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The proposed approach has been tested on a case study with in silico generated Number of experiments for the Python code

experimental data. The system considered was an isothermal batch reactor, where

the experimental conditions were defined by: CONCLUSIONS
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» Initial concentration of reactant A » The identification of kinetic model structures using ANNs was improved by optimizing
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» Temperature T 520K 120 K the experimental design.
» Sampling times . c0sec 350 sec » Steep increase in ANN accuracy with respect to the number of experiments.

» High levels of accuracy were obtained with a minimal number of experiments to be
conducted.

» The proposed approach is promising for conducting a first discrimination among
many candidate kinetic models.
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The reacting system was characterised by three species: A, B, C

We aimed at discriminating among 8 candidate model
structures, assuming the reactions could take place either
in series or parallel, and being described either by 15t or 2nd
order power law kinetic equations.
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Series mechanism: A-> B B-C

. k1 ko
Parallel mechanism: A->B A-C
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