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Abstract
We study parametric inference on a rich class of hazard regression models in
the presence of right-censoring. Previous literature has reported some inferen-
tial challenges, such as multimodal or flat likelihood surfaces, in this class of
models for some particular data sets. We formalize the study of these inferen-
tial problems by linking them to the concepts of near-redundancy and practical
nonidentifiability of parameters. We show that the maximum likelihood estima-
tors of the parameters in this class of models are consistent and asymptotically
normal. Thus, the inferential problems in this class of models are related to
the finite-sample scenario, where it is difficult to distinguish between the fit-
ted model and a nested nonidentifiable (i.e., parameter-redundant) model. We
propose a method for detecting near-redundancy, based on distances between
probability distributions. We also employmethods used in other areas for detect-
ing practical nonidentifiability and near-redundancy, including the inspection of
the profile likelihood function and the Hessianmethod. For cases where inferen-
tial problems are detected, we discuss alternatives such as using model selection
tools to identify simpler models that do not exhibit these inferential problems,
increasing the sample size, or extending the follow-up time. We illustrate the
performance of the proposed methods through a simulation study. Our simula-
tion study reveals a link between the presence of near-redundancy and practical
nonidentifiability. Two illustrative applications using real data, with andwithout
inferential problems, are presented.
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1 INTRODUCTION

The analysis of time-to-event data is of interest in many areas, includingmedicine, biology, and engineering. Survival data
are typically right-censored, as not all of the times-to-event of interest are observed within the follow-up time (administra-
tive censoring) or theremay be loss of follow-up of some individuals (random censoring). In addition to the times-to-event,
individual characteristics (covariates) 𝐱 ∈ ℝ𝑝 are often available. Thus, it is of interest to incorporate the information in
the covariates for modeling the times-to-event. With this aim, a number of survival regressionmodels have been proposed
in the literature. Such models are commonly formulated on the hazard function, leading to different hazard structures.
The proportional hazards (PH) model represents the most popular hazard structure in practice (Cox, 1972). This model
is formulated at the hazard level ℎ(𝑡; 𝐱, 𝜷), and assumes that the covariates 𝐱 have a multiplicative effect on the baseline
hazard function ℎ0(⋅), as follows:

ℎ(𝑡; 𝐱, 𝜷) = ℎ0(𝑡) exp
{
𝐱⊤𝜷

}
,

where 𝛽 ∈ ℝ𝑝 are the regression coefficients. Another popular survival regression model is the accelerated failure time
(AFT)model,which can be formulated at the hazard level, assuming that the covariates have a simultaneousmultiplicative
effect on the time scale and the hazard function (Kalbfleisch & Prentice, 2011)

ℎ(𝑡; 𝐱, 𝜷) = ℎ0
(
𝑡 exp

{
𝐱⊤𝜷

})
exp

{
𝐱⊤𝜷

}
.

The AFT model can also be formulated as a log-linear regression model. A richer hazard structure, referred to as the
general hazard (GH) hereafter, which contains the PH and AFT models, as particular cases, was proposed independently
by Etezadi-Amoli and Ciampi (1987) and Chen & Jewell (2001). The GH model is also formulated at the hazard level
ℎ(𝑡; 𝐱, 𝜶, 𝜷), and incorporates multiplicative effects on the time scale and the hazard scale:

ℎ(𝑡; 𝐱, 𝜶, 𝜷) = ℎ0
(
𝑡 exp

{
𝐱⊤𝜶

})
exp

{
𝐱⊤𝜷

}
, (1)

where 𝜶 ∈ ℝ𝑝 and 𝛽 ∈ ℝ𝑝 are the regression coefficients, and ℎ0(⋅) is the baseline hazard. This sort of models has been
used in survival analysis applications, as they represent a simple alternative for including time-level effects (through the
coefficients 𝜶), while allowing for a tractable estimation. These applications include the analysis of the survival of cancer
patients (Li et al., 2015; Rubio et al., 2021; Rubio & Drikvandi, 2022; Ribeiro-Amaral et al., 2023), recurrent event data (Xu
et al., 2020), joint models for longitudinal and survival data (Alvares & Rubio, 2021; Rubio et al., 2019), reliability analysis
(Gámiz et al., 2011), and as a mean for comparing competing nested submodels (e.g., PH and AFT) of interest (Zhao et al.,
2009).
Inference on the parameters of theGHmodel can be conducted using parametric (Rubio et al., 2019) and semiparametric

approaches (Chen & Jewell, 2001). The parametric approach represents an attractive option as parametric models are
interpretable and relatively easy to implement. However, since parametric models impose specific assumptions on the
shape of the baseline hazard ℎ0(𝑡; 𝝃 ), it is desirable to use flexible models that can capture a variety of shapes of the
hazard function to avoid imposing restrictive assumptions. Flexible parametric models require the inclusion of additional
parameters. This inclusion of parameters typically carries a cost in the finite-sample inference. For instance, by increasing
the uncertainty on the model parameters (wider confidence intervals or wider profile likelihoods) (Raue et al., 2009). For
GHmodels, some references have reported the presence of flat likelihoods or a “challenging” optimization of the likelihood
function (Burke et al., 2020; Rubio et al., 2019), including nonconvergence of some numerical optimization methods or
singular Hessian matrices, when the sample size is small or moderate, or with high censoring rate. We focus on the study
of these inferential problems from a more formal perspective, linking them to the concepts of “near-redundancy (NR) of
parameters” and “practical nonidentifiability” (PNI) (Catchpole & Morgan, 1997; Catchpole et al., 1998; Cole, 2020; Raue
et al., 2009).
NR and PNI refer to cases where the statistical inference may fail due to the inability to estimate the parameters of a

model. This may be due to data quality, which makes the problem sample-dependent rather than a general shortcoming
of a parametric model. A near-redundant model is a model that, formally (i.e., theoretically), is not parameter-redundant,
but might behave as a parameter-redundant model, because it is very similar to a model that is parameter-redundant for
a particular data set (Cole, 2020). This occurs when the parameter estimates are close to a redundant nested model (Cole,
2012) (i.e., a model that can be written in terms of a smaller set of parameters). On the other hand, a similar and related
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problem is that of PNI. A model is practically nonidentifiable if the log-likelihood has a unique maximum, but the length
of the individual parameter’s likelihood-based confidence region tends to infinity in either or both directions (Raue et al.,
2009). These concepts have been largely used in statistical ecology and biology (Cole et al., 2012; Cole & McCrea, 2016;
Gimenez et al., 2003; Simpson et al., 2022). Although these two definitions are presented as separate concepts, we will
show that there is an intersection between them in the context of the GH model (1).
The inferential challenges reported in the use of GH models, discussed above, can be formally classified as problems

with NR of parameters and PNI. Therefore, it is of interest to develop tools to identify these types of inferential problems in
the GHmodel. Methods for detecting NR or PNI are classified into symbolic or numerical methods (Catchpole &Morgan,
1997; Cole, 2020). The symbolic method or symbolic differentiation method is a method based on symbolic algebra that
can be used to determiningwhether or not amodel is parameter-redundant or nonidentifiable (Catchpole et al., 2001). The
symbolic method basically consists in determining the rank of matrix of derivatives of exhaustive summary terms (Cole,
2020). This method has been used for different classes of models. However, for structurally complex models, computer
algebra packages may not be able to calculate the required symbolic rank of the derivative matrices, due to computer
memory limitations (Cole et al., 2010; Cole, 2012; Cai et al., 2021). In such cases, numerical methods have been used as an
alternative. These numerical methods include the Hessian method, the simulation method, data cloning, and the profile
log-likelihood method (see Cole, 2020, for a discussion on these methods).
In this article, we focus on identifying inferential problems associated with the parameter estimation in GH models in

the presence of right-censored observations. For GHmodels, we are able to pinpoint the nested nonidentifiablemodel (i.e.,
parameter-redundant). Consequently, we can link the inferential problems with the closeness of the estimated model to
the nested nonidentifiablemodel.More specifically, we propose a generalmethod for detectingNRbased onmeasuring the
distance between the fitted model and the nested nonidentifiable model. We develop two criteria, based on the Kullback–
Leibler divergence and the Hellinger distance, which take into account the sample size and censoring rate. In Section 2,
we present the parametric GH regression model and discuss the identifiability of parameters in this model. Section 3
presents a result on the consistency and asymptotic normality of the maximum likelihood estimators of the parameters in
the GH regression model, and describes some methods used to detect NR or PNI. This section also presents our proposed
methodology to detect NR, which is based on using the Hellinger distance and/or the Kullback–Leibler divergence. In
Section 4, we conduct a simulation study to investigate the effect of the sample size and the censoring rate on the inference
on the parameters of the GH regression model, as well as the performance of the proposed methodology for detecting
inferential problems. In Section 5, we apply the proposed methodology for detecting NR and PNI of parameters in two
real-data examples. Finally, we discuss the results obtained in this work in Section 6.

2 PARAMETRIC GENERAL HAZARD REGRESSIONMODELS

In this section,we describe theGHmodel anddiscuss several choices for the baseline hazard.We also discuss identifiability
of parameters in this model, which we will later connect with the concepts of NR and PNI.
Let us first introduce some notation. Let 𝑜𝑖 ∈ ℝ+ be the survival times (or times-to-event) for individuals 𝑖 = 1, … , 𝑛.

Let 𝑐𝑖 ∈ ℝ+ be right-censoring times, such that we only observe 𝑜𝑖 ≤ 𝑐𝑖 , 𝛿𝑖 = I(𝑜𝑖 ≤ 𝑐𝑖) be the indicator that observation
𝑖 is uncensored, 𝑡𝑖 = min{𝑜𝑖, 𝑐𝑖} be the observed times, and 𝑛𝑜 =

∑𝑛
𝑖=1 𝛿𝑖 be the number of uncensored observations. Let

𝐱𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)
⊤ ∈ ℝ𝑝 denote the vectors of available covariates. Consider the parametric GH structure (Chen & Jewell,

2001; Rubio et al., 2019):

ℎ(𝑡; 𝜽) = ℎ0
(
𝑡 exp

{
𝐱̃⊤
𝑖
𝜶
}
; 𝝃
)
exp

{
𝐱⊤
𝑖
𝜷
}
, (2)

where 𝜽 = (𝝃⊤, 𝜶⊤, 𝜷⊤)⊤; 𝐱𝑖 ∈ ℝ𝑝 are the covariates that have an effect at the hazard level; 𝐱̃𝑖 ∈ ℝ𝑞 are the covariates that
have an effect at the time level, with 𝐱̃𝑖 ⊆ 𝐱𝑖 typically; ℎ0(⋅; 𝝃 ) is a parametric baseline hazard function, with parameter
𝝃 ∈ Ξ ⊆ ℝ𝑟. The hazard structure (2) is slightly more general than (1), as (2) allows for the inclusion of different covariates
as time-level and hazard-level effects. TheGH structure (2) contains the proportional hazards (PH, 𝜶 = 0), the AFT (𝜶 = 𝜷
and 𝐱̃ = 𝐱), and the accelerated hazards (AH, 𝜷 = 0) models as particular cases (see Rubio et al., 2019 for a more extensive
discussion on the interpretation of this hazard structure). The corresponding cumulative hazard function can be written
as:

𝐻(𝑡; 𝜽) = 𝐻0
(
𝑡 exp

{
𝐱̃⊤
𝑖
𝜶
}
; 𝝃
)
exp

{
𝐱⊤
𝑖
𝜷 − 𝐱̃⊤

𝑖
𝜶
}
. (3)
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Common (three-parameter) choices for the baseline hazard are: the power-generalized Weibull (PGW), exponentiated
Weibull (EW), and generalized gamma (GG), among other distributions (Alvares & Rubio, 2021) (see the Supporting
Information for more information on these distributions). These distributions can capture the basic shapes of the hazard
function: increasing, decreasing, unimodal, and bathtub. Simpler (two-parameter)models such as the gamma, log-normal,
and log-logistic distributions can also be employed, although they impose more restrictions on the shape of the baseline
hazard. These models are implemented in the R package “HazReg” (https://github.com/FJRubio67/HazReg) for several
choices of the parametric baseline hazard.

2.1 Identifiability

Recall that a model is identifiable if two different sets of parameter values do not result in the same model (Cole, 2020;
Lehmann &Casella, 2006). More formally, let = {𝑃𝜃 ∶ 𝜃 ∈ Θ} be a statistical parametric model with parameter spaceΘ.
The model  is said to be identifiable if the mapping 𝜃 ↦ 𝑃𝜃 is one-to-one (Lehmann & Casella, 2006). That is, 𝑃𝜃1 = 𝑃𝜃2
implies that 𝜃1 = 𝜃2 for all 𝜃1, 𝜃2 ∈ Θ. The model defined by the GH structure (2) is identifiable except for the case when
the baseline hazard corresponds to the Weibull distribution (Chen & Jewell, 2001), provided that there is no collinearity
between the covariates and the baseline hazard is identifiable. Indeed, for the Weibull baseline hazard, the PH, AFT, and
AHmodels coincide (Chen & Jewell, 2001), making (some or all of) the parameters 𝜶 and 𝜷 redundant. Consequently, in
the context of the GH model (2), the concepts of parameter-redundancy and nonidentifiability are equivalent. To obtain
a theoretically identifiable GH model, it is required to use an identifiable baseline hazard that does not belong to the
Weibull family, and that there is no collinearity between the covariates. However, some flexible parametric distributions
such as the PGW, EW, and GG distributions contain the Weibull distribution as a particular case (when the parameter
𝛾 = 1 in these distributions, see Supporting Information). Consequently, the GH model with baseline hazard given by
these distributions contains a nested nonidentifiable model, for 𝛾 = 1, while it is identifiable for 𝛾 ≠ 1. General families of
distributions containing theWeibull distribution as a particular case (or as a limit case) are discussed in Sinner et al. (2022).
We also refer the reader to Ley et al. (2021) for a general discussion on basic desiderata in the use of flexible parametric
models. Indeed, nonidentifiability, along with NR and PNI, makes parametric models fail one of their key requirements,
namely, “Straightforward parameter estimation.”

3 INFERENCE IN THE GENERAL HAZARDMODEL

In this section, we present the likelihood function associated with the GH model (2) and discuss maximum likelihood
estimation (MLE) of the parameters of this model. We present a result on the consistency and asymptotic normality of the
MLEs, under standard regularity conditions, which shows that the GH model has good asymptotic properties. Then, we
present several methods for detecting PNI and NR of parameters in this model.

3.1 Maximum likelihood estimation

The availability of the hazard and cumulative hazards (2)–(3) allows for a tractable implementation of the log-likelihood
function,

𝓁(𝜽; 𝐗, 𝐭, 𝜹) =

𝑛∑
𝑖=1

𝛿𝑖 log ℎ(𝑡𝑖; 𝜽) −

𝑛∑
𝑖=1

𝐻(𝑡𝑖; 𝜽),

where 𝐗 = (𝐱1, … , 𝐱𝑛) is the design matrix, 𝐭 = (𝑡1, … , 𝑡𝑛)⊤, and 𝜹 = (𝛿1, … , 𝛿𝑛)⊤. Thus, parameter estimation can be per-
formed by using numerical methods, provided that the baseline hazard is not Weibull, to guarantee identifiability of
parameters. Although this is not an onerous condition, in practice, inferential problems with these models have been
reported for small and moderate samples or high censoring rates (Burke et al., 2020; Rubio et al., 2019), even when using
baseline hazards different from the Weibull distribution. We will show that these inferential problems are related to flat
likelihoods and/or likelihood surfaces with multiple local maxima, which complicate the numerical estimation of the
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parameters. This allows us to connect these inferential challenges with the concepts of NR and PNI of parameters (Cole,
2020), which are finite-sample problems. In contrast, the following result shows that the maximum likelihood estimators
of the parameters in the GH model are consistent and asymptotically normal.

Theorem 3.1. Consider the hazard regression model defined by the hazard structure (2) with parametric baseline haz-
ard ℎ0(⋅; 𝝃 ). Let 𝜽⋆ = (𝝃⋆

⊤
, 𝜶⋆

⊤
, 𝜷⋆

⊤
)⊤ be the true values of the parameter. Under conditions C1–C7 in the Supporting

Information, it follows that

(i) Consistency: 𝜽
𝑃
→ 𝜽⋆ as 𝑛 → ∞.

(ii) Asymptotic normality:
√
𝑛(𝜽 − 𝜽⋆)

𝑑
→ 𝑁(𝟎, 𝐈(𝜽⋆)−1) as 𝑛 → ∞, where 𝐈(𝜽⋆) is the matrix cov{∇𝜽𝑚1(𝜽)}, with𝑚1(𝜽) =

𝛿1 log ℎ(𝑡1; 𝜽) − 𝐻(𝑡1; 𝜽), evaluated at 𝜽⋆.

Conditions C1–C3 are satisfied bymodels of practical interest, such as the PGW,GW, and EWdistributions. The remain-
ing conditions are standard regularity conditions on parametric models. This theorem indicates that the model defined
by the GH structure (2) has good asymptotic properties. However, NR and PNI represent finite-sample problems, which
is the scenario of interest in real-life problems. We now discuss general and ad hoc methods for detecting these inferential
problems in the GH model.

3.2 Detecting practical nonidentifiability: The profile likelihood

As explained in Section 1, if a model exhibits PNI, the likelihood surface will contain flat, or nearly flat, ridges. Thus,
naturally, a method for detecting these inferential problems consists of visualizing or evaluating the profile likelihood
function associatedwith each parameter. This allows for individually identifyingwhich parameters are involved in the PNI
problem. Thismethod has been used in biologicalmodels (Raue et al., 2009), epidemiologicalmodels (Tönsing et al., 2018),
or capture–recapture models (Lebreton & Cefe, 2002). For completeness, we present the definition, using our notation on
hazard regression models, of the profile likelihood below. We refer the reader to Sprott (2008) for an extensive discussion
on the use of the relative profile likelihood in statistical inference.
Suppose that the vector of model parameters 𝜽 can be decomposed into two subsets of parameters (𝝍⊤, 𝝀⊤)⊤, where𝝍 =

(𝜓1, … , 𝜓𝑑𝜓 )
⊤ denotes the parameters of interest and 𝝀 = (𝜆1, … , 𝜆𝑑𝜆 )

⊤ are the nuisance parameters. Let also 𝐿(𝜽; 𝐗, 𝐭, 𝜹) =
exp{𝓁(𝜽; 𝐗, 𝐭, 𝜹)} denote the likelihood function of 𝜽. The profile likelihood function of 𝝍 is

𝐿𝑃(𝝍;𝐗, 𝐭, 𝜹) = sup
𝝀
𝐿(𝝍, 𝝀; 𝐗, 𝐭, 𝜹). (4)

Now, the relative profile likelihood function of 𝝍 is a standardized version of (4), which takes a value of 1 at the maximum
of the profile likelihood function of 𝝍,

𝑅𝑃(𝝍;𝐗, 𝐭, 𝜹) =
𝐿𝑃(𝝍;𝐗, 𝐭, 𝜹)

sup𝝍 𝐿𝑃(𝝍;𝐗, 𝐭, 𝜹)
.

A level 𝑐 profile likelihood region for 𝝍 is given by

{𝝍 ∶ 𝑅𝑃(𝝍;𝐗, 𝐭, 𝜹) ≥ 𝑐},
where 0 ≤ 𝑐 ≤ 1. Since −2 log 𝑅𝑃(𝝍;𝐗, 𝐭, 𝜹) follows an asymptotically 𝜒2𝑑𝜓 distribution (Sprott, 2008), a profile likelihood
region for 𝝍 with approximately 95% confidence is obtained when 𝑐 ≈ 0.147.
The profile likelihood method, for identifying PNI, consists of checking if the length of the profile likelihood intervals,

of a level of interest 𝑐, for a specific parameter is infinite in either or both directions. The profile likelihood function is
rarely available in closed form, but evaluating this function numerically is usually feasible (Van der Vaart, 2000). The
profile likelihood (equivalently, profile log-likelihood) method is a suitable numerical method for detecting practically
nonidentifiable models, as it allows inspecting each parameter individually and detecting the parameters producing
inferential problems. We will explore the use of the profile likelihood for detecting PNI in our simulation study and
real-data applications.
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3.3 Detecting near-redundancy: Distance-based methods

Inferential problems may also appear when the true generating model is theoretically identifiable but it is close to a non-
identifiable model. In the GHmodel, the nested nonidentifiable model corresponds to the case where the baseline hazard
belongs to the Weibull family. Inferential problems associated with this closeness are thus related to the concept of NR
of parameters. Indeed, the PGW, EW, and GG distributions contain the Weibull distribution as a particular case, and
consequently, are prone to producing NR.
A possible way for detecting when the fitted model is close to the nested nonidentifiable model consists of measuring

the similarity between the fitted baseline hazard and the Weibull family. The similarity between the fitted model and the
closest Weibull model can be calculated by using a distance or a divergence between probability measures. Let 𝐹0 = 𝐹𝝃
be the parametric cumulative distribution associated with the baseline hazard in model (2). Let 𝐹0 = 𝐹𝝃 be the fitted
distribution function (associated with the fitted baseline hazard), with corresponding density function 𝑓0, and let 𝐹𝑊 be
the Weibull distribution function with parameters 𝜼 = (𝜎, 𝜈)⊤, with density function 𝑓𝑊 . Following this line of thought,
let us define the minimum distance between the fitted model and the Weibull family as:

(𝐹0, 𝐹𝑊) = min
𝜼∈ℝ2+

𝑑(𝐹0, 𝐹𝑊), (5)

for some distance or divergence between probability measures 𝑑(⋅, ⋅). In order to use this criterion in practice, we need to
specify a distance or divergence between distributions, and a threshold to identify when the two distributions are close.
That is, we would like to define a threshold 𝑈(𝑛, 𝑐, 𝑑) (which depends on the sample size 𝑛, the number of censored
observations 𝑐, and the distance or divergence 𝑑) such that if the following inequality holds:

(𝐹0, 𝐹𝑊) ≤ 𝑈(𝑛, 𝑐, 𝑑),
then the sample and the model are classified as near-redundant (subject to stochastic error).
Regarding the choice of 𝑑(⋅, ⋅), there exist a number of distances (or divergences) between distributions that could be

employed (Gibbs & Su, 2002), but it is also desirable to use an interpretable distance. The threshold to identify problematic
cases should also be linked to the sample size because, as the sample size grows, inferential problems also disappear or
become less likely, given that the GH model has good asymptotic properties. Note that if the true value of the parameter
𝝃⋆ (see Theorem 3.1) is such that 𝐹𝝃⋆ belongs to the Weibull family, then

(
𝐹0, 𝐹𝑊

) 𝑃
→ (

𝐹𝝃⋆, 𝐹𝑊
)
= 0, as 𝑛 → ∞.

Consequently, a desirable property of the threshold 𝑈(𝑛, 𝑐, 𝑑) is lim𝑛→∞ 𝑈(𝑛, 𝑐, 𝑑) = 0.
Next, we present some specific choices for the distance 𝑑(⋅, ⋅) and discuss some heuristic approaches to establish a

threshold 𝑈(𝑛, 𝑐, 𝑑) to identify near redundant cases. The performance of these criteria will be assessed later in the
simulation study.

(a) The Kullback–Leibler (KL) divergence, where

𝑑
(
𝐹0, 𝐹𝑊

)
= 𝑑

(
𝐹0||𝐹𝑊)

= ∫
∞

0

𝑓0(𝑡) log
𝑓0(𝑡)

𝑓𝑊(𝑡)
𝑑𝑡.

To establish a threshold to identify near redundant cases, we borrow some concepts from information theory.
In information theory, a quantity of interest, related to the KL divergence, is the KL minimax redundancy. Under

our notation, this is defined as (Cover & Thomas, 2006)

𝑅∗ = min
𝐹𝑊
max
𝐹𝝃
𝑑
(
𝐹𝝃 , 𝐹𝑊

)
,

where 𝐹𝝃 is the parametric distribution associated with the baseline hazard. Several works in information theory
have shown that, under regularity conditions, 𝑅∗ decreases in probability to zero at a rate 𝑘 log(𝑛)∕(2𝑛), where 𝑘 is
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RUBIO et al. 7 of 18

the number of parameters (see Acharya et al., 2012, and the references therein, for a general review on this kind of
results and Barron & Hengartner, 1998 for a theoretical treatment of this result).
Given that the sample may contain censored observations, instead of using the sample size 𝑛, we will use the effec-

tive sample size 𝑛𝑒 = 𝑛 − 𝜌𝑐, where 𝜌 ∈ (0, 1), which accounts for the loss of information due to censoring. Then,
motivated by the KLminimax redundancy convergence rate, we propose the threshold𝑈 = 𝑀𝑘 log(𝑛𝑒)∕(2𝑛𝑒), where
𝑀 > 0 is a positive constant specified by the user (arising from the convergence rate of the KL minimax redundancy,
which is only defined up to a proportionality constant). Following this line of thought, we propose the following
heuristic criterion to detect NR. We say that if the following inequality holds:

(
𝐹0, 𝐹𝑊

) ≤ 𝑀𝑘 log (𝑛𝑒)
2𝑛𝑒

, (6)

then the corresponding GH model (2) and the data are classified as near-redundant. In our applications, and based
on our simulations, we will focus on the choice 𝑀 = 0.05, but other choices are also possible. We also assume that
𝑘 is the total number of parameters in the GH model (rather than just those in the baseline hazard), as the model
parameters are estimated jointly.

(b) The Hellinger distance, where

𝑑
(
𝐹0, 𝐹𝑊

)
=

√
1

2 ∫
∞

0

(√
𝑓0(𝑡) −

√
𝑓𝑊(𝑡)

)2
𝑑𝑡.

We will now apply some results from Le Cam (1973) to establish a criterion to assess the closeness of 𝐹0 and the
Weibull family based on this distance. Following the results in Le Cam (1973), we cannot distinguish between two
probability distributions 𝐹 and 𝐺, without incurring in a maximal error 𝜅 ∈ (0, 1), if

1 −
√
1 − (1 − 𝑑2(𝐹, 𝐺))2𝑛 ≥ 2𝜅, (7)

where 𝑛 is the sample size (see Baraud (2021) for a discussion on this result). Recall that we are interested in distin-
guishing between 𝐹0 and the closest 𝐹𝑊 , based on a sample of size 𝑛 with 𝑛 − 𝑐 uncensored observations. Replacing
the sample size 𝑛 by the effective sample size 𝑛𝑒 and 𝑑 by in Le Cam’s criterion (7), we obtain the following heuristic
criterion to detect NR. We say that if the following inequality holds:

(
𝐹0, 𝐹𝑊

) ≤
√
1 − (4𝜅 − 4𝜅2)

1

2𝑛𝑒 ,

then the corresponding GH model (2) and the data are classified as near-redundant. Equivalently,

𝑛𝑒 ≤
log

(
1 − (1 − 2𝜅)

2
)

2 log
(
1 −2(𝐹0, 𝐹𝑊)) . (8)

The parameter 𝜅 > 0 controls the maximal error in distinguishing the two probabilities. However, its interpretation
as amaximal error is only approximate as the distribution𝐹0 is based on parameter estimates (froma censored sample)
and we are considering the (minimum) distance to an entire family of distributions (Weibull). By fixing 𝜅 and for a
fixed sample size, this inequality provides a heuristic criterion for identifying the closeness of the estimated model to
the nonidentifiable Weibull case. In our applications and simulations, we will explore the use of 𝜅 = 0.05.

We note that these criteria impose different thresholds than the original criteria as we are using the effective sample
size 𝑛𝑒. Following the rule in Liu (2012), the conventional choice for 𝜌 = 0.5, which we adopt in both criteria to define
the effective sample size. The performance of criteria (6) and (8) under this choice of the values for 𝑀, 𝜅, and 𝜌 will be
assessed in the simulation study. However, we emphasize that other choices are also possible.
Note also that the criteria (6) and (8) can be used to either classify near redundant models based on a specific value of

 and 𝑛𝑒, or to identify the minimum number of uncensored observations required to reduce problems with NR based
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8 of 18 RUBIO et al.

ALGORITHM 1 Hessian method (Cole, 2020).

1: Find the Hessian matrix using a numerical method.
2: Find the eigenvalues of the Hessian matrix.
3: Standardise the eigenvalues by taking the modulus of the eigenvalues and dividing through by the largest eigenvalue.
4: The model with that data set is near-redundant if the smallest eigenvalue is less than 0.001.

on a specific value of . Of course, other distances (such as the total variation or Wasserstein-𝑑 distances) could be used
instead. However, this would require proposing appropriate thresholds to identify NR.
One of the limitations of criteria (6) and (8) is that they are based on point estimates of the parameters, and thus, are

prone tomisclassification in cases where the estimates of the parameters exhibit large uncertainty (e.g., for small samples,
high censoring rates, or short follow-up). In our applications in Section 5, wewill also estimate the probability that inequal-
ities (6) and (8) hold by using a nonparametric bootstrap sample of the maximum likelihood estimates (i.e., obtained by
resampling with replacement).

3.4 Detecting near-redundancy: The Hessian method

In addition to the distance-based criteria presented in the previous subsection, in our applications and simulations, we
will consider the Hessian matrix method (Cole, 2020; Gimenez et al., 2004; Little et al., 2010). This method consists of
calculating the ratio of the smallest eigenvalue and the largest eigenvalue of the Fisher information matrix or the Hessian
(of the log-likelihood function) matrix evaluated at the maximum likelihood estimate (see Cole, 2020 for a detailed dis-
cussion on this criterion). For completeness, we briefly describe the steps in the Hessian method in Algorithm 1, which
we quote verbatim from Cole (2020).
Several authors have used the threshold 0.001 to investigate NR (see Cole, 2020, chapter 4, for a discussion). This thresh-

old is based on the concept of “sloppiness” of a model (see Cole, 2020, chapter 3, for a discussion on this topic), and the
threshold value proposed by Chis et al. (2016) to detect sloppiness. Other rules for selecting the threshold are discussed in
Cole (2020), who also suggested that this threshold should depend on the model. We will explore the use of the Hessian
method in our simulations and applications in Sections 4 and 5.
Although the concepts of NR of parameters and PNI are studied separately, in the context of the GHmodel, there is an

overlap between these two definitions. As shown in the following simulation study and applications, when the baseline
hazard is sufficiently close to the Weibull family, the model is classified as near-redundant and we generally observe flat
andmultimodal profile likelihoods. Keeping this inmind, the following simulation study illustrates the link between these
two definitions.

4 SIMULATION STUDY

In this section, we present a simulation study that aims at evaluating the performance of the distance-based methods
proposed in Section 3.3, as well as the Hessianmethod in Algorithm 1, for detecting NR in the GHmodel. PNI is diagnosed
using the profile likelihood, as discussed in Section 3.2. We evaluate the effect of the sample size and the censoring rate
on the presence of NR and PNI. This simulation study also aims at understanding the link between the presence of NR
and PNI problems.

4.1 Simulation scenarios

We present seven simulation scenarios in total. In each case, we simulate 𝑀 = 250 samples of varying sizes 𝑛 =
250, 500, 1000. For each scenario, we select administrative censoring times that produce censoring rates of approximately
30% and 50%. In addition, in all scenarios, we only include one covariate as this is the simplest structure where, if any
inferential problems are detected, such problems could only become more severe with the inclusion of more covariates.
This covariate is generated from the normal distribution with mean 0 and standard deviation 1. We employ the regression
parameter values 𝛼 = 1.5 and 𝛽 = 2.5 for all scenarios.
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RUBIO et al. 9 of 18

In the first three scenarios, the times-to-event are simulated from the GHmodel (2) with PGWbaseline hazard (denoted
as PGW-GH) model using the probability integral transform (Rubio et al., 2019). In Scenario 1, we select parameter values
that produce a unimodal baseline hazard function 𝜎 = 0.3, 𝜈 = 1.5, 𝛾 = 5. This represents a scenario where the baseline
hazard shape cannot be captured by the Weibull baseline hazard, and thus, no inferential problems would be expected.
In Scenario 2, we select parameter values that produce an increasing baseline hazard function 𝜎 = 1.2, 𝜈 = 1.3, 𝛾 = 0.85.
This hazard shape can indeed be obtained with aWeibull hazard, although the hazard tails between the PGW andWeibull
distributions differ for 𝛾 ≠ 1, and thus, the model is theoretically identifiable. In Scenario 3, we select parameter values
that produce a decreasing baseline hazard functions 𝜎 = 0.1, 𝜈 = 0.9, 𝛾 = 4. This hazard shape can also be captured by
the Weibull baseline hazard. In Scenario 4, the data are simulated from a GH model (2) with lognormal (LN) baseline
hazard (denoted as LN-GH). The shape of the baseline hazard function is unimodal, and we select the parameters 𝜇̃ =
0 and 𝜎̃ = 1.5 (mean and standard deviation of the distribution on the log scale). This represents a hazard shape that
cannot be captured by the Weibull hazard, and the baseline hazard is outside the PGW family. In Scenario 5, the data are
simulated from a GHmodel (2) with EW baseline hazard (denoted as EW-GH). The shape of the baseline hazard function
is increasing, and we select the parameters 𝜎 = 0.7, 𝜈 = 1.2, 𝛾 = 0.85. This represents a hazard shape that can be captured
by the Weibull hazard, and the baseline hazard is outside the PGW family. For Scenarios 1–5, we fit the PGW-GH model.
Thus, for Scenarios 1–3, we have correct model specification, while for Scenarios 4–5, there is model misspecification.
However, the fitted model (PGW-GH) can capture the baseline hazard shapes from the true generating model in these
scenarios. In Scenario 6, we use the data simulated in Scenario 2 from the PGW-GH model but we fit a GH model (2)
with EW baseline hazard (denoted as EW-GH). In Scenario 7, we use the data simulated in Scenario 2 from the PGW-GH
model but we fit a GH model (2) with GG baseline hazard (denoted as GG-GH). The aim of Scenarios 6–7 is to illustrate
that the inferential problems (NR and PNI) are present for models that contain the Weibull baseline hazard, and that
these problems are not specific to the PGW-GH model. Figure S1 in the Supporting Information shows the shape of all
the baseline hazards used in this simulation study.
All models are fitted using the R package “HazReg,” which is available at https://github.com/FJRubio67/HazReg. The

integral required for criteria (6) and (8) is calculated using the R command integrate. The profile likelihood functions
are implemented directly and the optimization step is performed using the R command nlminb. The Hessian matrix,
required to implement the Hessian method, is calculated using the R package numDeriv.

4.2 Results

To evaluate the performance of the proposed distance-based criteria (6) and (8), we calculate the proportion of times that
these criteria classify a simulated sample as a sample producing NR of parameters of the fitted models. For the KL diver-
gence criterion (6), we use𝑀 = 0.05, and for the Hellinger distance criterion (8), we choose 𝜅 = 0.05. We have compared
other values of𝑀, and we found that this value produced good results in terms of accurate classification and indeed pro-
ducing very similar results to those obtained with criterion (8). Thus, a sample is classified as a sample producing NR if
the inequalities in criteria (6) and/or (8) hold. We also employ the Hessian method in Algorithm 1 to identify NR.
An important aim of this simulation study is to compare the classification of samples producing NR against the clas-

sification of samples producing PNI. To detect PNI, we assess the flatness of the profile likelihoods of 𝛼 and 𝛽. More
specifically, we evaluate the profile likelihoods at 𝛼̂ ± Δ𝛼 and 𝛽 ± Δ𝛽 , with Δ𝛼 = Δ𝛽 = 3, and verify if these values are
below 0.147 (the level used to construct 95% profile likelihood confidence intervals). The values of Δ𝛼 and Δ𝛽 were chosen
by visually inspecting several profile likelihood functions and identifying a suitable conservative length.
Tables 1–3 show the two-way classification of samples producing “NR” and/or “PNI” problems, using the aforemen-

tioned methods. The cases where no NR nor PNI problems are detected, using the aforementioned methods, will be
referred to as “identifiable” (I). The reason why results are presented in two-way tables follows the main aim of the sim-
ulation study, which is about connecting and comparing the presence of the two inferential problems of interest (NR and
PNI). Note that the true classification of NR and PNI cases is not known beforehand. Thus, the results presented in this
section should be read considering the profile method (used to classify PNI problems) as a reference, as this method is
based on directly detecting flat ridges in the profile likelihood.
For Scenario 1 (Table 1), corresponding to a baseline hazardwith unimodal shape that cannot be captured by theWeibull

hazard function, we can see that very few samples induce inferential problems, and that there is an interplay between cen-
soring and sample size that produces problematic samples. As expected, the larger the sample or the lower the censoring
rate, the fewer problematic samples are observed. For Scenario 2 (Table 2), we observe a very large proportion of samples
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10 of 18 RUBIO et al.

TABLE 1 Simulation study: Scenario 1. Classification of samples into identifiable (I), practical nonidentifiable (PNI), and
near-redundant (NR). The rows represent the classification of NR and I cases, and the columns represent the classification of PNI and I cases.
H indicates the NR classification based on the Hellinger distance,KL denotes the NR classification based on the Kullback–Leibler
divergence, andHessian denotes the NR classification based on the Hessian method.

H PNI I PNI I PNI I
Cens: 50% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.028 0 0 0 0 0
I 0.024 0.948 0 1 0 1
Cens: 30% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.004 0 0 0 0 0
I 0 0.996 0 1 0 1
KL PNI I PNI I PNI I
Cens: 50% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.028 0 0 0 0 0
I 0.024 0.948 0 1 0 1
Cens: 30% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.004 0 0 0 0 0
I 0 0.996 0 1 0 1
Hessian PNI I PNI I PNI I
Cens: 50% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.024 0 0 0 0 0
I 0.028 0.948 0 1 0 1
Cens: 30% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.004 0 0 0 0 0
I 0 0.996 0 1 0 1

producing NR and PNI, and that the proportion of samples without inferential problems very slowly decreases as the
sample size grows or the censoring rate decreases. This is a challenging scenario where it is very difficult to distinguish
the fitted model from the nested Weibull (nonidentifiable) model. We also notice that there is a nonnegligible proportion
of cases that are classified as identifiable using criteria (6) and/or (8). This indicates that the proposed distance-based
methods for detecting NR may not necessarily be able to detect PNI problems in all samples. That is, these methods are
based on point estimates of the parameters, which can be inaccurate (e.g., 𝛾 far from 1) for some samples, and provide
no indication of NR. On the other hand, the profile likelihood is able to detect PNI problems as it takes the (large) uncer-
tainty in the estimation of the parameters into account. Another interesting behavior is that 30% censoring rate seems
to produce more samples that induce inferential problems than 50% censoring rate, which sounds counterintuitive. The
reason for this is that the estimates of 𝛾 have much more variability when the censoring rate is 50%, so some estimates of
this parameter are further away from 𝛾 = 1, but also far way from the true value of the parameter (see Tables S3–S4 in the
Supporting Information). This scenario shows that not even samples of size 𝑛 = 1000 are enough to substantially reduce
the presence of inferential issues. In this case, fitting a simpler, identifiable, model would be an alternative. For instance,
fitting an AFT model with Weibull baseline hazard, and comparing those models using a model selection tool. We will
explore this idea in the applications presented in Section 5. For Scenario 3 (Table 3), we notice a much lower proportion of
problematic samples (compared to Scenario 2), and a clear reduction in the proportion of inferential problems when the
sample size grows or the censoring rate decreases. This is in line with the intuition that suggests that the larger the sample,
or the lower censoring rate, the more information is contained in the data to estimate the model parameters (and thus
being able to distinguish the fitted model from the nested nonidentifiable model). Tables S1–S6 in the Supporting Infor-
mation show summaries of the MLEs for Scenarios 1–3 that complement the information and comments provided here.
Interestingly, in Scenarios 1–3, the Hessian method produces very similar performance to the distance-based methods.
This is both, reassuring about the results obtained with the distance-based methods, and a favorable outcome. Indeed,
rather than considering distance-based methods and the Hessian method as competitors, they represent tractable and
interpretable tools to identify NR problems, which may be jointly used.
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TABLE 2 Simulation study: Scenario 2. Classification of samples into identifiable (I), practical nonidentifiable (PNI), and
near-redundant (NR). The rows represent the classification of NR and I cases, and the columns represent the classification of PNI and I cases.
H indicates the NR classification based on the Hellinger distance,KL denotes the NR classification based on the Kullback–Leibler
divergence, andHessian denotes the NR classification based on the Hessian method.

H PNI I PNI I PNI I
Cens: 50% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.896 0.004 0.840 0.008 0.828 0.016
I 0.080 0.020 0.136 0.016 0.124 0.032
Cens: 30% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.976 0.016 0.944 0.020 0.924 0.012
I 0.008 0 0.008 0.028 0.028 0.036
KL PNI I PNI I PNI I
Cens: 50% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.892 0.008 0.848 0.008 0.844 0.020
I 0.084 0.016 0.128 0.016 0.108 0.028
Cens: 30% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.980 0.016 0.948 0.028 0.932 0.020
I 0.004 0 0.044 0.020 0.020 0.028
Hessian PNI I PNI I PNI I
Cens: 50% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.912 0.008 0.920 0.024 0.928 0.044
I 0.068 0.012 0.056 0 0.028 0
Cens: 30% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.936 0.016 0.924 0.040 0.928 0.044
I 0.048 0 0.028 0.008 0.024 0.004

Results for Scenario 4 are presented in Tables S7–S9 in the Supporting Information. We observe a similar performance
of the distance-based measures and the profile likelihood function as in Scenario 1, despite model misspecification. The
reason for this is that the baseline hazard is also unimodal, even though it is not PGW, a hazard shape that can be closely
captured by the PGW distribution. Results for Scenario 5 are presented in Tables S10–S12 in the Supporting Information.
We observe a similar performance of the distance-based measures and the profile likelihood function as in Scenario 2.
Again, the reason for this is that the baseline hazard is also increasing and close to the Weibull distribution, even though
it is not PGW. Results for Scenario 6 and 7 are presented in Tables S13–S15 and S16–S18, respectively, in the Supporting
Information. In both scenarios, we observe high proportions of cases with NR and PNI. MLEs for both scenarios exhibit
high bias and large variability. These scenarios show that even under model misspecification, if the fitted model has a
baseline hazard that cannot be distinguished from the Weibull hazard, it is possible to observe problems of NR and PNI.
We have found that the proposed distance-based methods and the Hessian method have a comparable performance in

classifying samples into NR and I cases.Moreover, Tables 1–3 indicate a considerable agreement between the classification
of “PNI versus NR” and “I versus I” cases. Consequently, our results reveal a link between the presence (or absence) of
PNI and NR problems in the GH model. However, we have also found cases where the true model is very close to the
nonidentifiable model (Scenario 2), and the profile likelihood contains flat ridges, but the distance-basedmethods and the
Hessianmethod do not classify such samples as NR. This indicates that the two concepts (PNI andNR) are not equivalent,
at leastwith the detectionmethods studied here. Indeed, in Scenario 2, theHessianmethod leads to a slightly larger overlap
in the classification of “PNI versusNR” cases than that obtainedwith distance-basedmethods.Apparently, a reason for this
difference is that the Hessian method incorporates information about the curvature of the likelihood function (Hessian
matrix) at the MLE, whereas distance-based methods only utilize the parameter values that maximize the likelihood
function (i.e., theMLE).Moreover, distance-basedmethods and theHessianmethod do not account for uncertainty on the
parameters as they are based on point estimates (which might be biased). In our applications in Section 5, we will explore
the idea of incorporating uncertainty about the estimation of the parameters using nonparametric bootstrap. Overall, we
recommend combining the distance-based methods and the Hessian method with the inspection of the profile likelihood
curves to aid the detection of inferential problems.
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TABLE 3 Simulation study: Scenario 3. Two-way classification of samples into identifiable (I), practical nonidentifiable (PNI), and
near-redundant (NR). The rows represent the classification of NR and I cases, and the columns represent the classification of PNI and I cases.
H indicates the NR classification based on the Hellinger distance,KL denotes the NR classification based on the Kullback–Leibler
divergence, andHessian denotes the NR classification based on the Hessian method.

H PNI I PNI I PNI I
Cens: 50% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.028 0 0.04 0 0 0
I 0.248 0.724 0.044 0.952 0.012 0.988
Cens: 30% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.016 0 0.004 0 0 0
I 0.028 0.956 0.028 0.968 0.024 0.976
KL PNI I PNI I PNI I
Cens: 50% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.028 0 0.04 0 0 0
I 0.248 0.724 0.044 0.952 0.012 0.988
Cens: 30% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.016 0 0 0 0 0
I 0.028 0.956 0.032 0.968 0.024 0.976
Hessian PNI I PNI I PNI I
Cens: 50% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.068 0 0.028 0.028 0.004 0.012
I 0.208 0.724 0.020 0.924 0.008 0.976
Cens: 30% 𝑛 = 250 𝑛 = 500 𝑛 = 1000

NR 0.028 0.008 0.032 0.004 0.024 0.020
I 0.016 0.948 0 0.964 0 0.956

5 APPLICATIONS

This section presents two real-data examples that illustrate the use of the proposed methodology for detecting NR and
PNI of parameters. We apply the distance-based methods and the Hessian method presented in Section 3, as well as the
evaluation of the profile likelihood function. In the first example, we illustrate a case where the GHmodel exhibits NR and
PNI of parameters due to the closeness of the baseline hazard to the Weibull family. In the second example, we present a
case without NR and where the fitted model can be easily distinguished from the Weibull family. The code and data for
these examples are available at https://github.com/FJRubio67/NRPNISurv

5.1 Case study I: Lung cancer data

We analyze survival data of patients with advanced lung cancer from the North Central Cancer Treatment Group. The
data set was obtained from the survival R package, and contains information about 𝑛 = 227 patients. For each patient,
the following variables were recorded: survival time in days (converted to years for our analysis), vital status, age in years
(standardized for our analysis), gender, and Eastern Cooperative Oncology Group (ECOG) performance score. The 25%,
50%, and 75% quantiles of the patients’ survival time were 0.456, 0.699, and 1.084 years. Among the patients, 63 had an
ECOG performance score of 0, 113 had an ECOG performance score of 1, 50 had an ECOG performance score of 2, and 1
had an ECOG performance score of 3. Female patients corresponded to 39% of the total sample.
To analyze this data set, we fit the GH model (2) with PGW baseline hazard (denoted as PGW-GH) with time-level

covariate age, and hazard-level covariates age, sex, and ph.ecog (ECOG performance score). The maximum likelihood
estimates of the parameters of thismodel are shown in Table 4. In this case, 𝛾 = 0.861, which indicates that the fittedmodel
is not a (theoretically) parameter-redundant model (i.e., 𝛾 ≠ 1) at this parameter value. The relative profile likelihoods of
the parameters are presented in Figure 1. In these plots, we can notice that the maximum likelihood estimates exist, in the
sense that an overall maximum of the likelihood function is attained. However, we can also notice a number of issues with
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TABLE 4 Lung cancer data. Maximum likelihood estimation summary.

Model
Parameter PGW-GH PGW-PH PGW-AFT EW-GH W-AFT
Scale 𝜎 1.194 1.310 0.803 1.162 0.984
Shape 𝜈 1.314 1.286 1.439 1.601 1.368
Shape 𝛾 0.861 0.769 1.210 0.783 –
age𝑡 𝛼̂1 −1.479 – – −0.797 –
age 𝛽1 0.681 0.093 0.070 0.439 0.068
sex 𝛽2 −0.553 −0.547 −0.415 −0.538 -0.401
ph.ecog 𝛽3 0.330 0.335 0.251 0.326 0.243
AIC 342.357 341.169 341.250 341.839 339.487

F IGURE 1 Lung cancer data. Profile likelihood plots for the parameters of the PGW-GH model.

the profile likelihoods. Regarding the estimation of the parameters of the baseline hazard, the profile likelihood of 𝜎 has a
secondmode at a value 𝜎 < 1, and an inflection point around 𝜎 ≈ 1. The profile likelihood of 𝜈 is unimodal, but it contains
a point at 𝜈 ≈ 1 where the derivative changes abruptly. From the profile likelihood of 𝛾, we notice the presence of local
maxima, together with an inflection point at 𝛾 = 1. We emphasize that these problems are not related to numerical issues
(Cole, 2019), but to changes in the direction of the profile likelihood at specific values of the parameters associatedwith the
nested nonidentifiablemodel (𝛾 = 1). For the parameters 𝛼1 and 𝛽1, the relative profile likelihood is flat in both directions,
indicating problems of PNI of these parameters. The parameters 𝛼1 and 𝛽1 are indeed associated with the same covariate
(age). Therefore, even though the maximum likelihood estimator of 𝛾 is not exactly one, flat and multimodal relative
profile likelihoods are obtained for the parameters associated with this covariate. In contrast, the profile likelihoods for
the parameters 𝛽2 and 𝛽3 are unimodal and concentrated around their maximum.
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14 of 18 RUBIO et al.

TABLE 5 Leukemia data. Maximum likelihood estimation summary.

Model
Parameter PGW-GH PGW-PH PGW-AFT EW-GH W-AFT
Scale 𝜎 0.095 0.139 0.093 0.006 1.152
Shape 𝜈 1.006 0.815 1.014 0.219 0.575
Shape 𝛾 3.474 2.570 3.504 8.957 –
age𝑡 𝛼̂1 0.911 – – 0.886 –
wbc𝑡 𝛼̂2 0.898 – – 0.847 –
tpi𝑡 𝛼̂3 0.413 – – 0.407 –
age 𝛽1 0.979 0.536 1.028 0.969 0.957
sex 𝛽2 0.077 0.064 0.081 0.071 0.117
wbc 𝛽3 0.681 0.217 0.484 0.656 0.371
tpi 𝛽4 0.303 0.097 0.215 0.302 0.159
AIC 1537.239 1586.483 1539.478 1533.727 1632.280

We now look at the proposed distance-based criteria. The minimum KL divergence between the fitted PGW baseline
hazard and the Weibull family is equal to 0.00036, whereas the upper bound, with 𝑀 = 0.05, in criterion (6) is 0.033,
and the effective sample size is 195.5. Thus, the KL divergence criterion (6) suggests NR of parameters of the PGW-GH
model. Also, the minimum Hellinger distance between the fitted PGW baseline hazard and the Weibull family is equal
to 0.0096. Thus, the Hellinger distance criterion (8), with 𝜅 = 0.05, also indicates NR of the parameters of the PGW-GH
model. To incorporate the uncertainty in the estimation of the parameters into the distance based criteria (6) and (8),
we apply these criteria to 𝐵 = 1000 bootstrap samples of the MLEs (i.e., obtained via resampling with replacement). We
estimate the probability of these criteria by taking the proportion of times the inequalities (6) and (8) hold. We found that
the KL divergence criterion (6) indicates NR with probability 0.997, whereas the Hellinger criterion (8) indicates NR with
probability 0.92. Thus, there is a high probability that (6) and (8) hold, suggesting the presence of NR of parameters. On
the other hand, the smallest standardized eigenvalue of the Hessian matrix of the log-likelihood function is 6.5 × 10−5.
Consequently, theHessianmethod (with 0.001 threshold) indicatesNRof parameters of thismodel and data. The bootstrap
probability of the Hessian method with 0.001 threshold is 1, providing further evidence of NR.
To complete our analysis, we consider alternative models: the GHmodel (2) with EW baseline hazard (denoted as EW-

GH), which represents a competitor of the PGW-GH model in terms of hazard structure and flexibility, a PH model with
PGWbaseline hazard (PGW-PH), an AFTmodel with PGWbaseline hazard (PGW-AFT), and an AFTmodel withWeibull
baseline hazard (W-AFT). The EW distribution, like the PGW, is equal to a Weibull distribution if the shape parameter 𝛾
is equal to 1 (see Supporting Information). The maximum likelihood estimates of the parameters of these models are also
shown in Table 4. We notice that the MLE of 𝛾 in the EW model and the PGW model are all different from one. From
Table 4, theW-AFTmodel is favored by the Akaike information criterion (AIC), followed by the PGW-PHmodel, showing
that indeed, simpler models are favored by the data. Although AIC is not a method to detect NR, we can see that model
selection techniques can also be useful to identify simpler models without these inferential problems.

5.2 Case study II: Leukemia data

We now analyze the LeukSurv data set from the spaBayesSurv R package. This data set contains information about
𝑛 = 1043 patients with acute myeloid leukemia. For each case, the following variables were recorded: survival time in
days (converted to years for our analysis), vital status, age in years (standardized for our analysis), gender, white blood cell
count (standardized) at diagnosis, and Townsend score (standardized). The 25%, 50%, and 75% quantiles of the patients’
survival time were 0.112, 0.507, and 1.468 years. Female patients corresponded to 48% of the sample.
We fit theGHmodel (2) with PGWbaseline hazard (denoted as PGW-GH)with the time-level covariates age, wbc (white

blood cell count at diagnosis), and tpi (Townsend score, which is a measure of deprivation), and hazard level covariates
age, sex, wbc, and tpi. Table 5 shows the values of themaximum likelihood estimates of the parameters of this model. We
first notice that the estimate of the parameter 𝛾 is far from one but, in order to discard inferential issues, we need to inspect
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F IGURE 2 Leukemia cancer data. Profile likelihood plots for the parameters of the PGW-GH model.

the different criteria. In this line, Figure 2 shows the relative profile likelihood functions of the parameters of the PGW-
GHmodel. Indeed, in all cases, we notice that the profile likelihood functions are unimodal and seem to quickly decrease
to zero. Thus, in this example, we do not observe problems with multimodality or flat ridges of the profile likelihoods.
Consequently, there is no evidence of PNI for this model and this data set. Now, the minimumKL divergence between the
fitted PGWbaseline hazard and theWeibull family is equal to 0.056, whereas the upper bound in criterion (6) is 0.0178, and
the effective sample size is 961. Thus, the KL divergence criterion (6), with𝑀 = 0.05, does not indicate NR of parameters
of the PGW-GH model. Also, the minimum Hellinger distance between the fitted PGW baseline hazard and the Weibull
family is equal to 0.101. Thus, the Hellinger distance criterion (8) with 𝜅 = 0.05 does not indicate NR of the parameters of
the PGW-GHmodel. The estimated probability (based on𝐵 = 1000 bootstrap samples) that criteria (6) and (8) hold is zero.
On the other hand, the smallest standardized eigenvalue of the Hessian matrix of the log-likelihood function is 0.0035.
Consequently, the Hessian method (with threshold 0.001) does not indicate NR of parameters of this model and data. The
bootstrap probability of the Hessian method with 0.001 threshold is 0. Thus, the Hessian method does not indicate NR of
parameters of this model and data, even after accounting for uncertainty.
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For comparison, we now fit the GH model (2) with EW baseline hazard (EW-GH), as an alternative flexible model as
well as simpler identifiable models such as the AFT model with PGW baseline hazard (PGW-AFT), PH model with PGW
baseline hazard (PGW-PH), and the AFTmodel withWeibull baseline hazard (W-AFT). Table 5 shows theMLEs and AIC
for the different models. The AIC favors the EW-GHmodel overall, followed by the PGW-GH, respectively. This indicates
that although the different distributions can capture similar shapes, they are theoretically different and one of them may
offer a better fit for a specific data set.

6 DISCUSSION

Parametric models have regained popularity in survival analysis thanks to the availability of richer formulations of sur-
vival regression models that allow for capturing complex effects, such as time-level, hazard-level, and nonlinear effects
of the covariates (see Eletti et al., 2022 for a general overview). However, an increase in model complexity also carries an
inferential cost, which may be reflected, in mild scenarios, as wider confidence intervals or, in more extreme scenarios, in
flat or multimodal likelihood functions. These types of inferential problems have been reported for the GHmodel (2), and
we have shown that such problems can be classified through the concepts of NR of parameters and PNI. More specifically,
we have shown that NR and PNI problems appear in the GH model when the baseline hazard of the fitted model is close
to the Weibull family.
We have introduced a method for detecting NR in GH regression models based on the distance of the fitted model to a

nested nonidentifiable model. In addition, we have explored the use of the Hessianmethod to detect NR, whereas PNI has
been studied using of the profile likelihood function. We have also introduced the use of bootstrapmethods to incorporate
the uncertainty on the parameter estimation into the methods for detecting NR. In practice, detecting NR and PNI is
useful to understand the limitations in fitting a more complex model. For instance, the use of asymptotic results (such
as standard errors and normal confidence intervals) may not be valid or may produce inaccurate results in the presence
of these problems. Moreover, the presence of these inferential problems may put into question the use of such complex
models for important tasks such as prediction, policy, or decision making.
The simulation study shows that the distance-based methods and the Hessian method have comparable performance

in detecting NR. Moreover, comparing the cases classified as near-redundant with those cases classified as practically
nonidentifiable reveals a strong connection between the presence of these two inferential problems in the GHmodel. The
simulation results also show that the interplay of model complexity, sample size, and censoring rate plays an important
role in the appearance of NR and PNI in the GH model. In problematic samples in our simulation study and case studies
(i.e., leading to NR and/or PNI), we noticed that the profile likelihood may not only contain flat ridges, but also local
maxima and abrupt changes in the derivative of the profile likelihood.
Whenever a case with NR or PNI is obtained, a possible alternative is to use a simpler identifiable model that can be

written in terms of a smaller set of parameters (i.e., not containing a parameter-redundant model). These simpler models
include the PH andAFTmodels. Indeed, recent references (Simpson et al., 2022) have suggested the use ofmodel selection
aided by information about PNI of the models under comparison, and that more complex models should be used when
there is enough data to estimate the model parameters. However, there are other possible solutions, such as increasing
the effective sample size (either by adding new samples or increasing the follow-up time). In summary, the three possible
solutions are: reducing censoring, increasing the sample size, or using a simpler identifiable model. We also recommend
looking for other problems in the likelihood function, beyond flat ridges. Indeed, the presence of flat ridges also depends
on the parameterization, as one parameterization may lead to flat ridges while another parameterization of the same
model may lead to a different behavior.
Although we have focused on the study of right-censoring (the most common type of censoring), our conclusions are

likely to apply to samples with left-censoring, interval-censoring, and truncation. Other potential extensions of our work
consist of analyzing NR and PNI in other types of flexible parametric survival models, including generalized additive
models (Eletti et al., 2022), other general classes of survival models (Muse et al., 2022), cure models (Hanin & Huang,
2014), or distributional-regression models (Burke et al., 2020; Rigby & Stasinopoulos, 2005). The fact that simpler models
represent an alternative to avoid problematic inferential cases points to the need for developing formal model selection
tools in the context of the GH model (see Rossell & Rubio, 2023 for a general overview on model and variable selection
in survival models). Finally, other areas in statistics where flat likelihoods appear, such as inference in circular models
(Johnson, 2022; Miyata et al., 2022), may also benefit from linking inferential problems in those models with the concepts
of NR and PNI.
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