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Abstract
Patterning of vegetation in drylands is a consequence of localized feedback mecha-
nisms. Such feedbacks also determine ecosystem resilience—i.e. the ability to recover 
from perturbation. Hence, the patterning of vegetation has been hypothesized to 
be an indicator of resilience, that is, spots are less resilient than labyrinths. Previous 
studies have made this qualitative link and used models to quantitatively explore it, 
but few have quantitatively analysed available data to test the hypothesis. Here we 
provide methods for quantitatively monitoring the resilience of patterned vegetation, 
applied to 40  sites in the Sahel (a mix of previously identified and new ones). We 
show that an existing quantification of vegetation patterns in terms of a feature vec-
tor metric can effectively distinguish gaps, labyrinths, spots, and a novel category of 
spot–labyrinths at their maximum extent, whereas NDVI does not. The feature vector 
pattern metric correlates with mean precipitation. We then explored two approaches 
to measuring resilience. First we treated the rainy season as a perturbation and ex-
amined the subsequent rate of decay of patterns and NDVI as possible measures 
of resilience. This showed faster decay rates—conventionally interpreted as greater 
resilience—associated with wetter, more vegetated sites. Second we detrended the 
seasonal cycle and examined temporal autocorrelation and variance of the residuals 
as possible measures of resilience. Autocorrelation and variance of our pattern metric 
increase with declining mean precipitation, consistent with loss of resilience. Thus, 
drier sites appear less resilient, but we find no significant correlation between the 
mean or maximum value of the pattern metric (and associated morphological pattern 
types) and either of our measures of resilience.
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1  |  INTRODUC TION

Ecosystems with strong internal feedback mechanisms can exhibit 
multiple stable states. Abrupt changes, known as regime shifts, can 
occur when such systems pass a tipping point and transition from 
one stable state to another (Scheffer et al., 2001). Once a system has 
transitioned to a new stable state, it is usually difficult to reverse this 
transition, due to hysteresis. Hence, regime shifts can have severe 
consequences for those who depend upon an ecosystem. Predicting 
tipping points in complex systems is difficult because of their inher-
ent nonlinearity. However, a growing body of work has shown that 
the phenomenon of ‘critical slowing down’ prior to a tipping point 
can give generic early warning signals (Dakos et al., 2008; Lenton, 
2011; Scheffer et al., 2009). In essence, a system becomes slower 
at recovering from short-term fluctuations before it undergoes an 
abrupt shift. This is because under steady forcing, the restoring neg-
ative feedbacks that maintain the original state get weaker before 
strong positive feedbacks take over at the tipping point. This precur-
sor signal is often referred to in ecology as ‘loss of resilience’—where 
resilience is defined as the rate at which a system recovers to its 
initial state after perturbation (Pimm, 1984).

Multiple metrics have been employed to measure changes in 
resilience. Where individual perturbations can be clearly identified, 
the response time of a system to return back to its initial state can be 
directly measured (Lees et al., 2020; Pimm, 1984). Where a system 
is subject to continual stochastic perturbations (‘noise’), increasing 
temporal autocorrelation (e.g. lag-1 autocorrelation; AR(1)) (Dakos 
et al., 2008) and increasing variance (Scheffer et al., 2009) signal 
loss of resilience. Spatial equivalents of these temporal signals can 
also be used (Kéfi et al., 2014). Due to the difficulty in obtaining fre-
quent, high-quality spatial data and the high levels of computational 
power required to analyse it, most studies focus solely upon spa-
tially aggregated data for time-series analysis of systems to analyse 
their resilience. This difficulty can be mitigated using space-for-time 
substitutions (Kéfi et al., 2014; Verbesselt et al., 2016). Other spa-
tial resilience studies are often conducted with modelled data (Chen 
et al., 2015; Siero et al., 2019) or in laboratory conditions (Dai et al., 
2013). Kéfi et al. (2014) suggest that a combination of spatial pattern 
analysis with temporal analysis can improve our understanding of 
system resilience.

Dryland patterned vegetation belongs to a special class of 
reaction–diffusion systems, first recognized by Alan Turing (1952), 
where feedback gives rise to regular spatial patterns. The patterns 
result from an interplay of a local facilitation mechanism; here plants 
retain water, and a more distant competition mechanism; this denies 
other plants water (Barbier et al., 2006; HilleRisLambers et al., 2001). 
Typically patterns transition from ‘gaps’ to ‘labyrinths’ to ‘spots’ as 
rainfall declines—then vegetation reaches a tipping point—abruptly 
disappearing below a critical rainfall level (Meron et al., 2004). 
Furthermore, different pattern morphologies affect the ability of the 
system to conserve resources (Mayor et al., 2013). Consequently, in 
patterned systems, the pattern itself may act as a visual indicator of 
the changing balance of feedbacks—leading to the hypothesis that 

the pattern could act as a resilience indicator of proximity to a tip-
ping point (Kéfi et al., 2014; Rietkerk et al., 2004). However, Dakos 
et al. (2011) find that different models of vegetation patterning give 
qualitatively different results for how resilience varies approaching 
a tipping point. In particular, a ‘scale-dependent feedback’ pattern 
vegetation model displays slowing down prior to a tipping point, 
but AR(1) does not increase as the pattern morphology transitions. 
Hence, we set out to test the hypothesis of a link between vegeta-
tion pattern and resilience with remotely sensed data.

Here, we focus on patterned vegetation in the Sahel, this re-
gion extends across Northern Africa from Mauritania in the west 
through to Chad and central Sudan in the east. The region is char-
acterized by low levels of rainfall (Le Houérou, 1989), depleted soils 
(Sanchez, 2002), increasing use of marginal lands (Doso, 2014), weak 
states and institutions (Raleigh, 2010), extreme poverty (Beegle & 
Christiaensen, 2019), a growing population (May et al., 2017) and 
degradation of land and resources during times of drought (IPBES, 
2018). The Sahel became a region of international concern follow-
ing the severe droughts and famines of the late 1960s and 1970s. It 
was thought that this would lead to the southwards expansion of the 
Sahara desert and provoked a broader discussion about desertifica-
tion (Helldén, 1991; Nicholson et al., 1998). The changes affecting 
the precipitation regime and the vegetation across the Sahel were 
seen, by some, as irreversible (Charney, 1975) and led to the develop-
ment of the United Nations Convention to Combat Desertification 
(Hermann & Hutchinson, 2005). Subsequent changes in precipita-
tion and the apparent recovery of vegetation in parts of the Sahel 
have caused much debate about the wider resilience of Sahelian 
vegetation to precipitation changes (Hermann & Hutchinson, 2005; 
Kusserow, 2017).

The pronounced North–South precipitation gradient of the 
Sahel (Le Houérou, 1989) enables the formation of vegetation pat-
terns of diverse morphologies, including gaps, labyrinths and spots 
(Deblauwe et al., 2008; Mander et al., 2017; Trichon et al., 2018), 
as seen in Figure 1. Some of these patterns have previously been 
studied within the context of wider Sahelian precipitation trends and 
human influence (Barbier et al., 2006; Leblanc et al., 2008). Trichon 
et al. (2018) present evidence of vegetation patterns undergoing 
degradation and decline during Sahelian drought periods, with some 
recovery observed following the increase in rainfall. This recovery is 
limited to areas of higher precipitation, with northern sites undergo-
ing less recovery. It is suggested that this is due to lower precipita-
tion sites displaying lower resilience and therefore having proceeded 
past a tipping point during the drought (Trichon et al., 2018). Model 
studies have shown that in addition to changes in rainfall, overgraz-
ing can decrease the resilience of patterned vegetation and induce 
tipping points at rainfall levels that would otherwise be stable (Siero 
et al., 2019).

Few quantitative measures of pattern vegetation are available; 
these include Fourier analysis (Couteron, 2002; Penny et al., 2013), 
Shannon entropy (Konings et al., 2011) and morphometric analysis 
(Mander et al., 2017). Due to the necessity of having high-resolution 
data to perform these analyses, few studies have quantified changes 
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    |  573BUXTON et al.

in patterned vegetation. Existing studies rely on infrequent historical 
aerial data (Trichon et al., 2018) or consider the changes in vegeta-
tion at certain time points relating to human intervention, such as 
road construction (Gowda et al., 2018) or firewood collection and 
land-use change (Leblanc et al., 2008). We build upon the method 
presented in Mander et al. (2017) and offer a novel way of contin-
ued monitoring of patterned vegetation sites and their response to 
precipitation. Satellite imagery from Sentinel-2 has the potential to 
provide high-resolution data over large areas of land at a frequent 
time step, thereby enabling the changes in pattern vegetation to be 
analysed across regions.

Here we examine the utility of morphological analysis to distin-
guish between patterned vegetation classes and the relationship 
between these patterns and precipitation. We apply our vegetation 
pattern metric to understand the resilience of patterned vegetation 
and which factors, such as morphology and rainfall level, affect this 
resilience. We measure resilience as decay rate following a pertur-
bation, and in terms of AR(1) and variance. We also investigate the 

spatial distribution of pattern trends across the Sahel in the context 
of the North–South rainfall gradient and changes in the East–West 
precipitation regime (Nicholson et al., 2018).

2  |  METHODS

In this study, we utilize a remotely sensed resilience monitoring 
Python toolkit for patterned vegetation, with an initial focus on dry-
lands, called pyveg (Barlow et al., 2020). This draws on a number of 
existing tools and insights. It requires (1) a source of remotely sensed 
data of patterned vegetation, derived from the Sentinel-2 satellite 
accessed through Google Earth Engine (GEE); (2) a method of turn-
ing the qualitative observation of pattern into a quantitative metric 
called Offset50, based upon feature vector analysis used in Mander 
et al. (2017); and (3) additional data on the potential environmental 
determinants of resilience, using precipitation data from the ERA5 
dataset.

F I G U R E  1  Examples of the four classes of pattern vegetation site analysed in this study. (a) Gaps, ID: 02, 10-2016. (b) Labyrinths, ID: 
01, 10-2016. (c) Spots, ID: 00, 10-2016. (d) Spot/Labyrinths, ID: 28, 09-2017. All images are of the (cloud free) peak cover of the vegetation 
within a seasonal cycle [Colour figure can be viewed at wileyonlinelibrary.com]
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574  |    BUXTON et al.

2.1  |  Sites of patterned vegetation

We reviewed existing literature for sites across the Sahel that were 
characterized by patterned vegetation. We considered a wider 
range of locations, of an initial 56 sites (8.5 km × 8.5 km in size) and 
filtered the sites selected for analysis down to 40  sites, as shown 
in Table 1, based on several criteria. Some initial sites in northern 
Africa had two rainy seasons per year and were therefore not true 
Sahelian sites, other historical sites that were reported in the litera-
ture were removed as they had suffered such significant degradation 
that the vegetation morphology was unclear or occupied very small 
areas, such as a tiger bush and dotted vegetation site in Burkina Faso 
(Leprun, 1999). Other sites were removed due to unclear vegetation 
patterning or incorrect labelling (see Table S1 for full list) or due to 
outliers linked to too small vegetation to be recorded (Figure S4). 
Of the sites considered as part of this analysis, 13 are in Mali, 2 in 
Mauritania, 5 in Niger, 1 in Nigeria, 4 in Senegal and 15 in Sudan 
(Figure 2 and Table 1). The chosen sites represent a mix of differ-
ent types of patterned vegetation with 7 sites demonstrating gaps, 
12 demonstrating labyrinths and 11 demonstrating spots (examples 
of these are given in Figure 1). In addition to these recognized veg-
etation patterns, we include sites which we call ‘spot–labyrinths’, 
these patterns seem to be highly dependent on precipitation and 
have more dramatic annual changes than spots or labyrinths. The 
form that these patterns take post-precipitation is determined by 
the landscape, with the precipitation that collects in small channels 
and gullies enabling the spread of this vegetation (an example of the 
topography of this region is provided in Figure S3). In the dry season, 
the ‘spot–labyrinth’ patterns often appear to be isolated, highly de-
graded spots. However, following the rainy season, the vegetation 
will spread across the landscape and form ‘labyrinth-esque’ patterns. 
There are 10 of these ‘spot–labyrinth’ sites. They are included due to 
their resemblance to other vegetation patterns and rapid changes 
across their annual cycles. The pattern morphology of sites was clas-
sified by inspection by considering the images of the sites across 
the whole time series, with particular focus given to the fullest ex-
tent of vegetation following a rainy season. This was done by two 
researchers initially, before consensus was gained from the rest of 
the authors.

2.2  |  Satellite data and preliminary data processing

The data used in this analysis were taken from the Sentinel-2 satel-
lite, which captures remotely sensed data with a resolution of 10m 
with its multispectral imager (MSI) (Drusch et al., 2012). This reso-
lution provides enough clarity to visualize vegetation patterning. 
For the purpose of this study, Sentinel-2 data from January 2016 to 
December 2019 were extracted from Google Earth Engine (GEE), a 
data repository and cloud computing service (Gorelick et al., 2017). 
Large-scale data analysis was undertaken using the Microsoft Azure 
Cloud computing service.

Our data processing workflow is as follows and is outlined in 
Figure 3. We start preliminary data processing by creating monthly 
median composites of the multi-band Sentinel-2 data. This is done 
to remove extreme pixel values caused by clouds, air pollution and 
sun angle. From these monthly multi-band images, two sets of im-
ages are constructed; Red-Green-Blue (RGB) images and Normalized 
Difference Vegetation Index (NDVI) images. NDVI is a measure of 
plant health and is connected to the level of chlorophyll in plant 
leaves (Rouse et al., 1974), it is calculated from multispectral images 
using the near-infrared (NIR) band and the red band (RED), and is 
defined as:

These NDVI images are rescaled from the original −1 to 1 in order 
to fit a 0–255 greyscale. Prior to the morphological analysis of veg-
etation patterns, several image enhancement steps occur for the 
greyscale NDVI images. Image contrast is increased through histo-
gram equalization, these images then undergo adaptive thresholding 
to classify vegetation pixels as black and background pixels as white. 
This adaptive thresholding step calculates the mean brightness of a 
51 × 51 pixel block around each pixel, and offsets this value by 5 to 
create the soil-vegetation threshold. Median filtering is also applied 
to reduce noise within the image. Once processed, these images 
are then divided into a 17  ×  17  grid of 50  ×  50 pixel sub-images, 
these sub-images contain the same number of pixels as those used 
in Mander et al. (2017).

Sub-image patterned vegetation is quantified using the network 
centrality calculation first described in Mander et al. (2017). A graph 
with vertices corresponding to each pixel is formed for each binary 
sub-image. If a vegetation pixel falls within a 3 × 3 neighbourhood 
of another, then an edge connects the corresponding two vertices. 
These graph vertices are then ranked using subgraph centrality (SC) 
(Estrada and Rodríguez-Velázquez, 2005). For some vertex v, with a 
non-negative integer l, where ul is the number of closed walks with 
length l which begin at v, the centrality of the vertex v is given by:

This can be calculated using eigenvalues and eigenvectors of the 
graph's adjacency matrix. These vertices are then collected into a 
sequence of expanding subregions based upon their subgraph cen-
trality rank. In total, 20 of these subgraphs are formed, beginning 
with the top 5% vertices, with the groups then expanded by each 
5% increment. A graph, designated G, to describe each subregion is 
composed of each connected component. We define the Euler char-
acteristic of a subregion as:

(1)NDVI =

(

NIR − RED

NIR + RED

)

(2)SC(v) =

∞
∑

l=1

ul(v)

l !

(3)χ(G) = V − E
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    |  575BUXTON et al.

TA B L E  1  Table of patterned vegetation sites included in this study

ID Country Latitude Longitude Type Source

0 Sudan 11.58 27.94 Spots Mander et al. (2017)

1 Sudan 11.12 28.37 Labyrinths Mander et al. (2017)

2 Sudan 10.96 28.2 Gaps Mander et al. (2017)

3 Niger 13.12 2.59 Labyrinths Valentin and d’Herbès (1999)

4 Niger 13.17 1.58 Labyrinths Valentin and d’Herbès (1999)

5 Senegal 15.2 −15.2 Labyrinths Deblauwe et al. (2008)

6 Senegal 15.09 −15.04 Labyrinths Deblauwe et al. (2008)

7 Senegal 15.8 −14.36 Gaps De Wispelaere (1980)

8 Senegal 15.11 −14.53 Gaps De Wispelaere (1980)

16 Mali 15.03 −0.87 Spot–labyrinths Leprun (1999)

18 Mali 15.34 −1.15 Spot–labyrinths Leprun (1999)

20 Mali 14.85 −1.43 Spot–labyrinths Leprun (1999)

21 Mali 14.97 −1.12 Spot–labyrinths Leprun (1999)

23 Mali 15.02 −1.35 Spot–labyrinths Deblauwe et al. (2008) (by 
inspection)

25 Mali 16.19 −1.83 Spot–labyrinths Deblauwe et al. (2008) (by 
inspection)

26 Mali 16.17 −2.03 Spot–labyrinths Deblauwe et al. (2008) (by 
inspection)

27 Mali 16.48 −1.87 Spot–labyrinths Deblauwe et al. (2008) (by 
inspection)

28 Mali 15.95 −1.52 Spot–labyrinths Deblauwe et al. (2008) (by 
inspection)

29 Mali 15.86 −2.05 Spot–labyrinths Deblauwe et al. (2008) (by 
inspection)

30 Mali 14.8 −3.38 Labyrinths Leprun (1999)

31 Mali 14.94 −3.56 Labyrinths Leprun (1999)

48 Mali 15.48 −5.83 Labyrinths Audry and Rossetti (1962)

49 Mauritania 15.57 −5.92 Labyrinths Audry and Rossetti (1962)

50 Mauritania 15.58 −13 Gaps De Wispelaere (1980)

51 Nigeria 12.58 3.75 Labyrinths Barbier et al. (2006)

52 Niger 12.7 2.63 Labyrinths Barbier et al. (2006)

53 Niger 12.54 2.26 Gaps Barbier et al. (2006)

54 Niger 13.12 2.17 Labyrinths Barbier et al. (2006)

55 Sudan 11.07 27.93 Gaps Mander et al. (2017)

56 Sudan 11.28 27.96 Gaps Mander et al. (2017)

57 Sudan 11.27 27.55 Spots Mander et al. (2017)

58 Sudan 11.47 27.97 Spots Mander et al. (2017)

59 Sudan 11.51 27.87 Spots Mander et al. (2017)

60 Sudan 11.22 27.73 Spots Mander et al. (2017)

61 Sudan 11.62 27.86 Spots Mander et al. (2017)

62 Sudan 11.32 27.88 Spots Mander et al. (2017)

63 Sudan 11.37 27.68 Spots Mander et al. (2017)

64 Sudan 11.6 27.73 Spots Mander et al. (2017)

65 Sudan 11.46 27.68 Spots Mander et al. (2017)

66 Sudan 11.71 27.91 Spots Mander et al. (2017)
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576  |    BUXTON et al.

where V is the number of vertices of the graph G, and E is the number 
of edges. This Euler characteristic is plotted for each subregion of an 
image to create a 20-dimensional feature vector which describes the 
morphology of a pattern vegetation image.

To generate a single value corresponding to a pattern's morphol-
ogy, we subtract the feature vector value at the 50% point from the 
100% point of the feature vector. This was chosen as this part of the 
vector is often more linear than the slope at the start of the vector, 
and allows us to convert from a vector to a scalar value. We call this 
value the ‘Offset50’. Each sub-image has an Offset50 value, these 
are then averaged to form one Offset50 value per image. This pro-
cess is then repeated across the full extent of the available satellite 
data to create an Offset50 time series.

Steps are taken at several stages of this process to ensure 
high-quality data and to mitigate the effects of cloud cover on 
Offset50  values. The formation of monthly median images re-
moves some influence of cloud cover and aerosols. Cloud mask-
ing is applied to Sentinel 2 images in GEE; pixels which are 
masked will appear as completely black pixels. When the images 
are separated into sub-images, any sub-image which appears as 
completely black, due to clouds or unsuitable vegetation mor-
phology, or completely white, such as bare soil, is rejected. For 
each sub-image within a given month that is rejected, we resa-
mple this by taking the mean of the same sub-image in the same 
month in other years. Despite this step, some interference due to 
cloud cover is still possible and small clouds can still be present in 
final images and sub-images which can lead to spurious NDVI or 
Offset50 values. Any values which are more than three standard 
deviations away from the time series mean are classed as outliers 
and are removed.

In images which consisted of small amounts of patterned veg-
etation or of mixed land cover, such as patterned vegetation and 
seasonal agriculture, we tested methods to remove the influence 

of non-patterned vegetation. These methods include reduced 
image sizes and image classifiers and are detailed further in 
the Supplementary Information (Figures S1 and S2). However, 
we found that these steps did little to change the trend of the 
results.

2.3  |  Weather data

Daily precipitation data are taken from the ERA5 dataset via Google 
Earth Engine, which is a comprehensive reanalysis that provides 
hourly estimates of a large number of atmospheric, land and oceanic 
climate variables. Currently, ERA5 data are available from 1979 to 
within 5 days of real time (Hersbach et al., 2020). The dataset has a 
resolution of 31 km and is formed by combining as many historical 
observations as possible with an atmospheric model that is coupled 
with a land surface model and a wave model (Hersbach et al., 2020). 
We generate monthly averages of the ERA5 precipitation data ob-
tained from GEE to compare with monthly NDVI and Offset50 val-
ues by plotting precipitation time series against the Offset50 time 
series (Figure 7) and the mean annual precipitation values at differ-
ent sites. Precipitation data from 1986 to 2016 are also included in 
this analysis to understand the role that historical precipitation has 
played in the formation and stability of patterns. Furthermore, we 
calculate the cross-correlation of Offset50 and precipitation at in-
creasing time lags.

2.4  |  Resilience: Decay rate analysis

One way to calculate the resilience of these patterned vegetation 
systems is to consider rainfall as a perturbation event from a back-
ground dry state. Return rate following a perturbation can be taken 

F I G U R E  2  Map of patterned vegetation sites within the Sahel in North Africa. Western sites are shown in panel (b) and eastern sites are 
in panel (c) [Colour figure can be viewed at wileyonlinelibrary.com]
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as a direct measure of resilience (Lees et al., 2020; Pimm, 1984), 
with higher decay rates associated with more resilient systems. 
Usually this approach considers detrimental perturbations, instead 
we consider how vegetation responds to the beneficial perturbation 
of rainfall, yet we retain the definition that faster recovery to the 
background dry state equates to greater resilience (see Section 4). 
The average annual cycle of Offset50 and NDVI was taken with a 
monthly resolution. To fit an exponential model to these time series, 
the natural log of the average annual cycle is taken, followed by a 
linear regression, an example is shown in Figure 4. This was used to 
determine the rate of decay for the system from its peak greenness, 
for NDVI, or peak connectedness, for Offset50, to the state of mini-
mum vegetation in the dry season.

2.5  |  Resilience: Autocorrelation and variance

Another way to test the resilience of patterned vegetation is to cal-
culate the well-established resilience metrics Lag-1 autocorrelation 
(AR(1)) and variance of Offset50 and NDVI. Prior to this, we remove 
the seasonality of the Offset50 and NDVI time series by calculat-
ing a multi-annual monthly average, this is then subtracted from the 
time series. These residuals are then smoothed by applying LOESS 
smoothing.

Usually when calculating AR(1), we would use a moving win-
dow of length equal to half of the time series (Boulton et al., 2014). 
However, due to the shortness of these time series (48 data points), 
the average AR(1) and variance of the whole time series were 

F I G U R E  3  Data analysis workflow. This flow diagram shows the steps taken to calculate the Offset50 value of a patterned vegetation 
site (ID: 58) [Colour figure can be viewed at wileyonlinelibrary.com]
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578  |    BUXTON et al.

calculated. This provides us with a single AR(1) and variance value 
for each time series.

2.6  |  Trend analysis

STL decomposition of NDVI and Offset50 time series is used to es-
tablish the trends for each site. This separates these time series into 
the corresponding trend and seasonality of the underlying data. We 

then calculate the Mann-Kendall Tau value of this trend component. 
This gives a positive value if a trend is increasing, a negative value 
if a trend is decreasing and we classify non-significant changes as 
‘no trend’. We also calculate the precipitation trend of each site in 
this way. In addition to this, we calculate the change in precipitation 
in every pixel across the whole of the Sahel. This is done by tak-
ing monthly precipitation averages, removing the seasonal trend by 
subtracting a multi-annual monthly average, then taking a 12-month 
moving average, before the Kendall Tau of each pixel is calculated.

F I G U R E  4  Example of exponential 
decay curve (red line) fitting for annual 
average NDVI cycle (black line) at site 
63 [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  5  Examples of time series of Offset50 metric across four sites. An example is provided for each type of pattern. These sites 
correspond to the pattern type examples given in Figure 1. Offset50 standard deviation is given for each time series as the shaded area 
[Colour figure can be viewed at wileyonlinelibrary.com]

 13652486, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.15939 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/


    |  579BUXTON et al.

3  |  RESULTS

3.1  |  Distinguishing patterns with ‘Offset50’

As seen in Figure 5, the Offset50  value of a site displays a sea-
sonal cycle and tracks the changes in vegetation connectivity. The 
Offset50 value is different for each pattern type; for the examples 
shown, spot–labyrinths display the lowest Offset50 values, followed 
by spots, while the most connected vegetation patterns, gaps or 
labyrinths, display the highest Ofset50 values.

We have chosen to compare the Max NDVI and Max 
Offset50 values of the vegetation as this represents the extent of 
the vegetation following a precipitation event when the vegetation 
is at its full extent, is most connected, and most representative of 
the pattern label assigned at the classification stage (as detailed in 
the Methods section). When comparing the Max Offset50 value as 
grouped by vegetation pattern (Figure 6), we can see that they are 
broadly distinct classes; there is some overlap between gaps and 
labyrinths, although gaps display broadly larger values. We also 
find that despite the visual similarities between ‘spot–labyrinths’ 
and conventional labyrinths and spots, they exist as a distinct class. 
Max NDVI values for each pattern type are also given. U-tests sug-
gest that the max Offset50 of each pattern for these sample sites is 
statistically significantly different to each other (p < .05; Table S2). 
When using U-tests to distinguish between the pattern classes for 
Max NDVI values, we find that while the gaps vegetation is distinct, 
the rest of the vegetation classes are not statistically significantly 
distinct (Table S3). When compared with the Max NDVI of a site over 
the same time period, we can see that Max Offset50 does a better 
job of differentiating between the different patterns.

3.2  |  Seasonal and interannual 
variability of Offset50

As can be seen in Figure 7, the timing of the peak of Offset50 is 
closely linked with the peak of the annual precipitation cycle, with 
this peak occurring either within the same or following month of the 
precipitation peak. The Offset50  signal then decays away follow-
ing the end of the rainy season. At the peak Offset50 value ‘(a)’ in 
Figure 7, there is much more vegetation cover than during the dry 
season ‘(b)’.

The vegetation shown in Figure 8 is classified as ‘spot–labyrinths’. 
This vegetation forms a pattern which resembles faint, degraded 
spots in drier years, while in wetter periods it forms interlinked 
stripes across the landscape. The morphology of these patterns ap-
pears to be topographically driven, with vegetation forming within 
shallow gullies and between sand dunes following a rainy season. 
These patterns display strong interannual variability. It is clear that 
if there is not sufficient rain within a season, then much of the veg-
etation will not grow.

3.3  |  Factors determining Offset50 and vegetation 
pattern resilience

Figure 9 displays the correlation values for important variables 
which measure vegetation connectedness (Offset50), abiotic influ-
ences (precipitation, latitude) and measures of resilience of vegeta-
tion (decay rates, AR(1), variance). We have used these to further 
understand the dynamics and resilience of the vegetation pattern 
system as well as the utility of our Offset50 metric.

F I G U R E  6  (a) Box plots of Max Offset50 values for pattern vegetation sites as grouped by pattern classification. Two tailed Mann–
Whitney U-tests suggest that the Max Offset50 value for these group classes are statistically significantly different from each other 
(p-values in Table S2). (b) Box plots of Max NDVI values for pattern vegetation sites as grouped by pattern classification. Use of a 
Mann–Whitney U-test suggests that while the gaps class may be distinct from the other groups, there is no statistically significant 
difference between the other classes (Table S3). Mean Offset50 and Mean NDVI are shown in Figure S5 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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3.3.1  |  Precipitation and Offset50

As seen in Figure 9, Offset50 max displays a significant moderate 
positive correlation with mean precipitation, while Offset50 mean 
has a strong positive correlation with precipitation. This means that 
‘gap’ sites are the wettest, while ‘spot–labyrinth’ sites are the dri-
est. Thus, precipitation levels contribute to pattern morphology, as 
measured by Offset50.

The historic precipitation mean from 1976 to 2016 is included 
to understand whether historic climate has influenced the current 
pattern morphology or its resilience. We find that while historic 
rainfall means do correlate with the Offset50  metric, these cor-
relations are less strong than current precipitation levels, noting 
also the strong link between historical and current precipitation 
levels.

As can be seen in Figure 10, there is a lagged relationship be-
tween precipitation and the Offset50 metric across all of the sites. 
With a close coupling between precipitation and vegetation, these 
sites experience one significant rainy season per year, after which 
the vegetation reaches its maximum extent, and therefore so does 
the Offset50.

There are two trends apparent in this plot, with most sites expe-
riencing the highest correlation between Offset50 and precipitation 
after 1 month. A clustering analysis of these trends reveals that there 
are two separate groupings (as seen in Figure S14), with one group 
composed almost entirely of all of the spot–labyrinth sites. These 
sites display a faster decline in the correlation between Offset50 
and precipitation following their initial peak. We propose that this 
is due to the morphological nature of these patterns, in addition to 
needing to have a certain threshold of rainfall to enable large-scale 
vegetation growth.

3.3.2  |  Resilience

As seen in Figure 9, the Offset50 decay rate has a significant 
moderately positive correlation with the average precipitation. 
Therefore, areas with higher rainfall are (by convention) more 
‘resilient’ following this perturbation. This is perhaps a surprising 
result, as it suggests that areas with a higher level of precipitation 
experience a faster decay from the peak vegetation state to the 
minimum vegetation state and that this base state is more resil-
ient. Importantly, Offset50 decay rate does not show a significant 
correlation to either maximum or mean Offset50 values, thus sug-
gesting that pattern morphology does not correlate with a decay 
rate measure of resilience (and this null result would, of course, 
still hold if we inverted our assumed relationship between decay 
rate and resilience).

When we consider the NDVI decay rate (Table S6), we find it is 
greater at wetter sites. We also find a strong positive correlation be-
tween average NDVI and NDVI decay rate. Therefore, wetter sites 
with higher NDVI levels have a higher decay rate from maximum 
greenness to the bare soil state.

For our other metrics of resilience of vegetation patterns, AR(1) 
and variance of Offset50, there are significant, moderate negative 
correlations with mean precipitation (Figure 9). Thus, wetter sites 
have a higher level of resilience of vegetation patterns by these 
metrics. However, we find that there is no significant correlation 
between mean or max Offset50 and AR(1) or variance of Offset50. 
This fails to support the hypothesis from the literature that the mor-
phology of a pattern affects its resilience.

There are also significant weak positive correlations between 
AR(1) or variance of Offset50 and latitude. This supports an obser-
vation in the literature that more northern sites are less resilient 
(Trichon et al., 2018). This is likely driven by the lower level of pre-
cipitation at higher latitudes.

There is a weak negative correlation (which tends towards signif-
icance, p < .1) between AR(1) or variance and longitude (Figure 9)—
that is, resilience increases with longitude. This is likely linked to a 
strong positive correlation between longitude and precipitation 
(Figure 9).

3.4  |  Offset50 and precipitation trends across sites

We now turn to trends in the absolute values of precipitation and 
Offset50 across sites (Figure 11).

Western sites, such as those in Senegal, display a negative trend 
of Offset50, while those in Mali are much more mixed. Eastern sites 
all show a positive or no Offset50 trend. Sites with positive Offset50 
trends are broadly clustered in areas with a positive precipitation 
trend, while negative Offset50 trends are clustered in areas where 
there has been a declining level of precipitation from 2016 to 2019. 
This makes sense given the established positive correlation between 
Offset50 and rainfall (Figure 9).

4  |  DISCUSSION

4.1  |  Utility of Offset50 metric and relationship 
with precipitation

This study provides a framework for vegetation pattern quantifica-
tion and long-term analysis of these sites within the Sahel. The pyveg 
package (Barlow et al., 2020) allows for long-term analysis of pat-
terned vegetation sites, which often occur in hard to reach places 
around the world. By building on the work presented in Mander et al. 
(2017), we use Offset50, a numerical metric, to quantify vegetation 
patterns using freely available satellite data. Previous studies have 
sought to visually assess vegetation pattern health using infrequent 
aerial photography (Couteron, 2002; Trichon et al., 2018), these are 
often limited in extent both spatially and temporally. Sentinel-2 data, 
with its 10 m resolution, when combined with the pyveg package, 
provide a way to repeatedly analyse pattern vegetation anywhere 
in the world and to generate time series of its state. We find that 
our Offset50  metric is more capable than NDVI of differentiating 
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    |  581BUXTON et al.

between four pattern vegetation classes at their maximum extent; 
gaps, labyrinths, spots and spot–labyrinths. This allows us to quantify 
inter- and intra-annual changes in vegetation pattern morphology.

Precipitation levels have often been identified as the pre-
dominant factor in patterned vegetation formation and mor-
phology (HilleRisLambers et al., 2001). The correlation between 

F I G U R E  7  Example of Offset50 seasonal variability in a spotted vegetation site (ID: 61) with (a) an image of the vegetation at its 
2018 peak and (b) the following Offset50 minimum in March 2019. Shown below (a) and (b) are the binary images used to calculate the 
Offset50 value for that month. In these binary images, black pixels are vegetation, while white pixels are bare soil [Colour figure can be 
viewed at wileyonlinelibrary.com]
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Offset50  values and average precipitation levels at our sites 
shows that our Offset50  metric successfully captures this re-
lationship. We have also considered the lagged correlation be-
tween Offset50 and precipitation, which for most sites peaks 
after 1 month and then declines. The difference between spot–
labyrinths and other vegetation types is clear in the lagged cor-
relation trend. This further reveals the different mechanisms 
of formation of the vegetation morphologies, with the lagged 
correlation decreasing faster for the spot–labyrinth sites. This 
is likely to be the result of vegetation formation from the col-
lection of rainfall within gullies and between sand dunes, within 
which the vegetation then grows. If this precipitation stays 
below a certain threshold, then the vegetation is minimal and 
unconnected.

4.2  |  Resilience

We have taken two different approaches to measuring the resilience 
of vegetation patterns by examining different time-series properties 
of the Offset50 metric.

First we considered the decay rate of Offset50 following the an-
nual rainy season. The conventional understanding is that a faster 
decay rate equates to a more resilient system. Following this con-
vention, we find that sites which have higher precipitation display a 
higher decay rate and are therefore more ‘resilient’. However, this is 
somewhat counter-intuitive, in that it refers to the resilience of the 
dry season minimum vegetation cover state, which is found to be 
more ‘resilient’ under higher precipitation levels. We also find the 
same result when considering the NDVI decay rate. This suggests 

F I G U R E  8  An example of interannual variability of spot–labyrinth vegetation (ID: 26). This displays the extreme variation in this 
vegetation with (a) an example of peak vegetation cover in a dry year and (b) an example of peak vegetation cover in a comparatively 
wet year. The formation of this vegetation is influenced by the topography, as detailed in Figure S3 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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that, while higher levels of precipitation may lead to a larger burst 
in vegetation cover, it tends to die off faster. This can also be seen 
in the positive correlation between average precipitation and NDVI 
standard deviation (correlation  =  0.4752, p  =  .0019), with wetter 
sites showing greater standard deviation due to the greater quantity 
of vegetation die off each year.

Second we removed the seasonal cycle and then calculated Lag-1 
autocorrelation (AR(1)) and variance of the detrended Offset50 
time series, both of which are conventional resilience measures. 
This probes behaviour on shorter timescales than the annual cycle, 

which is appropriate given the multi-month memory in the system 
(Figure 10). We find that sites which experience higher precipita-
tion levels show lower AR(1) and variance levels and are therefore 
more resilient according to these metrics. This is in agreement with 
our understanding of rainfall levels and vegetation morphology, and 
suggests that vegetation which exists under lower rainfall regimes 
may be at risk of further degradation or state transitions. This is sup-
ported by results found in the literature, which find that drier sites 
have experienced greater levels of degradation during a drought pe-
riod and have been less able to recover (Trichon et al., 2018). We 
consider the relationship between historical precipitation levels and 
patterned vegetation resilience to understand the effect that past 
climate may have had on the adaptive capacity of patterned veg-
etation. While there is some correlation, this is most likely due to 
the strong correlation between historic and modern precipitation, as 
opposed to any underlying property of the system.

We also tested the hypothesis that vegetation pattern mor-
phology itself provides a measure of resilience (Mayor et al., 2013; 
Rietkerk et al., 2004). Dakos et al. (2011) suggest that while critical 
slowing down is observed as pattern morphology shifts in a ‘scale-
dependent feedback’ vegetation model, there is no consistent in-
crease in AR(1) with these changes. This is in line with our results, 
which show that pattern morphology does not significantly correlate 
with any of the resilience indicators we consider; decay rate, AR(1) 
or variance. This suggests that while the nature of vegetation pat-
terning does reflect underlying precipitation, it cannot be linked di-
rectly to the resilience of the vegetation, at least across the sample 
of 40 sites we consider.

There is evidence that severe and prolonged droughts cause 
a greater reduction in coverage of northern Sahelian patterned 

F I G U R E  9  Correlation image showing 
Pearson's correlation values for Offset50 
precipitation correlation, Offset50 decay 
rate correlations and AR(1) and Variance 
correlations. Values in bold are significant, 
with ** corresponding to p < .05 and * 
corresponding to p < .1. Scatter plots 
are given in Figures S6–S13. Pearson's 
correlation coefficient and p-values for 
Offset50 and NDVI variables are given in 
Tables S4–S7 [Colour figure can be viewed 
at wileyonlinelibrary.com]

F I G U R E  1 0  Correlation between Offset50 and precipitation 
at increasing monthly lags across all sites. Each line represents 
one of the sites in this study [Colour figure can be viewed at 
wileyonlinelibrary.com]
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vegetation sites (Trichon et al., 2018). This is consistent with our re-
sults that patterned vegetation sites at higher latitudes have a lower 
level of resilience, likely linked to the lower levels of precipitation at 
higher latitude.

4.3  |  Trends in Offset50

Identification of trends in Offset50 between 2016 and 2019 in 
sites across the Sahel reveals a mixed picture. No sites with nega-
tive trends for Offset50 appear in the east of the Sahel, while these 
are more common in the west. This is in line with trends in precipi-
tation (Figure 11), with declining Offset50 trends situated in areas 
with declining precipitation trends. Nicholson et al. (2018) identify 
a difference in rainfall between the east and west, with the eastern 
precipitation regime showing a greater recovery from historic dry 
periods. This east–west division is reinforced by the eastern vegeta-
tion sites displaying higher resilience levels. However, more data are 
needed to understand whether this east–west divide in patterned 
vegetation trends is sustained at the decadal level. A more global 
analysis could provide an indication of different pattern vegetation 
resilience and the drivers of this. Aside from climatic factors, other 
potential causes of declining pattern vegetation cover, and therefore 
declining Offset50, relate to human activities, such as the collection 
of forage for livestock, or the conversion of land to agriculture.

4.4  |  Limitations and future work

Interference from cloud cover creates difficulties for most remote 
sensing studies. In this study, we have sought to limit the impact of 
cloud cover through numerous methods, as detailed in the Methods. 
There are some limitations introduced by the availability of satel-
lite data. Sentinel-2 was launched in 2015; therefore, we have been 
unable to observe multi-decadal trends in the patterned vegetation 
at the appropriate scale. The time series was also determined to be 

too short to conduct some forms of time-series analysis. To counter 
this, attempts were made to use data from Landsat 7 and Landsat 8 
to provide longer analysis at lower spatial resolution; however, well-
documented issues with the Landsat 7 scan line error (Scaramuzza 
and Barsi, 2005) prevented this.

In addition to this, attempts were made to source vegetation 
patterning from a diverse range of sites across the Sahel. This was 
successful for every form apart from spots, where difficulty with 
establishing degraded spot sites meant the removal of several sites 
from the dataset. This meant that all of the sites are located within 
a similar area of Sudan. This was further compounded by inconsis-
tencies in historical literature in spot definition, with gaps and spots 
often interchangeable terms. Some sites which were identified in his-
torical literature as showing spotted vegetation were limited in size 
and difficult to analyse or have since become much more degraded.

The creation of the pyveg package will allow future work to con-
tinue monitoring pattern vegetation morphology and the health of 
dryland ecosystems. The increasing availability of high-resolution 
Sentinel-2 images will enable longer and more in-depth time-series 
analysis. In addition to this, future work could apply the pyveg pack-
age to global drylands to develop a more comprehensive under-
standing of resilience trends in these regions.

Based upon the lack of relationship between pattern morphol-
ogy and resilience, we suggest that further work is required to de-
fine and measure resilience of these patterned systems. With an 
increased availability of sufficiently high-resolution satellite data, we 
believe that other resilience tools should be brought to bear on these 
systems, with consideration given to spatial resilience statistics as 
well as temporal analysis.

5  |  CONCLUSION

Dryland ecosystems are among the most sensitive to climate 
change. Accurately assessing and understanding vegetation pat-
terning morphology is an important step towards understanding 

F I G U R E  11  ERA5 Precipitation trends from 2016 to 2019 in the vicinity of the Sahel ecoregion. Also shown are the Offset50 trends of 
each patterned vegetation site. NDVI trends are given in Figures S15 and S16 [Colour figure can be viewed at wileyonlinelibrary.com]
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the effect of a changing climate and direct anthropogenic pressure 
on drylands. Here we have shown that a previously proposed fea-
ture vector Offset50 metric detects changes in pattern vegetation 
morphology and is sensitive to changes in precipitation, the un-
derlying driver of pattern vegetation. We find that three different 
measures of resilience—the decay rate from perturbation, AR(1) 
and variance of Offset50—all show declining resilience of veg-
etation patterns with declining rainfall (as do the same statistics 
for NDVI). However, we find no significant correlation between 
the Offset50 pattern metric and any of these three measures of 
resilience. This fails to support a widely cited hypothesis in the 
literature that the nature of vegetation pattern (quantified here) 
reflects resilience. This negative result should not be wholly sur-
prising, as we are unaware of any theoretical demonstration that 
there should be a direct relationship between regular pattern 
morphology and resilience. We also find that geographical gradi-
ents of patterned vegetation resilience reflect well-known rainfall 
gradients, and that recent trends in rainfall are largely reflected 
in corresponding trends in vegetation patterns. Notably, consist-
ent recent wetting of eastern sites is reflected in positive trends 
in Offset50, while the picture for the west is more mixed. As a 
longer timescale sample of high-resolution satellite data accumu-
lates, this should enable further enhanced understanding of the 
resilience of these special ecosystems.
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