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The problem of kinetic model selection

Series mechanism:   𝐴 ՜
𝑘1

𝐵, 𝐵՜
𝑘3

𝐶

Parallel mechanism: 𝐴 ՜
𝑘1

B, 𝐴՜
𝑘2

𝐶

Material balances
d𝐶𝑖
d𝑡

= σ𝑗=1
3 ν𝑖𝑗𝑟𝑗 ∀𝑖 = 𝐴, 𝐵, 𝐶

Arrhenius-type kinetic factors

𝑘𝑗 = 𝐴𝑗𝑒
−𝐸𝑎,𝑗/𝑅𝑇 ∀𝑗=1, 2, 3

Series mechanism Parallel mechanism
Label: 1 2 3 4 5 6 7 8

𝒓𝟏 𝑘1 ∙ 𝐶𝐴 𝑘1 ∙ 𝐶𝐴 𝑘1 ∙ 𝐶𝐴
2 𝑘1 ∙ 𝐶𝐴

2 𝑘1 ∙ 𝐶𝐴 𝑘1 ∙ 𝐶𝐴 𝑘1 ∙ 𝐶𝐴
2 𝑘1 ∙ 𝐶𝐴

2

𝒓𝟐 𝑘2 ∙ 0 𝑘2 ∙ 0 𝑘2 ∙ 0 𝑘2 ∙ 0 𝑘2 ∙ 𝐶𝐴 𝑘2 ∙ 𝐶𝐴
2 𝑘2 ∙ 𝐶𝐴 𝑘2 ∙ 𝐶𝐴

2

𝒓𝟑 𝑘3 ∙ 𝐶𝐵 𝑘3 ∙ 𝐶𝐵
2 𝑘3 ∙ 𝐶𝐵 𝑘3 ∙ 𝐶𝐵

2 𝑘3 ∙ 0 𝑘3 ∙ 0 𝑘3 ∙ 0 𝑘3 ∙ 0

Objective function to be maximised: Artificial Neural Network accuracy on unseen data

AccΨtest
=

𝑖 ∈ 1,… , 𝑁Ψtest
s. t. n𝑖 , 𝑙𝑖 ∈ Ψtest ∧ መ𝑙𝑖 = 𝑙𝑖

𝑖 ∈ 1, … , 𝑁Ψtest
s. t. n𝑖 , 𝑙𝑖 ∈ Ψtest

∙ 100%

where Ψtest is the testing-set of data (size 𝑁Ψtest
), n𝑖 experimental data and 𝑙𝑖 the label of 

the model used to generate the data and መ𝑙𝑖 the label predicted by the ANN. 
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 s=1.00  Temperature, reactant concentration and sampling time

 s=4.00   Temperature and reactant concentration

 s=10.00  Temperature and sampling time

The proposed approach has been tested on a case study with in silico generated 

experimental data. The system considered was an isothermal batch reactor, where 

the experimental conditions were defined by:

➢ Initial concentration of reactant A

➢ Temperature

➢ Sampling times

The reacting system was characterised by three species: A, B, C

We aimed at discriminating among 8 candidate model 

structures, assuming the reactions could take place either 

in series or parallel, and being described either by 1st or 2nd

order power law kinetic equations.  

Kinetic models formulation
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 1 exp  4 exp

 2 exp  5 exp

 3 exp  6 exp

Artificial neural network for kinetic model recognition
A different approach may be considered to discriminate 

among the models by means of Artificial Neural Network 

classifiers. [2]

The advantages are

▲ Small amount of experimental data required (in silico 

dataset generation)

▲ No structural identifiability test → no rejection of any 

model a priori

[1] S.P. Asprey and S. Macchietto, 2000, Statistical Tools for Optimal Dynamic Model

Building, Computers & Chemical Engineering, 24, 1261-1267

[2] M. Quaglio, L. Roberts, M.S. Bin Japaar, E.S. Fraga, V. Dua, F. Galvanin, 2020, An

Artificial Neural Network Approach to Recognise Kinetic Models from Experimental Data,

Computers & Chemical Engineering, 135

We propose to couple the ANN application to model recognition with a population 

algorithm for optimizing the experimental conditions, aiming to improve the ANN 

performance. 

➢ The number of experiments is provided as an input to the algorithm

➢ The ANN training is performed with simulated experimental data, which include 

parameter uncertainty within feasibility regions.

➢ Physical experiments are only required to be conducted at the identified optimal 

conditions, then the acquired experimental data is fed to the trained ANN.

The classical model discrimination approach [1]

is characterised by several steps. 

The modelling process may require a significant 

amount of time and the quantity of experimental 

data may be limited due to cost and time 

limitations. 

Low experimental error

High experimental error

The limitations are:

▼ No information about the model parameters from the 

discrimination

▼ Experimental design is fixed

SENSITIVITY ANALYSIS

➢ The choice of the experimental 

conditions has a strong impact on 

the ANN performance. 

➢ Using a fixed experimental design 

may lead to suboptimal 

performance or to conduct 

unnecessary experiments.

Experimental error
ε~𝒩 0, 𝜎2

OPTIMAL DESIGN OF 

EXPERIMENTS

➢ The optimization algorithm 

performance was satisfactory both 

in the case of low and high noise 

on experimental data.

➢ High levels of accuracy were 

obtained with just a few 

experiments required even in the 

high experimental error scenario. 

➢ The choice of which experimental 

variables to manipulate affected 

the outcome in terms of ANN 

accuracy.

➢ When the optimal ANN failed, the 

correct model was always among 

the top 3 ranked models.

 1 exp  4 exp

 2 exp  5 exp

 3 exp  6 exp

➢ The identification of kinetic model structures using ANNs was improved by optimizing 

the experimental design.

➢ Steep increase in ANN accuracy with respect to the number of experiments.

➢ High levels of accuracy were obtained with a minimal number of experiments to be 

conducted.

➢ The proposed approach is promising for conducting a first discrimination among 

many candidate kinetic models.

Noise 
σ

Max ANN 
accuracy

N 
exp.

1.00 100 % 4

4.00 97 % 5

10.00 92 % 5
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Symbol Lower bound Upper bound

𝐶𝐴0 0 𝑚𝑜𝑙/𝑚3 250 𝑚𝑜𝑙/𝑚3

𝑇 520 K 720 K

𝑡 50 sec 350 sec

GitHub repository 

for the Python code


