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Abstract We apply a single deep reinforcement learning agent for dynamic virtual network provisioning.
Benchmarked against state of the art heuristics, our approach achieves an order of magnitude lower
blocking probability. Interpretability analysis provides insight to the agent’s use of spectrum resources.
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Introduction
Infrastructure as a Service (IaaS) is a cloud com-
puting paradigm where storage, computing and
networking resources are leased to customers by
means of virtualisation. In its most complex form,
customers can request an entire network. In that
case, its topology and node/link capacities must
be specified. Such a specification is known as a
virtual network request, as shown in Fig. 1.

Given the ever-increasing Internet traffic,
flexible-grid elastic optical networks (EON)[1] are
a promising approach to increase spectrum us-
age efficiency. In EONs, spectrum is divided into
fine-grained frequency slot units (FSU). This al-
lows greater flexibility and spectral efficiency but
judicious selection of FSUs is required to avoid
fragmenting the spectrum into unusable blocks.

For IaaS provision over EON, resources (e.g.
compute, storage) must be allocated at nodes
and spectrum on connecting links, subject to the
constraints of continuous and contiguous FSU
blocks. This is known as the virtual optical net-
work embedding (VONE) problem. For efficient
resource usage and revenue generation, low-
blocking VONE strategies must be in place.

Previous Work
Heuristic algorithms[2][3][4][5][6] and a distributed
protocol[7] have been proposed to solve the VONE
problem and constitute the state of the art.

However, hand-crafted heuristics do not guar-
antee optimal resource allocation. Optimal solu-
tions can be found using exact solution methods
(e.g. integer linear programming), but they are not
feasible for dynamic environments or large net-
works. Consequently, the application of deep re-
inforcement learning (DRL) to the VONE problem
has been studied recently[8].

DRL presents an opportunity to effectively

Fig. 1: The embedding of a virtual network to an elastic
optical network, with spectrum divided into frequency slot

units (FSU)

search the solution space and learn a superior al-
location policy. In the literature, multi-agent DRL
approaches have been applied to VONE because
the large combinatorial space of node- and path-
selections has been considered too large for a
single agent[9]. However, multi-agent DRL is more
complex and may lead to less-optimised solu-
tions due to the difficulty of agent cooperation.
Separate agents to allocate nodes and links[8] or
nodes, links and backup resources[9] have been
proposed and an arbitrary selection of heuristics
used for performance comparison. The latter is
a result of a lack of heuristic benchmarks in this
area.

Contribution
In this paper, a continuation of our work in[10], we
present the first benchmarking of VONE heuris-
tics and compare the performance of a single
DRL agent against the best-performing heuristic.
By using a single agent (as opposed to separate
agents solving sub-problems sequentially as in[8])
for the VONE problem, a better quality solution
can be obtained. The DRL agent reported here
extends the best-performing agent in[10] by en-



abling it to work with an increased action space,
a key aspect for realistic application. We also
present preliminary results interpreting the ac-
tions selected by the agent and comparing with
the heuristic decisions. We expect these results
to help develop more efficient strategies for IaaS
provision.

Network and Traffic Model
The substrate physical network is an EON mod-
eled as an undirected graph with Ns nodes and Ls

bidirectional links, each with capacity and FSUs.
Virtual networks are undirected graphs consisting
of Nv nodes and Lv links, each with specific ca-
pacity and bandwidth (FSUs) requirements.

Traffic is dynamic, with virtual network requests
arriving and departing stochastically. Requests
arrive following a Poisson process and depart ac-
cording to an exponential distribution with the in-
verse of the holding time.

Deep Reinforcement Learning Algorithm
The deep reinforcement learning paradigm sepa-
rates the learning process into the environment
and the agent components. The environment
models the substrate EON and handles the gen-
eration and allocation of virtual network requests,
interpretation of the agent’s actions, and the re-
ward function. The agent’s interaction with the en-
vironment involves the network state observation,
the agent’s action, and the resulting reward.

The observation space includes the current vir-
tual network request, the state of FSUs on each
link, and the remaining node resource capacities.

The action space is divided into node and path
sections. The node action space dimensionality
depends on the number of virtual and substrate
nodes, given by (1 × NNv

s ). For a request com-
prising Lv virtual links, the path action space di-
mensionsionality becomes (Lv × k ∗ Nf ), where
Nf is the number of FSUs per link. The reward
function is kept simple, providing a signal to op-
timize the agent’s policy without guiding its be-
havior. The environment determines success or
failure based on the availability of node resources
and bandwidth. Success is rewarded with a value
of 0, while failure yields a value of -10.

The DRL algorithm is an implementation of
Proximal Policy Optimisation[11], modified to allow
multi-step invalid action masking.

Multi-step Invalid Action Masking. The tech-
nique of invalid action masking limits the available
choice of actions by the agent based on knowl-
edge of the environment e.g. available resources,

and has been successfully applied to optimisa-
tion problems in optical networks[12][13][14]. The
technique was extended in previous work to al-
low context-dependent multi-dimensional actions,
e.g. node action followed by path action, to be
masked[10], and is referred to as multi-step invalid
action masking. This technique is further devel-
oped in this work to recursively mask actions that
correspond to already-allocated virtual links in the
same virtual network.

Training. Each training episode starts with an
unoccupied substrate network. A training episode
comprises 104 timesteps, with one request per
timestep, during which experiences are collected
in a rollout buffer size nsteps. The policy optimi-
sation step occurs when the rollout buffer is full.
The agent was trained for 100 episodes. The traf-
fic load for training was set to 60 Erlangs. Em-
pirically, 60 Erlangs training load with nsteps =50,
discount factor γ = 0.8 and generalized advan-
tage estimation λ-factor=0.9 was found to result
in efficient training for this network topology and
traffic distribution.

Training was performed on the NSFNET topol-
ogy (14 nodes, 21 bidirectional links) as the sub-
strate network, equipped with 100 FSUs per link
and 30 compute units per node. The virtual
link requests were randomly selected from{2,3,4}
FSUs. The virtual node requests were randomly
selected from {1,2} compute units. These capac-
ity assumptions meant that link capacity was the
limiting factor of the number of virtual requests
that could be accepted.

The virtual network topology was restricted to
a 3-node ring topology to facilitate comparisons
between heuristic and agent performance. The
mean service holding time is set to 10 time units,
with the traffic model as described in the previ-
ous section. Random number generation for the
traffic model was seeded to ensure diverse pat-
terns across training episodes and reproducible
patterns during evaluation.

Results
The evaluation was performed on the same en-
vironment model as used in training. In order
to benchmark the agent performance, 3 state of
the art heuristics were evaluated across traffic
loads. Each heuristic comprises a different node-
mapping and path-mapping component. Each
combination of these components was evaluated,
resulting in 9 distinct heuristics. The heuristics
are Consecutiveness-Aware Local Resource Ca-



Fig. 2: The mean and standard deviation of blocking
probability for the heuristics and DRL agent, across traffic

loads.

pacity k-Shortest Path First Fit (CaLRC+kSP-FF),
Node Switching Capacity kSP Fragmentation De-
gree Loss (NSC+kSP-FDL), and Topology and
Multi Resources Modified Shortest Path Exact
Fit (TMR+MSP-EF). The ”+” denotes the sepa-
ration between the node-mapping and the path-
mapping components. The reader is directed
to[2][4][6] for details of these algorithms. Some
heuristics were omitted because they have al-
ready been shown to be inferior (as the ”LPM”
heuristic[3] is shown in[8]) or are designed for a
different variant of the problem[5].

Random selection of actions from amongst the
available masked choices was also evaluated
(”Random Masked” in figure 2). Figure 2 shows
the blocking probability of each heuristic, evalu-
ated for 5 episodes of 104 timesteps from 40 to
100 Erlangs. The traffic range is selected for the
values at which blocking is first observed for the
agent and before blocking exceeds 15%.

Notably, the kSP-FF path mapping heuristic
results in the best performance for all node
heuristics, followed by kSP-FDL then MSP-EF.
The heuristic with the lowest blocking probability
across the traffic range is CaLRC+kSP-FF.

CaLRC+kSP-FF is compared with the agent
performance, evaluated across the same traffic
distributions, in Figure 2. The agent achieves an
order of magnitude lower mean blocking probabil-
ity at 40 Erlangs and 15% lower at 100 Erlangs.
This significant improvement enables network op-
erators to provide an acceptable level of service at
higher traffic loads than heuristics are capable of.

To understand how the agent achieves this
superior performance, the utilisation of FSUs
across the network was recorded for 1 evaluation
episode at 100 Erlang traffic, for both the agent

(a) DRL Agent

(b) CaLRC+kSP-FF heuristic

Fig. 3: Normalised heatmaps of link and FSU utilisation

and CaLRC+kSP-FF heuristic. Figure 3 shows
the resulting heatmaps, normalised in each case
by the peak number of requests in which a link-
FSU was utilised. Comparison of Figures 3(a)
and (b) show the more complex distribution of
utilised resources for the agent compared to the
heuristic, which utilises the first available FSU.
The darker horizontal bands of Figure 3(b) show
the heuristic strongly favours certain links, e.g. 8,
19, compared to the more balanced distribution of
the agent.

Conclusions
We have identified CaLRC+KSP-FF as the best-
performing heuristic for the VONE problem. Our
single DRL agent exhibits blocking one order of
magnitude lower than this heuristic. Analysis of
the agent’s use of spectrum resources suggests
that a more balanced link and FSU utilisation
leads to this significantly better performance.
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