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Abstract 

Curved beam bridges are widely used to accommodate the needs of complex transportation networks. However, 

these bridges are characterized by a complex dynamic response under earthquake excitation, and it is common to 

observe pounding-induced damages at the interfaces between adjacent beams or between the beam and the 

abutment after high-intensity earthquakes. The identification of pounding occurrences is a challenging task and 

highly dependent on the computational strategy used. The present paper addresses this problem by proposing and 

analyzing the suitability of an innovative non-smooth approach to solve the rigid bodies’ dynamic response and 

contact interactions problem of curved beam bridges subjected to seismic ground motions. To this end, the 

dynamic equations of motions, including the pounding effects, are first formulated with the introduction of the 

Lagrange multipliers approach. The unilateral constraints are converted into a linear complementarity problem 

(LCP) formulation related to the velocity and impulse in the normal and transverse directions. The proposed 

algorithm of the differential equations in LCP form is successively implemented in Matlab to identify the collision 

and motion states by accessing the stepwise acceleration time history. A two-span curved beam bridge with an 

intermediate pier and two adjacent abutments under a single ground motion record is considered for case study 

purposes to investigate the suitability of the proposed procedure. The accuracy of the proposed method is verified 

by comparison with finite element (FE) analysis. The analysis results include the bridge’s displacement time 

history and the motion states of all observed pounding occurrences. Finally, three validation methods, including 

the LCP relationship, the geometric relationship, and the momentum theorem, are evaluated to examine the 

validity of the proposed method. The results show that the proposed non-smooth dynamic formulation represents 

a new rigorous approach to identify and analyze the complex problem of end-pounding occurrence in curved 

bridges. 

Keywords: Curved bridge; Seismic analysis; End-pounding; Non-smooth method; Linear complementarity 

problem approach. 

1. Introduction

Curved beam bridges are widely used in the construction of highways and urban roads due to their ability to best 

fit complex road layouts and meet multiple traffic needs. However, due to their unique geometry, curved beam 

bridges are characterized by complex dynamic responses when subjected to earthquakes. It is a common scenario 

for curved beams to collide with adjacent beams or abutments (i.e., seismic pounding) [1], producing severe 

seismic damage. Typical examples include the I-5/SR-14 interchange bridge during the San Fernando earthquake 

in 1971, the I-10/I-215 interchange bridge during the San Francisco earthquake in 1991 [2], the Southbound 

Separation Overpass during the Northridge earthquake in 1994 [3], and the Shiwei Bridge and Maoluoxi Bridge 

during the Taiwan Chi-Chi earthquake in 1999 [4]. More recently, during the 2008 Wenchuan earthquake in China, 

the curved portion of Baihua Bridge with a span arrangement of 5 × 20 m, shown in Fig. 1(a), experienced beam-

unseating [1], while the southeast spiral concrete ramp of Huilan Interchange (Fig. 1(b)) suffered extensive 

damage [1]. 

(a) (b) 

Fig. 1. Seismic damage of curved bridge during the 2008 Wenchuan earthquake: (a) Baihua Bridge; (b) 

Southeast ramp of Huilan interchange. 
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These damage scenarios highlight the significant need to advance knowledge in this field and to develop 

innovative, more effective, and efficient analysis tools to evaluate the seismic response of curved bridges under 

end-pounding effects. The identification of pounding occurrences is highly dependent on the computational 

strategy used. Among others, widely used methods rely on the use of force-based approaches [5] and include 

different arrangements of linear viscoelastic models [6,7], Hertz models [8], Hertz-damp models [9], and non-

linear viscoelastic models [10,11]. These methods are the mainstream methods of collision analysis and are now 

widely used in the study of building [12-14] and bridge pounding [15-17]. These are phenomenological models, 

typically comprising spring elements, damping elements, and gap elements [18]. However, conventional force-

based methods are characterized by some drawbacks. Among others, these methods are typically characterized by 

a time lag in the analysis, making them unsuitable for simulating instantaneous contact problems [19]. Such 

methods require velocities and positions to be continuous with time [20]. Additionally, the pounding forces are 

generated when the relative distance between two components tends to become negative, which obviously 

contradicts reality [21]. 

 

The beam-abutment system of a curved bridge under seismic load can be seen as a multi-body dynamic problem. 

When performing a seismic analysis of a multi-body system, it is important to find an accurate time value for the 

transition between the different states; specifically the transition between the non-contact and the contact states 

[22]. As the number of contacts increases, the detection process is very complex and becomes computationally 

demanding. Non-smooth approaches allow solving rigid bodies’ dynamic response and contact interactions by 

converting unilateral constraints into a linear complementarity problem (LCP) [23-27]. LCP methods represent 

rigorous and effective ways to detect the actual contact events in non-smooth systems. In a multi-body system, 

the non-smooth method has advantages in terms of accuracy, reliability, and stability compared with the traditional 

force-based method. The present paper aims to investigate the seismic response of curved beam bridges, including 

the effects of seismic collisions, rather than the local damage caused by collisions. Additionally, these unilateral 

constraints prevent the penetration between the rigid bodies in contact by using an explicit formulation [28]. 

 

In the last few years, several research studies have used the non-smooth approach to assess the seismic response 

of bridge structures. Dimitrakopoulos [29,30] used the non-smooth approach to evaluate the complex dynamic 

response of earthquake-induced pounding between a beam and the abutment or between adjacent beams in skew 

bridges. Shi and Dimitrakopoulos [31] verified the effectiveness of the non-smooth approach while investigating 

the interaction between a beam and the abutment under an earthquake input and comparing the results with a 

shake-table test of a scaled deck-abutment bridge model. Shi and Dimitrakopoulos [32] assessed and compared 

the capacity of the non-smooth approach and force-based approaches to simulate the seismic response of a case 

study straight bridge. Additionally, Banerjee et al. [33] and Li et al. [34] calculated the complex dynamic behavior 

of pounding between a curved beam and an abutment or an adjacent beam. Banerjee et al. [35] simulated the 

pounding between a curved beam and an abutment and investigated the ideal combination of the column and bent 

arrangement and the gap distance. 

 

According to the Author’s knowledge, only the study from Banerjee et al. [33] used the non-smooth approach to 

study the collision problem of a curved beam bridge under earthquake loading. Moreover, this study did not 

analyze the two most important post-impact responses, namely the post-impact velocity and the impulses 

generated by impacts. 

 

The present paper advances knowledge in this direction by developing a non-smooth approach for curved bridges 

which, not only evaluates the response after each impact event, but also analyzes the impact on the motion of the 

curved beam, and reveals the mechanism of the plane displacement and rotation of the curved beam caused by the 

collision. Three effective methods are proposed to evaluate the advantages and limitations of the proposed strategy 

for seismic impact dynamic analysis of curved beam bridges. 

 

The paper is organized as follows. Firstly, an analytical model for curved beam bridges subjected to seismic 

excitation and subject to end-pounding is established. Next, the seismic response of a case study horizontal two-

span curved beam bridge is investigated through the proposed method, and its accuracy is verified by comparison 

with finite element (FE) analysis. The pounding occurrences throughout the time history analysis are captured by 

the non-smooth approach, and the seismic motion is analyzed. Finally, the validity of the proposed method is 

examined by the LCP relationship, the geometric relationship, and the momentum theorem. The results confirm 

that the proposed method represents a new rigorous approach to identify and analyze the complex problem of end-

pounding occurrence in curved bridges. 
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2. Non-smooth dynamic model for curved beam bridges 

 

The proposed formulation to analyze the dynamic response of the curved bridge deck and pounding effects is 

based on the following assumptions: 

1. The horizontal stiffness of the bridge deck is significantly greater than the lateral stiffness of its piers [19]. 

Hence, the curved beam, in the shape of an annular sector, can be modeled as a rigid body supported on piers 

and/or bearings when experiencing seismic excitations. 

2. The mass of the piers is typically negligible with respect to the mass of the superstructure and does not 

significantly affect the seismic response. Hence, the dynamic equation of motion can be written by assuming 

the mass of the bridge deck as a lumped mass. 

3. The sliding bearings on the abutments only provide vertical support to the curved beam without restraining 

the horizontal displacements. 

4. The soil at the pier and abutments foundation is assumed stiff. Hence, soil-structure interaction effects are 

neglected in the present study. 

 

2.1 Dynamic model 

The planar dynamic model of a horizontally curved beam bridge is depicted in Fig. 2. The radius of the center line 

of the curved beam is denoted as R while the corresponding central angle is taken as . The width of the curved 

beam is W, and the initial gap between the curved beam and the adjacent abutment is  as shown in Fig. 2. The 

origin of the coordinate system is located at the center (O). The x-axis is horizontal to the right, and the y-axis is 

aligned with the symmetrical axis of the curved beam and points outward. The 3 degrees of freedom (DOF) of the 

model (  1 1 1, ,x y =u ) are assigned to the centroid (Cm). The connection point between the curved beam and the 

pier is denoted by the letter S . The four potential pounding spots of the curved beam ends adjacent to their 

abutments are indicated in red in Fig. 2. It should be noted that the considered case study bridge assumes a 

substructure with a single pillar pier with pier and beam consolidation. The problem formulation could be easily 

extended to other geometries by considering a different stiffness matrix for the system. 

 

 
Fig. 2. Planar dynamic model of a horizontally curved beam bridge. 

 

The mass ( M ) of the curved beam is given by: 

 

 M A R =  (1) 

 

where A  is the section area of the curved beam, and   is the uniform mass density of the curved beam. 

The y-axis coordinate ( mY ) of the centroid of the curved beam is calculated as follows: 

 

 2 sin( / 2)
2

6

D
m

y dxdyydm W
Y R

M M R

 



 
= = = +  

 


 

(2) 

 

The geometric parameters of the box beam section are shown in Fig. 3. The moment of gyration ( OI ) of the 

curved beam with respect to the original point in the xy  coordinate system is calculated as follows: 

 

 2
2 4 4 4 43 3

3
1

[( ) ( ) ] [( ) ( ) ]
4 2 2 2 2

i i
O i

i

W W W W
I r dm R R h R R h



=

 
= =  + − −  − + − −  

 
  

(3) 
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where the definitions of iW  and ih  are displayed in Fig. 3. 

 

 
Fig. 3. Geometric parameters of the box beam section. 

 

The parallel axis theorem is used to calculate the moment of gyration ( IM ) of a curved beam with respect to the 

centroid of the curved beam in the xy  coordinate system, as follows: 

 

 2
M O mI I MY= −  (4) 

 

The mass matrix ( M ) of this system is given as follows: 

 

 ( ), , Mdiag M M I=M  (5) 

 

The stiffness matrix ( SK ) of the bridge system with respect to the stiffness center S is given as follows: 

 

 4 4 4

3 3

3 3
, ,

2

c c c
S

E r E r G r
diag

hh h

   
=   

 
K  

(6) 

 

where E and G represent the elastic and shear modulus of the concrete, respectively, while cr  and h  denotes 

the radius and height of the pier. Eq. 6 is only valid for circular piers, but equivalent equations can be easily 

determined for other section shapes. 

 

The stiffness matrix ( MK ) about the centroid of the curved beam is given as follows: 

 

 T
M S=  K T K T  (7) 

 

where the transformation matrix T  is given as: 

 

 1 0

0 1 0

0 0 1

mY R− 
 

=
 
  

T  

(8) 

 

2.2 Jacobian matrix 

 

The initial geometric parameters of the curved beam are indicated in Fig. 4. The parameters 1Nr , 2Nr , 3Nr , 

and 4Nr  represent the lever arms of the pertinent normal impulses with respect to the centroid of the curved 

beam. Similarly, 1Tr , 2Tr , 3Tr , and 4Tr  are the lever arms of the relevant transverse impulses with respect to 

the centroid of the curved beam. The subscripts N  and T  are respectively used to represent the normal and 

transverse directions throughout the paper. The detailed formulation is provided by the following Eq.s (9). 
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 ( )

( )

( )

/ 2 cos / 2      1,3

/ 2 cos / 2      2,4

sin / 2      1,2,3,4

Ni m

Ni m

Ti m

r R W Y i

r R W Y i

r Y i







= + −  =

= − −  =

=  =

 

(9) 

 

 
Fig. 4. Initial geometric parameters of the curved beam. 

 

The geometric parameters of the curved beam in motion are displayed in Fig. 5. When the curved beam is in 

motion, 1Nr , 2Nr , 3Nr , and 4Nr  are the lever arms of the corresponding normal impulses, while 1Tr , 2Tr , 

3Tr , and 4Tr  are the lever arms of the relevant transverse impulses. The detailed formulation is provided by the 

following Eq.s (10). 

 

 
1 1

1 1

1 1

1 1

cos sin        1,2

cos sin        3,4

sin cos      1,2

 = sin cos         3,4    

Ni Ni Ti

Ni Ni Ti

Ti Ni Ti

Ti Ni Ti
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r r r i

r r r i

r r r i

 

 

 

 

=  +  =

=  −  =

= −  +  =

 +  =

 

(10) 

 

The normal relative distances between the four potential pounding spots and the corresponding abutment are 

indicated in Fig. 5 and can be derived from the following Eq.s (11). 

 

 ( ) ( )

( ) ( )

1 1

1 1

cos / 2 sin / 2        1,2

cos / 2 sin / 2        3,4

Ni Ti Ti

Ni Ti Ti

g x y r r i

g x y r r i

  

  

= +  +  + − =

= −  +  + − =
 

(11) 

 

The normal relative velocities of the four spots are calculated by taking the derivative of Eq.s (11) with respect to 

time and are provided in the following Eq.s (12). 

 

 ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1

1 1 1 1 1

cos / 2 sin / 2 cos sin           1,2

cos / 2 sin / 2 cos sin       3,4

Ni Ni Ti

Ni Ni Ti

g x y r r i

g x y r r i

    

    

=  +  +  +  =

= −  +  + −  +  =
 

(12) 

 

From 
T

N Ng = W u , the Jacobian matrix with normal constraints ( NW ) is derived as follows: 

 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

cos / 2 cos / 2 cos / 2 cos / 2

sin / 2 cos / 2 sin / 2 sin / 2N

N N N Nr r r r

   

   

 − − 
 

=  
 − − 

W  

(13) 

 

Similarly, the Jacobian matrix in the transverse direction ( TW ) is derived as follows: 
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 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

sin / 2 sin / 2 sin / 2 sin / 2

cos / 2 cos / 2 cos / 2 cos / 2T

T T T Tr r r r
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 − − 
 
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(14) 

 

 
Fig. 5. Schematic representation of the geometric parameters of the curved beam in motion.(a) Parameters for 

spots 1 and 3; (b) Parameters for spots 2 and 4. 

 

2.3 Non-smooth dynamic equations of motion for curved beam bridges 

 

2.3.1 Linear complementarity Problem (LCP) 

 

The system configuration considered is made of a curved beam with a single pillar and two abutments, which 

could result in multi-point contact when subjected to seismic actions. The proposed procedure aims at solving the 

multi-point contact problem by transforming the dynamic equation of motion into a LCP. 

The LCP aims to identify two vectors that satisfy a specific inequality in a real vector space of limited dimensions 

[36]. Mathematically, a LCP aims at finding the two unknown non-negative complementary vectors x  and y  

matching the following conditions: 

 

 

T0,  0,  0

= +

  =

y Ax b

x y x y
 

(15) 

 

where the matrices A  and b  are known (see Eq. (31) in the following section). It is claimed that the vectors 

x  and y  fulfill the LCP relationship. 

 

In order to solve the collision problem between the beam and the abutments of a curved beam bridge under seismic 

excitation, the complementarity form of Newton’s impact law in the normal direction is established in Section 

2.3.2. Similarly, the complementary form of Coulomb’s friction law in the transverse direction is established in 

Section 2.3.3. Based on the contents of Sections 2.3.2 and 2.3.3, the LCP form of the system dynamics equation 

under seismic excitation is established in Section 2.3.4. 

 

2.3.2 The complementarity form of Newton’s impact law in the normal direction 

 

The Newton’s impact law [37] is used to describe the impact process in the normal direction. The post-impact 

velocity ( Nig+
) of contact point ‘i’ (see Fig. 5) is given as follows: 

 

 
Ni Ni Nig g+ −= −  

(16) 

 

where Nig−
 is the pre-impact velocity and Ni  represents the coefficient of restitution in the normal direction, 

which varies between zero and one (i.e.,  0,1Ni  ). For a multi-point contact problem, Ni  can be written as a 

matrix { }Ni Nidiag = ，and Eq. (16) can take the following matrix form: 
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N N N
+ −= −g g  

(17) 

 

The vector N , referred to as the normal synthetic velocity hereinafter, represents the linear combination of post-

impact velocity Nig+
 and pre-impact velocity Nig−

 and can be defined as follows: 

 

 
N N N N

+ −= +g g   (18) 

 

When the curved beam and abutment come into contact, the normal impulse vector of the contact points 0N 

while the normal synthetic velocity vector 0N = . Conversely, when there is no contact, 0N =  and 0N  . 

N  is the normal impulse vectors due to the impact with ( )N Nidiag =  where Ni  represents the normal 

impulse of contact point ‘i’ (see Fig. 5). 

 

Therefore, the LCP formulation can be established from the Newton’s impact law as follows: 

 

 0, 0, 0T
N N N N  =     (19) 

 

2.3.3 The complementarity form of Coulomb’s friction law in the transverse direction 

 

The Coulomb’s friction law is used to describe the conditions for transverse constraints. With regard to friction, 

the following three conditions are possible: 

 

 ( )

( )

( )

0       sticking

0       negative sliding

0       positive sliding

Ti Ti i Ni

Ti Ti i Ni

Ti Ti i Ni

g

g

g

  

  

  

=  

  = +

  = −

 

(20) 

 

where i   represents the Coulomb’s friction coefficient of contact point ‘i’ (see Fig. 5), Tig   represents the 

relative velocity of contact point ‘i’, while Ni  and Ti  represent the normal and transverse impulse of contact 

point ‘i’, respectively. Fig. 6 shows the three friction conditions of Eq. (20). 

 

 
Figure 6. Conditions for transverse constraints according to Coulomb’s friction law. 

 

The relative transverse velocity and transverse impulse can be split into two parts and decomposed as in the 

following Eq.s (21) and (22) and as shown in Figs. 7(b) and (c). 

 

 

( )

( )

/ 2 0

/ 2 0

Ti Ri Li

Ri Ti Ti

Li Ti Ti

g

g g

g g

 





= −

= + 

= − 

 

(21) 

 ( ) / 2
Ti Ri Li

Ri i Ni Ti

Li i Ni Ti

  

   

   

= −

= +

= −

 

(22) 
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Figure 7. Decomposition of the friction characteristic. (a) Coulomb’s friction law; (b) Decomposition of the 

relative transverse velocities; (c) Decomposition of the transverse impulses. 

 

From Fig. 7(c), the LCP formulation can be established as follows: 

 

 0, 0, 0,

0, 0, 0.

T
Ri Ri Ri Ri

T
Li Li Li Li

 

 

  =

  =

 

 
 

(23) 

 

Moreover, Eq. (23) can take the following matrix form: 

 

 0, 0, 0,

0, 0, 0,

T
R R R R

T
L L L L

  =

  =

   

   
 

(24) 

where ( )i
diag = , ( )R Ri

diag = , ( )L Li
diag = , ( )R Ri

diag=   and ( )L Li
diag=  . 

 

2.3.4 Non-smooth dynamic equation of motion 

 

The dynamic equation of a multi-DOFs system under seismic excitation can be written as follows: 

 

 
g+ + = −Mu Cu Ku Mu  (25) 

 

where M , C , and K are, respectively, the mass matrix, damping matrix, and stiffness matrix of the curved 

bridge system. The generalized acceleration vector, generalized velocity vector, and generalized displacement 

vector are designated as u , u , and u , respectively. The seismic acceleration vector is represented by gu . 

 

The solution of Eq. (25) is based on the solution of a set of simultaneous differential equations as follows: 

 

 

( ) ( )
1 1

g

t t
− −

   
= +   

−− −   

0 I 0
X X

uM K M C
 

(26) 

 

where ( ) ( ) ( )
T

t t t=   X u u , which denotes the vector of displacement and velocity, which has the zero initial 

condition ( )  0
T

=X 0 0 . 

 

When the curved beam impacts the adjacent abutment due to high-intensity ground motions, the contact with the 

abutments changes the boundary conditions of the problem. By introducing the impact and friction force to the 

fundamental dynamic equation (Eq. (25)) and using the Lagrange multiplier approach to create the dynamic 

equation of motion for the non-smooth pounding system, it yields: 

 

 
N N T T g+ + − − = −Mu Cu Ku W W Mu   (27) 

 

where N   and T   represent the impact and friction force vectors in normal and transverse directions, 
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respectively. 

 

Assuming that the pounding process begins at t−  and ends at t+ , and considering that according to the rigid 

body dynamics problem, the time difference t t t+ − = −  can be considered infinitesimal, the dynamic Eq. (27) 

on t  can be integrated to obtain the following equation: 

 

 ( ) ( ) ,

lim , lim .

N N T T g

t t

N N T Tt t
t t t t

t

dt dt

+ −

+ +

− −
+ − + −→ →

− − − = − + +  =

= = 

0M u u W W Mu Cu Ku 

   
 

(28) 

 

where 
−u   and 

+u   represent the generalized velocity vectors before and after pounding, respectively. The 

superscripts “-” and “+” denote the pre- and post-impact states, respectively. 

 

However, the solution of Eq.s (28) is an indeterminate problem (i.e., two equations and three unknown vectors). 

The LCP approach helps address the problem by defining a set of equations that relates velocity and force. 

 

In the contact kinematics of rigid bodies, with the help of the Jacobian matrix, the relative velocities between 

objects can be expressed as a linear combination of generalized velocities, namely: 

 

 
( )

( )

,

,

TN N
N N N

TT T
T T T

g g
g t w

t

g g
g t w

t

 
= + = +

 

 
= + = +
 

u u W u
u

u u W u
u

 

(29) 

 

Hence, the relative velocities between objects before and after impact are: 

 

      ,      ,

     ,      .

T T
N N N T T T

T T
N N N T T T

g w g w

g w g w

− − − −

+ + + +

= + = +

= + = +

W u W u

W u W u
 

(30) 

 

From Eq. (19), (24), (28), and (30), the dynamic equation of motion of a curved beam bridge considering seismic 

excitation and end-pounding is transformed into a LCP form, leading to a set of closed-form equations as follows: 

 

 ( )

( )

( )1 1

1 1

2

T T
N N T N T N NN N

T T
R T N T T T R T

LL

− − −

− − −

   −  +   
      

= −   +      
      −          

0

0 0

xy
A b

W M W W W M W I u

W M W W W M W I g

I

  

  

 
 

(31) 

 

Eq. (26) can be solved directly using the direct integration approach (Runge-Kutta method) implemented in 

Matlab, while Lemke’s pivotal algorithm [36] is used to solve Eq. (31). 

 

3. Numerical example 

 

3.1 Case study circular curved bridge 

 

Fig. 6 shows the horizontally curved bridge comprising two spans, an intermediate pier, and two adjacent 

abutments, considered for case study purposes. The superstructure is a box girder with a 31 m span length and 8 

m width. The circular beam has a central radius R  of 60 m and subtended angle   equal to 60 . The pier 

has a height of 10 m with a diameter of 1.2 m. The curved beam and the pier are monolithically cast, and the 

elastomeric bearings with PTFE topping are positioned on both sides of the abutment. The friction coefficient for 

PTFE is typically low and assumed negligible. The gap between the curved beam end and the adjacent abutments 

is equal to 0.06 m. The curved bridge is designed according to ‘Specifications for Seismic Design of Highway 
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Bridges’ in China (hereafter referred to as Chinese code) [38] considering a seismic fortification intensity of 7 

with a peak ground acceleration (PGA) equal to 0.10g according to Chinese specification. The normal impact 

coefficient is assumed as 0.5, while the Coulomb friction coefficient is assumed as 0.3. The stiffness center of the 

system coincides with the position of the pier, denoted by the letter S, while the centroid of the curved beam is 

indicated as Cm. 

 
Fig. 6. Plan view of the case study bridge. 

 

A box section similar to the one illustrated in Fig. 3 is assumed, with the following geometric parameters: W1 = 

8 m; W2 = 4.35 m; W3 = 3.65 m; h1 = 0.25 m; h2 = 1.775 m; and h3 = 1.975 m. The cross-section area (A) equals 

4.11 m2. 

 

The mass matrix of the dynamic system is determined by Eq. (5). 

 

 ( ) 6 20.672,0.672,25 mc6.2 10   kNse / diag= M  (32) 

 

The stiffness matrix with respect to the centroid is obtained by Eq. (7). 

 

 

7

4.28 0 11.2

0 4.28 0 10   kN/m

11.2 0 60.0

M

− 
 

= 
 
 − 

K  

(33) 

3.2 Selected ground motion 

 

The ground motion records in x- and y-direction (see Fig. 6) of the 1999 Chi-Chi earthquake in Taiwan are selected 

to investigate and compare the proposed strategy with alternative analysis options. The records’ PGA is scaled to 

0.4g in both directions. The two components of the chosen ground motion are shown in Fig. 7, together with their 

respective acceleration, velocity, and displacement time histories. These records have a duration of approximately 

30 sec and a time step size of 0.005 s. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 7. 1999 Chi-Chi earthquake in Taiwan. Unscaled acceleration, velocity, and displacement time histories in 

(a) x-direction; and (b) y-direction. 
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3.3 Finite element (FE) modeling of the case study curved bridge 

 

A simplified elastic 3D FE model of the case study circular curved bridge is developed in OpenSees [39] and 

successively used to validate the proposed model. Fig. 8(a) and (b) show, respectively, the x-y and the x-z views 

of the FE model. The beam and pier are modeled as ‘elasticBeamColumn’ elements in OpenSees with the 

parameters summarized in Table 1. The curved beam is consolidated with the middle pier and restricted to move 

only in the plane, while the pier is fixed at the base. Eight straight segments have been included in the model to 

represent the curved beam. A parametric analysis showed that a finer discretization does not significantly affect 

the results. The masses and the gravity loads have been uniformly distributed among the nodes of the curved beam. 

The values of the mass-related and stiffness-related Rayleigh damping coefficients are evaluated for a damping 

factor of 5%, considering the first and the second vibration modes. The material and geometric non-linearities and 

the soil-structure interaction are neglected in this model. 

 

Table 1. Parameters of the ‘elasticBeamColumn’ elements in OpenSees. 

Components A (m2) E (MPa) G (MPa) J (m4) Iy (m4) Iz (m4) 

Beam 4.11 3.5×10-4 1.51×10-4 12.69 8.87 20.63 

Pier 1.13 3.5×10-4 1.51×10-4 2.04×10-1 1.02×10-1 1.02×10-1 

 

 
(a) 

 
(b) 

Fig. 8. 3D elastic finite element (FE) model of the case study circular curved bridge. (a) x-y view; (b) x-z view. 

 

3.4 Preliminary seismic response analysis ignoring the pounding effects 

 

The seismic response of the curved bridge is initially simulated by ignoring the pounding effects. Specifically, the 

proposed model is compared with the FE model presented in Section 3.3. 

 

Fig. 9 shows the response history in terms of lateral displacements of point S, i.e., connection point between the 

curved beam and the pier. The comparison shows a very good agreement of the results both in x- and y-direction. 

A slight difference between the two simulations is observed in a few transitory peaks. Fig. 9(a) shows the 

displacement time history in the x-direction for which the peak displacement is attained at 15.790 s. In this instant, 

the results of the proposed and OpenSees models are 0.0467 m and 0.0462 m, respectively (i.e., error of 

approximately 1%). Fig. 9(b) shows the displacement time history in the y-direction. In this case, the peak 

displacement is observed at 16.325 s with displacement values from the proposed and OpenSees models are 

0.0776 m and 0.0799 m, respectively (i.e., error of approximately 3%). These preliminary results show that, in the 

absence of pounding effects, the proposed model satisfactorily captures the seismic response of the curved bridge. 
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(a) 

 
(b) 

Fig. 9. Comparison of the displacement time history of point S neglecting the earthquake-induced end-pounding. 

Proposed model vs. OpenSees model in the (a) x-; and (b) y-direction. 

 

3.5 Seismic response analysis considering the pounding effects 

 

The seismic response of the case study curved bridge is successively simulated, accounting for earthquake-

induced end-pounding through the proposed model. Fig. 10 shows the seismic displacement response of point Cm 

in the x- and y-direction. All pounding occurrences and their corresponding pounding states are labeled. 

Specifically, six pounding occurrences have occurred during the whole time history at time 15.045 s, 15.240 s, 

15.885 s, 16.445 s, 17.290 s, and 18.145 s. These include 2 collisions at points P1 and P3, 1 collision at point P4, 

and 1 simultaneous collision at points P1 and P2. Similarly, Fig. 11 shows the time histories of the normal forces 

Ni , the normal relative distances Nig , and the pounding occurrences marked by red circles. Fig. 12 shows the 

displacement configuration of the curved bridge for all pounding occurrences. 

 

Fig. 12(a) shows the pounding occurrence at 15.045 s where a contact is observed at spot 4P . The centroid of the 

curved beam moves 35.8 mm and -62.5 mm in the x- and y-directions, respectively, and the counterclockwise 

rotation is -
43.39 10−  rad. This displacement induces the curved beam to collide with the right abutment at 4P . 

1Ng  , 2Ng  , 3Ng  , and 4Ng   are, respectively, 55 mm, 58 mm, 3mm, and 0. At this moment, the normal 

pounding force 4N  and the transverse friction force 4T  at 4P  are 91443 kN and -25985 kN, respectively. 

The resultant force of 4N  and 4T , 4R , causes the velocity of the centroid of the curved beam drops from 

237.4 mm/s to -255.3 mm/s in the x-direction and rises from -266.2 mm/s to -93.4 mm/s in the y-direction. The 

angular velocity at the centroid of the curved beam increases from -
31.64 10−   rad/s to 

31.63 10−   rad/s as a 

consequence of the clockwise moment produced by 4N  and 4T . The moment is equal to 91443× 4Nr -25985×

4Tr =173062 kNm. 

 

Fig. 12(b) shows the pounding occurrence at 15.240 s where simultaneous contacts are observed at spots 1P  and 

2P . The centroid of the curved beam moves -59.9 mm and -17.2 mm in the x- and y-directions, respectively, and 

rotates 
51.03 10−  rad clockwise. This displacement induces the curved beam to collide with the left abutment at 

1P  and 2P  . 1Ng , 2Ng , 3Ng , and 4Ng  are, respectively, 0, 0, 103 mm, and 103 mm. At this moment, the 

normal pounding force 1N   and the transverse friction force 1T   at 1P   are 35291 kN and -10587 kN, 

respectively. The normal pounding force 2N  and the transverse friction force 2T  at 2P  are 33332 kN and -

10000 kN, respectively. The resultant force R , causes the velocity of the centroid of the curved beam rises from 

-428.3 mm/s to -213.1 mm/s in the x-direction and rises from 445.2 mm/s to 517.4 mm/s in the y direction. The 

angular velocity at the centroid of the curved beam drops from -
44.74 10−   rad/s to -

42.37 10−   rad/s as a 

consequence of the counterclockwise moment produced by R . The moment is equal to 35291× 1Nr -10587× 1Tr

+33332× 2Nr -10000× 2Tr =-76805 kNm. 
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Fig. 12(c) shows the pounding occurrence at 15.885 s where a contact is observed at spot 1P . The centroid of the 

curved beam moves -9.3 mm and -70.6 mm in the x- and y-directions, respectively, and rotates -
31.23 10−  rad 

counterclockwise. The displacements induce the curved beam to collide with the left abutment at 1P . 1Ng , 2Ng , 

3Ng , and 4Ng  are, respectively, 0, 9 mm, 50 mm, and 41 mm. At this moment, the normal pounding force 1N  

and the transverse friction force 1T  at 1P  are 84820 kN and -25446 kN, respectively. The resultant force of 

1N  and 1T , 1R , causes the velocity of the centroid of the curved beam rises from -517.1 mm/s to -65.1 mm/s 

in the x-direction and rises from 28.0 mm/s to 179.6 mm/s in the y-direction. The angular velocity at the centroid 

of the curved beam increases from -
32.33 10−   rad/s to 

21.17 10−   rad/s as a consequence of the clockwise 

moment produced by 1N  and 1T . The moment is equal to 84820× 1Nr -25446× 1Tr =516410 kNm. 

 

 

 

 
(a) 

 
(b) 

Fig. 10. Displacement time history of point Cm of the curved beam considering earthquake-induced end-

pounding in the (a) x-; and (b) y-direction. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 11. Time histories of the normal impulse forces and relative distance between each impact spot and 

abutments: (a) 1N ; (b) 2N ; (c) 1Ng ; (d) 2Ng ; (e) 3N ; (f) 4N ; (g) 3Ng ; (h) 4Ng . 
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Fig. 12. Displacement configuration of the curved bridge at (a) 15.045 s; (b) 15.240 s; (c) 15.885 s; (d) 16.445 s; 

(e) 17.290 s; (f) 18.145 s. 
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Fig. 12(d) shows the pounding occurrence at 16.445 s where a contact is observed at spot 3P . The centroid of 

the curved beam moves 11.6 mm and 13.6 mm in the x- and y-directions, respectively, and rotates 
34.06 10−  rad 

clockwise. This displacement induces the curved beam to collide with the right abutment at 3P . 1Ng , 2Ng , 

3Ng , and 4Ng  are, respectively, 135 mm, 103 mm, 0, and 31 mm. At this moment, the normal pounding force 

3N  and the transverse friction force 3T  at 3P  are 52714 kN and -1156 kN, respectively. The resultant force 

of 3N  and 3T , 3R , causes the velocity of the centroid of the curved beam drops from -26.7 mm/s to -362.2 

mm/s in the x-direction and rises from -602.4 mm/s to -413.7 mm/s in the y direction. The angular velocity at the 

centroid of the curved beam drops from 
37.79 10−   rad/s to -

36.16 10−   rad/s as a consequence of the 

counterclockwise moment produced by 3N  and 3T . The moment is equal to 52714× 3Nr -1156× 3Tr =-730520 

kNm. 

 

Fig. 12(e) shows the pounding occurrence at 17.290 s where a contact is observed at spot 1P . The centroid of the 

curved beam moves -19.3 mm and -18.1 mm in the x- and y-directions, respectively, and rotates -
32.50 10−  rad 

counterclockwise. The displacements induce the curved beam to collide with the left abutment at 1P . 1Ng , 2Ng , 

3Ng , and 4Ng  are, respectively, 0, 19 mm, 103 mm, and 84 mm. At this moment, the normal pounding force 

1N  and the transverse friction force 1T  at 1P  are 82920 kN and -24876 kN, respectively. The resultant force 

of 1N  and 1T , 1R , causes the velocity of the centroid of the curved beam rises from -217.8 mm/s to 224.1 

mm/s in the x-direction and rises from -266.8 mm/s to -118.5 mm/s in the y-direction. The angular velocity at the 

centroid of the curved beam increases from -
34.84 10−   rad/s to 

34.26 10−   rad/s as a consequence of the 

clockwise moment produced by 1N  and 1T . The moment is equal to 82920× 1Nr -24876× 1Tr =484532 kNm. 

 

Fig. 12(f) shows the pounding occurrence at 18.145 s where a contact is observed at spot 3P . The centroid of the 

curved beam moves 34.6 mm and -19.0 mm in the x- and y-directions, respectively, and rotates 
31.49 10−  rad 

clockwise. This displacement induces the curved beam to collide with the right abutment at 3P . 1Ng , 2Ng , 

3Ng ,  and 4Ng  are, respectively, 102 mm, 90 mm, 0, and 11 mm. At this moment, the normal pounding force 

3N  and the transverse friction force 3T  at 3P  are 33603 kN and -10081 kN, respectively. The resultant force 

of 3N  and 3T , 3R , causes the velocity of the centroid of the curved beam drops from 143.5 mm/s to -35.6 

mm/s in the x-direction and rises from 37.1 mm/s to 97.1 mm/s in the y direction. The angular velocity at the 

centroid of the curved beam drops from 
33.71 10−   rad/s to 

64.45 10−   rad/s as a consequence of the 

counterclockwise moment produced by 3N  and 3T . The moment is equal to 33603× 3Nr -10081× 3Tr =-191634 

kNm. 

 

These results are summarized in Table 2 which lists the key parameters of the solution for the six pounding 

occurrences, including 1) the occurring time, 2) the pounding spots (Pi) with the abutments, 3) the normal and 

transverse input forces ( Ni , and Ti ), 4) the displacements ( mx , my , and m ) of the centroid of the curved 

beam, 5) the normal relative distances ( Nig ), 6) the pre-impact velocities ( mx− , my− , and m
−

), and 7) the post-

impact velocities ( mx+ , my+ , and m
+

). 

 

The forces caused by the pounding occurrences affect the displacement history. Based on Table 2, the resultant 

forces generated by pounding, the moment produced by the resultant forces, and the change in velocities about 

the six pounding events are listed in Table 3. The positive and negative relations m mx x+ −−  are consistent with the 

resultant force in the x-direction. A similar situation is observed for m my y+ −−  and the resultant force in the y-

direction. Similarly, the relationship between the moment produced by the resultant force and m m + −−  is both 

positive and negative. This brief comparison shows how the proposed formulation consistently relates the forces 

due to collisions and the corresponding change in motion. 
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Table 2. Key parameters of the pounding occurrences. 

Pounding 

occurrences 
1 2 3 4 5 6 

Time (s) 15.045 15.240 15.885 16.445 17.290 18.145 

Pounding spot 4P  
1P  and 

2P  
1P  3P  1P  3P  

1N  (kN) 0 7058 84820 0 82920 0 

2N  (kN) 0 33332 0 0 0 0 

3N  (kN) 0 0 0 52714 0 33603 

4N  (kN) 91443 0 0 0 0 0 

1T  (kN) 0 -2117 -25446 0 -24876 0 

2T  (kN) 0 -10000 0 0 0 0 

3T  (kN) 0 0 0 -1156 0 -10081 

4T  (kN) -25985 0 0 0 0 0 

mx  (mm) 35.8 -59.9 -9.3 11.6 -19.3 34.6 

my  (mm) -62.5 -17.2 -70.6 13.6 -18.1 -19.0 

m  (rad) -0.000339 0.0000103 -0.00123 0.00406 -0.00250 0.00149 

1Ng  (mm) 55 0 0 135 0 102 

2Ng  (mm) 58 0 9 103 19 90 

3Ng  (mm) 3 103 50 0 103 0 

4Ng  (mm) 0 103 41 31 84 11 

mx−  (mm/s) 237.4 -428.3 -517.1 -26.7 -217.8 143.5 

my−  (mm/s) -266.2 445.2 28.0 -602.4 -266.8 37.1 

m
−

 (rad/s) -0.00164 0.000474 -0.00233 0.00779 -0.00483 0.00371 

mx+  (mm/s) -255.3 -213.1 -65.1 -362.2 224.1 -35.6 

my+  (mm/s) -93.4 517.4 179.6 -413.7 -118.5 97.1 

m
+

 (rad/s) 0.00163 -0.000237 0.0117 -0.00616 0.00426 
0.0000044

5 

 

 

Table 3. Verification of motion solutions by the resultant force produced by pounding and the changes of pre- 

and post-impact velocities. 

Pounding 

Occurrences Rx  (kN) 
m mx x+ −−  

(mm/s) Ry  (kN) 
m my y+ −−  

(mm/s) 

RM  

(kNm) 

m m + −−  

(rad/s) 

1 -66197 -493 68225 173 173062 0.00328 

2 23866 215 25326 72 -76805 -0.00071 

3 60731 452 64446 152 516410 0.00937 

4 -45072 -335 27358 189 -730520 -0.01394 

5 59371 442 63002 148 484532 0.00909 

6 -24060 -179 25532 60 -191634 -0.00371 

Note: Rx  and Ry  denote the components of the resultant force in the x- and y-directions, respectively. RM  

denotes the moment produced by the resultant force. 
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3.6 Verification of the results 

 

The computational procedure can be verified according to the following three considerations: 

 

1. If 0Nig   and 0Ni =  , there is no contact between point iP   and the adjacent abutment. When 0Ni   and

0Nig = , the curved beam and abutment come into contact. In math expression, Ni  and Nig  should meet 

the LCP relationship during the time history. It can be seen in Fig. 11 that Ni  and Nig  maintain linear 

complementarity at all times. 

2. According to Eq. (10), the values of 1 2N Ng g−  and 4 3N Ng g−  should be consistent during the time history. 

The time history of 1 2N Ng g−   and 4 3N Ng g−   are drawn as shown in Fig. 13. The adequacy of the 

computational procedure is demonstrated by the perfect congruence of the two time histories. 

 

 

Fig. 13. Time histories of 1 2N Ng g−  and 4 3N Ng g− . 

 

3. The momentum theorem should be satisfied at the moment of the pounding event, that is, the change in 

momentum of the curved beam should equal the impulse of the force applied to it during the pounding process at 

both its beginning and its end. The change in momentum and the impulse of the force during every pounding 

event are shown in Fig. 14, and the momentum theorem is satisfied. 

 

 
(a) 

 
(b) 

Fig. 14. The change in momentum and the impulse of the force during every pounding occurrences in the (a) x-; 

and (b) y-direction. 
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4. Conclusions 

 

This study introduces a new method to solve the problem of the dynamic response and contact interactions of 

curved beam bridges modelled as rigid bodies under seismic ground motions and end-pounding effects. The 

method uses a non-smooth formulation to create dynamic equations of motion that account for pounding effects 

based on a Lagrange multipliers approach. The new formulation is presented, programmed, exemplified, and 

validated. The following conclusions can be drawn: 

 

1. The seismic response of curved beam bridges can be analyzed by the proposed non-smooth formulation 

accounting for pounding effects based on a Lagrange multipliers approach. The dynamic equation of the 

curved bridge can be represented by a lumped mass and stiffness matrix. The pounding scenarios can be 

analyzed by considering Jacobian matrices of velocity with respect to the DOFs at some spots on the beam 

ends where pounding is expected. The unilateral constraints are transformed into a linear complementarity 

problem (LCP) formulation that relates to velocity and impulse in both normal and transverse directions. The 

dynamic equations of the pounding system of curved beam bridges are formulated by adding the products of 

impact and friction forces and their corresponding Jacobian matrices as Lagrange multipliers. Non-smooth 

contact differential equations are developed by appending the LCP formulation related to the velocities and 

impulses in the normal and transverse directions. 

2. The algorithm for solving the differential equations in LCP is implemented in Matlab to identify the collision 

and motion states by accessing a stepwise acceleration time history. 

3. To assess the effectiveness and suitability of the proposed method, a case study curved beam bridge consisting 

of two spans, an intermediate pier, and two adjacent abutments is subjected to a single ground motion. 

4. The seismic response of the case study bridge obtained by the proposed procedure and neglecting the pounding 

effects is compared with the results of an ‘equivalent’ finite element (FE) model developed in OpenSees. The 

comparison shows a good match of the results. 

5. The seismic response of the case study bridge is evaluated by the proposed procedure, including the pounding 

effects. The displacements and rotations time histories, including the end-pounding occurrences, are fully 

identified by the analysis. The results show the ability of the proposed procedure to capture the interrelation 

of the different quantities involved in the problem. For example, it can be observed that the change in velocity 

at the centroid of the curved beam in the x- and y-directions depends on the resultant of the normal pounding 

force and transverse friction force. Similarly, the change in the rotational speed of the curved beam is 

determined by the resultant moment created by the normal pounding force and transverse friction force. 

6. Given the transient nature of the collision events, providing direct evidence for tracking the time and motion 

process is difficult and rarely found in the existing literature. Three verification approaches are proposed, 

relying on checks about the consistency in the LCP relationship, the geometric relationship, and the impulse-

momentum theorem. 

7. The present study neglects the influence of soil-structure interaction effects. However, in soft soils this could 

significantly affect the seismic response and pounding effects of the curved bridge deck and will be part of the 

future work in this direction. Furthermore, the effect of the different characteristics of ground motions on the 

pounding response of curved bridge by using non-smooth method is also a challenging issue for the researchers. 
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