cases of putative
micronutrient-associated adaptation. For example, previous studies have noted the
widespread signatures of adaptation of zinc-transporter genes in European populations
(Engelken et al. 2014; Zhang et al. 2015a; Roca-Umbert et al. 2022), which is also
suggested in Chapter 3. It is currently unclear if the shared signatures of positive
selection across European populations in zinc-transporter genes reflect convergent
adaptation to many different soils inhabited by non-African populations, or an adaptation
to a soil environment inhabited by a common non-African ancestral population. In the
latter case, this soil environment may be that within the Middle-East, since these were
the environments colonised by migrating human populations Out-of-Africa (Ryan et al.
2013).

Signatures of positive selection identified in micronutrient-associated genes may instead
be driven by selective pressures other than micronutrient level (or more explicitly,
bioavailability) in local soils. Cultural changes and differences in diets amongst
populations may affect the levels of certain micronutrients consumed, and, in theory,
impose selective pressures in maintaining optimum intake or metabolism of
micronutrients. The Neolithic transition, beginning approximately 10kya, resulted in
major changes in human societies, including those relating to food growth and acquisition
(Dobrovolskaya 2005; Perry et al. 2007; Naugler 2008). In particular, the Neolithic
transition and switch to agriculture has been associated with reduced iron and calcium
in the human diet, amongst other key micronutrients (Diamond 2002; Naugler 2008;
Gerbault et al. 2011). Agricultural practices also deplete soils of many micronutrients,
including zinc, copper and iron (Diamond 2002; Dhaliwal et al. 2019), which may act as
an additional driver of adaptation in micronutrient metabolism in more recent human
history.

Other suggested selective drivers of micronutrient-associated adaptation include
pathogen stress and temperature regulation (see Section 1.7.3). Hence, whilst many
selective drivers have been suggested to explain proposed micronutrient-associated
adaptation, there remains no clear consensus on many individual cases.

4.2.2. Timepoint and Polygenicity of Micronutrient-
Associated Adaptation

Alongside pinpointing the exact selective driver behind proposed micronutrient-
associated adaptation, the timepoint and polygenicity of micronutrient-associated
adaptation should also be considered. In particular, the timepoint of positive selection
acting on micronutrient-associated genes is particularly interesting for two main reasons:
1) no study has explicitly investigated the timepoint of proposed micronutrient-
adaptation and 2) the timepoint of the onset of selection and the selective driver are
intrinsically linked. If the onset of selection can be accurately inferred, this facilitates the
identification of plausible selective drivers, such as micronutrient-deficient or toxic soils
inhabited by a common non-African ancestral population (or other environmental stress,
such as pathogen load, experienced by a common non-African ancestral population),
more recently colonised soils (or more recently encountered environmental stress), or
even more recent Neolithic changes to diet or agriculture.

The number and identity of genes that may contribute to adaptation in response to
micronutrient levels is also an interesting and important question. Signatures of positive
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selection do not stretch over the entire micronutrient gene sets, and I propose that the
adaptation across many sets of micronutrient-associated genes is likely to be oligogenic
rather than polygenicin nature (Chapter 3). Still, given the nature of the study in Chapter
3, this remains only a broad overview and remains to be fully investigated.

4.2.3. Focal Micronutrient-Associated Gene Sets

In this study, I focus on five individual micronutrient-associated gene sets, which allows
a more in-depth analysis, and consequent understanding, of the signatures of positive
selection identified on these micronutrient-associated genes. By choosing to explore
adaptation in response to only five micronutrients, I am also more clearly able to compare
the signatures of positive selection amongst different micronutrient-associated genes
and contextualise the inferences.

[ focus on the gene sets associated with zinc, calcium, selenium, iron and iodine, chosen
for two main reasons (as informed by the work undertaken in Chapter 3). The first is
that these gene sets show some of the strongest evidence of positive selection (according
to the signatures of positive selection across multiple genes; signatures of positive
selection in the same gene(s) shared across many populations; or signatures of positive
selection in individual gene(s) which bypass the most stringent threshold). The second is
that the signatures of positive selection in these micronutrient-associated gene sets vary
in their geographic range, with some signatures of positive selection isolated in individual
populations, where others are shared across continental groups. Hence, these gene sets
demonstrate geographical breadth of signatures of positive selection and proposed
selection. A final, additional reason is that, in comparison to other micronutrients, there
is also relatively more data about the global soil concentrations of these micronutrients
than others (e.g., zinc, selenium, iron and iodine), which can provide supporting evidence
to the claim of natural selection (Xia et al. 2005; Cifor 2006; Herraez et al. 2009; Hurst et
al. 2013; Ryan et al. 2013).

These highlighted micronutrients are also particularly relevant to human health, with
deficiencies of zinc, iodine and iron being the most common across the globe (25% of the
world’s population expected to be affected by either iron or iodine deficiency and 17% at
risk from zinc deficiency (Bhutta and Salam 2012; Bailey et al. 2015; Khan et al. 2022)).
Calcium and selenium deficiencies are also common, with dietary levels of calcium being
estimated as deficient in approximately 50% of the world’s population (Shlisky etal. 2022)
and selenium deficiency affecting up to one billion people worldwide (Jones et al. 2017).
In some populations, deficiencies of any of these five micronutrients are so common that
they result in endemic pathologies, such as is the case with iron-associated anaemia and
iodine-associated goitre (recorded across multiple global populations (Kelly and
Snedden 1960; Dormitzer et al. 1989; Manning et al. 2012; Stevens et al. 2022)), and the
cardiomyopathies and bone disorders recorded in selenium-deficient areas of China (Xia
et al. 2005).

4.2.4. Study Overview

Using the results in Chapter 3, I first explore and compare the geographic distribution of
the strongest signatures of positive selection in each micronutrient set and identify which
genes have the strongest evidence of selection amongst global populations. [ then explore
and compare the proposed oligogenic adaptation in genes associated with zinc, calcium
and selenium, and how the groups of genes that mediate micronutrient-associated
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adaptation may differ across the globe. I also ask if the signatures of positive selection
shared over many global populations, primarily in zinc, calcium and selenium-associated
genes, are most likely driven by the same ancestral selective pressure. With this, I suggest
which genes may have undergone adaptation swiftly following or surrounding the Out of
Africa migration (Soares et al. 2012; Haber et al. 2019; Tucci and Akey 2019). Finally, I
infer the most likely onset of selection for calcium and iron-associated genes and suggest
whether changes in the diet related to the Neolithic transition (Dobrovolskaya 2005;
Naugler 2008) or migrations into environments with varying soil levels have most likely
driven this suggested selection.

The signatures of positive selection in zinc, selenium and calcium-associated genes form
networks of only a few genes which are often shared by multiple individual populations,
globally or within the same metapopulation. In contrast, the signatures of positive
selection on iron and iodine-associated genes appear more unique to individual
populations, and suggest that associated adaptation is more locally concentrated across
populations. Finally, I suggest that the geographic and temporal origins of adaptation in
response to micronutrient-levels are highly varied. Ultimately, I propose that both
migrations into new environments, and corresponding novel soil composition, and recent
agricultural and dietary change have played a role in shaping the adaptive response of
micronutrient-associated genes across modern human populations.

4.3. Methods
4.3.1. Datasets
4.3.1.1. The Micronutrient-Associated Genes Dataset

[ use gene-sets associated with the uptake, regulation and metabolism of the trace
minerals selenium (n=61), zinc (n=46), iron (n=44), and iodine (n=18) and the
macromineral calcium (n=23). The literature and databases used to curate these gene
sets are described in Section 3.3.1. Zinc, calcium, selenium, iron and iodine-associated
genes are hereafter referred to as ZCSlI-associated genes. The abbreviation MA-genes
(micronutrient-associated genes) and pMA-genes (proxy micronutrient genes, which act
as the neutral background see Section 3.3.1.2) are also used in this chapter.

Following the application of a positive mask that removes segments of the genome of low
reliability (see section 3.3.3 (Bergstrom et al. 2020)), 182 genes remain (176 of which
are autosomal; see Table S4.1). Five genes are associated in the literature with two of
these micronutrients: SLC11A1 is associated with both iron and zinc; DIO1, DIOZ2, DIO3
and SECISBPZ are associated with both selenium and iodine.

[ verify that the SNPs in these gene sets do not have a significantly different allele
frequency distribution compared to the genomic background inferred from chrl of the
Yoruban individuals (see Table $3.3 and Section 3.3.1.1). In terms of SNP density, five
genes have high SNP density when compared to the generated pMA-gene regions (see
Section 3.3.1.2, Table S3.4): SELENOO (selenium-associated), EPAS1 (iron-associated,
introgressed from Denisovans in East Asians (Huerta-Sanchez et al. 2014)), MT1A and
MT1F (zinc-associated) and SLC8A1 (calcium-associated). Finally, according to Ensembl
(Yates et al. 2020), eleven of the ZCSII-genes overlap or are less than 10kbp apart: the
zinc-associated genes MT1F, MT1G and MT1H, the zinc-associated pair CAI and CA3, and
the selenium-associated pairs of genes of LHFPL2 and ARSB, DMGDH and BHMTZ2, GPx5
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and GPx6 (see Table S3.3.2). Any signatures of positive selection in these overlapping
gene regions are therefore treated as possible signatures for either gene region.

4.3.1.2. The Population Dataset

[ use a dataset of 913 individuals from the HGDP dataset (as published by (Bergstrom et
al. 2020)), including populations in Africa, the Middle-East, Europe, East Asia, Central-
South Asia, Oceania and the Americas, as described in Chapter 3. These individuals are
grouped into 40 populations (see Table S3.6, Fig. 3.1), either from the populations
specified from (Bergstrom et al. 2020) or following population analysis and geographic
proximity (see Section 3.3.2, Fig. $3.3-9, $3.10-13).

4.3.2. Methods to Identify Positive Selection

The methods to identify signatures of positive selection are identical to those described
in Chapter 3: Relate (Speidel et al. 2019) and Fg; (as calculated for all population
combinations with Yoruba, as well as for all population pairs within Africa (Weir and
Cockerham 1984)). All information on these methods, pre-processing and filtering are
given in Section 3.3.3.

As a brief summary, SNPs are extracted from the candidate genes (and their 10kb regions
up- and downstream) which fall in the 0.1% tail of either the Fg; and Relate empirical
genome-wide background and treat those SNPs as having evidence for selection. Here, I
also identify SNPs which fall in the 0.01% tail of either the Fg; and Relate empirical
distribution, and assign those SNPs as having strong evidence for selection of which to
focus the analysis. Analogous to Chapter 3, I also extract SNPs which exhibit signatures
of positive selection at the multiple-testing threshold of 4.65 X 107° used in Section
3.4.5, which is the most stringent threshold and identifies the SNPs with strongest
evidence of selection in this study.

4.3.3. Gene Networks

Gene networks are built to identify which genes frequently share signatures of positive
selection in the same populations. To do so, I first identify pairs of genes that share
signatures in the 0.1% tail of the Relate empirical distribution for two or more
populations. Here, I only consider signatures of positive selection according to Relate to
avoid simply capturing groups of genes that are differentiated from the Yoruba
population. Gene networks are then built using the GGally package in R (Schloerke et al.
2021), where genes are connected if they share signature of positive selection in two or
more populations and the strength of the connection is proportional to the number of
populations in which their signatures co-occur.

4.3.4. Haplotype Networks

Haplotype networks are built surrounding focal, candidate SNPs using POPART (Leigh
and Bryant 2015). For genes that [ identify as having strong evidence of positive selection,
[ assign focal SNPs as those with the evidence of positive selection shared over the highest
number of populations or those representing regions of the candidate gene with clusters
of signatures of positive selection (according to both Fg; and Relate evidence of selection;
see Table S$4.2).1 choose to manually assign focal SNPs using this criterion, rather than a
systematic approach, since any one criterion does not best represent the SNPs with the
strongest evidence of selection across all genes of interest.
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[ then extract regions of 10kb and 20kb around these focal SNPs (masking genomic
regions with low reliability (as inferred by (Bergstrom et al. 2020)), filtering for sites with
MAF < 0.05, removing indels and only retaining biallelic sites) and phase these regions
with SHAPEIT?2 (Delaneau et al. 2013). The phased files are then reformatted to the
required input file format of POPART (Leigh and Bryant 2015), of which are used to build
a median joining tree network.

4.3.5. Inferring Time of Selection

[ infer the timing of selection on iron and calcium-associated genes to address the
hypothesis that recent changes to the diet (i.e,, those surrounding the Neolithic transition)
drove putative iron and calcium-associated adaptation. I first reconstruct the allele
trajectories of focal SNPs of the iron and calcium-associated genes that are identified as
having the strongest evidence of selection. Here, focal SNPs are identified as outlined in
Section 4.3.4 (see Table S4.3).

[ estimate the onset of selection using two programmes: Relate (Speidel et al. 2019) and
CLUES (Stern et al. 2019). CLUES estimates the timing and strength of selection using a
hidden Markov model, treating inferred local trees as the observed state and the allele
frequency trajectory as the hidden state. Before using this programme, I reformat the
inferred genealogies generated using Relate into the CLUES input format newick, which
resembles the format of ARGWEAVER (Rasmussen, Hubisz, et al. 2014). I then use
CLUES to infer allele frequency across time, and jointly estimate the strength and
likelihood of selection beginning at 500, 1000, 1500 and 2000 generations ago
(corresponding to 14kya, 28kya, 42kya and 56kya when using a generation time of 28
years (Speidel et al. 2019)) for each focal SNP. Here, log-likelihoods of over 4 are treated
as moderate evidence of selection, in line with previous literature (Stern et al. 2019). |
then use Relate to trace the focal SNP’s frequency across its lifetime and infer the
timepoints surrounding striking frequency increases to evaluate the inferences from
CLUES.

4.4. Results
4.4.1. Adaptive Signatures Across Micronutrients

Since there is limited evidence of polygenic adaptation (see Chapter 3), [ first explore the
geographical distribution of the strong signatures of positive selection on individual
genes for each MA-gene set. In the following sections, the geographic distribution of the
signatures of positive selection over each ZSClI-associated gene set are briefly recapped
and compared (see Fig. 4.1, Fig. 4.2; full lists of genes with signatures in the 0.1% tail of
the empirical distributions of Fsr and Relate are given in Tables $4.3-13). I then verify
if stronger signatures of positive selection maintain this geographic distribution. To do
so, | identify SNPs that are in the 0.01% tail of the empirical distributions of Fg¢; and
Relate (i.e., using a threshold that is a magnitude more stringent), as well as those with
signatures at the most stringent threshold as used in Chapter 3 (4.65 x 107° ; see
Section 3.4.5).

The strongest signatures of positive selection are discussed, including what they suggest
regarding the degree of polygenicity and geographic range of proposed adaptation, for
each micronutrient gene set below. I also consider if the strongest signatures of positive
selection isolated to a small number of populations are likely to be truly representing
ultra-local selection events, or if there is only power to identify the signatures of positive
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selection in certain populations. To evaluate this, I ask if the genes with the strongest
signatures of positive selection have signatures in the less stringent 1% tail of the
empirical Relate distributions in other populations. Here, I only explore the signatures of
positive selection inferred by Relate since the signatures inferred by Fgr simply identify
genes that are highly differentiated from the Yoruba population, and therefore are less
geographically informative.
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Fig. 4.1: Number of ZCSII-genes with Relate signatures of positive selection.
Signatures of positive selection (SNPs in the 0.1% tail of the Relate empirical distribution)
for each population, given separately for genes associated with zinc, calcium, selenium, iron
and iodine. Population names are given in the top left map.
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Fig. 4.2: Number of ZCSII-genes with F ¢ signatures of positive selection. Signatures
of positive selection (SNPs in the 0.1% tail of the Fsr empirical distribution) for each
population, given separately for genes associated with zinc, calcium, selenium, iron and
iodine. Population names are given in the top left map.

4.4.1.1. Zinc

In comparison to all other ZCSII-associated gene sets, the zinc-associated gene set (n=46)
shows the highest number of genes with signatures of positive selection shared amongst
many populations (Tables S4.4-5)). Of these zinc-associated genes, 16 show strong
signatures of selection (Table 4.1). Many of these genes are zinc-transporters (e.g.,
SLC39A4, SLC30A9, SLC39A11, SLC39A12, SLC30A7, SLC30A8, SLC30A1, SLC39A10,
SLC39A14 and SLC30A10, see Table 4.1), with three exhibiting significant signatures at
the most stringent threshold (pvalue < 4.65 x 107%). GPR39, not a zinc-transporter gene,
but associated with zinc-dependent signalling, also exhibits signatures of positive
selection in all metapopulations bar Oceania, hence also presenting strong evidence for
selection (Table 4.1).

For some of these candidate genes, the signatures of positive selection appear to be
isolated to only one population, suggesting that either selection is ultra-local, or the
thresholds are so stringent that nearly-significant signatures of positive selection in
nearby populations are missed. When I consider those nearly-significant signatures
(those in the 1% tail of the empirical distribution of Relate), all zinc-transporter genes
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highlighted here (none of which are genomic neighbours) have nearly-significant or
significant signatures of positive selection in more than 12 populations (Table 4.2).
Given that these significant or nearly-significant signatures of positive selection are
shared amongst many populations, and are observed in a functionally-related gene set
previously shown to have an excess of significant SNPs according to both Relate and Fyr
(Chapter 3), I therefore suggest that this is indicative of widespread adaptation in
response to a zinc-associated selective pressure.

I now consider the genes with strong signatures of positive selection, inferred either from
Relate or Fgr, across many populations (Table 4.1), and are therefore the strongest
candidates for widespread adaptation: SLC39A44, SLC30A9, SLC39A11 and GPR39. For
three of these genes, SLC39A44, SLC30A9 and GPR39, the widespread strong signatures of
positive selection are inferred from Fg; (SLC39A4 across almost all Eurasian populations;
SLC30A9 across almost all East Asian and some Central-South Asian populations; GPR39
across many European and Central-South Asian populations (Table 4.4.1). In two
instances, the evidence of positive selection bypasses the most stringent threshold
(pvalue < 4.65 x 107%) : SLC39A4 in the Makrani (Fg; pvalue = 3.95 X% 107 ) and
SLC30A9 in the Han (Fgr pvalue = 3.55e x 107°).

There is no evidence of positive selection for SLC3944, SLC30A9 or GPR39 within Yoruba
as inferred by Relate (pvalues are not within the 0.1% or 1% tail of the empirical
distribution), and therefore the differentiation from Yoruba, as captured by Fg; , is
unlikely to represent selection within the Yoruba population. There are also no significant
signatures of positive selection inferred for any of these three genes in any other African
populations according to Relate, with the exception of GPR39 identified within the 0.1%
tail of the empirical distribution in the Mbuti population. Hence, I suggest that that the
strong signatures of positive selection identified in these particular zinc-associated genes,
which reach the most stringent threshold in two instances, are most likely a signal of Out-
of-Africa positive selection in response to zinc.

The final zinc-associated candidate for widespread adaptation, SLC39A411, has strong
signatures of positive selection amongst many populations, as inferred using Relate
rather than Fg;. Again, the strongest signature is captured in the Makrani population
(pvalue = 1 x 107%), but there are significant and nearly-significant signatures of
positive selection amongst the majority of populations (see Table 4.2).1also then suggest
that the signature of positive selection identified in the Makrani is not indicative to an
ultra-local selection event, but is simply the strongest identified signature of a
widespread selection event.

Hence, 1 suggest that zinc-associated adaptation, primarily mediated by the zinc-
transporter genes given in Table 4.1, is most likely a result of widespread selection. This
is most likely a selection event in the ancestors of non-Africans, and present SLC3944,
SLC30A9, SLC39A11 and GPR39 as the strongest candidates for mediating such proposed
zinc-associated adaptation. Moreover, given that many zinc-associated genes show
significant or nearly-significant signatures of positive selection within populations (most
clearly observed in Russian, Uygur, Kalash and Burusho populations, see Fig. 5.2, Table
$4.2), I also suggest that zinc-adaptation is oligogenic in nature, and that multiple genes
may be involved in mediating zinc-associated selective pressures.
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Table 4.1: Zinc-associated genes with p-values < 1075, P-values as calculated from the
empirical distribution of either Relate or Fgr. P-values less than 4.65 x 107° (see Section
3.4.5) highlighted in bold.

Gene Population Relate Significance F¢r Significance

SLC39A4 San 9.96e-5
Druze 1.02e-5
Palestinian 2.85e-5
Adygei 2.30e-5
Basque 1.41e-5
Bergamoltalian-Tuscan 8.84e-6
French 5.58e-6
Orcadian 3.19e-5
Russian 6.43e-6
Sardinian 1.33e-5
Balochi 2.89e-5
Brahui 7.98e-6
Burusho 8.76e--6
Hazara 7.24e-6
Kalash 1.72e-5
MakKkrani 3.95e-6
Pathan 5.47e-6
Sindhi 1.03e-5
Dai-Lahu 7.82e-5
Han 4.34e-5
Japanese 6.69e-5
Orogen-Hezhen-Daur 3.99e-5
Naxi-Yi 9.03e-5
NorthernHan-Tu 5.98e-5
She-Miao-Tujia 4.75e-5
Xibo-Mongolian 5.49e-5
Yakut 3.57e-5

GPR39 Mbuti 9.97e-5
Bedouin 5.59e-5
Druze 3.23e05
Palestinian 3.72e-5
Bergamoltalian-Tuscan 8.94e-5
French 5.35e-5
Russian 6.47e-5
Sardinian 5.57e-5
Brahui 2.63e-5
Burusho 5.78e-5
Hazara 9.24e-5
Pathan 4.37e-5
Sindhi 5.83e-5
Japanese 7.5e-5

SLC30A9 Bantu-speaking 2.83e-5
Burusho 5.38e-5
Hazara 2.23e-5
Pathan 6.08e-5
Dai-Lahu 2.12e-5
Han 3.55e-6
Orogen-Hezhen-Daur 1.51e-5
NorthernHan-Tu 7.01e-5
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"""""""" She-Miao-Tujia 2.05e-5
Xibo-Mongolian 2.66e-5
Yakut 1.71e-5
Maya 8.30-5
SLC39A11 Bantu-speaking 3.33e-5
Palestinian 1.48e-5
French 9.13e-5
Balochi 1.55e-5
Kalash 9.98e-5
Makrani 1.4e-6
Sindhi 2.99e-5
Naxi-Yi 8.43e-5
NorthernHan-Tu 3.90e-5
She-Miao-Tujia 2.41e-5
SLC39A12 Mandenka 4.04e-5
Makrani 2.4e-5
SLC30A7 Bantu-speaking 8.8e-5
Pathan 9.46e-5
SCAMP5 Yoruba 4.17e-5
MTF1 Mandenka 1.04e-5
CA1 Mozabite 7.15e-6
SLC30A8 Bergamoltalian-Tuscan | 4.48e-5
SLC30A1 Russian 1.32e-5
SLC39A10 Kalash 1.21e-5
CAR13 Bantu-speaking 8.23e05
SLC39A14 Palestinian 5.81e-5
SLC30A10 Orcadian 9.97e-5
MTF2 Hazara 9.77e-5

Table 4.2: The number (“No.”) and name of the populations (“Populations”) with
signatures of positive selection. Signatures of positive selection as identified by the 1% or
0.1% tail of the empirical background distribution of Relate, for all zinc-associated genes
with p-values < 107> in at least one population (Table 4.1)

Gene

1% tail

0.1% tail

No.

Populations

No.

Populations

SLC39A4

Mandenka, Mozabite, Palestinian,
Bedouin, Bergamoltalian-Tuscan, Maya

SLC30A9

18

Palestinian, Druze, Adygei,
Bergamoltalian-Tuscan, French,
Orcadian, Russian, Makrani, Sindhi,
Brahui, Pathan, Burusho, Kalash, Uygur,
Xibo-Mongolian, Yakut, Maya, Papuan

Orcadian, Makrani, Sindhi,
Brahui, Pathan, Uygur, Papuan

GPR39

21

San, Mbuti, Biaka, Mozabite, Palestinian,
Bedouin, Sardinian, Basque, Russian,
Sindhi, Balochi, Pathan, Yakut, Japanese,
Han, She-Miao-Tujia, Naxi-Yi, Dai-Lahu,
Surui-Karitiana, Papuan, Bougainville

Mbuti, Mozabite, Japanese, She-

Miao-Tujia, Dai-Lahu
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San, Bantu-speaking, Mbuti, Biaka,

Bantu-speaking, Biaka,

SLC39A11 | 33 Yoruba, Mozabite, Palestinian, Druze, 27 Palestinian, Druze, Bedouin,
Bedouin, Adygei, Bergamoltalian-Tuscan, Adygei, Bergamoltalian-Tuscan,
Sardinian, Basque, French, Orcadian, Sardinian, Basque, French,
Russian, Makrani, Sindhi, Balochi, Brahui, Orcadian, Russian, Makrani,
Hazara, Burusho, Kalash, Xibo- Sindhi, Balochi, Brahui, Hazara,
Mongolian, Yakut, Japanese, Han, Burusho, Kalash, Xibo-
NorthernHan-Tu, She-Miao-Tujia, Naxi- Mongolian, Japanese, Han,
Yi, Maya, Surui-Karitiana, Bougainville NorthernHan-Tu, She-Miao-
Tujia, Naxi-Yi, Surui-Karitiana,
Bougainville
SLC39A12 | 23 San, Bantu-speaking, Palestinian, 3 BergamoItahz;\gr;aEilsican, Makrani,
Bedouin, Adygei, Bergamoltalian-Tuscan,
Basque, French, Orcadian, Russian,
Makrani, Sindhi, Brahui, Pathan, Kalash,
Yakut, Japanese, Han, She-Miao-Tujia,
Naxi-Yi, Dai-Lahu, Maya, Bougainville
SLC30A7 | 15 Bantu-speaking, Mandenka, Bedouin, 3 Bantu-speaking, Bedouin, Pathan
Hazara, Pathan, Burusho, Uygur, Xibo-
Mongolian, Orogen-Hezhen-Daur, Yakut,
Japanese, Han, NorthernHan-Tu, Naxi-Yi,
Maya
SCAMP5 5 Yoruba, Orcadian, Pathan, Yakut, She- 1 Yoruba
Miao-Tujia
MTF1 6 San, Mandenka, Palestinian, Orogen- 1 Mandenka
Hezhen-Daur, Japanese, Han
CA1 7 Bantu-speaking, Biaka, Mozabite, 1 Mozabite
Palestinian, Druze, Basque, Papuan
SLC30A8 | 22 San, Bantu-speaking, Biaka, Yoruba, | 8 Ba“lf,[“'Spe.akmg' Yoruba,
. o . ozabite, Adygei,
Mandenka, Mozablte, Palestinian, Adygel, Bergamoltalian-Tuscan, French,
Bergamoltalian-Tuscan, French, Russian, Kalash, Japanese
Balochi, Pathan, Kalash, Xibo-Mongolian, !
Orogen-Hezhen-Daur, Yakut, Japanese,
She-Miao-Tujia, Naxi-Yi, Pima, Surui-
Karitiana
SLC30A1 | 25 San, Bantu-speaking, Biaka, Yoruba, | 8 ]?3'31;3'5ﬁgygl‘;f;sﬁgg}ifjg;?‘
Mandenka, Palestinian, Adygei, Tu. Naxi-Yi
Bergamoltalian-Tuscan, Sardinian, ’
Basque, French, Orcadian, Russian,
Makrani, Sindhi, Balochi, Brahui, Hazara,
Burusho, Kalash, NorthernHan-Tu, She-
Miao-Tujia, Naxi-Yi, Maya,
PapuanHighlands_PapuanSepi
Biaka, Bedouin, Bergamoltalian-Tuscan, Kalash, Surui-Karitiana
SLC39A10 | 12 Sardinian, French, Russian, Sindhi, z
Balochi, Brahui, Kalash, Naxi-Yi, Surui-
Karitiana
CAR13 4 Biaka, Palestinian, Druze, Papuan 1 Druze
SLC39A14 | 13 San, Yoruba, Mandenka, Mozabite, Druze, | 1 Brahui
Bedouin, Bergamoltalian-Tuscan,
Makrani, Brahui, Kalash, Japanese, Naxi-
Yi, Pima
SLC30410 | 24 San, Bantu-speaking, Biaka, Yoruba, 9 Biaka, Adygei, Basque, Orcadian,

Mandenka, Palestinian, Adygei,
Bergamoltalian-Tuscan, Basque, French,

Russian, Burusho, Kalash,
NorthernHan-Tu, Naxi-Yi
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Orcadian, Russian, Makrani, Sindhi,
Balochi, Brahui, Hazara, Burusho, Kalash,
NorthernHan-Tu, She-Miao-Tujia, Naxi-
Yi, Maya, Papuan
Yoruba, Mandenka, Bedouin, Sardinian, Mandenka, Xibo-Mongolian,

Russian, Sindhi, Balochi, Hazara, Kalash, NorthernHan-Tu
Xibo-Mongolian, Orogen-Hezhen-Daur,
Han, NorthernHan-Tu, She-Miao-Tujia

MTF2 14

4.4.1.2. Calcium

Similar to the zinc gene set (n=46), the calcium gene set (n=23) also contains genes with
signatures of positive selection shared over populations spanning each major global area
(Table 4.3). However, in comparison to zinc-associated genes, the signatures of positive
selection over calcium-associated genes are 1) shared over fewer populations and 2)
more frequently inferred by Relate rather than Fg;. Hence, in comparison to zinc, there
is not the same preliminary evidence for selection on an ancestral non-African population,
which is now explored.

ATP2B2 and SLC8A1 show evidence for positive selection over the most populations. Of
these two genes, ATPZB2 shows the strongest evidence of selection, with signatures of
positive selection identified at the most stringent threshold (pvalue < 4.65 x 107%) in
two populations (Mandenka; Fg; pvalue = 7.75 X 1078 ; Sardinian; Relate pvalue =
2.1 x 1077). Moreover, the strong signatures of positive selection in ATP2B2 are observed
in eleven populations spanning all metapopulations bar East Asia (Table 4.3) and
significant and nearly-significant signatures of positive selection, as inferred by Relate,
are observed in 33 populations, including five African populations. Therefore, ATP2BZ2 is
a strong candidate gene for near-global selection in modern humans, possibly responding
to calcium-associated selective pressures.

There does not appear to be an excess of strong differentiation to Yoruba, as calculated
by Fsr, at the gene set level in Eurasia (Fig 4.2). Further, there are more population-
specific signatures of positive selection at the gene set level, as captured by either Relate
or Fgr, than in zinc-related genes (Fig. 4.1-2; Table $4.6-7). In particular, many calcium-
associated genes exhibit evidence of selection in the Biaka and Bantu-speaking
populations of Africa, the She-Miao-Tujia and Japanese of East Asia, the Kalash of Central-
South Asia and the French of Europe (Fig. 4.1-2). Hence, whilst some calcium-associated
genes, e.g, ATP2B2, may have undergone widespread adaptation, it appears that
oligogenic adaptation in response to calcium levels is less widespread, and may only be
present in a few independent populations.
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Table 4.3: Calcium-associated genes with p-values < 1075, P-values calculated from the
empirical distribution of either Relate or Fgr. P-values less than 4.65 x 107° (see Section
3.4.5) highlighted in bold.

Gene Population Relate Significance F¢r Significance
ATP2B2 Mandenka 7.75e-8
Bedouin 8.84e-5
Mozabite 1.38e-5 9.73e-5
French 7.51e-5 7.13e-5
Sardinian 2.1e-7
Burusho 9.35e-5
Makrani 4.97e-5
Pathan 2.08e-5
Uygur 5.23e-5
Pima 9.06e-6
Papuan 1.97e-5
SLCBA1 Biaka 3.05e-5
Mandenka 3e-5
Bergamoltalian-Tuscan 4.48e-5
Makrani 2.4e-5
Dai-Lahu 7.39e-5
Maya 4.17e-5
Papuan 1.26e-5
SLC8A3 Dai-Lahu 4.43e-5
NorthernHan-Tu 3.9e-5
Xibo-Mongolian 6.74e-5
KCNJ10 Bantu-speaking 1.38e-5
Mandenka 3.01e-5
ATP2B4 Biaka 8.39e-5
Mozabite 8.32e-5
DGKD Biaka 1.97e-5
SLC12A3 Kalash 2.21e-5

Table 4.4: The number (“No.”) and name of the populations (“Populations”) with
signatures of positive selection. Signatures of positive selection identified by the 1% or
0.1% tail of the empirical background distribution of Relate, for all calcium-associated

genes with p-values < 107> in at least one population (Table 4.3)

Gene

1% tail

0.1% tail

No. Populations No.

Populations

ATP2BP2

San, Mbuti, Biaka, Yoruba, Mandenka,
Mozabite, Palestinian, Bedouin,
Bergamoltalian-Tuscan, Sardinian, Basque,
French, Orcadian, Russian, Makrani,
Brahui, Hazara, Pathan, Burusho, Kalash,
Uygur, Xibo-Mongolian, Orogen-Hezhen-
Daur, Japanese, Han, NorthernHan-Tu,
She-Miao-Tujia, Naxi-Yi, Dai-Lahu, Pima,
Surui-Karitiana, Papuan, Bougainville

Mozabite, Druze, Bedouin,
Bergamoltalian-Tuscan,
Sardinian, French, Sindhi, She-
Miao-Tujia
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San, Bantu-speaking, Mbuti, Biaka, Yoruba, Bantu-speaking, Biaka, Yoruba,
SLC8AI 32 Mandenka, Palestinian, Druze, Bedouin, 26 Mandenka, Palestinian, Druze,
Adygei, Bergamoltalian-Tuscan, Sardinian, Bedouin, Adygei,
French, Russian, Makrani, Balochi, Hazara, Bergamoltalian-Tuscan,
Pathan, Burusho, Kalash, Uygur, Xibo- Sardinian, French, Russian,
Mongolian, Orogen-Hezhen-Daur, Yakut, Makrani, Balochi, Hazara, Pathan,
Japanese, NorthernHan-Tu, She-Miao- Kalash, Uygur, Yakut, Japanese,
Tujia, Naxi-Yi, Dai-Lahu, Maya, Surui- She-Miao-Tujia, Naxi-Yi, Dai-
Karitiana, Papuan Lahu, Maya, Surui-Karitiana,
Papuan
SLC8A3 29 Biaka, Yoruba, Mandenka, Palestinian, 10 Mandenka, Pathan, Burusho,
Druze, Bergamoltalian-Tuscan, Sardinian, Kalash, Xibo-Mongolian,
Orcadian, Sindhi, Balochi, Brahui, Pathan, Japanese, NorthernHan-Tu, She-
Burusho, Kalash, Xibo-Mongolian, Yakut, Miao-Tujia, Naxi-Yi, Dai-Lahu
Japanese, NorthernHan-Tu, She-Miao-
Tujia, Naxi-Yi, Dai-Lahu, Surui-Karitiana
Mbuti, Mandenka, Palestinian, Druze,
KCNj10 8 French, Brahui, Burusho, Naxi-Yi 0
ATP2B4 | 14 Biaka, Yoruba, Mozabite, Druze, Bedouin, | 8 Mozabite, Druze, Bedouin,
Bergamoltalian-Tuscan, Sardinian, French Bergamoltalian-Tuscan,
. . T P Sardinian, French, Sindhi, She-
Sindhi, Hazara, Pathan, Xibo-Mongolian, Miao-Tujia
She-Miao-Tujia, Pima
DGKD 19 San, Bantu-speaking, Biaka, Yoruba, 5 Biaka, Orcac};a;éliussesmn, Kalash,
Mozabite, Palestinian, Bedouin, Orcadian,
Russian, Makrani, Sindhi, Brahui, Burusho,
Kalash, Orogen-Hezhen-Daur, Yakut,
Japanese, Naxi-Yi, Maya
SLC12A3 10 Mandenka, Bergamoltalian-Tuscan, 1 Kalash
Sardinian, French, Russian, Burusho,
Kalash, Xibo-Mongolian, Yakut, She-Miao-
Tujia

4.4.1.3. Selenium

The selenium gene set (n=61) also contains genes with signatures of positive selection
which are frequently shared across populations of every major global region (Table S4.8-
9), but the individual evidence for positive selection in these genes is often weaker than
that observed in zinc or calcium-associated genes. Many signatures of positive selection
are identified according to the pvalue of 0.001 for either Relate or Fsr, but many fail to
reach the pvalue threshold of 0.0001 (indicating strong signatures of positive selection;
Table 4.5), and none reach the most stringent threshold of 4.65 x 107,

African and East Asian populations often have the highest number of selenium-associated
genes exhibiting evidence of positive selection (Fig. 4.1-2), consistent with a model of
oligogenic selenium-associated adaptation in these regions. Still, East Asian populations
do not appear to have a particular excess of strong signatures of positive selection when
compared with European populations (Table 4.5), with the exception of those observed
in PRKGI. Hence, individual genes may largely mediate selenium-associated adaptation
(e.g., PRKG1), but many other additional genes, exhibiting weaker signatures of positive
selection, may also be involved in the adaptative process (in agreement with the
polygenic or oligogenic adaptation of selenium metabolism suggested in (White et al.
2015)).
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The strongest signatures of positive selection in selenium-associated genes differ
between African and East Asian populations: PRKG1 shows signatures of positive
selection in East Asian populations whereas LRP8 and LHFPLZ only carry strong
signatures (at the 0.0001 pvalue threshold) in African populations (Table 4.5). This is
consistent with different genes mediating adaptation to selenium across these different
metapopulations. However, there are significant and nearly-significant signatures of
positive selection, as inferred by Relate, in PRKG1, LRP8 and LHFPLZ in both East Asian
and African populations (Table 4.6). This may indicate that the same groups of genes
mediate adaptation in response to selenium levels, but the genes that primarily mediate
this adaptation may differ between metapopulations.

Table 4.5: Selenium-associated genes with p-values < 10~°. P-values calculated from
the empirical distribution of either Relate or Fer. P-values less than 4.65 X 107° (see
Section 3.4.5) highlighted in bold.

Gene Population Relate Significance | F¢r Significance
PRKG1 Bantu-speaking 2.11e-5
Palestinian 6.83e-5
Hazara 5.56e-5
Han 6.54e-5
Naxi-Yi 2.17e-5
She-Miao-Tujia 2.05e-5
Xibo-Mongolian le-5
SGCD Biaka 8.77e-5
Mbuti 8.72e-5
Palestinian 9.50e-5
Bergamoltalian-Tuscan 1.07e-5
Makrani 1.18e-5
Papuan 5.36e-5
AKAP6 Mozabite 4.16e-5
Adygei 4.62e-5
Yakut 7.62e-5
Surui-Karitiana 3.96e-5
EEFSEC Bantu-speaking 2.53e-5
Bedouin 8.33e-5
Mozabite 1.29e-5
Basque 5.59e-5
LHFPLZ2 Bantu-speaking 4.99e-6
Biaka 8.33e-5
Mbuti 7.44e-5
San 3.08e-5
LRP8 Bantu-speaking 8.8e-5
Mandenka 1.04e-5
San 2.15e-5
SELENOS Russian 4.01e-5
Brahui 8.04e-5
Hazara 1.86e-5
KCNMA1 NorthernHan-Tu 3.9e-5
Yakut 1.46e-5
SLCY Mozabite 9.09e-5
TXNDR3 Basque 4.79e-5
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SECISBP2 Sardinian 3.27e-5
AKR7L Burusho 9.83e-6
GPx2 Makrani 9.61e-6
TXNRD2 Mandenka 9.72e-5
TRU-TCA2-1 Mbuti 6.63e-5
ARSB Orcadian 7.92e-5
SELENOM Yoruba 5.87e-6
SELENOP Pathan 4.09e-5
SELENOW Japanese 6.91e-5
SEPHS2 Xibo-Mongolian 2.66e-5

Table 4.6: The number (“No.”) and name of the populations (“Populations”) with
signatures of positive selection. Signatures of positive selection identified by the 1% or
0.1% tail of the empirical background distribution of Relate, for all selenium-associated

genes with p-values < 1075 in at least one population (Table 4.5)

Gene 1% tail 0.1% tail
No. Populations No. Populations
Bantu-speaking, Biaka, Yoruba, Mandenka, . .
PRKGI 30 Palestipr)lian, B%adouin, Adygei, Sardinian, 24 Bantu-speaking, Blj“ka’ Yorubfi,
Basque, French, Orcadian, Russian, Sindhi, Mandenkfa, Pale.s t?nlan, Bedouin,
Balochi, Brahui, Hazara, Pathan, Burusho, . Adygel, SarQIman, Basque,
Kalash, Xibo-Mongolian, Orogen-Hezhen- Sindhi, Balochi, Hazara,. Pathan,
Daur, Yakut, Japanese, Han, NorthernHan- Buru.sho, Kalash, Xibo-
Tu, She-Miao-Tujia, Naxi-Yi, Dai-Lahu, %ZE§°$:£US;:3§:e?eeil§:
Surui-Karitiana, Papuan NorthernHan-Tu, She-Miao-
Tujia, Naxi-Yi, Dai-Lahu
Bantu-speaking, Mbuti, Biaka, Mozabite, Bantu-speaking, Mbuti, Biaka,
SGCD 29 Palestinian, Druze, Bedouin, Adygei, 21 Mozabite, Palestinian, Druze,
Bergamoltalian-Tuscan, Sardinian, Basque, Bedouin, Bergamoltalian-Tuscan,
French, Sindhi, Hazara, Pathan, Burusho, Sardinian, Basque, Sindhi,
Kalash, Uygur, Orogen-Hezhen-Daur, Hazara, Burusho, Orogen-
Yakut, Japanese, Han, NorthernHan-Tu, Hezhen-Daur, Yakut, Han,
She-Miao-Tujia, Naxi-Yi, Dai-Lahu, Pima, NorthernHan-Tu, She-Miao-
Papuan, Bougainville Tujia, Naxi-Yi, Dai-Lahu,
Bougainville
Bantu-speaking, Biaka, Yoruba, Mandenka, Bantu-speaking, Biaka, Yoruba,
AKAP6 25 Mozabite, Palestinian, Druze, Bedouin, 20 Mandenka, Mozabite, Palestinian,
Adygei, Bergamoltalian-Tuscan, Sardinian, Druze, Bedouin, Adygei,
Basque, Orcadian, Sindhi, Pathan, Burusho, Bergamoltalian-Tuscan,
Uygur, Xibo-Mongolian, Orogen-Hezhen- Sardinian, Basque, Burusho,
Daur, Yakut, NorthernHan-Tu, Xibo-Mongolian, Orogen-
NorthernHan-Tu, Naxi-Yi, Maya, Surui- Hezhen-Daur, Yakut,
Karitiana, Papuan NorthernHan-Tu, Naxi-Yi, Surui-
Karitiana, Papuan
San, Bantu-speaking, Mbuti, Biaka, Yoruba, Bantu-speaking, Mbuti, Adygei,
EEFSEC 18 Mozabite, Palestinian, Bedouin, Adygei, 5 Basque, Balochi
Basque, French, Makrani, Sindhi, Balochi,
Burusho, She-Miao-Tujia, Dai-Lahu, Surui-
Karitiana
LHFPL2 28 Mbuti, Biaka, Yoruba, Mandenka, Mozabite, | 4 Biaka, Mandenka, Japanese, Maya
Palestinian, Bedouin, Adygei,
Bergamoltalian-Tuscan, Basque, French,
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Orcadian, Russian, Makrani, Sindhi,
Balochi, Brahui, Hazara, Pathan, Uygur,
Xibo-Mongolian, Orogen-Hezhen-Daur,

Yakut, Japanese, She-Miao-Tujia, Naxi-Yi,
Dai-Lahu, Maya

Bantu-speaking, Yoruba,

LRP8 15 Bantu-§peaking, Yoruba, Ma}nc!enkg, 5 Mandenka, Balochi, Xibo-
Mozabite, Russian, Makrani, Sindhi, Mongolian
Balochi, Brahui, Burusho, Xibo-Mongolian, §
Japanese, She-Miao-Tujia, Dai-Lahu,
Papuan
SELENOS | 15 San, Biaka, Yoruba, Mandenka, Palestinian, | 5 Biaka, Yoruba, Palestinian,
Basque, Russian, Balochi, Burusho, Uygur, Balochi, NorthernHan-Tu
Xibo-Mongolian, Orogen-Hezhen-Daur,
NorthernHan-Tu, Dai-Lahu, Pima
KCNMA1 23 San, Mbuti, Biaka, Yoruba, Mandenka, 16 Mbuti, Biaka, Yoruba, Mandenka,
Adygei, Bergamoltalian-Tuscan, Sardinian, Adygei, Bergamoltalian-Tuscan,
French, Russian, Makrani, Sindhi, Burusho, Russian, Sindhi, Xibo-Mongolian,
Xibo-Mongolian, Yakut, Japanese, Han, Yakut, Japanese, Han,
NorthernHan-Tu, She-Miao-Tujia, Naxi-Yi, NorthernHan-Tu, She-Miao-
Dai-Lahu, Pima, Bougainville Tujia, Naxi-Yi, Dai-Lahu
SCLY 8 Bantu-speaking, Biaka, Mozabite, 4 Bantu-speaking, Mozabite,
Palestinian, Bedouin, French, Russian, Russian
Brahui
Mozabite, Adygei, B.
TXNRD3 15 Bantu-speaking, Biaka, Mozabite, Druze, 3 ozabite, Adygel, Basque
Bedouin, Adygei, Basque, Orcadian,
Russian, Balochi, Brahui, Hazara, Pathan,
Yakut, Han
Mandenka, Sardinian, Russi
SECISBP2 | 13 Bantu-speaking, Biaka, Yoruba, Mandenka, | 3 andenka, >ardinian, Russian
Druze, Sardinian, Russian, Sindhi, Balochi,
Kalash, Yakut, Pima, Maya
French, Makrani, Balochi, Burusho, Naxi- Burusho
AKR7L | 6 Yi, Dai-Lahu 1
GPx2 15 San, Bantu-speaking, Mandenka, Druze, 4 Bergamoltalian-Tuscan, Makrani,
Bedouin, Adygei, Bergamoltalian-Tuscan, Balochi, Brahui
Sardinian, Orcadian, Makrani, Balochi,
Brahui, Burusho, Xibo-Mongolian,
Japanese
TXNRD2 18 San, Bantu-speaking, Biaka, Mandenka, 1 Dai-Lahu
Mozabite, Palestinian, Druze, Bedouin,
French, Russian, Hazara, Xibo-Mongolian,
Orogen-Hezhen-Daur, Yakut, Japanese,
Han, Dai-Lahu, Papuan
TRU- 1 Yoruba 0
TCA2-1
ARSB 16 Yoruba, Mandenka, Mozabite, French, 5 Hazara, Burusho, Xibo-
Sindhi, Hazara, Burusho, Xibo-Mongolian, Mongolian, Orogen-Hezhen-
Orogen-Hezhen-Daur, Japanese, Han, Daur, Japanese
NorthernHan-Tu, She-Miao-Tujia, Naxi-Yi,
Dai-Lahu, Papuan
SELENOM | 10 San, Yoruba, Bergamoltalian-Tuscan, 1 Yoruba

Basque, Orogen-Hezhen-Daur, JapaneseTu,
NorthernHan-Tu, She-Miao-Tujia, Naxi-Yi,
Pima
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SELENOP | 10 Bantu-speaking, Mbuti, Mandenka, 5 Bantu-speaking, Mandenka,
Bedouin, Bergamoltalian-Tuscan, Hazara, Hazara, Pathan, Xibo-Mongolian
Pathan, Kalash, Uygur, Xibo-Mongolian
SELENO 7 Yoruba, Bedotlnn, Brahui, Pathan, Xibo- 0
W Mongolian, Yakut, Papuan
Burusho, Xibo-Mongolian, NorthernHan-
SEPHS2 4 Tu, Maya 0

44.1.4. Iron

In contrast to zinc, calcium and selenium-gene sets, the iron-associated gene set (n=44)
shows signatures of positive selection that are less widespread amongst global regions
or metapopulations. However, individual iron-associated genes show very strong
evidence of positive selection that is somewhat shared over populations (Table 4.7). In
particular, ARHGEF3 and FTMT show strong signatures of positive selection according to
both Relate and Fgr in many Eurasian populations. This includes evidence of selection at
the most stringent threshold for FTMT in the Yakut population of East Asia (Relate
pvalue = 3.37 X 107°) and for HIFI1A in the Basque population of Europe (Relate
pvalue = 2.43 x 107°). It therefore appears that ARHGEF3, FTMT and HIF1A mediate
iron-associated adaptation amongst different Eurasian populations. However, the
significant and nearly-significant signatures of positive selection as inferred by Relate
are observed across Eurasia (Table 4.8), and hence these may not be strictly local
adaptive responses, and may indeed be shared amongst Eurasian populations.

The strong signatures of positive selection identified at the RHOA gene appear to be more
strongly indicative of a local response. These strong signatures of positive selection are
identified in four East Asian populations, potentially consistent with an East-Asian
response to an iron-associated selective pressure. Indeed, significant or nearly-
significant signatures of positive selection (inferred by Relate) are only inferred in East
Asian populations (Table 4.8). Hence, I suggest that the signatures of positive selection
identified in RHOA represent an East-Asian specific adaptative response, potentially
associated with iron levels.

There is additional evidence for some populations mediating iron-adaptation via an
oligogenic response; the Biaka and Druze populations show a high number of signatures
of positive selection as calculated by Relate, and the Bantu-speaking, Mandenka, Pima
and Bougainville populations show a high number of signatures of positive selection as
calculated by Fg; (Table. $4.10-11). The genes driving these signatures often differ from
those identified as having strong evidence of selection (Table 4.7), and therefore these
populations may mediate iron-associated pressures via small groups of different iron-
associated genes. Hence, both a monogenic and oligogenic adaptive response to iron-
associated selective pressures may be present amongst populations.
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Table 4.7: Iron-associated genes with p-values < 10~>. P-values calculated from the
empirical distribution of either Relate or Fgr. P-values less than 4.65 x 107° (see Section
3.4.5) highlighted in bold.

Gene Population Relate Significance | F¢r Significance
ARHGEF3 Bedouin 3.43e-5
Palestinian 2.55e-5
Basque 2.47e-5
Balochi 2.34e-5
Brahui 6.51e-5
Makrani 8.2e-5
Dai-Lahu 6.80e-5
FTMT Adygei 7.54e-5
Brahui 1.92e-5
Dai-Lahu 4.85e-5
Yakut 3.37e-6
RHOA Han 8.62e-5
Japanese 6.91e-5
NorthernHan-Tu 9.99e-5
She-Miao-Tujia 1.38e-5
TMPRSS6 Biaka 7.18e-5
Maya 4.9e-5
Bougainville 8.23e-5
Papuan 9.64e-5
HIF1A Basque 2.43e-6
Sindhi 2.28e-5
C19orf12 Adygei 2.01e-5
CFAP251 Adygei 9.28e-5
SLC40A1 Uygur 1.62e-5
PLA2G6 Uygur 7.10e-5
TAOK1 Bantu-speaking 3.42e-5
FTL Mandenka 1.99e-5
HJV Mandenka 2.91e-5
TFRC Bougainville 3.80e-5
ACO1 Papuan 5.36e-5

Table 4.8: The number (“No.”) and name of the populations (“Populations”) with
signatures of positive selection. Signatures of positive selection identified by the 1% or
0.1% tail of the empirical background distribution of Relate, for all iron-associated genes
with p-values < 107> in at least one population (Table 4.7)

Gene 1% tail 0.1% tail

No. Populations No. Populations

San, Bantu-speaking, Biaka, Mozabite,
Bedouin, Adygei, Bergamoltalian-Tuscan,
Sardinian, Basque, Makrani, Hazara, Kalash,
Orogen-Hezhen-Daur, Yakut, Han,
NorthernHan-Tu, Dai-Lahu, Maya, Papuan

ARHGEF3 | 19 8 Bantu-speaking, Biaka, Adygei,
Basque, Hazara, Orogen-Hezhen-

Daur, Dai-Lahu, Maya
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San, Mandenka, Druze, Adygei, Basque,

Mandenka, Druze, Adygei,

FrMT 22 French, Orcadian, Russian, Makrani, Sindhi, 12 Orcadian, Russian, Makrani,
Balochi, Brahui, Pathan, Burusho, Uygur, Balochi, Brahui, Xibo-Mongolian,
Xibo-Mongolian, Yakut, Han, NorthernHan- Yakut, NorthernHan-Tu, She-
Tu, She-Miao-Tujia, Naxi-Yi, Pima Miao-Tujia
RHOA 3 Xibo-Mongolian, Han, NorthernHan-Tu 3 Xibo-Mongolian, Han,
NorthernHan-Tu Papuan
San, Bantu-speaking, Biaka, Mozabite, Biaka, Druzee
TMPRSS6 | 14 Palestinian, Druze, Bedouin, Balochi, 2
Brahui, Hazara, Burusho, Xibo-Mongolian,
Surui-Karitiana, Papuan
. . . Biaka, Yoruba, Mozabite,
HIF1A 25 AdBlakaéYoruba,lM?zab};e, Paleztm(llzim., 10 Bergamoltalian-Tuscan, Basque,
ygel, Bergamoltalian- uscan, sardinian, French, Sindhi, Pathan, Burusho,
Basque, French, Orcadian, Russian, Papuan
Makrani, Sindhi, Brahui, Hazara, Pathan,
Burusho, Kalash, Xibo-Mongolian, Japanese,
NorthernHan-Tu, She-Miao-Tujia, Maya,
Papuan, Bougainville
A ; :
C19orf12 | 10 San, Biaka, Yoruba, Druze, Adygei, Basque, | 2 dygei, Orcadian
Orcadian, Sindhi, Brahui, Japanese
CFAP251 11 Mbuti, Palestinian, Bedouin, Adygei, 2 Adygei, Kalash
Bergamoltalian-Tuscan, French, Russian,
Kalash, Orogen-Hezhen-Daur,
NorthernHan-Tu, She-Miao-Tujia
SLC40A1 14 Bantu-speaking, Biaka, Palestinian, Druze, | 5 Bergamoltalian-Tuscan, Uygur,
Bergamoltalian-Tuscan, Basque, Makrani, Orogen-Hezhen-Daur, Yakut,
Uygur, Xibo-Mongolian, Orogen-Hezhen- Japanese
Daur, Yakut, Japanese, Han, She-Miao-Tujia
PLA2G6 13 San, Mbuti, Biaka, Palestinian, Druze, 3 Mbuti, Uygur, Yakut
Bergamoltalian-Tuscan, Makrani, Balochi,
Pathan, Kalash, Uygur, Yakut,
NorthernHan-Tu
. . Han
TAOK1 6 Bantu-speaking, Biaka, Hazara, Han, She- 1
Miao-Tujia, Dai-Lahu
FTL 2 Mozabite, Dai-Lahu 0
HJV 0 0
NorthernHan-Tu, She-Miao-Tuji
TFRC 7 Mbuti, Yoruba, Oroqen-Hezhen-Daur, 2 orthernfian-tu, she-tiao-twia
Yakut, NorthernHan-Tu, She-Miao-Tujia,
Surui-Karitiana
ACO1 12 San, Biaka, Yoruba, Mandenka, Mozabite, 2 Biaka, Yakut

Makrani, Brahui, Pathan, Xibo-Mongolian,
Orogen-Hezhen-Daur, Yakut, Han
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4.4.1.5. lodine

In comparison to all other zinc, calcium, selenium and iron-associated gene sets, there are
more limited signatures of positive selection within the iodine-associated gene set (n=18),
particularly when isolating the strong signatures of positive selection (Table 4.9). These
signatures of positive selection are also considerably less widespread compared to those
of the previous micronutrient gene sets, but are still observed amongst some isolated
African, European, Middle-Eastern and Central-South Asian populations (Table 4.9).
THRB shows the strongest signature of positive selection (bypassing the most stringent
threshold; Relate pvalue = 3.23 X 107°) in the Palestinian population of the Middle-
East, but this population does not appear to show evidence for positive selection at the
gene set level (Tables S4.12-13). Given this strong signature in the Palestinian
population and the number of nearly-significant signatures of positive selection (Table
4.10), THRB is the strongest candidate gene for iodine-associated adaptation.

Still, the more geographically concentrated signatures of positive selection, and the
geographic patterns of signatures of positive selection across all populations (Fig. 4.1-2),
hence suggest that iodine-associated adaptation is more localised in comparison to zinc,
calcium, selenium and iron.

The Maya population of the Americas and Uygur population of Central-South Asia have
the strongest evidence of iodine-associated selection at the gene set level (Fig. 4.1-2).
Five and four genes are identified with signatures of positive selection in the Maya
according to Relate and Fgr, respectively, and five genes are identified with signatures of
positive selection in the Uygur according to Fgr. However, for the latter population, this
includes signatures of positive selection identified in the DIO1 and DIOZ genes, which are
also associated with selenium metabolism, and therefore these signatures may instead
capture selenium-associated adaptation. There are also no iodine-associated genes
identified with signatures of positive selection in the Uygur population according to
Relate. Hence, the Maya populations presents the strongest evidence for adaptation in
response to iodine levels.

Further, of the iodine-associated genes exhibiting signatures of positive selection in the
Maya (as inferred using Relate), four also show signatures of positive selection in the
Mbuti population (Tables S4.12-13). Three of these genes are thyroid receptors (THRA,
THRB, TRIP4) and are associated with both iodine metabolism and growth pathways.
Given the short stature of these populations and strong signatures of positive selection
shared on genes known to affect height, this provides some support for the link between
iodine-associated adaptation and short stature (as suggested in (Herraez et al. 2009)).

Table 4.9: Iodine-associated genes with p-values < 107>, P-values calculated from the
empirical distribution of either Relate or Fgr. P-values less than 4.65 x 107° (see Section
3.4.5) highlighted in bold.

Gene Population Relate Significance | F¢r Significance
TSHR Mandenka 8.17e-5
Palestinian 7.98e-5
THRB Sardinian 2.94e-5
Palestinian 3.23e-6
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TRIP4 Mbuti 3.96e-5
TPO Mozabite 2.5e-5

SLCO1C1 Bergamoltalian-Tuscan 7.78e-5

SLC5A5 Orcadian 9.83e-5

SECISBP2 Sardinian 3.27e-5

SLC16A2 Brahui 1.51e-5

Table 4.10: The number (“No.”) and name of the populations (“Populations”) with
signatures of positive selection. Signatures of positive selection identified by the 5% or
0.1% tail of the empirical background distribution of Relate, for all iodine-associated genes
with p-values < 1075 in at least one population (Table 4.9)

Gene 1% tail 0.1% tail
No. Populations No. Populations
Bantu-speaking, Biaka, Yoruba, Mandenka,
TSHR 17 Palestinian, Druze, Sardinian, Basque, 2 Basque, Maya
French, Orcadian, Russian, Balochi, Pathan,
Burusho, Uygur, Maya, Papuan
THRB 27 San, Bantu-speaking, Biaka, Mozabite, 12 Bantu-speaking, Palestinian,
Palestinian, Druze, Bergamoltalian- Sardinian, Orcadian, Sindhi,
Tuscan, Sardinian, Basque, French, Burusho, Kalash, Xibo-
Orcadian, Russian, Sindhi, Brahui, Hazara, Mongolian, Naxi-Yi, Dai-Lahu,
Pathan, Burusho, Kalash, Xibo-Mongolian, Maya, Surui-Karitiana
Yakut, Japanese, She-Miao-Tujia, Naxi-Yi,
Dai-Lahu, Pima, Maya, Surui-Karitiana
San, Bantu-speaking, Yoruba, Mozabite, Mozabite, Han, Maya
TRIP4 15 Palestinian, Druze, Bergamoltalian- 3
Tuscan, Russian, Makrani, Japanese, Han,
Tu, NorthernHan-Tu, Dai-Lahu, Pima,
Maya
TPO 4 Mandenka, Mozabite, Bedouin, Makrani 1 Mozabite
. . Biaka, Palestinian,
SLCO1C1 20 Mbuti, Blakg, Yoruba, Mandenka, Mgzablte, 11 Bergamoltalian-Tuscan, Basque,
Palestinian, Druze, Bergamoltalian- - . . .
; . . . Sindhi, Balochi, Brahui, Hazara,
Tuscan, Basque, Sindhi, Balochi, Brahui,
Burusho, Orogen-Hezhen-Daur,
Hazara, Pathan, Burusho, Orogen-Hezhen- Han
Daur, Yakut, Japanese, Han, NorthernHan-
Tu
. . . Orcadian
SLC5A5 10 Bantu-speaking, Biaka, Yoruba, Mozabite, 1
French, Orcadian, Pathan, Kalash,
NorthernHan-Tu, Naxi-Yi
SECISBP2 | 13 Bantu-speaking, Biaka, Yoruba, Mandenka, | 3 Mandenka, Sardinian, Russian
Druze, Sardinian, Russian, Sindhi, Balochi,
Kalash, Yakut, Pima, Maya
SLC16A2 9 Bantu-speaking, Mandenka, Mozabite, 1 Brahui

Brahui, Yakut, Han, NorthernHan-Tu, She-
Miao-Tujia, Naxi-Yi
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4.4.2. Co-Occurring Signatures of Positive Selection

If genes are functionally linked and frequently co-demonstrate signatures of positive
selection within populations, this may indicate groups of genes responding to the same
selective pressure in different human groups (Berg and Coop 2014; Berg, Zhang, et al.
2019; Lewis et al. 2020). Hence, to identify potential pathways for micronutrient
response, or which groups of genes may be co-adapting, networks are built representing
genes that share signatures of positive selection (as inferred using Relate) over the same
populations (Fig 4.3). Observations from these networks are summarised below.
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Figure 4.3: Gene networks for zinc, selenium, calcium, iron and iodine-associated
genes. Genes are connected if they share signatures of positive selection as identified using
Relate in two or more populations; thickness of the connecting lines corresponds to the
number of populations where signatures of positive selection are shared.
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The zinc-associated gene network recapitulates Section 4.4.1.1, emphasising the
prevalence of signatures of positive selection in zinc-transporter genes in the SLC30 and
SLC39 families and the likelihood of multiple zinc-associated genes mediating an adaptive
response. I observe the central role of SLC39A411, and identify frequently co-occurring
signatures of positive selection between this gene and SLC30A8, SLC30A10 and SLC30A1.
The co-occurring signatures of positive selection amongst these genes are identified
amongst African, European, Central-South Asian and East Asian populations, and hence
this network of genes may mediate widespread zinc-associated adaptation. Given that
there are also less frequent co-occurring signatures of positive selection amongst other
zinc-transporter genes (Table 4.2), it is possible that some zinc-transporter genes might
be interchangeable in their ability to mediate adaptation or that the genomic nature of
adaptation in response to zinc levels is diverse over populations. Still, as outlined in
Section 4.4.1.1, [ suggest that many zinc transporter genes are involved in mediating the
adaptive response to zinc levels, but some zinc-transporter genes have stronger evidence
or a more strongly supported role in such adaptation.

In the calcium and selenium gene sets, some smaller groups of genes show frequently co-
occurring signatures of positive selection. In the calcium gene set, ATPZB2 and SLC8A1
particularly share signatures of positive selection in the same populations, alongside less
frequent co-occurring signatures between these genes and SLC8A3 and TRPM_2.

The selenium gene set also appears to show a central network of genes co-exhibiting
signatures of positive selection in the same populations (SGCD, AKAP6, PRKG1 and
KCNMA1), which thus may largely mediate adaptation in response to selenium levels.
These co-occurring signatures are observed in close populations and populations from
very different regions (e.g., they co-occur in multiple African, Middle-Eastern, European,
Central-South Asian and East Asian populations), hence appearing to be a gene set
globally mediating adaptation. However, there are many other co-occurring signatures of
positive selection amongst other selenium-associated genes (often shared in multiple
African, Central-South Asian and East Asian populations; see Table 4.6). Whilst there are
a large number of selenium-associated genes in this study, these observations are also in
accordance with the suggested oligogenic or polygenic nature of selenium-associated
adaptation (White et al. 2015): here, adaptation may be primarily mediated by allele
frequency changes in a small network of genes exhibiting strong evidence of selection
(Section 4.4.1.3), accompanied by more moderate allele frequency changes in additional,
perhaps more constrained, selenium-associated genes.

The iron gene network partitions into three clusters, with the top candidate genes (FTMT,
RHOA, HIF1A and ARHGEF3) split over two of these clusters. This demonstrates that
signatures of positive selection do not often co-occur between the same genes across
different populations, and it appears that the genes which mediate iron-adaptation may
differ across different populations, as discussed in Section 4.4.1.4. The connection of
FTMT and RHOA in the network, due to shared signatures of positive selection in only
East Asian populations, is a product of RHOA only exhibiting signatures of positive
selection in East Asian populations.

Finally, there are no frequently co-occurring signatures of positive selection amongst
iodine-associated genes, further supporting isolated pockets of adaptation via different
genes as suggested in Section 4.4.1.5.
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4.4.3. Geographically Global Patterns of Adaptation

Some ZCSlI-associated genes, particularly zinc-associated genes, exhibit a high degree of
differentiation from Yoruba (as calculated from Fg;) in many non-African populations
(Section 4.4.1), which is interpreted as a shared signature of positive selection. I suggest
that this is most likely due to positive selection on a common non-African ancestral
population (such as a migrating Out of Africa population), rather than positive selection
in many non-African populations. Other ZCSII-associated genes show signatures of
positive selection that are concentrated at the metapopulation level, e.g., the selenium-
associated signatures shared amongst populations in East-Asia, which may also be due to
a shared selective pressure or positive selection having acted on a common ancestral
population of East Asians.

To investigate this further, haplotype networks of identified genes of interests are built,
partitioning haplotypes by metapopulation. This helps us to visualise the genetic
variation across populations, and infer if putative selection was likely on the same (or
very similar haplotypes) or on very different haplotypes. Thus, most explicitly, these
haplotype networks distinguish between putative selection on de novo mutation (the
same haplotype background) and putative selection on standing variation (various
haplotype backgrounds). However, if different metapopulations show uniform but
divergent haplotypes, this suggests convergent selection between these metapopulations,
rather than a shared selection event in the common ancestor of these metapopulations.
These haplotype networks can also be used to identify potential recombination amongst
haplotypes, which will be represented by cycles in the network.

Genes of interest are identified as those with signatures of positive selection, particularly
identified by Fsr, in the most populations (Fig. S4.1), and hypothesise that these genes
may have undergone adaptation in an ancestral non-African population. Haplotypes of
length 10kb and 20kb were built around a focal SNP (Table S4.2) which are chosen as
described in Section 4.3.4.

4.4.3.1. Adaptation Out of Africa

The zinc-associated genes showing strong differentiation with respect to Yoruba in many
populations (SLC39A44, GPR39, SLC30A9, SLC39A11 and SLC39A14) all show more diverse
haplotypes in African populations (red in Fig 4.4-5; Figs. S4.2-11) compared to non-
African populations (as expected from increased genetic diversity in Africans (Campbell
and Tishkoff 2008; Tucci and Akey 2019)). The focal SNPs of SLC30A9 and SLC39A11 are
found in identical, or highly similar, haplotypes at high-frequency in non-African
populations, in line with expectations under positive selection increasing the frequency
of a beneficial allele in an ancestral non-African population (Fig 4.4, where the exact
haplotypes carrying the focal, putatively selected variant for SLC30A9 is shown in Fig 4.5).
Here, I suggest that selection is most likely from a low-frequency allele (either from a de
novo mutation or an allele segregating at low frequency). The ATP2B2 and ATP2B4 genes
both show identical or highly similar haplotypes shared amongst the majority of non-
Africans (Fig 4.6; Figs. S4.12-17). The cluster of closely related, similar haplotypes
(particularly observed for ATP2B4) indicate that selection may have acted on more varied
genetic backgrounds and therefore more suggestive of selection acting on standing
variation.
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However, the remaining focal SNPs of zinc-associated genes are found in multiple clusters
of identical or highly related haplotypes shared amongst non-Africans but of which are
highly divergent from each other (see Fig 4.4, Figs. $4.4.2-11). This divergence of
common haplotypes, partnered with no clear sorting amongst metapopulations, suggests
that if selection was indeed present, it most likely acted on different genetic backgrounds
(i.e, selection on standing variation, where segregating SNPs were likely at appreciable
frequencies), perhaps in an ancestral non-African population.
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Fig 4.4: Haplotype networks built from the 20kb region surrounding focal SNPs of
zinc-associated genes. Shown for SLC30A9 (position: 42004040), SLC39A4 (position:
144414297) and 10kb surrounding the focal SNP of the zinc-associated gene SLC39A11
(position: 73010373).
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Fig 4.5: Haplotype networks with labelled sequences built from the 20kb region
surrounding focal SNP (position: 73010373) of SLC39A11. Sequences containing the
focal SNP with the putatively selected variant are seq_16, seq_17, seq_21, seq_22, seq_23,

seq_24, seq_25, seq_26, seq_30. Gene chosen for its relative visual clarity when viewing
sequence numbers.
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Fig 4.6: Haplotype networks built from the regions surrounding focal SNPs of
calcium-associated genes. Shown for ATP2BZ2 (position: 10636328; 20kb region) and
10kb ATP2B4 (position: 203667951, 10kb region)
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4.4.3.2. Adaptation within Metapopulations

The focal SNPs of the selenium-associated genes PRKG1, EEFSEC and AKAP6 are within
haplotypes which appear to cluster, at least in some degree, by metapopulation.
Specifically, these SNPs are found within identical or highly similar haplotypes in
particularly East Asian and African individuals (pink in Fig 4.7, Figs S4.18-26), but
within otherwise variable haplotypes in other metapopulations (Fig 4.7, Figs. $4.18-26).
Most strikingly, the selenium-associated gene SGCD shows an identical haplotype
carrying the focal and putatively selected variant at high frequency in the East Asian
metapopulation (“seq 18” as labelled in Fig 4.8).

This pattern of genetic variation (i.e, uniform haplotype structure within individual
metapopulations) is as would be expected for selection acting convergently on these
genes in East Asian and African populations, rather than shared amongst all populations.
The divergence of some haplotypes of high frequency amongst either East Asian or
African individuals also suggests that the selected allele was present in multiple
haplotypes when selection started, suggesting SSV and an appreciable frequency of the
selected allele.

The haplotypes containing the focal SNPs of the iron-associated gene ARHGEF3 also
appear to group by metapopulation (particularly in East Asian populations), in support
of selection focused in Eurasia and not a result of a selection event in an ancestral non-
African population. Given that the haplotypes are more diverse, I suggest that selection,
if present, was selection on standing variation within these populations (Fig S4.27-32).
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Fig 4.7: Haplotype networks built from the 20kb region surrounding focal SNPs of
selenium-associated genes. Shown for EEFSEC (position: 128412869), SGCD (position:
156057959), PRKG1 (position: 51471686) and AKAP6 (position: 32446036)
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Fig 4.8: Haplotype networks with labelled sequences built from the 20kb region
surrounding focal SNP (position: 156057959) of SGCD. Sequences containing the focal
SNP with the putatively selected variant are seq_13, seq_15, seq_16, seq_18, seq_20, seq_22,
seq_23, seq_24, seq_27, seq_28, seq_29. Gene chosen for its relative visual clarity when
viewing sequence numbers.

4.4.4. Estimating the Onset of Selection

I now question whether signatures of positive selection identified on candidate genes
were more likely driven by selective pressures exerted when encountering new
environments, or as a result of more recent cultural changes. This analysis is heavily
computationally intensive, so it was not possible to run it for all genes and micronutrients.
[ focus on calcium (ATP2B2, ATP2B4, SLC8A1, SLC8AZ and SLC8A3) and iron-associated
genes (FTMT, ARHGEF3, HIF1A and SLC40A1) with the strongest evidence of selection,
since levels of these micronutrients have suggested to have been particularly affected by
the transition to the Neolithic diet (Dobrovolskaya 2005; Naugler 2008; Gerbault et al.
2011, 2011).

To answer this question, I first identify new focal SNPs (given in Table $4.3) which are
chosen as described in Section 4.3.4. CLUES is then used (Stern et al. 2019) to infer the
log-likelihood ratio of selection acting at one of four different timepoints (14kya, 28kya,
42kya and 56kya: timepoints that encompass the time just following the Out of Africa
migration, the time of migrations into new Eurasian environments, and the time just
preceding the Neolithic transition) (Figs. S4.33-51). [ then verify the onset of selection
suggested by this programme by the allele trajectories through time as reconstructed
using Relate (Speidel et al. 2019).
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4.4.4.1. Onset of Calcium-Associated Selection

The evidence of positive selection inferred from CLUES largely agrees with previously
described evidence from Relate and Fgy; evidence for positive selection (log-likelihood
ratios of selection > 4) is inferred across all focal SNPs of the candidate calcium-
associated genes and in many populations with previously identified signatures of
positive selection (Table 4.11). For some genes, novel signatures of positive selection are
identified in some populations, i.e., those not identified using Relate or Fg (indicated in
Table 4.11).

The highest log-likelihood ratios of selection are observed in the Middle-Eastern
Mozabite (ATP2B2 and ATP2B4) and Bedouin (SLC8A1 and SLC8AZ) populations, with
estimated selection coefficients of ~0.003. The strongest selection coefficients (also
accompanied by log-likelihood ratios indicative of selection) across the entire set of
calcium focal SNPs and populations are observed in the Central-South Asian Makrani
(ATP2B2, s~0.0087) and the European Orcadian (SLC8A3, s~0.0057) populations. This
latter population does not have a previously identified signature of positive selection in
this gene according to Relate or Fs, but does have a nearly-significant signatures of
positive selection according to Relate (Table 4.4). Hence, this provides additional
support for these populations undergoing calcium-associated adaptation.

If only including the focal SNPs and populations for which CLUES suggests selection (log-
likelihood ratios of selection > 4), the log-likelihood ratio of positive selection generally
increases further back in time. However, there is often very little difference between
inferred log-likelihood ratios of selection at the 42kya and 56kya timepoints (Fig. 4.9,
Figs. $4.33-42), and so the exact onset of proposed selection cannot be confidently
proposed. Moreover, the evidence of selection is compared at relatively close timepoints
with limited data for each locus, and therefore only broad patterns can be examined here.
These inferences are considered with the inferred allele frequency trajectories calculated
using Relate to suggest that the onset of selection is more likely around 40 - 30kya in the
majority of populations with significant signatures of positive selection, suggesting that
selection could have accompanied the colonising of new Eurasian environments.

The allele frequency increase of the focal SNPs is, in most populations, inferred to have
begun earlier than 10kya. But exceptions are observed in ATP2B4 and SLC8A3. The
Middle-Eastern populations, particularly the Mozabite, show additional sharp increases
of frequency of the focal SNPs of ATPZB4 (positions: 20364823, 203667951) around
10kya. There are sharp increases of the frequency of a focal SNP of SLC8A3 (position:
70182346) in the Mozabite and Pima populations between 10kya and 5kya. These results
suggest that besides widespread positive selection before 10kya, additional later
calcium-associated adaptations may have occurred in particular (particularly the
Mozabite) populations, possibly due to major dietary changes.
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Table 4.11: Populations with log-likelihood ratios of selection > 4 for calcium-
associated genes of interest. Calculated for given times of the onset of selection (“Time”)
and shown alongside their inferred selection coefficients, for focal SNPs of calcium-
associated genes of interest. Populations marked with * do not have previously identified
signatures of selection (identified by the 0.1% tail of the empirical distribution of either

Relate or Fgr).

Gene Position Population Time (kya) | Log Selection
Likelihood Coefficient
Ratios
ATP2B2 10604833 Mozabite 56 6.8143 0.00288
42 6.7209 0.00293
28 6.0841 0.00308
14 4.7436 0.00386
Sardinian 54 6.1902 0.003
42 6.1464 0.0032
28 5.5478 0.00305
Makrani 56 5.8721 0.00864
42 5.8704 0.00864
28 5.8537 0.00869
14 5.7553 0.00981
Bedouin 56 5.1878 0.00222
42 5.1107 0.00228
28 4.4327 0.00237
Basque 56 4.7394 0.00659
42 4.7382 0.00059
28 4.7232 0.00659
14 4.3041 0.00671
Palestinian 56 4.1905 0.00203
42 4.0711 0.00205
ATP2B4 20364823 Mozabite 28 5.1804 0.0038
42 5.1205 0.00298
56 4.6161 0.00278
14 4.158 0.00601
Mandenka* 56 4.585 0.00219
42 4.5796 0.00228
28 4.2572 0.00269
Druze 42 4.1131 0.00237
56 41117 0.00221
Yoruba* 56 4.0166 0.00166
203667951 Druze 56 5.483 0.00226
42 5.0879 0.00228
28 4.1476 0.00247
Bedouin 56 5.4379 0.00211
42 5.1408 0.00232
28 4.0238 0.0025
Sindhi 56 4.6668 0.0019
SLC8A1 40584510 Bedouin 56 7.5284 0.00226
42 7.0133 0.00225
28 5.752 0.00242
14 5.0701 0.00337
Basque* 56 4.3386 0.00254
42 4.2241 0.00269
Makrani 56 4.3009 0.00226
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42 4.0505 0.00234
SLC8A1 40394610 Hazara 56 5.2674 0.00322
42 5.2519 0.00327
28 5.0758 0.0041
Yakut 56 4.5985 0.00242
42 4.3783 0.00254
SLCBA2 47428756 Bedouin 56 6.3259 0.00234
42 6.2555 0.00238
28 5.1166 0.00283
47437107 Brahui 56 4.8037 0.00166
42 4.3034 0.00173
SLC8A3 70175561 Orcadian* 56 5.8316 0.00576
42 5.8307 0.00576
28 5.8133 0.00574
14 4.7667 0.00596
French* 56 4.5841 0.00238
42 4.488 0.00247
NorthernHan-Tu 56 4.3755 0.00284
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Fig. 4.9: Inferred likelihood ratios of selection and allele frequency over time for
calcium-associated genes of interest. Left: Inferred log likelihood ratios for ATP2B2,
ATP2B4 and SLC8A3 focal SNPs for populations with pvalues < 0.05, as calculated according
to the empirical distributions of either Relate or Fsr(dashed lines) or according to both
selection methods (solid lines). Right: Inferred frequency trajectory of the same focal SNP
for populations of interest (other populations omitted for clarity). Colours represent
metapopulations: blue = Europe; dark-green = Middle-East; pink = Central-South Asia; light-
green = East Asia; yellow = America; purple = Oceania; dark-orange = Africa.
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4.4.4.2. Onsetof Iron-Associated Selection

The evidence of positive selection inferred from CLUES (log-likelihood ratios of selection
> 4) again largely supports previously described evidence from Relate and Fgr (Table
4.12). The strongest evidence of positive selection inferred from CLUES is for the focal
SNP of HIFIA (position: 61709502) in the Palestinian population, where the log-
likelihood ratios for selections is > 7 for selection acting at 28ky, 42kya and 56kya (the
highest log-likelihood ratio value and is therefore strongest evidence of selection as
calculated by CLUES over all calcium and iron-associated SNPs; Table 4.12). The
strongest evidence of positive selection, as inferred by CLUES, for other focal SNPs
include FTMT in the Brahui (position: 121846819; log-likelihood ratio= 6.50) and HIF1A
in the Basque (position: 61741756; log-likelihood ratio= 5.09, distinct from other
populations; see Fig. 4.10).

Again, very small differences between log-likelihood ratios of selection calculated for the
timepoints 28kya, 42kya and 56kya are observed across most populations. Populations
of interest, inferred as such from Table 4.12 and their allele frequency trajectories, do
show a general increase in frequency of the focal SNPs around 20kya - 30kya (Fig 4.8;
Figs. S4.43-51). This, and the uniformity of log-likelihood ratios across 28-52kya, could
suggest a slightly later onset of selection in iron-associated genes compared to that
inferred for the majority of calcium-associated genes (estimated as 30-40kya in the
majority of populations), perhaps as a result of more recent and smaller scale migrations
into Eurasian environments. This agrees with the Eurasian-specific signatures of positive
selection in iron-associated genes, see Section 4.4.1.4.

On the other hand, allele frequency increases are inferred to be very recent for the focal
SNPs of some populations. The focal SNP of HIF1A (position: 61741756) in the Basque
population is inferred to increase rapidly in frequency between 10kya and 5kya, as does
the FTMT focal SNP (position: 121846819) in the Mozabite population. The log-likelihood
ratios observed in the focal SNP of the HIF1A gene in the Basque population suggest that
this population might have undergone recent iron-associated adaptation. Finally, very
sharp increases of the focal SNP of ARHGEF3 (position: 57043874) are observed in the
Maya and Dai-Lahu population at 20kya. Whilst log-likelihood ratios are under 4 (given
as 2.7194-3.922 in the Maya across the four timepoints, 2.1397-2.4992 in the Dai-Lahu),
this increase is at the level of which could suggest selection acting at this time on the
ancestors of these populations.
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Table 4.12: Populations with log-likelihood ratios of selection > 4 of iron-associated
genes of interest. Calculated for given times of the onset of selection (“Time”) and shown
alongside their inferred selection coefficients, for given focal SNPs of iron-associated genes
of interest. Populations marked with * do not have previously identified signatures of
selection (identified by the 0.1% tail of the empirical distribution of either Relate or Fgr).

Gene Position Population Time (kya) Log Selection
Likelihood Coefficient
Ratio

FTMT 121846819 Brahui 56 6.4986 0.0024
42 6.063 0.00245
28 5.1155 0.00273

14 4.0101 00042

Druze 56 5.4083 0.0021
42 4.8906 0.00206
Yakut 56 5.1566 0.00286
42 4.9626 0.00303
Hazara* 56 4.235 0.00242
42 4.1336 0.00249
HIF1A 61687412 She-Miao-Tujia | 56 4.2687 0.00256
6170952 Palestinian 56 8.7594 0.00302
42 8.7443 0.00303
28 7.8056 0.00302
14 5.0698 0.00352

Sindhi 56 5.0616 0.0019
42 4.5131 0.00187
Pathan 56 4.403 0.00198
61741756 Basque 56 5.0855 0.00314
42 4.9233 0.00315
14 4.0508 0.00586
28 4.0096 0.00354
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Fig. 4.10: Inferred likelihood ratios of selection and allele frequency over time for
iron-associated genes of interest. Left: Inferred log likelihood ratios for ARHGEF3, FTMT,
HIF1A and SLC40A1 focal SNPs for populations with pvalues < 0.05, as calculated according
to the empirical distributions of either either Relate or Fgr(dashed lines) or according to
both selection methods (solid lines). Right: Inferred frequency trajectory of the same focal
SNP for populations of interest (other populations omitted for clarity). Colours represent
metapopulations: blue = Europe; dark-green = Middle-East; pink = Central-South Asia; light-
green = East Asia; yellow = America; purple = Oceania; dark-orange = Africa.
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4.5. Discussion

Micronutrient levels in the diet have been inferred as likely drivers of selection across
modern human populations (Engelken et al. 2014, 2016; Sverrisdéttir et al. 2014; White
etal. 2015; Ye et al. 2015; Zhang et al. 2015a), a hypothesis that is supported by the work
presented in Chapter 3. In that chapter, I propose that micronutrient-associated
adaptation has contributed to modern human genetic diversity (Chapter 3) and outlined
which micronutrients had the strongest evidence for acting as a selective driver during
the history of our species.

In this chapter, the previous evidence is re-visited to discuss five micronutrients,
investigating the associated signatures of positive selection and the evolutionary history
of these genes in further detail. Deficient levels of these five micronutrients, four trace
minerals (zinc, selenium, iron, iodine) and one macromineral (calcium), result in a series
of severe health issues, of which are common across modern human populations and
perhaps also within our evolutionary history (Kelly and Snedden 1960; Xia et al. 2005;
Manning et al. 2012; Bailey et al. 2015; Khan et al. 2022; Shlisky et al. 2022). These
micronutrients are not only likely selective drivers, but their associated genes present
good evidence for having undergone adaptation in modern human populations (Chapter
3), and are hence good candidates to further explore. I thus ask which genes are most
likely to mediate micronutrient-associated adaptation and in which populations, how
adaptation of different genes may co-occur, and the most likely timing of such adaptation
(extrapolating to infer the most likely selective drivers).

[ show that the inferred signatures of positive selection are often the strongest in only a
few genes of a given micronutrient-associated gene set, building on the work undertaken
in Chapter 3 suggesting that micronutrient-associated adaptation is likely oligogenic in
nature. In some cases, the candidate genes showing the strongest evidence of positive
selection have signatures shared over global geographic regions, as expected if selection
occurred on populations ancestral to these extant populations. In other micronutrient-
associated genes, particularly those associated with iron and iodine, signatures are more
geographically restricted as if positive selection occurred in local pockets across the globe.
Finally, from the inferred allele frequency trajectories and likelihood of selection onset
over time, the most likely timing of adaptation associated with two micronutrients (iron
and calcium) is inferred. The specifics of these inferences for each micronutrient are
summarised below.

4.5.1. Zinc

Signatures of positive selection have been identified in multiple zinc-transporter genes
in many previous studies (e.g., (Engelken et al. 2014; Zhang et al. 2015a; Roca-Umbert et
al. 2022)). Much of this literature has highlighted SLC30A9 and SLC39A4 as those with the
strongest evidence of selection (Engelken et al. 2014; Zhang et al. 2015a), which is
recapitulated here. Both SLC3944 and SLC30A9 show strong signatures of positive
selection (as calculated by Fgr) across many populations, where the evidence of selection
is strongest in the Makrani of Central South Asia (SLC39A4) and Han of East Asia
(SLC30A9). The Makrani population live in modern-day Pakistan, where zinc deficiency
is prevalent (22.1%) and up to 96.1% of grain samples are zinc-deficient (Rehman et al.
2020; Ishfaq etal. 2021). Equally, zinc levels are low in the calcareous soil of China (Karim
et al. 2012), and approximately 100 million people are affected by zinc deficiency in this
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region (Ma et al. 2008). These recorded deficiencies are in agreement with these
populations facing strong selective pressure from zinc levels.

[ identify ten further zinc-transporter genes showing signatures of positive selection that
are identified amongst all metapopulations excluding Oceania: SLC39A44, SLC30AS9,
SLC39A11, SLC39A12, SLC30A7, SLC30A8, SLC30A1, SLC39A10, SLC39A14 and SLC30A10
(randomly distributed across the genome, hence these are not shared signatures). Again,
strong signatures of positive selection are observed in the Makrani population,
particularly in SLC39A11.

However, these shared signatures of positive selection do not necessarily represent the
independent adaptive responses of individual populations to varied zinc content in soils
across the globe. Rather, the sharing of signatures of positive selection across populations
most likely reflects a shared selective pressure experienced by many populations (or by
a common ancestor of many populations). I conclude this given 1) the signatures of
positive selection shared across such a number of populations and 2) the number of
nearly-significant signatures of positive selection in zinc-transporter genes.

Some zinc transporter genes may play a greater role in mediating zinc-associated
adaptation amongst global populations. Indeed, a previous study has suggested that zinc-
associated adaptation is largely mediated by only a few zinc transporter genes (Roca-
Umbert et al. 2022). This study suggested a general enrichment of signatures of positive
selection amongst zinc-associated genes (Roca-Umbert et al. 2022), but only explored the
signatures of positive selection in metapopulations and individual South Asian
populations, using a combination of Fg; and haplotype-based methods. However, here,
signatures of positive selection are identified at a finer resolution (in individual
populations rather than populations grouped as a metapopulation) and use an additional
method (Relate; more sensitive to the signatures of selection on standing variation than
haplotype-based methods, see Chapter 2). Hence, this study has greater power to
identify more subtle and local adaptation.

[ identify the SLC39A11, SLC30A8, SLC30A10 and SLC30A1 zinc-transporter genes as
frequently sharing signatures of positive selection amongst the same populations, and
therefore could represent a common, global network to mediate zinc adaptation.
However, strong signatures of positive selection amongst other zinc-transporter genes in
individual populations are still observed, as summarised in Section 4.4.1.1. Hence, whilst
there may be only a few zinc-transporter genes which are largely responsible for zinc-
associated adaptation amongst human populations, additional zinc-transporter genes
mediate further adaptation, perhaps more uniquely to individual populations.

Indeed, since the zinc-transporter genes carry out a diverse range of biochemical roles
within the human body, including structural, regulatory or catalytic roles (Kambe et al.
2015), it is likely that adaptation on some zinc-transporter genes is pleiotropically
constrained (Wagner and Zhang 2011; Fraisse et al. 2019; Mauro and Ghalambor 2020).
If pleiotropic constraints vary over zinc-transporter genes (a consideration outside the
scope of this study), this could, in theory, result in only a few zinc-transporter genes
commonly responding to selective pressures (with other zinc-transporter genes possibly
compensating for any resulting biochemical changes). SLC3948 has been shown to be
highly pleiotropic (associated with Crohn’s disease, blood pressure, body mass index and
schizophrenia, amongst other traits (Costas 2018)), but the degree of pleiotropy over
other zinc-transporter genes remains unclear.
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Finally, I turn to exploring the geographic and temporal origin of the inferred shared
positive selection on zinc-associated genes. The strong signatures of positive selection
shared amongst many non-African populations, partnered with the highly similar non-
African haplotypes of SLC39A11 and SLC30A9, suggest that the shared selection event on
these genes may have been on an ancestral non-African population, most likely from an
allele segregating at low frequency. I propose that this could have been a population
migrating out of Africa and living in the Arabian Peninsula (Soares et al. 2012; Haber et
al.2019; Beyer etal. 2021). The Middle-East, especially Iran, is known to have particularly
iron and zinc-deficient soils (Ryan et al. 2013), has a history of zinc deficiency disorders
(such as severely stunted growth (Halsted et al. 1972; Prasad 2013)) and was the first
place where human zinc deficiency was recognised in the 1960s (Halsted et al. 1972;
Gibson 2012; Prasad 2013). Adaptation to regulate zinc levels may have thus occurred in
an ancestral population living on, and eating from, these deficient soils, and potentially
repeated on additional zinc-reporter genes in populations living on elsewhere deficient
soils (such as those identified particularly in South Asia, where other populations
exhibiting strong signatures of positive selection on zinc-transporter genes reside, e.g.,
the Makrani (Wessells and Brown 2012; Roca-Umbert et al. 2022)).

The possible exception to this is seen in SLC39A4. Previous studies have suggested that
proposed adaptation on SLC3944, and its near fixation in West Africa, is due to increased
pathogen stress driving lower zinc uptake (Engelken et al. 2014; Zhang et al. 2015a).
Indeed, whilst strong signatures of positive selection are identified in SLC3944, these
were identified via their degree of differentiation to Yoruba, as calculated by F¢;, and only
six populations give nearly-significant signatures of positive selection according to
Relate. There are also fewer uniform haplotypes in non-Africans in comparison to the
other candidate zinc-transporter genes. For these reasons, | am more cautious in
suggesting that this zinc-transporter was under the same ancestral selective pressures
on SLC39A11 and SLC30A9.

4.5.2. Selenium

Somewhat similar to the case of zinc-associated genes, there is a clear network of
selenium-associated genes which often share signatures of positive selection over
multiple populations: SGCD, AKAP6, PRKG1 and KCNMA1. All four of these genes have
intron SNPs associated with selenium regulation (Savas et al. 2010). Moreover, there
appears to an epistatic effect between this group of genes, with SNP-SNP interaction
indicated between AKAP6 and SGCD and between AKAP6 and KCNMA1 (Savas et al. 2010),
implying that mutations in these genes may interact to regulate selenium levels, and
support their role as an adaptive gene network.

However, other selenium-associated genes show additional signatures of positive
selection in individual populations. This, partnered with the frequency of signatures of
positive selection on different selenium-associated genes but the relative lack of strong
signatures, suggests that adaptation in response to selenium-associated pressures is truly
oligogenic in nature (but not extending to polygenic, as investigated in Chapter 3). Still,
here I focus on the groups of selenium-associated genes co-exhibiting signatures of
positive selection amongst the same metapopulations.

PRKG1, AKAP6, SGCD and EEFSEC all show signatures of positive selection in East Asian
populations, as well as near identical haplotypes shared in individuals of this
metapopulation (particularly observed in the haplotypes of PRKG1). Many East Asian
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populations are known to be living on extremely selenium-deficient soil and hence under
selenium-deficiency stress (Xia et al. 2005; White et al. 2015). It is thus possible that this
group of genes primarily mediates adaptation in response to selenium-associated
pressures in East Asia.

In African populations, who also often live on selenium-deficient soil (Hurst et al. 2013;
Ibrahim et al. 2019), the genes exhibiting shared strong signatures of positive selection
are LRP8 and LHFPLZ2. LRP8 is a receptor of the selenoprotein P (SELENOP), determines
the hierarchy of selenium supply to various organs under deficiency (Sarangi et al. 2018)
and has been shown to increase mRNA concentrations following SELENOP knock-out
induced deficiency (Pietschmann et al. 2014). The function of LHFPLZ is less clear, but a
role in selenium metabolism has been suggested by its association with toenail and blood
selenium concentrations (identified in a previous genome-wide association study
(Cornelis et al. 2015)).

Here, | have identified novel candidate genes for population-specific selenium-associated
adaptation. The population differences of the strongest signatures of positive selection
are consistent with East Asian and African populations having potentially adapted to
selenium stress arising from selenium-deficient soils, but primarily through genetic
changes in different groups, or networks, of genes.

4.5.3. lodine

The iodine-associated genes showing strong signatures of positive selection are the least
shared amongst populations in comparison to the other micronutrients examined here,
and I suggest that potential adaptation to iodine is more focused to individual populations,
rather than shared amongst populations. However, here I outline one key exception.

The Maya population of the Americas and the Mbuti population of Central Africa both
share signatures of positive selection in four iodine-associated genes, three of which are
thyroid-receptors (THRA, THRB, TRIP4). Given the high levels of goitre in modern
Mexicans (Kelly and Snedden 1960), it is possible that the Maya experienced a low-iodine
environment in their ancestral home. Rainforest populations, including those of Central
Africa, are also known to be living on soils deficient in iodine (Cifor 2006) and the Mbuti
may have been exposed to a similar iodine deficiency selective pressure. What is most
intriguing here, is both populations’ distinctive short stature (height < 160cm (Perry and
Dominy 2009)) which may be mediated by these three thyroid-receptors (Rose 1995;
Moran and Chatterjee 2015; Xu et al. 2016). A substantially lower rate of goitre is
recorded in the short-statured Efe population compared to neighbouring Bantu-speaking
populations (Dormitzer et al. 1989), where both populations live in similarly low-iodine
soils, presenting a further link between short stature and resistance to iodine deficiency.
Hence, the characteristically short stature of these populations may be tightly linked to
iodine metabolism.

Other populations exhibiting signatures of genetic adaptation in iodine-associated genes
include the Palestinian (signatures of positive selection bypassing the most stringent
threshold in the THRB gene) and the Uygur population (where multiple iodine-associated
genes exhibit signatures of positive selection). This latter population live in the now
Xinjiang Uygur Autonomous Region of Northern China, which includes areas of severely
iodine deficient soils (likely as a result from to its distance from the ocean (Yang et al.
2021)). Urine iodine levels have been shown to be significantly different in Uygur and
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Han Chinese pregnant women (Renaguli et al. 2018), suggesting a potentially different
metabolic reaction to iodine in these populations.

4.5.4. Calcium

Multiple populations also exhibit signatures of calcium-associated adaptation, inferred
by multiple genes showing strong signatures of positive selection. These include the
Biaka and Bantu-speaking populations of Africa, the She-Miao-Tujia and Japanese of East
Asia, the Kalash of Central-South Asia and the French of Europe. However, it is unclear if
the putative calcium-associated adaptation could be due to cultural or environmental
factors, (i.e,, cultural differences in diet or underlying soil composition), since data on the
calcium levels in these soils is sparse.

The strongest signature of positive selection of this entire thesis (see Chapter 3) is
observed in the calcium-associated ATP2ZBZ gene of the African Mandenka. It has
previously been shown that Gambian populations, many of whom have Mandenka
ancestry, have low calcium urinary excretion under low calcium intake, which has been
suggested to maintain bone health even under low-calcium diets (Aspray et al. 2005;
Redmond et al. 2015). The Mandenka live throughout West Africa (countries with the
highest number of individuals with Mandenka ancestry include Senegal, Mali, Guinea and
The Gambia (Currat et al. 2002)) and whilst there has been some indication of reduced
calcium in some West African soils, this has not yet been linked explicitly to the Mandenka
population (Issaka et al. 1996; Baumann et al. 2021).

However, strong signatures of positive selection have been identified on this gene
amongst the majority of populations in this study. ATP2BZ2 is thus proposed as strong
candidate for having undergone widespread adaptation in modern humans (rather than
isolated to the Mandenka population), most likely as a result of selection on standing
variation. Still, as outlined in Chapter 3, it is difficult to confidently associate these
signatures with calcium-associated selective pressures, given the role this gene plays in
many human diseases.

[ investigate the timing of proposed selection on this gene and four other calcium-
associated genes (ATP2B4, SLC8A1, SLC8A2 and SLC8A3) by combining the inferred log-
likelihood ratios of selection and the allele trajectories of focal SNPs. For the majority of
populations with signatures of positive selection, I suggest that the onset of selection was
approximately 40kya and hence could reflect selection in an early non-African population.
Given the lack of soil data for calcium levels, including that of soils in the Arabian
Peninsula, it is not possible to confidently link these genomic signatures to selection in a
migrating Out of Africa population, although it is worth noting that the majority of the
results do not support selection accompanying Neolithic changes to the diet.

The exception to this is observed in the Mozabite population; the high log-likelihood ratio
of selection and frequency trajectories of the focal SNPs of ATP2B4 and SLC8A3 suggest
that selection could have started approximately 10 - 5kya. Both of these genes control
calcium transport, with the former associated with the calcium absorption of laying hens
(Gloux et al. 2019), and it is thus possible that adaptation in response to calcium in the
diet occurred in the Mozabite population. This may be a result of Neolithic dietary
changes surrounding this time point. This agrees with previous studies suggesting
calcium adaptation in the Mozabite (Hughes et al. 2008). Finally, very recent increases in
frequency of the focal SNP of SLC8A3 are inferred in the American Pima population
(between 10 - 5kya). Interestingly, and in agreement with calcium-associated selective
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pressures in this population, the traditional diet of this population is high in iron but low
in calcium (Greenhouse 1981).

4.5.5. Iron

Finally, iron-associated genes also show signatures of positive selection that appear to
co-occur with the timing of major human migrations, albeit possibly a little more recent
than for calcium. For the iron-associated genes of interest, steep increases in allele
frequency occurring at 30 - 20kya are inferred, broadly agreeing with the estimated log
likelihood ratios of selection estimated over time. The more recent inferred onsets of
selection compared to calcium-associated genes, alongside the geographical partitioning
of strong signatures of positive selection (such as those unique to East Asian populations
in the RHOA gene), also suggests that such adaptation may have been driven by the novel
environmental conditions of different Eurasian environments, rather than a common
environment encountered immediately following the exit from Africa. By extension,
adaptation in response to iron levels is also more likely to be largely driven by novel
environmental pressures, such as soil levels, rather than recent changes in diet.

The signatures of positive selection identified in the iron storage protein FTMT, which
plays a central role in protecting mitochondria from iron excess (Levi et al. 2021), suggest
selection around ~30 - 20kya in the Yakut population (inhabiting modern day Siberia).
Increases of frequency of the focal SNP of the ARHGEF3 gene, which regulates iron intake
and erythroid cell maturation (Serbanovic-Canic et al. 2011), are also inferred in the
American Maya population at this time (estimated as ~20kya). This latter time is the
approximate time of the stasis of ancestral American populations in the Bering Strait
(Raghavan, DeGiorgio, et al. 2014; Raghavan, Skoglund, et al. 2014). Hence, iron-
associated adaptation may be driven by environmental factors experienced by
populations living in the Siberia. In the absence of data on the iron content of these soils
this can only be speculated.

Previous literature has suggested iron-associated adaptation in European populations
(Distante et al. 2004; Ye et al. 2015), of which some support is presented here. The HIF1A
gene especially, a hypoxia-inducible factor that plays a role in iron homeostasis (Shah and
Xie 2014) exhibits both strong signatures of positive selection and very recent inferred
frequency increases (between 10 - 5kya) in the Basque population of Europe. Notably,
this is a novel target of iron-associated selection considering the existing literature.
Finally, in support of the micronutrient-associated adaptation in the Mozabite
surrounding the time of the Neolithic transition and associated dietary changes, there are
signatures of positive selection and a striking increase of allele frequency of the focal SNP
ofthe FTMT gene between 10 - 5kya in the Mozabite population. However, the signatures
of positive selection identified in Mozabite this study may be conflated with those arising
from admixture of this North African population with Europeans (Hughes et al. 2008),
and this would benefit from further investigation.

4.5.6. Strengths and Limitations

As informed from previous work (Chapter 3), I identify the micronutrients with the
strongest evidence of acting as a selective driver in human evolutionary history and
investigate the geographic distribution and strength of their associated signatures of
positive selection in populations across the globe. I consider co-occurrence of signatures,
haplotype diversity and inferred allele frequency over time to better elucidate the
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evolutionary history of genes within five micronutrient-associated gene sets, and suggest
the most likely origins of putative selection, in both space and time. By exploring the
signatures of positive selection on only five micronutrient-associated gene sets, I am able
to focus the analysis to a degree not possible in Chapter 3, identifying similarities and
differences between the genomic adaptation of different human populations, and use
computationally intensive methods (e.g., CLUES (Stern et al. 2019)) to provide further
support of and information on putative adaptation scenarios.

Whilst the focus on only five micronutrients in this chapter removes some limitations of
the comprehensive approach of Chapter 3, some remain. As addressed in Chapter 3,
there is limited information on soil information or contemporary health data which, if
available, would more clearly allow an evaluation on the link between the micronutrient
content in the diets of ancestral populations and putative signatures of micronutrient-
associated adaptation. Also, each SNP identified as having a signature of positive selection
is not necessarily a true target of selection, and the methods to identify selection will
naturally result in both false positives and false negatives. To mediate this, I consider of
signatures of positive selection at the gene set level and evaluate the presence of nearly-
significant signatures of positive selection.

Finally, the exact functional role of micronutrient-associated genes must be considered.
Many of the micronutrient-associated genes explored here are responsible for many
functions in the human body, and signatures of positive selection identified may not be
strictly related to micronutrient metabolism. There may also be multiple stressors which
have resulted in the identified adaptive signatures, as suggested in the case of zinc-
associated adaptation (e.g., driven by soil levels and/or pathogen resistance). I can thus
only suggest the most likely micronutrient-associated drivers according to inferences of
time of selection (e.g., if they most closely coincide with migrations to novel environments,
and therefore potential soil-related stress, or the Neolithic transition, and therefore
cultural changes to diet) but confidently teasing apart the individual selective drivers of
these cases of proposed adaptation will take significant further work and functional
analysis, and may not be easily summarised across large numbers of populations.

4.5.7. Summary

When signatures of positive selection coincide with soil and public health data, as is the
case for some of the strongest examples here, there is good reason to suggest that they
likely underlie adaptation in response to micronutrient levels. Whilst contemporary
public health data for micronutrient deficiencies does not necessarily reflect underlying
soil levels and is often tightly linked to national food or economic inequality (Shenkin
2006; Bhutta and Salam 2012; Bailey et al. 2015), and modern-day soil levels are not
necessarily indicative of the ancestral environment (owing to farming and other
agricultural practices (Shahid et al. 2018; Dhaliwal et al. 2019; Alewell et al. 2020)), I
present evidence that soil composition has contributed to driving population-specific
adaptation to micronutrient levels, alongside potential additional cultural dietary drivers.

[ particularly propose that Middle-Eastern geology has driven micronutrient-associated
adaptation in an ancestral non-African population, hence playing an important role in
shaping the genomic diversity of many modern human populations. The role of
environment-induced adaptation in Middle-Eastern populations is considerably
understudied considering the likely importance of this environment in driving
adaptations in populations migrating Out-of-Africa, and consequent likely implications
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(including those possibly surrounding differential health outcomes, see Chapter 1) for
all non-African populations. Here, I outline one example of how this environment may
have shaped non-African genomic diversity, but suggest that many more exist and
warrant significant further study.

[ also propose cases where populations have responded to the same micronutrient-
associated stresses in soil levels via adaptation of the same or similar genes (as suggested
in the adaptive response to high elevation in human populations (Foll et al. 2014; Huerta-
Sanchez et al. 2014; Ilardo and Nielsen 2018)). Most notably, I propose this in the
response of Maya and Mbuti populations to iodine-deficient soils, and further suggest this
as a causal link to short stature in these populations. I also identify cases where
populations have responded to the same micronutrient-associated stresses via
adaptation of different sets of genes, most notably the response of many African and East
Asian populations to selenium-deficient soils. Finally, there is limited evidence that the
dietary changes in the Neolithic drove widespread calcium or iron-associated adaptation,
but there are some cases where selection on calcium or ion-associated genes is inferred
to be more recent, coinciding with major dietary changes in human history.

To more comprehensively understand micronutrient-associated adaptation, future
studies would benefit from a deeper understanding of ancestral soil environments and
differences in the prevalence of micronutrient-associated pathologies of modern
populations according to ancestry. Alongside functional analysis on candidate genes
regarding their role in their associated micronutrient regulation or metabolism, this will
more clearly pinpoint the selective drivers of such adaptive signatures.

4.6. Conclusion

Here, I build on previous work (Chapter 3) to more thoroughly investigate the signatures
of positive selection identified on the genes associated with five micronutrients: zinc,
calcium, selenium, iron and iodine. I identify the groups of micronutrient-associated
genes which have the strongest evidence for mediating micronutrient-associated
selective pressures in human populations across the globe, and suggest that populations
may evolve through different genomic routes to the same micronutrient-associated
pressures. I give evidence for older selection events in ancestral non-African populations,
particularly in zinc-associated adaptation in the Middle-East, and present a small number
of micronutrient-associated adaptation events that more likely surround the Neolithic
dietary transition.
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Chapter 5: Ancient Loss of Catalytic
Selenocysteine Spurred Convergent Evolution in
a Mammalian Oxidoreductase

This chapter is based upon the work undertaken in the preprint: Ancient loss of catalytic
selenocysteine spurred convergent adaptation in a mammalian oxidoreductase
(Rees et al. 2023). Where specified, some work was primarily undertaken by collaborators.

5.1. Overview

Catalytic residues are often conserved in proteins, with mutations that occur at or close
to key sites frequently reducing catalytic activity and corresponding fitness of the enzyme
(Sharir-Ivry and Xia 2021). When such deleterious mutations persist, they often
demonstrate evolutionary trajectories which either recover catalytic function or open
new protein functions (Jensen 1976; Gromer et al. 2003; Jayaraman et al. 2022). Here, we
investigate the evolutionary and functional trajectories that follow the loss of the key
catalytic residue in a mammalian oxidoreductase.

Selenocysteine (Sec), the 21stamino acid specified by the genetic code, is a rare selenium-
containing residue found in the catalytic site of selenoprotein oxidoreductases. These
proteins mediate the essential biological effects of the rare trace element selenium
(explored in terms of its role in modern human health and adaptation in Chapters 1, 3,
4).Secis analogous to the common cysteine (Cys) amino acid but its selenium atom offers
physical-chemical properties not provided by the corresponding sulfur atom in Cys.
Hence, exchanges of Sec to Cys in the catalytic sites of vertebrate selenoproteins are often
under strong purifying selection (Castellano et al. 2009). Whilst the presence of both Sec
and Cys orthologues are rare, these are observed in Glutathione Peroxidase 6 (GPX6),
which has independently exchanged Sec for Cys less than one hundred million years ago
in several mammalian lineages.

We reconstructed and assayed ancient GPX6 enzymes before and after the loss of Sec,
alongside the modern mouse protein, and found them to have lost their classic ability to
reduce hydroperoxides using glutathione (GSH). This loss of function, however, was
accompanied by additional amino acid changes in the catalytic domain, with protein
sites showing signatures of adaptive convergence across distant lineages abandoning
Sec in GPX6. This demonstrates a narrow evolutionary path when sulfur in Cys impairs
catalysis, with pleiotropy and epistasis likely driving the observed convergent evolution
and triggering enzymatic properties beyond those in classic GPXs.

5.2. Background

Selection does not act equally over all sites of a protein; those sites with functional
importance, or contributing to the stability of a protein, are under stronger selective
pressure to conserve their vital roles (Sharir-Ivry and Xia 2021). Catalytic residues, those
that lower the activation energy of reactions and thereby increase enzymatic turnover,
are a key example of such largely conserved sites, and show slower rates of evolution
compared to other sites within a protein. Catalytic sites have even been show to exert a
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strong gradient of conservation on nearby sites, such that the degree of conservation on
a site increases with the closeness to the key catalytic residue (Sharir-Ivry and Xia 2021).

Mutations that occur in these evolutionary constrained active sites, or indeed in nearby
sites, typically reduce catalytic activity (a proxy for fitness in enzymes; (Carter and Wells
1988; Loeb et al. 1989; Rennell et al. 1991)) and are frequently removed by purifying
selection. Still, these deleterious mutations may occur and persist, with their effects often
mediated by compensatory mutations that restore catalytic ability, and therefore fitness
of an enzyme (Jensen 1976; Gromer et al. 2003; Cha et al. 2013). Such compensatory
mutations, often occurring near the deleterious mutation, improve the fitness of a protein
when accompanying a deleterious mutation but are otherwise neutral or even slightly
deleterious (Davis et al. 2009).

Therefore, such compensatory changes reflect a specific form of intragenic epistasis,
whereby they increase the fitness of a deleterious mutation to either become neutral or
advantageous, and increase the possibility of its fixation in the population (Davis et al.
2009; Jayaraman et al. 2022). These compensatory mutations may either precede or
follow the deleterious mutation event, restoring fitness or effectively preventing the loss
of fitness on the onset of the deleterious mutation (Jayaraman et al. 2022), and their
onsets may be considerably spread around the appearance of the deleterious mutation
(Jayaraman et al. 2022). Whilst the evolutionary landscape of such mutations is therefore
highly complex, the role of compensatory mutations in recovering fitness has been
implicated across a wide range of biological scenarios, including following fixation of
deleterious mutations in small populations, restoring antibiotic or pesticide resistance,
and repairing ancestral catalytic ability (Jensen 1976; Gromer et al. 2003; Whitlock et al.
2003; Maisnier-Patin and Andersson 2004; Cha et al. 2013; Larsson and Flach 2022).

In other cases, deleterious mutations may prompt evolutionary trajectories that open the
protein to novel functions (Jensen 1976; Gromer et al. 2003; Covert et al. 2013). Whilst
gene duplication often precedes the appearance of new adaptations, which often evolve
as a result of one or both gene copies being released from their previous functional
constraint (Hughes 1997), deleterious mutations may also allow adaptations that were
previously unavailable by way of interacting with a conditionally beneficial mutation
(Lenski et al. 2003; Covert et al. 2013). Indeed, this has been implicated in the evolution
of many novel enzymes and their functions, including cystallins of the eye, isocitrate
dehydrogenase of the Krebs cycle and novel organophosphorus hydrolase activity
mediating insecticide resistance (Piatigorsky and Wistow 1991; Dean and Golding 1997;
Newcomb et al. 1997).

As outlined, protein evolution following a deleterious mutation at their active site
depends heavily on intragenic epistasis, whether that is an evolutionary trajectory which
repairs original function or helps traverse fitness space to develop a novel function.
Mutational trajectories are limited by the enzyme’s sequence (with pleiotropy further
limiting trajectories that improve one enzymatic property but compromise another
(Weinreich et al. 2006; Storz 2016)). This is best represented in orthologous proteins,
whose sequence conservation among species provides similar genetic backgrounds to
mutations (Lunzer et al. 2010; Shah et al. 2015). Ultimately, this can result in narrow
fitness trajectories of such similar proteins, and give rise to convergent, or parallel,
changes across closely related lineages (Weinreich et al. 2006; Storz 2016).
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5.2.1. Selenoprotein Evolution

Here, we investigate the loss of a key catalytic residue in the selenoprotein Glutathione
Peroxidase 6 (GPX6). In this protein, there has been sporadic replacement throughout
mammalian history of selenocysteine (Sec) with cysteine (Cys) at the catalytic site. This
is expected to result in an immediate loss of catalytic ability, as previously shown for this
amino acid exchange (Axley et al. 1991; Berry et al. 1992; Lee et al. 2000; Johansson et al.
2005; Arnér 2010; Kim et al. 2015; Reich and Hondal 2016). Since this protein is unique
in its family for containing both Sec and Cys as its key catalytic residue in contemporary
mammals, with other GPX proteins exclusively containing either Sec (GPX1, 2, 3 and 4) or
Cys (GPX5, 7 and 8; (Mariotti et al. 2012), it presents good opportunity to infer the
evolutionary trajectories that follow a deleterious mutation at a unusual catalytic site, in
direct comparison to the orthologues without such a mutation.

Sec is the 215t amino acid and the defining catalytic residue of selenoproteins, a family of
proteins that uses and mediates the biological effects of the rare trace element selenium.
Selenium is an essential micronutrient in many organisms and is responsible for a wealth
of vital biochemical functions (Labunskyy et al. 2014). It is particularly associated with
development, immune response and reproduction (Kéhrle 2000; Rayman 2012), and
deficiencies in humans result in a range of pathologies, including those outlined above
and, in extreme cases, heart and bone diseases such as those endemic to selenium-
deficient areas of China (Xia et al. 2005).

The selenium-containing amino acid Sec is unusually encoded by a UGA stop codon, and
its insertion requires a Sec insertion sequence (SECIS) element to redefine this codon to
specify Sec insertion (Berry et al. 1992). This stem loop structure is in the 3’'UTR of the
mRNA in selenoproteins in mammals, as well as all other eukaryotes and archaea
(Labunskyy et al. 2014). Selenoproteins using such a molecular structure are rare, with
only 25 selenoproteins making up the selenoproteome in humans (Kryukov et al. 2003).
This number is mostly conserved in mammals (Mariotti et al. 2012), but shows a general
decrease in non-mammal organisms (eg., only 3 selenoproteins in Drosphila
melanogaster (Castellano et al. 2001)), with the exception of aquatic organisms which
often have a larger selenoproteome (Lobanov et al. 2007).

Sec is often a key catalytic residue at the active site of enzymes and plays a key role in
catalytic redox reactions, including reductions of thioredoxin, activation and inactivation
of thyroid hormones, repairing oxidised methionines in proteins and removal of
hydroperoxides (the latter as in the GPX family (Santesmasses et al. 2020)). Whilst Sec’s
role is often considered unique, many selenoproteins have been found with this catalytic
residue entirely replaced by Cys (UGU or UGC), the analogous amino acid containing a
sulfur-containing thiol group in place of the selenium-containing selenol group of Sec
(Stadtman 1996).

However, such Sec-to-Cys substitutions across orthologous selenoproteins, as seen in
mammalian GPX6, are rare (Castellano et al. 2005). There is a low exchangeability of Sec
and Cys in catalysis, where Cys displays lower catalytic activity, nucleophilicity and
efficiency as a leaving group when compared to Sec (Axley et al. 1991; Berry et al. 1992;
Lee et al. 2000; Johansson et al. 2005; Arnér 2010; Kim et al. 2015; Reich and Hondal
2016). Hence, the exchange of Sec to Cys is often deleterious and strong purifying
selection limits these exchanges in nature. When exchanges between Sec and Cys do occur
and become fixed, these are often following gene duplications that may release the
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duplicated gene from its catalytic functional restraint (Mariotti et al. 2012; Magadum et
al. 2013).

Indeed, all Cys-containing proteins of the vertebrate GPX family are a result of
duplications in early history: GPX5¢ys from GPX3sec duplication (around 300 Mya);
GPX8cys from GPX7cys or GPX4sec duplication (likely 450 Mya); GPX7cys from GPX4sec
duplication (more than 1,000 Mya) (Hedges 2002; Castellano et al. 2009; Trenz et al.
2021).

5.2.2. Study Overview

The presence of both the Sec and Cys-containing orthologues of GPX6 is therefore highly
unusual, particularly in vertebrates, and allows us to ask the immediate evolutionary
response to such an exchange. We first consider if, in view of the deleterious nature of
losing Sec, the exchange between Sec and Cys results in the emergence of compensatory
mutations that act to repair catalytic ability, as demonstrated by (Gromer et al. 2003) in
Drosophila, and if these compensatory mutations are shared over all Cys-containing
mammalian lineages.

We also consider if the functional pathway of GPX6¢ys changes as a result of the exchange
of its key catalytic residue. Whilst GPX proteins, which contain either Sec or Cys at their
defining catalytic site, all protect the cell from oxidative damage (Tosatto et al. 2008),
they do so via different pathways. Classic GPXsec activity reduces hydroperoxides,
particularly hydrogen and lipid peroxides, with glutathione (GSH) as a cofactor (Trenz et
al. 2021). GPXcys proteins, on the other hand, have evolved a preference for other
cofactors, for example thioredoxin in GPX5¢ys or protein disulfide isomerase (PDI) in
GPX7cys and GPX8cys (Nguyen et al. 2011). These Cys-containing proteins not only act on
alternative substrates for peroxidation but may also have additional functions, including
signalling and oxidative protein folding (Nguyen et al. 2011; Taylor et al. 2013; Buday
and Conrad 2021). We hence also ask if the Cys-containing orthologues of GPX6 also
develop novel functional pathways, on account of their lower catalytic turnover.

By reconstructing GPX6 protein evolution throughout mammalian history, we are first
able to identify five independent losses of Sec in mammals, surrounded by a burst of
amino acid changes in the catalytic domain. An unusual number of the amino acid changes
that accompany Sec loss are shared across distant lineages, indicating a narrow
evolutionary path, likely mediated by pleiotropy and epistasis, available to proteins when
the sulfur-containing Cys impairs catalysis. We also reconstruct and assay ancient
enzymes before and after Sec loss in the Eumuroida lineage, and find them to have lost
their classic ability to reduce hydroperoxides using glutathione (GSH). Hence, such a
narrow evolutionary path seems to trigger enzymatic properties beyond those in classic
GPXs, reappraising function rather than recovering previous catalytic ability. Thus, these
findings are an unusual example of adaptive convergence towards unexplored
oxidoreductase functions during mammalian evolution.

5.3. Methods
5.3.1. GPX Sequences

The GPX6 coding sequences and proteins for 22 present-day mammal species were
obtained from SelenoDB 2.0 (now available at selenodb.crg.eu; (Romagné et al. 2014))
and Ensembl (Yates et al. 2020), chosen for their availability and breadth across the
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mammalian tree (Table $5.1).The Ensembl species tree (available at www.ensembl.org)
was used to give the phylogeny of these mammals with the exception of the walrus, which
was added according to various additional sources (Higdon et al. 2007). These species
include nine mammals where GPX6 contains Cys in the place of Sec.

The orthologous GPX6 coding sequences and proteins were aligned using MAFFT (Katoh
et al. 2019). The posterior probability of each individual aligned position was then
calculated using a modified version of HMMER (Potter et al. 2018), which first converts
each protein multiple alignment into a Hidden Markov Model before using a forward-
backward algorithm to perform posterior decoding (Durbin et al. 1998). The calculated
posterior probability integrates the uncertainty of the alignment around an aligned
position, representing our degree of confidence in each individual aligned protein residue
or gap in a multiple alignment.

Positions with an average posterior probability below 0.95 were then removed, due to
concerns of misalignment, and not included in further analysis using PAML (Yang 2007).
The removed positions are, in general, found surrounding gaps or points of sequence
divergence, which both contribute to alignment uncertainty. Nevertheless, our
probabilistic approach allowed us to keep regions containing gaps or amino acid
differences that were confidently aligned in the multiple alignments.

The coding sequences for other members of the GPX family (four GPX proteins where all
species have Sec (GPX1, 2, 3 and 4) and three GPX proteins where all species contain Cys
(GPX5, 7 and 8)), were also obtained from SelenoDB 2.0 (Romagné et al. 2014) or, if not
available, from Ensembl (Yates et al. 2020) (Table S5.1). These proteins are aligned
following the methodology as described above.

5.3.2. Ancestral Reconstruction of GPX Proteins
5.3.2.1. Inferring the Loss of Sec

The ancestral sequences of GPX6 for our set of 22 mammals were reconstructed using the
mammalian tree of these species, their present-day sequences and the PAML package
(Yang 2007). We used this package to infer the sequence of all ancestral nodes across the
mammalian tree and pinpoint the inferred independent losses of Sec throughout the
mammalian lineage. The independent losses of Sec within the lineages leading to the
walrus and cat were inferred according to the most parsimonious scenario when
accounting for the presence of Sec in the Ursidae lineage (included as bear in Fig. 5.1).
The approximate ages of lineages with Sec loss are collected from various sources
describing split times in the mammalian phylogeny (Huchon et al. 2002; Steppan et al.
2004; Higdon et al. 2007; Hallstrom and Janke 2008; Chatterjee et al. 2009; Nyakatura
and Bininda-Emonds 2012).

Further to the PAML inference, we also inferred the ancestral sequences using two
additional programs: Ancestor v1.1 (Diallo et al. 2010) and FastML (Moshe and Pupko
2019). FastML has options to use either amino acid or nucleotide sequences of
contemporary species as input to infer the ancestral sequences, whereas Ancestor v1.1
(alongside PAML) only uses the nucleotide sequences for inferences. Hence, using both
FastML input methods, this gives four inferred sets of sequences for all ancestral nodes.
The four inferred sequences were then aligned using MAFFT (Katoh et al. 2019) and the
residue with the most support was taken as the consensus residue for each site.
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5.3.2.2. Ancestral Proteins Along the Eumuroida
Lineage

Following our inference of ancestral sequences, we were then able to reconstruct three
ancient proteins along the Eumuroida lineage, where Eumuroida includes rats, mice and
closely related rodents (see Figure 5.1). These proteins are: 1) the protein just prior to
the loss of Sec in the ancestor of Eumuroida (Eu-GPX6sec); 2) the same ancestral protein
but with Sec exchanged for Cys (Eu-GPX6cys); and 3) the protein at the derived end of the
Eumuroida branch, now containing the additional 25 sites that have changed along the
Eumuroida branch (Eu-GPX6cys+25).

As previously described, the residue with most support from the four inferred sequences
was taken as the consensus residue for each site, with the exception of site 54 in Eu-
GPX6cys+25. Here, the consensus residue was taken as “Q” (Glutamine, CAA) despite the
methods used suggesting “H” (Histidine, CAT or CAC) since “H” is not present at this site
for any of the contemporary species. Of the 217 amino acid sites, 208 (95.85%) were
resolved unanimously across the four inference methods. Of the remaining nine sites that
were inferred differently across the methods, seven (3.23% of total sites) of these sites
differed across the inference of the Eu-GPX6sec protein and two (0.92% of total sites)
differed across the inference of the Eu-GPX6¢ys:25. We use these consensus sequences to
provide the final Eu-GPX6sec and Eu-GPX6¢ys+25 proteins, with sites calculated as having
an average posterior probability below 0.9 (as calculated using HMMER (Potter et al.
2018)) removed from subsequent PAML analysis.

5.3.3. Inferring Rate of Evolution

We use the dN/dS ratio as a quantification of the rate of evolution and strength of
selection acting on proteins, where dN is the rate of non-synonymous substitutions per
non-synonymous sites and dS is the rate of synonymous substitutions per synonymous
sites. All dN/dS ratios were computed using the CODEML package from PAML (Yang
2007), using the aligned GPX6 coding sequences and mammalian tree topology. The UGA
codon encoding the Sec amino acid was considered an ambiguity character and not
included in the dN/dS calculation, hence making our calculations conservative when
comparing the rate of evolution in proteins that have exchanged Sec for Cys to those who
have maintained Sec.

5.3.3.1. dN/dS Ratios in GPX Proteins

We first calculated independent dN /dS ratios for each branch in the GPX6 mammalian
phylogeny using the free-ratio model (model=1) in PAML. This allows the dN /dS ratio to
vary amongst the branches of the phylogenetic tree and was used to compare the rate of
evolution in the lineages that retain Sec and those that have exchanged Sec for Cys. Given
this preliminary comparison, the CODEML branch model (model = 2) was then used to
explicitly test our hypothesis of a faster rate of evolution in lineages where Sec was lost.

The CODEML branch model (model=2) allows us to specify the number of independent
dN /dS ratios across set groups of branches. We used this model to compare the dN/dS
ratios between three groups of branches: the branches with Sec (Fig 5.1; solid red
branches), the branches where Secis exchanged for Cys (Fig 5.1; dashed green branches)
and the branches where Cys is maintained (Fig 5.1; solid green branches). Hence, we ask
if the dN /dS ratio was significantly different in lineages at the time surrounding the loss
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of Sec compared to lineages where Sec was not lost, or where Cys was maintained (under
the assumption that any fitness reduced as a result of the loss of Sec had since been
recovered).

Once dN/dS ratios across the three groups of branches had been calculated, we
compared this branch model to the null model (M0 model, model=0), which estimates a
singular dN /dS value for all branches. We compare the likelihood of each of the two
models to give a likelihood ratio, which was used to calculate the significance of the
difference in fit between the two models in the form of a pvalue. Hence, we explicitly ask
if three dN /dS ratios across the tree is a significantly more likely fit than the null model
of a singular dN /dS ratio across all branches.

We repeated this analysis for all other genes in the GPX family, comparing dN /dS ratios
calculated over the three groups of their analogous branches (those analogous branches
that have lost Sec, maintained Sec or maintained Cys in the GPX6 phylogeny) to the null
model of one dN /dS over the entire phylogeny.

5.3.3.2. dN/dS Ratios in Protein Domains in GPX
Proteins

We then separated the protein into its three domains: N-terminus, GPX domain and C-
terminus (as defined in the PFAM database (Mistry et al. 2021)) to further explore how
evolutionary rates may vary over the protein. Of these three domains, the GPX domain is
considered essential for the catalytic activity of the enzyme, alongside the C-terminus
which also contributes to catalytic function (Toppo et al. 2008). We repeated the analysis
outlined above separately for each of the three domains of GPX6, as well as for the three
domains of each of the additional GPX genes.

5.3.3.3. dN/dS Ratios in GPX3

We found an additional two GPX proteins unexpectedly lacking the Sec residue: GPX3 in
both the Hoffman’s two-toed sloth and the kangaroo rate. Here, the Sec has been
exchanged for either glutamine (in the case of the sloth) or for serine (in the case of the
kangaroo rat). Because of these exchanges, we removed the sloth-GPX3 and kangaroo rat-
GPX3 from the branch model analysis of dN/dS rates in GPX3 (but maintained in the
following branch-site analysis, see Section 5.3.4).

5.3.4. Inferring Selection on the GPX6 Sites

We used the Site model in PAML (Yang 2007) to test for selection acting on individual
sites across the entire tree, comparing model 7 (beta; model = 0, NSsites=7) to model 8
(beta plus selection; model =0, NSsites=8). Here, model 7 is the null model of a beta
distributed variable selective pressure across sites, whereas model 8 is the beta
distributed model plus positive selection. Given that there was a significant difference
between these models, we then tested for selection acting on sites in the GPX domain
along specified branches across the tree. We used the Branch-Site model (model=2,
NSsites=2) to calculate the probability of each site of foreground branches (as specified
in the model) being under selection according to PAML’s Bayes Empirical Bayes (BEB)
inference method (Yang et al. 2005).

This model allows the dN /dS ratio to vary both amongst sites and amongst the specified
foreground and background branches, classifying the sites into those that have dN/dS
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values that remain the same on the foreground and background branches (w < 1orw =
1 in both branches) and those that differ amongst the branches (w <1 or w =1 in
background branches and w > 1 in foreground branches), outputting the proportion of
each site class. This method then calculates the posterior probability of each site being
under selection in the foreground branches, whilst accounting for sampling errors by
using a Bayesian prior (Yang et al., 2005). This model is compared to the corresponding
null model, which is the same in all ways apart from the fixation of w,.

We first use this model to infer the probability of selection acting on sites along the
branches where Sec was inferred to be lost for the GPX domain only. Having found
significant evidence for selection on particular sites within this region, we then extended
this model to test along the entire protein region for the same foreground branches. Given
this test yielded a non-significant result, we repeated the model to test for selection
shared on sites along the entire protein region on the most closely related branches.

Since significant evidence is observed for selection acting on the same sites across the
more closely related lineages where Sec was inferred to be lost (the branch leading to
squirrel monkey-marmoset (Cys-primate branch), the Eumuroida branch and the branch
leading to rabbit; see Fig. 5.1), we then test if these probabilities are enriched in certain
subsets of sites using Mann-Whitney U tests.

5.3.5. Identifying Convergent Changes
5.3.5.1. Convergence Across Cys-branches

Convergent changes in GPX6 across lineages were identified using CONVERG?2 (Zhang
and Kumar 1997). The definition of convergent amino acid changes used here includes
sites that have changed from a different ancestral amino acid to the same derived amino
acid and sites that have changed from the same ancestral amino acid to the same derived
amino acid (other studies may refer to these as parallel changes, see Section 1.2.2).

Convergent changes were identified between the GPX6cys lineages: either the branches
where Sec was exchanged for Cys or the species branches where Cys was maintained. The
observed frequency of these convergent changes was then compared with the expected
frequency of convergent changes, also calculated using CONVERG?2.

Since the pathway to recover catalytic activity may not be limited to the same amino acid
changes but still may be restricted to particular sites in the protein, we edited the
CONVERG?2 programme to also identify convergent site changes which do not result in
the same amino acid across branches (hence, simply identifying sites that show repeated
amino acid changes across lineages). Such identified sites are also included in our
definition of convergent sites hereinafter.

Where the sequences for the species containing Cys in GPX6 were available, the
equivalent analyses were run on the Sec-containing GPX proteins (GPX1, 2, 3 and 4) and
the Cys-containing proteins (GPX7 and 8). We advise that the focus should be on the
convergence results for GPX3 and GPX5 for two reasons: 1) these proteins are the
immediate paralogues to GPX6; and 2) the gaps in the other proteins do not allow, we
believe, a full representation of the potential instances of convergence.

5.3.5.2. Simulating Expected Convergence

The evolution of the GPX6 protein sequence across our mammalian phylogeny was
simulated using Seq — Gen (Rambaut and Grassly 1997). This simulation begins with the
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inferred ancestral sequence at the base of our mammalian clade and runs until all modern
mammalian proteins are evolved, using the JTT model of amino acid substitution (Jones
etal, 2008). Tree lengths were given by the rate of amino acid changes along each branch
of the mammalian tree as from the calculated dN value in the CODEML package from
PAML (Yang 2007). Hence, the simulation recreates chance amino acid exchanges along
each branch at its observed rate.

Each simulation was run 1,000 times and, for each simulation run, CONVERG2 (Zhang
and Kumar 1997) was used to identify convergent site changes between the lineages
where Sec was lost for Cys. The distribution of convergent changes under this expected
rate of amino acid exchange is then plotted, and compared to the observed number of
convergent site changes. Equivalent simulations were run for all other GPX proteins, and
we further compared the observed and expected number of convergent site changes for
these proteins.

To confirm that the higher number of observed convergent changes relative to our
expectation are focused within the functional GPX domain, and that are conclusions aren’t
simply an artefact of elevated evolutionary rate, we also repeated these simulations on
only this domain (tree lengths given by the rate of amino acid changes from the GPX
domain only).

5.3.5.3. Selection Across Convergent Sites

We asked if the convergent sites are enriched for posterior probabilities of selection by
comparing the posterior probabilities of selection acting on convergent sites to the
remaining sites in the GPX protein. Here, we use the posterior probabilities of selection
as calculated acting on sites in the branches leading to Cys-primate branch, the
Eumuroida branch and the branch leading to rabbit (BEB results of the Branch-Site Model,
see Section 5.3.4) and exclude convergent sites only identified using either the cat or
walrus terminal branches, since they are excluded from the probability calculation. To
test for enrichment, we use a Mann-Whitney U test to account for the non-parametric
data.

5.3.5.4. Convergence Across Eumuroida

Given that the highest level of convergence is identified between the basal Eumuroida and
it's genetically closest GPX6c¢ys lineages, particularly the rabbit lineage, we further focus
on the Eumuroida convergent sites. We use the inferred ancestral GPX sequences
(Section 5.3.2) to identify 25 sites, excluding the Sec-to-Cys site, that change only over
the Eumuroida branch. Of these sites, we identify 14 sites that show signatures of
convergence across GPX6cys lineages (to the exclusion of those identified from cat and
walrus (Zhang and Kumar 1997)). We also infer a further 22 amino acid sites (19
substitutions and a 3 C-terminal extension) that changed between the end of the
Eumuroida branch and the modern mouse GPX6 protein; m-GPX6c¢ys+22. CONVERG?2 was
again used to identify which of these 19 substitutions demonstrate signatures of
convergence across GPX6cys lineages.

We test for enrichment of selection signatures (following the methodology outlined in
Section 5.3.5.2) in the fifteen sites showing signatures of convergence along the
Eumuroida lineage and the eight sites showing signatures of convergence on the branch
just preceding the modern mouse protein.

176



Ancient Loss of Catalytic Selenocysteine Spurred Convergent Evolution

5.3.5.5. Reconstructing Phylogenies According to
Convergence

Using PHYML (Guindon et al. 2010), we reconstructed the mammalian tree given: a) the
full GPX6 protein, b) the N-terminal of GPX6, c) the GPX domain of GPX6, d) the N-terminal
of GPX6, e) the 26 sites that change across the Eumuroida branch (including the 14 sites
that show changes across the Eumuroida branch and convergent changes across GPx6,s

branches.This was repeated for comparison using the full GPX3 and GPX5 proteins.

5.3.6. Assessing Catalytic Activity in Ancient and Modern
Proteins

The following work was undertaken by collaborators: Qing Cheng (Karolinska Institutet),
Elias S] Arnér (Karolinska Institutet, National Institute of Oncology), Martin Floor
(Universitat de Vic - Universitat Central de Catalunya, Barcelona Supercomputing Center
(BSC)), Baldomero Oliva Miguel (Universitat Pompeu Fabra), Jordi Villa-Freixa
(Universitat de Vic - Universitat Central de Catalunya, Institut de Recerca i Innovacié en
Ciencies de la Vida i de la Salut a la Catalunya Central (IRIS-CC)).

5.3.6.1. Experimental Assessment of Catalytic Activity

Work undertaken by Qing Cheng and Elias S] Arnér.

The Eu-GPX6se, Eu-GPX6cys and Eu-GPX6cys+25 proteins were reconstructed from
heterologous expression in Escherichia coli. A mutant E. coli strain that does not recognise
UAG as a STOP codon was used, which results in a much higher yield of Eu-GPX6sec than
would otherwise be produced by E. coli with standard genetic code decoding. The
catalytic activity of each protein, and the modern mouse protein, was evaluated by
measuring the peroxidation activity on H202 with GSH.

5.3.6.2. Simulating Catalytic Activity

Work undertaken by Martin Floor, Baldomero Oliva Miguel and Jordi Villa-Freixa.

Structures for the GPX6 orthologs and nodes of the ancestral sequence reconstructions
were built using AlphaFold2 (Jumper et al. 2021). All protein sequences considered
cysteines at their catalytic positions, given the inability to represent non-canonical
residues for the “ab initio” model construction. We ran protein-ligand binding energy
landscape explorations using the PELE software (Borrelli et al. 2005) for each protein
structure, with ligands for the simulation being glutathione and glutathione disulfide.

Simulations were first run to discover catalytic poses with low global energies; the
catalytic distance was considered as the closest sulphur-sulphur distance between the
catalytic cysteine and the glutathione sulphur atoms. The lowest binding energy poses,
filtered by a catalytic distance threshold below 44, were used to run a second PELE
simulation, thus focusing on exploring this catalytic minimum binding energy
configuration. Each simulation comprised 95 replicas of 100 equilibration steps that
constrained the ligand to its starting position, followed by 1,000 PELE steps without any
constraint over the ligand coordinates.

All simulation trajectories for the same ligand were simultaneously analysed using all
ligand positions aligned to a common protein reference structure. A Time-structure
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Independent Component Analysis (TICA) was built to find the common slowest-relaxing
feature combination (Molgedey and Schuster 1994) with the PyEMMA library (Scherer
et al. 2015). Finally, and separately for each protein and ligand simulation, the
probabilities of visiting the slowest TICA coordinate (IC1) according to the catalytic
distance (S-S) were plotted as a free energy map.

5.4. Results
5.4.1. Rate of Evolution Surrounding the Loss of Sec

We inferred five independent losses of Sec in GPX6sec (Fig. 5.1, dashed green branches)
across 22 mammals by reconstructing the ancestral sequence at each node of their
phylogeny with PAML (Yang et al. 2005). These losses all occur in the last 64 million
years (approximate times given in Fig. 5.1; (Huchon et al. 2002; Steppan et al. 2004;
Hallstrém and Janke 2008; Chatterjee et al. 2009; Nyakatura and Bininda-Emonds
2012) and have resulted in multiple GPX6¢yslineages.

Sec-containing lineages b GPX6
Cys-containing lineages
a GPX Family cPX8 "
= = (y 520mya —— Mouse m
I — 3
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750mya — Chinese hamsts g
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Fig. 5.1: Phylogenetic trees of the GPX family. A) The phylogeny of the GPX family in
Eukaryotes (based on (Mariotti et al. 2012)), including the dates of the duplications
leading to GPX7cys, GPX8¢ys and GPX5¢ys and their older, single substitutions of Sec to Cys
that resulted in enzymes with new properties. B) The topology of the phylogeny of the 22
mammals in our analysis. In red, GPX6s.c branches, in green, GPX6¢ys ones. Dashed green
branches represent GPX6¢ys lineages where Sec was lost. Dotted red branch indicates the
Bear GPX6s.c lineage, which was not used in the analysis due to sequence quality issues.
The GPX6¢ys Eumuroida clade, a specific group of muroid rodents, is boxed. Approximate
ages given by (Huchon et al. 2002, Steppan et al. 2004, Higdon et al. 2007; Hallstrém and
Janke 2008; Chatterjee et al. 2009; Nyakatura and Bininda-Emonds 2012).
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To measure the rate of evolution and approximate the degree of natural selection, we
calculated independent dN /dS ratios for each branch in the mammalian tree, including
ancestral branches (Fig. 5.1), and found higher dN/dS ratios in GPX6¢ys lineages
compared to neighbouring GPX6sec lineages (Fig. $5.1). Hence, we infer faster evolution
along the branches containing Cys in the place of Sec, which we then explicitly tested
using the Branch model likelihood ratio test in PAML (Yang 2007).

When contrasting the dN/dS ratios of GPX6cys lineages in the branches where Sec was
lost (Fig. 5.1; dashed green branches) to GPX6cyslineages in the branches inheriting this
loss (Fig. 5.1, solid green branches) and GPX6sec lineages (Fig. 5.1, solid red branches),
we indeed observe a higher dN/dS ratio surrounding the times where Sec was
substituted for Cys (LR test; P = 0.002; dN/dS = 0.370 dashed green versus 0.279 solid
green versus 0.217 solid red branches in Fig. 5.1). Since our analysis excluded the Sec to
Cys change, this suggests that a burst of amino acid evolution accompanied the loss of Sec.

5.4.1.1. Rate of Evolution Across Protein Domains

However, the higher dN /dS value observed across GPX6c¢ys lineages is still under 1, which
is the threshold value often taken to confidently suggest positive selection is acting to
increase the rate of evolution. Whilst the dN /dS ratio reaching this threshold value of 1
is unexpected in the case of otherwise strong constraint acting along a protein,
particularly in the expected case of strongly conserved catalytic domains, it is possible
that the inflated dN /dS value is instead a result of relaxed constraint, rather than positive
selection necessarily acting surrounding the loss of Sec.

To further explore if the elevated dN/dS ratios were in line with the proposed positive
selection, we repeated the previous likelihood ratio test over the three domains of the
protein: the N-terminus, the GPX domain and the C-terminus (Mistry et al. 2021). Hence,
we explicitly evaluate if the increased rate of evolution in the GPX6¢ys lineages is focused
to the protein’s functional region. In the case of the GPX family of proteins, the GPX
domain and, to a lesser extent, the C-terminus domain are essential for the activity of the
enzyme and therefore noted as the functional regions. These domains both contain two
key catalytic residues (U/C and Q in the GPX domain; W and N in the C-terminus domains)
which together make the catalytic tetrad conserved across all GPX6sec and GPX6cys
lineages (Toppo et al. 2008; Tosatto et al. 2008; Cheng and Arnér 2017). In contrast, the
N-terminus is not thought essential to catalysis.

Reflecting this functional importance, we find that the GPX and N-terminus domains of
GPX6sec lineages to be most and least constrained, respectively, based on their dN/dS
ratios (Table 5.1). However, the dN /dS ratio of the GPX domain is, unlike the N- and C-
terminus, significantly larger in GPX6¢ys lineages at the time Sec was lost (LR test; P =2 X
107> ; where dN/dS = 0.384 in the dashed green, 0.186 in the solid green, 0.130 in the
solid red branches in Fig 5.1). This is in further support of increased evolutionary change
focused in the active GPX domain surrounding the time when Sec is abandoned in
catalysis.
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Table 5.1: dN /dS Ratios Calculated Across GPX proteins. dN /dS ratios calculated for
lineages where GPX6 has “Sec” (Fig. 5.1, solid red branches), has “Exchanged Sec for Cys”
(Fig. 5.1, dashed green branches) or “Inherited Cys” (Fig. 5.1, solid green branches), and
the number of identified convergent sites between lineages where GPX6 has gained Cys (Fig.
5.1, dashed green branches). dN /dS ratios and number of identified convergent sites for the
GPX domain in other GPX proteins. The likelihood ratio test contrasts one ratio for all
branches (null hypothesis) to different ratios among groups of branches. P-values are
obtained from a y? distribution with d.f = 2. *P < 0.05; **P < 0.005; **P < 0.0005. In bold
when significant and accompanied by sites under convergent evolution across GPX6cys
lineages.

Convergent
sites
Protein Region Sec Exchanged Inherited All P-value Number
Sec for Cys Cys
Full 0.217 0.370 0.279 0.256 0.002* 22
GPX6Cys length
N- 0.436 0.411 0.671 0.460 0.268 3
terminus
GPX 0.130 0.384 0.186 0.184 2x10-5" 12
domain
C- 0.174 0.258 0.250 0.203 0.157 7
terminus
GPX1sec 0.064 0.040 0.069 0.060 0.534 0
GPX2sec 0.075 0.042 0.038 0.060 0.191 0
GPX3sec | GPX 0.094 0.108 0.056 0.091  0.439 1
GPXdse, | dOmain 0.062  0.007 0.203 0.061  4,q0*" O
GPX5sec 0.233 0.145 0.219 0.212 0.227 4
GPX7c¢ys | GPX 0.083 0.080 0.117 0.088 0.712 0
GPX8cys | domain 0.223  0.155 0.198 0.207 0.616 0

5.4.1.2. Rate of Evolution in the GPX Family

To validate that this observation is exclusive to GPX6c¢ys, and therefore indicative of faster
evolution associated with the Sec to Cys exchange rather than increased rate of evolution
in the GPX domain due to its overall antioxidant function (Tian et al. 2021), we compared
the rate of evolution in this domain to other enzymes in the GPX family.

We found no evidence of dN /dS inflation (Table 5.1, Table $5.2) across the GPX domain
in the other GPX proteins for the analogous lineages where Sec was lost in GPX6
(analogous dashed green branches from Fig 5.1). Hence, neither Cys-containing GPX
proteins nor the lineages where Cys is lost in GPX6 are otherwise inferred to display an
inflated dN /dS value.

In GPX4se., we do see a significant inflation in the dN/dS of the analogous lineages which
have inherited Cys in GPX6 (analogous solid green branches from Fig 5.1) but we view
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this as largely unrelated to the Sec to Cys exchange. Hence, we suggest that the dN/dS
ratio of the GPX domain in GPX6¢ys surrounding the time of the loss of Sec is unusually
large for proteins of the GPX family.

5.4.2. Signatures of Adaptive Convergence

We now ask whether there is evidence for adaptive convergence on individual sites
surrounding the time of Sec loss. We first use the Branch-Site test in PAML (Yang 2007)
to ask if sites in the GPX domain show evidence for positive selection in the branches
where Sec was lost (Fig. 5.1, dashed green branches) compared to all other branches. We
see a significant enrichment of sites with such signatures (LR test; P = 0.046; Table S5.3),
indicating the presence of sites in the GPX domain that show repeated changes
(interpreted by this test as under positive selection) in GPX6¢ys lineages where Sec was
inferred to have been lost.

However, this Branch-Site test is non-significant when testing over the entire GPX6
protein. We reason that over more diverged lineages, epistasis limits the likelihood of the
same sites showing repeated changes (Lunzer et al. 2010), and hence increases the
probability of a false negative result of this test for positive selection. Indeed, we see that
over the three most closely related lineages (branches leading to Eumuroida, rabbit and
Cys-primate branch), this test results in a significant result over the entire protein (LR
test; P = 0.008; Table S5.3). Most explicitly, this supports that changes of the same sites
surround the loss of Sec in lineages with the most similar genetic backgrounds, likely due
to the less differential role of epistasis over these lineages.

5.4.2.1. Convergent Sites Between Cys-branches

To more thoroughly explore which sites show repeated changes along the GPX6
phylogeny, we identify sites which show such convergent changes using CONVERG?2
(Zhang and Kumar 1997). We see that convergence between lineages where Sec was lost
(Fig. 5.1, dashed green branches) was the highest (Table S5.4), where the highest
number of convergent sites are found in the GPX domain and the least in the N-terminus
(54.6% in the GPX domain, followed by 31.8% and 13.6% in the C-terminus and N-
terminus respectively). This approximately matches the lengths of each domain (113
sites of the GPX domain compared to the 65 and 39 sites of the C-terminus and N-
terminus, respectively) despite the highest rate of amino acid changes being observed in
the N-terminus (Table 5.1).

Moreover, convergence is largely subdued in the GPX6¢ys lineages inheriting the loss of
Sec (Fig. 5.1, solid green branches) and minimal in the GPX6s.c lineages, as well as for the
other GPX proteins (Tables $5.5-11; Fig. $5.2). Further, simulations of protein evolution
(modelled using Seq — gen (Rambaut and Grassly 1997)), incorporating the accelerated
rate of amino acid change in GPX6¢ys sequences, fail to reproduce the pattern of
convergence observed between these lineages at the time of Sec loss (Fig. $5.3). This
remains true even when using the further accelerated rate of evolution as calculated in
the GPX domain (Fig. $5.4). Further, these simulations also show that the few, weak
convergence signatures in other GPX proteins are under expectations, based on their
respective rate of amino acid change (Figs. $5.5-11). GPX3 and GPX5 are the most
suitable GPX proteins to compare here owing to their more complete coding sequences,
but we do stress that the overall pattern of convergence between the analogous lineages
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to those containing Cys in GPX6 in all non-GPX6 proteins is that of much reduced
convergence.

We observe that the highest level of convergence is between the basal Eumuroida (Fig.
5.1, dashed green line in box) and its genetically closer GPX6cys lineages, particularly the
rabbit (Fig. S5.2, Table S5.4). Of the 25 sites that change alongside the loss of Sec in the
root of Eumuroida (Fig. 5.2, dashed green branch), 14 also show a site change in at least
one of the other GPX6¢ys lineages (Fig. 5.2, green box). These sites with convergent
signatures are, again, mostly focused in the GPX catalytic domain (64.3%; Table S5.4)
and enriched for signatures of positive selection that we observe along the branches
leading to Eumuroida, rabbit and Cys-primates (as calculated by PAML (Yang 2007); M-
W U test, P = 1.573e — 7), further supporting that these sites show an unusual degree of
repeated change over these lineages. We also find an enrichment of signatures of positive
selection, albeit weaker, in convergent sites in the GPX6¢ys lineages following the loss of
Sec (M-W U test, P=0.007) (Fig. 5.2, solid green branch),) but not preceding it, in
agreement with adaptive convergence concentrated around the Sec to Cys exchange.

Canvergent sites and their
aming acid changes

N-terminal  GPx Domain  C-terminal
Pro-11-Ser Asn-48-Asp Thr-205-lle

Ala-27-Ser  GIn-90-Pro
Ile-94-Thr

Convergent sites and their
i amino acid changes
Mo convergent H - X
| sites found Eu-GPXﬁC’s i | GExDomain  Cierminal
. i | GIn-54-Asn GIn-200-His

m-GPx6 ¢ys.22

Eu-GPx6 g, : Eu-GPx6 oys125

\. Mouse

........................... Rat

Chinese hamster

Golden hamster

Jerboa

Convergent sites and their
amina acid changes

N-terrminal GPx Domain C-terminal
Met-27-Ala  Leu-45-Asn Lys-166-Glu
Lys-56-Gln*  GIn-167-His
Val-63-lle  Glu-171-Asp
Thr-70-Ser Lys-207-GIn
Sec-72-Cys
Ala-83-Thr*
His-90-GIn
Asp-92-Asn
Phe-127-Tyr
Lys-143-Asn

Fig. 5.2: Topology of the phylogeny of the Eumuroida GPX6cys clade. Eumuroida GPX6¢ys
clade given as the green branches, with the Jerboa GPX6s.c lineage, red branch, as an
outgroup. Amino acid exchanges showing signatures of convergence (CONVERG?2; (Zhang
and Kumar 1997)) across GPX6¢ys lineages for each branch given in the boxes. Sites that
have repeatedly changed in the GPX6¢ys lineages towards similar or the same amino acid
are shown in bold (green box).. Further, the * denotes sites with a posterior probability of
positive selection in the upper 90t percentile across the GPX domain in GPX6¢ys lineages,
which are significantly enriched at the time Sec was abandoned.
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5.4.2.2. Phylogenetic Signatures of Convergence

Since adaptive convergence can mimic shared ancestry, it can often distort the topology
of the species phylogeny (Edwards 2009). We find this to be the case here, with the tree
reconstructed from the GPX domain (using PHYML (Guindon et al. 2010)) showing
decreased divergence between the rabbit and Eumuroida clade (Fig. S5.12D). This is also
observed, to a lesser extent, when reconstructing from the also catalytically relevant C-
terminus (Fig. $5.12E), but not observed with the N-terminus domain (Fig. $5.12C) nor
with other GPX proteins (Fig. $5.13).

If we reconstruct the mammalian phylogeny using the 15 convergent sites changing at
the root of Eumuroida (Fig. 5.3, 14 identified in the dashed green box plus the Sec-to-Cys
site) approximately 23-26 million years ago (Huchon et al. 2002), we see a striking
departure from the species tree (Fig. 5.3). Despite their large divergences across the tree,
the GPX6cys species form two clades, as expected under the scenario of adaptive
convergence. One clade is formed from the rabbit and Eumuroida, sharing a most recent
common ancestry to the exclusion of all other species despite an approximately 64-
million-year divergence (Hallstrom and Janke 2008). The remaining GPX6¢ys lineages,
which diverged approximately 100 million years ago (Hallstrom and Janke 2008), are
then grouped also within a singular clade.

~ Cys-containing lineages

Sec-containing lineages

Eumuroida

Figure 5.3: Phylogenetic tree of GPX6 reconstructed from convergent sites. Topology
of the phylogenetic tree, with midpoint rooting, from the 14 convergent sites accompanying
the Sec to Cys substitution (Fig. 5.2, green box) in the basal Eumuroida GPX6c¢ys lineage (Fig.
5.2, dashed green branch). In sharp contrast to the species phylogeny (Fig. 5.4.1B), the
GPX6sec lineages now form two clades.
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5.4.3. Catalytic Activity of GPX Proteins

Given the observed signatures of adaptive convergence in the Eumuroida, we now focus
on exploring the functional consequences of such changes in this lineage. We
reconstructed three ancient proteins (Fig. 5.2), approximately dated to 23-26 million
years ago, at the root of this clade and assessed them experimentally and computationally,
alongside a fourth modern mouse protein.

These proteins are: 1) the ancestral protein before the loss of Sec, Eu-GPX6se, taken from
the common ancestor of the Eumuroida and Jerboa species 26 million years ago (Huchon
et al. 2002); 2) the same ancestral protein with Cys instead of Sec, Eu-GPX6¢ys; 3) the
ancestral but later-day protein with Cys and 25 other amino acids changes, Eu-GPX6¢ys.2s,
taken from the common ancestor of the Eumuroida species 23 million years ago (where
15 of 26 these amino acid changing sites, including the Cys site, have signatures of
adaptive convergence; Fig. 5.2); and 4) the present-day mouse protein, m-GPX6¢ys:22,
with 22 additional amino acid changes (19 substitutions and a 3 C-terminal extension)
from Eu-GPX6¢ys+25 and no clear signatures of adaptive convergence (Fig. 5.2). In the
latter protein, we also mutated the enzyme to contain either Sec or redox inactive serine
(Ser) for comparisons of activity with the Sec- and Cys-variants.

The following work was carried out by our collaborators, as outlined in Section 6.3.6.

The reconstructed ancient and modern proteins were produced as recombinant proteins
heterologously expressed in Escherichia coli. The Sec insertion system in bacteria is non-
compatible with mammalian selenoprotein-encoding genes, hampering the production
of proteins with Sec; thus, we employed a recently-developed method utilizing UAG
redefined as a Sec codon in a release factor-1 deficient E. coli host strain lacking other
UAG codons (Cheng and Arnér 2017).

We first compared the catalytic activity of Eu-GPX6sec and Eu-GPX6¢ys with H202 as the
peroxide substrate and GSH as the reducing agent, with the expectation that substitution
of Sec for Cys would lower its turnover (Axley et al. 1991; Berry et al. 1992; Johansson et
al. 2005; Kim et al. 2015). Indeed, the ancient Eu-GPX6sec protein displays the classic
peroxidase activity of Sec-containing GPX enzymes, whereas Eu-GPX6¢ys, had almost no
activity for this reaction (Fig. 5.4A).

The large drop in catalysis from Eu-GPX6sec to Eu-GPX6¢ys coincides with signatures of
convergent adaptive evolution along the basal Eumuroida lineage (Fig. 5.2), initially
suggesting a functional role of the accompanying amino acid changes to the loss of Sec.
To ask if the additional 25 additional changes along the basal Eumuroida lineage
recovered catalysis of this protein, we then measured the catalytic activity in Eu-
GPX6¢ys+25 on H202 with GSH. Remarkably, classic GPX activity was not recovered (Fig.
5.4B). Finally, we turned to the extant m-GPX6cys+22 protein (Fig. 5.4.2), which is 90%
identical to Eu-GPX6¢ys+2s5. Surprisingly, this Cys-containing variant also lacks classic GPX
activity with H202 and GSH (Fig. 5.4C).
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Fig. 5.4: Experimental assessment of catalytic function of GPX6 proteins. (A)
Experimental assessment of peroxidase reaction with H20; as a substrate for ancient Eu-
GPX6sec (red) and Eu-GPX6¢ys (green). NADPH consumption by GR is indicated by the
decrease in absorbance at 340 nm over time in the coupled assay (see Section 5.3.6 for
further details). (B) Equivalent assay for ancient Eu-GPX6¢ys+25 (green), which has very
limited activity compared to human GPx1 (red) used here as a positive control. (C)
Equivalent assay for modern m-GPX6¢ys:22 (green), again with scant activity, which is
recovered once this protein is mutated to contain Sec, m-GPX6sec+22 (red).
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Together, this suggests that the inferred adaptive amino acid changes along this protein’s
evolution do not act to recapitulate Sec activity. However, this classic GPX activity is re-
acquired when Cys is mutated back into Sec, producing the synthetic m-GPX6sec+22 variant
(Fig. 5.4C). Indeed, our computational analysis suggests that the binding of GSH and
overall structures of the enzymes (Fig. 5.5A) have not been adversely affected by the
acquisition of Cys and that convergent amino acid substitutions are mainly located in the
enzyme’s surface (Fig. 5.5B). This is the case for the other GPX6¢ys lineages, suggesting
that all GPX6cys mammals are able to recover classic GPX function with Sec (Fig. S5.14).

Eu-GPX6Cys

Eu-GPX6Cys-25

m-GPX6Cys-22
c

Glutathione ‘.b\

Figure. 5.5: Computational analysis of GPX6 catalytic function. A). Free energy profiles
for the docking of glutathione to Eu-GPX6Cys (left), Eu-GPX6Cys+25 (centre) and m-
GPX6Cys+22 (right). The x-axis represents the distance between the catalytic cysteine
sulphur atom and the ligand’s sulphur atom, while the Y-axis shows the slowest TICA
coordinate (IC1). The vertical dashed line represents a 44 distance, with the free energy
minimum in the three enzymes within this reactive catalytic distance. B) Convergence
patterns (Fig 2a) from Eu-GPX6Cys to Eu-GPX6Cys+25 (top) and from Eu-GPX6Cys+25 to m-
GPX6Cys+22 (Mouse-GPX6) (bottom). Sites converging towards similar (magenta) or the
same (red) amino acids are shown with their sequence position. The catalytic cysteine
(vellow) is shown with the glutathione best binding energy conformation (green) sampled
during docking simulations.
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5.5. Discussion

The exchange of Sec for Cys in selenoproteins has long been linked to a reduction in
catalytic activity, explained by the unique enzymatic properties of selenium in Sec. These
include increased reactivity and nucleophilicity leading to improved catalysis (Arnér
2010), broader range of substates and pH in which catalysis is possible (Gromer et al.
2003) and perhaps increased resistance to oxidation (Snider et al. 2013). Whether these
properties can always be reproduced by sulfur in Cys is unclear (Johansson et al. 2005)
but the strong purifying selection on Sec sites in vertebrates (Castellano et al. 2009)
suggests that not every reaction catalysed by Sec can be supported by Cys, at least not
without some variation in these enzymatic properties.

Previous studies have shown that the catalytic activity conferred by Sec can be somewhat
recovered with compensatory mutations following its exchange to Cys, but these may not
restore full catalytic activity, with mutations in the Thioredoxin reductase of Drosophila
melanogaster compensating no more than 50% of the catalytic rate in the human enzyme
with Sec (Kanzok et al. 2001; Gromer et al. 2003). Still, Sec typically has low expression
(Liu et al. 2012), possible due to inefficiencies in the Sec recoding process (Mehdi et al.
2013), and proteins with Cys may compensate in the way of increased expression rather
than explicitly improving catalytic ability.

GPX6 presents a rare opportunity to investigate the evolutionary outcomes following the
loss of the catalytically powerful Sec, and allows us to ask whether catalytic ability is lost,
recovered or exchanged in modern Cys-containing orthologues. Here, we reconstruct
ancient mammalian GPX6 proteins before and after the loss of Sec, and compare the
evolutionary activity and mutational trajectories surrounding and following the
exchange to Cys to that of lineages that have preserved Sec. We also experimentally
reconstruct and assay the inferred ancient proteins in the Eumuroida lineage, alongside
the experimental assay of the modern mouse protein, and present evidence towards the
functional trajectory of this protein over its evolution.

5.5.1. Adaptive Convergence in GPX6,

We demonstrate that substituting Sec for Cys in GPX6, and thereby abandoning selenium
for sulfur in catalysis, leads to a burst of evolutionary activity in lineages sharing this
exchange. These amino acid changes are not only concentrated in the functional domain
but are often shared across GPX6c¢ys lineages, suggesting a narrow evolutionary exchange
for GPX6 to recover functionality when losing Sec. This is likely limited by intragenic
epistasis with linked sites, supported by increased convergence between our most closely
related lineages, and the assumed preservation of other enzymatic properties expected
to be important for overall activity (Fraisse et al. 2019; Sharir-Ivry and Xia 2021).
Importantly, such signatures of adaptive convergence are not observed in other GPX
proteins.

5.5.2. Function of GPX6,

However, we also show that whilst typical GPX activity is lost with the loss of Sec, it is not
regained with the following mutations shared over Cys-lineages. This, especially
considering the signatures of adaptive convergence, is unlikely to reflect non-
functionality of modern GPX6¢ys proteins, since the modern mouse protein has been
shown to be expressed in the mouse embryo, testis, olfactory epithelium and brain
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(Kryukov et al. 2003; Shema et al. 2015; Goltyaev et al. 2020) and when knocked down
results in a deleterious neurological phenotype (Shema et al. 2015). We instead suggest
that GPX6¢ys proteins show evolutionary trajectories towards novel properties, as
suggested to have occurred with GPX5¢ys, GPX7¢cys and GPX8¢ys enzymes that lost Sec
much earlier (Herbette et al. 2007; Chen et al. 2016; Trenz et al. 2021).

Moreover, since the modern mouse GPX6¢ys protein is able to recover classic GPX function
with Sec (also computationally suggested for other mammalian GPX6¢ys proteins), it is
possible that its loss has resulted in subtly different enzymatic properties, whilst devoid
of its classic function. This is also in agreement with what is known of the other Cys-
containing GPXs, which act on alternative substrates for peroxidation (Nguyen etal. 2011;
Taylor et al. 2013; Buday and Conrad 2021). Only comprehensive functional
characterizations of these individual GPX6cys enzymes in mammals will provide insights
into the exact functional consequences of the observed convergent evolutionary
trajectories, be that relating to peroxidation activity or otherwise. Further work may also
aim to resolve the likely evolutionary order of shared amino acid changes across
mammalian GPX6¢ys lineages, providing insight into the epistatic interactions underlying
such functional evolution.

5.5.3. Summary

In summary, we present the first evidence for molecular convergence of changes in
proteins when abandoning unusual selenium in catalysis for common sulfur, hence
ablating activity. These concerted changes follow a narrow path, maintaining some
enzymatic properties and possibly adding new ones. Because multiple non-vertebrate
species have completely abandoned enzymatic selenium for sulfur, we wonder whether
other convergent adaptations leading to uncharted functions remain hidden in nature.

5.6. Conclusion

We reconstruct the evolutionary and functional trajectories of the mammalian GPX6
protein following its loss of its main catalytic residue selenocysteine. We show that
signatures of adaptive convergence follow the exchange of selenocysteine for cysteine,
but typical GPX catalytic activity is not recovered. Hence, we suggest that GPX6¢ys proteins
have gained yet unidentified abilities, acquired more recently, independently and
convergently across lineages, instead of simply recovering the catalytic rate of their
previous reaction.
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Chapter 6: Discussion
6.1. Overview

In this thesis [ have explored the role of micronutrients in genetic adaptation and in
shaping genetic diversity in modern humans and wider mammals. I have considered the
microevolution and macroevolution of genes associated with the uptake, metabolism
and regulation of micronutrients, with particular attention to the adaptive, local
response of human populations to micronutrient-associated selective pressures.

In Chapter 1 I outlined the key theories relating to adaptive genome evolution. I then
gave an overview of modern human evolutionary history, before summarising the
current evidence for local adaptation across different modern human populations. I
summarised the dominant methods used to identify local genetic adaptation, and
presented the argument for micronutrient levels in the diet as a key selective driver in
human populations. Throughout my discussions of human local adaptation, I referenced
the issues of sampling biases and gaps amongst populations, particularly how this can
contribute to differential health outcomes and clinical care. Finally, I described what is
currently known on selenoprotein evolution, outlining the functional importance and
evolution across vertebrates of the 21st amino acid selenocysteine.

In Chapter 2, I used a simulation framework to model local adaptation in four major
human populations. I used this framework to test the power of different methods to
identify the genomic signatures of positive selection on standing genetic variation, or
“soft sweeps”, at both the monogenic and polygenic level. I showed that the allele-
differentiation statistic Fgr and recently developed genealogical method Relate have the
highest power to identify local adaptation by selection on standard variation, including
at times as recent as 10kya. Conversely, [ report that, as expected, the haplotype-based
methods often have low power to detect positive selection on standing variation on our
simulated scenarios. These simulations are, to our knowledge, the most comprehensive
evaluation to date of the power of the Relate method to identify the genomic signatures
of positive selection, and [ emphasise the promise of tree-recording methods in
identifying more elusive signatures of positive selection. I also use these simulations to
demonstrate the power of using an empirical neutral distribution to identify SNPs with
signatures of positive selection according to Relate, and recommend this approach
when using small sample sizes and when investigating the signatures of positive
selection in multiple populations with different demographic histories.

[ use these simulations to inform the methodology of Chapters 3 and 4. In Chapter 3, |
use Fgr and Relate to investigate the signatures of natural selection in 40 diverse
modern human populations across 276 micronutrient-associated genes for 13
micronutrients. This is the most comprehensive analysis of micronutrient-associated
adaptation in modern humans to date, and allows the comparison of signatures of
positive selection at multiple levels: amongst populations, amongst micronutrient
categories and amongst individual micronutrient-associated genes. [ show the presence
of signatures of positive selection in genes associated with multiple different
micronutrients, and across many geographic areas. I identify the populations and
candidate genes with the strongest evidence for having undergone micronutrient-
associated genetic adaptation, and show that some of these proposed adaptations are in
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agreement with micronutrient soil levels and dietary deficiencies in contemporary
populations. I find no evidence for classic polygenic models of positive selection, and
instead infer that selection driven by micronutrient-associated selective pressures is
more likely oligogenic than polygenic in nature. Ultimately, | propose that micronutrient
levels in the diet are an important selective force in modern humans, and have
contributed to the shaping of our genetic variation.

Chapter 4 is a natural extension to Chapter 3, where I focus on five micronutrients to
discuss in detail the strength of evidence of positive selection, geographic breadth of
putative positive selection, inferred polygenicity of the selective response, and
relevance to contemporary human health issues. I identify the most likely genes which
have mediated adaptive responses to micronutrient-associated pressures amongst
populations, and identify the cases where the proposed genes differ between
geographically separated populations. [ use a combination of methods to explore the
potential origin and timing of positive selection acting on these micronutrient-
associated genes, and present evidence for a zinc-associated adaptation event in the
Middle-East swiftly following the Out-of-Africa migration. I do identify a small number
of cases where micronutrient-associated adaptation more likely occurred around the
Neolithic, and propose that the selective drivers behind micronutrient-associated
adaptation are likely not limited to soil composition.

Finally, in Chapter 5 [ explore the role of the micronutrient selenium in the evolution of
a mammalian protein. We present the first evidence for molecular convergent evolution
in proteins when exchanging selenocysteine for cysteine, inferring a narrow mutational
path when losing the selenium-containing amino acid. Alongside suggested adaptive
convergence, we show that there is also a loss of classic catalytic function when losing
selenocysteine, and hypothesise that new enzymatic properties have been acquired by
the GPX6 protein upon selenium loss. We propose the development of a novel functions
across this selenoprotein, and further suggest the potential role of adaptive convergent
evolution of non-vertebrate selenoproteins.

6.2. Local Adaptation in Modern Humans

Local adaptation has been inferred to have contributed to the modest genetic variation
of our species. Identifying unknown instances of local adaptation in modern humans
will thus contribute to a more comprehensive understanding of the evolutionary origin
of human genetic diversity, particularly of diversity that contributes to population
differences, which is particularly important when differentiated alleles may contribute
to health inequality in contemporary populations. Here, I focus on, in my view, the most
important open questions and future directions of the field, in light of the current
literature and work developed in this thesis.

6.2.1. Selection on Standing Variation

The importance of selection on standing variation in modern humans has long been
discussed (Hermisson and Pennings 2005, 2017; Prezeworski et al. 2005; Pritchard et
al. 2010). However, with few recent exceptions (Schrider and Kern 2016, 2017), the
confident inference of its role in human evolutionary history has been limited by the
difficulty in identifying its individual genomic targets.

The low effective mutation rate in modern humans places a natural limitation on
adaptation via de novo mutation (Hahn 2018). Segregating alleles, maintained by
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balancing selection or drift, may more commonly mediate novel selective pressures,
often encountered by humans when migrating to new environments. More than this, the
extensive history of admixture in modern humans has allowed the frequent exchange of
genetic variants that, whilst not truly novel, may be novel to the population receiving
gene flow and thereby also facilitate local adaptation (but will not be addressed in detail
here; (Ahlquist et al. 2021; Gopalan et al. 2022)). Hence, much of human local
adaptation may be represented in the genome by subtle signatures of positive selection,
particularly those driven by selection acting on alleles already segregating in a
population, and therefore remain unidentified and undocumented. It must now be
considered that the current bank of accepted or strongly supported examples of human
local adaptation is considerably biased towards those conferred by de novo mutations
(Pritchard et al. 2010; Schrider and Kern 2016; Rees et al. 2020) and, by extension, does
not accurately represent the breadth of local adaptation in modern humans.

Thus, it is clear that the methods aiming to identify positive selection and consequent
adaptation in human populations, especially with the aim of identifying new targets of
positive selection, should be designed to consider SSV (not least because a wealth of
methods already exist to identify selection on de novo mutation; (Weir and Cockerham
1984; Tajima 1989; Voight et al. 2006; Sabeti et al. 2007; Yi et al. 2010; Ferrer-Admetlla
et al. 2014; Yassin et al. 2016; Crawford et al. 2017; Schmidt et al. 2019; Szpiech et al.
2021)). This likely include methods that, unlike classic summary statistics, do not
simplify evolutionary history into a singular statistic value, but rather consider a more
“full perspective”. This may be in the way of integrating many patterns (including
summary statistics) across loci, as in ABC or machine learning methods (Peter et al.
2012; Key et al. 2014, 2018; Pybus et al. 2015; Schrider and Kern 2016, 2017, 2018).
Alternatively, this may be by considering the full history of a locus as in tree-recording
methods (in reality, history as inferred up to the point of the common ancestor of
sampled individuals; (Kelleher et al. 2019; Speidel et al. 2019; Hubisz and Siepel
2020b)). The key similarity in methods more suited to identifying SSV is their utilisation
of the complexity of evolutionary patterns, which I suggest is the most appropriate
avenue for identifying the weaker, and more variable, signatures of selection on
standing variation.

Identifying SSV in human local adaptation likely also requires developments tangential
to the field of genomics. Given the subtly of the signatures of SSV, and the increased
difficulty in differentiating those signatures out from the neutral background of the
genome, it is easy to imagine that the evidence for SSV is often weaker and less
convincing. Thus, the importance of providing additional support to proposed selection
on standing variation by other means, or additional orthogonal evidence, cannot be
over-emphasised. This may be by identifying the same signatures of positive selection in
different datasets or by use of different methods (although, some methods may be very
closely related), or by functional assessment of the putatively adaptive variant, as
addressed in the following section (Section 6.2.3). Perhaps the strongest supporting
evidence for local adaptation is that of correlation of genomic signatures to proposed
environmental factors, which independently may be viewed as evidence for positive
selection (see Section 6.2.2 for further discussion).

In terms of complex trait adaptation through polygenic adaptation, which may also be
in-part driven by SSV, additional supporting evidence for adaptation may be given by
the polygenic signatures of positive selection concentrated within a functional gene set
or inferred directional change of a trait in a given population (Daub et al. 2013; Speidel

191



Discussion

et al. 2019). However, the genetic architecture of complex traits may vary over
populations (Mathieson 2021), in turn resulting in potentially different genes mediating
adaptation amongst populations. Here, the importance of including diverse and under-
studied populations in studies of genomic adaptation is further emphasised (addressed
more fully in Section 6.2.5).

6.2.2. Environment as a Selective Driver

Correlations between signatures of positive selection and environmental factors can
provide further support for claims of human local adaptation, given that the correlation
is more extreme than what could be explained by shared ancestry (Fumagalli et al.
2011; Schlebusch et al. 2015; Key et al. 2018). For candidate genes demonstrating
signatures of positive selection along a geographic cline, a correlation between such
genomic signatures and an environmental factor along the same cline may indicate a
likely selective pressure.

However, whilst some environmental factors are well-recorded across the globe (such
as temperature, precipitation or UV, as available at www.worldclim.org), global
documentation of other environmental factors relevant to human adaptation is often
lacking. This includes soil composition and micronutrient content, as addressed in
Chapters 3 & 4. In these cases, data (if even available) must often be integrated over
different studies to provide a more global view of environmental variation, which is not
always possible or reliable if data has come from studies of different designs or using
different methods of data recording.

Moreover, the available data is often only at the resolution of the country or continental
region, and does not represent fine-scale environmental variation. Local adaptation in
modern humans to soils containing toxic levels of arsenic has been suggested in a
singular region of Argentina (Schlebusch et al. 2015), and other such fine-scale
adaptation to local environment, soil or otherwise, likely exist in other populations.
However, without high-resolution environmental data across different environments, it
is difficult to 1) form hypotheses of human local adaptation in response to environment;
2) contextualise identified signatures of positive selection; 3) validate signatures of
positive selection (particularly important when signatures are more subtle). Therefore,
limited environmental data can now be thought to actively restrict progress in our
understanding the adaptive response of humans to their local environment.

A more comprehensive understanding of environmental factors throughout the globe
may also identify where genetic variation, or genetic adaptations, are shared by
populations experiencing the same environmental selective pressures. Adaptive
convergence has previously been suggested in humans in response to high elevation (Yi
et al. 2010; Bigham and Lee 2014; Huerta-Sanchez et al. 2014; Crawford et al. 2017) and
in response to low-iodine soils in Chapters 3 & 4. Given how the same environmental
selective pressures may be experienced across geographically disparate populations,
and given the high degree of sharing of genetic variants amongst modern human
populations, one can also hypothesise that other examples of convergent adaptation are
likely to exist in humans.
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6.2.3. Functional Evidence of Signatures of Positive
Selection

Signatures of positive selection, however confidently identified, can be difficult to
interpret without a clear adaptive function. Even if correlations exist between
environmental factors and signatures of positive selection, it remains important to
verify that putatively adaptive alleles are indeed driving an adaptive phenotype. Again,
such functional information is especially important when considering weak signatures
of positive selection (more so when environmental data is not available).

Given that many genes play a role in different functions, it is difficult to confidently link
signatures of positive selection with the proposed adaptive phenotype without full
functional assessment of the putatively selected allele. An overview of promising
functional approaches is given in Chapter 1 (Section 1.6.6) but includes integrating
transcriptomics, metabolic and microbiotic datasets; high-throughput assays and
potentially stem-cell technology (Kilpinen et al. 2017; Downes et al. 2019; Hwang et al.
2019; Zhou et al. 2022).

However, these functional approaches must also consider that the function of putatively
adaptive alleles have the potential to differ amongst different genetic backgrounds. This
is particularly pertinent when considering complex trait adaptation, where many alleles
conferring adaptation may differ amongst different populations (Pritchard et al. 2010;
Boyle et al. 2017; Mathieson 2021). Hence, I yet again emphasise the need for including
more diverse cohorts of populations not only in studies of local adaptation, but also in
those explicitly considering molecular function.

6.2.4. Importance of Studies over Diverse Populations

In recent years, there has been an explosion of genomic data of modern humans,
including that from ancient DNA (Racimo et al. 2015; Wohns et al. 2022). Despite this,
there is still a clear bias towards certain populations in studies of human genetic
diversity, particularly towards Europeans in GWAS (Sirugo et al. 2019). This imbalanced
representation of human populations has no doubt led to a biased representation of the
genetic diversity of modern humans and the failure to capture a non-trivial portion of
the genetic variation within our species. This makes the aim of understanding the origin
and function of the genetic diversity of modern humans impossible, and does not allow
a full fully informed evaluation of the contribution of genetic variation to population
phenotypic differences, including those of traits relevant to health. In the dawn of
personalised and genomic medicine, the failure to document and understand the genetic
variation of all populations has the potential to substantially contribute to
contemporary health inequalities (outlined in Chapter 1; Section 1.4.3).

Indeed, multiple well-supported examples of local adaptation in modern humans have
direct contemporary health consequences (Kwiatkowski 2005; Genovese et al. 2010;
Wang et al. 2012; Clemente et al. 2014; Mathieson et al. 2015a; Minster et al. 2016; Key
et al. 2018). This includes adaptations that 1) increase the risk of various metabolic
disorders in a contemporary environment; 2) cause various inherited disorders; 3)
result in differences in the efficacy of treatment for non-inherited disorders (see
Section 1.4.2 for further details and discussion).
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More thorough population sampling may allow the identification of other examples of
local adaptation pertinent to modern health, potentially mediated by novel adaptive
variants in currently undocumented or poorly sampled populations. Moreover,
increased sample size of poorly sampled populations will increase the power of
population genetics methods to identify variants mediating adaptation, and will further
facilitate an understanding of 1) the role of local selective drivers in human adaptation;
2) the genomic response to selective pressures; and 3) the relationship between genetic
variation and adaptive phenotype (particularly important when such an adaptive
phenotype can affect disease risk or progression).

Finally, the inclusion of under-represented populations in GWAS is particularly vital in
providing a deeper understanding of polygenic adaptation and the genetic architecture
of complex phenotypes. Complex traits are expected to be driven by variants that may
differ amongst populations (Pritchard et al. 2010; Mathieson 2021) but many of the
alleles inferred to carry a risk for a complex disease phenotype are currently inferred
through Euro-centric GWAS and therefore cannot be expected to be replicated across
diverse populations (Sirugo et al. 2019). Thus, we currently lack reliable estimates of
risk for many complex diseases amongst many populations which, if used in clinical
care, can result in poorly informed medical decisions and increased health risk. It is
clear that this disproportionally affects under-studied populations (Sirugo et al. 2019)
and is the strongest incentive to including more diverse populations in any study
exploring complex traits or polygenic adaptation.

6.2.5. Summary

Progress in the field of local adaptation, in my view, relies on three main factors. The
first is the development of methodology integrating entire (or more complete)
evolutionary patterns to identify more subtle signatures of positive selection, including
selection on standing variation. This will improve our understanding of human genetic
variation and identify currently undocumented or only putative cases of local
adaptation. The second is the integration of complimentary data, such as environment
and functional data, which will supply the necessary support for currently
undocumented or only putative examples of local adaptation. The final is the most
important factor, and can be considered the rate-limiting step across all aspects of local
adaptation progress: increased sampling of undocumented and understudied
populations. This is not only necessary to understand the genetic diversity of our
species, including that driven by local adaptation, but is fundamental in understanding
the relationship between genetic variation and medically-relevant traits amongst global
populations.

6.3. Selenium in Macroevolution

Selenium has long been known to play a key catalytic role in selenoproteins, being the
defining element of their constituent amino acid, selenocysteine (Chambers et al. 1986;
Stadtman 1996). The evolutionary constraint acting on the selenocysteine in
selenoproteins, and the consequent low exchangeability between selenocysteine and
cysteine in these proteins, has also suggested selenium as an important element
throughout vertebrate evolution (Castellano et al. 2009), Indeed, in Chapter 5, we show
that losing selenium may drive a mammalian protein to develop currently unknown
functions, rather than performing the same functions available to a protein containing
selenium.
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This then drives a collection of key questions pertaining to the function of this Cys-
containing protein and selenoproteome diversity, and how that may be related to the
loss of a selenium-containing amino acid. If there is indeed a completely novel function
in GPX6 following the loss of Sec, we can also ask: do other selenoproteins compensate
for the loss of classic activity? Alternatively, if the Cys-containing GPX6 is able to
continue peroxidation by acting on different substrates as suggested in other
selenoproteins losing selenocysteine (Nguyen et al. 2011; Taylor et al. 2013; Buday and
Conrad 2021), one can ask: do the losses of Sec in those proteins drive the same level of
convergence as observed in GPX6 (as described in Chapter 5)? This is only a small set
of open questions, but the answers to these (and others) rely on 1) further functional
assessment of Cys-containing selenoproteins and 2) a greater understanding of the
genetic diversity of the other selenoproteins in mammalian lineages where
selenoproteins have been lost or maintained.

Understanding the role of selenium in macroevolution should also include non-
mammalian taxa. It has been suggested that the higher levels of selenium in the aquatic
environment of fish has increased their dependence on this rare element (Sarangi et al.
2017), ultimately resulting in their large selenoproteome (Castellano et al. 2009;
Mariotti et al. 2012). It can be expected that evolutionary pathways and functional
consequences following the loss of selenocysteine (and selenium) may differ from that
of mammals: the larger dependence on environmental selenium may have locked this
taxon into maintaining selenoprotein function, and less novel functions may evolve in
comparison to mammals. Alternatively, the larger selenoproteome may result in more
successful functional compensation by selenoproteins maintaining Sec, and the
development of new functions may be less constrained than inferred in mammals.
Again, understanding the loss or gain of protein function following the loss of selenium
requires both extensive functional analysis and an understanding of the genetic
diversity of the entire selenoproteome of taxa, rather than individual selenoproteins.

6.4. Thesis Conclusion

In this thesis, [ have explored the role micronutrients have played in both micro and
macroevolution, particularly in driving local adaptation in modern humans. Ultimately, I
present work that demonstrates the importance of considering micronutrients in the
evolution of our species and across wider biology. Finally, I highlight the recent
developments that present the most promise in furthering our understanding of human
local adaptation, and outline the key limiting factors.

195



References

References

Adams, F. and Hathcock, P. ]., 1984. Aluminum Toxicity and Calcium Deficiency in Acid
Subsoil Horizons of Two Coastal Plains Soil Series. Soil Science Society of America
Journal, 48 (6), 1305-1309.

Adhikari. K., Reales, G., Smith, A.]., Konka, E, Palmen, ]., Quinto-Sanchez, M., Acufia-Alonzo, V.,

Jaramillo, C., Arias, W., Fuentes, M., ... Ruiz-Linares, A. 2015 A genome-wide association
study identifies multiple loci for variation in human ear morphology. Nat Commun.
24:6:7500

Ahlquist, K. D., Bafiuelos, M. M., Funk, A., Lai, J., Rong, S., Villanea, F. A. and Witt, K. E., 2021.
Our Tangled Family Tree: New Genomic Methods Offer Insight into the Legacy of
Archaic Admixture. Genome Biology and Evolution, 13 (7), evab115.

Ajib, F. A. and Childress, ]. M., 2022. Magnesium Toxicity [online]. StatPearls [Internet].
StatPearls Publishing. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK554593/ [Accessed 19 Mar 2023].

Akey, ]. M., Eberle, M. A, Rieder, M. ], Carlson, C. S., Shriver, M. D., Nickerson, D. A. and
Kruglyak, L., 2004. Population History and Natural Selection Shape Patterns of Genetic
Variation in 132 Genes. PLOS Biology, 2 (10), e286.

Akey, J. M., Swanson, W. ], Madeoy, ], Eberle, M. and Shriver, M. D., 2006. TRPV6 exhibits
unusual patterns of polymorphism and divergence in worldwide populations. Human
Molecular Genetics, 15 (13), 2106-2113.

Al Alawi, A. M., Majoni, S. W. and Falhammar, H., 2018. Magnesium and Human Health:
Perspectives and Research Directions. International Journal of Endocrinology, 2018, 1-
17.

Alewell, C,, Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P. and Borrelli, P., 2020. Global
phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11 (1),
4546.

Alexander, D. H., Novembre, . and Lange, K., 2009. Fast model-based estimation of ancestry
in unrelated individuals. Genome Research, 19 (9), 1655-1664.

Allentoft, M. E,, Sikora, M., Sjogren, K.-G., Rasmussen, S., Rasmussen, M., Stenderup, J.,
Damgaard, P. B., Schroeder, H., Ahlstrom, T, ... Willerslev, E., 2015. Population
genomics of Bronze Age Eurasia. Nature, 522 (7555), 167-172.

Alloway, B. ]., 2013. Heavy Metals and Metalloids as Micronutrients for Plants and Animals.
In: Alloway, B. ]., ed. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their
Bioavailability [online]. Dordrecht: Springer Netherlands, 195-209. Available from:
https://doi.org/10.1007/978-94-007-4470-7 7 [Accessed 13 Mar 2023].

Alloway, B. ]. and Tills, A. R., 1984. Copper deficiency in world crops. Outlook on Agriculture,
13 (1), 32-42.

Amorim, C. E. G., Daub, ]. T., Salzano, F. M,, Foll, M. and Excoffier, L., 2015. Detection of
Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans. PLOS
ONE, 10 (4),e0121557.

Anand, L. and Rodriguez Lopez, C. M., 2022. ChromoMap: an R package for interactive
visualization of multi-omics data and annotation of chromosomes. BMC Bioinformatics,
23 (1), 33.

Anderson, |.]. B. and Allen, J. C., 1994. Nutrition of Macrominerals and Trace Elements. In:
Goldberg, I, ed. Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals [online].
Boston, MA: Springer US, 323-354. Available from: https://doi.org/10.1007/978-1-
4615-2073-3 15 [Accessed 30 Jan 2023].

196


https://www.ncbi.nlm.nih.gov/books/NBK554593/
https://doi.org/10.1007/978-94-007-4470-7_7
https://doi.org/10.1007/978-1-4615-2073-3_15
https://doi.org/10.1007/978-1-4615-2073-3_15

References

Andrés, A. M., 2011. Balancing Selection in the Human Genome. In: eLS [online]. John Wiley &
Sons, Ltd. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0022863
[Accessed 28 Feb 2023].

Archer, N. M,, Petersen, N., Clark, M. A., Buckee, C. O., Childs, L. M. and Duraisingh, M. T., 2018.
Resistance to Plasmodium falciparum in sickle cell trait erythrocytes is driven by
oxygen-dependent growth inhibition. Proceedings of the National Academy of Sciences,
115 (28), 7350-7355.

Armitage, S. ], Jasim, S. A.,, Marks, A. E,, Parker, A. G., Usik, V. I. and Uerpmann, H.-P., 2011.
The Southern Route “Out of Africa”: Evidence for an Early Expansion of Modern Humans
into Arabia. Science, 331 (6016), 453-456.

Arnér, E. S. ], 2010. Selenoproteins—What unique properties can arise with selenocysteine
in place of cysteine? Experimental Cell Research, 316 (8), 1296-1303.

Arnér, E. S. ]. and Holmgren, A., 2006. The thioredoxin system in cancer. Seminars in Cancer
Biology, 16 (6), 420-426.

Arunachalam, P., Kannan, P., Prabukumar, G. and Govindaraj, M., n.d. Zinc deficiency in
Indian soils with special focus to enrich zinc in peanut.

Ashish, B., Neeti, K. and Himanshu, K., 2013. Copper Toxicity: A Comprehensive Study, 2.

Aspray, T.]., Yan, L. and Prentice, A., 2005. Parathyroid hormone and rates of bone formation
are raised in perimenopausal rural Gambian women. Bone, 36 (4), 710-720.

Asthana, S., Schmidyt, S., Sunyaev., S. 2005. A limited role for balancing selection,

Trends in Genetics, 21(1), 30-32.

Axley, M. ]., Bock, A. and Stadtman, T. C., 1991. Catalytic properties of an Escherichia coli
formate dehydrogenase mutant in which sulfur replaces selenium. Proceedings of the
National Academy of Sciences of the United States of America, 88 (19), 8450-8454.

Bai, H., Guo, X., Zhang, D., Narisu, N., By, ., Jirimutu, |., Liang, F., Zhao, X,, Xing, Y., ... Zhou, H.,,
2014. The Genome of a Mongolian Individual Reveals the Genetic Imprints of
Mongolians on Modern Human Populations. Genome Biology and Evolution, 6 (12),
3122-3136.

Bailey, R. L., Jr, K. P. W. and Black, R. E., 2015. The Epidemiology of Global Micronutrient
Deficiencies. Annals of Nutrition and Metabolism, 66 (Suppl. 2), 22-33.

Barceloux, D. G. and Barceloux, D., 1999. Molybdenum. Journal of Toxicology: Clinical
Toxicology, 37 (2), 231-237.

Barroso, G. V., Puzovi¢, N. and Dutheil, ]. Y., 2019. Inference of recombination maps from a
single pair of genomes and its application to ancient samples. PLOS Genetics, 15 (11),
e1008449.

Baumann, P,, Lee, ]., Frossard, E., Schonholzer, L. P,, Diby, L., Hgaza, V. K,, Kiba, D. I, Sila, A,
Sheperd, K. and Six, J., 2021. Estimation of soil properties with mid-infrared soil
spectroscopy across yam production landscapes in West Africa. SOIL, 7 (2), 717-731.

Baumdicker, F., Bisschop, G., Goldstein, D., Gower, G., Ragsdale, A. P., Tsambos, G., Zhu, S.,
Eldon, B,, Ellerman, E. C,, ... Kelleher, ., 2022. Efficient ancestry and mutation
simulation with msprime 1.0. Genetics, 220 (3), iyab229.

Becker, M. and Asch, F., 2005. Iron toxicity in rice—conditions and management concepts.
Journal of Plant Nutrition and Soil Science, 168 (4), 558-573.

Beltrame, M. H., Rubel, M. A. and Tishkoff, S. A., 2016. Inferences of African evolutionary
history from genomic data. Current Opinion in Genetics & Development, 41, 159-166.

Berg, ].]. and Coop, G., 2014. A Population Genetic Signal of Polygenic Adaptation. PLOS
Genetics, 10 (8), e1004412.

197


https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0022863

References

Berg, ].]., Harpak, A., Sinnott-Armstrong, N., Joergensen, A. M., Mostafavi, H., Field, Y., Boyle,
E. A, Zhang, X., Racimo, F., Pritchard, ]. K. and Coop, G., 2019. Reduced signal for
polygenic adaptation of height in UK Biobank. eLife, 8, e39725.

Berg, ].]., Zhang, X. and Coop, G., 2019. Polygenic Adaptation has Impacted Multiple
Anthropometric Traits. [online]. Available from:
https://www.biorxiv.org/content/10.1101/167551v4 [Accessed 26 Jan 2023].

Bergstrom, A., McCarthy, S. A, Hui, R., Almarri, M. A,, Ayub, Q., Danecek, P., Chen, Y., Felkel, S.,
Hallast, P.,, Kamm, J., Blanché, H., Deleuze, ].-F., Cann, H., Mallick, S., Reich, D., Sandhu, M.
S., Skoglund, P., Scally, A., Xue, Y., Durbin, R. and Tyler-Smith, C., 2020. Insights into
human genetic variation and population history from 929 diverse genomes. Science, 367
(6484), eaay5012.

Berislav, M., 1999. A Case Report of Acute Human Molybdenum Toxicity from a Dietary
Molybdenum Supplement — A New Member of the »Lucor Metallicum« Family. Arhiv za
higijenu rada i toksikologiju, 50 (3), 289-297.

Berry, M. ], Maia, A. L., Kieffer, ]. D., Harney, ]. W. and Larsen, P. R., 1992. Substitution of
cysteine for selenocysteine in type I iodothyronine deiodinase reduces the catalytic
efficiency of the protein but enhances its translation. Endocrinology, 131 (4), 1848-
1852.

Bersaglieri, T., Sabeti, P.C., Patterson, N., Vanderploeg, T., Schaffner, S.F., Drake, ].A., Rhodes,
M., Reich, D,E., Hirschhorn, ].N. 2004. Genetic signatures of strong recent positive
selection at the lactase gene. Am ] Hum Genet. 74(6):1111-20

Beyer, R. M., Krapp, M., Eriksson, A. and Manica, A., 2021. Climatic windows for human
migration out of Africa in the past 300,000 years. Nature Communications, 12 (1), 4889.

Bhatia, G., Patterson, N., Sankararaman, S. and Price, A. L., 2013. Estimating and interpreting
FST: The impact of rare variants. Genome Research, 23 (9), 1514-1521.

Bhutta, Z. A. and Salam, R. A., 2012. Global Nutrition Epidemiology and Trends. Annals of
Nutrition and Metabolism, 61 (Suppl. 1), 19-27.

Biban, B. and Lichiardopol, C., 2017. lodine Deficiency, Still a Global Problem? Current Health
Sciences Journal, 43 (2), 103.

Bigham, A. W. and Lee, F. S., 2014. Human high-altitude adaptation: forward genetics meets
the HIF pathway. Genes & Development, 28 (20), 2189-2204.

Bitarello, B. D., de Filippo, C., Teixeira, J. C., Schmidt, J. M., Kleinert, P., Meyer, D. and Andrés,
A. M., 2018. Signatures of Long-Term Balancing Selection in Human Genomes. Genome
Biology and Evolution, 10 (3), 939-955.

Blome, M. W,, Cohen, A. S, Tryon, C. A,, Brooks, A. S. and Russell, ], 2012. The environmental
context for the origins of modern human diversity: a synthesis of regional variability in
African climate 150,000-30,000 years ago. Journal of Human Evolution, 62 (5), 563-592.

Borrelli, K. W, Vitalis, A., Alcantara, R. and Guallar, V., 2005. PELE: Protein Energy
Landscape Exploration. A Novel Monte Carlo Based Technique. Journal of Chemical
Theory and Computation, 1 (6), 1304-1311.

Bowler, J. M., Johnston, H., Olley, ]. M., Prescott, ]. R, Roberts, R. G., Shawcross, W. and
Spooner, N. A, 2003a. New ages for human occupation and climatic change at Lake
Mungo, Australia. Nature, 421 (6925), 837-840.

Bowler, J. M., Johnston, H., Olley, ]. M., Prescott, ]. R., Roberts, R. G., Shawcross, W. and
Spooner, N. A, 2003b. New ages for human occupation and climatic change at Lake
Mungo, Australia. Nature, 421 (6925), 837-840.

Boyko, A. R., Williamson, S. H,, Indap, A. R., Degenhardyt, . D., Hernandez, R. D., Lohmueller, K.
E., Adams, M. D., Schmidt, S., Sninsky, |. ]., Sunyaev, S. R., White, T. ], Nielsen, R., Clark, A.

198


https://www.biorxiv.org/content/10.1101/167551v4

References

G. and Bustamante, C. D., 2008. Assessing the Evolutionary Impact of Amino Acid
Mutations in the Human Genome. PLOS Genetics, 4 (5), e1000083.

Boyle, E. A, Li, Y. L. and Pritchard, J. K., 2017. An expanded view of complex traits: from
polygenic to omnigenic. Cell, 169 (7), 1177-1186.

Brajesh, R. G., Dutta, D. and Saini, S., 2019. Distribution of fitness effects of mutations
obtained from a simple genetic regulatory network model. Scientific Reports, 9 (1),
9842.

Brandt, D., Wei, X,, Deng, Y., Vaughn, A. H., Nielsen, R., 2022. Evaluation of methods for
estimating coalescence times using ancestral recombination graphs. Genetics. 221(1).

Brissot, P., Pietrangelo, A., Adams, P. C., de Graaff, B.,, McLaren, C. E. and Loréal, 0., 2018.
Haemochromatosis. Nature reviews. Disease primers, 4, 18016.

Brown, T. A, Jones, M. K., Powell, W. and Allaby, R. G., 2009. The complex origins of
domesticated crops in the Fertile Crescent. Trends in Ecology & Evolution, 24 (2), 103-
109.

Browning, S. R, Browning, B. L., Zhou, Y., Tucci, S. and Akey, ]J. M., 2018. Analysis of human
sequence data reveals two pulses of archaic Denisovan admixture. Cell, 173 (1), 53-
61.e9.

Buday, K. and Conrad, M., 2021. Emerging roles for non-selenium containing ER-resident
glutathione peroxidases in cell signaling and disease. Biological Chemistry, 402 (3), 271-
287.

Buffalo, V. and Coop, G., 2020. Estimating the genome-wide contribution of selection to
temporal allele frequency change. Proceedings of the National Academy of Sciences, 117
(34), 20672-20680.

Burger, ., Link, V., Blocher, ]., Schulz, A, Sell, C,, Pochon, Z., Diekmann, Y., Zegarac, A,
Hofmanovag, Z., ... Wegmann, D., 2020. Low Prevalence of Lactase Persistence in Bronze
Age Europe Indicates Ongoing Strong Selection over the Last 3,000 Years. Current
biology: CB, 30 (21),4307-4315.e13.

Buxbaum, J., Jacobson, D. R,, Tagoe, C., Alexander, A., Kitzman, D. W., Greenberg, B.,
Thaneemit-Chen, S. and Lavori, P., 2006. Transthyretin V122I in African Americans With
Congestive Heart Failure. Journal of the American College of Cardiology, 47 (8), 1724-
1725.

Caballero, B., 2002a. Global Patterns of Child Health: The Role of Nutrition. Annals of
Nutrition and Metabolism, 46 (Suppl. 1), 3-7.

Caballero, B., 2002b. Global Patterns of Child Health: The Role of Nutrition. Annals of
Nutrition and Metabolism, 46 (Suppl. 1), 3-7.

Caldas, I. V., Clark, A. G., Messer, P. V. 2022. Inference of selective sweep parameters through
supervised learning. bioRxiv. doi: https://doi.org/10.1101/2022.07.19.500702

Calcium, I. of M. (US) C.to R. D. R. L. for V. D. and, Ross, A. C., Taylor, C. L., Yaktine, A. L. and
Valle, H. B. D., 2011. Tolerable Upper Intake Levels: Calcium and Vitamin D [online].
Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press (US).
Available from: https://www.ncbi.nlm.nih.gov/books/NBK56058/ [Accessed 19 Mar
2023].

Campbell, A. D., Colombatti, R.,, Andemariam, B., Strunk, C., Tartaglione, I., Piccone, C. M.,
Manwani, D., Asare, E. V., Boruchov, D,, . .. Antwi-Boasiako, C., 2021. An Analysis of
Racial and Ethnic Backgrounds within the CASiRe International Cohort of Sickle Cell
Disease Patients: Implications for Disease Phenotype and Clinical Research. Journal of
racial and ethnic health disparities, 8 (1), 99-106.

199


https://www.ncbi.nlm.nih.gov/books/NBK56058/

References

Campbell, M. C. and Tishkoff, S. A., 2008. AFRICAN GENETIC DIVERSITY: Implications for
Human Demographic History, Modern Human Origins, and Complex Disease Mapping.
Annual review of genomics and human genetics, 9, 403-433.

Cao, L., Zhang, W,, Liu, X,, Yang, P., Wang, ]., Hu, K,, Zhang, X., Liu, W,, He, X,, Jing, H. and Yuan,
X., 2019. The Prognostic Significance of PDE7B in Cytogenetically Normal Acute Myeloid
Leukemia. Scientific Reports, 9, 16991.

Carlberg, C., 2022. Vitamin D in the Context of Evolution. Nutrients, 14 (15), 3018.

Carter, P. and Wells, ]. A., 1988. Dissecting the catalytic triad of a serine protease. Nature, 332
(6164), 564-568.

Castellano, S., Andrés, A. M., Bosch, E., Bayes, M., Guigd, R. and Clark, A. G., 2009. Low
Exchangeability of Selenocysteine, the 21st Amino Acid, in Vertebrate Proteins.
Molecular Biology and Evolution, 26 (9), 2031-2040.

Castellano, S., Lobanov, A. V., Chapple, C., Novoselov, S. V., Albrecht, M., Hua, D., Lescure, A,
Lengauer, T., Krol, A., Gladyshev, V. N. and Guig6, R., 2005. Diversity and functional
plasticity of eukaryotic selenoproteins: Identification and characterization of the Sel]
family. Proceedings of the National Academy of Sciences, 102 (45), 16188-16193.

Castellano, S., Morozova, N., Morey, M., Berry, M. ],, Serras, F., Corominas, M. and Guigé, R,,
2001. In silico identification of novel selenoproteins in the Drosophila melanogaster
genome. EMBO reports, 2 (8), 697-702.

Castellano, S., Parra, G., Sdnchez-Quinto, F. A,, Racimo, F., Kuhlwilm, M., Kircher, M., Sawyer,
S., Fu, Q., Heinze, A,, . .. Padbo, S., 2014. Patterns of coding variation in the complete
exomes of three Neandertals. Proceedings of the National Academy of Sciences, 111 (18),
6666-6671.

Castiglioni, S., Cazzaniga, A., Albisetti, W. and Maier, ]. A. M., 2013. Magnesium and
Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients, 5
(8),3022-3033.

Cha, H. ], Jang, D. S., Kim, Y.-G., Hong, B. H.,, Woo, ].-S., Kim, K.-T. and Choi, K. Y., 2013. Rescue
of Deleterious Mutations by the Compensatory Y30F Mutation in Ketosteroid Isomerase.
Molecules and Cells, 36 (1), 39-46.

Chambers, L., Frampton, ]., Goldfarb, P., Affara, N., McBain, W. and Harrison, P. R., 1986. The
structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site
is encoded by the ‘termination’ codon, TGA. The EMBO Journal, 5 (6), 1221-1227.

Chang, A. R. and Anderson, C., 2017. Dietary Phosphorus Intake and the Kidney. Annual
Review of Nutrition, 37, 321-346.

Charlesworth, B., Morgan, M. T. and Charlesworth, D., 1993. The effect of deleterious
mutations on neutral molecular variation. Genetics, 134 (4), 1289-1303.

Charlesworth, D., Charlesworth, B. and Morgan, M. T., 1995. The pattern of neutral molecular
variation under the background selection model. Genetics, 141 (4), 1619-1632.

Chatterjee, H.]., Ho, S. Y., Barnes, I. and Groves, C., 2009. Estimating the phylogeny and
divergence times of primates using a supermatrix approach. BMC Evolutionary Biology,
9 (1), 259.

Chen, Y. and Barak, P., 1982. Iron Nutrition of Plants in Calcareous Soils. In: Brady, N. C,, ed.
Advances in Agronomy [online]. Academic Press, 217-240. Available from:
https://www.sciencedirect.com/science/article/pii/S0065211308603260 [Accessed
16 Mar 2023].

Chen, Y.-1., Wej, P.-C,, Hsu, J.-L., Su, F.-Y. and Lee, W.-H., 2016. NPGPx (GPx7): a novel
oxidative stress sensor/transmitter with multiple roles in redox homeostasis. American
Journal of Translational Research, 8 (4), 1626-1640.

200


https://www.sciencedirect.com/science/article/pii/S0065211308603260

References

Cheng, Q. and Arnér, E. S.]., 2017. Selenocysteine Insertion at a Predefined UAG Codon in a
Release Factor 1 (RF1)-depleted Escherichia coli Host Strain Bypasses Species Barriers
in Recombinant Selenoprotein Translation. The Journal of Biological Chemistry, 292 (13),
5476-5487.

Chevin, L.-M. and Hospital, F., 2008. Selective Sweep at a Quantitative Trait Locus in the
Presence of Background Genetic Variation. Genetics, 180 (3), 1645-1660.

Cifor, 2006. Forests and human health [online]. Center for International Forestry Research
(CIFOR). Available from: http://www.cifor.org/library/2088/forests-and-human-
health/ [Accessed 14 Feb 2023].

Clark, ]. D., Beyene, Y., WoldeGabriel, G., Hart, W. K,, Renne, P. R,, Gilbert, H., Defleur, A., Suwa,
G., Katoh, S., Ludwig, K. R, Boisserieg, ].-R., Asfaw, B. and White, T. D., 2003. Stratigraphic,
chronological and behavioural contexts of Pleistocene Homo sapiens from Middle
Awash, Ethiopia. Nature, 423 (6941), 747-752.

Clemente, F. ]., Cardona, A., Inchley, C. E., Peter, B. M., Jacobs, G., Pagani, L., Lawson, D. ].,
Antao, T., Vicente, M., ... Kivisild, T., 2014. A Selective Sweep on a Deleterious Mutation
in CPT1A in Arctic Populations. The American Journal of Human Genetics, 95 (5), 584-
589.

Conrad, M., Jakupoglu, C., Moreno, S. G., Lipp], S., Banjac, A., Schneider, M., Beck, H.,
Hatzopoulos, A. K, Just, U,, Sinowatz, F., Schmahl, W,, Chien, K. R., Wurst, W., Bornkamm,
G. W. and Brielmeier, M., 2004. Essential Role for Mitochondrial Thioredoxin Reductase
in Hematopoiesis, Heart Development, and Heart Function. Molecular and Cellular
Biology, 24 (21),9414-9423.

Cornelis, M. C,, Fornage, M., Foy, M., Xun, P., Gladyshev, V. N., Morris, S., Chasman, D. I, Hu, F.
B., Rimm, E. B, Kraft, P., Jordan, J. M., Mozaffarian, D. and He, K., 2015. Genome-wide
association study of selenium concentrations. Human Molecular Genetics, 24 (5), 1469-
1477.

Costas, J., 2018. The highly pleiotropic gene SLC39A8 as an opportunity to gain insight into
the molecular pathogenesis of schizophrenia. American Journal of Medical Genetics. Part
B, Neuropsychiatric Genetics: The Official Publication of the International Society of
Psychiatric Genetics, 177 (2), 274-283.

Covert, A. W,, Lenski, R. E., Wilke, C. 0. and Ofria, C., 2013. Experiments on the role of
deleterious mutations as stepping stones in adaptive evolution. Proceedings of the
National Academy of Sciences, 110 (34), E3171-E3178.

Crawford, J. E., Amaru, R, Song, ]., Julian, C. G., Racimo, F., Cheng, ]. Y., Guo, X,, Yao, ]., Ambale-
Venkatesh, B., ... Nielsen, R., 2017. Natural Selection on Genes Related to
Cardiovascular Health in High-Altitude Adapted Andeans. The American Journal of
Human Genetics, 101 (5), 752-767.

Cruciani, F., Trombetta, B., Massaia, A., Destro-Bisol, G., Sellitto, D. and Scozzari, R.,, 2011. A
Revised Root for the Human Y Chromosomal Phylogenetic Tree: The Origin of
Patrilineal Diversity in Africa. American Journal of Human Genetics, 88 (6), 814.

Cruickshank, T. E. and Hahn, M. W., 2014. Reanalysis suggests that genomic islands of
speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23
(13),3133-3157.

Cui, ], Pan, Y.-H,, Zhang, Y., Jones, G. and Zhang, S., 2011. Progressive Pseudogenization:
Vitamin C Synthesis and Its Loss in Bats. Molecular Biology and Evolution, 28 (2), 1025-
1031.

Currat, M., Trabuchet, G., Rees, D., Perrin, P, Harding, R. M., Clegg, J. B., Langaney, A. and
Excoffier, L., 2002. Molecular Analysis of the 3-Globin Gene Cluster in the Niokholo

201


http://www.cifor.org/library/2088/forests-and-human-health/
http://www.cifor.org/library/2088/forests-and-human-health/

References

Mandenka Population Reveals a Recent Origin of the BS Senegal Mutation. The American
Journal of Human Genetics, 70 (1), 207-223.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E,,
Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., and 1000 Genomes Project
Analysis Group, 2011. The variant call format and VCFtools. Bioinformatics, 27 (15),
2156-2158.

Dannemann, M., Andrés, A. M. and Kelso, J., 2016. Introgression of Neandertal- and
Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like
Receptors. The American Journal of Human Genetics, 98 (1), 22-33.

Darwin, C., 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of
Favoured Races in the Struggle for Life. London: John Murray.

Darwin, C. and Wallace, A., 1858. On the Tendency of Species to form Varieties; and on the
Perpetuation of Varieties and Species by Natural Means of Selection. Journal of the
Proceedings of the Linnean Society of London. Zoology, 3 (9), 45-62.

Daub, J. T., Dupanloup, I., Robinson-Rechavi, M. and Excoffier, L., 2015. Inference of
Evolutionary Forces Acting on Human Biological Pathways. Genome Biology and
Evolution, 7 (6), 1546-1558.

Daub, . T., Hofer, T., Cutivet, E., Dupanloup, I., Quintana-Murci, L., Robinson-Rechavi, M. and
Excoffier, L., 2013. Evidence for polygenic adaptation to pathogens in the human
genome. Molecular Biology and Evolution, 30 (7), 1544-1558.

Daub, J. T., Moretti, S., Davydov, L. L., Excoffier, L. and Robinson-Rechavi, M., 2017. Detection
of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans.
Molecular Biology and Evolution, 34 (6), 1391-1402.

Davis, B. H.,, Poon, A. F. Y. and Whitlock, M. C., 2009. Compensatory mutations are repeatable
and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences,
276 (1663),1823-1827.

De Groote, H., Tessema, M., Gameda, S. and Gunaratna, N. S., 2021. Soil zinc, serum zinc, and
the potential for agronomic biofortification to reduce human zinc deficiency in Ethiopia.
Scientific Reports, 11 (1), 8770.

Dean, A. M. and Golding, G. B.,, 1997. Protein engineering reveals ancient adaptive
replacements in isocitrate dehydrogenase. Proceedings of the National Academy of
Sciences, 94 (7), 3104-31009.

Delaneau, O., Zagury, ]J.-F. and Marchini, J., 2013. Improved whole-chromosome phasing for
disease and population genetic studies. Nature Methods, 10 (1), 5-6.

Demény, A., Kern, Z., Czuppon, G., Németh, A., Scholl-Barna, G., Siklésy, Z., Leél-ﬁssy, S., Cook,
G., Serlegi, G., ... Bondar, M., 2019. Middle Bronze Age humidity and temperature
variations, and societal changes in East-Central Europe. Quaternary International, 504,
80-95.

Dhaliwal, S. S., Naresh, R. K., Mandal, A., Singh, R. and Dhaliwal, M. K,, 2019. Dynamics and
transformations of micronutrients in agricultural soils as influenced by organic matter
build-up: A review. Environmental and Sustainability Indicators, 1-2,100007.

Diallo, A. B., Makarenkov, V. and Blanchette, M., 2010. Ancestors 1.0: a web server for
ancestral sequence reconstruction. Bioinformatics, 26 (1), 130-131.

Diamond, J., 2002. Evolution, consequences and future of plant and animal domestication.
Nature, 418 (6898), 700-707.

Dib, M.-],, Elliott, R. and Ahmadji, K. R., 2019. A critical evaluation of results from genome-
wide association studies of micronutrient status and their utility in the practice of
precision nutrition. British Journal of Nutrition, 122 (2), 121-130.

202



References

Distante, S., Robson, K. J. H., Graham-Campbell, ]., Arnaiz-Villena, A., Brissot, P. and Worwood,
M., 2004. The origin and spread of the HFE-C282Y haemochromatosis mutation. Human
Genetics, 115 (4), 269-279.

Dobrovolskaya, M. V., 2005. Upper Palaeolithic and Late Stone Age Human Diet. Journal of
PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science, 24 (4), 433-438.

Dominguez-Andrés, |, Kuijpers, Y., Bakker, O. B., Jaeger, M., Xu, C.-]., Van der Meer, ]. W,
Jakobsson, M., Bertranpetit, J., Joosten, L. A, Li, Y. and Netea, M. G., 2021. Evolution of
cytokine production capacity in ancient and modern European populations. eLife, 10,
e64971.

Dormitzer, P. R, Ellison, P. T. and Bode, H. H., 1989. Anomalously low endemic goiter
prevalence among Efe pygmies. American Journal of Physical Anthropology, 78 (4), 527-
531.

Drouin, G., Godin, ].-R. and Pagé, B., 2011. The Genetics of Vitamin C Loss in Vertebrates.
Current Genomics, 12 (5), 371-378.

Duborska, E., Sebesta, M., Matulov4, M., Zvétina, O. and Urik, M., 2022. Current Strategies for
Selenium and lodine Biofortification in Crop Plants. Nutrients, 14 (22), 4717.

Durbin, R., Eddy, S. R., Krogh, A. and Mitchison, G., 1998. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids [online]. 1st ed. Cambridge University
Press. Available from:
https://www.cambridge.org/core/product/identifier /9780511790492 /type/book
[Accessed 11 Jan 2023].

Duret, L., 2008. Neutral Theory: The Null Hypothesis of Molecular Evolution. Nature
Education, 1 (1), 803.

Durvasula, A. and Sankararaman, S., 2020. Recovering signals of ghost archaic introgression
in African populations. Science Advances, 6 (7), eaax5097.

Dusseldor, G., Lombard, M. and Wurz, S., 2013. Pleistocene Homo and the updated Stone Age
sequence of South Africa. South African Journal of Science, 109 (5-6), 01-07.

Edmeades, D., Morton, J., Waller, ]., Metherell, A., Roberts, A. and Carey, P., 2010. The
diagnosis and correction of potassium deficiency in New Zealand pastoral soils: a
review. New Zealand Journal of Agricultural Research, 53 (2), 151-173.

Edwards, S. V., 2009. Natural selection and phylogenetic analysis. Proceedings of the National
Academy of Sciences, 106 (22), 8799-8800.

Enard, D., Cai, L., Gwennap, C. and Petrov, D. A., n.d. Viruses are a dominant driver of protein
adaptation in mammals. elLife, 5, e12469.

Enard, D. and Petrov, D. A,, 2018. Evidence that RNA Viruses Drove Adaptive Introgression
between Neanderthals and Modern Humans. Cell, 175 (2), 360-371.e13.

Enard, W., 2016. The Molecular Basis of Human Brain Evolution. Current Biology, 26 (20),
R1109-R1117.

Engelken, ]., Carnero-Montoro, E., Pybus, M., Andrews, G. K,, Lalueza-Fox, C., Comas, D.,
Sekler, ., Rasilla, M. de la, Rosas, A,, ... Bosch, E., 2014. Extreme Population Differences
in the Human Zinc Transporter ZIP4 (SLC39A4) Are Explained by Positive Selection in
Sub-Saharan Africa. PLOS Genetics, 10 (2), e1004128.

Engelken, ., Espadas, G., Mancuso, F. M., Bonet, N., Scherr, A.-L., ]imenez-Alvarez, V., Codina-
Sola, M., Medina-Stacey, D., Spataro, N,, ... Bosch, E., 2016. Signatures of Evolutionary
Adaptation in Quantitative Trait Loci Influencing Trace Element Homeostasis in Liver.
Molecular Biology and Evolution, 33 (3), 738-754.

Erdman, J. W,, MacDonald, I. A. and Zeisel, S. H., 2012. Present Knowledge in Nutrition: Tenth
Edition [online]. Wiley-Blackwell. Available from:

203


https://www.cambridge.org/core/product/identifier/9780511790492/type/book

References

http://www.scopus.com/inward /record.url?scp=84878020186&partnerID=8YFLogxK
[Accessed 19 Mar 2023].

Esoh, K. and Wonkam, A., 2021. Evolutionary history of sickle-cell mutation: implications for
global genetic medicine. Human Molecular Genetics, 30 (R1), R119-R128.

Evershed, R. P., Davey Smith, G., Roffet-Salque, M., Timpson, A., Diekmann, Y., Lyon, M. S,
Cramp, L. ]. E,, Casanova, E., Smyth, ], .. .Thomas, M. G., 2022. Dairying, diseases and the
evolution of lactase persistence in Europe. Nature, 608 (7922), 336-345.

Excoffier, L., Dupanloup, I, Huerta-Sanchez, E., Sousa, V. C. and Foll, M., 2013. Robust
Demographic Inference from Genomic and SNP Data. PLOS Genetics, 9 (10), e1003905.

Fadhlaoui-Zid, K., Haber, M., Martinez-Cruz, B., Zalloua, P., Benammar Elgaaied, A. and
Comas, D., 2013. Genome-Wide and Paternal Diversity Reveal a Recent Origin of Human
Populations in North Africa. PLoS ONE, 8 (11), e80293.

Fagny, M., Patin, E., Macisaac, ]. L., Rotival, M., Flutre, T., Jones, M. ]., Siddle, K. ]., Quach, H,,
Harmant, C,, ... Quintana-Murci, L., 2015. The epigenomic landscape of African
rainforest hunter-gatherers and farmers. Nature Communications, 6.

Fagundes, N. J.R,, Tagliani-Ribeiro, A., Rubicz, R., Tarskaia, L., Crawford, M.H., Salzano, F.M.,
Bonatto, S.L. 2018. How strong was the bottleneck associated to the peopling of the
Americas? New insights from multilocus sequence data. Genet Mol Biol. 41(1):206-214.

Fan, S., Hansen, M. E. B,, Lo, Y. and Tishkoff, S. A., 2016. Going global by adapting local: A
review of recent human adaptation. Science, 354 (6308), 54-59.

Fan, S., Spence, J. P, Feng, Y., Hansen, M. E. B., Terhorst, ], Beltrame, M. H., Ranciaro, A., Hirbo,
J., Beggs, W., .. .Tishkoff, S. A., 2023. Whole-genome sequencing reveals a complex
African population demographic history and signatures of local adaptation. Cell, 186 (5),
923-939.e14.

Fernandes, V., Alshamali, F., Alves, M., Costa, M. D., Pereira, ]. B,, Silva, N. M., Cherni, L., Harich,
N., Cerny, V., Soares, P., Richards, M. B. and Pereira, L., 2012. The Arabian Cradle:
Mitochondrial Relicts of the First Steps along the Southern Route out of Africa. American
Journal of Human Genetics, 90 (2), 347-355.

Fernando, D. R. and Lynch, ]. P., 2015. Manganese phytotoxicity: new light on an old problem.
Annals of Botany, 116 (3), 313-3109.

Ferrer-Admetlla, A, Liang, M., Korneliussen, T. and Nielsen, R.,, 2014. On detecting
incomplete soft or hard selective sweeps using haplotype structure. Molecular Biology
and Evolution, 31 (5),1275-1291.

Field, Y., Boyle, E. A, Telis, N., Gao, Z., Gaulton, K. ]., Golan, D., Yengo, L., Rocheleau, G.,
Froguel, P., McCarthy, M. L. and Pritchard, ]. K., 2016a. Detection of human adaptation
during the past 2000 years. Science (New York, N.Y.), 354 (6313), 760-764.

Field, Y, Boyle, E. A, Telis, N., Gao, Z., Gaulton, K. ]., Golan, D., Yengo, L., Rocheleau, G.,
Froguel, P., McCarthy, M. I. and Pritchard, ]. K., 2016b. Detection of human adaptation
during the past 2000 years. Science, 354 (6313), 760-764.

de Filippo, C., Key, F. M., Ghirotto, S., Benazzo, A., Meneu, J. R., Weihmann, A., NISC
Comparative Sequence Program, Parra, G., Green, E. D. and Andrés, A. M., 2016. Recent
Selection Changes in Human Genes under Long-Term Balancing Selection. Molecular
Biology and Evolution, 33 (6), 1435-1447.

FISHER, G., 2008. Micronutrients and Animal Nutrition and the Link between the Application
of Micronutrients to Crops and Animal Health. Turkish Journal of Agriculture and
Forestry, 32 (3), 221-233.

Fisher, R. A., 1919. The Correlation between Relatives on the Supposition of Mendelian
Inheritance. Earth and Environmental Science Transactions of The Royal Society of
Edinburgh, 52 (2), 399-433.

204


http://www.scopus.com/inward/record.url?scp=84878020186&partnerID=8YFLogxK

References

Fishilevich, S., Nudel, R,, Rappaport, N., Hadar, R., Plaschkes, L, Iny Stein, T., Rosen, N., Kohn,
A., Twik, M,, Safran, M., Lancet, D. and Cohen, D., 2017. GeneHancer: genome-wide
integration of enhancers and target genes in GeneCards. Database, 2017, bax028.

Foll, M., Gaggiotti, O. E., Daub, ]. T., Vatsiou, A. and Excoffier, L., 2014. Widespread Signals of
Convergent Adaptation to High Altitude in Asia and America. American Journal of
Human Genetics, 95 (4), 394-407.

Fraga, C. G., 2005. Relevance, essentiality and toxicity of trace elements in human health.
Molecular Aspects of Medicine, 26 (4), 235-244.

Fraga, C. G. and Oteiza, P. 1., 2002. Iron toxicity and antioxidant nutrients. Toxicology, 180 (1),
23-32.

Fraisse, C., Puixeu Sala, G. and Vicoso, B., 2019. Pleiotropy Modulates the Efficacy of Selection
in Drosophila melanogaster. Molecular Biology and Evolution, 36 (3), 500-515.

Freitas, S. R. S., 2018. Molecular Genetics of Salt-Sensitivity and Hypertension: Role of Renal
Epithelial Sodium Channel Genes. American Journal of Hypertension, 31 (2), 172-174.

Fu, Q., Li, H,, Moorjani, P., Jay, F., Slepchenko, S. M., Bondarev, A. A., Johnson, P. L. F., Aximu-
Petri, A., Priifer, K., de Filippo, C,, ... Paabo, S., 2014. Genome sequence of a 45,000-year-
old modern human from western Siberia. Nature, 514 (7523), 445-449.

Fujimoto, A., Kimura, R., Ohashi, J., Omi, K., Yuliwulandari, R, Batubara, L., Mustofa, M. S,,
Samakkarn, U., Settheetham-Ishida, W., Ishida, T., Morishita, Y., Furusawa, T., Nakazawa,
M., Ohtsuka, R. and Tokunaga, K., 2008. A scan for genetic determinants of human hair
morphology: EDAR is associated with Asian hair thickness. Human Molecular Genetics,
17 (6), 835-843.

Fumagalli, M., Moltke, L., Grarup, N., Racimo, F., Bjerregaard, P., Jargensen, M. E.,
Korneliussen, T. S., Gerbault, P., Skotte, L., ... Nielsen, R., 2015. Greenlandic Inuit show
genetic signatures of diet and climate adaptation. Science, 349 (6254), 1343-1347.

Fumagalli, M., Sironi, M., Pozzoli, U., Ferrer-Admettla, A., Pattini, L. and Nielsen, R., 2011.
Signatures of Environmental Genetic Adaptation Pinpoint Pathogens as the Main
Selective Pressure through Human Evolution. PLOS Genetics, 7 (11),e1002355.

Gagnon, K. B. and Delpire, E., 2013. Physiology of SLC12 transporters: lessons from inherited
human genetic mutations and genetically engineered mouse knockouts. American
Journal of Physiology-Cell Physiology, 304 (8), C693-C714.

Garcia, R. S., 2004. The Misuse of Race in Medical Diagnosis. Pediatrics, 113 (5), 1394-1395.

Garud, N. R, Messer, P. W., Buzbas, E. 0. and Petrov, D. A,, 2015. Recent Selective Sweeps in
North American Drosophila melanogaster Show Signatures of Soft Sweeps. PLOS
Genetics, 11 (2),e1005004.

Gebremichael, G., Demena, M., Egata, G. and Gebremichael, B., 2020. Prevalence of Goiter and
Associated Factors Among Adolescents in Gazgibla District, Northeast Ethiopia. Global
Advances in Health and Medicine, 9, 2164956120923624.

Geerling, ]. C. and Loewy, A. D., 2008. Central regulation of sodium appetite. Experimental
Physiology, 93 (2), 177-209.

Gerbault, P, Liebert, A,, Itan, Y., Powell, A., Currat, M., Burger, ., Swallow, D. M. and Thomas,
M. G., 2011. Evolution of lactase persistence: an example of human niche construction.
Philosophical Transactions of the Royal Society B: Biological Sciences, 366 (1566), 863-
877.

Germeshausen, M., Ancliff, P, Estrada, ]., Metzler, M., Ponsting], E., Riitschle, H., Schwabe, D.,
Scott, R. H,, Unal, S., Wawer, A., Zeller, B. and Ballmaier, M., 2018. MECOM-associated
syndrome: a heterogeneous inherited bone marrow failure syndrome with
amegakaryocytic thrombocytopenia. Blood Advances, 2 (6), 586-596.

205



References

Gibson, R. S., 2012. A Historical Review of Progress in the Assessment of Dietary Zinc Intake
as an Indicator of Population Zinc Status123. Advances in Nutrition, 3 (6), 772-782.

Giri, A, Ranjan, P. and Bharti, V. K,, 2021. Selenium Toxicity in Domestic Animals. In:
Selenium Contamination in Water [online]. John Wiley & Sons, Ltd, 51-72. Available
from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119693567.ch4
[Accessed 14 Mar 2023].

Gloux, A., Le Roy, N., Brionne, A., Bonin, E., Juanchich, A, Benzoni, G., Piketty, M.-L., Prié, D.,
Nys, Y., Gautron, J., Narcy, A. and Duclos, M. ]., 2019. Candidate genes of the transcellular
and paracellular calcium absorption pathways in the small intestine of laying hens.
Poultry Science, 98 (11), 6005-6018.

Gokhman, D., Malul, A. and Carmel, L., 2017. Inferring Past Environments from Ancient
Epigenomes. Molecular Biology and Evolution, 34 (10), 2429-2438.

Goltyaev, M. V., Mal’tseva, V. N. and Varlamova, E. G., 2020. Expression of ER-resident
selenoproteins and activation of cancer cells apoptosis mechanisms under ER-stress
conditions caused by methylseleninic acid. Gene, 755, 144884.

Gonzalez, A. M., Larruga, ]. M., Abu-Amero, K. K,, Shi, Y., Pestano, J. and Cabrera, V. M., 2007.
Mitochondrial lineage M1 traces an early human backflow to Africa. BMC Genomics, 8
(1), 223.

Goodman, M. and Sterner, K. N., 2010. Phylogenomic evidence of adaptive evolution in the
ancestry of humans. Proceedings of the National Academy of Sciences, 107
(supplement_2), 8918-8923.

Gopalan, S., Smith, S. P., Korunes, K., Hamid, 1., Ramachandran, S. and Goldberg, A., 2022.
Human genetic admixture through the lens of population genomics. Philosophical
Transactions of the Royal Society B: Biological Sciences, 377 (1852),20200410.

Gouy, A., Daub, . T. and Excoffier, L., 2017. Detecting gene subnetworks under selection in
biological pathways. Nucleic Acids Research, 45 (16), e149.

Gouy, A. and Excoffier, L., 2020. Polygenic Patterns of Adaptive Introgression in Modern
Humans Are Mainly Shaped by Response to Pathogens. Molecular Biology and Evolution,
37 (5), 1420-1433.

Gower, G., Picazo, P. 1., Fumagalli, M., Racimo, F. 2021. Detecting adaptive introgression in
human evolution using convolutional neural networks. Elife. 10.

Gravel, S., Henn, B. M., Gutenkunst, R. N., Indap, A. R, Marth, G. T., Clark, A. G., Yu, F., Gibbs, R.
A., The 1000 Genomes Project, Bustamante, C. D., ...McVean, G. A., 2011. Demographic
history and rare allele sharing among human populations. Proceedings of the National
Academy of Sciences, 108 (29), 11983-11988.

Gravel, S., Zakharia, F., Moreno-Estrada, A, Byrnes, |. K., Muzzio, M., Rodriguez-Flores, |. L.,
Kenny, E. E,, Gignoux, C. R, Maples, B. K,, ... Bustamante, C. D., 2013. Reconstructing
Native American Migrations from Whole-Genome and Whole-Exome Data. PLOS
Genetics, 9 (12),e1004023.

Green, R. E,, Krause, ]., Briggs, A. W., Maricic, T., Stenzel, U,, Kircher, M., Patterson, N., Li, H.,
Zhai, W., Fritz, M. H.-Y., ... Padbo, S., 2010. A Draft Sequence of the Neandertal Genome.
Science (New York, N.Y.), 328 (5979), 710-722.

Greenhouse, R., 1981. Preparation effects on iron and calcium in traditional Pima foods.
Ecology of Food and Nutrition, 10 (4), 221-225.

Greger, J. L., 1999. Nutrition versus toxicology of manganese in humans: evaluation of
potential biomarkers. Neurotoxicology, 20 (2-3), 205-212.

Grillo, A., Salvi, L., Coruzzi, P., Salvi, P. and Parati, G., 2019. Sodium Intake and Hypertension.
Nutrients, 11 (9), 1970.

206


https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119693567.ch4

References

Gromer, S., Johansson, L., Bauer, H., Arscott, L. D., Rauch, S., Ballou, D. P., Williams, C. H.,
Schirmer, R. H. and Arnér, E. S.].,, 2003. Active sites of thioredoxin reductases: Why
selenoproteins? Proceedings of the National Academy of Sciences, 100 (22), 12618-
12623.

Grossman, H., Duggan, E., McCamman, S., Welchert, E. and Hellerstein, S., 1980. The Dietary
Chloride Deficiency Syndrome. Pediatrics, 66 (3), 366-374.

Grossman, S. R,, Shylakhter, L., Karlsson, E. K., Byrne, E. H., Morales, S., Frieden, G., Hostetter,
E., Angelino, E., Garber, M., Zuk, O., Lander, E. S., Schaffner, S. F. and Sabeti, P. C., 2010. A
Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive
Selection. Science, 327 (5967), 883-886.

Griin, R, Stringer, C., McDermott, F., Nathan, R., Porat, N., Robertson, S., Taylor, L., Mortimer,
G., Eggins, S. and McCulloch, M., 2005. U-series and ESR analyses of bones and teeth
relating to the human burials from Skhul. Journal of Human Evolution, 49 (3), 316-334.

Gruss, L. T. and Schmitt, D., 2015. The evolution of the human pelvis: changing adaptations to
bipedalism, obstetrics and thermoregulation. Philosophical Transactions of the Royal
Society B: Biological Sciences, 370 (1663), 20140063.

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, 0., 2010. New
Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the
Performance of PhyML 3.0. Systematic Biology, 59 (3), 307-321.

Glinther, T. and Coop, G., 2013. Robust Identification of Local Adaptation from Allele
Frequencies. Genetics, 195 (1), 205-220.

Haak, W., Balanovsky, O., Sanchez, J. ., Koshel, S., Zaporozhchenko, V., Adler, C. ]., Der
Sarkissian, C. S. I, Brandt, G., Schwarz, C,, ... the Genographic Consortium, 2010. Ancient
DNA from European Early Neolithic Farmers Reveals Their Near Eastern Affinities. PLoS
Biology, 8 (11),e1000536.

Haber, M., Jones, A. L., Connell, B. A, Asan, Arciero, E., Yang, H., Thomas, M. G., Xue, Y. and
Tyler-Smith, C., 2019. A Rare Deep-Rooting DO African Y-Chromosomal Haplogroup and
Its Implications for the Expansion of Modern Humans Out of Africa. Genetics, 212 (4),
1421-1428.

Hahn, M., 2018. Molecular Population Genetics. Oxford, New York: Oxford University Press.

Haldane, ]. B. S., 1924. A Mathematical Theory of Natural and Artificial Selection. Part Ii the
Influence of Partial Self-Fertilisation, Inbreeding, Assortative Mating, and Selective
Fertilisation on the Composition of Mendelian Populations, and on Natural Selection.
Biological Reviews, 1 (3), 158-163.

Haller, B. C. and Messer, P. W., 2019. SLiM 3: Forward Genetic Simulations Beyond the
Wright-Fisher Model. Molecular Biology and Evolution, 36 (3), 632-637.

Hallstrém, B. M. and Janke, A., 2008. Resolution among major placental mammal interordinal
relationships with genome data imply that speciation influenced their earliest
radiations. BMC Evolutionary Biology, 8 (1), 162.

Halsted, J. A, Ronaghy, H. A,, Abadi, P., Haghshenass, M., Amirhakemi, G. H., Barakat, R. M. and
Reinhold, ]. G., 1972. Zinc deficiency in man: The Shiraz experiment. The American
Journal of Medicine, 53 (3), 277-284.

Han, Y, Gu, S., Oota, H., Osier, M. V., Pakstis, A.]., Speed, W. C,, Kidd, ]. R. and Kidd, K. K., 2007.
Evidence of Positive Selection on a Class [ ADH Locus. The American Journal of Human
Genetics, 80 (3), 441-456.

Hancock, A. M., Alkorta-Aranburu, G., Witonsky, D. B. and Di Rienzo, A., 2010. Adaptations to
new environments in humans: the role of subtle allele frequency shifts. Philosophical
Transactions of the Royal Society B: Biological Sciences, 365 (1552), 2459-2468.

207



References

Hancock, A. M,, Clark, V.]., Qian, Y. and Di Rienzo, A., 2011. Population Genetic Analysis of the
Uncoupling Proteins Supports a Role for UCP3 in Human Cold Resistance. Molecular
Biology and Evolution, 28 (1), 601-614.

Hancock, A. M., Witonsky, D. B., Alkorta-Aranburu, G., Beall, C. M., Gebremedhin, A., Sukernik,
R, Utermann, G., Pritchard, ]. K., Coop, G. and Rienzo, A. D., 2011. Adaptations to Climate-
Mediated Selective Pressures in Humans. PLOS Genetics, 7 (4), e1001375.

Hancock, A. M., Witonsky, D. B,, Ehler, E., Alkorta-Aranburu, G., Beall, C., Gebremedhin, A.,
Sukernik, R., Utermann, G., Pritchard, J., Coop, G. and Di Rienzo, A., 2010. Human
adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele
frequency. Proceedings of the National Academy of Sciences, 107 (supplement_2), 8924-
8930.

Hancock, A. M., Witonsky, D. B, Gordon, A. S., Eshel, G., Pritchard, J. K., Coop, G. and Rienzo, A.
D., 2008. Adaptations to Climate in Candidate Genes for Common Metabolic Disorders.
PLOS Genetics, 4 (2), e32.

Harris, K. and Nielsen, R., 2013. Inferring Demographic History from a Spectrum of Shared
Haplotype Lengths. PLOS Genetics, 9 (6), e1003521.

Harris, K. and Pritchard, J. K., 2017. Rapid evolution of the human mutation spectrum. eLife,
6,€e24284.

Hassani, A., Azapagic, A. and Shokri, N., 2021. Global predictions of primary soil salinization
under changing climate in the 21st century. Nature Communications, 12 (1), 6663.

Hatfield, D. L., Carlson, B. A., Xu, X.-M., Mix, H. and Gladyshev, V. N., 2006. Selenocysteine
incorporation machinery and the role of selenoproteins in development and health.
Progress in Nucleic Acid Research and Molecular Biology, 81, 97-142.

Hawkes, C. F. C., 1949. The Dawn of European civilization. Nature, 163 (4151), 785-785.

He, X., Augusto, L., Goll, D. S,, Ringeval, B., Wang, Y., Helfenstein, ]., Huang, Y., Yu, K., Wang, Z.,
Yang, Y. and Hou, E., 2021. Global patterns and drivers of soil total phosphorus
concentration. Earth System Science Data, 13 (12), 5831-5846.

He, Z., Xu, S. and Shi, S., 2020. Adaptive convergence at the genomic level —prevalent,
uncommon or very rare? National Science Review, 7 (6), 947-951.

Heard, E. and Martienssen, R. A., 2014. Transgenerational Epigenetic Inheritance: myths and
mechanisms. Cell, 157 (1), 95-1009.

Heath, K. M., Axton, . H., McCullough, J. M. and Harris, N., 2016. The evolutionary adaptation
of the C282Y mutation to culture and climate during the European Neolithic. American
Journal of Physical Anthropology, 160 (1), 86-101.

Hedges, S. B., 2002. The origin and evolution of model organisms. Nature Reviews Genetics, 3
(11), 838-849.

Hefnawy, A. E. G. and Tértora-Pérez, |. L., 2010. The importance of selenium and the effects of
its deficiency in animal health. Small Ruminant Research, 89 (2), 185-192.

Hejase, H. A., Dukler, N. and Siepel, A., 2020. From Summary Statistics to Gene Trees:
Methods for Inferring Positive Selection. Trends in Genetics, 36 (4), 243-258.

Hengl, T., Leenaars, . G. B., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B. M., Mamo, T,
Tilahun, H., Berkhout, E., Cooper, M., Fegraus, E., Wheeler, I. and Kwabena, N. A, 2017.
Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m
spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109 (1),
77-102.

Henn, B. M,, Gignoux, C. R, Jobin, M., Granka, ]. M., Macpherson, ]. M., Kidd, ]J. M., Rodriguez-
Botigué, L., Ramachandran, S., Hon, L., Brisbin, A,, Lin, A. A., Underhill, P. A,, Comas, D,
Kidd, K. K., Norman, P. J., Parham, P., Bustamante, C. D., Mountain, J. L. and Feldman, M.

208



References

W., 2011. Hunter-gatherer genomic diversity suggests a southern African origin for
modern humans. Proceedings of the National Academy of Sciences, 108 (13), 5154-5162.

Herbette, S., Roeckel-Drevet, P. and Drevet, . R., 2007. Seleno-independent glutathione
peroxidases. The FEBS Journal, 274 (9), 2163-2180.

Hermisson, J. and Pennings, P. S., 2005. Soft Sweeps: Molecular Population Genetics of
Adaptation From Standing Genetic Variation. Genetics, 169 (4), 2335-2352.

Hermisson, J. and Pennings, P. S., 2017. Soft sweeps and beyond: understanding the patterns
and probabilities of selection footprints under rapid adaptation. Methods in Ecology and
Evolution, 8 (6), 700-716.

Hernandez, R. D., Kelley, ]. L., Elyashiv, E., Melton, S. C., Auton, A., McVean, G., 1000 GENOMES
PROJECT, Sella, G. and Przeworski, M., 2011. Classic Selective Sweeps Were Rare in
Recent Human Evolution. Science, 331 (6019), 920-924.

Herraez, D. L., Bauchet, M., Tang, K., Theunert, C., Pugach, I,, Li, ]., Nandineni, M. R., Gross, A,,
Scholz, M. and Stoneking, M., 2009. Genetic Variation and Recent Positive Selection in
Worldwide Human Populations: Evidence from Nearly 1 Million SNPs. PLOS ONE, 4 (11),

e7888.
Hershkovitz, I, Marder, O., Ayalon, A., Bar-Matthews, M., Yasur, G., Boaretto, E., Caracuta, V.,
Alex, B, Frumkin, A,, ... Barzilai, 0., 2015. Levantine cranium from Manot Cave (Israel)

foreshadows the first European modern humans. Nature, 520 (7546), 216-219.

Hesse, F. G., 1959. A Dietary Study of the Pima Indian. The American Journal of Clinical
Nutrition, 7 (5), 532-537.

Higdon, J]. W., Bininda-Emonds, O. R., Beck, R. M. and Ferguson, S. H., 2007. Phylogeny and
divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset.
BMC Evolutionary Biology, 7 (1), 216.

Higham, T., Douka, K., Wood, R., Ramsey, C. B., Brock, F., Basell, L., Camps, M., Arrizabalaga, A.,
Baena, ], ...Jacobi, R, 2014. The timing and spatiotemporal patterning of Neanderthal
disappearance. Nature, 512 (7514), 306-309.

Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Twumasi, P., Rowe, P. A,,
Bennett, S., Brewster, D., McMichael, A. J. and Greenwood, B. M., 1991. Common West
African HLA antigens are associated with protection from severe malaria. Nature, 352
(6336), 595-600.

Hirbo, J. B., Ranciaro, A. and Tishkoff, S. A., 2012. Population structure and migration in
Africa: correlations between archaeological, linguistic, and genetic data. In: Campbell, B.
C. and Crawford, M. H,, eds. Causes and Consequences of Human Migration: An
Evolutionary Perspective [online]. Cambridge: Cambridge University Press, 135-171.
Available from: https://www.cambridge.org/core/books/causes-and-consequences-of-
human-migration/population-structure-and-migration-in-africa-correlations-between-
archaeological-linguistic-and-genetic-data/B463E94F96A23B8DD4EBOC60AC99A383
[Accessed 14 Mar 2023].

Horning, K. ], Caito, S. W,, Tipps, K. G.,, Bowman, A. B. and Aschner, M., 2015. Manganese Is
Essential for Neuronal Health. Annual Review of Nutrition, 35, 71-108.

Hornung, T. C. and Biesalski, H.-K., 2019. Glut-1 explains the evolutionary advantage of the
loss of endogenous vitamin C-synthesis: The electron transfer hypothesis. Evolution,
Medicine, and Public Health, 2019 (1), 221-231.

Hou, X,, Zhang, X,, Li, X., Huang, T., Li, W,, Zhang, H., Huang, H. and Wen, Y., 2022. Genomic
insights into the genetic structure and population history of Mongolians in Liaoning
Province. Frontiers in Genetics [online], 13. Available from:
https://www.frontiersin.org/articles/10.3389 /fgene.2022.947758 [Accessed 30 Jan
2023].

209


https://www.cambridge.org/core/books/causes-and-consequences-of-human-migration/population-structure-and-migration-in-africa-correlations-between-archaeological-linguistic-and-genetic-data/B463E94F96A23B8DD4EB0C60AC99A383
https://www.cambridge.org/core/books/causes-and-consequences-of-human-migration/population-structure-and-migration-in-africa-correlations-between-archaeological-linguistic-and-genetic-data/B463E94F96A23B8DD4EB0C60AC99A383
https://www.cambridge.org/core/books/causes-and-consequences-of-human-migration/population-structure-and-migration-in-africa-correlations-between-archaeological-linguistic-and-genetic-data/B463E94F96A23B8DD4EB0C60AC99A383
https://www.frontiersin.org/articles/10.3389/fgene.2022.947758

References

Houillier, P., 2014. Mechanisms and regulation of renal magnesium transport. Annual Review
of Physiology, 76, 411-430.

Huang, Q. Q., Sallah, N., Dunca, D., Trivedi, B., Hunt, K. A,, Hodgson, S., Lambert, S. A., Arciero,
E., Wright, |, ... Kuchenbaecker, K., 2022. Transferability of genetic loci and polygenic
scores for cardiometabolic traits in British Pakistani and Bangladeshi individuals.
Nature Communications, 13 (1), 4664.

Hubisz, M. ]., Williams, A. L. and Siepel, A., 2020. Mapping gene flow between ancient
hominins through demography-aware inference of the ancestral recombination graph.
PLoS genetics, 16 (8), e1008895.

Hubisz, M. and Siepel, A., 2020. Inference of Ancestral Recombination Graphs Using
ARGweaver. In: Duthelil, . Y., ed. Statistical Population Genomics [online]. New York, NY:
Springer US, 231-266. Available from: https://doi.org/10.1007/978-1-0716-0199-0 10
[Accessed 25 Jan 2023].

Huchon, D., Madsen, O., Sibbald, M. J. ]. B.,, Ament, K,, Stanhope, M. ]., Catzeflis, F., de Jong, W.
W. and Douzery, E. J. P., 2002. Rodent Phylogeny and a Timescale for the Evolution of
Glires: Evidence from an Extensive Taxon Sampling Using Three Nuclear Genes.
Molecular Biology and Evolution, 19 (7), 1053-1065.

Huerta-Sanchez, E,, Jin, X,, Asan, Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., Yi, X,, He,
M., ... Nielsen, R., 2014. Altitude adaptation in Tibetans caused by introgression of
Denisovan-like DNA. Nature, 512 (7513), 194-197.

Hughes, A. L., 1997. The evolution of functionally novel proteins after gene duplication.
Proceedings of the Royal Society of London. Series B: Biological Sciences, 256 (1346),
119-124.

Hughes, D. A, Tang, K., Strotmann, R., Schoneberg, T., Prenen, J., Nilius, B. and Stoneking, M.,
2008. Parallel Selection on TRPV6 in Human Populations. PLOS ONE, 3 (2), e1686.

Hunter, R. W,, Dhaun, N. and Bailey, M. A,, 2022. The impact of excessive salt intake on
human health. Nature Reviews Nephrology, 18 (5), 321-335.

Hurley, S. W. and Johnson, A. K., 2015. The biopsychology of salt hunger and sodium
deficiency. Pfliigers Archiv - European Journal of Physiology, 467 (3), 445-456.

Hurst, R, Siyame, E. W. P, Young, S. D, Chilimba, A. D. C,, Joy, E. ]. M., Black, C. R., Ander, E. L.,
Watts, M. |., Chilima, B., Gondwe, ]., Kang’ombe, D., Stein, A. ., Fairweather-Tait, S. ],
Gibson, R. S., Kalimbira, A. A. and Broadley, M. R., 2013. Soil-type influences human
selenium status and underlies widespread selenium deficiency risks in Malawi. Scientific
Reports, 3 (1), 1425.

Huxley, J., 1942. Evolution: The Modern Synthesis. London: Allen & Unwin.

Hwang, ].-Y,, Lee, S. H,, Go, M. ],, Kim, B.-],, Kou, L., Ikegawa, S., Guo, Y., Deng, H.-W,,
Raychaudhuri, S, Kim, Y. ], ... Koh, J.-M., 2013. Meta-analysis identifies a MECOM gene
as a novel predisposing factor of osteoporotic fracture. Journal of Medical Genetics, 50
(4),212-2109.

Ibrahim, S. A. Z., Kerkadi, A. and Agouni, A., 2019. Selenium and Health: An Update on the
Situation in the Middle East and North Africa. Nutrients, 11 (7), 1457.

[lardo, M. A, Moltke, I, Korneliussen, T. S., Cheng, |, Stern, A. ], Racimo, F., Damgaard, P. de
B., Sikora, M., Seguin-Orlando, ... Willerslev, E., 2018. Physiological and Genetic
Adaptations to Diving in Sea Nomads. Cell, 173 (3), 569-580.e15.

[lardo, M. and Nielsen, R., 2018. Human adaptation to extreme environmental conditions.
Current Opinion in Genetics & Development, 53, 77-82.

[shfaq, M., Wakeel, A., Shahzad, M. N,, Kiran, A. and Li, X., 2021. Severity of zinc and iron
malnutrition linked to low intake through a staple crop: a case study in east-central
Pakistan. Environmental Geochemistry and Health, 43 (10), 4219-4233.

210


https://doi.org/10.1007/978-1-0716-0199-0_10

References

[ssaka, R. N., Masunaga, T., Kosaki, T. and Wakatsuki, T., 1996. Soils of inland valleys of West
Africa: General fertility parameters. Soil Science and Plant Nutrition, 42 (1), 71-80.

Jacobs, G. S., Hudjashov, G., Saag, L., Kusuma, P., Darusallam, C. C., Lawson, D. ], Mondal, M.,
Pagani, L., Ricaut, F.-X,, Stoneking, M., Metspalu, M., Sudoyo, H., Lansing, ]. S. and Cox, M.
P., 2019. Multiple Deeply Divergent Denisovan Ancestries in Papuans. Cell, 177 (4),
1010-1021.e32.

Jacobs, L. C., Wollstein, A, Lao, 0., Hofman, A., Klaver, C. C., Uitterlinden, A. G., Nijsten, T.,
Kayser, M. and Liu, F., 2013. Comprehensive candidate gene study highlights UGT1A and
BNC2 as new genes determining continuous skin color variation in Europeans. Human
Genetics, 132 (2), 147-158.

Jain, G., Ong, S. and Warnock, D. G., 2013. Genetic Disorders of Potassium Homeostasis.
Seminars in Nephrology, 33 (3), 300-309.

Jakupoglu, C., Przemeck, G. K. H., Schneider, M., Moreno, S. G., Mayr, N., Hatzopoulos, A. K., de
Angelis, M. H., Wurst, W., Bornkamm, G. W., Brielmeier, M. and Conrad, M., 2005.
Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for
cardiac development. Molecular and Cellular Biology, 25 (5), 1980-1988.

Jayaraman, V., Toledo-Patifio, S., Noda-Garcia, L. and Laurino, P., 2022. Mechanisms of
protein evolution. Protein Science, 31 (7), e4362.

Jensen, R. A., 1976. Enzyme Recruitment in Evolution of New Function. Annual Review of
Microbiology, 30 (1), 409-425.

Johansson, L., Gafvelin, G. and Arnér, E. S. ]., 2005. Selenocysteine in proteins—properties
and biotechnological use. Biochimica et Biophysica Acta (BBA) - General Subjects, 1726
(1), 1-13.

Jones, G. D., Droz, B., Greve, P., Gottschalk, P., Poffet, D., McGrath, S. P., Seneviratne, S. I,
Smith, P. and Winkel, L. H. E., 2017. Selenium deficiency risk predicted to increase under
future climate change. Proceedings of the National Academy of Sciences of the United
States of America, 114 (11), 2848-2853.

Jones, D. T., Taylor, W. R., Thornton, J. M. 1992. The rapid generation of mutation data
matrices from protein sequences, Bioinformatics, 8 (3).

Jumper, ], Evans, R, Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K,
Bates, R, Zidek, A., ... Hassabis, D., 2021. Highly accurate protein structure prediction
with AlphaFold. Nature, 596 (7873), 583-589.

Juric, 1., Aeschbacher, S. and Coop, G., 2016. The Strength of Selection against Neanderthal
Introgression. PLOS Genetics, 12 (11), e1006340.

Kambe, T., Tsuji, T., Hashimoto, A. and Itsumura, N., 2015. The Physiological, Biochemical,
and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism.
Physiological Reviews, 95 (3), 749-784.

Kamberov, Y. G.,, Wang, S., Tan, ], Gerbault, P.,, Wark, A, Tan, L., Yang, Y., Li, S., Tang,

K, ...Sabeti, P. C, 2013. Modeling Recent Human Evolution in Mice by Expression of a
Selected EDAR Variant. Cell, 152 (4), 691-702.

Kanzok, S. M., Fechner, A., Bauer, H., Ulschmid, ]. K., Miiller, H.-M., Botella-Munoz, J.,
Schneuwly, S., Schirmer, R. H. and Becker, K., 2001. Substitution of the Thioredoxin
System for Glutathione Reductase in Drosophila melanogaster. Science, 291 (5504),
643-646.

Kaplan, N. L., Hudson, R. R. and Langley, C. H., 1989. The ‘hitchhiking effect’ revisited.
Genetics, 123 (4), 887-899.

Karim, Md. R,, Zhang, Y.-Q,, Tian, D., Chen, F.-]., Zhang, F.-S. and Zou, C.-Q., 2012. Genotypic
differences in zinc efficiency of Chinese maize evaluated in a pot experiment. Journal of
the Science of Food and Agriculture, 92 (12), 2552-2559.

211



References

Karimov, A, Qadir, M., Noble, A., Vyshpolsky, F. and Anzelm, K., 2009. Development of
Magnesium-Dominant Soils Under Irrigated Agriculture in Southern Kazakhstan.
Pedosphere, 19 (3), 331-343.

Karlsson, E. K., Kwiatkowski, D. P. and Sabeti, P. C., 2014. Natural selection and infectious
disease in human populations. Nature Reviews Genetics, 15 (6), 379-393.

Kataoka, K., Fujita, H., Isa, M., Gotoh, S., Arasaki, A., Ishida, H., Kimura, R. 2021.The
human EDAR 370V /A polymorphism affects tooth root morphology potentially through
the modification of a reaction-diffusion system. Sci Rep 11, 5143

Katoh, K., Rozewicki, ]. and Yamada, K. D., 2019. MAFFT online service: multiple sequence
alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20
(4),1160-1166.

Kaur, H. and Garg, N., 2021. Zinc toxicity in plants: a review. Planta, 253 (6), 129.

Keats, E. C., Neufeld, L. M., Garrett, G. S., Mbuya, M. N. N. and Bhutta, Z. A., 2019. Improved
micronutrient status and health outcomes in low- and middle-income countries
following large-scale fortification: evidence from a systematic review and meta-analysis.
The American Journal of Clinical Nutrition, 109 (6), 1696-1708.

Keefer, R. F., 1999. Micronutrients. In: Keefer, R. F., ed. Handbook of Soils for Landscape
Architects [online]. Oxford University Press, 0. Available from:
https://doi.org/10.1093 /0s0/9780195121025.003.0016 [Accessed 9 Mar 2023].

Keightley, P. D. and Eyre-Walker, A., 2010. What can we learn about the distribution of
fitness effects of new mutations from DNA sequence data? Philosophical Transactions of
the Royal Society B: Biological Sciences, 365 (1544), 1187-1193.

Keinan, A., Mullikin, J. C., Patterson, N. and Reich, D., 2007. Measurement of the human allele
frequency spectrum demonstrates greater genetic drift in East Asians than in
Europeans. Nature Genetics, 39 (10), 1251-1255.

Kelleher, |., Etheridge, A. M. and McVean, G., 2016. Efficient Coalescent Simulation and
Genealogical Analysis for Large Sample Sizes. PLOS Computational Biology, 12 (5),
e1004842.

Kelleher, ], Wong, Y., Wohns, A. W, Fadil, C., Albers, P. K. and McVean, G., 2019. Inferring
whole-genome histories in large population datasets. Nature Genetics, 51 (9), 1330-
1338.

Kelly, F. C. and Snedden, W. W., 1960. Prevalence and geographical distribution of endemic
goitre. Monograph Series. World Health Organization, 44, 27-233.

Kern, A. D., Schrider, D. R. 2018. diploS/HIC: An Updated Approach to Classifying Selective
Sweeps, G3 Genes|Genomes|Genetics 8(6).

Kestenbaum, B., Glazer, N. L., Kottgen, A,, Felix, ]. F., Hwang, S.-].,, Liu, Y., Lohman, K,
Kritchevsky, S. B.,, Hausman, D. B,, ... Fox, C. S., 2010. Common Genetic Variants
Associate with Serum Phosphorus Concentration. Journal of the American Society of
Nephrology : JASN, 21 (7), 1223-1232.

Key, F. M., Abdul-Aziz, M. A,, Mundry, R,, Peter, B. M., Sekar, A., D’Amato, M., Dennis, M. Y.,
Schmidt, ]. M. and Andrés, A. M., 2018. Human local adaptation of the TRPM8 cold
receptor along a latitudinal cline. PLOS Genetics, 14 (5), e1007298.

Key, F. M,, Fu, Q., Romagne, F., Lachmann, M. and Andres, A. M., 2016. Human adaptation and
population differentiation in the light of ancient genomes. Nature Communications, 7.

Key, F. M,, Peter, B., Dennis, M. Y., Huerta-Sanchez, E., Tang, W., Prokunina-Olsson, L., Nielsen,
R. and Andrés, A. M., 2014. Selection on a Variant Associated with Improved Viral
Clearance Drives Local, Adaptive Pseudogenization of Interferon Lambda 4 (IFNL4).
PLOS Genetics, 10 (10),e1004681.

212


https://doi.org/10.1093/oso/9780195121025.003.0016

References

Khan, S. T., Malik, A., Alwarthan, A. and Shaik, M. R., 2022. The enormity of the zinc deficiency
problem and available solutions; an overview. Arabian Journal of Chemistry, 15 (3),
103668.

Khanal, R. C. and Nemere, 1., 2008. Endocrine regulation of calcium transport in epithelia.
Clinical and Experimental Pharmacology & Physiology, 35 (11), 1277-1287.

Khoshgoftarmanesh, A. H., Schulin, R., Chaney, R. L., Daneshbakhsh, B. and Afyuni, M., 2010.
Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable
agriculture. A review. Agronomy for Sustainable Development, 30 (1), 83-107.

Kihara, ], Bolo, P., Kinyua, M., Rurinda, J. and Piikki, K., 2020. Micronutrient deficiencies in
African soils and the human nutritional nexus: opportunities with staple crops.
Environmental Geochemistry and Health, 42 (9), 3015-3033.

Kilpinen, H., Goncalves, A., Leha, A., Afzal, V., Alasoo, K., Ashford, S., Bala, S., Bensaddek, D.,
Casale, F. P,, ... Gaffney, D.]., 2017. Common genetic variation drives molecular
heterogeneity in human iPSCs. Nature, 546 (7658), 370-375.

Kim, B. Y., Huber, C. D. and Lohmueller, K. E., 2017. Inference of the Distribution of Selection
Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics, 206 (1),
345-361.

Kim, B. Y., Huber, C. D. and Lohmueller, K. E., 2018. Deleterious variation shapes the genomic
landscape of introgression. PLOS Genetics, 14 (10), e1007741.

Kim, M.-],, Lee, B. C.,, Hwang, K. Y., Gladyshev, V. N. and Kim, H.-Y., 2015. Selenium utilization
in thioredoxin and catalytic advantage provided by selenocysteine. Biochemical and
biophysical research communications, 461 (4), 648-652.

Kimura, M., 1968. Evolutionary Rate at the Molecular Level. Nature, 217 (5129), 624-626.

Kimura, M. and Ohta, T., 1969. The Average Number of Generations until Fixation of a Mutant
Gene in a Finite Population. Genetics, 61 (3), 763-771.

Kohrle, J., 2000. The deiodinase family: selenoenzymes regulating thyroid hormone
availability and action. Cellular and molecular life sciences: CMLS, 57 (13-14), 1853-
1863.

Koivistoinen, P. and Huttunen, J. K., 1986. Selenium in food and nutrition in Finland. An
overview on research and action. Annals of Clinical Research, 18 (1), 13-17.

Korfmann, K., Gaggiotti, G., Fumagalli, M. 2023. Deep Learning in Population
Genetics, Genome Biology and Evolution, 15 (2).

Kovacs, G., Montalbetti, N., Franz, M.-C,, Graeter, S., Simonin, A. and Hediger, M. A., 2013.
Human TRPV5 and TRPV6: key players in cadmium and zinc toxicity. Cell Calcium, 54
(4), 276-286.

Kryukov, G. V., Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, 0., Guigé, R. and
Gladyshev, V. N., 2003. Characterization of Mammalian Selenoproteomes. Science, 300
(5624), 1439-1443.

Kuhlwilm, M., Gronau, 1., Hubisz, M. |, de Filippo, C., Prado-Martinez, ]., Kircher, M., Fu, Q.,
Burbano, H. A, Lalueza-Fox, C,, ... Castellano, S., 2016. Ancient gene flow from early
modern humans into Eastern Neanderthals. Nature, 530 (7591), 429-433.

Kwiatkowski, D. P., 2005. How Malaria Has Affected the Human Genome and What Human
Genetics Can Teach Us about Malaria. The American Journal of Human Genetics, 77 (2),
171-192.

Labunskyy, V. M., Hatfield, D. L. and Gladyshev, V. N., 2014. Selenoproteins: Molecular
Pathways and Physiological Roles. Physiological Reviews, 94 (3), 739-777.

Laekemariam, F., Kibret, K. and Shiferaw, H., 2018. Potassium (K)-to-magnesium (Mg) ratio,
its spatial variability and implications to potential Mg-induced K deficiency in Nitisols of
Southern Ethiopia. Agriculture & Food Security, 7 (1), 13.

213



References

Lahr, M. M. and Foley, R., 1994. Multiple dispersals and modern human origins. Evolutionary
Anthropology: Issues, News, and Reviews, 3 (2), 48-60.

Laland, K. N., Uller, T., Feldman, M. W, Sterelny, K., Miiller, G. B., Moczek, A., Jablonka, E. and
Odling-Smee, J., 2015. The extended evolutionary synthesis: its structure, assumptions
and predictions. Proceedings. Biological Sciences, 282 (1813),20151019.

Lamason, R. L., Mohideen, M.-A. P. K, Mest, J. R,, Wong, A. C., Norton, H. L., Aros, M. C,, Jurynec,
M. ]., Mao, X., Humphreville, V. R,, ... Cheng, K. C., 2005. SLC24A5, a putative cation
exchanger, affects pigmentation in zebrafish and humans. Science (New York, N.Y.), 310
(5755),1782-1786.

Larsson, D. G. ]. and Flach, C.-F., 2022. Antibiotic resistance in the environment. Nature
Reviews Microbiology, 20 (5), 257-269.

Latham, K. ]., 2013. Human Health and the Neolithic Revolution: an Overview of Impacts of
the Agricultural Transition on Oral Health, Epidemiology, and the Human Body.
Nebraska Anthropologist, 187.

Lazaridis, 1., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K., Sudmant, P. H.,
Schraiber, J. G., Castellano, S ... Krause, ., 2014. Ancient human genomes suggest three
ancestral populations for present-day Europeans. Nature, 513 (7518), 409-413.

Le Corre, V. and Kremer, A., 2012. The genetic differentiation at quantitative trait loci under
local adaptation. Molecular Ecology, 21 (7), 1548-1566.

LeCun, Y., Bengio, Y., Hinton, G. Deep learning. 2015. Nature 521, 436-444

Le, M. K, Smith, O. S., Akbari, A., Harpak, A., Reich, D. and Narasimhan, V. M., 2022. 1,000
ancient genomes uncover 10,000 years of natural selection in Europe [online]. Genomics.
preprint. Available from: http://biorxiv.org/lookup/doi/10.1101/2022.08.24.505188
[Accessed 15 Mar 2023].

Lee, S. R, Bar-Noy, S., Kwon, |, Levine, R. L., Stadtman, T. C. and Rhee, S. G., 2000. Mammalian
thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site
forms a thioselenide, and replacement of selenium with sulfur markedly reduces
catalytic activity. Proceedings of the National Academy of Sciences of the United States of
America, 97 (6), 2521-2526.

Leigh, ]. W. and Bryant, D., 2015. popart: full-feature software for haplotype network
construction. Methods in Ecology and Evolution, 6 (9), 1110-1116.

Lenski, R. E., Ofria, C,, Pennock, R. T. and Adami, C., 2003. The evolutionary origin of complex
features. Nature, 423 (6936), 139-144.

Levi, S., Ripamonti, M., Dardji, M., Cozzi, A. and Santambrogio, P., 2021. Mitochondrial
Ferritin: Its Role in Physiological and Pathological Conditions. Cells, 10 (8), 1969.

Lewis, |. ], Van Belleghem, S. M., Papa, R., Danko, C. G. and Reed, R. D., 2020. Many
functionally connected loci foster adaptive diversification along a neotropical hybrid
zone. Science Advances, 6 (39), eabb8617.

Li, H., Mukherjee, N., Soundararajan, U., Tarnok, Z., Barta, C., Khaliq, S., Mohyuddin, A.,
Kajuna, S.L., Mehdi, S.Q., Kidd, ].R., Kidd, K.K. 2007. Geographically separate increases in
the frequency of the derived ADH1B*47His allele in eastern and western Asia. Am | Hum
Genet. 81(4):842-6.

Li, D, Li, Y, Li, M,, Che, T,, Tian, S., Chen, B, Zhou, X,, Zhang, G., Gaur, U,, ... Li, M., 2019.
Population genomics identifies patterns of genetic diversity and selection in chicken.
BMC Genomics, 20 (1), 263.

Li, D. and Zhang, ]., 2014. Diet Shapes the Evolution of the Vertebrate Bitter Taste Receptor
Gene Repertoire. Molecular Biology and Evolution, 31 (2), 303-309.

Liang, M. and Nielsen, R., 2014. The Lengths of Admixture Tracts. Genetics, 197 (3), 953-967.

214


http://biorxiv.org/lookup/doi/10.1101/2022.08.24.505188

References

Librado, P. and Orlando, L., 2018. Detecting Signatures of Positive Selection along Defined
Branches of a Population Tree Using LSD. Molecular Biology and Evolution, 35 (6), 1520-
1535.

Ligowe, L. S, Phiri, F. P,, Ander, E. L., Bailey, E. H., Chilimba, A. D. C,, Gashu, D., Joy, E.]. M.,
Lark, R. M., Kabambe, V., ... Broadley, M. R., 2020. Selenium deficiency risks in sub-
Saharan African food systems and their geospatial linkages. Proceedings of the Nutrition
Society, 79 (4), 457-467.

Lim, E. T., Wiirtz, P., Havulinna, A. S., Palta, P., Tukiainen, T., Rehnstrém, K., Esko, T., Magi, R,,
Inouye, M,, ... Project, for the S. I. S. (SISu), 2014. Distribution and Medical Impact of
Loss-of-Function Variants in the Finnish Founder Population. PLOS Genetics, 10 (7),
e1004494.

Lindo, J., Huerta-Sanchez, E., Nakagome, S., Rasmussen, M., Petzelt, B., Mitchell, ]., Cybulski, J.
S., Willerslev, E., DeGiorgio, M. and Malhi, R. S., 2016. A time transect of exomes from a
Native American population before and after European contact. Nature Communications,
7 (1), 13175.

Lindsay, G. B. and Edwards, G., 1988. Creating effective health coalitions. Health education,
19 (4), 35-36.

Liu, H,, Yin, L., Board, P. G., Han, X,, Fan, Z., Fang, |, Lu, Z., Zhang, Y. and Wei, J., 2012.
Expression of selenocysteine-containing glutathione S-transferase in eukaryote. Protein
Expression and Purification, 84 (1), 59-63.

Liu, W,, Martin6n-Torres, M., Cai, Y., Xing, S., Tong, H., Pei, S,, Sier, M. ]., Wy, X., Edwards, R. L.,
Cheng, H,, Li, Y., Yang, X, de Castro, J. M. B. and Wu, X,, 2015. The earliest unequivocally
modern humans in southern China. Nature, 526 (7575), 696-699.

Liu, X., Fu, Y.-X., Maxwell, T.]J. and Boerwinkle, E., 2010. Estimating population genetic
parameters and comparing model goodness-of-fit using DNA sequences with error.
Genome Research, 20 (1), 101-109.

Liu, Y, Tian, X,, Liu, R, Liu, S. and Zuza, A. V., 2021. Key driving factors of selenium-enriched
soil in the low-Se geological belt: A case study in Red Beds of Sichuan Basin, China.
CATENA, 196, 104926.

Lobanov, A. V., Fomenko, D. E., Zhang, Y., Sengupta, A., Hatfield, D. L. and Gladyshev, V. N.,
2007. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes
may associate with aquatic life and small with terrestrial life. Genome Biology, 8 (9),
R198.

Loeb, D. D., Swanstrom, R,, Everitt, L., Manchester, M., Stamper, S. E. and Hutchison, C. A,
1989. Complete mutagenesis of the HIV-1 protease. Nature, 340 (6232), 397-400.

Loewe, L. and Hill, W. G., 2010. The population genetics of mutations: good, bad and
indifferent. Philosophical Transactions of the Royal Society B: Biological Sciences, 365
(1544),1153-1167.

Lépez, S., van Dorp, L. and Hellenthal, G., 2016. Human Dispersal Out of Africa: A Lasting
Debate. Evolutionary Bioinformatics Online, 11 (Suppl 2), 57-68.

Luis, J. R, Rowold, D.]., Regueiro, M., Caeiro, B., Cinnioglu, C., Roseman, C., Underhill, P. A,,
Cavalli-Sforza, L. L. and Herrera, R. ]., 2004. The Levant versus the Horn of Africa:
Evidence for Bidirectional Corridors of Human Migrations. American Journal of Human
Genetics, 74 (3), 532-544.

Lunzer, M., Golding, G. B. and Dean, A. M., 2010. Pervasive Cryptic Epistasis in Molecular
Evolution. PLOS Genetics, 6 (10),e1001162.

Lynch, M. and Ho, W.-C., 2020. The Limits to Estimating Population-Genetic Parameters with
Temporal Data. Genome Biology and Evolution, 12 (4), 443-455.

215



References

Lyons, G., 2018. Biofortification of Cereals With Foliar Selenium and Iodine Could Reduce
Hypothyroidism. Frontiers in Plant Science, 9, 730.

Ma, G, Jin, Y., Li, Y, Zhai, F.,, Kok, F. ]., Jacobsen, E. and Yang, X., 2008. Iron and zinc
deficiencies in China: what is a feasible and cost-effective strategy? Public Health
Nutrition, 11 (6), 632-638.

Ma, Y., Ding, X., Qanbari, S., Weigend, S., Zhang, Q. and Simianer, H., 2015. Properties of
different selection signature statistics and a new strategy for combining them. Heredity,
115 (5),426-436.

Maca-Meyer, N., Gonzalez, A. M., Larruga, J. M., Flores, C. and Cabrera, V. M., 2001. Major
genomic mitochondrial lineages delineate early human expansions. BMC genetics, 2, 13.

MacFarquhar, J. K., Broussard, D. L., Melstrom, P., Hutchinson, R., Wolkin, A., Martin, C., Burk,
R.F, Dunn, J. R, Green, A. L., Hammond, R., Schaffner, W. and Jones, T. F., 2010. Acute
Selenium Toxicity Associated With a Dietary Supplement. Archives of Internal Medicine,
170 (3), 256-261.

Magadum, S., Banerjee, U., Murugan, P., Gangapur, D. and Ravikesavan, R., 2013. Gene
duplication as a major force in evolution. Journal of Genetics, 92 (1), 155-161.

Maisnier-Patin, S. and Andersson, D. 1., 2004. Adaptation to the deleterious effects of
antimicrobial drug resistance mutations by compensatory evolution. Research in
Microbiology, 155 (5), 360-369.

Manning, L., Laman, M., Rosanas-Urgell, A., Michon, P., Aipit, S., Bona, C,, Siba, P., Mueller, 1.
and Davis, T. M. E., 2012. Severe Anemia in Papua New Guinean Children from a
Malaria-Endemic Area: A Case-Control Etiologic Study. PLoS Neglected Tropical Diseases,
6(12),e1972.

Manus, M. B., 2018. Evolutionary mismatch. Evolution, Medicine, and Public Health, 2018 (1),
190-191.

Marciniak, S. and Perry, G. H., 2017. Harnessing ancient genomes to study the history of
human adaptation. Nature Reviews Genetics, 18 (11), 659-674.

Mariotti, M., Ridge, P. G., Zhang, Y., Lobanov, A. V., Pringle, T. H., Guigo, R, Hatfield, D. L. and
Gladyshev, V. N., 2012. Composition and Evolution of the Vertebrate and Mammalian
Selenoproteomes. PLOS ONE, 7 (3), e33066.

Markadieu, N. and Delpire, E., 2014. Physiology and Pathophysiology of SLC12A1/2
transporters. Pflugers Archiv : European journal of physiology, 466 (1), 10.1007 /s00424-
013-1370-5.

Mather, K., Moran, P. A. P. and Smith, C. A. B., 1967. Commentary on R. A. Fisher’s paper on
The Correlation Between Relatives on the Supposition of Mendelian Inheritance.
Population Studies, 20 (3), 372.

Mathieson, 1., 2021. The omnigenic model and polygenic prediction of complex traits. The
American Journal of Human Genetics, 108 (9), 1558-1563.

Mathieson, 1., Alpaslan-Roodenberg, S., Posth, C., Szécsényi-Nagy, A., Rohland, N., Mallick, S.,
Olalde, I., Broomandkhoshbacht, N., Candilio, F.,, ... Reich, D., 2018. The genomic history
of southeastern Europe. Nature, 555 (7695), 197-203.

Mathieson, I, Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A, Harney, E.,
Stewardson, K., Fernandes, D., ... Reich, D., 2015. Genome-wide patterns of selection in
230 ancient Eurasians. Nature, 528 (7583), 499-503.

Mathieson, I. and Terhorst, J., 2022. Direct detection of natural selection in Bronze Age
Britain. Genome Res. doi:10.1101/gr.276862.122

Mathieson, S. and Mathieson, [., 2018. FADS1 and the Timing of Human Adaptation to
Agriculture. Molecular Biology and Evolution, 35 (12), 2957-2970.

216



References

Matsui, M., Oshima, M., Oshima, H., Takaku, K., Maruyama, T., Yodoi, J. and Taketo, M. M.,
1996. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin
gene. Developmental Biology, 178 (1), 179-185.

Mauro, A. A. and Ghalambor, C. K., 2020. Trade-offs, Pleiotropy, and Shared Molecular
Pathways: A Unified View of Constraints on Adaptation. Integrative and Comparative
Biology, 60 (2), 332-347.

May, T. W.,, Fairchild, J. F., Petty, ]. D., Walther, M. |, Lucero, J., Delvaux, M., Manring, J. and
Armbruster, M., 2008. An evaluation of selenium concentrations in water, sediment,
invertebrates, and fish from the Solomon River Basin. Environmental Monitoring and
Assessment, 137 (1-3), 213-232.

McCarthy, R. C. and Lucas, L., 2014. A morphometric re-assessment of BOU-VP-16/1 from
Herto, Ethiopia. Journal of Human Evolution, 74, 114-117.

McDougall, I., Brown, F. H. and Fleagle, ]. G., 2005. Stratigraphic placement and age of
modern humans from Kibish, Ethiopia. Nature, 433 (7027), 733-736.

Mcgeorge, W. T., n.d. FACTORS INFLUENCING THE AVAILABILITY OF NATIVE SOIL
PHOSPHATE AND PHOSPHATE FERTILIZERS IN ARIZONA SOILS.

McManus, K. F.,, Taravella, A. M., Henn, B. M., Bustamante, C. D., Sikora, M. and Cornejo, O. E,,
2017. Population genetic analysis of the DARC locus (Duffy) reveals adaptation from
standing variation associated with malaria resistance in humans. PLOS Genetics, 13 (3),
e1006560.

McWilliams, S. R, 2011. Ecology of Vertebrate Nutrition. In: eLS [online]. John Wiley & Sons,
Ltd. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0003211.pub2
[Accessed 13 Mar 2023].

Mehdi, Y. and Dufrasne, I., 2016. Selenium in Cattle: A Review. Molecules, 21 (4), 545.

Mehdi, Y., Hornick, J.-L., Istasse, L. and Dufrasne, 1., 2013. Selenium in the Environment,
Metabolism and Involvement in Body Functions. Molecules, 18 (3), 3292-3311.

Mertz, W., 1981. The Essential Trace Elements. Science, 213 (4514), 1332-1338.

Meyer, M., Kircher, M., Gansauge, M.-T., Li, H., Racimo, F., Mallick, S., Schraiber, ]. G,, Jay, F,,
Priifer, K., de Filippo, C,, ... Paabo, S., 2012. A high-coverage genome sequence from an
archaic Denisovan individual. Science (New York, N.Y.), 338 (6104), 222-226.

Miles, M., 1998. Goitre, cretinism and iodine in South Asia: historical perspectives on a
continuing scourge. Medical History, 42 (1), 47-67.

Minster, R. L., Hawley, N. L,, Su, C.-T., Sun, G., Kershaw, E. E., Cheng, H., Buhule, O. D, Lin, |,
Reupena, M. S,, Vialj, S., Tuitele, ]., Naseri, T., Urban, Z., Deka, R., Weeks, D. E. and
McGarvey, S. T., 2016. A thrifty variant in CREBRF strongly influences body mass index
in Samoans. Nature Genetics, 48 (9), 1049-1054.

Mirmiran, P., Golzarand, M., Serra-Majem, L. and Azizi, F., 2012. Iron, Iodine and Vitamin A in
the Middle East; A Systematic Review of Deficiency and Food Fortification. Iranian
Journal of Public Health, 41 (8), 8-19.

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L.,
Tosatto, S. C. E,, Paladin, L., Raj, S., Richardson, L. J., Finn, R. D. and Bateman, A., 2021.
Pfam: The protein families database in 2021. Nucleic Acids Research, 49 (D1), D412-
D419.

Molgedey, L. and Schuster, H. G., 1994. Separation of a mixture of independent signals using
time delayed correlations. Physical Review Letters, 72 (23), 3634-3637.

Mondal, M., Bertranpetit, J. and Lao, 0., 2019. Approximate Bayesian computation with deep
learning supports a third archaic introgression in Asia and Oceania. Nature
Communications, 10 (1), 246.

217


https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0003211.pub2

References

Monteiro, ]. P., Kussmann, M. and Kaput, J., 2015. The genomics of micronutrient
requirements. Genes & Nutrition, 10 (4), 19.

Moran, C. and Chatterjee, K., 2015. Resistance to thyroid hormone due to defective thyroid
receptor alpha. Best Practice & Research Clinical Endocrinology & Metabolism, 29 (4),
647-657.

Moreno-Mayar, |. V., Potter, B. A, Vinner, L., Steinriicken, M., Rasmussen, S., Terhorst, ].,
Kamm, J. A., Albrechtsen, A., ... Willerslev, E., 2018. Terminal Pleistocene Alaskan
genome reveals first founding population of Native Americans. Nature, 553 (7687),
203-207.

Moreno-Reyes, R., Egrise, D., Neve, ]., Pasteels, ]. L. and Schoutens, A., 2001. Selenium
deficiency-induced growth retardation is associated with an impaired bone metabolism
and osteopenia. Journal of Bone and Mineral Research: The Official Journal of the
American Society for Bone and Mineral Research, 16 (8), 1556-1563.

Moshe, A. and Pupko, T., 2019. Ancestral sequence reconstruction: accounting for structural
information by averaging over replacement matrices. Bioinformatics (Oxford, England),
35 (15), 2562-2568.

Muckenthaler, M. U., Galy, B. and Hentze, M. W., 2008. Systemic iron homeostasis and the
iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annual
Review of Nutrition, 28, 197-213.

Mughal, M. R,, DeGiorgio, M. 2019. Localizing and Classifying Adaptive Targets with Trend
Filtered Regression, Molecular Biology and Evolution, 36(2), 252-270.

Naidu, L. G. K., Sidhu, S., Sarkar, D. and Ramamurthy, V., 2011. Emerging deficiency of
potassium in soils and crops of India. Karnataka J. Agric. Sci., 24.

National Academies of Sciences, E., Division, H. and M., Board, F. and N., Potassium, C. to R.
the D. R. I. for S. and, Oria, M., Harrison, M. and Stallings, V. A., 2019. Potassium: Dietary
Reference Intakes for Toxicity [online]. Dietary Reference Intakes for Sodium and
Potassium. National Academies Press (US). Available from:
https://www.ncbi.nlm.nih.gov/books/NBK545424 / [Accessed 19 Mar 2023].

Naugler, C., 2008. Hemochromatosis: A Neolithic adaptation to cereal grain diets. Medical
Hypotheses, 70 (3), 691-692.

Nédélec, Y., Sanz, ]., Baharian, G., Szpiech, Z. A., Pacis, A., Dumaine, A., Grenier, ].-C., Freiman,
A., Sams, A.]., ... Barreiro, L. B, 2016. Genetic Ancestry and Natural Selection Drive
Population Differences in Immune Responses to Pathogens. Cell, 167 (3), 657-669.e21.

Nell, J. P. and van Huyssteen, C. W., 2018. Prediction of primary salinity, sodicity and
alkalinity in South African soils. South African Journal of Plant and Soil, 35 (3), 173-178.

Newcomb, R. D., Campbell, P. M., Ollis, D. L., Cheah, E., Russell, R. ]. and Oakeshott, ]. G., 1997.
A single amino acid substitution converts a carboxylesterase to an organophosphorus
hydrolase and confers insecticide resistance on a blowfly. Proceedings of the National
Academy of Sciences, 94 (14), 7464-7468.

Nguyen, V. D., Saaranen, M. |,, Karala, A.-R,, Lappi, A.-K,, Wang, L., Raykhel, I. B, Alanen, H. I,
Salo, K. E. H,, Wang, C. and Ruddock, L. W.,, 2011. Two Endoplasmic Reticulum PDI
Peroxidases Increase the Efficiency of the Use of Peroxide during Disulfide Bond
Formation. Journal of Molecular Biology, 406 (3), 503-515.

Nielsen, R., Hellmann, 1., Hubisz, M., Bustamante, C. and Clark, A. G., 2007. Recent and
ongoing selection in the human genome. Nature reviews. Genetics, 8 (11), 857-868.

Niepomniszcze, H., Bernatené, D. and Sartorio, G., 2009. Chapter 123 - Iodine Status in
Individuals: An Argentine Perspective. In: Preedy, V. R., Burrow, G. N., and Watson, R,,
eds. Comprehensive Handbook of lodine [online]. San Diego: Academic Press, 1191-1201.
Available from:

218


https://www.ncbi.nlm.nih.gov/books/NBK545424/

References

https://www.sciencedirect.com/science/article/pii/B9780123741356001230
[Accessed 14 Feb 2023].

Norton, H. L., Kittles, R. A,, Parra, E., McKeigue, P., Mao, X., Cheng, K., Canfield, V. A., Bradley,
D. G., McEvoy, B. and Shriver, M. D., 2007. Genetic Evidence for the Convergent
Evolution of Light Skin in Europeans and East Asians. Molecular Biology and Evolution,
24 (3),710-722.

Novotny, J. A., 2011. Molybdenum Nutriture in Humans. Journal of Evidence-Based
Complementary & Alternative Medicine, 16 (3), 164-168.

Nyakatura, K. and Bininda-Emonds, 0. R,, 2012. Updating the evolutionary history of
Carnivora (Mammalia): a new species-level supertree complete with divergence time
estimates. BMC Biology, 10 (1), 12.

Ogle, R. S, Maier, K. ], Kiffney, P., Williams, M. ]., Brasher, A., Melton, L. A. and Knight, A. W,
1988. Bioaccumulation of Selenium in Aquatic Ecosystems. Lake and Reservoir
Management, 4 (2), 165-173.

Ohta, T., 1973. Slightly Deleterious Mutant Substitutions in Evolution. Nature, 246 (5428),
96-98.

Ohta, T., 1976. Role of very slightly deleterious mutations in molecular evolution and
polymorphism. Theoretical Population Biology, 10 (3), 254-275.

Olivares, M., Walter, T., Hertrampf, E. and Pizarro, F., 1999. Anaemia and iron deficiency
disease in children. British Medical Bulletin, 55 (3), 534-543.

O’Neal, S. L. and Zheng, W., 2015. Manganese Toxicity Upon Overexposure: a Decade in
Review. Current Environmental Health Reports, 2 (3), 315-328.

Ooi, D.S. Q.,, Tan, V. M. H,, Ong, S. G., Chan, Y. H., Heng, C. K. and Lee, Y. S., 2017. Differences in
AMY1 Gene Copy Numbers Derived from Blood, Buccal Cells and Saliva Using
Quantitative and Droplet Digital PCR Methods: Flagging the Pitfall. PLoS ONE, 12 (1),
e0170767.

Orr, H. A, 2003. The distribution of fitness effects among beneficial mutations. Genetics, 163
(4), 1519-1526.

Osier, M. V,, Pakstis, A. ]., Soodyall, H., Comas, D., Goldman, D., Odunsi, A., Okonofua, F.,
Parnas, J., Schulz, L. O., Bertranpetit, J., Bonne-Tamir, B., Lu, R.-B., Kidd, ]. R. and Kidd, K.
K., 2002. A Global Perspective on Genetic Variation at the ADH Genes Reveals Unusual
Patterns of Linkage Disequilibrium and Diversity. American Journal of Human Genetics,
71 (1), 84-99.

Padoa, C.,, Goldman, A., Jenkins, T. and Ramsay, M., 1999. Cystic fibrosis carrier frequencies in
populations of African origin. Journal of Medical Genetics, 36 (1), 41-44.

Pagani, L., Kivisild, T., Tarekegn, A., Ekong, R, Plaster, C., Gallego Romero, 1., Ayub, Q., Mehd,i,
S.Q.,, Thomas, M. G,, ... Tyler-Smith, C., 2012. Ethiopian genetic diversity reveals
linguistic stratification and complex influences on the Ethiopian gene pool. American
Journal of Human Genetics, 91 (1), 83-96.

Pagani, L., Schiffels, S., Gurdasani, D., Danecek, P., Scally, A,, Chen, Y., Xue, Y., Haber, M., Ekong,
R, ... Tyler-Smith, C,, 2015. Tracing the Route of Modern Humans out of Africa by Using
225 Human Genome Sequences from Ethiopians and Egyptians. American Journal of
Human Genetics, 96 (6), 986-991.

Papp, L.V, Lu, ], Holmgren, A. and Khanna, K. K., 2007. From selenium to selenoproteins:
synthesis, identity, and their role in human health. Antioxidants & Redox Signaling, 9 (7),
775-806.

Patin, E., Laval, G., Barreiro, L. B, Salas, A., Semino, O., Santachiara-Benerecettj, S., Kidd, K. K,,
Kidd, J. R, Veen, L. V. der, Hombert, ].-M., Gessain, A., Froment, A., Bahuchet, S., Heyer, E.
and Quintana-Murci, L., 2009. Inferring the Demographic History of African Farmers and

219


https://www.sciencedirect.com/science/article/pii/B9780123741356001230

References

Pygmy Hunter-Gatherers Using a Multilocus Resequencing Data Set. PLOS Genetics, 5
(4),e1000448.

Patin, E., Lopez, M., Grollemund, R., Verdu, P., Harmant, C., Quach, H., Laval, G., Perry, G. H.,
Barreiro, L. B,, . .. Quintana-Murci, L., 2017. Dispersals and genetic adaptation of Bantu-
speaking populations in Africa and North America. Science, 356 (6337), 543-546.

Peischl, S., Dupanloup, I,, Bosshard, L. and Excoffier, L., 2016. Genetic surfing in human
populations: from genes to genomes. Current Opinion in Genetics & Development, 41, 53—
61.

Peraza, M. A, Ayala-Fierro, F., Barber, D. S., Casarez, E. and Rael, L. T., 1998. Effects of
micronutrients on metal toxicity. Environmental Health Perspectives, 106 (Suppl 1),
203-216.

Perry, G. H. and Dominy, N. J., 2009. Evolution of the human pygmy phenotype. Trends in
Ecology & Evolution, 24 (4), 218-225.

Perry, G. H., Dominy, N. ], Claw, K. G., Lee, A. S, Fiegler, H., Redon, R., Werner, ]., Villanea, F. A,,
Mountain, |. L., Misra, R., Carter, N. P,, Lee, C. and Stone, A. C.,, 2007. Diet and the
evolution of human amylase gene copy number variation. Nature Genetics, 39 (10),
1256-1260.

Peter, B. M., Huerta-Sanchez, E. and Nielsen, R., 2012. Distinguishing between Selective
Sweeps from Standing Variation and from a De Novo Mutation. PLOS Genetics, 8 (10),
e1003011.

Peters, M. M., Hill, K. E., Burk, R. F. and Weeber, E. ]., 2006. Altered hippocampus synaptic
function in selenoprotein P deficient mice. Molecular Neurodegeneration, 1 (1), 12.

Phillips, P. C., 2008. Epistasis — the essential role of gene interactions in the structure and
evolution of genetic systems. Nature Reviews Genetics, 9 (11), 855-867.

Piatigorsky, J. and Wistow, G., 1991. The Recruitment of Crystallins: New Functions Precede
Gene Duplication. Science, 252 (5009), 1078-1079.

Pickrell, ]. K., Patterson, N., Loh, P.-R,, Lipson, M., Berger, B., Stoneking, M., Pakendorf, B. and
Reich, D., 2014. Ancient west Eurasian ancestry in southern and eastern Africa.
Proceedings of the National Academy of Sciences, 111 (7), 2632-2637.

Pierron, D., Heiske, M., Razafindrazaka, H., Pereda-Loth, V., Sanchez, ]., Alva, 0., Arachiche, A.,
Boland, A, Olaso, R,, ... Letellier, T., 2018. Strong selection during the last millennium
for African ancestry in the admixed population of Madagascar. Nature Communications,
9 (1).

Pietrangelo, A., 2015. Pathogens, Metabolic Adaptation, and Human Diseases—An Iron-
Thrifty Genetic Model. Gastroenterology, 149 (4), 834-838.

Pietschmann, N,, Rijntjes, E., Hoeg, A., Stoedter, M., Schweizer, U., Seemann, P. and
Schomburg, L., 2014. Selenoprotein P is the essential selenium transporter for bones.
Metallomics, 6 (5), 1043-1049.

Pike, V. and Zlotkin, S., 2019. Excess micronutrient intake: defining toxic effects and upper
limits in vulnerable populations. Annals of the New York Academy of Sciences, 1446 (1),
21-43.

Plum, L. M., Rink, L. and Haase, H., 2010. The Essential Toxin: Impact of Zinc on Human
Health. International Journal of Environmental Research and Public Health, 7 (4), 1342-
1365.

Pope, K. 0. and Terrell, J. E., 2007. Environmental setting of human migrations in the circum-
Pacific region. Journal of Biogeography, 0 (0), 071009214220006-77?

Popejoy, A. B. and Fullerton, S. M., 2016. Genomics is failing on diversity. Nature, 538 (7624),
161-164.

220



References

Potter, S. C, Luciani, A, Eddy, S. R, Park, Y., Lopez, R. and Finn, R. D., 2018. HMMER web
server: 2018 update. Nucleic Acids Research, 46 (W1), W200-W204.

Prasad, A. S., 2013. Discovery of Human Zinc Deficiency: Its Impact on Human Health and
Disease. Advances in Nutrition, 4 (2), 176-190.

Prezeworski, M., Coop, G. and Wall, J. D., 2005. The Signature of Positive Selection on
Standing Genetic Variation. Evolution, 59 (11), 2312-2323.

Pritchard, J. K. and Di Rienzo, A., 2010. Adaptation - not by sweeps alone. Nature Reviews
Genetics, 11 (10), 665-667.

Pritchard, J. K,, Pickrell, J. K. and Coop, G., 2010. The Genetics of Human Adaptation: Hard
Sweeps, Soft Sweeps, and Polygenic Adaptation. Current Biology, 20 (4), R2Z08-R215.

Pritchard, ]. K., Stephens, M. and Donnelly, P., 2000. Inference of population structure using
multilocus genotype data. Genetics, 155 (2), 945-959.

Prohaska, J. R, 2014. Impact of copper deficiency in humans. Annals of the New York
Academy of Sciences, 1314 (1), 1-5.

Priifer, K, Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud,
G., Sudmant, P. H,, ... Paabo, S., 2014. The complete genome sequence of a Neanderthal
from the Altai Mountains. Nature, 505 (7481), 43-49.

Prugnolle, F., Manica, A. and Balloux, F., 2005. Geography predicts neutral genetic diversity of
human populations. Current biology : CB, 15 (5), R159-R160.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R, Bender, D., Maller, J.,
Sklar, P., Bakker, P. 1. W. de, Daly, M. ]J. and Sham, P. C., 2007. PLINK: A Tool Set for
Whole-Genome Association and Population-Based Linkage Analyses. The American
Journal of Human Genetics, 81 (3), 559-575.

Pybus, M., Luisi, P., Dall'Olio, G. M., Uzkudun, M., Laayouni, H., Bertranpetit, J]. and Engelken, ].,
2015. Hierarchical boosting: a machine-learning framework to detect and classify hard
selective sweeps in human populations. Bioinformatics, 31 (24), 3946-3952.

Qin, X,, Chiang, C. W. K., Gaggiotti, 0. 2022. Deciphering signatures of natural selection via deep
learning, Briefings in Bioinformatics, 23 (5)

Quintana-Murci, L., Semino, O., Bandelt, H. ]., Passarino, G., McElreavey, K. and Santachiara-
Benerecetti, A. S., 1999. Genetic evidence of an early exit of Homo sapiens sapiens from
Africa through eastern Africa. Nature Genetics, 23 (4), 437-441.

Racimo, F., Sankararaman, S., Nielsen, R. and Huerta-Sanchez, E., 2015. Evidence for archaic
adaptive introgression in humans. Nature Reviews Genetics, 16 (6), 359-371.

Raj, S.M., Pagani, L., Gallego Romero, I. Kivisilid, T., Amos, W. 2013. A general linear model-
based approach for inferring selection to climate. BMC Genet 14, 87.

Ramachandran, S., Deshpande, O., Roseman, C. C., Rosenberg, N. A,, Feldman, M. W. and
Cavalli-Sforza, L. L., 2005. Support from the relationship of genetic and geographic
distance in human populations for a serial founder effect originating in Africa.
Proceedings of the National Academy of Sciences, 102 (44), 15942-15947.

Rambaut, A. and Grassly, N. C., 1997. Seq-Gen: an application for the Monte Carlo simulation
of DNA sequence evolution along phylogenetic trees. Computer applications in the
biosciences: CABIOS, 13 (3), 235-238.

Rasmussen, M., Anzick, S. L., Waters, M. R,, Skoglund, P., DeGiorgio, M., Stafford, T. W.,
Rasmussen, S., Moltke, L., Albrechtsen, A., ... Willerslev, E., 2014. The genome of a Late
Pleistocene human from a Clovis burial site in western Montana. Nature, 506 (7487),
225-229.

Rasmussen, M. D., Hubisz, M. |., Gronau, I. and Siepel, A., 2013. Genome-wide inference of
ancestral recombination graphs [online]. arXiv.org. Available from:
https://arxiv.org/abs/1306.5110v3 [Accessed 10 Feb 2023].

221


https://arxiv.org/abs/1306.5110v3

References

Rasmussen, M. D., Hubisz, M. |., Gronau, I. and Siepel, A., 2014. Genome-Wide Inference of
Ancestral Recombination Graphs. PLOS Genetics, 10 (5), e1004342.

Rasmussen, M., Guo, X., Wang, Y., Lohmueller, K. E., Rasmussen, S., Albrechtsen, A., Skotte, L.,
Lindgreen, S., Metspalu, M,, ... Willerslev, E., 2011. An Aboriginal Australian genome
reveals separate human dispersals into Asia. Science (New York, N.Y.), 334 (6052), 94—
98.

Rayman, M. P., 2012. Selenium and human health. The Lancet, 379 (9822), 1256-1268.

Razzaque, M. S., 2011. Phosphate toxicity: new insights into an old problem. Clinical science
(London, England : 1979), 120 (3), 91-97.

Redmond, J., Palla, L., Yan, L., Jarjou, L. M. A, Prentice, A. and Schoenmakers, I., 2015. Ethnic
differences in urinary calcium and phosphate excretion between Gambian and British
older adults. Osteoporosis International, 26 (3), 1125-1135.

Rees, J. and Andrés, A., 2022. Inferring human evolutionary history. Science, 375 (6583),
817-818.

Rees, ]. S., Castellano, S. and Andrés, A. M., 2020. The Genomics of Human Local Adaptation.
Trends in Genetics, 36 (6),415-428.

Rees, ], Sarangi, G., Cheng, Q., Floor, M., Andrés, A. M., Miguel, B. 0., Villa-Freixa, J., Arnér, E. S.
and Castellano, S., 2023. Ancient loss of catalytic selenocysteine spurred convergent
adaptation in a mammalian oxidoreductase. [online]. Available from:
https://www.biorxiv.org/content/10.1101/2023.01.03.522577v1 [Accessed 24 Feb
2023].

Rehman, A, Farooq, M., Ullah, A.,, Nadeem, F., Im, S. Y., Park, S. K. and Lee, D.-]., 2020.
Agronomic Biofortification of Zinc in Pakistan: Status, Benefits, and Constraints.
Frontiers in Sustainable Food Systems [online], 4. Available from:
https://www.frontiersin.org/articles/10.3389 /fsufs.2020.591722 [Accessed 17 Feb
2023].

Reich, D., Green, R. E., Kircher, M., Krause, ]., Patterson, N., Durand, E. Y., Viola, B., Briggs, A.
W, Stenzel, U,, ... Paabo, S., 2010. Genetic history of an archaic hominin group from
Denisova Cave in Siberia. Nature, 468 (7327), 1053-1060.

Reich, D., Patterson, N., Kircher, M., Delfin, F., Nandineni, M. R., Pugach, I, Ko, A. M.-S,, Ko, Y.-
C. ...Stoneking, M., 2011. Denisova Admixture and the First Modern Human Dispersals
into Southeast Asia and Oceania. American Journal of Human Genetics, 89 (4), 516-528.

Reich, H.]. and Hondal, R. ., 2016. Why Nature Chose Selenium. ACS Chemical Biology, 11 (4),
821-841.

Reilly, P. F., Tjahjadi, A., Miller, S. L., Akey, J. M. and Tucci, S., 2022. The contribution of
Neanderthal introgression to modern human traits. Current Biology, 32 (18), R970-
R983.

Renagulij, A, Luo, Y., Wang, X,, Dilidaer, Y., Muyeshsaer, W., Guzailinuer, J., Zhang, Y., Xin, Y.
and Guo, Y., 2018. Relationship between thyrotropin and urine iodine in Han and Uygur
nationalities pregnancy women in People’s Hospital of Xinjiang Uygur Autonomous
Region. Zhonghua fu chan ke za zhi, 53, 595-601.

Rennell, D., Bouvier, S. E., Hardy, L. W. and Poteete, A. R., 1991. Systematic mutation of
bacteriophage T4 lysozyme. Journal of Molecular Biology, 222 (1), 67-88.

Renwick, A. G., 2006. Toxicology of Micronutrients: Adverse Effects and Uncertainty. The
Journal of Nutrition, 136 (2), 493S-501S.

Reyes-Centeno, H., Ghirotto, S., Détroit, F., Grimaud-Hervé, D., Barbujani, G. and Harvati, K,,
2014. Genomic and cranial phenotype data support multiple modern human dispersals
from Africa and a southern route into Asia. Proceedings of the National Academy of
Sciences, 111 (20), 7248-7253.

222


https://www.biorxiv.org/content/10.1101/2023.01.03.522577v1
https://www.frontiersin.org/articles/10.3389/fsufs.2020.591722

References

Reyes-Centeno, H., Hubbe, M., Hanihara, T., Stringer, C. and Harvati, K., 2015. Testing modern
human out-of-Africa dispersal models and implications for modern human origins.
Journal of Human Evolution, 87, 95-106.

Reyes-Reali, ], Mendoza-Ramos, M.1., Garrido-Guerrero, E., Méndez-Catala, C.F., Méndez-
Cruz, A.R,, Pozo-Molina, G. 2018. Hypohidrotic ectodermal dysplasia: clinical and
molecular review. Int | Dermatol. (8):965-972.

Roca-Umbert, A., Caro-Consuegra, R., Londono-Correa, D., Rodriguez-Lozano, G. F., Vicente, R.
and Bosch, E., 2022. Understanding signatures of positive natural selection in human
zinc transporter genes. Scientific Reports, 12 (1), 4320.

Romagné, F., Santesmasses, D., White, L., Sarangi, G. K., Mariotti, M., Hiibler, R., Weihmann, A.,
Parra, G., Gladyshev, V. N., Guigé, R. and Castellano, S., 2014. SelenoDB 2.0: annotation of
selenoprotein genes in animals and their genetic diversity in humans. Nucleic Acids
Research, 42 (Database issue), D437-D443.

Rose, |. I, Usik, V. I, Marks, A. E., Hilbert, Y. H., Galletti, C. S., Parton, A., Geiling, ]. M., Cerny, V.,
Morley, M. W. and Roberts, R. G., 2011. The Nubian Complex of Dhofar, Oman: An
African Middle Stone Age Industry in Southern Arabia. PLOS ONE, 6 (11), e28239.

Rose, S. R, 1995. Isolated Central Hypothyroidism in Short Stature. Pediatric Research, 38
(6),967-973.

Rossier, B. C.,, Pradervand, S., Schild, L. and Hummler, E., 2002. Epithelial Sodium Channel
and the Control of Sodium Balance: Interaction Between Genetic and Environmental
Factors. Annual Review of Physiology, 64 (1), 877-897.

Rowles, A., 2023. Why Molybdenum Is an Essential Nutrient [online]. Healthline. Available
from: https://www.healthline.com/nutrition/molybdenum [Accessed 19 Mar 2023].

Ryan, |, Rashid, A, Torrent, ., Yau, S. K, Ibrikci, H., Sommer, R. and Erenoglu, E. B., 2013.
Chapter One - Micronutrient Constraints to Crop Production in the Middle East-West
Asia Region: Significance, Research, and Management. In: Sparks, D. L., ed. Advances in
Agronomy [online]. Academic Press, 1-84. Available from:
https://www.sciencedirect.com/science/article/pii/B9780124171879000012
[Accessed 15 Feb 2023].

Ryan, ]. and Stroehlein’, J. L., n.d. Lise of Sulfuric Acid on Phorphorus Deficient Arizona Soils.

Sabeti, P. C., Reich, D. E., Higgins, ]. M., Levine, H. Z. P., Richter, D. ], Schaffner, S. F., Gabriel, S.
B., Platko, ]. V., Patterson, N. |, ... Lander, E. S., 2002. Detecting recent positive selection
in the human genome from haplotype structure. Nature, 419 (6909), 832-837.

Sabeti, P. C,, Schaffner, S. F., Fry, B., Lohmueller, ], Varilly, P.,, Shamovsky, O., Palma, A.,
Mikkelsen, T. S., Altshuler, D. and Lander, E. S., 2006. Positive Natural Selection in the
Human Lineage. Science, 312 (5780), 1614-1620.

Sabeti, P. C,, Varilly, P., Fry, B., Lohmueller, ]., Hostetter, E., Cotsapas, C,, Xie, X., Byrne, E. H,,
McCarroll, S. A,, Gaudet, R, Schaffner, S. F. and Lander, E. S., 2007. Genome-wide
detection and characterization of positive selection in human populations. Nature, 449
(7164),913-918

Sanchez, T., Cury, ], Charpiat, G., Jay, F. 2020. Deep learning for population size history
inference: Design, comparison and combination with approximate Bayesian
computation. Molecular Ecology Resources. 21(8), 2645-2660.

Sankararaman, S., Patterson, N., Li, H., Paabo, S. and Reich, D., 2012. The Date of
Interbreeding between Neandertals and Modern Humans. PLOS Genetics, 8 (10),
e1002947.

Santesmasses, D., Mariotti, M. and Gladyshev, V. N., 2020. Tolerance to Selenoprotein Loss
Differs between Human and Mouse. Molecular Biology and Evolution, 37 (2), 341-354.

223


https://www.healthline.com/nutrition/molybdenum
https://www.sciencedirect.com/science/article/pii/B9780124171879000012

References

Sarangi, G. K, Romagné, F. and Castellano, S., 2018. Distinct Patterns of Selection in
Selenium-Dependent Genes between Land and Aquatic Vertebrates. Molecular Biology
and Evolution, 35 (7), 1744-1756.

Sarangi, G. K., White, L. and Castellano, S., 2017. Genetic Adaptation and Selenium Uptake in
Vertebrates. In: John Wiley & Sons, Ltd, ed. eLS [online]. Wiley, 1-8. Available from:
https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0026518 [Accessed 14
Mar 2023].

Savas, S., Briollais, L., Ibrahim-zada, 1., Jarjanazi, H., Choi, Y. H., Musquera, M., Fleshner, N.,
Venkateswaran, V. and Ozcelik, H., 2010. A Whole-Genome SNP Association Study of
NCI60 Cell Line Panel Indicates a Role of Ca2+ Signaling in Selenium Resistance. PLOS
ONE, 5 (9), e12601.

Savolainen, 0., Lascoux, M. and Merilg, J., 2013. Ecological genomics of local adaptation.
Nature Reviews Genetics, 14 (11), 807-820.

Schaefer, N. K., Shapiro, B. and Green, R. E., 2021. An ancestral recombination graph of
human, Neanderthal, and Denisovan genomes. Science Advances, 7 (29), eabc0776.

Scherer, M. K,, Trendelkamp-Schroer, B., Paul, F., Pérez-Hernandez, G., Hoffmann, M.,
Plattner, N.,, Wehmeyer, C., Prinz, ].-H. and Noé, F., 2015. PYEMMA 2: A Software Package
for Estimation, Validation, and Analysis of Markov Models. Journal of Chemical Theory
and Computation, 11 (11), 5525-5542.

Schlebusch, C. M., Gattepaille, L. M., Engstrom, K., Vahter, M., Jakobsson, M. and Broberg, K,
2015. Human Adaptation to Arsenic-Rich Environments. Molecular Biology and
Evolution, 32 (6), 1544-1555.

Schlebusch, C. M., Skoglund, P., Sjodin, P., Gattepaille, L. M., Hernandez, D., Jay, F., Lj, S., De
Jongh, M,, Singleton, A., Blum, M. G. B, Soodyall, H. and Jakobsson, M., 2012. Genomic
variation in seven Khoe-San groups reveals adaptation and complex African history.
Science (New York, N.Y.), 338 (6105), 374-379.

Schmidt, ]. M., de Manuel, M., Marques-Bonet, T., Castellano, S. and Andrés, A. M., 2019. The
impact of genetic adaptation on chimpanzee subspecies differentiation. PLoS Genetics,
15(11),e1008485.

Schrider, D. R. and Kern, A. D., 2016. S/HIC: Robust Identification of Soft and Hard Sweeps
Using Machine Learning. PLOS Genetics, 12 (3),e1005928.

Schrider, D. R. and Kern, A. D., 2017. Soft Sweeps Are the Dominant Mode of Adaptation in
the Human Genome. Molecular Biology and Evolution, 34 (8), 1863-1877.

Schrider, D. R. and Kern, A. D., 2018. Supervised Machine Learning for Population Genetics: A
New Paradigm. Trends in Genetics, 34 (4), 301-312.

Schwarz, G., 2005. Molybdenum cofactor biosynthesis and deficiency. Cellular and Molecular
Life Sciences CMLS, 62 (23), 2792-2810.

Secolin, R,, Mas-Sandoval, A, Arauna, L. R, Torres, F. R., de Araujo, T. K., Santos, M. L., Rocha,
C.S., Carvalho, B. S, Cendes, F., Lopes-Cendes, I. and Comas, D., 2019. Distribution of
local ancestry and evidence of adaptation in admixed populations. Scientific Reports, 9
(1), 13900.

Seguin-Orlando, A., Korneliussen, T. S., Sikora, M., Malaspinas, A.-S., Manica, A., Moltke, 1.,
Albrechtsen, A, Ko, A, Margaryan, A., Moiseyev, V., ... Willerslev, E., 2014. Genomic
structure in Europeans dating back at least 36,200 years. Science, 346 (6213), 1113-
1118.

Serbanovic-Canic, J., Cvejic, A., Soranzo, N., Stemple, D. L., Ouwehand, W. H. and Freson, K,
2011. Silencing of RhoA nucleotide exchange factor, ARHGEF3, reveals its unexpected
role in iron uptake. Blood, 118 (18), 4967.

224


https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0026518

References

Serdar, C. C,, Cihan, M,, Yiicel, D. and Serdar, M. A., 2021. Sample size, power and effect size
revisited: simplified and practical approaches in pre-clinical, clinical and laboratory
studies. Biochemia Medica, 31 (1), 010502.

Sha, Q., Pearson, W., Burcea, L. C., Wigfall, D. A,, Schlesinger, P. H., Nichols, C. G. and Mercer, R.
W., 2008. Human FXYD2 G41R mutation responsible for renal hypomagnesemia
behaves as an inward-rectifying cation channel. American Journal of Physiology. Renal
Physiology, 295 (1), F91-F99.

Shah, P., McCandlish, D. M. and Plotkin, J. B., 2015. Contingency and entrenchment in protein
evolution under purifying selection. Proceedings of the National Academy of Sciences,
112 (25), E3226-E3235.

Shah, Y. M. and Xie, L., 2014. Hypoxia-Inducible Factors Link Iron Homeostasis and
Erythropoiesis. Gastroenterology, 146 (3), 630-642.

Shahid, S. A.,, Zaman, M. and Heng, L., 2018. Soil Salinity: Historical Perspectives and a World
Overview of the Problem. In: Zaman, M., Shahid, S. A, and Heng, L., eds. Guideline for
Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques
[online]. Cham: Springer International Publishing, 43-53. Available from:
https://doi.org/10.1007/978-3-319-96190-3 2 [Accessed 15 Feb 2023].

Sharir-Ivry, A. and Xia, Y., 2021. Quantifying evolutionary importance of protein sites: A Tale
of two measures. PLOS Genetics, 17 (4), e1009476.

Sheehan, S., Song, Y. S. 2016. Deep learning for population inference. 2016. PLoS Comp. Bio.
12(3).

Shema, R., Kulicke, R., Cowley, G. S., Stein, R., Root, D. E. and Heiman, M., 2015. Synthetic
lethal screening in the mammalian central nervous system identifies Gpx6 as a
modulator of Huntington’s disease. Proceedings of the National Academy of Sciences, 112
(1), 268-272.

Shenkin, A., 2006. Micronutrients in health and disease. Postgraduate Medical Journal, 82
(971), 559-567.

Shetaya, W. H,, Young, S. D., Watts, M. ], Ander, E. L. and Bailey, E. H., 2012. lodine dynamics
in soils. Geochimica et Cosmochimica Acta, 77, 457-473.

Shi, W,, Ayub, Q., Vermeulen, M., Shao, R., Zuniga, S., van der Gaag, K., de Knijff, P., Kayser, M.,
Xue, Y. and Tyler-Smith, C., 2010. A worldwide survey of human male demographic
history based on Y-SNP and Y-STR data from the HGDP-CEPH populations. Molecular
Biology and Evolution, 27 (2), 385-393.

Shi, Y., Yang, W,, Tang, X,, Yan, Q., Cai, X. and Wu, F., 2021. Keshan Disease: A Potentially Fatal
Endemic Cardiomyopathy in Remote Mountains of China. Frontiers in Pediatrics, 9,
576916.

Shlisky, J., Mandlik, R., Askari, S., Abrams, S., Belizan, ]. M., Bourassa, M. W., Cormick, G.,
Driller-Colangelo, A., Gomes, F., ... Weaver, C., 2022. Calcium deficiency worldwide:
prevalence of inadequate intakes and associated health outcomes. Annals of the New
York Academy of Sciences, 1512 (1), 10-28.

Shukla, A. K., Dwivedi, B. S., Singh, V. K. and Gill, M. S., 2009. Macro role of micronutrients.
Indian Journal of Fertilisers, 5 (5), 11-30.

Sillanpaeae, M., 1982. Micronutrients and the nutrient status of soils: A global study [online].
Rome (Italy) FAO. Available from:
https://scholar.google.com/scholar lookup?title=Micronutrients+and+the+nutrient+st
atus+of+soils%3A+A+global+study&author=Sillanpaeae%2C+M.&publication year=198
2 [Accessed 16 Mar 2023].

225


https://doi.org/10.1007/978-3-319-96190-3_2
https://scholar.google.com/scholar_lookup?title=Micronutrients+and+the+nutrient+status+of+soils%3A+A+global+study&author=Sillanpaeae%2C+M.&publication_year=1982
https://scholar.google.com/scholar_lookup?title=Micronutrients+and+the+nutrient+status+of+soils%3A+A+global+study&author=Sillanpaeae%2C+M.&publication_year=1982
https://scholar.google.com/scholar_lookup?title=Micronutrients+and+the+nutrient+status+of+soils%3A+A+global+study&author=Sillanpaeae%2C+M.&publication_year=1982

References

da Silva Ribeiro, T., Galvan, . A. and Pool, |. E., 2022. Maximum SNP FST Outperforms Full-
Window Statistics for Detecting Soft Sweeps in Local Adaptation. Genome Biology and
Evolution, 14 (10), evac143.

Silvertooth, J., Norton, E. and Galadima, A., 2001. Evaluation of Potassium and Phosphorus
Fertility In Arizona Soils.

Singh, M. V., 2009. Micronutrient nutritional problems in soils of India and improvement for
human and animal health. Indian Journal of Fertilisers, 5 (4), 11-56.

Sirugo, G., Williams, S. M. and Tishkoff, S. A., 2019. The Missing Diversity in Human Genetic
Studies. Cell, 177 (1), 26-31.

Skoglund, P. and Jakobsson, M., 2011. Archaic human ancestry in East Asia. Proceedings of the
National Academy of Sciences, 108 (45), 18301-18306.

Skoglund, P., Mallick, S., Bortolini, M. C., Chennagiri, N., Hiinemeier, T., Petzl-Erler, M. L.,
Salzano, F. M., Patterson, N. and Reich, D., 2015. Genetic evidence for two founding
populations of the Americas. Nature, 525 (7567), 104-108.

Skoglund, P., Malmstrom, H., Raghavan, M., Stor3, J., Hall, P., Willerslev, E., Gilbert, M. T. P.,
Gotherstrom, A. and Jakobsson, M., 2012. Origins and Genetic Legacy of Neolithic
Farmers and Hunter-Gatherers in Europe. Science, 336 (6080), 466-469.

Skoglund, P. and Mathieson, 1., 2018. Ancient Genomics of Modern Humans: The First
Decade. Annual Review of Genomics and Human Genetics, 19, 381-404.

Smith, ]. M. and Haigh, J., 1974. The hitch-hiking effect of a favourable gene. Genetical
Research, 23 (1), 23-35.

Snider, G. W., Ruggles, E., Khan, N. and Hondal, R.]., 2013. Selenocysteine Confers Resistance
to Inactivation by Oxidation in Thioredoxin Reductase: Comparison of Selenium and
Sulfur Enzymes. Biochemistry, 52 (32), 5472-5481.

Soares, P., Alshamali, F., Pereira, ]. B, Fernandes, V., Silva, N. M., Afonso, C., Costa, M. D,
Musilova, E., Macaulay, V., Richards, M. B,, Cerny, V. and Pereira, L., 2012. The Expansion
of mtDNA Haplogroup L3 within and out of Africa. Molecular Biology and Evolution, 29
(3),915-927.

Sohail, M., Maier, R. M., Ganna, A., Bloemendal, A., Martin, A. R,, Turchin, M. C,, Chiang, C. W.
K, Hirschhorn, J., Daly, ... Sunyaev, S. R, 2019. Polygenic adaptation on height is
overestimated due to uncorrected stratification in genome-wide association studies.
eLife, 8.

Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. and Smoller, J. W., 2013. Pleiotropy in
complex traits: challenges and strategies. Nature Reviews Genetics, 14 (7), 483-495.

Sordillo, L. M., 2013. Selenium-Dependent Regulation of Oxidative Stress and Immunity in
Periparturient Dairy Cattle. Veterinary Medicine International, 2013, e154045.

Spears, . W. and Weiss, W. P., 2008. Role of antioxidants and trace elements in health and
immunity of transition dairy cows. Veterinary Journal (London, England: 1997),176 (1),
70-76.

Speidel, L., Forest, M., Shij, S. and Myers, S. R., 2019. A method for genome-wide genealogy
estimation for thousands of samples. Nature Genetics, 51 (9), 1321-13209.

Stadtman, T. C.,, 1974. Selenium biochemistry. Science (New York, N.Y.), 183 (4128),915-922.

Stadtman, T. C.,, 1996. Selenocysteine. Annual Review of Biochemistry, 65 (1), 83-100.

Stafford, N., Wilson, C., Oceandy, D., Neyses, L. and Cartwright, E.]., 2017. The Plasma
Membrane Calcium ATPases and Their Role as Major New Players in Human Disease.
Physiological Reviews, 97 (3), 1089-1125.

Stauber, T. and Jentsch, T. J., 2013. Chloride in vesicular trafficking and function. Annual
Review of Physiology, 75, 453-477.

226



References

Steppan, S. J., Adkins, R. M. and Anderson, J., 2004. Phylogeny and Divergence-Date Estimates
of Rapid Radiations in Muroid Rodents Based on Multiple Nuclear Genes. Systematic
Biology, 53 (4), 533-553.

Stern, A. ]., Wilton, P. R. and Nielsen, R., 2019. An approximate full-likelihood method for
inferring selection and allele frequency trajectories from DNA sequence data. PLOS
Genetics, 15 (9), e1008384.

Stevens, G. A., Beal, T., Mbuya, M. N. N,, Luo, H., Neufeld, L. M., Addo, O. Y., Adu-Afarwuah, S.,
Alayén, S., Bhutta, Z,, ... Young, M. F., 2022. Micronutrient deficiencies among preschool-
aged children and women of reproductive age worldwide: a pooled analysis of
individual-level data from population-representative surveys. The Lancet Global Health,
10 (11),e1590-e1599.

Stevens, G. A., Paciorek, C. ]., Flores-Urrutia, M. C., Borghi, E., Namaste, S., Wirth, ]. P., Suchdev,
P.S. Ezzati, M., Rohner, F., Flaxman, S. R. and Rogers, L. M., 2022. National, regional, and
global estimates of anaemia by severity in women and children for 2000-19: a pooled
analysis of population-representative data. The Lancet Global Health, 10 (5), e627-e639.

Stewart, C. and Pepper, M. S., 2016. Cystic fibrosis on the African continent. Genetics in
Medicine: Official Journal of the American College of Medical Genetics, 18 (7), 653-662.

Stewart, C. and Pepper, M. S., 2017. Cystic Fibrosis in the African Diaspora. Annals of the
American Thoracic Society, 14 (1), 1-7.

Stone, M. S, Martyn, L. and Weaver, C. M., 2016. Potassium Intake, Bioavailability,
Hypertension, and Glucose Control. Nutrients, 8 (7), 444.

Storz, ]. F., 2016. Causes of molecular convergence and parallelism in protein evolution.
Nature Reviews Genetics, 17 (4), 239-250.

Streit, L., 2018. Micronutrients: Types, Functions, Benefits and More [online]. Healthline.
Available from: https://www.healthline.com/nutrition/micronutrients [Accessed 19
Mar 2023].

Stringer, C. B. and Andrews, P., 1988. Genetic and Fossil Evidence for the Origin of Modern
Humans. Science, 239 (4845), 1263-1268.

Subramanian, A., Tamayo, P., Mootha, V. K,, Mukherijee, S., Ebert, B. L., Gillette, M. A,
Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. and Mesirov, J. P., 2005. Gene set
enrichment analysis: A knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences, 102 (43), 15545-
15550.

Subramanian, S., 2016. The effects of sample size on population genomic analyses -
implications for the tests of neutrality. BMC Genomics, 17 (1), 123.

Sugden, L.A., Atkinson, E.G., Fischer, A.P., Rong, S., Henn, B. M., Ramachandran, S. 2018.
Localization of adaptive variants in human genomes using averaged one-dependence
estimation. Nat Commun 9, 703.

Sun, Y., Zouy, ], Ouyang, W. and Chen, K., 2020. Identification of PDE7B as a Potential Core
Gene Involved in the Metastasis of Clear Cell Renal Cell Carcinoma. Cancer Management
and Research, 12,5701-5712.

Sunyecz, . A., 2008. The use of calcium and vitamin D in the management of osteoporosis.
Therapeutics and Clinical Risk Management, 4 (4), 827-836.

Sverrisdéttir, 0. 0., Timpson, A, Toombs, ]., Lecoeur, C,, Froguel, P, Carretero, ]. M., Arsuaga
Ferreras, J. L., Gotherstrom, A. and Thomas, M. G., 2014. Direct estimates of natural
selection in Iberia indicate calcium absorption was not the only driver of lactase
persistence in Europe. Molecular Biology and Evolution, 31 (4), 975-983.

227


https://www.healthline.com/nutrition/micronutrients

References

Swanson, E. M., Espeset, A., Mikati, I., Boldugc, I., Kulhanek, R., White, W. A,, Kenzie, S. and
Snell-Rood, E. C., 2016. Nutrition shapes life-history evolution across species.
Proceedings of the Royal Society B: Biological Sciences, 283 (1834), 20152764.

Szpiech, Z. A. and Hernandez, R. D., 2014. selscan: an efficient multithreaded program to
perform EHH-based scans for positive selection. Molecular Biology and Evolution, 31
(10), 2824-2827.

Szpiech, Z. A., Novak, T. E., Bailey, N. P. and Stevison, L. S., 2021. Application of a novel
haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus
macaques. Evolution Letters, 5 (4), 408-421.

Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA
polymorphism. Genetics, 123 (3), 585-595.

Tako, E., 2019. Dietary Trace Minerals. Nutrients, 11 (11), 2823.

Tang, K., Thornton, K. R. and Stoneking, M., 2007. A New Approach for Using Genome Scans
to Detect Recent Positive Selection in the Human Genome. PLOS Biology, 5 (7), e171.

Tassi, F., Ghirotto, S., Mezzavilla, M., Vilaga, S. T., De Santi, L. and Barbujani, G., 2015. Early
modern human dispersal from Africa: genomic evidence for multiple waves of
migration. Investigative Genetics, 6, 13.

Taylor, A., Robson, A., Houghton, B. C., Jepson, C. A,, Ford, W. C. L. and Frayne, J., 2013.
Epididymal specific, selenium-independent GPX5 protects cells from oxidative stress-
induced lipid peroxidation and DNA mutation. Human Reproduction (Oxford, England),
28 (9), 2332-2342.

The UniProt Consortium, 2023. UniProt: the Universal Protein Knowledgebase in 2023.
Nucleic Acids Research, 51 (D1), D523-D531.

Thomson, C. D., 2004. Selenium and iodine intakes and status in New Zealand and Australia.
The British Journal of Nutrition, 91 (5), 661-672.

Tian, R, Geng, Y., Yang, Y., Seim, I. and Yang, G., 2021. Oxidative stress drives divergent
evolution of the glutathione peroxidase (GPX) gene family in mammals. Integrative
Zoology, 16 (5), 696-711.

Tiffin, P. and Ross-Ibarra, J., 2014. Advances and limits of using population genetics to
understand local adaptation. Trends in Ecology & Evolution, 29 (12), 673-680.

Tintle, N. L., Borchers, B., Brown, M. and Bekmetjev, A., 2009. Comparing gene set analysis
methods on single-nucleotide polymorphism data from Genetic Analysis Workshop 16.
BMC proceedings, 3 Suppl 7 (Suppl 7), S96.

Tishkoff, S. A, Reed, F. A, Friedlaender, F. R,, Ehret, C., Ranciaro, A., Froment, A., Hirbo, . B,
Awomoyi, A. A, Bodo, ].-M,, ... Williams, S. M., 2009. The Genetic Structure and History
of Africans and African Americans. Science, 324 (5930), 1035-1044.

Tishkoff, S. A, Reed, F. A, Ranciaro, A, Voight, B. F., Babbitt, C. C,, Silverman, J. S., Powell, K,,
Mortensen, H. M,, . .. Deloukas, P., 2007. Convergent adaptation of human lactase
persistence in Africa and Europe. Nature Genetics, 39 (1), 31-40.

Toppo, S., Vanin, S., Bosello, V. and Tosatto, S. C. E., 2008. Evolutionary and structural insights
into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxidants & Redox
Signaling, 10 (9), 1501-1514.

Torada, L., Lorenzon, L., Beddis, A, Isildak, U., Pattini, K., Mathieson, S., Fumagalli, M.

2019. ImaGene: a convolutional neural network to quantify natural selection from
genomic data. BMC Bioinformatics 20 (Suppl 9), 337.

Tosatto, S. C. E., Bosello, V., Fogolari, F., Mauri, P., Roveri, A, Toppo, S., Flohé, L., Ursini, F. and
Maiorino, M., 2008. The catalytic site of glutathione peroxidases. Antioxidants & Redox
Signaling, 10 (9), 1515-1526.

228



References

Trenz, T. S., Delaix, C. L., Turchetto-Zolet, A. C., Zamocky, M., Lazzarotto, F. and Margis-
Pinheiro, M., 2021. Going Forward and Back: The Complex Evolutionary History of the
GPx. Biology, 10 (11), 1165.

Triggiani, V., Tafaro, E., Giagulli, V. A, Sabba, C., Resta, F., Licchelli, B. and Guastamacchia, E.,
2009. Role of iodine, selenium and other micronutrients in thyroid function and
disorders. Endocrine, Metabolic & Immune Disorders Drug Targets, 9 (3), 277-294.

Trindade, S., Perfeito, L. and Gordo, 1., 2010. Rate and effects of spontaneous mutations that
affect fitness in mutator Escherichia coli. Philosophical Transactions of the Royal Society
B: Biological Sciences, 365 (1544),1177-1186.

Tucci, S. and Akey, ]. M., 2019. The long walk to African genomics. Genome Biology, 20 (1),
130.

Tulchinsky, T. H., 2010. Micronutrient Deficiency Conditions: Global Health Issues. Public
Health Reviews, 32 (1), 243-255.

Turchin, M. C,, Chiang, C. W,, Palmer, C. D., Sankararaman, S., Reich, D. and Hirschhorn, J. N.,
2012. Evidence of widespread selection on standing variation in Europe at height-
associated SNPs. Nature Genetics, 44 (9), 1015-1019.

Ulijaszek, S. ]., Hillman, G., Boldsen, ]. L. and Henry, C. ], 1991. Human Dietary Change [and
Discussion]. Philosophical Transactions: Biological Sciences, 334 (1270), 271-279.

Underhill, P. A. and Kivisild, T., 2007. Use of y chromosome and mitochondrial DNA
population structure in tracing human migrations. Annual Review of Genetics, 41, 539-
564.

Venkataraman, V. V., Yegian, A. K., Wallace, L. ]., Holowka, N. B., Tacey, 1., Gurven, M. and Kraft,
T.S., 2018. Locomotor constraints favour the evolution of the human pygmy phenotype
in tropical rainforests. Proceedings of the Royal Society B: Biological Sciences, 285
(1890),20181492.

Vernot, B. and Akey, ]. M., 2014. Resurrecting Surviving Neandertal Lineages from Modern
Human Genomes. Science, 343 (6174),1017-1021.

Villanea, F. A. and Schraiber, ]. G., 2019. Multiple episodes of interbreeding between
Neanderthal and modern humans. Nature Ecology & Evolution, 3 (1), 39-44.

Voight, B. F., Kudaravallij, S., Wen, X. and Pritchard, ]. K., 2006. A Map of Recent Positive
Selection in the Human Genome. PLOS Biology, 4 (3), e72.

Vyshpolsky, F., Qadir, M., Karimov, A.,, Mukhamedjanov, K., Bekbaev, U., Paroda, R., Aw-
Hassan, A. and Karajeh, F., 2008. Enhancing the productivity of high-magnesium soil and
water resources in Central Asia through the application of phosphogypsum. Land
Degradation & Development, 19 (1), 45-56.

Wagner, G. P. and Zhang, ], 2011. The pleiotropic structure of the genotype-phenotype map:
the evolvability of complex organisms. Nature Reviews Genetics, 12 (3), 204-213.

Wald, N.J., 2022. Folic acid and neural tube defects: Discovery, debate and the need for
policy change. Journal of Medical Screening, 29 (3), 138-146.

Wall, J. D., Ratan, A., Stawiski, E., Wall, |. D., Stawiski, E., Ratan, A., Kim, H. L., Kim, C., Gupta,
R, ... Peterson, A. S., 2019. Identification of African-Specific Admixture between Modern
and Archaic Humans. The American Journal of Human Genetics, 105 (6), 1254-1261.

von Wandruszka, R., 2006. Phosphorus retention in calcareous soils and the effect of organic
matter on its mobility. Geochemical Transactions, 7 (1), 6.

Wang, K., Mathieson, I, 0’Connell, ]. and Schiffels, S., 2020. Tracking human population
structure through time from whole genome sequences. PLOS Genetics, 16 (3), e1008552.

Wang, M.-H., Okazaki, T., Kugathasan, S., Cho, ]. H,, Isaacs, K. L., Lewis, J. D., Smoot, D. T,,
Valentine, J. F., Kader, H. A,, ..., G. C, Wu, Y., Datta, L. W,, Hooker, S., Dassopoulos, T.,
Kittles, R. A, Kao, L. W. H. and Brant, S. R,, 2012. Contribution of Higher Risk Genes and

229



References

European Admixture to Crohn’s Disease in African Americans. Inflammatory Bowel
Diseases, 18 (12), 2277-2287.

Wangkumhang, P. and Hellenthal, G., 2018. Statistical methods for detecting admixture.
Current Opinion in Genetics & Development, 53, 121-127.

Weinreich, D. M., Delaney, N. F., DePristo, M. A. and Hartl, D. L., 2006. Darwinian Evolution
Can Follow Only Very Few Mutational Paths to Fitter Proteins. Science, 312 (5770), 111~
114.

Weir, B. S. and Cockerham, C. C., 1984a. Estimating F-Statistics for the Analysis of Population
Structure. Evolution, 38 (6), 1358-1370.

Weir, B. S. and Cockerham, C. C., 1984b. ESTIMATING F-STATISTICS FOR THE ANALYSIS OF
POPULATION STRUCTURE. Evolution; International Journal of Organic Evolution, 38 (6),
1358-1370.

Welch, R. M. and Graham, R. D., 2005. Agriculture: the real nexus for enhancing bioavailable
micronutrients in food crops. Journal of Trace Elements in Medicine and Biology, 18 (4),
299-307.

Wessells, K. R. and Brown, K. H., 2012. Estimating the Global Prevalence of Zinc Deficiency:
Results Based on Zinc Availability in National Food Supplies and the Prevalence of
Stunting. PLOS ONE, 7 (11), e50568.

White, L., Romagné, F.,, Miiller, E., Erlebach, E., Weihmann, A., Parra, G., Andrés, A. M. and
Castellano, S., 2015. Genetic Adaptation to Levels of Dietary Selenium in Recent Human
History. Molecular Biology and Evolution, 32 (6), 1507-1518.

White, T. D., Asfaw, B., DeGusta, D., Gilbert, H., Richards, G. D., Suwa, G. and Clark Howell, F.,
2003. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature, 423 (6941), 742-
747.

Whitlock, M. C., Griswold, C. K. and Peters, A. D., 2003. Compensating for the meltdown: The
critical effective size of a population with deleterious and compensatory mutations.
Annales Zoologici Fennici, 40 (2), 169-183.

Williams, D. M., 1983. Copper deficiency in humans. Seminars in hematology, 20 (2), 118-
128.

Wilson, B. A,, Petrov, D. A. and Messer, P. W., 2014. Soft selective sweeps in complex
demographic scenarios. Genetics, 198 (2), 669-684.

Winkel, L. H. E,, Vriens, B., Jones, G. D., Schneider, L. S., Pilon-Smits, E. and Banuelos, G. S.,
2015. Selenium Cycling Across Soil-Plant-Atmosphere Interfaces: A Critical Review.
Nutrients, 7 (6), 4199-4239.

Wishart, D. S., Tzur, D, Knox, C,, Eisner, R,, Guo, A. C,, Young, N., Cheng, D., Jewell, K., Arndt,
D, ... Querengesser, L., 2007. HMDB: the Human Metabolome Database. Nucleic Acids
Research, 35 (Database issue), D521-526.

Witt, K. E. and Huerta-Sanchez, E., 2019. Convergent evolution in human and domesticate
adaptation to high-altitude environments. Philosophical Transactions of the Royal Society
B: Biological Sciences, 374 (1777), 20180235.

Wohns, A. W,, Wong, Y., Jeffery, B., Akbari, A., Mallick, S., Pinhasi, R., Patterson, N., Reich, D.,
Kelleher, ]. and McVean, G., 2022. A unified genealogy of modern and ancient genomes.
Science, 375 (6583), eabi8264.

Wuy, Y., 2022. Diet evolution of carnivorous and herbivorous mammals in Laurasiatheria.
BMC Ecology and Evolution, 22 (1), 82.

Xia, Y. Hill, K. E,, Byrne, D. W,, Xu, J. and Burk, R. F., 2005. Effectiveness of selenium
supplements in a low-selenium area of China. The American Journal of Clinical Nutrition,
81 (4), 829-834.

230



References

Xu, J., Ke, Z., Xia, ]., He, F. and Bao, B., 2016. Change of body height is regulated by thyroid
hormone during metamorphosis in flatfishes and zebrafish. General and Comparative
Endocrinology, 236, 9-16.

Xu, ]J., Wang, ]. and Zhao, H., 2022. The Prevalence of Kashin-Beck Disease in China: a
Systematic Review and Meta-analysis. Biological Trace Element Research.

Xu, Y., Shan, Y, Lin, X,, Miao, Q., Lou, L., Wang, Y. and Ye, J., 2021. Global patterns in vision loss
burden due to vitamin A deficiency from 1990 to 2017. Public Health Nutrition, 24 (17),
5786-5794.

Yang, M. A,, Malaspinas, A.-S., Durand, E. Y. and Slatkin, M., 2012. Ancient Structure in Africa
Unlikely to Explain Neanderthal and Non-African Genetic Similarity. Molecular Biology
and Evolution, 29 (10), 2987-2995.

Yang, Z., 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology
and Evolution, 24 (8), 1586-1591.

Yang, Z., Wang, C., Nie, Y., Sun, Y., Tian, M., Ma, Y., Zhang, Y., Yuan, Y. and Zhang, L., 2021.
Investigation on spatial variability and influencing factors of drinking water iodine in
Xinjiang, China. PLOS ONE, 16 (12),e0261015.

Yang, Z., Wong, W. S. W. and Nielsen, R., 2005. Bayes Empirical Bayes Inference of Amino
Acid Sites Under Positive Selection. Molecular Biology and Evolution, 22 (4), 1107-1118.

Yant, L. ],, Ran, Q., Rao, L., Van Remmen, H., Shibatani, T., Belter, ]. G., Motta, L., Richardson, A.
and Prolla, T. A.,, 2003. The selenoprotein GPX4 is essential for mouse development and
protects from radiation and oxidative damage insults. Free Radical Biology and Medicine,
34 (4), 496-502.

Yassin, A., Debat, V., Bastide, H., Gidaszewski, N., David, J. R. and Pool, ]. E., 2016. Recurrent
specialization on a toxic fruit in an island Drosophila population. Proceedings of the
National Academy of Sciences, 113 (17),4771-4776.

Yates, A. D., Achuthan, P., Akanni, W., Allen, J., Allen, |., Alvarez-Jarreta, J., Amode, M. R,,
Armean, I. M., Azov, A. G,, ... Flicek, P., 2020. Ensembl 2020. Nucleic Acids Research, 48
(D1), D682-D688.

Ye, K, Cao, C., Lin, X., O'Brien, K. O. and Gu, Z., 2015. Natural selection on HFE in Asian
populations contributes to enhanced non-heme iron absorption. BMC Genetics, 16 (1),
61.

Yi, X, Liang, Y., Huerta-Sanchez, E., Jin, X,, Cuo, Z. X. P,, Pool, J. E,, Xu, X,, Jiang, H.,
Vinckenbosch, N., Korneliussen, T.S., ... Wang, J., 2010. Sequencing of 50 Human
Exomes Reveals Adaptation to High Altitude. Science, 329 (5987), 75-78.

Yudell, M., Roberts, D., DeSalle, R. and Tishkoff, S., 2016. Taking race out of human genetics.
Science, 351 (6273), 564-565.

Zhang, C,, Li, ], Tian, L., Lu, D., Yuan, K., Yuan, Y. and Xu, S., 2015. Differential Natural
Selection of Human Zinc Transporter Genes between African and Non-African
Populations. Scientific Reports, 5 (1), 9658.

Zhang, J. and Kumar, S., 1997. Detection of convergent and parallel evolution at the amino
acid sequence level. Molecular Biology and Evolution, 14 (5), 527-536.

Zhang, X., Kim, B., Lohmueller, K. E. and Huerta-Sanchez, E., 2020. The Impact of Recessive
Deleterious Variation on Signals of Adaptive Introgression in Human Populations.
Genetics, 215 (3), 799-812.

Zhao, K,, Ishida, Y., Oleksyk, T. K., Winkler, C. A. and Roca, A. L., 2012. Evidence for selection
at HIV host susceptibility genes in a West Central African human population. BMC
Evolutionary Biology, 12 (1).

231



References

Zhivotovsky, L. A., Bennett, L., Bowcock, A. M. and Feldman, M. W., 2000. Human Population
Expansion and Microsatellite Variation. Molecular Biology and Evolution, 17 (5), 757-
767.

Zhou, Z., Tran, P. Q., Breister, A. M,, Liu, Y., Kieft, K., Cowley, E. S., Karaoz, U. and
Anantharaman, K., 2022. METABOLIC: high-throughput profiling of microbial genomes
for functional traits, metabolism, biogeochemistry, and community-scale functional
networks. Microbiome, 10 (1), 33.

232



Appendices

Appendices

Chapter 2: Supplementary Material
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Figure S$2.1: The empirical distribution of recombination rate modelled from chromosome
15 from the HGDP dataset (Bergstrom et al. 2020). The gamma and exponential distributions
fitted (blue and red, respectively).
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Figure S2.2: Example of the site frequency spectrum calculated from the VCF files given at
the end of the burn-in simulation. Appears as expected in humans.
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Fig. S2.3: Further analysis investigating selection in European populations. Top panel shows
the percentage of tagged variants that are the SNP with the strongest evidence of selection across
timepoints in the European population for A) iHS,nSL and Relate and B) the cross-population
statistics XPEHH, XPnSL and Fgr (given for three population comparisons, where AFR=Africa;
EUR=Europe; EAS=East Asia; AMR=America). Bottom panel shows the average distance between
the tagged variant and the top-ranking SNP for C) iHS,nSL and Relate and D) the cross-
population statistics XPEHH, XPnSL and Fgr.
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Fig. $2.4: Further analysis investigating selection in East Asian populations. Top panel
shows the percentage of tagged variants that are the SNP with the strongest evidence of
selection across timepoints in the East Asian population for A) iHS,nSL and Relate and B)
the cross-population statistics XPEHH, XPnSL and Fg (given for three population
comparisons, where AFR=Africa; EUR=Europe; EAS=East Asia; AMR=America). Bottom
panel shows the average distance between the tagged variantsand the top-ranking SNP for
C) iHS,nSL and Relate and D) the cross-population statistics XPEHH, XPnSL and Fgr.
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Fig. S2.5: Further analysis investigating selection in American populations. Top panel shows
the percentage of tagged variants that are the SNP with the strongest evidence of selection across
timepoints in the American population for A) iHS,nSL and Relate and B) the cross-population
statistics XPEHH, XPnSL and Fgr (given for three population comparisons, where AFR=Africa;
EUR=Europe; EAS=East Asia; AMR=America). Bottom panel shows the average distance between
the tagged variant and the top-ranking SNP for C iHS,nSL and Relate and D) the cross-population
statistics XPEHH, XPnSL and Fgp
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Fig. $2.6: The proportion of selected SNPs identified as under selection. Partitioned
by the DAF of the tagged variant, for A) Relate and B) F¢r (given for three population

East Asia; AMR=America). Given for

selection acting at 40kya for the European (blue), East Asian (green) and American

Europe; EAS

condition on the tagged variant being at 10% frequency or higher, and these results may

(vellow) populations. There are few cases of low DAF (<20%) given that the simulations
therefore be noisy at lower DAF bins.

comparisons, where AFR=Africa; EUR
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Fig. S2.7: The percentage of gene sets identified as being under selection according
to the SUMSTAT method integrating Relate values. For the gene set sizes of 10, 20, 40
and 60. Shown for selection acting on four different timepoints on four different

populations (as shown).
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Fig. $2.8: The percentage of gene sets identified as being under selection according

to the SUMSTAT method integrating iHS values. For the gene set sizes of 10, 20, 40

and 60. Shown for selection acting on four different timepoints on four different

populations (as shown).
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Fig. $2.9: The percentage of gene sets identified as being under selection according
to the SUMSTAT method integrating nSL value. For the gene set sizes of 10, 20, 40 and
60. Shown for selection acting on four different timepoints on four different populations

(as shown).
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Fig. $2.10: The percentage of gene sets identified as being under selection according
to the SUMST AT method integrating F g1 values. For the gene set sizes of 10, 20, 40 and
60. Shown for selection acting on four different timepoints on four different populations
for three population comparisons (given for three population comparisons, where
AFR=Africa, EUR=Europe, EAS=East Asia, AMR=America).
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Fig. $2.11: The percentage of gene sets identified as being under selection according to the

SUMSTAT method integrating XPEHH values. For the gene set sizes of 10, 20, 40 and 60.
Shown for selection acting on four different timepoints on four different populations for three

population comparisons (given for three population comparisons, where AFR=Africa, EUR=Europe,
EAS=East Asia, AMR=America).
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Fig. $2.12: The percentage of gene sets identified as being under selection according
to the SUMSTAT method integrating XPnSL values. For the gene set sizes of 10, 20, 40
and 60. Shown for selection acting on four different timepoints on four different

populations for three population comparisons (given for three population comparisons,

where AFR=Africa, EUR=Europe, EAS=East Asia, AMR=America).
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Fig. $2.13: The percentage of gene sets identified as being under selection,
according to the SUMSTAT method integrating Relate values partitioned by
selection coefficient of the tagged variant. Shown for selection acting on gene set sizes
of 10, 20, 40 and 60, acting at 1kya, 5kya, 10kya, 40kya on four different populations.
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Fig. $2.14: The percentage of gene sets identified as being under selection,
according to the SUMSTAT method integrating African F gy values partitioned by
selection coefficient of the tagged variant. Shown for selection acting on the African
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia,

AMR=America.
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Fig. $2.15: The percentage of gene sets identified as being under selection,
according to the SUMSTAT method integrating European F ¢ values partitioned by
selection coefficient of the tagged variant. Shown for selection acting on the European
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia,
AMR=America.

245



Appendices

East Asia
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Fig. $2.16: The percentage of gene sets identified as being under selection,
according to SUMSTAT method integrating East Asian F ¢y values partitioned by
selection coefficient of the tagged variant. Shown for selection acting on the East Asian

population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for

three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia,

AMR=America.
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America
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Fig. $2.17: The percentage of gene sets identified as being under selection,
according to the SUMSTAT method integrating American F ¢y values partitioned by
selection coefficient of the tagged variant.. Shown for selection acting on the American
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia,

AMR=America.
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Fig. $2.18: The percentage of gene sets identified as being under selection,

according to the SUMSTAT method integrating Relate values, partitioned by

proportion of gene set under selection. Shown for selection acting on gene set sizes of
10, 20, 40 and 60, acting at 1kya, 5kya, 10kya, 40kya on four different populations.
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Africa
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Fig. $2.19: The percentage of gene sets identified as being under selection,
according to the SUMSTAT method integrating African F gy values partitioned by
proportion of gene set under selection. Shown for selection acting on the African
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia,

AMR=America.
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Fig. $2.20: The percentage of gene sets identified as being under selection,
according to the SUMSTAT method integrating European F ¢ values partitioned by
proportion of gene set under selection. Shown for selection acting on the European
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia,
AMR=America.
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East Asia
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Fig. $2.21: The percentage of gene sets identified as being under selection,
according to the SUMSTAT method integrating East Asian F gy values partitioned by
proportion of gene set under selection. Shown for selection acting on the East Asian
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia,
AMR=America.

251



Appendices

America

AFR_AMR: 1kya AFR_AMR: Skya AFR_AMR: 10kya AFR_AMR: 40kya
60 20.96 59.25 92.7 99.88 60 2214 60.08 92.86 99.89 60 24.84 65.57 95.08 99.95 60 42.07 92.58 99.96 100
40 18.34 45.83 80.92 98.11 40 19.04 47.88 82.19 98.14 40 17.63 47.02 82.36 98.48 40 32.04 80.72 99.41 99.98

N
s

10.48 25.04 47.08 75.49 20 117 26.13 49.28 77.02 20 11.75 27.86 51.74 80.22 20 19.01 52.09 86.52 99.05

10 7.18 14.45 24.21 40.84 10 8.77 17.03 28.16 4565 10 8.96 17.38 30.18 48.36 10 14.41 33.52 60.75 86.08

0.2 04 06 08 0.2 04 0.6 08 0.2 04 0.6 08 0.2 04 06 08
EUR_AMR: 1kya EUR_AMR: Skya EUR_AMR: 10kya EUR_AMR: 40kya
60{ 2119 5244 8347 9723  60{ 2161 5374 8577 9803  e0| 2226 5803 8831 9876 60| 79.81  99.93 100 100
o
N
2 40 16.22 39.59 66.2 88.12 40 18.37 4417 73.16 92.09 40 19.06 46.28 76.03 93.91 40 65.05 99.53 100 100
7}
(%]
©
S | 1108 2288 4053 6124 20 128 2719 4595  67.37 20| 1528 3159 5259 7453 20 4394 9139 9982 9399
o
10f 1021 1671 2642 3792 10 961 1848 2879 4197 10 1024 18.4 3131 4526 0 2203 6207 9234  97.84
0.2 04 06 08 0.2 04 0.6 08 0.2 04 0.6 08 0.2 0.4 08 08
EAS_AMR: 1kya EAS_AMR: Skya EAS_AMR: 10kya EAS_AMR: 40kya
60 2627 6149 8776  97.91 60| 3116 7053 9224 98989 60| 3538 7629 9622  99.68 60| 99.47 100 100 100
40 20.41 47.92 743 91.89 40 23.65 53.47 79.53 94.01 40 29.02 63.83 88.22 97.72 40 95.28 100 100 100
0{ 153 3101 5101 7066 20 1756 3687 5758 7532  20{ 1943 4226 6545 8348  20{ 7553  99.94 100 99,98

10 13.42 24.02 36.66 49.17 10 12,95 25.18 38.81 52.42 10 15.66 30.63 47.09 62.36 10 52.39 96.43 99.96 98.1

0.2 0.4 086 08 0.2 04 06 0.8 0.2 04 0.6 08 0.2 0.4 08 08

Percentage of Gene Set Under Selection

Fig. $2.22: The percentage of gene sets identified as being under selection,
according to the SUMSTAT method integrating American F ¢y values partitioned by
proportion of gene set under selection. Shown for selection acting on the American
population at 1kya, 5kya, 10kya, 40kya, on gene set sizes of 10, 20, 40 and 60. Given for
three population comparisons, where AFR=Africa, EUR=Europe, EAS=East Asia,
AMR=America.
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Chapter 3: Supplementary Material

Notes

Note $3.1: The code used to identify MA-gene sets with SUMSTAT summed values in
the 5% tail of the background distribution. As generated from the SUMSTAT summed
values generated from 1,000 neutral gene sets containing pMA-genes.

import pandas as pd
import numpy as np
from scipy.stats import norm

pops=["BantuSouthAfrica BantuKenya", "Biaka","Yoruba",
"Mandenka", "Mbuti", "San", "Bedouin", "Druze", "Mozabite",
"Palestinian", "Adygei", "Basque", "BergamoItalian Tuscan",
"French", "Orcadian", "Russian", "Sardinian", "Balochi",
"Brahui", "Burusho", "Hazara", "Kalash", "Makrani", "Pathan",
"Sindhi", "Uygur", "Dai Lahu", "Han", "Japanese",

"Orogen Hezhen Daur", "Naxi Yi", "NorthernHan Tu",

"She Miao Tujia", "Xibo Mongolian", "Yakut", "Maya", "Pima",
"Surui Karitiana", "Bougainville",

"PapuanHighlands PapuanSepik"]

newfile=][]
for x in pops:
dist =
pd.read csv("/home/ssd/jrees/significant/relate/sumstat/all/{}
neutral summed".format (x), header=None)
mean = np.mean (dist[0])
std = np.std(dist[0])

file=pd.read csv("/home/ssd/jrees/significant/relate/sumstat/a
11 micros summed pop", header=None, sep=" ")

score = file.loc[file[0]=="{}".format (x)][1l].values[0]

prob = norm(mean, std).cdf (score)

newfile.append (prob)

file['Probability'] = newfile
np.savetxt ("/home/ssd/jrees/significant/relate/sumstat/all mic
ros summed pop", file, fmt = '%s %f %f',header="Population Sum

Probability" ’ comments="" )
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Tables

Table $3.1: All micronutrient-associated genes used in this study associated with

the uptake, metabolism or regulation of 13 micronutrients. When genes are
associated with multiple micronutrients, their most supported association given in

“Micronutrient” with secondary or tertiary associations given in “Other Associations”.
Genes removed following the positive mask (Bergstrom et al,, 2020) indicated in the
“Removed During Pruning” column. Gene regions as taken from ensemble (Yates et al,
2020) and suggested from the literature (“Reference”).

Micronutrie Gene Name Gene Chr Gene Gene End Other Evidenc Remove Primary Ref
nt Abbreviati Start Associatio e of d
on ns selectio During
n Pruning

Selenium Glutathione Peroxidase 1 GPX1 3 49357176 | 49358358 Yes (White et al,,
2015)

Selenium Glutathione Peroxidase 2 GPX2 14 64939152 | 64942905 (White et al,,
2015)

Selenium Glutathione Peroxidase 3 GPX3 5 15102043 | 15102899 Yes (White et al,,
8 2 2015)

Selenium Glutathione Peroxidase 4 GPX4 19 1103926 1106791 (White et al,,
2015)

Selenium Glutathione Peroxidase 6 GPX6 6 28503296 | 28528215 (White et al,,
2015)

Selenium Iodothyronine Deiodinase 1 DIO1 1 53891239 | 53911086 iodine (White et al,,
2015)

Selenium Iodothyronine Deiodinase 2 DIO2 14 80197526 | 80387757 iodine Yes (White et al,,
2015)

Selenium Iodothyronine Deiodinase 3 DIO3 14 10156135 | 10156345 iodine (White et al,,
1 2 2015)

Selenium Selenoprotein F SELENOF 1 86862445 86914424 (White et al,,
2015)

Selenium Selenoprotein H SELENOH 11 57741250 57743554 (White et al,,
2015)

Selenium Selenoprotein I SELENOI 2 26308547 26395891 (White et al,,
2015)

Selenium Selenoprotein K SELENOK 3 53884417 53891962 (White et al,,
2015)

Selenium Selenoprotein M SELENOM 22 31104772 31120069 (White et al,,
2015)

Selenium Selenoprotein N SELENON 1 25800176 25818221 (White et al,,
2015)

Selenium Selenoprotein O SELENOO 22 50200979 50217616 (White et al,,
2015)

Selenium Selenoprotein T SELENOT 3 15060287 15063044 (White et al,,
5 5 2015)

Selenium Selenoprotein V SELENOV 19 39515113 39520686 (White et al,,
2015)

Selenium Selenoprotein W SELENOW 19 47778585 | 47784686 (White et al,,
2015)

Selenium Methionine Sulfoxide MSRB1 16 1938210 1943326 (White et al,,
Reductase B1 2015)

Selenium Thioredoxin Reductase 1 TXNRD1 12 10421577 10435030 (White et al,,
9 7 2015)

Selenium Thioredoxin Reductase 2 TXNRD2 22 19875517 19941820 (White et al,,
2015)

Selenium Thioredoxin Reductase 3 TXNRD3 3 12660705 12665512 (White et al,,
9 4 2015)

Selenium Glutathione Peroxidase 5 GPX5 6 28525881 28534955 Yes (White et al,,
2015)

Selenium Glutathione Peroxidase 7 GPX7 1 52602371 52609051 (White et al,,
2015)

Selenium Glutathione Peroxidase 8 GPX8 5 55160167 55167297 (White et al,,
2015)

Selenium Selenoprotein P SELENOP 5 42799880 | 42887392 (White et al,,
2015)

Selenium LDL Receptor Related LRP8 1 53242364 | 53328469 (White et al,,
Protein 8 2015)

Selenium LDL Receptor Related LRP2 2 16912710 | 16936253 (White et al,,
Protein 2 9 4 2015)

Selenium Selenocysteine Lyase SCLY 2 23806092 | 23809941 (White et)
4 3 al,, 2015)

Selenium Selenium Binding Protein 1 SELENBP1 1 15136430 | 15137270 copper Yes (White et al.,
4 7 2015)

Selenium Phosphoseryl-TRNA Kinase PSTK 10 12295438 | 12299751 (White et al.,
1 3 2015)

Selenium O-phosphoseryl-tRNA(Sec) SEPSECS 4 25120014 | 25160449 (White et al.,
Selenium Transferase 2015)
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Selenium Seryl-TRNA Synthetase 2 SARS2 19 38915266 | 38930763 (White et al.,
2015)
Selenium TRNA-SeC (Anticodon TCA) TRU-TCA1-1 19 45478602 45478687 (White et al.,
1-1 2015)
Selenium TRNA-SeC (Anticodon TCA) TRU-TCA2-1 22 44150657 44150742 (White et al.,
2-1 2015)
Selenium TRNA-SeC (Anticodon TCA) TRU-TCA3-1 17 40117300 40117373 (White etal.,
3-1 2015)
Selenium CUGBP Elav-Like Family CELF1 11 47465933 47565569 Yes (White etal,,
Member 1 2015)
Selenium Eurokaryotic Elongation EEFSEC 3 12815348 | 12840864 (White etal,,
Factor, Selenocysteine-TRNA 1 6 2015)
Specific
Selenium Eukaryotic Translation EIF4A3 17 80134369 | 80147151 (White etal.,
Initiation factor 4A3 2015)
Selenium ELAV like RNA Binding ELAVL1 19 7958573 8005659 (White etal.,
Protein 1 2015)
Selenium Ribosomal Protein L30 RPL30 8 98024851 | 98046469 (White et al,,
2015)
Selenium SECIS Binding Protein 2 SECISBP2 9 89318500 | 89359663 iodine (White et al,,
2015)
Selenium Selenophosphate synthetase SEPHS1 10 13317428 | 13348298 (White etal,,
1 2015)
Selenium TRNA Selenocystein 1 TRNAU1AP 1 28553085 | 28578545 (White et al,,
Associated Protein 1 2015)
Selenium Exportin 1 XP0O1 2 61477849 61538626 (White etal,,
2015)
Selenium A-Kinase Anchoring Protein AKAP6 14 32329298 | 32837684 (Engelken et
6 al, 2016)
Selenium Fatty Acid Binding Protein 1 FABP1 2 88122982 | 88128062 (Engelken et
al,, 2016)
Selenium Calcium-activated Potassium KCNMA1 10 76869601 | 77638369 (Engelken et
Channel Subfamily M Alpha- al, 2016)
1
Selenium Protein kinase CGMP- PRKG1 10 50990888 | 52298423 (Engelken et
Dependent 1 al, 2016)
Selenium Selenoprotein S SELENOS 15 10127081 | 10127750 Yes (Engelken et
7 0 al,, 2016)
Selenium Selenoprotein Synthetase 2 SEPHS2 16 30443631 30445874 Yes (Engelken et
al,, 2016)
Selenium Sarcoglycan Delta SGCD 5 15587034 15676778 (Engelken et
4 8 al,, 2016)
Selenium Thioredoxin TXN 9 11024381 11025650 (Engelken et
0 7 al,, 2016)
Selenium Aldo-Keto Reductase Family AKR7L 1 19265982 19274194 (Wishart et
7 Like al,, 2007)
Selenium Cystathionine Beta-Synthase CBS 21 43053191 43076943 Yes (Dib etal,
2019)
Selenium Arylsulfatase B ARSB 5 78777209 78986087 (Dib etal,
2019)
Selenium LHFPL Tetraspan Subfamily LHFPL2 5 78485215 78770021 (Dib etal,
Member 2 2019)
Selenium Dimethylglycine DMGDH 5 78997564 79236038 (Dib etal,
Dehydrogenase 2019)
Selenium Betaine-Homocysteine S- BHMT2 5 79069767 79090069 (Dib etal,
Methyltransferase 2 2019)
Selenium Betaine-Homocysteine S- BHMT 5 79111809 79132288 (Dib etal,
Methyltransferase 2 2019)
Selenium Junction Mediating And JMY 5 79236131 79327211 (Dib etal,
Regulatory Protein, P53 2019)
Cofactor
Copper Antioxidant 1 Copper ATOX1 5 15174231 15177253 (Engelken et
Chaperone 6 2 al,, 2016)
Copper ATPase Copper Transporting ATP7A X 77910656 78050395 (Engelken et
Alpha al,, 2016)
Copper ATPase Copper Transporting ATP7B 13 51930436 52012125 (Engelken et
Beta al,, 2016)
Copper Copper Metabolism Domain COMMD1 2 61888724 62147247 (Engelken et
Containing 1 al,, 2016)
Copper X-linked Inhibitor Of XIAP X 12385972 12391397 (Wishart et
Apoptosis 4 9 al.,, 2007)
Copper Solute Carrier Family 31 SLC31A1 9 11322154 | 11326449 (Engelken et
Member 1 4 2 al,, 2016)
Copper Solute Carrier Family 31 SLC31A2 9 11315097 | 11316414 (Engelken et
Member 2 6 0 al,, 2016)
Copper Superoxide Dismutase 1 SOD1 21 31659666 | 31668931 (Engelken et
al,, 2016)
Copper Coiled-Coil Domain ccpez7 1 3746460 3771645 (Dib etal,,
Containing 27 2019)
Iron 3-Hydroxybutyrate BDH2 4 10307759 | 10309987 (Engelken et
Dehydrogenase 2 2 0 al, 2016)
Iron Cytochrome D Reductase 1 CYBRD1 2 17152224 | 17155812 (Engelken et
7 9 al,, 2016)
Iron Endothelial PAS Domain EPAS1 2 46293667 | 46386697 Yes (Engelken et
Protein 1 al,, 2016)
Iron Ferrochelatase FECH 18 57544377 | 57586702 (Engelken et
al, 2016)
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Iron Ferritin Heavy Chain 1 FTH1 11 61959718 | 61967634 (Engelken et
al, 2016)
Iron Ferritin Light Chain FTL 19 48965309 | 48966879 (Engelken et
al, 2016)
Iron Hepcidin Antimicrobial HAMP 19 35280716 | 35285143 (Engelken et
Peptide al., 2016)
Iron Hephaestin HEPH X 66162549 | 66268867 (Engelken et
al, 2016)
Iron Homeostatic Iron Regulator HFE 6 26087281 | 26098343 Yes (Engelken et
al, 2016)
Iron Hemojuveline BMP Co- H|V 1 14601746 | 14603674 (Engelken et
Receptor 8 6 al., 2016)
Iron Hypoxia Inducible Factor 1 HIF1A 14 61695513 | 61748259 (Engelken et
Subunit Alpha al., 2016)
Iron Lactotransferrin LTF 3 46435645 | 46485234 (Engelken et
al, 2016)
Iron Ras Homolog Family RHOA 3 49359145 | 49412998 (Engelken et
Member A al., 2016)
Iron Solute Carrier Family 17 SLC17A1 6 25782915 | 25832052 (Engelken et
Member 1 al., 2016)
Iron Solute Carrier Family 40 SLC40A1 2 18956059 | 18958375 (Engelken et
Member 1 0 8 al., 2016)
Iron STEAP3 Metalloreductase STEAP3 2 11922383 11926565 (Engelken et
1 2 al., 2016)
Iron Transferrin TF 3 13374604 | 13379664 (Engelken et
0 1 al,, 2016)
Iron Transferrin Receptor 2 TFR2 7 10062041 10064277 (Engelken et
6 9 al,, 2016)
Iron Transferrin Receptor TFRC 3 19602718 | 19608209 (Engelken et
3 6 al,, 2016)
Iron Transmembrane Serine TMPRSS6 22 37065436 | 37109713 (Engelken et
Protease 6 al, 2016)
Iron Iron-Sulfur Cluster Assembly ISCU 12 10856258 | 10856938 (Engelken et
Enzyme 2 4 al, 2016)
Iron Lipcalin 2 LCN2 9 12814907 12815345 (Engelken et
1 3 al, 2016)
Iron Ferritin Mitochondrial FTMT 5 12185188 | 12185283 (Wishart et
2 3 al,, 2007)
Iron Aconitase 1 AC01 9 32384603 32454769 (Muckenthal
eretal.,
2008)
Iron Aconitase 2 ACO2 22 41469117 | 41528989 (Muckenthal
eretal.,
2008)
Iron 5’-Aminolevulinate Synthase ALAS2 X 55009055 55030977 (Muckenthal
2 eretal.,
2008)
Iron Solute Carrier Family 46 SLC46A1 17 28394642 28407197 (Muckenthal
Member 1 eretal.,
2008)
Iron Solute Carrier Family 11 SLC11A1 2 21838202 21839689 zinc (Fishilevich
Member 1 9 4 etal, 2017)
Iron Solute Carrier Family 48 SLC48A1 12 47753916 | 47782751 (Fishilevich
Member 1 etal, 2017)
Iron Solute Carrier Family 11 SLC11A2 12 50979401 magnesium (Muckenthal
Member 2 51028566 eretal.,
2008)
Iron HBS1 Like Translational HBSI1L 6 13496037 13510305 (Dib etal,
GTPase 8 6 2019)
Iron MYB Proto-Oncogene MYB 6 13518130 13521917 (Dib etal,
8 3 2019)
Iron Phosphatidylinositol-4,5- PIK3CG 7 10686527 10690898 (Dib etal,
Bisphosphate 3-Kinase 8 0 2019)
Catalytic Subunit Gamma
Iron Cilia and Flagella Associated CFAP251 12 12191859 12200392 (Dib etal,
Protein 251 2 7 2019)
Iron RHO Guanine Nucleotide ARHGEF3 3 56727418 57079329 (Dib etal,
Exchange Factor 3 2019)
Iron TAO Kinase 1 TAOK1 17 29390464 29551904 (Dib etal,
2019)
Iron Ceruloplasmin cpP 3 14916241 14922182 copper (Fishilevich
0 9 etal, 2017)
Iron Pantothenate Kinase 2 PANK2 20 3888839 3929882 (Fishilevich
etal, 2017)
Iron Phospholipase A2 Group 6 PLA2G6 22 38111495 | 38214778 (Fishilevich
etal, 2017)
Iron Chromosome 19 Open C190RF12 19 29698886 | 29715789 (Fishilevich
Reading Frame 12 etal, 2017)
Iron Fatty Acid 2-Hydroxylase FA2H 16 74712955 | 74774831 (Fishilevich
etal, 2017)
Iron WD Repeat Domain 45 WDR45 X 49074433 | 49101170 (Fishilevich
etal, 2017)
Iron ATPase Cation Transporting ATP13A2 1 16985958 | 17011928 manganese (Fishilevich
13A2 etal, 2017)
Magnesium Solute Carrier Family 41 SLC41A1 1 20578909 | 20581374 (Engelken et
Member 1 4 8 al, 2016)
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Magnesium Transient Receptor Potential TRPM6 9 74722495 | 74888094 (Houillier,
Cation Channel Subfamily M 2014)
Member 6
Magnesium Claudin 16 CLDN16 3 19032254 | 19041214 (Houillier,
1 3 2014)
Magnesium Claudin 19 CLDN19 1 42733093 | 42740254 (Houillier,
2014)
Magnesium Potassium Voltage-Gated KCNA1 12 4909905 4918256 (Houillier,
Channel Subfamily A 2014)
Member 1
Magnesium Cyclin and CBS Domain CNNM2 10 10291829 | 10309022 (Houillier,
Divalent Metal Cation 4 2 2014)
Transport Mediator 2
Magnesium FXYD Domain Containing Ion FXYD2 11 11780084 11782869 (Houillier,
Transport Regulator 2 4 8 2014)
Magnesium Mitochondrial E3 Ubiquitin MUL1 1 20499448 | 20508151 (Houillier,
Protein Ligase 1 2014)
Magnesium Doublecortin Domain DCDC1 11 30830369 | 31369810 (Houillier,
Containing 1 2014)
Magnesium Shroom Family Member 3 SHROOM3 4 76435229 76783253 (Houillier,
2014)
Magnesium MDS1 and EVI1 Complex MECOM 3 16908349 | 16966377 (Houillier,
Locus 9 5 2014)
Magnesium Fibroblast Growth Factor FGFR2 10 12147833 12159845 (Houillier,
Receptor 2 2 8 2014)
Magnesium 3’-Phosphoadenosine 5'- PAPSS2 10 87659613 | 87747705 (Houillier,
Phosphosulfate Synthase 2 2014)
Magnesium ADP Ribosylation Factor like ARL15 5 53883942 | 54310582 (Houillier,
GTPase 15 2014)
Magnesium Epidermal Growth Factor EGF 4 10991288 | 11001376 (Fishilevich
3 6 etal, 2017)
Zinc G Protein-Coupled Receptor GPR39 2 13241680 | 13264658 (Engelken et
39 5 2 al,, 2016)
Zinc Interleukin 6 IL6 7 22725884 22732002 (Engelken et
al,, 2016)
Zinc Interleukin 6 Receptor IL6R 1 15440519 15446945 (Engelken et
3 0 al,, 2016)
Zinc Metallothionein 1A MTIA 16 56638666 | 56640087 (Engelken et
al, 2016)
Zinc Metallothionein 1E MTI1E 16 56625475 56627112 (Engelken et
al, 2016)
Zinc Metallothionein 1F MTI1F 16 56657731 56660698 (Engelken et
al, 2016)
Zinc Metallothionein 1G MT1G 16 56666730 56668065 (Engelken et
al, 2016)
Zinc Metallothionein 1H MTI1H 16 56669814 56671129 (Engelken et
al, 2016)
Zinc Metallothionein 2A MT2A 16 56608584 56609497 (Engelken et
al, 2016)
Zinc Metallothionein 4 MT4 16 56565073 | 56568957 (Engelken et
al, 2016)
Zinc Metal Response Element MTF1 1 37809574 37859592 (Engelken et
Binding Transcription Factor al., 2016)
Zinc Metal Response Element MTF2 1 93079235 93139079 (Engelken et
Binding Transcription Factor al., 2016)
Zinc Solute Carrier Family 30 SLC30A1 1 21157156 21157916 (Engelken et
Member 1 8 1 al,, 2016)
Zinc Solute Carrier Family 30 SLC30A2 1 26037252 26046118 (Engelken et
Member 2 al,, 2016)
Zinc Solute Carrier Family 30 SLC30A3 2 27253684 | 27275817 (Engelken et
Member 3 al,, 2016)
Zinc Solute Carrier Family 30 SLC30A4 15 45479606 | 45522755 (Engelken et
Member 4 al,, 2016)
Zinc Solute Carrier Family 30 SLC30A5 5 69093949 | 69131069 (Engelken et
Member 5 al,, 2016)
Zinc Solute Carrier Family 30 SLC30A6 2 32165841 | 32224379 (Engelken et
Member 6 al,, 2016)
Zinc Solute Carrier Family 30 SLC30A7 1 10089607 | 10098175 (Engelken et
Member 7 6 7 al,, 2016)
Zinc Solute Carrier Family 30 SLC30A8 8 11695027 | 11717671 (Engelken et
Member 8 3 4 al,, 2016)
Zinc Solute Carrier Family 30 SLC30A9 4 41990502 | 42090461 Yes (Engelken et
Member 9 al,, 2016)
Zinc Solute Carrier Family 39 SLC39A1 1 15395909 | 15396818 (Engelken et
Member 1 9 4 al,, 2016)
Zinc Solute Carrier Family 39 SLC39A10 2 19557597 | 19573770 (Engelken et
Member 10 7 2 al,, 2016)
Zinc Solute Carrier Family 39 SLC39A11 17 72645949 | 73092712 (Engelken et
Member 11 al,, 2016)
Zinc Solute Carrier Family 39 SLC39A12 10 17951839 | 18043292 (Engelken et
Member 12 al,, 2016)
Zinc Solute Carrier Family 39 SLC39A13 11 47407132 | 47416496 (Engelken et
Member 13 al,, 2016)
Zinc Solute Carrier Family 39 SLC39A2 14 20999255 | 21001871 (Engelken et
Member 2 al, 2016)
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Zinc Solute Carrier Family 39 SLC39A3 19 2732204 2740028 (Engelken et
Member 3 al., 2016)
Zinc Solute Carrier Family 39 SLC39A4 8 14440974 | 14441684 Yes (Engelken et
Member 4 2 4 al., 2016)
Zinc Solute Carrier Family 39 SLC39A5 12 56230049 | 56237846 Yes (Engelken et
Member 5 al., 2016)
Zinc Solute Carrier Family 39 SLC39A6 18 36108531 | 36129385 (Engelken et
Member 6 al., 2016)
Zinc Solute Carrier Family 39 SLC39A7 6 33200445 | 33204439 Yes Yes (Engelken et
Member 7 al, 2016)
Zinc Solute Carrier Family 39 SLC39A8 4 10225104 | 10243125 | magnesium, Yes (Engelken et
Member 8 1 8 manganese al., 2016)
Zinc Solute Carrier Family 39 SLC39A9 14 69398015 | 69462390 (Engelken et
Member 9 al, 2016)
Zinc Signal Transducer and STAT3 17 42313324 | 42388568 (Engelken et
Activator of Transcription 3 al, 2016)
Zinc Carbonic Anhydrase 1 CA1 8 85327608 | 85379014 (Dib etal.,,
2019)
Zinc Carbonic Anhydrase 2 CA2 8 85463968 | 85481493 (Dib etal.,,
2019)
Zinc Carbonic Anhydrase 3 CA3 8 85373436 | 85449040 (Dib etal.,,
2019)
Zinc Carbonic Anhydrase 13 CA13 8 85220587 | 85284073 (Dib etal.,,
2019)
Zinc Secretory Carrier Membrane SCAMP5 15 74957219 75021495 (Dib etal.,,
Protein 5 2019)
Zinc KLF Transcription Factor 8 KLF8 X 56232356 | 56291531 (Dib etal.,
2019)
Zinc Zinc Finger X-Linked ZXDA X 57906708 | 57910820 (Dib etal.,
Duplicated A 2019)
Zinc Zinc Finger X-Linked ZXDB X 57591652 | 57597545 (Dib etal.,
Duplicated B 2019)
Sodium Sodium Channel Epithelial 1 SCNN1A 12 6346843 6377730 potassium (Engelken et
Subunit Alpha al,, 2016)
Sodium Sodium Channel Epithelial 1 SCNN1B 16 23278231 | 23381294 potassium (Rossier et
Subunit Beta al,, 2002)
Sodium Sodium Channel Epithelial 1 SCNN1D 1 1280436 1292029 potassium (Rossier et
Subunit Delta al,, 2002)
Sodium Sodium Channel Epithelial 1 SCNN1G 16 23182745 23216883 potassium (Rossier et
Subunit Gamma al.,, 2002)
Sodium Nuclear Receptor Subfamily NR3C2 4 14807876 14844469 (Rossier et
3 Group C Member 2 2 8 al.,, 2002)
Sodium Angiotensinogen AGT 1 23070252 23071412 (Rossier et
3 2 al,, 2002)
Sodium FXYD Domain Containing lon FXYD4 10 43371636 | 43376335 (Rossier et
Transport Regulator 4 al.,, 2002)
Sodium FXYD Domain Containing lon FXYD3 19 35115879 35124324 (Rossier et
Transport Regulator 3 al.,, 2002)
Sodium FXYD Domain Containing lon FXYD1 19 35138808 35143109 (Rossier et
Transport Regulator 1 al.,, 2002)
Sodium FXYD Domain Containing lon FXYD5 19 35154730 | 35169881 (Rossier et
Transport Regulator 5 al.,, 2002)
Sodium FXYD Domain Containing lon FXYD7 19 35143250 | 35154302 (Rossier et
Transport Regulator 7 al.,, 2002)
Sodium Sodium Voltage-Gated SCN3B 11 12362918 | 12365524 (Rossier et
Channel Beta Subunit 3 7 4 al.,, 2002)
Sodium NEDD4 E3 Ubiquitin Protein NEDD4 15 55826922 55993746 (Rossier et
Ligase al.,, 2002)
Sodium Serum/Glucocorticoid SGK1 6 13416924 13431811 (Rossier et
Regulated Kinase 1 6 2 al.,, 2002)
Sodium Serine/Threonine Kinase 39 STK39 2 16795402 16824759 (Freitas,
0 5 2018)
Sodium G Protein-Coupled Receptor GRK4 4 2963571 3040760 (Freitas,
Kinase 4 2018)
Sodium Solute Carrier Family 4 SLC4A5 2 74216242 74343414 (Freitas,
Member 5 2018)
Calcium Transient Receptor Potential TRPM2 21 44350163 44443081 (Engelken et
Cation Channel Subfamily M al.,, 2016)
Member 2
Calcium Transient Receptor Potential TRPVS 7 14290810 14293374 Yes (Kovacs et
Cation Channel Subfamily V 1 6 al, 2013)
Member 5
Calcium Transient Receptor Potential TRPV6 7 14287120 | 14288574 Yes Yes (Hughes et
Cation Channel Subfamily V 8 5 al,, 2008)
Member 6
Calcium Calcium Sensing Receptor CASR 3 12218366 | 12229162 | magnesium, (Houillier,
8 9 phosphorus 2014)
Calcium B-Box and SPRY Domain BSPRY 9 11334954 | 11337123 (Khanal &
Containing 1 3 Nemere,
2008)
Calcium Regulator of G Protein RGS2 1 19280903 19281227 (Khanal &
Signalling 2 9 5 Nemere,
2008)
Calcium Solute Carrier Family 8 SLC8A1 2 40097270 | 40611053 (Khanal &
Member 1 Nemere,
2008)
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Calcium Solute Carrier Family 8 SLC8A2 19 47428017 | 47471893 (Khanal &
Member 2 Nemere,
2008)
Calcium Solute Carrier Family 8 SLC8A3 14 70044215 | 70189070 (Khanal &
Member 3 Nemere,
2008)
Calcium ATPase Plasma Membrane ATP2B1 12 89588049 | 89709300 (Freitas,
Ca2+ Transporting 1 2018)
Calcium ATPase Plasma Membrane ATP2B2 3 10324023 10708007 (Khanal &
Ca2+ Transporting 2 Nemere,
2008)
Calcium ATPase Plasma Membrane ATP2B3 X 15351767 | 15358293 (Khanal &
Ca2+ Transporting 3 6 9 Nemere,
2008)
Calcium ATPase Plasma Membrane ATP2B4 1 20362656 | 20374408 (Khanal &
Ca2+ Transporting 4 1 1 Nemere,
2008)
Calcium Parathyroid Hormone PTH 11 13492054 | 13496181 potassium (Khanal &
Nemere,
2008)
Calcium Cytochrome P450 Family 24 CYP24A1 20 54153446 54173986 (Dib etal.,
Subfamily A Member 1 2019)
Calcium GATA Binding Protein 3 GATA3 10 8045378 8075198 (Dib etal.,
2019)
Calcium Diacylglycerol Kinase Delta DGKD 2 23335450 | 23347210 (Dib etal.,,
7 4 2019)
Calcium Von Willebrand Factor A VWA8 13 41566835 | 41961120 (Dib etal.,
Domain Containing 8 2019)
Calcium Glucokinase Regulator GCKR 2 27496839 | 27523684 (Dib etal.,
2019)
Iodine Thyroid Hormone Receptor TRIP4 15 64387748 | 64455303 Yes (Herraez et
Interactor 4 al., 2009)
Iodine Iodotyrosine Deiodinase 1YD 6 15036889 | 15040596 Yes (Herraez et
2 9 al,, 2009)
Iodine Solute Carrier Family 5 SLC5A5 19 17871945 | 17895174 sodium (Engelken et
Member 5 al, 2016)
Iodine Solute Carrier Family 16 SLC16A10 6 11108750 | 11123119 (The UniProt
Member 10 3 4 Consortium,
2023)
lodine Thyroid Hormone Receptor THRA 17 40058290 | 40093867 (The UniProt
Alpha Consortium,
2023)
lodine Thyroid Hormone Receptor THRB 3 24117153 24495756 (The UniProt
Beta Consortium,
2023)
lodine Solute Carrier Family 16 SLC16A2 X 74421493 74533917 (The UniProt
Member 2 Consortium,
2023)
lodine Thyroid Stimulating TSHR 14 80954989 81146302 (The UniProt
Hormone Receptor Consortium,
2023)
lodine Solute Carrier Organic Anion SLCO1C1 12 20695355 | 20753386 (The UniProt
Transporter Family Member Consortium,
1C1 2023)
lodine Thyroid Peroxidase TPO 2 1374066 1543711 (Wishart et
al,, 2007)
lodine Transthyretin TTR 18 31557010 31599021 (Wishart et
al,, 2007)
lodine Serpin Family A Member 7 SERPINA7 X 10603243 10603872 (Wishart et
5 7 al,, 2007)
lodine Solute Carrier Family 3 SLC3A2 11 62856102 | 62888875 (Wishart et
Member 2 al.,, 2007)
lodine Sulfotransferase Family 6B SULT6B1 2 37167820 | 37196598 (Wishart et
Member 1 al.,, 2007)
Chloride Chloride Voltage-Gated CLCN3 4 16961263 16972367 (Stauber &
Channel 3 3 3 Jentsch,
2013)
Chloride Chloride Voltage-Gated CLCN4 X 10156945 | 10237660 (Stauber &
Channel 4 Jentsch,
2013)
Chloride Chloride Voltage-Gated CLCN5 X 49922596 | 50099235 (Stauber &
Channel 5 Jentsch,
2013)
Chloride Chloride Voltage-Gated CLCN6 1 11806096 | 11848079 (Stauber &
Channel 6 Jentsch,
2013)
Chloride Chloride Voltage-Gated CLCN7 16 1444934 1475084 (Stauber &
Channel 7 Jentsch,
2013)
Chloride CF Transmembrane CFTR 7 11728712 11771597 (Stauber &
Conductance Regulator 0 1 Jentsch,
2013)
Chloride Aquaporin 6 AQP6 12 49967194 | 49977139 (Stauber &
Jentsch,
2013)
Chloride Anoctamin 3 ANO3 11 26188842 | 26663289 (Stauber &
Jentsch,
2013)
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Chloride Anoctamin 4 ANO4 12 10071752 10112864 (Stauber &
6 1 Jentsch,
2013)
Chloride Anoctamin 5 ANOS5 11 21799934 | 22283357 (Stauber &
Jentsch,
2013)
Chloride Anoctamin 6 ANO6 12 45215987 | 45440404 (Stauber &
Jentsch,
2013)
Chloride Anoctamin 7 ANO7 2 24118850 | 24122537 (Stauber &
9 7 Jentsch,
2013)
Chloride Bestrophin 1 BEST1 11 61950063 | 61965515 (Stauber &
Jentsch,
2013)
Chloride G Protein-Coupled Receptor GPR89A 1 14560798 | 14567065 Yes (Stauber &
89A 8 0 Jentsch,
2013)
Chloride Chloride Intracellular CLIC1 6 31730581 | 31739763 Yes (Stauber &
Channel 1 Jentsch,
2013)
Chloride Chloride Intracellular CLIC2 X 15527621 15533465 (Stauber &
Channel 2 1 7 Jentsch,
2013)
Chloride Chloride Intracellular CLIC3 9 13699460 | 13699656 (Stauber &
Channel 3 8 8 Jentsch,
2013)
Chloride Chloride Intracellular CLIC4 1 24745382 | 24844321 (Stauber &
Channel 4 Jentsch,
2013)
Chloride Chloride Intracellular CLIC5 6 45880827 | 46080348 (Stauber &
Channel 5 Jentsch,
2013)
Chloride Chloride Intracellular CLIC6 21 34669389 | 34718227 (Stauber &
Channel 6 Jentsch,
2013)
Chloride Solute Carrier Family 17 SLC17A7 19 49429401 | 49442360 (Stauber &
Member 7 Jentsch,
2013)
Chloride Solute Carrier Family 12 SLC12A2 5 12808376 12818967 (Wishart et
Member 2 6 7 al.,, 2007)
Chloride Chloride Voltage-Gated CLCNKB 1 16043736 16057308 (Jainetal,
Channel Kb 2013)
Chloride Barttin CLCNK Type BSND 1 54998933 | 55017172 (Jain etal.,
Accessory Subunit Beta 2013)
Potassium Potassium Inwardly KCNj10 1 15999865 16007016 calcium (Jainetal,
Rectifying Channel 1 0 2013)
Subfamily ]| Member 10
Potassium Cytochrome P450 Family 11 CYP11B1 8 14287235 14287984 (Jainetal,
Subfamily B Member 1 6 6 2013)
Potassium Cytochrome P450 Family 11 CYP11B2 8 14291055 14291784 (Jainetal,,
Subfamily B Member 2 9 3 2013)
Potassium Hydroxysteroid 11-Beta HSD11B2 16 67430652 67437553 sodium (Jainetal,,
Dehydrogenase 2 2013)
Potassium Solute Carrier Family 12 SLC12A1 15 48178438 48304078 sodium, (Jainetal,,
Member 1 chloride 2013)
Potassium Potassium Inwardly KCNj1 11 12883631 12886737 (Jainetal,,
Rectifying Channel 5 3 2013)
Subfamily ]| Member 1
Potassium Solute Carrier Family 12 SLC12A3 16 56865207 56915850 calcium, (Jainetal,,
Member 3 magnesium 2013)
Phosphorus Solute Carrier Family 34 SLC34A1 5 17737923 17739884 calcium (Chang &
Member 1 5 8 Anderson,
2017)
Phosphorus Solute Carrier Family 34 SLC34A2 4 25648011 | 25678748 (Chang &
Member 2 Anderson,
2017)
Phosphorus Solute Carrier Family 34 SLC34A3 9 13723075 | 13723655 calcium (Chang &
Member 3 7 5 Anderson,
2017)
Phosphorus Fibroblast Growth Factor 23 FGF23 12 4368227 4379712 (Chang &
Anderson,
2017)
Phosphorus Polypeptide N- GALNT3 2 16574758 | 16579465 (Chang &
Acetylgalactosaminyltransfe 8 9 Anderson,
rase 3 2017)
Phosphorus Alkaline Phosphatase, ALPL 1 21509397 | 21578410 (Dib etal.,,
Biomineralization 2019)
Associated
Phosphorus NBPF Member 3 NBPF3 1 21440128 | 21485005 (Dib etal.,,
2019)
Phosphorus Phosphodiesterase 7B PDE7B 6 13585170 | 13619557 (Dib etal,,
1 4 2019)
Phosphorus LEM Domain Nuclear LEMD2 6 33771202 | 33789130 (Dib etal.,,
Envelope Protein 2 2019)
Phosphorus Motilin MLN 6 33794673 | 33804003 (Dib etal.,,
2019)
Phosphorus Inositol 1,4,5-Triphosphate ITPR3 6 33620365 | 33696574 (Dib etal,,
Receptor Type 3 2019)
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Phosphorus Mitochondrial Matrix Import CCDC58 3 12235959 | 12238323 (Dib etal.,,
Factor 23 1 1 2019)
Phosphorus Fibroblast Growth Factor 6 FGF6 12 4428155 4445614 (Dib etal.,,
2019)
Phosphorus RADS51 Associated Protein 1 RAD51AP1 12 4538798 4560048 (Dib etal.,,
2019)
Manganese Superoxide Dismutase 2 SoD2 6 15966906 | 15974518 (Engelken et
9 6 al, 2016)
Manganese Solute Carrier Family 30 SLC30A10 1 21968542 | 21995864 zinc, (Dib etal.,,
Member 10 7 7 magnesium 2019)
Manganese Cytochrome P450 12c1 12C1 3 13085059 | 13101671 (Horning et
5 2 al, 2015)
Manganese Solute Carrier Family 39 SLC39A14 8 22367249 | 22434129 zinc (Horning et
Member 14 al, 2015)
Molybdenum Major Facilitator MFSD5 12 53251251 | 53254406 (Engelken et
Superfamily Domain al, 2016)
Containing 5
Molybdenum Molybdenum Cofactor MocCs1 6 39899578 | 39934551 (Reiss &
Synthesis 1 Hahnewald,
2011)
Molybdenum Molybdenum Cofactor Mocs2 5 53095679 | 53110063 (Reiss &
Synthesis 2 Hahnewald,
2011)
Molybdenum Molybdenum Cofactor Mocos 18 36187497 | 36272157 (Fishilevich
Sulfurase etal, 2017)
Molybdenum Gephyrin GPHN 14 66507407 | 67181803 (Reiss &
Hahnewald,
2011)

Table $3.2: All micronutrient-associated genes which are less than 10kbp (“Nature
of Overlap” = “+10kbp”) or have overlapping gene regions as given by ensemble

(“Nature of Overlap” = “ensemble”)

Overlapping Overlap (bp) Nature of
Genes Overlap
GPx1 (selenium) RHOA (iron) 787 +10kbp
LHFPL2 (selenium) ARSB (selenium) 7188 +10kbp
LEMD2 (phosphorus) MLN (phosphorus) 5543 +10kbp
MT1F (zinc) MT1G (zinc) 6032 +10kbp
MT1G (zinc) MT1H (zinc) 1749 +10kbp
FXYD1 (sodium) FXYD7 (sodium) 141 +10kbp
FXYD7 (sodium) FXYD5 (sodium) 428 +10kbp
DMGDH (selenium) BHMT?2 (selenium) 166271 ensemble
GPx5 (selenium) GPx6 (selenium) 2334 ensemble
CA1 (zinc) CA3 (zinc) 5578 ensemble
BEST1 (chloride) FT1H (zinc) 5797 ensemble
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Table $3.3: Details on the allele frequency distribution of all micronutrient-

associated gene sets. The number of SNPs over all genes in a given gene set (calculated

from the Yoruba population), mean, median and standard deviation of the allele

frequency distribution of all micronutrient-associated gene sets, the difference to that of
the background (allele frequency distribution of chr1 of the Yoruba population; mean=
0.345, median= 0.227, standard deviation= 0.290), and the significance calculated when
comparing these distributions (unpaired Wilcoxon test).

Number | Mean Difference to | Median Difference Standard Difference to | Significance
of SNPs Background to Deviation Background
Mean Background Standard
Median Deviation
Selenium 17614 0.337 -0.008 0.227 0.000 0.282 -0.008 0.057
Copper 1409 0.315 -0.030 0.182 -0.045 0.279 -0.011 0.000854
Iron 6476 0.343 -0.002 0.227 0.000 0.292 0.002 3.6131
Magnesium 7862 0.356 0.011 0.227 0.000 0.293 0.003 0.03418
Zinc 7755 0.356 0.011 0.227 0.000 0.297 0.007 0.1861
Sodium 5016 0.327 -0.018 0.205 -0.023 0.284 -0.006 0.001019
Calcium 6978 0.344 -0.001 0.205 -0.023 0.293 0.003 0.6302
Iodine 4035 0.351 0.006 0.250 0.023 0.290 0.000 0.2436
Chloride 8514 0.337 -0.008 0.227 0.000 0.281 -0.009 0.9225
Potassium 1682 0.342 -0.003 0.250 0.023 0.276 -0.014 0.1838
Phosphorus 2662 0.344 -0.001 0.205 -0.023 0.294 0.004 0.8334
Manganese 2152 0.348 0.003 0.205 -0.023 0.289 -0.001 0.08396
Molybdenum 1390 0.427 0.082 0.273 0.045 0.305 0.015 2.20E-16

Table $3.4: Micronutrient genes enriched for SNP-density. Enrichment given as over
95% quantile of the cumulative density function drawn from the distribution formed from
generated neutral gene regions.

Micronutrient Gene SNPs Calculated CDF

Selenium SELENOO 1083 0.99776
Iron EPAS1 2829 0.97643

Zinc MT1A 584 0.97112

Zinc MTIF 631 0.98755
Sodium, Potassium SCNN1D 807 0.95443
Calcium SLC8A1 13155 0.98523
Chloride CLCN7 1388 0.99038
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Table $3.5: The mean of the CDF position for each micronutrient gene set. The
significance of the difference given from a normal distribution centred at 0.5 (5.d.=0.25;
wilcox-test). Drawn from the distribution formed from generated neutral gene regions.

Micronutrient Mean Significance
Selenium 0.52796 0.09295
Copper 0.46716 0.3253
Iron 0.53543 0.6813
Magnesium 0.50585 0.9858
Zinc 0.48324 0.454
Sodium 0.59495 0.09706
Calcium 0.63266 0.01754
lodine 0.50401 0.8116
Chloride 0.58836 0.1014
Potassium 0.54300 0.5248
Phosphorus 0.61845 0.03211
Manganese 0.41585 0.3144
Molybdenum 0.532746 0.6065

Table $3.6: Populations used in this study. Defined by (Bergstrém et al., 2020).

Metapopulation Group name Populations Sample Size
Africa Mbuti Mbuti 13
Biaka Biaka 22
San San 6
Bantu-speaking Bantu(Kenya), Bantu(SouthAfrica) 19
Yoruba Yoruba 22
Mandenka Mandenka 22
Middle-East Mozabite Mozabite 27
Palestinian Palestinian 46
Druze Druze 42
Bedouin Bedouin 46
Europe Bergamoltalian-Tuscan Bergamo_Italian, Tuscan 21
Russian Russian 25
Adygei Adygei 16
Orcadian Orcadian 15
French French 28
Basque Basque 23
Sardinian Sardinian 28
Russian Russian 25
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East-Asia Xibo-Mongolian Mongolian, Xibo 18
NorthernHan-Tu NorthernHan, Tu 20

Naxi-Yi Naxi, Yi 18

She-Miao-Tujia She, Miao, Tujia 29
Orogen-Hezhen-Daur Orogen, Hezhen, Daur 27

Dai-Lahu Dai, Lahu 17

Han Han 33

Japanese Japanese 27

Yakut Yakut 25

Central-South Asia Hazara Hazara 19
Uygur Uygur 10

Makrani Makrani 25

Sindhi Sindhi 24

Balochi Balochi 24

Brahui Brahui 25

Burusho Barusho 25

Kalash Kalash 22

Pathan Pathan 24

Oceania Papuan Papuan (Sepik), Papuan(Highlands) 17
Bougainville Bougainville 11

Americas Pima Pima 13
Maya Maya 21

Surui-Karitiana Surui, Karitiana 20

Table $3.7: Micronutrient-associated gene sets with significantly different summed
selection values. According to the gene set method SUMSTAT integrating Relate
selection values. Partitioned by significance.

Micronutrient Population Significance
Phosphorus Pima 0.000013 <0.0001
Sodium Adygei 0.000029
Potassium French 0.000322 <0.001
lodine Maya 0.000325
Sodium Brahui 0.00115 <0.01
Potassium Bergamoltalian_Tuscan 0.002963
Sodium Bougainville 0.003455
Potassium Bougainville 0.003722
Sodium Russian 0.004935
Sodium Pathan 0.004951
Sodium San 0.0057
Sodium Orcadian 0.005823
Sodium French 0.006133
lodine Mozabite 0.006333
Calcium Mozabite 0.007348
lodine Russian 0.009037
Sodium NorthernHan_Tu 0.010827 <0.05
Sodium Bergamoltalian_Tuscan 0.01141
Sodium Basque 0.011611
Potassium NorthernHan_Tu 0.014566
Sodium Dai_Lahu 0.01592
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Potassium
Potassium
Calcium
Calcium
Sodium
Potassium
Selenium
Magnesium
Potassium
Potassium
Potassium
Potassium
Manganese
Zinc
Potassium
Phosphorus
Iodine
Copper
Calcium
Potassium
Phosphorus
Calcium
Potassium
Calcium
Potassium
Phosphorus
Calcium

Russian
Druze
Sardinian
Pima
Sindhi
Xibo_Mongolian
Xibo_Mongolian
Surui_Karitiana
Mandenka
Sindhi
Palestinian
Mozabite
Naxi_Yi
Naxi_Yi
Sardinian
Yoruba
Orcadian
Sardinian
Japanese
Kalash
PapuanHighlands_PapuanSepik
Maya
Pathan
Pathan
Yoruba
Pathan
Orcadian

0.017106
0.018052
0.018387
0.018616
0.021039
0.021087
0.02171
0.023716
0.02482
0.027062
0.033025
0.033461
0.034193
0.03529
0.035508
0.036495
0.036859
0.037657
0.038349
0.038729
0.04091
0.042026
0.044689
0.044822
0.045052
0.046086
0.047252

Table $3.8: Micronutrient-associated gene sets with significantly different summed
selection values. According to the gene set method SUMSTAT integrating Fsr selection
values. Partitioned by significance.

Micronutrient Population Significance
Potassium BantuSouthAfrica_BantuKenya 0.000043 <0.0001
Sodium Makrani 0.00048 <0.001
Calcium Mandenka 0.000912
Calcium Biaka 0.001264 <0.01
Potassium Orcadian 0.001556
Potassium Surui_Karitiana 0.001698
Potassium Russian 0.002343
Zinc Kalash 0.004891
Potassium Palestinian 0.005466
Phosphorus Mandenka 0.006715
Sodium Surui_Karitiana 0.0068
Potassium Mozabite 0.008791
Potassium French 0.0088
Potassium Kalash 0.009572
Selenium Xibo_Mongolian 0.00993
Potassium Pima 0.012051 <0.05
Sodium French 0.013281
Zinc Uygur 0.016652
Sodium Orcadian 0.016658
Sodium Russian 0.017819
Potassium Basque 0.018501
Potassium Bedouin 0.01917
Sodium Bergamoltalian_Tuscan 0.020302
Potassium Adygei 0.021671
Iron Mandenka 0.022027
Potassium Makrani 0.022717
Potassium Brahui 0.022756
Sodium Sindhi 0.024379
Sodium Basque 0.024715
Selenium Japanese 0.025141
Potassium Sardinian 0.026595
Sodium Brahui 0.026743
Magnesium Biaka 0.027088
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Sodium Adygei 0.028808
Potassium Bergamoltalian_Tuscan 0.029975
Selenium Pima 0.031199
Selenium Surui_Karitiana 0.032171
Potassium Sindhi 0.032643
Selenium Han 0.033762
Selenium She_Miao_Tujia 0.037054
Selenium Orogen_Hezhen_Daur 0.038023
Potassium Balochi 0.038248
Potassium Dai_Lahu 0.042516
Potassium Burusho 0.042705

Sodium Kalash 0.043516
Potassium Pathan 0.046447

Sodium Biaka 0.047979
Potassium San 0.048742
Potassium Maya 0.048774

Table $3.9: Micronutrient-associated gene sets with significantly different summed
selection values. According to the gene set method SUMSTAT integrating both Relate
and Fgp selection values.

Micronutrient Population Relate Significance Fgr Significance
Selenium Xibo-Mongolian 0.02171 0.00993
Sodium Adygei 0.000029 0.028808
Sodium Basque 0.011611 0.024715
Sodium Bergamoltalian-Tuscan 0.01141 0.020302
Sodium French 0.006133 0.013281
Sodium Orcadian 0.005823 0.016658
Sodium Russian 0.004935 0.017819
Sodium Brahui 0.00115 0.026743
Sodium Sindhi 0.021039 0.024379
Potassium Mozabite 0.033461 0.008791
Potassium Palestinian 0.033025 0.005466
Potassium Bergamoltalian-Tuscan 0.002963 0.029975
Potassium French 0.000322 0.0088
Potassium Russian 0.017106 0.0088
Potassium Sardinian 0.035508 0.026595
Potassium Kalash 0.038729 0.009572
Potassium Sindhi 0.027062 0.032643
Potassium Pathan 0.044689 0.046447

Table $3.10: Micronutrient-associated gene sets, as cut down to remove overlap,
with significantly different summed selection values. According to the gene set method
SUMSTAT integrating Relate selection values. Partitioned by significance.

Micronutrient | Population | Significance
Phosphorus Pima 0.005012 <0.01
Selenium Xibo_Mongolian 0.02171 <0.05
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Table $3.11: Micronutrient-associated gene sets, as cut down to remove overlap,

with significantly different summed selection values. According to the gene set method

SUMSTAT integrating Fsr selection values. Partitioned by significance.

Micronutrient Population Significance

Selenium Xibo_Mongolian 0.00993 <0.01
Iron Mandenka 0.022027

Selenium Japanese 0.025141

Selenium Pima 0.031199

Selenium Surui_Karitiana 0.032171

Selenium Han 0.033762

Selenium She_Miao_Tujia 0.037054

Selenium Orogen_Hezhen_Daur 0.038023 <0.05

Table $3.12: The five MAGs for each population with the strongest evidence for
selection, as indicated by Relate selection values. When taking the only five MAGs

would cut-off genes with the same significance value, more genes are given.

Population Gene Micronutrient Significance
San PRKG1 selenium 0.0011774
AKAP6 selenium 0.0011774
SGCD selenium 0.0011774
SELENOP selenium 0.0011774
ATP7B copper 0.0011774
TSHR iodine 0.0011774
TRPM6 magnesium 0.0011774
TXNRD3 selenium 0.0011774
ANO4 chloride 0.0011774
FECH Iron 0.0011774
SLC8A3 calcium 0.0011774
STK39 sodium 0.0011774
PSTK selenium 0.0011774
Bantu-speaking SHROOM3 magnesium 7.7e-6
SLC39A11 zinc 3.3e-5
GALNT3 phosphorus 5.52e-5
LRP8 selenium 8.8e-5
SLC30A7 zinc 8.8e-5
Mbuti SGK1 selenium 6.77e-5
SGCD selenium 8.72e-5
ANO3 chloride 0.00012945
EEFSEC selenium 0.00020261
KCNMA1 calcium, potassium 0.00020261
Biaka DGKD calcium 1.97e-5
NEDD4 sodium 3.93e-5
SKG1 selenium 4.81e-5
TMPRSS6 iron 7.18e-5
SGCD selenium 8.77e-5
Yoruba SELENOM selenium 5.87e-6
SLC12A1 sodium, chloride, potassium 1.33e-5
SCAMP5 zinc 4.17e-5
CNNM2 magnesium 5.12e-5
VWA8 calcium 0.00011987
Mandenka LRP8 selenium 1.04e-5
MTF1 zinc 1.04e-5
TRPM?2 calcium 2.11e-5
SLC8A1 calcium 7.52e-5
ANO3 chloride 7.52e-5
Mozabite CA1 zinc 7.15E-06
ATP2B2 calcium 1.38E-05
FGFR2 magnesium 2.50E-05
TPO iodine 2.50E-05
SLC12A1 sodium, chloride, potassium 2.54E-05
Palestinian THRB iodine 3.23E-06
SLC39A11 zinc 1.48E-05
CLCN3 chloride 2.62E-05
PRKG1 selenium 6.83E-05
SLC4A5 sodium 9.26E-05
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GALNT3 phosphorus 9.26E-05
Druze SLC12A1 sodium, chloride, potassium 3.61E-05
FGFR2 magnesium 6.67E-05
GPHN molybdenum 9.60E-05
WDR45 iron 0.00010661
SHROOM3 magnesium 0.00021632
Bedouin COMMD1 copper 2.38E-05
EPAS1 iron 0.00013935
HBS1L iron 0.0002138
PRKG1 selenium 0.00022585
TRPM6 magnesium 0.00022585
Adygei C19orf12 iron 2.01E-05
AKAP6 selenium 4.62E-05
CFAP251 iron 9.28E-05
SLC30A8 zinc 0.00015855
ARHGEF3 iron 0.00015855
Bergamoltalian-Tuscan SCNN1G sodium, potassium 1.11E-05
SGK1 selenium 1.20E-05
SLC8A1 calcium 4.48E-05
SLC30A8 zinc 4.48E-05
SLCO1C1 iodine 7.78E-05
Sardinian ATP2B2 calcium 2.10E-07
THRB iron 2.94E-05
SECISBP2 selenium, iodine 3.27E-05
SLC8A1 calcium 0.00012589
VWA8 selenium 0.0002822
S0D1 copper 0.0002822
Basque HIF1A iron 2.43E-06
ARHGEF3 iron 2.47E-05
TXNRD3 selenium 4.79E-05
EEFSEC selenium 5.59E-05
SLC34A2 phosphorus 8.55E-05
French SCNN1D sodium, potassium 1.87E-06
ANO3 chloride 4.56E-05
ATP2B2 calcium 7.51E-05
SLC39A11 zinc 9.13E-05
SLC12A1 sodium, chloride, potassium 0.00022405
Orcadian GPHN molybdenum 9.83E-05
SLC5A5 sodium, iodine 9.83E-05
SLC39A11 zinc 0.00011567
CYP24A1 calcium 0.00011567
FTMT iron 0.00012535
Russian SLC4A5 sodium 3.83E-06
SCNN1D sodium, potassium 6.81E-06
SLC30A1 zinc 1.32E-05
KCNMA1 calcium, potassium 0.000137
SLC39A11 zinc 0.00015104
Makrani SLC39A11 zinc 1.40E-06
GPx2 selenium 9.61E-06
SLC8A1 calcium 2.40E-05
SLC39A12 zinc 2.40E-05
ATP2B2 calcium 4.97E-05
Sindhi HIF1A iron 2.28E-05
HSD11B2 iron 9.68E-05
SLC39A11 zinc 0.00015917
ANO6 chloride 0.00027978
SLC30A9 zinc 0.00031178
Balochi PDE7B phosphorus 1.20E-05
SLC39A11 zinc 1.55E-05
SLC4A5 sodium 2.23E-05
HSD11B2 iron 9.32E-05
PRKG1 selenium 0.000145
Brahui MECOM magnesium 1.23E-06
SLC4A5 sodium 1.08E-05
SLC16A2 iodine 1.51E-05
FTMT iron 1.92E-05
GPx2 selenium 0.00010148
SGK1 selenium 0.00010148
Hazara PRKG1 selenium 5.56E-05
ARSB selenium 0.00017433
SELENOP selenium 0.00017433
TXNRD1 selenium 0.00017433
LRP2 selenium 0.00034417
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CLIC5 chloride 0.00034417
Pathan ANO3 chloride 1.76E-05
ATP2B2 calcium 2.08E-05
SELENOP selenium 4.09E-05
SLC12A1 sodium, chloride, potassium 5.81E-05
SLC30A7 zinc 9.46E-05
Burusho AKR7L selenium 9.83E-06
FGFR2 magnesium 4.75E-05
ATP2B2 calcium 9.35E-05
SLC39A11 zinc 0.00012304
SLCO1C1 iodine 0.00012304
Kalash SLC39A10 zinc, magnesium, manganese 1.21E-05
STK39 sodium 1.97E-05
calcium, magnesium,
SLC12A3 potassium 2.21E-05
PRKG1 selenium 0.00014809
MECOM magnesium 0.00014809
BSND chloride 0.00014809
Uygur FXYD2 magnesium 2.80E-06
SLC40A1 iron 1.62E-05
ATP2B2 calcium 5.23E-05
PLA2G6 iron 7.10E-05
SLC30A9 zinc 0.0002744
SLC8A1 calcium 0.0002744
Xibo-Mongolian SLC8A3 calcium 6.74E-05
KCNMA1 calcium, potassium 0.00016803
PRKG1 selenium 0.0002743
ANO3 chloride 0.0002743
MT1H/F/G zinc 0.0002743
SELENOP selenium 0.0002743
Orogen-Hezhen-Daur SLC40A1 iron 0.00023563
PRKG1 selenium 0.00023563
ARSB selenium 0.00023563
AKAP6 selenium 0.00023563
ARHGEF3 iron 0.00023563
SLCO1C1 iodine 0.00023563
Yakut FTMT iron 3.37E-06
KCNMA1 calcium, potassium 1.46E-05
AKAP6 selenium 7.62E-05
GPx7 selenium 0.00013104
IL6R zinc 0.00013508
Japanese GPR39 zinc 7.51E-05
LHFPL2 selenium 0.00015814
SLC40A1 iron 0.0001792
DGKD calcium 0.00020117
ATP2B2 selenium 0.0002387
Han PRKG1 selenium 6.54E-05
SCNN1D sodium, potassium 7.33E-05
TRIP4 iodine 0.00013754
SLCO1C1 iodine 0.00013754
CFTR chloride 0.00013754
NorthernHan-Tu SLC39A11 zinc 3.90E-05
SLC8A3 calcium 3.90E-05
KCNMA1 calcium, potassium 3.90E-05
PRKG1 selenium 0.00015139
PDE7B phosphorus 0.0001716
She-Miao-Tujia MLN phosphorus 4.27E-06
ITPR3 phosphorus 1.93E-05
SLC39A11 zinc 2.41E-05
PRKG1 selenium 0.00013476
FTMT iron 0.00021508
Naxi-Yi PRKG1 selenium 2.17E-05
Mocs2 molybdenum 2.17E-05
SLC39A11 zinc 8.43E-05
SLC39A8 zinc, magnesium, manganese 0.00016511
SLC8A3 calcium 0.00037186
SELENOI selenium 0.00037186
IL6 zinc 0.00037186
SLC30A10 zinc, magnesium, manganese 0.00037186
Dai-Lahu ITPR3 phosphorus 4.43E-05
SLC8A3 calcium 4.43E-05
TRPM6 magnesium 6.09E-05
ARHGEF3 iron 6.80E-05
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SLC8A1 calcium 7.39E-05
Pima ATP2B2 iron 9.06E-06
ITPR3 phosphorus 8.09E-05
TRNAU1AP selenium 0.00018445
MLN phosphorus 0.00053942
LEMD2 phosphorus 0.00053942
Maya SLC8A1 calcium 4.17E-05
TRPM6 magnesium 5.25E-05
ATP2B1 calcium 0.00015384
ARL15 magnesium 0.00015794
TSHR iodine 0.00027492
THRA iodine 0.00027492
Surui-Karitiana AKAP6 selenium 3.96E-05
CLDN16 magnesium 0.00012466
SLC39A10 zinc 0.00014355
SLC39A8 zinc, magnesium, manganese 0.00020085
MECOM magnesium 0.00041299
THRB iodine 0.00041299
SLC39A11 zinc 0.00041299
Papuan SLC8A1 calcium 1.26E-05
ATP2B2 calcium 1.97E-05
DIO2 selenium, iodine 0.00027674
HIF1A iron 0.00027674
HBS1L iron 0.00027674
SCNN1B sodium, potassium 0.00027674
LEMD2 phosphorus 0.00027674
Bougainville CLDN16 magnesium 0.00021637
SGCD selenium 0.00021637
NR3C2 sodium 0.0002471
SLC39A11 zinc 0.000375
ATP2B2 calcium 0.000375
SLC30A6 zinc 0.000375
CYP11B2 potassium 0.000375

Table $3.13: The five MAGs for each population with the strongest evidence for
selection, as indicated by F g1 selection values. When taking the only five MAGs would

cut-off genes with the same significance value, more genes are given.

Population Gene Micronutrient Significance
San GALNT3 phosphorus 3.50E-06
SCNN1G sodium, potassium 6.30E-06
LRP8 selenium 2.15E-05
LHFPL2 selenium 3.08E-05
ANO7 chloride 7.75E-05
Bantu-speaking LHFPL2 selenium 4.99E-06
SLC12A1 sodium, chloride, potassium 5.06E-06
KCNj10 calcium, potassium 1.38E-05
PRKG1 selenium 2.11E-05
EEFSEC selenium 2.53E-05
Mbuti TRIP4 iodine 3.96E-05
PDE7B phosphorus 5.94E-05
TRU-TCA2-1 selenium 6.63E-05
LHFPL2 selenium 7.44E-05
MECOM magnesium 7.44E-05
Biaka SLC8A1 calcium 3.05E-05
ANO7 chloride 5.40E-05
LHFPL2 selenium 8.33E-05
ATP2B4 calcium 8.39E-05

EEFSEC selenium 0.00010422
Mandenka ATP2B2 calcium 7.75E-08
STK39 sodium 1.96E-05
FTL iron 1.99E-05
HJV iron 2.91E-05
SLC8A1 calcium 3.00E-05
Mozabite SLC12A1 sodium, chloride, potassium 7.35E-06
EEFSEC calcium 1.29E-05
PDE7B phosphorus 3.23E-05
COMMD1 copper 7.20E-05
ATP2B4 calcium 8.32E-05
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Palestinian SLC12A1 sodium, chloride, potassium 6.37E-07
PDE7B phosphorus 1.76E-05
ARHGEF3 iron 2.55E-05
SLC39A4 zinc 2.85E-05
GPR39 zinc 3.72E-05
Druze SLC12A1 sodium, chloride, potassium 2.97E-07
PDE7B phosphorus 8.16E-07
SLC39A4 zinc 1.02E-05
GPR39 zinc 3.23E-05
MECOM magnesium 5.36E-05
Bedouin SLC12A1 sodium, chloride, potassium 1.25E-06
PDE7B phosphorus 1.37E-05
SLC4A5 sodium 1.81E-05
ARHGEF3 iron 3.43E-05
GPR39 zinc 5.59E-05
Adygei SLC12A1 sodium, chloride, potassium 2.01E-06
PDE7B phosphorus 2.05E-05
SLC39A4 zinc 2.30E-05
FTMT iron 7.54E-05
EEFSEC selenium 0.00010962
Bergamoltalian-Tuscan SLC12A1 sodium, chloride, potassium 1.58E-06
PDE7B phosphorus 2.92E-06
SLC39A4 zinc 8.84E-06
SGCD selenium 1.07E-05
GPR39 zinc 8.94E-05
Sardinian PDE7B phosphorus 7.02E-07
SLC12A1 sodium, chloride, potassium 6.86E-06
SLC39A4 zinc 1.33E-05
GPR39 zinc 5.57E-05
MECOM magnesium 6.35E-05
Basque SLC12A1 sodium, chloride, potassium 2.00E-06
PDE7B phosphorus 2.00E-06
SLC4A5 sodium 9.52E-06
SLC39A4 zinc 1.41E-05
GPR39 zinc 0.00013401
French SLC12A1 sodium, chloride, potassium 7.65E-07
PDE7B phosphorus 4.28E-06
SLC39A4 zinc 5.58E-06
AQP6 chloride 3.41E-05
GPR39 zinc 5.35E-05
Orcadian PDE7B phosphorus 2.24E-06
SLC12A1 sodium, chloride, potassium 4.80E-06
SLC39A4 zinc 3.19E-05
ARSB selenium 7.92E-05
SCNN1A sodium, potassium 9.97E-05
SLC30A10 zinc, magnesium, manganese 9.97E-05
Russian SLC12A1 sodium, chloride, potassium 1.40E-06
PDE7B phosphorus 5.27E-06
SLC39A4 zinc 6.43E-06
SLC4A5 sodium 1.89E-05
SELENOS selenium 4.01E-05
Makrani SLC39A4 zinc 3.95E-06
PDE7B phosphorus 6.15E-06
SLC12A1 sodium, chloride, potassium 7.37E-06
SGCD selenium 1.18E-05
SGK1 selenium 3.59E-05
Sindhi PDE7B phosphorus 9.11E-06
SLC39A4 zinc 1.03E-05
CLCNKB chloride 2.19E-05
SLC39A11 zinc 2.99E-05
GPR39 zinc 5.83E-05
Balochi SLC12A1 sodium, chloride, potassium 1.76E-06
SGK1 selenium 5.44E-06
PDE7B phosphorus 7.28E-06
ARHGEF3 iron 2.34E-05
SLC39A4 zinc 2.89E-05
Brahui SLC12A1 sodium, chloride, potassium 1.07E-06
PDE7B phosphorus 1.53E-06
SLC39A4 zinc 7.98E-06
GPR39 zinc 2.63E-05
SLC4A5 sodium 4.93E-05
Hazara SLC39A4 zinc 7.24E-06
SELENOS selenium 1.86E-05
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SLC30A9 zinc 2.23E-05
GPR39 zinc 9.24E-05
MTF2 zinc 9.77E-05
Pathan SLC39A4 zinc 5.47E-06
SLC12A1 sodium, chloride, potassium 1.12E-05
GPR39 zinc 3.47E-05
PDE7B phosphorus 4.92E-05
SLC30A9 zinc 6.08E-05
Burusho SLC12A1 sodium, chloride, potassium 6.07E-06
SLC39A4 zinc 8.76E-06
PDE7B phosphorus 2.74E-05
SLC30A9 zinc 5.38E-05
GPR39 zinc 5.78E-05
Kalash SLC12A1 sodium, chloride, potassium 2.56E-06
SLC39A4 zinc 1.72E-05
PDE7B phosphorus 5.19E-05
SLC39A11 zinc 9.98E-05
GPR39 zinc 0.00013799
EEFSEC selenium 0.00013799
Uygur SLC39A4 zinc 5.66E-05
DCDC1 magnesium 0.00012776
PDE7B phosphorus 0.0001421
SLCO1C1 iodine 0.00019682
CA3 zinc 0.00019682
PRKG1 selenium 0.00019889
Xibo-Mongolian PRKG1 selenium 1.00E-05
SLC30A9 zinc 2.66E-05
SEPHS2 selenium 2.66E-05
SLC39A4 zinc 5.49E-05
HSD11B2 iron 6.97E-05
Orogen-Hezhen-Daur SLC30A9 zinc 1.51E-05
SLC39A4 zinc 3.99E-05
HSD11B2 iron 6.38E-05
PDE7B phosphorus 0.00012113
KCNMA1 calcium, potassium 0.00015128
Yakut SLC30A9 zinc 1.71E-05
SLC39A4 zinc 3.57E-05
PRKG1 selenium 0.00010185
ANO5 chloride 0.00018071
DIO1 selenium, iodine 0.0002481
Japanese SLC39A4 zinc 6.69E-05
RHOA iron 6.91E-05
SELENOW selenium 6.91E-05
SLC30A9 zinc 0.00014582
CLCNKB chloride 0.00017725
Han SLC30A9 zinc 3.55E-06
SLC39A4 zinc 4.34E-05
RHOA iron 8.62E-05
CLCNKB chloride 0.00013356
ITPR3 phosphorus 0.00016139
NorthernHan-Tu SLC39A4 zinc 5.98E-05
SLC30A9 zinc 7.01E-05
RHOA iron 9.99E-05
PRKG1 selenium 0.00011442
SEPHS2 selenium 0.00020983
She-Miao-Tujia RHOA iron 1.38E-05
SLC30A9 zinc 2.05E-05
PRKG1 selenium 2.05E-05
SLC39A4 zinc 4.75E-05
CLCNKB chloride 0.00014865
Naxi-Yi SLC39A4 zinc 9.03E-05
ITPR3 phosphorus 9.03E-05
SLC30A9 zinc 0.00010709
SEPHS2 selenium 0.00010969
PRKG1 selenium 0.0001864
Dai-Lahu SLC30A9 zinc 2.12E-05
FTMT iron 4.85E-05
PDE7B phosphorus 5.98E-05
SLC39A4 zinc 7.82E-05
SEPHS1 selenium 0.00013178
Pima PDE7B phosphorus 0.00010471
GPx3 selenium 0.00010471
CLCN3 chloride 0.00010471
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RHOA iron 0.00010471
SLC40A1 iron 0.00010471
STAT3 zinc 0.00010471
SLC39A11 zinc 0.00010471
SLC30A2 zinc 0.00010471
SELENON selenium 0.00010471
Maya FGFR2 magnesium 2.29E-05
PDE7B phosphorus 3.53E-05
TMPRSS6 iron 4.90E-05
SLC30A9 zinc 8.30E-05
GPx3 selenium 0.00014139
Surui-Karitiana PDE7B phosphorus 0.00012002
GPx3 selenium 0.00012002
THRB iodine 0.00012002
SGCD selenium 0.00012002
SCNN1B sodium, potassium 0.00012002
SLC30A9 zinc 0.00012002
Papuan ACO1 chloride 5.36E-05
SGCD selenium 5.36E-05
TMPRSS6 iron 9.64E-05
SLC39A11 zinc 9.64E-05
SLC30A9 zinc 0.00025195
CLCN3 chloride 0.00025195
Bougainville TFRC iron 3.80E-05
DCDC1 magnesium 3.80E-05
SLC30A9 zinc 8.23E-05
TMPRSS6 iron 8.23E-05
SCNN1G sodium, potassium 8.23E-05
SLC41A1 magnesium 8.23E-05

Table $3.14: MAG showing signatures in the 0.1% tail (for both Relate and F ¢

selection values) for multiple populations.

Relate

Gene Micronutrient | Number of
Repeats

Zinc SLC39A11 27
Calcium SLC8A1 26
Calcium ATP2B2 26
Selenium PRKG1 24
Selenium SGCD 21
Selenium AKAP6 20
Selenium KCNMA1 16
Chloride ANO3 16
Phosphorus PDE7B 15
Sodium, potassium SCNN1D 13
Sodium, potassium,
chloride SLC12A1 12
Magnesium MECOM 12
Iron FTMT 12
lodine THRB 12
lodine SLCO1C1 11
Sodium SGK1 10
Iron HIF1A 10
Calcium TRPM2 10
Calcium SLC8A3 10
Selenium SELENOF 9
Zinc SLC30A8 8
Sodium SLC4AS5 8
Phosphorus ITPR3 8
Zinc, manganese,
magnesium SLC30A10 8
Magnesium FGFR2 8
Iron ARHGEF3 8
Chloride CFTR 8
Calcium ATP2B4 8

Fgr
Gene Micronutrient | Number
of
Repeats
Zinc SLC39A4 37
Phosphorus PDE7B 37
Zinc GPR39 32
Chloride AQP6 32
Magnesium DCDC1 29
Selenium EEFSEC 27
Zinc SLC30A9 26
Calcium ATP2B2 25
Zinc SLC39A11 24
Selenium PRKG1 24
Iodine TSHR 23
Sodium, potassium,
chloride SLC12A1 22
Selenium SGCD 22
Magnesium MECOM 21
Selenium AKAP6 19
Iron ARHGEF3 19
Selenium SELENOS 18
Sodium SLC4A5 17
Chloride ANOS5 17
Sodium SGK1 16
Selenium, iodine DIO1 16
Calcium ATP2B4 16
Molybdenum GPHN 15
Zinc, manganese SLC39A14 14
Chloride CLCNKB 14
Chloride CFTR 13
Calcium SLC8A2 13
Selenium SEPHS2 12
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Phosphorus FGF6 2
Molybdenum MOCS2 2
Manganese, magnesium SLC39A8 2
Manganese ATP2C1 2
Magnesium CNNM2 2
Iron TMPRSS6 2
Iron TFRC 2
Iron SLC17A1 2
Iron MYB 2
Iron LCN2 2
Iron HBS1L 2
Iron FA2H 2
Iron CFAP251 2
Iron C19o0rf12 2
Iron ACO1 2
lodine TSHR 2
Iodine THRA 2
Iodine 1IYD 2
Copper ATP7B 2
Copper ATP7A 2
Chloride SLC12A2 2
Chloride CLIC5 2
Chloride CLCNKB 2
Chloride BSND 2
Chloride ANO4 2
Calcium SLC8A2 2
Calcium CYP24A1 2
Chloride ANO4 2
Calcium SLC8A2 2
Calcium CYP24A1 2
Calcium SLC8A2 2
Calcium CYP24A1 2
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Figure $3.1: Distribution of all micronutrient-associated genes along the human
genome. Broadly randomly distributed with any overlaps given in Table $4.3.2.
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Figure $3.2: Distribution of the calculated CDF value. As drawn from the distribution
formed from generated neutral gene regions and includes the mean of cumulative density
function (CDF) position.
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Figure $3.3: Principal component analysis of African individuals. From the
(Bergstrém et al.,, 2020), showing PC1 and PC2.
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Figure $3.4: Principal component analysis of Middle-eastern individuals. From
(Bergstrém et al.,, 2020), showing PC1 and PC2, having removed outlier individuals
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Figure $3.5: Principal component analysis of European individuals. From the
(Bergstrém et al,, 2020), showing PC1 and PC2, having removed outlier individuals.
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Figure 53.6: Principal component analysis of Central-South Asian individuals. From

the (Bergstrém et al, 2020), showing PC1 and PC2, having removed outlier individuals
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Figure $3.7: Principal component analysis of East Asian individuals. From the
(Bergstrém et al.,, 2020), showing PC1 and PC2
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Figure $3.8: Principal component analysis of American individuals. From the
(Bergstrém et al.,, 2020), showing PC1 and PC2, having removed outlier individuals
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Figure $3.9: Principal component analysis of Oceanic individuals. From the
(Bergstrém et al.,, 2020), showing PC1 and PC2.
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Figure $3.10: Admixture analysis of African individuals. From the (Bergstrom et al,
2020) for 2 and 3 k clusters.
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Figure $3.11: Admixture analysis of European individuals. From the (Bergstrém et al,
2020) for 2 and 3 k clusters.
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Figure $4.3.12: Admixture analysis of East Asian individuals. From the (Bergstrom et
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Chapter 4: Supplementary Material

Tables

Table $4.1: All micronutrient-associated genes used in this study associated with
the uptake, metabolism or regulation of selenium, zinc, iron, iodine and calcium.
When genes are associated with multiple micronutrients, this is given in the “Other
Associations” column. Genes removed following the positive mask (Bergstrém et al, 2020)
indicated in the “Removed During Pruning” column. Gene regions as taken from ensemble
(Yates et al,, 2020) and suggested from the literature (“Reference”).

Micronutrient Gene Chromosome Gene Start Gene End Other Removed Ref
Associations During
Pruning
Selenium GPx1 3 49357176 49358358 (White et al.,
2015)
Selenium GPx2 14 64939152 64942905 (White et al,,
2015)
Selenium GPx3 5 151020438 | 151028992 (White et al.,
2015)
Selenium GPx4 19 1103926 1106791 (White et al.,
2015)
Selenium GPx6 6 28503296 28528215 (White et al,,
2015)
Selenium DIO1 1 53891239 53911086 iodine (White et al,,
2015)
Selenium DIO2 14 80197526 80387757 iodine (White et al,,
2015)
Selenium DIO3 14 101561351 | 101563452 iodine (White et al,,
2015)
Selenium SELENOF 1 86862445 86914424 (White et al,,
2015)
Selenium SELENOH 11 57741250 57743554 (White et al,,
2015)
Selenium SELENOI 2 26308547 26395891 (White et al,,
2015)
Selenium SELENOK 3 53884417 53891962 (White et al,,
2015)
Selenium SELENOM 22 31104772 31120069 (White et al,,
2015)
Selenium SELENON 1 25800176 25818221 (White et al,,
2015)
Selenium SELENOO 22 50200979 50217616 (White et al.,
2015)
Selenium SELENOT 3 150602875 150630445 (White et al,,
2015)
Selenium SELENOV 19 39515113 39520686 (White et al.,
2015)
Selenium SELENOW 19 47778585 47784686 (White et al,,
2015)
Selenium MSRB1 16 1938210 1943326 (White et al,,
2015)
Selenium TXNRD1 12 104215779 104350307 (White et al,,
2015)
Selenium TXNRD2 22 19875517 19941820 (White et al,,
2015)
Selenium TXNRD3 3 126607059 126655124 (White et al,,
2015)
Selenium GPx5 6 28525881 28534955 Yes (White et al,,
2015)
Selenium GPx7 1 52602371 52609051 (White et al,,
2015)
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Selenium GPx8 5 55160167 55167297 (White et al.,
2015)
Selenium SELENOP 5 42799880 42887392 (White et al.,
2015)
Selenium LRP8 1 53242364 53328469 (White et al.,
2015)
Selenium LRP2 2 169127109 | 169362534 (White et al.,
2015)
Selenium SCLY 2 238060924 | 238099413 (White et) al.,
2015)
Selenium SELENBP1 1 151364304 | 151372707 (White et al,,
2015)
Selenium PSTK 10 122954381 | 122997513 (White et al.,
2015)
Selenium SEPSECS 4 25120014 25160449 (White et al.,
2015)
Selenium SARS2 19 38915266 38930763 (White et al.,
2015)
Selenium TRU-TCA1- 19 45478602 45478687 (White et al.,
1 2015)
Selenium TRU-TCA2- 22 44150657 44150742 (White et al.,
1 2015)
Selenium TRU-TCA3- 17 40117300 40117373 (White et al.,
1 2015)
Selenium CELF1 11 47465933 47565569 (White et al.,
2015)
Selenium EEFSEC 3 128153481 | 128408646 (White et al.,
2015)
Selenium EIF4A3 17 80134369 80147151 (White et al.,
2015)
Selenium ELAVL1 19 7958573 8005659 (White et al,
2015)
Selenium RPL30 8 98024851 98046469 (White et al.,
2015)
Selenium SECISBP2 9 89318500 89359663 iodine (White et al,,
2015)
Selenium SEPHS1 10 13317428 13348298 (White et al.,
2015)
Selenium TRNAU1AP 1 28553085 28578545 (White et al.,
2015)
Selenium XPO1 2 61477849 61538626 (White et al.,
2015)
Selenium AKAP6 14 32329298 32837684 (Engelken et
al, 2016)
Selenium FABP1 2 88122982 88128062 (Engelken et
al, 2016)
Selenium KCNMA1 10 76869601 77638369 (Engelken et
al, 2016)
Selenium PRKG1 10 50990888 52298423 (Engelken et
al, 2016)
Selenium SELENOS 15 101270817 | 101277500 (Engelken et
al, 2016)
Selenium SEPHS2 16 30443631 30445874 (Engelken et
al, 2016)
Selenium SGCD 5 155870344 | 156767788 (Engelken et
al, 2016)
Selenium TXN 9 110243810 | 110256507 (Engelken et
al, 2016)
Selenium AKR7L 1 19265982 19274194 (Wishartetal,
2007)
Selenium CBS 21 43053191 43076943 Yes (Dibetal,
2019)
Selenium ARSB 5 78777209 78986087 (Dibetal,
2019)
Selenium LHFPL2 5 78485215 78770021 (Dibetal,
2019)
Selenium DMGDH 5 78997564 79236038 (Dibetal,
2019)
Selenium BHMT?2 5 79069767 79090069 (Dibetal,
2019)
Selenium BHMT 5 79111809 79132288 (Dibetal,
2019)
Selenium MY 5 79236131 79327211 (Dibetal,
2019)
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Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

Iron

BDH2
CYBRD1
EPAS1
FECH
FTH1
FTL
HAMP
HEPH
HFE
HV
HIF1A
LTF
RHOA
SLC17A1
SLC40A1
STEAP3
TF
TFR2
TFRC
TMPRSS6
ISCU
LCN2
FTMT
ACO1
IREP2
ACO2
ALAS2
SLC46A1
SLC11A1
SLC48A1
SLC11A2
HBS1L
MYB
PIK3CG
CFAP251
ARHGEF3

TAOK1

18

11

19

19

22

12

15

22

17

12

12

12

17

103077592

171522247

46293667

57544377

61959718

48965309

35280716

66162549

26087281

146017468

61695513

46435645

49359145

25782915

189560590

119223831

133746040

100620416

196027183

37065436

108562582

128149071

121851882

32384603

78437431

41469117

55009055

28394642

218382029

47753916

50979401

134960378

135181308

106865278

121918592

56727418

29390464

103099870

171558129

46386697

57586702

61967634

48966879

35285143

66268867

26098343

146036746

61748259

46485234

49412998

25832052

189583758

119265652

133796641

100642779

196082096

37109713

108569384

128153453

121852833

32454769

78501453

41528989

55030977

28407197

218396894

47782751

51028566

135103056

135219173

106908980

122003927

57079329

29551904

zinc

(Engelken et
al, 2016)
(Engelken et
al., 2016)
(Engelken et
al.,, 2016)
(Engelken et
al.,, 2016)
(Engelken et
al.,, 2016)
(Engelken et
al.,, 2016)
(Engelken et
al.,, 2016)
(Engelken et
al.,, 2016)
(Engelken et
al.,, 2016)
(Engelken et
al.,, 2016)
(Engelken et
al.,, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Engelken et
al, 2016)
(Wishartetal.,
2007)
(Muckenthaler
etal., 2008)
(Muckenthaler
etal., 2008)
(Muckenthaler
etal., 2008)
(Muckenthaler
etal., 2008)
(Muckenthaler
etal., 2008)
(Fishilevich et
al, 2017)
(Fishilevich et
al, 2017)
(Muckenthaler
etal., 2008)
(Dibetal,
2019)
(Dibetal,
2019)
(Dibetal,
2019)
(Dibetal,
2019)
(Dibetal,
2019)
(Dibetal.,
2019)
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Iron CP 3 149162410 | 149221829 (Fishilevich et
al, 2017)
Iron PANK?2 20 3888839 3929882 (Fishilevich et
al, 2017)
Iron PLA2G6 22 38111495 38214778 (Fishilevich et
al, 2017)
Iron C190rf12 19 29698886 29715789 (Fishilevich et
al, 2017)
Iron FA2H 16 74712955 74774831 (Fishilevich et
al, 2017)
Iron WDR45 X 49074433 49101170 (Fishilevich et
al, 2017)
Iron ATP13A2 1 16985958 17011928 (Fishilevich et
al, 2017)
Zinc GPR39 2 132416805 | 132646582 (Engelken et
al.,, 2016)
Zinc IL6 7 22725884 22732002 (Engelken et
al.,, 2016)
Zinc IL6R 1 154405193 | 154469450 (Engelken et
al.,, 2016)
Zinc MT1A 16 56638666 56640087 (Engelken et
al.,, 2016)
Zinc MT1E 16 56625475 56627112 (Engelken et
al, 2016)
Zinc MT1F 16 56657731 56660698 (Engelken et
al, 2016)
Zinc MT1G 16 56666730 56668065 (Engelken et
al, 2016)
Zinc MT1H 16 56669814 56671129 (Engelken et
al, 2016)
Zinc MT2A 16 56608584 56609497 (Engelken et
al, 2016)
Zinc MT4 16 56565073 56568957 (Engelken et
al, 2016)
Zinc MTF1 1 37809574 37859592 (Engelken et
al, 2016)
Zinc MTF2 1 93079235 93139079 (Engelken et
al, 2016)
Zinc SLC11A1 2 218382029 | 218396894 iron (Fishilevich et
al, 2017)
Zinc SLC30A1 1 211571568 | 211579161 (Engelken et
al, 2016)
Zinc SLC30A2 1 26037252 26046118 (Engelken et
al, 2016)
Zinc SLC30A3 2 27253684 27275817 (Engelken et
al, 2016)
Zinc SLC30A4 15 45479606 45522755 (Engelken et
al, 2016)
Zinc SLC30A5 5 69093949 69131069 (Engelken et
al, 2016)
Zinc SLC30A6 2 32165841 32224379 (Engelken et
al,, 2016)
Zinc SLC30A7 1 100896076 | 100981757 (Engelken et
al,, 2016)
Zinc SLC30A8 8 116950273 | 117176714 (Engelken et
al, 2016)
Zinc SLC30A9 4 41990502 42090461 (Engelken et
al, 2016)
Zinc SLC39A1 1 153959099 | 153968184 (Engelken et
al, 2016)
Zinc SLC39A10 2 195575977 | 195737702 (Engelken et
al, 2016)
Zinc SLC39A11 17 72645949 73092712 (Engelken et
al, 2016)
Zinc SLC39A12 10 17951839 18043292 (Engelken et
al, 2016)
Zinc SLC39A13 11 47407132 47416496 (Engelken et
al, 2016)
Zinc SLC39A2 14 20999255 21001871 (Engelken et
al, 2016)
Zinc SLC39A3 19 2732204 2740028 (Engelken et
al, 2016)
Zinc SLC39A4 8 144409742 | 144416844 (Engelken et
al, 2016)
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Zinc SLC39A5 12 56230049 | 56237846 (Engelken et
al, 2016)
Zinc SLC39A6 18 36108531 | 36129385 (Engelken et
al, 2016)
Zinc SLC39A7 6 33200445 | 33204439 Yes (Engelken et
al, 2016)
Zinc SLC39A8 4 102251041 | 102431258 (Engelken et
al, 2016)
Zinc SLC39A9 14 69398015 | 69462390 (Engelken et
al, 2016)
Zinc STAT3 17 42313324 | 42388568 (Engelken et
al, 2016)
Zinc SLC30A10 1 219685427 | 219958647 (Dibetal,,
2019)
Zinc SLC39A14 8 22367249 | 22434129 (Horning etal.,
2015)
Zinc cA1 8 85327608 | 85379014 (Dib et al,,
2019)
Zinc cA2 8 85463968 | 85481493 (Dib et al,,
2019)
Zinc cA3 8 85373436 | 85449040 (Dib et al,,
2019)
Zinc CAR13 8 85220587 | 85284073 (Dib et al,,
2019)
Zinc SCAMPS 15 74957219 | 75021495 (Dib et al,,
2019)
Zinc KLF8 X 56232356 | 56291531 (Dib et al,,
2019)
Zinc ZXDA X 57906708 | 57910820 (Dib et al,,
2019)
Zinc ZXDB X 57591652 | 57597545 (Dib et al,,
2019)

Calcium TRPM2 21 44350163 44443081 (Engelken et
al,, 2016)
Calcium TRPV5 7 142908101 | 142933746 Yes (Kovacs etal.,
2013)
Calcium TRPV6 7 142871208 | 142885745 Yes (Hughes et al.,
2008)
Calcium CASR 3 122183668 | 122291629 (Houillier,
2014)
Calcium BSPRY 9 113349541 | 113371233 (Khanal &
Nemere,
2008)
Calcium RGS2 1 192809039 | 192812275 (Khanal &
Nemere,
2008)
Calcium SLC8A1 2 40097270 40611053 (Khanal &
Nemere,
2008)
Calcium SLC8A2 19 47428017 47471893 (Khanal &
Nemere,
2008)
Calcium SLC8A3 14 70044215 70189070 (Khanal &
Nemere,
2008)
Calcium ATP2B2 3 10324023 10708007 (Khanal &
Nemere,
2008)
Calcium ATP2B3 X 153517676 | 153582939 (Khanal &
Nemere,
2008)
Calcium ATP2B4 1 203626561 | 203744081 (Khanal &
Nemere,
2008)
Calcium PTH 11 13492054 13496181 (Khanal &
Nemere,
2008)
Calcium CYP24A1 20 54153446 54173986 (Dibetal,
2019)
Calcium GATA3 10 8045378 8075198 (Dibetal,
2019)
Calcium DGKD 2 233354507 | 233472104 (Dibetal.,
2019)
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Calcium

Calcium

Calcium

Calcium

Calcium

Calcium

VWAS
GCKR
KCNJ10
SLC12A3

SLC34A1

SLC34A3

13

41566835 41961120

27496839 27523684

159998651 | 160070160

56865207 56915850

177379235 | 177398848

137230757 | 137236555

(Dibetal,
2019)
(Dibetal.,
2019)
(Jain et al.,
2013)
(Jain et al.,
2013)
(Chang &
Anderson,
2017)
(Chang &
Anderson,
2017)

lodine

Iodine

lodine

Iodine

lodine
lodine

lodine

lodine

lodine

Iodine

Iodine

Iodine

Iodine

Iodine

Iodine

Iodine

lodine

lodine

DIO1

DIO2

DIO3

TRIP4

IYD
SLC5A5

SLC16A10

THRA

THRB

SLC16A2

TSHR

SLCO1C1

SECISBP2

TPO

TTR

SERPINA7

SLC3A2

SULT6B1

14

14

15

17

14

12

18

11

53891239 53911086

80197526 80387757

101561351 | 101563452

64387748 64455303

150368892 | 150405969
17871945 17895174

111087503 | 111231194

40058290 40093867

24117153 24495756

74421493 74533917

80954989 81146302

20695355 20753386

89318500 89359663

1374066 1543711

31557010 31599021

106032435 | 106038727

62856102 62888875

37167820 37196598

selenium

selenium

selenium

selenium

(White et al,,
2015)
(White et al,,
2015)
(White et al,,
2015)
(Herraez et al.,
2009)

(Engelken et
al. 2016)
(The UniProt
Consortium
2023)
(The UniProt
Consortium
2023)
(The UniProt
Consortium
2023)
(The UniProt
Consortium
2023)
(The UniProt
Consortium
2023)
(The UniProt
Consortium
2023)
(White et al.
2015)
(Wishart et al.
2007)
(Wishart et al.
2007)
(Wishart et al.
2007)
(Wishartetal.
2007)
(Wishartetal.
2007)

Table $4.2: ZCSII-associated genes and their associated focal SNPs showing high
repetition of selection signatures. “Gene Repetition”; given for both Relate and
Fgrselection values.

Micronutrient Gene Gene Repetition Focal SNP
Relate Fgr Position
Zinc SLC39A4 1 14 chr8:144414297
GPR39 5 32 chr2:132638916
SLC30A9 7 26 chr4:42004040
chr4:42031397
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chr4:42066213

chr4:42093983

SLC39A11 27 24 chr17:73010373

chr17:72716374

SLC39A14 1 14 chr8:22404076

chr8:22416174

Calcium ATP2B2 26 25 chr3:10453703
chr3:10636328

ATP2B4 8 16 chr1:203648263

chr1:203667951

SLC8AZ2 2 13 chr19:47428756

chr19:47437107

Selenium EEFSEC 5 27 chr3:128412869
PRKG1 24 24 chr10:51576270

chr10:51471686

SGCD 21 22 chr5:156708844

chr5:156057959

AKAP6 20 19 chr14:32542441
chr14: 32446036
chr14: 32453376

DIO1 0 16 chr1:53920598

Iron ARHGEF3 8 19 chr3:56761998
Iodine TSHR 2 23 chr14:80962759
chr14:81006112

chr14:81071140

THRB 12 12 chr3: 24110895

chr3: 24342863

Table $4.3: Iron and Calcium-associated genes and their associated focal SNPs
showing high repetition of selection signatures. “Gene Repetition”; given for

both Relate and Fgpselection values.

Micronutrient Gene Gene Repetition Focal SNP
Relate Fgr Position

Calcium ATP2B2 26 25 chr3:10456514

chr3:10604833

ATP2B4 8 16 chr1:203648263

chr1:203667951

SLC8A1 26 12 chr2:40394610

chr2:40584510

SLC8BAZ2 2 13 chr19:47428756

chr19:47437107

SLC8A3 10 2 chr14:70182346

chr14:70175561

Iron ARHGEF3 8 19 chr3:56761998

chr3:57043874

HIF1A 10 7 chr14:61687412

chr14:61709502

chr14:61741756

FTMT 12 11 chr5:121846819

chr5:121853801

SLC40A1 5 8 chr2:189577426

chr2:189591670
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Table S4.4: The Zinc-associated genes within the 0.1% tail, as indicated by the
Relate selection values for each population. Ordered by most significant.

Region Population Gene Relate P — value
Africa Bantu-speaking SLC39A11 3.33E-05
SLC30A7 8.80E-05
IL6R 0.00019916
SLC30A8 0.00049756
MT1A 0.00066041
Biaka CA2-CA3 0.00036806
SLC39A11 0.00046393
SLC30A10 0.00063683
Yoruba SCAMP5 4.17E-05
SLC39A3 0.00027082
SLC30A8 0.00044064
Mandenka MTF1 1.04E-05
SLC39A3 0.0005911
MTF2 0.00078435
SLC30A6 0.00082188
Mbuti MT1F-MT1G-MT1H 0.00032824
GPR39 0.00056904
Middle-East Bedouin SLC39A11 0.00072923
SLC30A7 0.00076938
Druze SLC39A11 0.0002821
CAR13 0.00070799
CA3 0.00090627
Mozabite CA1 7.15E-06
SLC30A8 0.00019367
GPR39 0.00056815
Palestinian SLC39A11 1.48E-05
STAT3 0.00071861
Europe Adygei SLC30A8 0.00015855
SLC30A10 0.00027645
SLC39A11 0.00074135
Basque SLC30A10 0.0001034
SLC39A11 0.00092046
Bergamoltalian-Tuscan SLC30A8 4.48E-05
SLC39A12 0.00041253
SLC39A11 0.000771
MT1A 0.000771
MTIE 0.000771
French SLC39A11 9.13E-05
SLC30A8 0.00072794
Orcadian SLC39A11 0.00011567
SLC30A10 0.00021496
SLC30A9 0.00081243
Russian SLC30A1 1.32E-05
SLC39A11 0.00015104
SLC30A6 0.00037718
Sardinian SLC39A11 0.00044753
MTZ2A 0.00066616
Central-South Asia Balochi SLC39A11
1.55E-05
Brahui SLC39A11 0.00061849
SLC39A3 0.00061849
CA3 0.00090293
SLC30A9 0.00092172
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SLC39A12 0.00093274
SLC39A14 0.00094336
Burusho SLC39A11 0.00012304
SLC30A10 0.00039715
Hazara SLC39A11 0.00076257
Kalash SLC39A10 1.21E-05
SLC30A8 0.0005821
SLC39A11 0.00074226
SLC30A10 0.00085796
Makrani SLC39A11 1.40E-06
SLC39A12 2.40E-05
SLC30A9 0.00036417
Pathan SLC30A7 9.46E-05
SLC39A3 0.00037334
SLC30A9 0.00065901
Sindhi SLC39A11 0.00015917
SLC30A9 0.00031178
Uygur SLC30A9 0.0002744
East Asia Dai-Lahu GPR39 0.00065143
Han SLC39A11 0.0005133
Japanese GPR39 7.51E-05
SLC30A8 0.00052042
SLC39A11 0.00058404
SLC39A9 0.0007399
Naxi-Yi SLC39A11 8.43E-05
SLC39A8 0.00016511
IL6 0.00037186
SLC30A10 0.00037186
SLC39A9 0.00064471
Northern-Han SLC39A11 3.90E-05
SLC30A10 0.00065104
MTF2 0.00065104
She-Miao-Tujia SLC39A11 2.41E-05
SLC11A1 0.00033635
GPR39 0.00086595
Xibo-Mongolian MTI1F-MT1G-MT1H 0.0002743
MTF2 0.00052523
SLC39A11 0.00087309
Yakut IL6R 0.00013508
SLC30A4 0.00096514
Americas Surui-Karitiana SLC39A10 0.00014355
SLC39A8 0.00020085
SLC39A11 0.00041299
Oceania Bougainville SLC39A11 0.000375
SLC30A6 0.000375
Papuan SLC30A9 0.00028702
SLC39A9 0.00077394
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Table $4.5: The Zinc-associated genes within the 0.1% tail, as indicated by the
F¢r selection values for each population. Ordered by most significant.

Region Population Gene Relate P — value
Africa Bantu-speaking SLC30A9 2.83E-05
CAR13 8.23E-05
SLC39A12 0.00011711
SLC39A11 0.00029278
Biaka SLC39A9 0.00019231
SCAMP5 0.00024413
SLC30A10 0.00043508
SLC30A5 0.00072876
SLC39A4 0.00086389
SLC39A5 0.0008651
Mandenka SLC39A12 4.04E-05
SLC39A13 0.0002323
STAT3 0.00056251
SLC39A2 0.000744
Mbuti GPR39 9.97E-05
SLC39A4 0.00015312
SLC39A13 0.00018123
SLC39A11 0.00050677
San SLC39A4 9.96E-05
SLC39A11 0.00010416
SLC39A2 0.00021486
SLC11A1 0.00024216
Middle-East Bedouin GPR39 5.59E-05
SLC39A14 0.00023457
SLC39A4 0.00030943
SLC39A11 0.00033089
CA1 0.00048109
Druze SLC39A4 1.02E-05
GPR39 3.23E-05
SLC39A14 0.00041768
SLC39A11 0.00071243
CA1 0.0007683
Mozabite CA3 0.0002021
SLC39A4 0.00020628
SLC39A11 0.00028293
CA1 0.00028765
GPR39 0.00036971
Palestinian SLC39A4 2.85E-05
GPR39 3.72E-05
SLC39A14 5.81E-05
CA1 0.0004049
SLC39A11 0.00064181
SCAMP5 0.00080733
Europe Adygei SLC39A4 2.30E-05
SLC30A9 0.00011976
SLC39A8 0.0001604
GPR39 0.00016129
SLC39A11 0.00034286
SLC30A2 0.00060677
Basque SLC39A4 1.41E-05
GPR39 0.00013401
SLC39A11 0.00032407
SLC39A14 0.00099308
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Bergamoltalian-Tuscan SLC39A4 8.84E-06
GPR39 8.94E-05

SLC30A9 0.00030164

SLC39A14 0.00052329

SLC30A8 0.00064347

SLC39A11 0.00068438
French SLC39A4 5.58E-06
GPR39 5.35E-05

SLC39A14 0.00051554
Orcadian SLC39A4 3.19E-05
SLC30A10 9.97E-05

GPR39 0.00028039

SLC39A11 0.00047506

SLC30A9 0.00080692

SCAMP5 0.00080692
Russian SLC39A4 6.43E-06
GPR39 6.47E-05

SLC30A10 0.0001957

SLC39A8 0.00033289

SLC39A14 0.00037319

MTE2 0.00058517

SLC39A11 0.00073398
Sardinian SLC39A4 1.33E-05
GPR39 5.57E-05

SLC39A14 0.0009194
Central-South Asia Balochi SLC39A4 2.89E-05

GPR39 0.00013587

SLC30A2 0.00017753

SLC39A11 0.00022464

SLC39A14 0.00032267

SLC30A9 0.00066326
Brahui SLC39A4 7.98E-06
GPR39 2.63E-05

SLC39A11 0.00045037

SLC39A14 0.00047577

SLC30A9 0.00084037

SLC11A1 0.00085518
Burusho SLC39A4 8.76E-06
SLC30A9 5.38E-05
GPR39 5.78E-05

SLC39A11 0.00020162

MTF2 0.00035538

SLC30A8 0.00039795

SLC39A14 0.00053656

SLC30A2 0.0009226
Hazara SLC39A4 7.24E-06
SLC30A9 2.23E-05
GPR39 9.24E-05
MTF2 9.77E-05

SLC39A14 0.00085186
Kalash SLC39A4 1.72E-05
SLC39A11 9.98E-05

GPR39 0.00013799

MTF2 0.0002331

SLC30A9 0.00033323

SLC39A14 0.00044862

SLC30A10 0.00085675
Makrani SLC39A4 3.95E-06

SLC11A1 0.0002031
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GPR39 0.00021093

SLC39A11 0.00033045

SLC30A9 0.00055087

SLC39A14 0.00071355
Pathan SLC39A4 5.47E-06
GPR39 3.47E-05
SLC30A9 6.08E-05

MTE2 0.00028829

SLC39A11 0.00040321

SLC39A14 0.00044799

SLC30A2 0.00066599

SLC11A1 0.00076262
Sindhi SLC39A4 1.03E-05
SLC39A11 2.99E-05
GPR39 5.83E-05

SLC30A2 0.00027912

SLC30A9 0.00050259
East Asia Dai-Lahu SLC30A9 2.12E-05
SLC39A4 7.82E-05

GPR39 0.00047748

SLC30A3 0.00073958

SLC39A8 0.00089389
Han SLC30A9 3.55E-06
SLC39A4 4.34E-05

GPR39 0.00020004

MTF2 0.00075658
Japanese SLC39A4 6.69E-05

SLC30A9 0.00014582

GPR39 0.00044395

MTF2 0.00071933

SLC39A8 0.00077016
Orogen-Hezhen-Daur SLC30A9 1.51E-05
SLC39A4 3.99E-05

SLC30A2 0.00039712

GPR39 0.00056561
Naxi-Yi SLC39A4 9.03E-05

SLC30A9 0.00010709

SLC39A8 0.00031326

GPR39 0.00042359

MTF2 0.00052899

SLC30A3 0.00065973
NorthernHan-Tu SLC39A4 5.98E-05
SLC30A9 7.01E-05

SLC39A8 0.00035757

GPR39 0.00056756

IL6R 0.00092879

SLC30A3 0.00098103
She-Miao-Tujia SLC30A9 2.05E-05
SLC39A4 4.75E-05

GPR39 0.00034618

MTF2 0.0006867
Xibo-Mongolian SLC30A9 2.66E-05
SLC39A4 5.49E-05

GPR39 0.0002492

SLC30A3 0.0004534

IL6R 0.00064751
Yakut SLC30A9 1.71E-05
SLC39A4 3.57E-05

SLC30A2 0.0003788
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GPR39 0.00091171
Americas Maya SLC30A9 8.30E-05
STAT3 0.00028013
SLC39A11 0.00038942
SLC30A2 0.00043729
GPR39 0.00049596
SLC39A4 0.00074664
Pima STAT3 0.00010471
SLC39A11 0.00010471
SLC30A2 0.00010471
SLC39A4 0.00083811
Surui-Karitiana SLC30A9 0.00012002
SLC30A2 0.00030537
SLC39A9 0.00050277
SLC39A11 0.00052132
SLC39A4 0.00077086
SLC39A8 0.0008551
STAT3 0.0009046
Oceania Bougainville SLC30A9 8.23E-05
GPR39 0.00034338
SLC39A11 0.00040821
SLC39A4 0.00043659
Papuan SLC39A11 9.64E-05
SLC30A9 0.00025195
SLC39A4 0.00032253

Table $4.6: The Calcium-associated genes within the 0.1% tail, as indicated by the
Relate selection values for each population. Ordered by most significant.

Region Population Gene Relate P — value

Africa Bantu-speaking SLC8AZ2 0.00011146
SLC8A1 0.00023012
CYP24A1 0.00044936
ATP2B1 0.00080919

Biaka DGKD 1.97E-05
SLC34A3 0.00027589
ATP2B2 0.00030009
TRPM2 0.00050177
SLC8A1 0.0005978
Mandenka VWA8 0.00011987
ATP2B2 0.00018742
TRPM2 0.00026067
SLC8A1 0.00063471
Mbuti ATP2B2 0.00048462
RGS2 0.00048462
Middle-East Bedouin ATP2B2 0.00022835
ATP2B4 0.00053567
SLC8A1 0.00086055
Druze SLC8A1 0.00025185
ATP2B4 0.00030962

Mozabite ATP2B2 1.38E-05
VWA8 0.0001365
ATP2B4 0.00019367
CASR 0.00071448
Palestinian ATP2B2 0.00017141
TRPM2 0.00071861
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SLC8A1 0.00073645
ATP2B3 0.00080695
Europe Adygei SLCB8A1 0.00057084
GATA3 0.00074135
Basque ATP2B2 1.35E-04
Bergamoltalian-Tuscan SLC8A1 4.48E-05
ATP2B4 0.00041253
TRPM2 0.00049621
ATP2B2 0.00054845
French ATP2B2 7.51E-05
ATP2B4 0.00050016
SLC8A1 0.00072794
TRPM2 0.00072794
ATP2B1 0.00072794
Orcadian CYP24A1 0.00011567
ATP2B2 0.00059697
DGKD 0.00081243
Russian ATP2B2 0.00027103
DGKD 0.00084244
SLC8A1 0.00088073
Sardinian ATP2B2 2.10E-07
SLC8A1 0.00012589
VWA8 0.0002822
ATP2B4 0.00065672
Central-South Asia Balochi VWA8 0.00085698
SLC8A1 0.00091688
Brahui SLC8A2 0.00032201
Burusho ATP2B2 9.35E-05
SLC8A3 0.00038816
Hazara SLC8A1 0.00067934
Kalash SLC12A3 2.21E-05
DGKD 0.0005821
SLC8A1 0.00085796
SLC8A3 0.00096965
ATP2B2 0.00096965
Makrani SLC8A1 2.40E-05
ATP2B2 4.97E-05
Pathan ATP2B2 2.08E-05
SLC8A1 0.00025819
SLC8A3 0.0004843
Sindhi VWA8 0.00036757
ATP2B4 0.00089124
Uygur ATP2B2 5.23E-05
SLC8A1 0.0002744
East Asia Dai-Lahu SLC8A3 4.43E-05
SLC8A1 7.39E-05
Han TRPM2 0.00017549
ATP2B2 0.00065698
Japanese DGKD 0.00020117
ATP2B2 0.0002387
SLC8A3 0.00049776
TRPM2 0.00053484
SLC8A1 0.0007534
Orogen-Hezhen-Daur TRPM2 0.00075899
Naxi-Yi SLC8A3 0.00037186
VWA8 0.00042524
ATP2B2 0.0004816
SLC8A1 0.00066865
NorthernHan-Tu SLC8A3 3.90E-05

296



Appendices

She-Miao-Tujia TRPM2 0.00021958
GATA3 0.00024253
ATP2B4 0.00024253
SLC8A3 0.00072692
ATP2B2 0.00083491
SLC8A1 0.00086595
Xibo-Mongolian SLC8A3 6.74E-05
ATP2B2 0.00052523
GATA3 0.00087309
Yakut SLC8A1 0.000452
Americas Maya SLC8A1 4.17E-05
ATP2B1 0.00015384
Pima ATP2B2 9.06E-06
Surui-Karitiana SLC8A1 0.00065956
Oceania Bougainville ATP2B2 0.000375
Papuan SLC8A1 1.26E-05
ATP2B2 1.97E-05

Table $4.7: The Calcium-associated genes within the 0.1% tail, as indicated by the
F¢r selection values for each population. Ordered by most significant.

Region Population Gene F¢r P —value
Africa Bantu-speaking KCNj10 1.38E-05
ATP2B4 0.00017082
CYP24A1 0.00084385
ATP2B2 0.00085097
SLC34A3 0.00085097
SLC8A1 0.000922
Biaka SLC8A1 3.05E-05
ATP2B4 8.39E-05
CYP24A1 0.00044008
GCKR 0.00050054
GATA3 0.00051639
RGS2 0.00087852
ATP2B2 0.00095405
TRPM2 0.00098545
Mandenka ATP2B2 7.75E-08
SLC8A1 3.00E-05
KCNj10 3.01E-05
GCKR 0.00032727
Mbuti ATP2B4 0.00099714
San TRPM2 0.00024216
SLC8A1 0.00029778
ATP2B2 0.00080396
Middle-East Bedouin ATP2B2 8.84E-05
ATP2B4 0.00020166
CYP24A1 0.00071441
SLC8A2 0.00086433
Druze ATP2B2 0.00035581
SLC8A2 0.00078781
Mozabite ATP2B4 8.32E-05
ATP2B2 9.73E-05
Palestinian ATP2B2 0.0003236
ATP2B4 0.00038601
CYP24A1 0.00094864
Europe Adygei ATP2B4 0.00038826
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ATP2B2 0.00057071
SLC8A2 0.00077579
Basque ATP2B2 0.00026722
ATP2B4 0.00068692
SLC8AZ 0.00086331

Bergamoltalian-Tuscan ATP2B4 0.0002526
ATP2B2 0.00037792
SLC8AZ 0.00050789

French ATP2B2 7.13E-05
SLC8A1 0.0002476
ATP2B4 0.00031481
SLC8AZ 0.00073577
Orcadian ATP2B2 0.00035948
SLC8AZ 0.00060977

Russian ATP2B2 0.0001368
ATP2B4 0.00018927
Sardinian SLC8AZ 0.00014296
SLC8A1 0.00050004
ATP2B4 0.00073068
ATP2B2 0.00096944

Central-South Asia Balochi ATP2B4 0.0001541
ATP2B2 0.00035706
Brahui ATP2B2 0.00067809
SLC8A1 0.00099182
Burusho ATP2B4 0.00048762
ATP2B2 0.0009027
SLC8A2 0.00093919
Kalash SLC8A2 0.00083374
Makrani SLC8A1 0.00065854
ATP2B4 0.00086095
ATP2B2 0.00087364
Pathan ATP2B4 0.00039607
SLC8A2 0.00041262
ATP2B2 0.00081051

Sindhi SLC8A1 0.0003684
ATP2B2 0.00078334
SLC8A2 0.00082772
Uygur ATP2B4 0.00029722
SLC8A1 0.00034663
SLC8A2 0.00038054
SLC8A3 0.00067718
East Asia Han CYP24A1 0.00070583
ATP2B2 0.00090958
Japanese CASR 0.00076711
Orogen-Hezhen-Daur CYP24A1 0.00082205
Naxi-Yi CASR 0.0007695
NorthernHan-Tu ATP2B2 0.00060215
Yakut ATP2B2 0.0008125
Americas Maya SLC8A1 0.0008765
Pima CASR 0.0018747
Surui-Karitiana SLC8A1 0.0008551
Oceania Papuan ATP2B2 0.00060372
SLC8A3 0.00081085
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Table $4.8: The Selenium-associated genes within the 0.1% tail, as indicated by the
Relate selection values for each population. Ordered by most significant.

Region Population Gene Relate P — value
Africa Bantu-speaking LRP8 8.80E-05
PRKG1 0.00011146
EEFSEC 0.00016167
AKAP6 0.00019916
SCLY 0.00066041
SGCD 0.00069572
SELENOP 0.00080919
Biaka SGCD 8.77E-05
SELENOS 0.00011324
LHFPL2 0.00014782
AKAP6 0.00027589
KCNMA1 0.00032071
PRKG1 0.0005978
Yoruba SELENOM 5.87E-06
PRKG1 0.00016458
LRP8 0.00072398
AKAP6 0.00078661
KCNMA1 0.00078661
SELENOS 0.00082895
Mandenka LRP8 1.04E-05
LHFPL2 0.00011467
SECISBP2 0.00027311
LRP2 0.00034801
KCNMA1 0.00053903
AKAP6 0.0005911
SELENOP 0.00071216
PRKG1 0.00094662
Mbuti SGCD 8.72E-05
KCNMA1 0.00020261
EEFSEC 0.00020261
TXNRD1 0.00032824
SELENOI 0.00077346
LRP2 0.00089587
Middle-East Bedouin PRKG1 0.00022585
AKAP6 0.00060058
SGCD 0.00062467
Druze AKAP6 0.00037687
SGCD 0.00069323
Mozabite AKAP6 4.16E-05
SCLY 9.09E-05
GPx7 0.00028962
TXNRD3 0.00057637
SGCD 0.00062854
Palestinian PRKG1 6.83E-05
SGCD 9.50E-05
SELENOF 0.00010856
AKAP6 0.00019775
SELENOS 0.00071861
Europe Adygei AKAP6 4.62E-05
KCNMA1 0.0001784
PRKG1 0.00058113
EEFSEC 0.00065646
TXNRD3 0.00078344
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Basque TXNRD3 4.79E-05
EEFSEC 5.59E-05
AKAP6 0.00035174
SELENOF 0.00040146
SGCD 0.00040146
PRKG1 0.00047061
Bergamoltalian-Tuscan KCNMA1 0.00018138
SGCD 0.00067804
AKAP6 0.000771
GPx2 0.0008142
French SELENOF 0.00097709
Orcadian SELENOF 0.00021496
SEPSECS 0.00069701
Russian KCNMA1 0.000137
SELENOF 0.00015104
SEPSECS 0.00015828
SCLY 0.00026209
SECISBP2 0.00040399
LRP2 0.00086052
TXNRD1 0.00087605
Sardinian SECISBP2 3.27E-05
PRKG1 0.0003378
SELENOF 0.00047208
AKAP6 0.00052747
SGCD 0.00065672
Central-South Asia Balochi PRKG1 0.000145
LRP8 0.00027678
SELENOS 0.00027678
GPx2 0.00029206
EEFSEC 0.00035898
ELAVL1 0.00085698
Brahui GPx2 0.00010148
LRP2 0.00025177
SELENOF 0.00076429
Burusho AKR7L 9.83E-06
PRKG1 0.00012555
ELAVL1 0.00023813
AKAP6 0.00051078
ARSB 0.00064344
SGCD 0.00069345
Hazara PRKG1 5.56E-05
ARSB 0.00017433
SELENOP 0.00017433
TXNRD1 0.00017433
LRP2 0.00034417
SGCD 0.0004472
Kalash PRKG1 0.00014809
Makrani GPx2 9.61E-06
DIO2 0.00028549
Pathan SELENOP 4.09E-05
SELENOF 0.00012857
LRP2 0.00013172
PRKG1 0.00025819
Sindhi KCNMA1 0.00036757
SGCD 0.00063874
SELENOF 0.00089124
PRKG1 0.00089124
East Asia Dai-Lahu PRKG1 0.00025059
SGCD 0.00025059

300



Appendices

KCNMA1 0.0008572
TXNRD2 0.00087044
Han PRKG1 6.54E-05
KCNMA1 0.00023142
SGCD 0.00033036
Japanese LHFPLZ2 0.00015814
KCNMA1 0.00033413
PRKG1 0.00049776
ARSB 0.00049776
SELENOI 0.00052042
Orogen-Hezhen-Daur PRKG1 0.00023563
ARSB 0.00023563
AKAP6 0.00023563
SGCD 0.00036709
Naxi-Yi PRKG1 2.17E-05
SELENOI 0.00037186
AKAP6 0.00041152
KCNMA1 0.00047387
SGCD 0.00071255
NorthernHan-Tu KCNMA1 3.90E-05
PRKG1 0.00015139
SELENOI 0.0003887
AKAP6 0.0003887
SELENOS 0.0003887
SGCD 0.00079954
She-Miao-Tujia PRKG1 0.00013476
KCNMA1 0.00024725
SGCD 0.000598
Xibo-Mongolian KCNMA1 0.00016803
PRKG1 0.0002743
SELENOP 0.0002743
LRP8 0.00052523
ARSB 0.00052523
AKAP6 0.00087309
Yakut KCNMA1 1.46E-05
AKAP6 7.62E-05
GPx7 0.00013104
DIO2 0.00050707
SEPHS1 0.00058843
SGCD 0.00072576
PRKG1 0.00096514
Americas Maya LHFPL2 0.00075386
Pima TRNAU1AP 0.00018445
SELENOI 0.00077597
Surui-Karitiana AKAP6 3.96E-05
Oceania Bougainville SGCD 0.00021637
DMGDH 0.00039673
BHMT 0.00039673
Papuan DIO2 0.00027674
AKAP6 0.00063515
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Table $4.9: The Selenium-associated genes within the 0.1% tail, as indicated by the
F¢r selection values for each population. Ordered by most significant.

Region Population Gene F¢r P —value
Africa Bantu-speaking LHFPL2 4.99E-06
PRKG1 2.11E-05
EEFSEC 2.53E-05
SGCD 0.00017082
GPx3 0.00018601
KCNMA1 0.00025396
TXNRD2 0.0004741
ARSB 0.00050132
SELENOI 0.00080305
TRU-TCA1-1 0.00095671
Biaka LHFPL2 8.33E-05
EEFSEC 0.00010422
SELENOI 0.00011036
SGCD 0.00045229
LRP8 0.00066915
SEPHS2 0.00071412
KCNMA1 0.00094741
Mandenka TXNRDZ2 9.72E-05
SARS2 0.00015415
SGCD 0.00040891
RPL30 0.00054919
EIF4A3 0.00063262
ARSB 0.00070512
Mbuti TRU-TCA2-1 6.63E-05
LHFPL2 7.44E-05
SELENOH 0.000126
ARSB 0.0002288
CELF1 0.00030309
SEPHS1 0.00052952
SELENOI 0.00062595
TRU-TCA3-1 0.00062595
San LRP8 2.15E-05
LHFPL2 3.08E-05
SGCD 0.00010027
GPx3 0.00037697
PSTK 0.00037697
AKAP6 0.00077386
MY 0.00077386
Middle-East Bedouin EEFSEC 8.33E-05
AKAP6 0.00025165
LHFPL2 0.0004813
SGCD 0.00050928
LRP8 0.00056435
PRKG1 0.00066552
JMY 0.00066587
GPx4 0.00070823
TXNRD2 0.00089399
Druze EEFSEC 0.00016841
SGCD 0.00017835
AKAP6 0.00071065
LHFPL2 0.0007289
SELENOS 0.00076221
ARSB 0.00090391
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TXNRD2 0.00091089
Mozabite EEFSEC 1.29E-05
TXNRD2 0.00026529
AKAP6 0.00065171
SGCD 0.00074499
Palestinian MY 0.00013105
LHFPL2 0.00021016
AKAP6 0.00025078
DIO1 0.0003277
DIO2 0.00046738
PRKG1 0.00079409
ARSB 0.00087271
TXNRD?2 0.00088318
Europe Adygei EEFSEC 0.00010962
SELENOS 0.00038826
AKAP6 0.00062343
LRP8 0.0009683
Basque SELENOS 0.00061776
AKAP6 0.00061776
LRP8 0.0006782
EEFSEC 0.00068692
DIO1 0.00070659
PRKG1 0.00095054
SGCD 0.00096781
Bergamoltalian-Tuscan SGCD 1.07E-05
EEFSEC 0.0001355
AKAP6 0.00036307
DIO2 0.00068438
PRKG1 0.00077155
LRP8 0.00081451
French SGCD 0.00023628
SELENOS 0.00044557
TXNRD3 0.00054689
DIO2 0.00063582
DIO1 0.0006635
LRP8 0.00086606
EEFSEC 0.00087608
Orcadian ARSB 7.92E-05
EEFSEC 0.00017297
GPx2 0.0002503
SGCD 0.0002571
LRP8 0.00038381
AKAP6 0.00040702
GPx3 0.00060977
Russian SELENOS 4.01E-05
LRP8 0.00012788
EEFSEC 0.00021035
AKAP6 0.0002722
SGCD 0.00033211
PRKG1 0.00053471
DMGDH 0.00076172
DIO1 0.00092937
Sardinian EEFSEC 0.00013033
AKAP6 0.00018068
KCNMA1 0.00060425
LRP2 0.00075641
SCLY 0.00097505
Balochi SELENOS 0.00015839
EEFSEC 0.00032175
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SGCD 0.00044376
PRKG1 0.0004747
SELENON 0.00088683
Brahui SELENOS 8.04E-05
AKAP6 0.0001368
EEFSEC 0.00033199
SGCD 0.0004361
DIO2 0.00064879
PRKG1 0.00067809
Burusho DIO1 0.00013009
AKAP6 0.00020316
DIO2 0.00039795
EEFSEC 0.00042983
SELENOS 0.00066096
Hazara SELENOS 1.86E-05
EEFSEC 0.000255
DIO1 0.00041576
PRKG1 0.00054207
SELENOI 0.00060433
ARSB 0.0008675
Kalash EEFSEC 0.00013799
SELENOS 0.0002105
DIO1 0.00032655
LRP8 0.00047725
DIO2 0.00058909
ARSB 0.00097016
DMGDH 0.00097016
Makrani SGCD 1.18E-05
SELENOS 0.00013145
AKAP6 0.00022042
PRKG1 0.0002227
GPx2 0.00025279
EEFSEC 0.00029101
DIO2 0.00042861
Pathan DIO1 0.00027736
AKAP6 0.00028829
SGCD 0.00054401
EEFSEC 0.00056375
SELENOS 0.00061362
PRKG1 0.00069817
SEPHS1 0.00079032
Sindhi SELENOS 0.00013278
EEFSEC 0.00029401
AKAP6 0.00031698
DIO1 0.00046362
SELENON 0.00047021
PRKG1 0.0007474
SEPHS1 0.00091271
Uygur PRKG1 0.00019889
SEPHS1 0.00025021
EEFSEC 0.00029722
LRP8 0.00044421
DIO1 0.00057239
SELENOS 0.00062677
DIO2 0.00062677
SGCD 0.00077625
ARSB 0.00091985
East Asia Dai-Lahu SEPHS1 0.00013178
PRKG1 0.00041625
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Han

Japanese

Orogen-Hezhen-Daur

Naxi-Yi

NorthernHan-Tu

She-Miao-Tujia

Xibo-Mongolian

Yakut

SELENOI
SEPHS2
DMGDH
BHMT2

DIO1

SELENOI

EEFSEC
PRKG1

TXNRD2

SEPHS2
SELENOW
SELENON
SELENOW

SEPHS2

PRKG1
DIO1

SELENOI
EEFSEC

KCNMA1

KCNMA1

SELENOI

SELENOW
DIO1
SEPHS2
PRKG1

SELENOS

SEPHS2
PRKG1
SELENOW
SEPHS1
SELENOI
SELENOS
PRKG1
SEPHS2
DIO1

SELENOS
SEPHS1
EEFSEC

SELENOI

KCNMA1

PRKG1

SELENOI

EEFSEC
GPx1
KCNMA1
PRKG1
SEPHS2
SELENOI
SELENOW
SEPHS1
DMGDH
EEFSEC
JMY
PRKG1
DIO1
SEPHS2
EEFSEC
AKAP6
SELENOS

0.00045413
0.00054729
0.00089389
0.00089389
0.00024443
0.00030395
0.00041875
0.00045551
0.00067604
0.00068557
0.0007888
0.00080415
6.91E-05
0.00023089
0.00037851
0.00047758
0.00051479
0.00055858
0.00096672
0.00015128
0.00029749
0.00035763
0.00041683
0.00047206
0.00066189
0.00085593
0.00010969
0.0001864
0.00036851
0.00048678
0.00057711
0.0008885
0.00011442
0.00020983
0.00035868
0.00042754
0.00060159
0.00073565
0.00098636
0.00098636
2.05E-05
0.00037182
0.00052419
0.00056207
0.00090569
1.00E-05
2.66E-05
0.00042129
0.00048511
0.00058305
0.00060539
0.00079502
0.00087862
0.00010185
0.0002481
0.00031133
0.00049965
0.00058379
0.00095554
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KCNMA1 0.00099665
Americas Maya GPx3 0.00014139
SGCD 0.00031806
DIO1 0.00062126
DIo2 0.00067055
SEPHS2 0.00083053
Pima GPx3 0.00010471
SELENON 0.00010471
SGCD 0.00044989
SEPHS2 0.00044989
PRKG1 0.00066221
DIO2 0.00086237
Surui-Karitiana GPx3 0.00012002
SGCD 0.00012002
SEPHS2 0.00027794
LHFPL2 0.00030537
AKAP6 0.00052132
SELENON 0.00059791
SELENOM 0.00090882
Oceania Bougainville AKAP6 0.00017199
SGCD 0.00034338
DIO2 0.00034338
LRP8 0.00034338
TRU-TCA2-1 0.00062923
Papuan SGCD 5.36E-05
PRKG1 0.00070944
KCNMA1 0.00081085

Table $4.10: The Iron-associated genes within the 0.1% tail, as indicated by the
Relate selection values for each population. Ordered by most significant.

Region Population Gene Relate P — value

Africa Biaka TMPRSS6 7.18E-05

ACO01 0.00030009

ARHGEF3 0.00046393

MYB 0.00046393

HIF1A 0.00048144

Yoruba HIF1A 0.00035819

SLC48A1 0.00063471

PANK2 0.00082895

Mandenka HAMP 0.00012474

FTMT 0.00015476

Mbuti ACO2 0.00032824

PLA2G6 0.00077346

Middle-East Bedouin EPAS1 0.00013935

HBS1L 0.0002138

Druze WDR45 0.00010661

cp 0.0002821

FTMT 0.00058571

FAZH 0.00058571

TMPRSS6 0.00058571

SLC48A1 0.00080002

Mozabite HIF1A 0.00078773
Europe Adygei C19orf12 2.01E-05
CFAP251 9.28E-05

ARHGEF3 0.00015855
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FTMT 0.00099437
Basque HIF1A 2.43E-06
ARHGEF3 2.47E-05
MYB 0.00085462
Bergamoltalian-Tuscan HIF1A 0.00041253
LTF 0.00046929
SLC40A1 0.00049621
French HIF1A 0.00026554
SLC11A2 0.00085614
Orcadian FTMT 0.00012535
C19orf12 0.00021496
EPAS1 0.00059697
Russian FTMT 0.00084244
Sardinian FAZ2H 0.00052747
Central-South Asia Balochi EPAS1 0.00027678
FTMT 0.00091688
Brahui FTMT 1.92E-05
PANK2 0.00061849
EPAS1 0.00094336
Burusho HIF1A 0.0002737
PANK2 0.00064344
Hazara ARHGEF3 0.00046092
Kalash CFAP251 0.0005821
Makrani FTMT 0.00050511
Pathan HIF1A 0.00029385
Sindhi HIF1A 2.28E-05
Uygur SLC40A1 1.62E-05
PLA2G6 7.10E-05
East Asia Dai-Lahu ARHGEF3 6.80E-05
LCN2 0.00051035
Han LCN2 0.00047733
RHOA 0.00047733
TAOK1 0.00051001
Japanese SLC40A1 0.0001792
Orogen-Hezhen-Daur SLC40A1 0.00023563
ARHGEF3 0.00023563
NorthernHan-Tu RHOA 0.0003887
FTMT 0.00065104
TFRC 0.00074298
She-Miao-Tujia FTMT 0.00021508
SLC11A1 0.00033635
TFRC 0.00072692
Xibo-Mongolian RHOA 0.00052523
FTMT 0.0009191
SLC17A1 0.00098995
Yakut FTMT 3.37E-06
SLC40A1 0.00042053
PLA2G6 0.00042053
ACO1 0.00096514
Americas Maya ARHGEF3 0.00028516
SLC48A1 0.00036477
TF 0.00047791
Pima SLC17A1 0.00071578
Oceania Papuan HIF1A 0.00027674
HBS1L 0.00027674
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Table S4.11: The Iron-associated genes within the 0.1% tail, as indicated by the
F¢r selection values for each population. Ordered by most significant.

Region Population Gene F¢r P —value
Africa Bantu-speaking TAOK1 3.42E-05
ATP13A2 0.00019915
H]V 0.00025213
CFAP251 0.00031076
TFRC 0.00048283
ARHGEF3 0.00081567
Biaka ARHGEF3 0.00050083
FTL 0.00074618
Mandenka FTL 1.99E-05
HJV 2.91E-05
LCN2 0.0001794
TMPRSS6 0.00050372
ACO01 0.00059993
TF 0.00097832
Mbuti SLC11A2 0.00037127
LTF 0.00051764
San ACO2 0.00021486
SLC11A1 0.00024216
ARHGEF3 0.00030976
ACO1 0.00077386
Middle-East Bedouin ARHGEF3 3.43E-05
LCN2 0.00075733
LTF 0.00079045
Druze ARHGEF3 0.00035974
EPAS1 0.00045537
FTH1 0.00090651
LCN2 0.00091089
Mozabite ARHGEF3 0.00044427
MYB 0.00057807
Palestinian ARHGEF3 2.55E-05
LCN2 0.00044637
EPAS1 0.0005172
HIF1A 0.00084412
CFAP251 0.00084851
Europe Adygei FTMT 7.54E-05
TMPRSS6 0.00023855
ARHGEF3 0.00027147
EPAS1 0.00080734
Basque ARHGEF3 0.00016136
HIF1A 0.00024923
FTMT 0.00040115
FTH1 0.00078535
Bergamoltalian-Tuscan LTF 0.00018177
ARHGEF3 0.00058054
HIF1A 0.00059546
FTMT 0.00087207
French CFAP251 0.00013879
ARHGEF3 0.0002749
EPAS1 0.0008926
HIF1A 0.00095844
Orcadian SLC40A1 0.0005459
ARHGEF3 0.00067044
EPAS1 0.00080548
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Russian SLC40A1 0.00044697
Sardinian FTMT 0.00063005
FTH1 0.00095923

Central-South Asia Balochi ARHGEF3 2.34E-05
FTMT 0.00032236
HIF1A 0.00060766

Brahui ARHGEF3 6.51E-05
FTMT 0.00031265
SLC11A1 0.00085518
Burusho ARHGEF3 0.00029444
Hazara ARHGEF3 0.00012885
Kalash TMPRSS6 0.00027137
LTF 0.00027137
HFE 0.00029735
ARHGEF3 0.00033265

Makrani ARHGEF3 8.20E-05
SLC11A1 0.0002031
FTMT 0.00075807
Pathan SLC11A1 0.00076262
FTMT 0.00098729
Sindhi TMPRSS6 0.00039545
EPAS1 0.00079401
Uygur SLC11A1 0.00023123
LTF 0.00038054
SLC40A1 0.00064543
HBS1L 0.00067718

East Asia Dai-Lahu FTMT 4.85E-05
RHOA 0.00066748
EPAS1 0.00076375

Han RHOA 8.62E-05
FTMT 0.00080415
STEAP3 0.00082102

Japanese RHOA 6.91E-05
Naxi-Yi SLC40A1 0.00019231
RHOA 0.00038495
CFAP251 0.00078732
SLC17A1 0.00080911
FECH 0.00098344

NorthernHan-Tu RHOA 9.99E-05

She-Miao-Tujia RHOA 1.38E-05
ARHGEF3 0.00040273
TFRC 0.00079686
SLC40A1 0.00079686

Xibo-Mongolian

RHOA 0.00015719
SLC40A1 0.00101931
Yakut CFAP251 0.00071529
FTMT 0.00082692
SLC40A1 0.00085024

Americas Maya TMPRSS6 4.90E-05
RHOA 0.00020031
SLC40A1 0.00024802
TF 0.00099565
Pima RHOA 0.00010471
SLC40A1 0.00010471
SLC48A1 0.00018886
TMPRSS6 0.00030107
HIF1A 0.00030813
EPAS1 0.00085055
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ACO2 0.00086237

Surui-Karitiana RHOA 0.00023151

C19orf12 0.00030537

STEAP3 0.00030537
Oceania Bougainville TERC 3.80E-05
TMPRSS6 8.23E-05

ACO1 0.00016154

RHOA 0.00072992

HIF1A 0.00096615
Papuan ACO01 5.36E-05
TMPRSS6 9.64E-05

Table S4.12: The Iodine-associated genes within the 0.1% tail, as indicated by the
Relate selection values for each population. Ordered by most significant.

Region Population Gene Relate P — value
Africa Bantu-speaking TTR 0.00016167
THRB 0.00069572
SLC16A10 0.00029907
Biaka SLCO1C1 0.00010211
SULT6B1 0.00014782
Mandenka SECISBP2 0.00027311
TTR 0.00034801
SECISBP2 0.00027311
Mbuti SULT6B1 0.00032824
Middle-East Druze SULT6B1 0.00064949
Mozabite TPO 2.50E-05
TRIP4 0.00024191
Palestinian THRB 3.23E-06
SLCO1C1 0.00086115
Europe Basque SLCO1C1 0.00035174
TSHR 0.00085462
Bergamoltalian-Tuscan SLCO1C1 7.78E-05
French SULT6B1 0.00072794
SLC16A10 0.00072794
IYD 0.00075574
Orcadian SLC5A5 9.83E-05
THRB 0.00059697
SULT6B1 0.00066424
Russian SLC16A10 0.00026039
SECISBP2 0.00040399
SULT6B1 0.00040441
Sardinian THRB 2.94E-05
SECISBP2 3.27E-05
Central South Asia Balochi SLCo1C1 0.00065848
Brahui SLC16A2 1.51E-05
SLCo1C1 0.00061849
Burusho SLCo1C1 0.00012304
THRB 0.0004254
SLC16A10 0.00094037
Hazara SLCOo1C1 0.00076257
Kalash THRB 0.00019232
SLC16A10 0.00079475
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Makrani DIOZ2 0.00028549

Pathan SLC16A10 0.00069635

Sindhi THRB 0.00063874

SLCO1C1 0.0009536

East Asia Dai-Lahu THRB 0.0008572

Han TRIP4 0.00013754

Han SLCO1C1 0.00013754

Orogen-Hezhen-Daur SLCO1C1 0.00023563

Naxi-Yi THRB 0.00082179

She-Miao-Tujia TTR 0.0003107

Xibo-Mongolian THRB 0.00052523

THRA 0.00052917

Yakut DIO2 0.00050707

IYD 0.00072576

Americas Maya TSHR 0.00027492

THRA 0.00027492

THRB 0.00031588

TRIP4 0.00036477

SULT6B1 0.00081017

Surui-Karitiana THRB 0.00041299

Oceania Papuan 0.00027674
DIO2

Table $4.13: The Iodine-associated genes within the 0.1% tail, as indicated by the
F¢r selection values for each population. Ordered by most significant.

Region Population Gene F¢r P —value
Africa Bantu-speaking THRB 0.00025396
SLC16A10 0.00081068
Biaka THRB 0.00079522
Mandenka TSHR 8.17E-05
IYD 0.00043594
SLCO1C1 0.000744
Mbuti TRIP4 3.96E-05
THRB 0.00020352
THRA 0.00070607
San TSHR 0.00080396
Middle-East Bedouin TSHR 0.00059462
Druze TSHR 0.00037124
Mozabite THRB 0.00063856
TSHR 0.00066246
Palestinian TSHR 7.98E-05
DIO1 0.0003277
DIO2 0.00046738
Europe Adygei TSHR 0.00023855
THRB 0.00041932
SLcoic1 0.00096203
Basque DIO1 0.00070659
TSHR 0.00079007
Bergamoltalian-Tuscan DIOZ2 0.00068438
French DIO2 0.00063582
DIO1 0.0006635
TSHR 0.0009121
Orcadian THRB 0.00044048
Russian TSHR 0.00073514
TTR 0.00088984
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DIO1 0.00092937

Central-South Asia Balochi THRB 0.00064082
TSHR 0.00080388

Brahui TSHR 0.00031802
DIO2 0.00064879

Burusho DIO1 0.00013009
DIO2 0.00039795

THRA 0.0006907

Hazara DIO1 0.00041576
TSHR 0.00045968

SLCoiC1 0.00078412

Kalash TSHR 0.00016414
DIO1 0.00032655

DIO2 0.00058909

Makrani DIOZ 0.00042861
THRB 0.00054441

Pathan DIO1 0.00027736
TSHR 0.00029277

SLCOoiC1 0.00097803

Sindhi DIO1 0.00046362
SLCOoiC1 0.00080735

Uygur SLCOoicC1 0.00019682
THRB 0.00021962

TSHR 0.00044421

DIO1 0.00057239

DIO2 0.00062677

East Asia Han DIO1 0.00024443
TSHR 0.00044923

THRB 0.00066537

Japanese DIO1 0.00047758
SULT6B1 0.00048852

TSHR 0.00055913

SLCO1C1 0.00075499

Orogen-Hezhen-Daur DIO1 0.00041683
TSHR 0.00049137

NorthernHan-Tu DIO1 0.00035868
TSHR 0.00075354

She-Miao-Tujia TSHR 0.00056207
Xibo-Mongolian SLCO1C1 0.00093924
Yakut DIO1 0.0002481
SULT6B1 0.00090321

Americas Maya DIO1 0.00062126
TSHR 0.00062176

DIO2 0.00067055

TRIP4 0.00083053

Pima SLCo1cC1 0.00018886
THRB 0.00018886

DIO2 0.00086237

Surui-Karitiana THRB 0.00012002
TSHR 0.00023151

Oceania Bougainville DIO2 0.00034338
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Figure $4.1: ZCSIl-associated genes showing repeated signatures in the 0.1% tail.
Shown for A) Relate or B) Fgr selection values, with the number of populations showing
such signatures given by the x-axis.
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Figure $4.2: Haplotype network built from the 20kb region surrounding the
chr8:144414297 SNP of SLC39A4
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Figure 54.3: Haplotype network built from the 20kb region surrounding the
chr2:132638916 SNP of GPR39
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Figure $4.4: Haplotype network built from the 20kb region surrounding the
chr4:42004040 SNP of SLC30A9

¢

Figure $4.5: Haplotype network I;uilt from the 20kb region surrounding the
chr4:42031397 SNP of SLC30A9
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Figure $4.6: Haplotype network built from the 20kb region surrounding the
chr4:42066213 SNP of SLC30A9
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Figure $4.7: Haplotype network built from the 20kb region surrounding the
chr4:42093983 SNP of SLC30A9
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Figure $4.8: Haplotype network built from the 10kb region surrounding the
chr17:73010373 SNP of SLC39A11
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Figure $4.9: Haplotype network built from the 10kb region surrounding the
chr17:72716374 SNP of SLC39A11
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Figure $4.10: Haplotype network built from the 20kb region surrounding the
chr8:22404076 SNP of SLC39A14
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Figure $4.11: Haplotype network built from the 20kb region surrounding the
chr8:22416174 SNP of SLC39A14
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Figure $4.12: Haplotype network built from the 20kb region surrounding the
chr3:10453703 SNP of ATP2B2
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Figure $4.13: Haplotype network built from the 10kb region surrounding the
chr3:10636328 SNP of ATP2B2

Figure S4.14: Haplotype network built from the 20kb region surrounding the
chr1:203648263 SNP of ATP2B4
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Figure $4.15: Haplotype network built from the 10kb region surrounding the
chr1:203667951 SNP of ATP2B4
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Figure $4.16: Haplotype network built from the 20kb region surrounding the
chr19:47428756 SNP of SLC8A2
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Figure $4.17: Haplotype network built from the 20kb region surrounding the
chr19:47437107 SNP of SLC8A2
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Figure $4.18: Haplotype network built from the 20kb region surrounding the
chr3:128412869 SNP of EEFSEC

Figure $4.19: Haplotype network built from the 20kb region surrounding the
chr10:51576270 SNP of PRKG1
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Figure $4.20: Haplotype network built from the 20kb region surrounding the
chr10:51471686 SNP of PRKG1
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Figure $4.21: Haplotype network built from the 20kb region surrounding the
chr5:156708844 SNP of SGCD

321



Appendices

[ J

[ ]

o i
@ b

[ 3

[ ]

Figure $4.22: Haplotype network built from the 20kb region surrounding the
chr5:156057959 SNP of SGCD
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Figure $4.23: Haplotype network built from the 20kb region surrounding the
chr14:32542441 SNP of AKAP6
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Figure $4.24: Haplotype network built from the 20kb region surrounding the chri14:
32446036 SNP of AKAP6
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Figure $4.25: Haplotype network built from the 20kb region surrounding the chri4:
32453376 SNP of AKAP6
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Figure $4.26: Haplotype network built from the 20kb region surrounding the
chr1:53920598 SNP of DIO1
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Figure $4.27: Haplotype network built from the 20kb region surrounding the
chr3:56761998 SNP of ARHGEF3
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Figure $4.28: Haplotype network built from the 20kb region surrounding the
chr14:80962759 SNP of TSHR
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Figure $4.29: Haplotype network built from the 20kb region surrounding the
chr14:81006112 SNP of TSHR
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Figure $4.30: Haplotype network built from the 20kb region surrounding the
chr14:81071140 SNP of TSHR

S,
\ 4 ‘e
\\ R & '-, ,‘t _ vj_,
v

Figure $4.31: Haplotype network built from the 20kb region surrounding the
chr3:24110895 SNP of THRB
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Figure $4.32: Haplotype network built from the 20kb region surrounding the chr3:
24342863 SNP of THRB
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Figure $4.33: Inferred log likelihood ratios for focal SNP of ATP2B2 (position:
chr3:10456514). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.34: Inferred log likelihoods ratios for focal SNP of ATP2B2 (position:
chr3:10604833). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.35: Inferred log likelihood ratios for focal SNP of ATP2B4 (position:
chr1:203648263). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.36: Inferred log likelihood ratios for focal SNP of ATP2P4 (position:
chr1:203667951). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.37: Inferred log likelihood ratios for focal SNP of SLC8A1 (position:
chr2:40394610). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.38: Inferred log likelihood ratios for focal SNP of SLC8A1 (position:
chr2:40584510). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.39: Inferred log likelihood ratios for focal SNP of SLC8AZ2 (position: chr19:
47428756). For populations with selection values in the 5% tail for that SNP according to
either Relate or Fgp(dashed lines) or according to both selection methods (solid lines).
Colours represent metapopulations: blue = Europe; dark-green = Middle-East; pink =
Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; dark-
orange = Africa.
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Figure $4.40: Inferred log likelihood ratios for focal SNP of SLC8AZ2 (position: chr19:
47437107). For populations with selection values in the 5% tail for that SNP according to
either Relate or Fgr(dashed lines) or according to both selection methods (solid lines).
Colours represent metapopulations: blue = Europe; dark-green = Middle-East; pink =
Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; dark-
orange = Africa.
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Figure $4.41: Inferred log likelihood ratios for focal SNP of SLC8A3 (position:
chr14:70182346). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.42: Inferred log likelihood ratios for focal SNP of SLC8A3 (position:
chr14:70175561). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.43: Inferred log likelihood ratios for focal SNP of ARHGEF3 (position:
chr3:56761998). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure S4.44: Inferred log likelihood ratios for focal SNP of ARHGEF3 (position:
chr3:57043874). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.45: Inferred log likelihood ratios for focal SNP of HIF1A (position:
chr14:61687412). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.46: Inferred log likelihood ratios for focal SNP of HIF1A (position:
chr14:61709502). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.47: Inferred log likelihood ratios for focal SNP of HIF1A (position:
chr14:61741756). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.48: Inferred log likelihood ratios for focal SNP of FTMT (position:
chr5:121846819). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.49: Inferred log likelihood ratios for focal SNP of FTMT (position:
chr5:121853801). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.50: Inferred log likelihood ratios for focal SNP of SLC40A1 (position:
chr2:189577426). For populations with selection values in the 5% tail for that SNP
according to either Relate or Fsr(dashed lines) or according to both selection methods
(solid lines). Colours represent metapopulations: blue = Europe; dark-green = Middle-East;
pink = Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania;
dark-orange = Africa.
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Figure $4.51: Inferred log likelihood ratios for focal SNP of SLC40A1 (position: chr2:
189591670). For populations with selection values in the 5% tail for that SNP according
to either Relate or Fgr(dashed lines) or according to both selection methods (solid lines).
Colours represent metapopulations: blue = Europe; dark-green = Middle-East; pink =
Central-South Asia; light-green = East Asia; yellow = America; purple = Oceania; dark-
orange = Africa.
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Chapter 5: Supplementary Material

Tables

Table $5.1: List of mammalian GPX coding sequences used for this study. Latin names
given in the GPX6sec/cys row.

GPX Protein Coding Sequences Included

GPX6sec/cys Bushbaby (Otolemur garnettii), Cat (Felis catus),
Chimpanzee (Pan troglodytes), Chinese hamster
(Cricetulus griseus), Cow (Bos taurus), Elephant
(Loxodonta africana), Golden hamster
(Mesocricetus auratus), Guinea pig (Cavia
porcellus), Horse (Equus caballus), Human (Homo
sapiens), Jerboa (Jaculus jaculus), Kangaroo rat
(Dipodomys ordii), Macaque (Macaca mulatta),
Marmoset (Callithrix jacchus), Mouse (Mus
musculus), Pig (Sus scrofa), Rabbit (Oyctolagus
cuniculus), Rat (Rattus norvegicus), Squirrel
(Ictidomys tridecemlineatus), Squirrel monkey
(Saimiri boliviensis), Tarsier (Carlito syrichta),
Walrus (Odobenus rosmarus).

GPX1sec Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Elephant,
Golden hamster, Human, Jerboa, Kangaroo rat, Macaque,
Mouse, Pig, Rabbit, Rat, Squirrel, Squirrel monkey, Tarsier

GPX2sec Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Dog,
Elephant, Golden hamster, Guinea pig, Horse, Human, Jerboa,
Kangaroo rat, Macaque, Marmoset, Mouse, Pig, Rabbit, Rat,
Squirrel, Squirrel monkey

GPX3sec Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Dog,
Elephant, Golden hamster, Guinea pig, Horse, Human, Jerboa,
Macaque, Marmoset, Mouse, Pig, Rabbit, Rat, Squirrel, Tarsier

GPX4sec Cat, Chimpanzee, Chinese hamster, Cow, Elephant, Gibbon,
Golden hamster, Guinea pig, Horse, Human, Kangaroo rat,
Macaque, Mouse, Mouse lemur, Pig, Rat, Squirrel, Squirrel
monkey

GPX5cys Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Dog,
Elephant, Golden hamster, Guinea pig, Horse, Human, Jerboa,
Kangaroo rat, Macaque, Marmoset, Mouse, Pig, Rabbit, Rat,
Squirrel, Squirrel monkey, Tarsier, Walrus

GPX7cys Bushbaby, Chimpanzee, Chinese hamster, Cow, Dog, Elephant,
Golden hamster, Guinea pig, Horse, Human, Jerboa, Kangaroo
rat, Macaque, Marmoset, Mouse, Rabbit, Rat, Squirrel, Tarsier

GPX8cys Bushbaby, Cat, Chimpanzee, Chinese hamster, Cow, Elephant,
Golden hamster, Guinea pig, Horse, Human, Jerboa, Kangaroo
rat, Macaque, Marmoset, Mouse, Panda, Pig, Rabbit, Rat,
Squirrel, Squirrel monkey, Tarsier
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Table S5.2: dN/dS ratios for the GPX family and protein regions. Given for lineages
where GPX6 has Sec (Fig. 1, solid red branches), exchanged Sec for Cys (Fig. 1, dashed green
branches) or inherited Cys (Fig. 1, solid green branches). In some lineages for which PAML
estimates very few synonymous changes compared to the non-synonymous changes,
unnaturally large dN/dS values can occur; these are marked with a #. The dN/dS ratio for
all branches is the null hypothesis (one ratio for all branches) used in the likelihood ratio
test contrasting the two previous ones. P-values are obtained based on a y? distribution
with d.f=2. In bold, significant P-values.

dN/dS in branches where GPX6

has
Protein Region Sec Cys after Inherited All P-value
Sec was lost Cys
GPX1sec Full length 0.080 0.045 0.087 0.074 0.115
N-terminus 0.043 0.009 0.190 0.034 0.046
GPX 0.064 0.040 0.069 0.060 0.534
C-terminus 0.085 0.052 0.114 0.081 0.328
GPX2sec Full length 0.069 0.029 0.041 0.055 0.024
N-terminus 0.032 0.001 0.001 0.032 0.999
GPX 0.075 0.042 0.038 0.060 0.191
C-terminus 0.055 0.017 0.048 0.043 0.100
GPX3sec Full length 0.132 0.131 0.077 0.125 0.222
N-terminus 0.241 0.038 0.461 0.181 0.022
GPX 0.094 0.108 0.056 0.091 0.439
C-terminus 0.105 0.195 0.058 0.114 0.161
GPX4sec Full length 0.071 0.073 0.112 0.076 0.380
N-terminus 0.108 0.018 0.123 0.082 0.264
GPX 0.062 0.007 0.203 0.061 1x10~%
C-terminus 0.043 0.003 0.033 0.030 0.126
GPX5cys Full length 0.294 0.258 0.429 0.305 0.061
N-terminus 0.678 0.634 0.959 0.716 0.716
GPX 0.233 0.145 0.219 0.212 0.227
C-terminus 0.237 0.225 0.358 0.250 0.379
GPX7cys Full length 0.141 0.086 0.157 0.137 0.377
N-terminus 0.190 #999 0.005 0.122 0.070
GPX 0.083 0.080 0.117 0.088 0.712
C-terminus 0.185 0.080 0.224 0.178 0.242
GPX8cys Full length 0.228 0.156 0.156 0.203 0.199
N-terminus 0.169 0.195 0.112 0.158 0.775
GPX 0.223 0.155 0.198 0.207 0.616
C-terminus 0.217 0.161 0.104 0.194 0.486
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Table S5.3: Foreground branches tested using the branch-site model. The amino acid
sites inferred as under selection using the Bayes Empirical Bayes inference listed when
supported by a P-value < 0.05. P-values are obstained based on a y? distribution with d.f=1.
Posterior probabilities of selection are shown in parehtneses, in bold face when P > 0.9. All
foreground branches used here are lineages where Sec was exchanged for Cys (Fig 1, dashed

green branches)

Region Foreground branches P-value Sites under selection
GPX domain Eumuroida, Rabbit, Primate, | 0.046 | 45 (0.783); 46 (0.571); 50 (0.946);

Cat, Walrus 52 (0.936); 56 (0.950); 57 (0.513);
62 (0.995); 63 (0.535); 70 (0.552);
74 (0.992); 75 (0.573); 77 (0.975);
83 (0.995); 91 (0.728); 110 (0.937);
126 (0.947); 143 (0.799); 149
(0.606)

Full protein Eumuroida, Rabbit 0.006 16 (0.741); 45 (0.913); 56 (0.895);

74 (0.992); 77 (0.942); 83 (0.992);
126 (0.822); 171 (0.784); 214
(0.573); 215 (0.668)

Eumuroida, Rabbit, Primate 0.008 | 16 (0.988); 45 (0.858); 56 (0.935);
63 (0.501); 73 (0.503); 74 (0.991);
77 (0.971); 83 (0.988); 110
(0.925); 126 (0.937); 149 (0.554);
171 (0.757); 189 (0.520); 207
(0.502); 212 (0.758); 214 (0.698);
215 (0.682); 216 (0.822)

Eumuroida, Rabbit, Primate, 0.054

Cat,

Eumuroida, Rabbit, Primate, 0.050

Walurs

Eumuroida, Rabbit, Primate, 0.127

Cat, Walrus
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Table $5.4: Convergent (sites change to the same amino acid) and pseudo-convergent
(sites change to different amino acids) sites identified between GPX6., lineages by
CONVERG2. The two left-most columns are the branches between which convergent or
pseudo-convergent sites are identified. The number gives the amino acid site where
convergence is identified; the brackets represent the (ancestral amino acids on both
branches, derived amino acids on both branches) in the order of the branches. Here, (SM-M)
stands for the Squirrel monkey — marmoset internal branch, (GH-CH) stands for the Golden
hamster - Chinese hamster internal branch and (rat-mouse) represents the rat-mouse
internal branch. The branch names given in green indicate the branches upon which we
have inferred the Sec-to-Cys exchange to have occurred. Convergent sites are in bold, all
other sites are pseudo-convergent.

(SM-M) Eumuroida 15 166
(GG,SA) (SK,NE)
(SM-M) Rabbit 15 (GG,SS) 34 (GG, 62 91 (FF, 110 166 212
NE) (HH,PY) LL) (TK,AR) (SK,NR) (EE,AK)
(SM-M) Cat 26 48 62 90 91 166 190
(NK,DT) (NN,SS) (HH,PV) (NP,SR) (FFLY) (SS,ND) (DD,HN)
(SM-M) Walrus 91 (FF,LS)
(SM-M) Golden 48
hamster (NN,ST)
(SM-M) Chinese 62
hamster (HH,PY)
(SM-M) (Rat-mouse) 48 90 (QN,PS)
(NN,SD)
Eumuroida Rabbit 15 45 (LL,KR) 56
(GG,AS) (KK,QQ)
Eumuroida Cat 70 143 165
(TT,SS) (KK,NN) (SS,TP)
Eumuroida Walrus 165
(SS,TA)
Eumuroida Squirrel 48 (LL,KF) 63 (VV,II)
monkey
Eumuroida Marmoset 70
(TT,SS)
Eumuroida Rat 127
(FY,YF)
Eumuroida Chinese 27
hamster (MA,AE)
Eumuroida (Rat-mouse) 27 45 (LK,KN) 165
(MA,AS) (ST,PT)
Rabbit Cat 62 91 (FF,LY) 143
(HH,YV) (KK,NN)
Rabbit Walrus 51 91 (FF,LS) 165
(YY,DH) (SP,PA)
Rabbit Squirrel 45 (LL,FR)
monkey
Rabbit Marmoset 73 208
(GG,AS) (SS,AA)
Rabbit Mouse 51 200
(YY,DF) (KQAH)
Rabbit Rat 36 192
(TT,SA) (VV,1A)
Rabbit Golden 36
hamster (TT,SA)
Rabbit Chinese 62 189
hamster (HH,YY) (PP,TS)
Rabbit (Rat-mouse) 11 (PP,LS) 45 (LK,RN) 160
(ST,PP)
Rabbit (GH-CH) 167 171
(QH,HY) (ED,DN)
Cat Walrus 91 (FFYS) 165
(SS,PA)
Cat Squirrel 34 50 (EE,GD)
monkey (KK, TN)
Cat Marmoset 70
(TT,SS)
Cat Golden 48
hamster (NN,TS)
Cat Chinese 62
hamster (HH,YV)
Cat (Rat-mouse) 48 90 (PQRP) 165
(NN,SD) (ST,PP)
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Walrus Mouse 51 54
(YY,HF) (QQPN)
Walrus (Rat-mouse) 165
(ST,AP)
Walrus (GH-CH) 54
(QQ.pPP)
Squirrel (Rat-mouse) 45
monkey (LK,FN)
Marmoset Rat 94 (IT,TS)
Marmoset (Rat-mouse) 94 (ILTT)
Mouse (Rat-mouse) 200
(QKHQ)
Mouse (GH-CH) 54
(QQNP)
Rat Golden 36
hamster (TT,AA)
Rat (Rat-mouse) 94 (TLST) 205 (IT,VI)
Golden (Rat-mouse) 48
hamster (NN,TD)
Chinese (Rat-mouse) 27
hamster (AAES)

Table S5.5: Convergent and pseudoconvergent sites in GPX1 between the GPX6,
lineages, where the sequences were also available, as identified by CONVERG2. The
two left-most columns are the branches between which convergent or pseudo-convergent
lineages are identified. The number gives the amino acid site where convergence is
identified; the brackets represent (ancestral amino acids on both branches, derived amino
acids on both branches) in the order of the branches. Here, (SM-M) stands for the Squirrel
monkey — marmoset internal branch, (GH-CH) stands for the Golden hamster - Chinese
hamster internal branch and (rat-mouse) represents the rat-mouse internal branch. The
branch names given in green indicate the branches upon which we have inferred the Sec-
to-Cys exchange in GPX6,,s to have occurred. Strict convergent sites are given in bold; all

other sites are pseudo-convergent.

Rabbit | Mouse 177 (PP,SS)

Rabbit | Rat 138 (AA,SS) 175 (QQ,KK)
Rabbit | Golden hamster | 10 (SS,NN) 41 (RK,ER)
Cat (Mouse-Rat) 108 (EE,QN)

Rat Golden hamster | 4 (TT,AA)

Table S5.6: Convergent and pseudoconvergent sites in GPX2 between the GPX6,
lineages, where the sequences were also available, as identified by CONVERG2. The
two left-most columns are the branches between which convergent or pseudo-convergent
lineages are identified. The number gives the amino acid site where convergence is
identified; the brackets represent the (ancestral amino acids on both branches, derived
amino acids on both branches) in the order of the branches. Here, (SM-M) stands for the
Squirrel monkey — marmoset internal branch, (GH-CH) stands for the Golden hamster -
Chinese hamster internal branch and (rat-mouse) represents the rat-mouse internal
branch. The branch names given in green indicate the branches upon which we have
inferred the Sec-to-Cys exchange in GPX6.,, to have occurred. Strict convergent sites are

given in bold; all other sites are pseudo-convergent.

Rabbit ‘ Mouse | 47 (EQ,QE)
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Table S5.7: Convergent and pseudoconvergent sites in GPX3 between the GPX6,
lineages, where the sequences were also available, as identified by CONVERG2. The
two left-most columns are the branches between which convergent or pseudo-convergent
lineages are identified. The number gives the amino acid site where convergence is
identified; the brackets represent the (ancestral amino acids on both branches, derived
amino acids on both branches) in the order of the branches. Here, (SM-M) stands for the
Squirrel monkey - marmoset internal branch, (GH-CH) stands for the Golden hamster —
Chinese hamster internal branch and (rat-mouse) represents the rat-mouse internal
branch. The branch names given in green indicate the branches upon which we have
inferred the Sec-to-Cys exchange in GPX6,s to have occurred. Here, the marmoset branch
is given as a branch where the Sec-to-Cys exchange in GPX6,,; has been estimated, given
that the squirrel monkey sequence is unavailable for this protein. Strict convergent sites
are given in bold; all other sites are pseudo-convergent.

Marmoset Eumuroida 5 (VV,MM) 172 (SA,LS)
Marmoset Rabbit 33 (VLLV)

Marmoset Cat 5 (VV,MQG)

Marmoset (GH-CH) 33 (VLLV)

Eumuroida | Rabbit 135 (VV,IM)

Eumuroida | Cat 5 (VV,MQG)

Rabbit Cat 126 (GG,NN) 152 (ILVV)
Rabbit Chinese hamster 152 (ILVK)

Rabbit (GH-CH) 33 (ILVV) 107 (FF,VV)
Cat Mouse 154 (IL,LV)

Cat Chinese hamster 152 (ILVK)

Cat (GH-CH) 154 (IL,LV)

Mouse (GH-CH) 154 (ILVV)

Table $5.8. Convergent and pseudoconvergent sites in GPX4 between the
GPX6, lineages, where the sequences were also available, as identified by
CONVERG2

No convergent sites found.
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Table S5.9: Convergent and pseudoconvergent sites in GPX5 between the GPX6,

lineages, where the sequences were also available, as identified by CONVERG2. The
two left-most columns are the branches between which convergent or pseudo-convergent

lineages are identified. The number gives the amino acid site where convergence is

identified; the brackets represent (ancestral amino acids on both branches, derived amino
acids on both branches)) in the order of the branches. Here, (SM-M) stands for the Squirrel

monkey — marmoset internal branch, GH-CH) stands for the Golden hamster - Chinese

hamster internal branch and (rat-mouse) represents the rat-mouse internal branch. The
branch names given in green indicate the branches upon which we have inferred the Sec-
to-Cys exchange in GPX6,,s to have occurred. Strict convergent sites are given in bold; all

other sites are pseudo-convergent.

(SM-M)
(SM-M)
(SM-M)
(SM-M)
(SM-M)
(SM-M)
(SM-M)
(SM-M)
(SM-M)
Eumuroida
Eumuroida
Eumuroida
Eumuroida
Eumuroida
Eumuroida
Rabbit
Rabbit
Rabbit
Rabbit
Rabbit

Cat

Cat

Walrus
Walrus
Walrus
Squirrel monkey
Squirrel monkey
Squirrel monkey
Marmoset
Mouse
Mouse

Golden hamster

Rabbit

Cat

Walrus

Squirrel monkey
Marmoset
Mouse

Golden hamster
Chinese hamster
(GH-CH)

Rabbit

Cat

Mouse

Rat

Golden hamster
(Mouse-rat)

Cat

Squirrel monkey
Rat

Golden hamster
(Mouse-rat)
Mouse

Golden hamster
Marmoset
(Mouse-rat)
(GH-CH)

Mouse

Golden hamster
Chinese hamster
Chinese hamster
Chinese hamster
(Mouse-rat)

(GH-CH)

140 (RR,QL)
5 (KK,RN)
18 (AT,MS)
151 (LV,VE)
145 (SL,LI)
151 (LL,VM)
5 (KK,RT)
151 (LL,VM)
18 (AS,MA)
48 (AAIS)
130 (DD,NN)
130 (DN,ND)
52 (SL,LT)
17 (FL,LF)
109 (SY,YF)
82 (EE,GK)
0 (KQ,QK)
13 (DD,NN)
0 (KK,QR)
65 (GG,KK)
83 (KK,TN)
5 (KK,NT)
21 (GK,EE)
26 (QQ,PP)
18 (TS,SA)
151 (VL,EM)
0 (QK,KR)
151 (VL,EM)
94 (SS,AA)
151 (LL,MM)
104 (TS,MT)
101 (IT,VI)

140 (RR,QQ)

29 (QQRR)

148 (TS,AA)

48 (ALIM)

140 (RR,LQ)

86 (KK,NE)

48 (ALSM)

67 (YY,FF)
130 (DN,ND)

155 (NK,SN)

103 (AV,VA)
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Table $5.10: Convergent and pseudoconvergent sites in GPX7 between the GPX6

lineages, as identified by CONVERGZ2. The two left-most columns are the branches
between which convergent or pseudo-convergent lineages are identified. The number gives
the amino acid site where convergence is identified; the brackets represent (ancestral
amino acids on both branches, derived amino acids on both branches) in the order of the
branches. Here, (SM-M) stands for the Squirrel monkey — marmoset internal branch, (GH-
CH) stands for the Golden hamster - Chinese hamster internal branch and (rat-mouse)
represents the rat-mouse internal branch. The branch names given in blue indicate the
branches upon which we have inferred the Sec-to-Cys exchange in GPX6,,; to have
occurred. Here, the marmoset branch is given as a branch where the Sec-to-Cys exchange
in GPX6.,s has been estimated, given that the squirrel monkey sequence is unavailable for

this protein Strict convergent sites are given in bold, all other sites are pseudo-convergent.

Marmoset Mouse 95 (AA,SD)
Marmoset (GH-CH) 95 (AA,SD)
Eumuroida | Rabbit 109 (SS,PP)

Eumuroida | Chinese hamster | 116 (HR,RQ)

Rabbit Mouse 30 (HY,RH)

Mouse (GH-CH) 49 (SS,TT) 95 (AADD) 111 (EEAQ)

Table $5.11: Convergent and pseudoconvergent sites in GPX8 between the GPX6,
lineages, as identified by CONVERGZ2. The two left-most columns are the branches
between which convergent or pseudo-convergent lineages are identified. The number gives
the amino acid site where convergence is identified; the brackets represent (ancestral
amino acids on both branches, derived amino acids on both branches) in the order of the
branches. Here, (SM-M) stands for the Squirrel monkey — marmoset internal branch, (GH-
CH) stands for the Golden hamster - Chinese hamster internal branch and (rat-mouse)
represents the rat-mouse internal branch. The branch names given in blue indicate the
branches upon which we have inferred the Sec-to-Cys exchange in GPX6,,; to have

occurred. Strict convergent sites are given in bold; all other sites are pseudo-convergent.

Eumuroida (GH-CH) 12 (LF,FY)
Rabbit (GH-CH) 121 (VLIV)
Mouse Chinese hamster | 59 (KK,QR)
Rat (Mouse-rat) 18 (QL,EQ)
Chinese hamster | (GH-CH) 51 (MK, TM)
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Figures

Tree scale: 1

Human
Chimpanzee
— Macaque
Squirrel monkey
Marmoset
— Philippine tarsier
Bushbaby

Rat
Mouse
Chinese hamster
Golden hamster
- Jerboa
‘ Kangaroo rat

f—— Guinea pig

4’— Squirrel
Rabbit

Walrus

Cat

Pig
L cow
Horse
Elephant

Figure §5.1: Phylogeny of the 22 mammals in our analysis. In red, GPX6s.c branches, in
green, GPX6¢ys ones. Branch lengths are proportional to their corresponding dN/dS as
estimated by the free-ratio model in PAML (Yang, 2007). In some lineages, PAML estimates
very few synonymous changes compared to non-synonymous changes and this results in an
unnaturally large dN/dS value. These branches are assigned a dN/dS ratio of 1 and coloured
grey, with the actual ratio estimated by PAML is given in parenthesis (#). Branches with
dN/dS values given as less than 0.01 are not labelled.

a) GPx6 D) b) GPx1 c) GPx2 d) GPx3
~— Pri )

SqM Pri Mar

Rab Rab Rab

e) GPx4 f) GPx5 g) GPx7 h) GPx8

SqM

Rab Rab Rab Rab

Wal Wal Wal Wal

Figure §5.2: Schematic diagram demonstrating the convergence between branches
in GPX6 where Sec was inferred to have been lost. Connection thickness is proportional
to the number of convergent sites identified. When a species protein is unavailable, the node
is in grey. Pri = primate branch (leading to squirrel monkey and marmoset; Fig 1); Eum=
Eumuroida; Rab = Rabbit; Wal = Walrus; Cat = Cat; SqM = Squirrel monkey; Mar = Marmoset
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Figure $5.3: Schematic representation of the number of observed convergences in the
GPX6 protein between lineages where Sec is lost for Cys. Thickness of the line represents
the number of convergent changes (left). Expected distribution of convergent changes in the
full GPX6 protein between lineages where Sec is lost for Cys according to our Seq-Gen
simulations, where the observed numbers of convergent changes are given by coloured lines
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Figure S5.4: Expected distribution of convergent changes in the GPX domain of the
GPX6. Given between lineages where Sec is lost for Cys according to our Seq-Gen simulations,
where the observed numbers of convergent changes are given by coloured lines.
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Figure $5.5: Schematic representation of the number of observed convergence in the
GPX1 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of
the line represents the number of convergent changes (left). Expected distribution of
convergent changes in GPX1 between lineages where Sec is lost for Cys in GPX6 according
to our Seq-Gen simulations, where the observed numbers of convergent changes are given
by coloured lines (right).
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Figure S5.6: Schematic representation of the number of observed convergence in the
GPX2 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of
the line represents the number of convergent changes (left). Expected distribution of
convergent changes in GPX2 between lineages where Sec is lost for Cys in GPX6 according
to our Seq-Gen simulations, where the observed numbers of convergent changes are given
by coloured lines (right).
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Figure S5.7: Schematic representation of the number of observed convergence in the
GPX3 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of
the line represents the number of convergent changes (left). Expected distribution of
convergent changes in GPX3 between lineages where Sec is lost for Cys in GPX6 according
to our Seq-Gen simulations, where the observed numbers of convergent changes are given
by coloured lines (right).
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Figure $5.8: Schematic representation of the number of observed convergence in the
GPX4 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of
the line represents the number of convergent changes (left). Expected distribution of
convergent changes in GPX4 between lineages where Sec is lost for Cys in GPX6 according
to our Seq-Gen simulations, where the observed numbers of convergent changes are given
by coloured lines (right).
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Figure $5.9: Schematic representation of the number of observed convergence in the
GPX5 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of
the line represents the number of convergent changes (left). Expected distribution of
convergent changes in GPX5 between lineages where Sec is lost for Cys in GPX6 according
to our Seq-Gen simulations, where the observed numbers of convergent changes are given
by coloured lines (right).
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Figure $5.10: Schematic representation of the number of observed convergence in the
GPX7 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of
the line represents the number of convergent changes (left). Expected distribution of
convergent changes in GPX7 between lineages where Sec is lost for Cys in GPX6 according
to our Seq-Gen simulations, where the observed numbers of convergent changes are given
by coloured lines (right).
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Figure $5.11: Schematic representation of the number of observed convergence in the
GPX8 protein. Given between lineages where Sec is lost for Cys in GPX6, where thickness of
the line represents the number of convergent changes (left). Expected distribution of
convergent changes in GPX8 between lineages where Sec is lost for Cys in GPX6 according
to our Seq-Gen simulations, where the observed numbers of convergent changes are given
by coloured lines (right).

a) Full Protein b) 26 Sites

.
ppis rses
& N
Sec-containing ineages
u Cys-containing ineages
.

c) N-Terminal d) GPx Domain e) C-Terminal

Figure $5.12: Topology of the phylogenetic tree for GPX6, with midpoint rooting,
constructed using PHYML. Shown for the a) full GPX6 protein; b) the 26 sites that differ
between Eu-GPX6sec and Eu-GPX6¢ys+25; ¢) the N-terminal of GPX6; d) the GPX domain of
GPX6 and e) the C-terminal of GPX6. In red, GPX6sec branches, in green, GPX6¢ys ones. Dashed
green branches represent GPX6¢ys lineages at the time Sec was lost.
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a) GPx3 b) GPx5
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Figure $5.13: Topology of the phylogenetic trees, with midpoint rooting, constructed
using PHYML for additional GPX proteins. Shown from the available mammalian
proteins of a) GPX3 and b) GPX5. In green, GPX6¢ys ones. Dashed green branches represent
GPX6¢ys lineages at the time Sec was lost.
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Figure S$5.14: Free energy profiles for the docking of glutathione (left) and
glutathione disulfide (right) to ancestral and modern GPX6cys proteins. The x-axis
represents the distance between the catalytic cysteine sulphur atom and the closest ligand’s
sulphur atom, while the Y-axis shows the slowest TICA coordinate or the binding free energy.
The vertical dashed line represents a distance of 4A
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