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Abstract

Background: Large routinely collected data such as electronic health records (EHRs) are increasingly used in research, but the statistical
methods and processes used to check such data for temporal data quality issues have not moved beyond manual, ad hoc production
and visual inspection of graphs. With the prospect of EHR data being used for disease surveillance via automated pipelines and
public-facing dashboards, automation of data quality checks will become increasingly valuable.

Findings: We generated 5,526 time series from 8 different EHR datasets and engaged >2,000 citizen-science volunteers to label the
locations of all suspicious-looking change points in the resulting graphs. Consensus labels were produced using density-based cluster-
ing with noise, with validation conducted using 956 images containing labels produced by an experienced data scientist. Parameter
tuning was done against 670 images and performance calculated against 286 images, resulting in a final sensitivity of 80.4% (95%
ClI, 77.1%-83.3%), specificity of 99.8% (99.7%-99.8%), positive predictive value of 84.5% (81.4%-87.2%), and negative predictive value of
99.7% (99.6%-99.7%). In total, 12,745 change points were found within 3,687 of the time series.

Conclusions: This large collection of labelled EHR time series can be used to validate automated methods for change point detection

in real-world settings, encouraging the development of methods that can successfully be applied in practice. It is particularly valuable
since change point detection methods are typically validated using synthetic data, so their performance in real-world settings cannot

be assumed to be comparable. While the dataset focusses on EHRs and data quality, it should also be applicable in other fields.
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Data Description
Context

The use of electronic health records (EHRs) in medical research
has grown enormously over the past 20 years, given its ability to
cover large numbers of patients and often over long time periods.
However, using routinely collected data such as EHRs for research
carries inherent risks, since the data will have been collected for a
different purpose (i.e., operational) and usually at a great distance
(both temporally and physically) from the researchers making use
ofit. Therefore, to ensure the validity of their research outputs, itis
important that researchers include checks for data quality issues
before conducting their analyses [1].

In particular, the presence of change points (i.e., points in time
where the distribution of data values changes suddenly and un-
predictably) can lead to systematic biases that, if not identified
and taken into account, can lead to erroneous results and incor-
rect conclusions being drawn, ultimately resulting in poor deci-
sions at a clinical or public health policy level. For example, Fig. 1
shows 3 real-world examples of data from a large UK hospital
group and where shifts in the data were caused by changes to in-
frastructure rather than by natural changes in the patient popu-
lation. If a researcher were to naively compare the number of hos-
pital admissions (Fig. 1A) in 2010 to the number of admissions in
2013, without checking for change points in between those dates,

they could incorrectly conclude that hospital admissions had de-
creased when in fact they had been increasing. Similarly, a re-
searcher analysing a cohort of patients between 2008 and 2012
might mistakenly infer that the patients admitted with infections
in 2012 were overall less severely unwell than those admitted in
2008 because they had lower creatinine blood test values (Fig. 1C),
when in fact the difference was due to a change in testing method
and not in the patients themselves.

While these types of temporal artefacts should in theory be
picked up by the diligent researcher at the initial data analysis
stage, in practice, it is not clear to what extent this is actually
done, since this process is rarely, if ever, reported in published pa-
pers [2, 3]. Standard checks such as the calculation of summary
statistics and visual inspection of graphs may be effective enough
for traditional research studies where there is a limited number
of variables of interest as well as a researcher with appropriate
domain knowledge, but with the increasing volume of data be-
ing collected in EHRs and across multiple sites (each with their
own idiosyncratic processes), these checks will become more and
more onerous and therefore less likely to be conducted thoroughly
and consistently. Therefore, automation of checks that would oth-
erwise be labour intensive and repetitive, such as screening time
series for change points, would be of value to researchers. Further-
more, there is an increasing prospect of EHR data being used for
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Figure 1: Examples of temporal changes in data caused by updates to infrastructure at Oxford University Hospitals. (A) Total number of inpatient
admissions containing multiple diagnosis codes. The jump in records in 2008 was caused by the inclusion of dialysis day-case patients, which were
then excluded again in 2012. (B) Emergency department attendances by referral source. A change in computer systems in 2011 noticeably affected the
data recorded, with the “Other” category temporarily being overrepresented in 2012, and a new, undefined category of “30” appearing thereafter. (C)
Lowest creatinine blood test result each day. The bimodal distribution up to 1997 was due to a mixture of units being used, and the drop in values in
2009 was due to a change in testing method and reference range.

€20z 1snbny o uo Jasn dieys suusyied Aq 9z8zez//090peib/eousiosebib/ges0L 01 /1op/aone/eousiosebif/woo dno oiwspeoe//:sdiy wolj papeojumoq



disease surveillance via automated pipelines and public-facing
dashboards, where automation of data quality checks will be of
even more value.

While there is a rich literature on change point detection meth-
ods, with applications across a range of different scientific fields
[4], none of these has to our knowledge been developed with a fo-
cus on EHRs or on data quality. Additionally, most of these meth-
ods are validated using synthetic data, and as such, their adver-
tised performance cannot be assumed to hold in real-world sce-
narios. Therefore, in order to assess whether or not any of these
methods would be effective to use as a screening method for iden-
tifying change points in EHRs requires real-world datasets with
“gold-standard” labels against which to judge performance.

Methods

An overview of the process can be seen in Fig. 2, with full details
described below.

Study sample

EHR data are collected from all patients attending the 4 hospi-
tals within the Oxford University Hospitals NHS Foundation Trust
(OUH), which provide all acute care and all microbiology and
pathology services in the region (~600,000 individuals). Much of
these data is automatically fed into a linked database for use in
surveillance and service activities within the OUH and is peri-
odically extracted into a partially curated, anonymised, research
database, the Infections in Oxfordshire Research Database (IORD).
These data go back to the 1980s and are known to cover multiple
periods of change in the hospital computer and laboratory sys-
tems.

IORD has Research Ethics Committee and Health Research
Authority approval as a generic deidentified electronic research
database (19/5C/0403, 19/CAG/0144).

Data were included from all 4 major component datasets
of IORD (patient administration, antibiotic prescribing, haema-
tology/biochemistry laboratories, and microbiology laboratories).
Eight data extracts were taken, comprising a total of 253 data
fields and 57 million records, with dates between 2 June 1986 and
30 June 2019:

® Inpatient episodes

® Qutpatient episodes

® Emergency department episodes

* Antibiotic prescriptions

® Biochemistry creatinine tests (a common biomarker for infec-
tion)

® Haematology neutrophil counts (a standard test requested
for most patients)

® Microbiology blood culture tests

® Microbiology tests that identified Esherichia coli (regardless of
specimen type)

Creation of time series
A total of 5,526 time series were generated from the 8 data ex-
tracts, as follows.

One data field from each data extract was selected to be its
“timepoint” field, and this was used to represent the date of the
record (patient administration data used the discharge date, labo-
ratory data used the specimen collection date, and antibiotic data
used the prescription date). Any records that contained a missing
or invalid datetime value in the timepoint field were necessarily
excluded. Also, any duplicate records were removed, and the num-
ber of removed records stored as a calculated field.

SHB sex

Aggregation granularities

For each data extract, the time span that each timepoint field cov-
ered was divided into regular intervals. Records were aggregated
using the chosen timepoint field by day (midnight to midnight),
as well as by week (Monday to Sunday) and by calendar month.

Aggregation functions

Numeric summary values were calculated for each timepoint
from the (often nonnumeric) data by applying simple functions
(e.g., number of values present, percentage of missing values,
number of distinct values, or median value). If there were no
records in a particular timepoint (which meant that no summary
value could be calculated), the value of NA was given (except for
the aggregation function counting the number of values present
in a data field, which would take the value of 0 as expected). Each
aggregation function demonstrated a measure within one of the
intrinsic data quality dimensions of Completeness, Conformance,
and Plausibility [5]. Different functions were used depending on
the type of data field:

® Timepoint—The data field representing the date of the event
described in the record

® Numeric—Fields containing continuous values (such as
blood cell counts) or discrete integers (such as the episode
number within an admission spell)

® Categorical—Fields containing a finite list of values, which
may be stored either as character strings or coded as integers

® Datetime—TFields containing dates, with or without a time el-
ement

® Uniqueldentifier—Fields containing computer-generated
record identifiers and may be based on either a numeric or a
character data type

® Freetext—Unstructured text

or if applied to the data extract as a whole (e.g., calculating the
number of duplicate records). See Table 1 for details of the data
fields in each data extract and Table 2 for the list of aggregation
functions applied to each data field.

Collection of change point labels by visual inspection

Each time series was plotted on a separate graph (with time on the
x-axis and the aggregation function value on the y-axis); see Fig. 3
for some examples. Frequency-based aggregation functions were
plotted on a scale always starting at zero and ending no earlier
than 10. Percentages were always plotted on a 0-100 scale, and
frequencies of subcategories were plotted on the same scale as
frequencies for the data field as a whole. All graphs were saved
as png files of the same size (i.e., 1,000px wide by 666px tall) at a
resolution of 96 dpi.

Visually inspected labels for the locations of change points
were collected using the Zooniverse [6] citizen-science platform.
The Zooniverse is a free, popular, and well-established online
platform for public involvement in research and has over 2 mil-
lion registered volunteers who review and participate in multi-
ple projects from astronomy to wildlife surveys to historical tran-
scriptions.

The “Health Record Hiccups” [7] Zooniverse project showed vol-
unteers one image at a time and asked them to draw a vertical line
on the image wherever they saw an abrupt change in the distribu-
tion of values; see Fig. 4 for a screenshot. They were initially pre-
sented with a tutorial that included multiple examples of differ-
ent ways in which the data can change—namely, changes in level,
trend, (vertical) variability, presence/absence of data points, or
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Data source:
8 different data extracts
253 data fields
57 million records
Covering period June 1986 — June 2019

:

5526 time series generated and plotted:

granularity
Covering a range of aggregation functions (e.g.
number of missing values, minimum value)

1842 time series at each of daily/weekly/monthly

5526 images visually inspected and labelled by
citizen-science volunteers

Data validation

956 images visually inspected and
labelled by experienced data scientist

:

Clustering algorithm for crowd-sourced
labels tuned on 670 images, and
assessed on 286 images

Final clustering algorithm applied to crowd-
sourced labels for all 5526 time series

Figure 2: Overview of the dataset creation workflow.

(unpredictable) outliers. They were asked to draw a green line if
they saw a clear change, a yellow line if they were uncertain, or
no lines if they saw no abrupt changes. To reduce risk of bias, no
metadata were visible at the point of classification.

Images were scheduled for retirement once 41 classifications
had been completed on them (i.e., once the image had been in-
spected by 41 different people).

Data cleaning

Due to the way the Zooniverse platform randomises and supplies
images to its volunteers, it was possible for the same person to be
served the same image more than once and for images to have
more than the specified number of 41 classifications. Therefore,
only the first attempt per person per image was kept, up to a max-
imum of 41 different people per image.

To improve consistency between classifications made by dif-
ferent volunteers using different screen resolutions, a “minimum
distance cutoff” of 7px was selected (see Data validation section)
to distinguish between distinct change points (i.e., any lines drawn

closer together than this should be assumed to represent the
same change point). An example of a 7px distance between 2 lines
is shown in Fig. 5. Any lines that were drawn by the same person
within this “minimum distance cutoff” interval were combined
into a single line located at the mean position of the contributing
lines. If any of the combined lines was green (certain), the result-
ing line was also considered green.

Creation of consensus labels

To create consensus labels from the volunteers’ classifications,
the dbscan [8] (density-based spatial clustering of applications
with noise [9]) package (v1.1-5) in R (v3.6.3) was used to find zero
or more clusters of lines within an image. The mean cluster lo-
cation was assigned to be the crowdsourced consensus label for
the change point, and any lines that were deemed by the pack-
age to be noise were ignored. Following tuning of the dbscan al-
gorithm (see Data validation section), the following 3 parameters
were used to create the final labels for the locations of change
points:
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Table 1: Overview of data fields contained in each data extract

No. of
Total No.  No. of No.of No.ofcat- No.of Uniquel- No.of
of data timepoint numeric egorical datetime dentifier freetext

Dataset type Data extract Data from Data to fields® fields fields fields fields fields fields
Antibiotics Antibiotic 10/06/2008 30/06/2019 27 1 3 9 7 2 3
prescribing
Patient Emergency 01/04/2005 30/06/2019 28 1 1 15 6 2 1
administration  department
attendances
Patient Inpatient 01/04/1997 30/06/2019 41 1 2 23 6 4 3
administration  episodes
Patient Outpatient 01/04/1997 30/06/2019 35 1 1 21 4 3 3
administration  episodes
Biochemistry Creatinine tests 02/06/1986 30/06/2019 24 1 1 7 5 6 2
Haematology Neutrophil 01/04/1987 30/06/2019 24 1 1 7 5 6 2
counts
Microbiology Blood cultures 04/06/1993 30/06/2019 37 1 0 18 6 2 8
Microbiology E. coli isolations 17/05/1993 30/06/2019 37 1 0 18 6 2 8

@Includes 2calculated fields, for duplicate records and for all data combined.

Table 2: The aggregation functions applied to each data field, to produce the time series

Across data extract as
Individual data field type a whole

All data  Duplicate
Aggregation function (shorthand label) Timepoint Numeric Categorical Datetime Uniqueldentifier Freetext combined records

COMPLETENESS

Number of missing values (missing_n) X X X X X X

Percentage of missing values (missing_perc) X X X X X X
CONFORMANCE

Number of nonconformant values? X X X
(nonconformant_n)

Percentage of nonconformant values?® X X X
(nonconformant_perc)

PLAUSIBILITY

Sum of duplicate records removed (sum) X
Percentage of records that had been X
duplicated (nonzero_perc)

Number of values present (n) X
Minimum value (min)

Maximum value (max)

Mean value (mean)

Median value (median)

Number of values with no time element® X X

(midnight_n)

Percentage of values with no time element® X X
(midnight_perc)

Minimum string length (minlength) X
Maximum string length (maxlength) X
Mean string length (meanlength) X
Number of distinct values (distinct) X

Number of values within each subcategory® X

(subcat_n)

Percentage of values within each X

subcategory® (subcat_perc)

MMM X X
XX

@Nonconformance was deemed as a nonnumeric value in a (supposedly) numeric data field or a nondate value in a (supposedly) date field.

PThese were only calculated for fields that were known to contain a time element and where midnight would be used as the default when no time element was
available.

¢With 1 time series created per subcategory. These were only calculated for fields with fewer than 20 subcategories (with the additional inclusion of DischargeDes-
tinationCode in the inpat_episode data extract, which contained 23 subcategories, and was included for consistency with the other coded fields in the data extract).
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Figure 3: Examples of graphs generated for visual inspection of change points.

AL]
[E548 Health Record Hiccups © ABOUT  CLASSIFY TALK  COLLECT
o CEASSIFY

Place a vertical line anywhere you see a sudden
change in the way the data points appear over

time (including outliers).

If you do not see any sudden changes then simply

FIELD GUIDE

click Done.

See the field guide for examples.

Place a green line for each clear
sudden change

Place a yellow line for each
uncertain sudden change

Done & Talk

@ vou should sign int

Figure 4: Screenshot of Zooniverse project interface.
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Figure 5: Example of 2 lines drawn 7px apart. Any lines drawn closer together than this were considered to represent the same change point.

¢ exclude yellow (uncertain) lines,

® minimum-lines-in-cluster (i.e., the minimum number of lines
needed to create a cluster) = 5,

® epsilon-neighbourhood (i.e., the maximum distance between
2 lines in a cluster) = 3px.

The pixel locations of the consensus labels were then con-
verted back to dates. A total of 12,745 change points were found
within 3,687 of the time series. Examples of the locations of crowd-
sourced consensus labels can be seen in Fig. 6. A summary of the
number of change points and time series per data extractis shown
in Table 3.

Accuracy of the crowdsourced consensus labels was assessed
against expert labels produced for the initial batch of 956 images
(inpatient episodes, antibiotic prescriptions, creatinine tests, and
blood culture tests, aggregated by day). These expert labels were
created by a researcher with >8 years’ experience compiling and
analysing EHR data, and this was done using the same interface
as the volunteers but blinded to any of their results.

To improve consistency between classifications made by dif-
ferent volunteers using different screen resolutions, a “mini-
mum distance cutoff” was selected to distinguish between dis-
tinct change points (i.e., any lines drawn closer together than this
should be assumed to represent the same change point). This was
done by calculating the minimum distance between any 2 lines
drawn on a single image by the same volunteer and the distribu-
tion of minimum distances visually inspected for a threshold.

To calculate the accuracy of the consensus crowdsourced la-
bels compared to expert labels, a binary classifier was approxi-
mated using the following terms:

® True positive: a crowdsourced label is within the “minimum
distance cutoff” of an expert line.

® False positive: a crowdsourced label is present, but no expert
line lies within the “minimum distance cutoff” of it.

® False negative: an expert line is present, but no crowdsourced
label lies within the “minimum distance cutoff” of it.

® True negative: total estimated as the number of the “min-
imum distance cutoff” intervals in an image (i.e., the maxi-
mum number of change points that could possibly be identi-
fied on a single image) minus the sum of above 3 categories.

In order to avoid double-counting, the following additional
rules were enforced:

w

* When there were “x” crowdsourced labels close to 1 expert
line, this counted as 1 true positive and zero false positives.

® When there were 2 expert lines close to 1 crowdsourced label,
this counted as 2 true positives and zero false negatives.

Tuning of the algorithm to create consensus labels from the
crowdsourced data was done using a random sample of 70% of the
956 images, balanced across the 4 data extracts, with the remain-
ing 30% reserved for final testing of the performance of the al-
gorithm. Final performance was assessed using sensitivity, speci-
ficity, positive predictive value (PPV), and negative predictive value
(NPV).

Of note, 746 time series were constant (e.g., when there were no
missing values at all in the data field), and these were included in
order that the accuracy reported be representative of the range
and distribution of time series across all the data fields.
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Figure 6: Examples of the locations of crowdsourced consensus labels for change points.

Table 3: Overview of time series and change points per data
extract.

No. of No. with at
No. of time constant No.with least1 Total No.
series time missing  change of change
Data extract  created series (%) values (%) point(%) points
Antibiotic 501 92 (18) 167 (33) 385 (77) 932
prescribing
Emergency 762 87 (11) 454 (60) 528 (69) 1,589
department
attendances
Inpatient 1203 129 (11) 0(0) 665 (55) 2,064
episodes
Outpatient 690 52 (8) 14 (2)  546(79) 1,959
episodes
Creatinine 552 79 (14)  338(61) 415(75) 2,017
tests
Neutrophil 462 83 (18) 34(7)  356(77) 1,584
counts
Blood cultures 612 94 (15) 177 (29) 307 (50) 844
E. coli 744 130 (17)  218(29) 485 (65) 1,756
isolations
Total 5,526 746 (13) 1,402 (25) 3,687 (67) 12,745

Tuning of consensus algorithm

The dbscan package in R accepts 2 tuning parameters: minPts (the
minimum number of lines needed to create a cluster) and eps (the
maximum distance between 2 lines in a cluster). In addition, there
was the choice of whether or not to include the yellow (uncertain)

lines that volunteers had drawn. Therefore, a grid search of 3 pa-
rameters was conducted:

¢ include/exclude yellow (uncertain) lines,

® minPts (i.e,, minimum-lines-in-cluster) between 2 and 20, and

® ¢ps (i.e., epsilon-neighbourhood) between 1px and 7px (i.e.,
the “minimum distance cutoff”).

Given the imbalanced distribution of positive versus negative
calls, Matthews correlation coefficient (MCC) [10] was used to se-
lect the highest-performing parameters,

TP x TN — FP x EN
JTP+EP) x (TP+EN) x (IN + FP) x (IN + EN)

where TP = true positives, TN = true negatives, FP = false posi-
tives, and FN = false negatives.

MCC =

Results

A total of 48,533 classifications were completed by at least 543
different volunteers across the 956 images. After removing repeat
classifications by the same person as well as classifications above
the retirement threshold of 41, there were 43,502 distinct classifi-
cations, and 840 of 956 (88%) images had the full complement of
41 classifications each.

The expert classified each image once, drawing 1,992 green
lines plus 163 yellow lines altogether.

The minimum distance between 2 lines drawn on a single im-
age by the same volunteer was below 1px (see Fig. 7). Since there
was a visible threshold in minimum distances at 7px, this was
chosen to be the “minimum distance cutoff” for 2 distinct change
points. This led to the removal of 96 (0.1%) volunteer lines (with
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Figure 7: Minimum distances between 2 lines drawn on an image by the same volunteer. Shown up to a maximum of 10px. Intervals are closed on the
left and open on the right (i.e.,, when the minimum distance is an integer, this is included in the bar to the right).

Table 4: Best-performing parameters for the density-based clustering algorithm, based on the tuning set

Include Minimum Matthews Positive Negative
yellow No. of lines Epsilon correlation predictive  predictive
lines in cluster distance coefficient  Sensitivity =~ Specificity value value
FALSE 5 3 0.851 0.806 0.999 0.903 0.997
TRUE 7 2 0.850 0.796 0.999 0.913 0.997
TRUE 6 2 0.850 0.826 0.998 0.878 0.997
TRUE 8 3 0.849 0.796 0.999 0.911 0.997
TRUE 7 3 0.848 0.826 0.998 0.875 0.997
FALSE 6 3 0.845 0.769 0.999 0.933 0.996
FALSE 5 2 0.844 0.780 0.999 0.918 0.996
TRUE 6 3 0.844 0.855 0.997 0.838 0.998
FALSE 4 3 0.843 0.843 0.997 0.848 0.997
TRUE 9 3 0.843 0.767 0.999 0.930 0.996

Note: Results are presented as proportions.

distance <7px) and, for consistency, the removal of 12 (0.6%) ex-
pert lines.

Based on the MCC and only using the tuning set of 670 images,
the optimal parameters to identify individual change points were
as follows: exclude yellow lines, minimum-lines-in-cluster = 5,
and epsilon-neighbourhood = 3 (see Table 4), although it should
be noted that several different parameter combinations gave very
similar performance.

Final performance of algorithm

Using these parameters on the reserved test set of 286 images re-
sulted in final sensitivity of 80.4% (95% CI, 77.1%-83.3%), speci-
ficity of 99.8% (99.7%-99.8%), PPV of 84.5% (81.4%-87.2%), NPV of
99.7% (99.6%-99.7%), and MCC of 0.822. This was from 492 true
positives, 38,194 true negatives, 90 false positives (in 42 distinct
images), and 120 false negatives (in 70 distinct images).

Examples of discrepancies

Of the 120 false negatives, 78 (65%) had been classed as clear
change points by the expert and 42 (35%) as uncertain. In a ran-
dom sample of 20 images that contained discrepancies (10 that
contained at least 1 false positive and 10 that contained at least
1 clear false negative), there were 30 false positives and 14 false
negatives. Twenty-five of 30 of the false positives were in im-
ages where the aggregation function values were highly discre-

tised. Seventeen of 30 could be argued to be change points (13 in
variability, 3 in trend, 1 outlier), and 1 was in between 2 nearby
(true positive) clusters and so potentially merely comprised bor-
der points that could have belonged to either of the nearby clus-
ters. Twelve had no explanation beyond the discretisation. Of the
14 false negatives, 7 could be argued to be change points (5 in
trend, 1in variability, 1 outlier), and the other 7 were clear outliers
(3 of which were very small in magnitude). See Figures 8 and 9 for
examples.

Discussion and Reuse Potential

Our motivating purpose for releasing this dataset is to improve
research quality by encouraging the creation of methods to help
screen for temporal artefacts ahead of formal statistical anal-
yses, a highly underappreciated yet important part of the re-
search process [3, 11]. Automating this task will become increas-
ingly valuable as datasets continue to grow (and the effort re-
quired to manually check them also increases), whether that
be within health research or in other fields that use temporal
data.

The primary audience for this dataset, therefore, is developers
of (univariate) change point detection methods, who belong to a
very active research field [4, 12-14] but for whom there are cur-
rently very little real-world data available to either train or val-
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Figure 8: Examples of change points identified by the volunteers but not by the expert. Vertical lines denote positions of volunteer clusters and expert
labels; those with numbers above indicate the number of volunteers contributing to the cluster, and those with inverted triangles indicate lines drawn
by the expert. (A) The 2 false-positive change points at 2012 and 2015 could arguably be changes in variability. (B) The false-positive change point at
2010 potentially just comprised border points for the 2 adjacent clusters, while the 4 on the far right are likely only related to discretisation.
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Figure 9: Examples of change points identified by the expert but not by the volunteers. Vertical lines denote positions of volunteer clusters and expert
labels; those with numbers above indicate the number of volunteers contributing to the cluster, and those with inverted triangles indicate lines drawn
by the expert. (A) The 2 false-negative change points in 2010 and 2017 could arguably be changes in trend or variability. (B) The false-negative change

point around 2018 is an outlier that was small in magnitude.

idate their methods. In order to assess a detection method’s ac-
curacy, a collection of time series containing “ground-truth” la-
bels for the locations of all change points is needed. Synthetic
data are commonly used for this task [15, 16], since large num-
bers of time series with known frequency and locations of change
points can be generated easily by concatenating segments from
parametric or other statistical models. However, while methods
developed and assessed this way may work well for applications

where the data happen to conform to the specific models used,
they will not work for applications such as ours, where underly-
ing trends and fluctuations in the data are widespread and where
the enormous variety of different behaviours exhibited in the dif-
ferent time series is unlikely to be captured by a predefined sta-
tistical model.

We are aware of only 3 publicly available time-series datasets
that contain real-world data with change points labelled by (ex-
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pert) humans. These are the Yahoo S5 dataset [17], which con-
tains 67 real-world time series from traffic to Yahoo services;
the Numenta Anomaly Benchmark [18], which contains 47 real-
world time series from a variety of sources; and the Turing
Change Point Dataset [19], which contains 37 time series from
a range of different scientific fields. Within all of these, the
change points were considered manifestations of real events
rather than artefacts of data collection. In comparison, our col-
lection of 5,526 time series provides a vastly larger sample against
which to conduct benchmarking of change point detection meth-
ods, which will in turn lead to much greater confidence in any
results.

Other applications of these change point detection methods
could include checking for data feed anomalies in routine an-
alytical pipelines (e.g., the United Kingdom’s coronavirus dash-
board [20] and Fingertips Public health profiles [21]) in order
to alert on any potential data input problems internally before
releasing any downstream outputs. Another possible applica-
tion could be for change detection in automated machine learn-
ing (AutoML) models [22, 23], to ensure model validity is main-
tained even when the data they are being applied to inevitably
change.

Crowdsourced labels identifying the locations of change points
within EHR time series had a sensitivity of ~80%, PPV at ~85%,
and specificity/NPV at >99%, when compared to labels made by
an experienced data scientist. Given that visual inspection is al-
ways going to be a subjective measure, even when performed by
an expert, this level of accuracy suggests that crowdsourcing is a
satisfactory method for identifying change points in EHR datasets
and consequently for use as a “gold standard” to assess automated
methods of identifying them.

The types of change points that were most often missed by the
volunteers were “outliers” and, to a lesser extent, change points
that were small in magnitude. This is potentially acceptable since
arguably, outliers are less likely to have a significant impact on a
study’s results than persistent change points, owing to them oc-
curring for only a small number of records, and similarly change
points that are small in magnitude are less likely to have large
consequences. Conversely, the volunteers tended to label change
points more often than the expert on images based on highly dis-
cretised values, which means that certain aggregation functions
will likely resultin more false-positive calls than others and hence
may require more careful scrutiny when being used for tuning au-
tomated methods. Many of the discrepancies for the presence of
a change point could have been argued either way. This subjectiv-
ity means that if these labels are to be used as a “gold standard”
for testing automated methods, we can never expect those au-
tomated methods to perform perfectly against the labels, and so
perhaps we would need to accept a lower accuracy rate than we
otherwise would.

The number of change points identified by crowdsourced vi-
sual inspection was incredibly high, with change points detected
in all 8 data extracts examined, and in almost every year of data
that each extract covered. Studies from France [24] and Spain
[25] have also found frequent change points in their EHR-related
data, despite being more limited in the types of data fields and
aggregation functions examined. Given the high risk that any
data extract obtained from EHRs will contain temporal change
points, there is consequently a real risk of flawed or incorrect
research results if researchers do not take appropriate steps to
identify them and manage their impact. Any ways that can be
found to assist them with this task would therefore be highly
beneficial.

Availability of Source Code and
Requirements

The dataset described in this article was produced as part of a PhD
project, for which the source code has been made available in a
Zenodo repository.

Project name: Data quality in health research: the development
of methods to improve the assessment of temporal data quality
in electronic health records

Project homepage: https://doi.org/10.5281/zenodo.7327780
Operating system(s): Platform independent

Programming language: R v3.6.3

Other requirements: R packages as listed in renv.lock file

License: MIT

Data Availability

The data set supporting the results of this article is available in
the Zenodo repository [26]. All research publications using data
derived from Zooniverse [6] approved projects are required to ac-
knowledge the Zooniverse and the Project Builder platform. Please
use the text: “This publication uses data generated via the Zooni-
verse.org platform.”
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