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Abstract: Introduction: In this study, core drugs of clinical postmenopausal osteoporosis were
retrieved using data mining, the drug molecular action target was predicted through network
pharmacology, the key nodes of interaction were identified by combining postmenopausal
osteoporosis-related targets, and the pharmacological mechanism of Traditional Chinese
Medicine (TCM) against postmenopausal osteoporosis and other action mechanisms was ex-
plored.

Methods: TCMISS V2.5 was used to collect TCM prescriptions of postmenopausal osteoporosis
from databases, including Zhiwang, Wanfang, PubMed, etc., for selecting the highest confidence
drugs. TCMSP and SwissTargetPrediction databases were selected to screen the main active in-
gredients of the highest confidence drugs and their targets. Relevant targets for postmenopausal
osteoporosis were retrieved from GeneCards and GEO databases, PPI network diagrams construc-
tion and selection of core nodes in the network, GO and KEGG enrichment analysis, and molecu-

lar docking validation.

Results: Correlation analysis identified core drug pairs as 'Corni Fructus-Epimedii Folium-
Rehmanniae Radix Praeparata' (SZY-YYH-SDH). After TCMSP co-screening and de-weighting,
36 major active ingredients and 305 potential targets were selected. PPI network graph was built
from the 153 disease targets and 24 TCM disease intersection targets obtained. GO, KEGG en-
richment results showed that the intersectional targets were enriched in the PI3K-Akt signalling
pathway, etc. The target organs were mainly distributed in the thyroid, liver, CD33+ Myeloid,
etc. Molecular docking results showed that the core active ingredients of the 'SZY-YYH-SDH'
were able to bind to the pair core nodes and PTEN and EGFR.

Conclusion: The results showed that 'SZY-YYH-SDH' can provide the basis for clinical applica-
tion and treat postmenopausal osteoporosis through multi-component, multi-pathway, and multi-
target effects.
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1. INTRODUCTION

Postmenopausal osteoporosis (PMO) is a common sys-
temic metabolic bone disease caused by a decline in ovarian
function and insufficient oestrogen production after meno-
pause, resulting in greater bone resorption than bone for-
mation. Recent studies have shown that the pathogenesis of
PMO is not exact. However, it is closely related to ageing,
leading to lower estrogen levels [1], oxidative stress [2], in-
testinal flora [3], and iron overload [4, 5]. The clinical mani-
festations of PMO are mainly dominated by bone pain and
susceptibility to fracture. Current treatments are mostly in
the form of a nutritious and balanced diet, exercise, and vari-
ous medications taken orally, efc. [6].

Data mining is a data analysis technique that can discover
valid information from large amounts of data [7, 8]. Network
pharmacology is a technique based on systems biology, mul-
tiple pharmacology, histology, and other disciplines to ana-
lyse biological systems and drug targets and select specific
signalling nodes for multi-target drug molecule design [9].
Molecular docking is a technique for finding low-energy
binding modes of ligands to known receptors through the
characteristics of the receptor and the interactions between
the receptor and the drug molecule [10].

Therefore, this study collects TCM commonly used in the
clinical treatment of PMO through data mining techniques,
analyses their drug composition, screens the core drugs, elu-
cidates the mechanism of action and association between the
drugs and the disease through network pharmacology and
molecular docking methods, and analysis and predicts their
possible mechanisms of action to provide some reference for
subsequent treatment and research work in the clinical set-
ting.

2. MATERIALS AND METHODS
2.1. Literature Data Mining
2.1.1. Documentary Sources

Searches were conducted in CNKI, VVIP, Pubmed,
WanFang Database, and Web of Science databases for
'Postmenopausal Osteoporosis', 'PMO', 'Traditional Chinese
Medicine', 'Chinese Medicine', and 'Integrative Chinese and
Western Medicine', starting from the date of creation of each
database to May 18", 2022. All literature (6,135) was de-
weighted to obtain 3,454 documents, from which a total of
117 documents were screened for clinical observations that
met the criteria, involving data extraction and entry by two
independent personnel. The search and analysis processes
are shown in Fig. (1).

2.1.2. Inclusion Criteria

(1) The sample must be clinical patients and must meet
the diagnostic criteria for PMO in both Chinese and Western
medicine; (2) The drugs used are oral compound prepara-
tions of TCM; (3) The trial design and statistical methods are
scientifically valid; (4) Only one article with different names
of the same formula or duplicate literature is included; (5)
The name and dosage of the TCM must be clear in the litera-
ture; (6) The treatment efficiency must be > 80%.
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2.1.3. Exclusion Criteria

(1) Doctoral or master's theses, reviews, medical cases,
test cases, case studies and other types of information, (2)
animal experiments and basic research, (3) invalid test re-
sults or lack of clinical information, and (4) those with other
diseases or complications.

2.1.4. Standardisation of TCM

The 2020 edition of the Chinese Pharmacopoeia is used
as the standard to standardise the names of the TCM con-
tained in the prescriptions, such as 'Glycyrrhizae Radix Et
Rhizoma Praeparata Cum Melle' and 'Glycyrrhizae Radix Et
Rhizoma' being standardised as 'Glycyrrhizae Radix Et Rhi-
zoma', to prevent the analysis results from being affected by
the different preparation methods or aliases of the drugs.

2.1.5. Prescription Entry and Data Analysis

The prescriptions that met the criteria were entered one
by one into the module 'TCMISS V2.5 Software' - 'Platform
Management' - 'Formulary Management' to create a 'PMO
Formulary Database'. Two independent persons were re-
sponsible for entering the information and reviewing the data
at the end of the entry. Traditional Chinese Medicine Inher-
itance Support System (TCMISS) V2.5 is widely used for
the analysis of TCM prescription data. The software inte-
grates general statistics, text mining, association rules, and
entropy clustering methods for complex systems [11]. The
frequency of drug use, flavour and meridian tropism, formu-
la patterns, core combinations, and potential new prescrip-
tions were analysed using the 'Data Analysis' and 'Statistical
Reports' modules. The drug combination pattern with the
highest confidence level was selected for the study of the
mechanism of action.

2.2. Network Pharmacology and Molecular Docking Analysis

2.2.1. Screening of 'SZY-YYH-SDH' Active Compounds
and Predicted Targets

The TCM Systems Pharmacology Database and Analysis
Platform (https://tcmsp-e.com/) is a systems pharmacology
platform for TCM, which provides interactive data on the
relationships between drugs, targets, and diseases. The plat-
form also provides information on the pharmacokinetic ef-
fects of chemicals, targets, and drug target networks as well
as natural compounds, including drug similarity (DL), oral
bioavailability (OB), intestinal epithelial permeability, water
solubility, and blood-brain barrier permeability. OB > 30%
and DL values > 0.18 were used as criteria for screening the
active ingredients of SZY, YYH, and SDH TCM. Com-
pounds meeting the OB and DL thresholds were used as ac-
tive compounds for subsequent studies and analysis.

The 'Related targets' module in TCMSP was used to re-
trieve the relevant targets for the above active compounds
and the UniProt (http://www.UniProt.org/) database was
used to convert the target protein names to the official sym-
bols of the gene targets. Active ingredients not present in the
'related targets' module were entered into the PubChem data-
base, their Canonical SMILES sequence numbers were ob-
tained and the SwissTargetPrediction database (http: //www.
swisstargetprediction.ch) was used to predict their protein
targets. The predicted targets were aggregated and
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Fig. (1). Flowchart of retrieval analysis. (4 higher resolution / colour version of this figure is available in the electronic copy of the article).

de-weighted to create the 'SZY-YYH-SDH' predicted target
set by removing the components without targets. To scientif-
ically and rationally explain the relationship between com-
pounds and targets, Cytoscape 3.9.1 (https://www.cytoscap
e.org/) was used to construct the 'drugs-component-target'
network interoperability map.

2.2.2. Establishment of a Database of PMO Disease Targets

Different series of samples were searched in the Gene
Expression Omnibus dataset (GEO: www.ncbi.nlm.nih.gov/g
eo/) to obtain mRNA expression profiles between PMO and
normal samples (GSE161361). Differential genes (DEGs)
between disease and normal samples were detected using the
platform's GEO2R with screening thresholds of |[logFC| > 1
and P < 0.05, while volcano plots of DEGs were obtained. In
addition, searches were performed in the GeneCards data-
base (http://www.genecards.org/), and the Therapeutic Tar-
gets database (TTD, http://db.idrblab.net/ttd/) was used using
the keyword Postmenopausal Osteoporosis and de-
duplicated to create the PMO disease target dataset.

2.2.3. Construction and Parametric Analysis of Protein-
protein Interaction (PPI) Networks

The intersection between the predicted targets of 'SZY-
YYH-SDH' and PMO disease targets was obtained using the

bioinformatics online tool (http: //www.bioinformatics.com.c
n). The intersection targets were imported into the STRING
database (http://string-db.org), with the species limited to
'Homo sapiens' and the confidence score set to >0.400. Then,
it was saved in TSV format and imported into Cytoscape
3.9.1 software to construct a PPI network. Three key topo-
logical parameters were selected for the selection of core
targets based on PPI networks: Degree centrality (DC),
Closeness centrality (CC), and Betweenness centrality (BC).
The values of the three parameters indicate the importance
and influence of the relevant nodes in the whole network.
The core nodes in the PPI network were selected according
to the criteria of DC > 2x median and CC and BC > median.

2.2.4. GO, KEGG Enrichment Analysis and Target Organ
network Analysis

The intersecting targets under '1.2.3" were entered into
the DAVID database (https://david.ncifcrf.gov), which is
useful for annotation, visualisation, and integrated discovery.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGQG) enrichment analyses were performed on
the intersecting targets, and the GO and KEGG enrichment
results were visualised using the online mapping platform
Microsign. To elucidate the complex associations between
TCM, active compounds, targets, pathways, and diseases, we
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Table 1. TCM for PMO with a frequency > 20.
Rank Name of the Medicine Frequency | Average Dose (g) | Rank Name of the Medicine Frequency| Average Dose (g)
1 Rehmanniae Radix Praeparata 78 22.67 13 | Salviae Miltiorrhizae Radix Et Rhizoma 38 21.18
2 Epimedii Folium 75 14.00 14 Corni Fructus 37 11.94
3 Drynariae Rhizoma 61 13.95 15 Poria 36 17.38
4 Angelicae Sinensis Radix 57 14.92 16 Atractyodis Macrocephalae Rhizoma 31 12.32
5 Astragali Radix 56 21.82 17 Cuscutae Semen 28 18.46
6 Eucommiae Cortex 56 16.62 18 Chuanxiong Rhizoma 26 10.65
7 Achyranthis Bidentatae Radix 49 18.42 19 Paconiae Radix Alba 25 14.52
8 Psoraleae Fructus 48 15.97 20 Codonopsis Radix 25 15.36
9 Dioscoreae Rhizoma 45 15.86 21 Cervi Cornus Colla 22 20.86
10 Lycii Fructus 43 16.86 22 Cistanches Herba 22 15.27
11 Glycyrrhizae Radix Et Rhizoma 43 7.23 23 Testudinis Carapax Et Plastrum 21 29.47
12 Dipsaci Radix 40 16.97 24 Morindae Officinalis Radix 21 11.90
Table 2.  Statistics on the four qi and five flavours of drugs used in the treatment of PMO.
Rank Four Qi Frequency Rank Five Flavours Frequency

1 Warm 807 1 Sweet 967

2 Neutral 372 2 Bitter 538

3 Cold 196 3 Pungent 471

4 Heat 36 4 Sour 129

5 Cool 33 5 Salty 83

- - - 6 Astringent 69

used Cytoscape 3.9.1 software to construct and analyse a
'drugs-active compound-target-pathway-disease' interaction
network map.

2.2.5. Target Organ Network Construction

As the metabolism of 'SZY-YYH-SDH' in vivo is not
known, its therapeutic effect on PMO may involve multiple
organs, tissues, and immune cells in the body. Therefore, we
used the BioGPS database (https://biogps.org) to analyse the
mRNA levels of the intersecting targets under '1.2.3' in each
organ and tissue. The data in BioGPS were obtained from
microarray analysis. The target organ network was con-
structed using Cytoscape 3.9.1.

2.2.6. Molecular Docking Validation

The PDB format and SDF format of the receptor and lig-
and proteins were obtained from the RCSB PDB database
(https://www.pdb.org/) and PubChem database (https://pub
chem.ncbi.nlm.nih.gov/), respectively, and the format con-
version was completed using OpenBabel 3.1.1 software. The
molecular docking was verified by AutoDockTools 1.5.6 and
Autodocak vina software, and dehydration and hydrogena-
tion were performed using PyMOL software. The docking

results were processed using PyMOL and Ligplot software,
and the interaction and binding patterns were visualised [11-
29].

3. RESULTS
3.1. Literature Mining Results
3.1.1. Frequency of Drugs

A total of 117 papers met the inclusion and exclusion cri-
teria, from which 119 prescriptions involving a total of 156
drugs were extracted. The frequency of occurrence of each
drug was counted, and a total of 24 drugs with a frequency
>20 were listed, with the top 5 being Rehmanniae Radix
Praeparata, Epimedii Folium, Drynariae Rhizoma, Angelicae
Sinensis Radix and Astragali Radix, respectively (Table 1).

3.1.2. Statistical Analysis of the Four qi, Five Tastes and
Attribution of Drugs

Statistics on the four qi and five flavours of 156 drugs are
presented in Table 2 and Figs. (2A and B). The frequencies
of warm, neutral, cold, heat, and cool drugs were 807, 372,
196, 36, and 33, and the frequencies of sweet, bitter, pungent,
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Fig. (2). Statistical diagrams of the four qi, five tastes, and the attribution of meridians in drugs for PMO. (A): Statistical chart of the Four Qi
of Chinese herbal medicinal drugs for PMO; (B): Statistical chart of the five tastes of Chinese herbal medicinal drugs for PMO. (C): Statisti-
cal chart of the attribution of Chinese herbal medicinal drugs to the meridians for PMO. (4 higher resolution / colour version of this figure is

available in the electronic copy of the article).

TCM for PMO with a frequency >20.

Table 3.
Rank Core Portfolio 1 Rank Core Portfolio 2 Rank New Formulation Composition
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sour, salty, and astringent drugs were 967, 538, 471, 129, 83,
and 69, respectively. According to the statistics of the drug's
meridians (Fig. 2C), the top 5 meridians were liver, kidney,
spleen, heart, and lung; among them, the frequency of the
liver meridian was 993, the highest among them.

3.1.3. Analysis of Core Combinations and Composition of
New Formulations

The data were analysed according to the number of pre-
scriptions and drugs, combined with different correlation and
penalty parameters. When the correlation degree was set to 8
and the penalty degree to 3, the results were more in line
with clinical practice. Six groups each of 2 different core

combinations were extracted by complex system entropy
clustering analysis; based on the results of the improved mu-
tual information method, the correlation coefficients between
the two drugs were obtained by the analysis method of com-
plex system entropy clustering, followed by cluster analysis
to obtain 6 potential new prescriptions from 119 prescrip-
tions (Table 3).
3.1.4. Research on the Composition Pattern of Prescriptions
based on Association Rule Analysis

Based on the Apriori association rule algorithm, the

higher the number of support (the number of support is the
frequency of drug combinations occurring in the selected
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Fig. (3). Diagram of the drug-compound-target interaction network. (4 higher resolution / colour version of this figure is available in the

electronic copy of the article).

prescription), the better it reflects the association between
the core drugs. The higher the confidence level (confidence
level is the probability that the drug on the left side of the
'—' appears at the same time as the drug on the right side) is
close to 1, the more frequently the drug on the left side of the
'—' appears at the same time as the drug on the right side. By
using the system's 'pattern of combination' analysis function
and setting the support level to 25 and the confidence level
to 0.90, a total of 48 pairs of drug combination patterns with
frequencies > 25 were obtained, sorted in descending order
of drug combination frequency (Table S1); at the same time,
a total of three rules for the use of commonly used drugs
were obtained (Table 4).

Table 4.  Statistics on core combinations and new formula
composition in the treatment of PMO in TCM.
Rank Medication Association Rules Confidence
1 Corni Fructus—Rehmanniae Radix Praeparata | 0.945945946
) Corni Fructus, Epimedii Folium—Rehmanniae 0.961538462

Radix Praeparata

3 Corni Fructus, Dlosc?reae Rhizoma—Rehmanniae 0.931034483
Radix Praeparata

As shown in Table 4, 'SZY-YYH-SDH' was the highest
confidence level, so this study focused on this dosing pattern
to predict and analyse its specific mechanism of action.

3.2. Prediction and Analysis of the Mechanism of Action
of Core Combinations

3.2.1. Active Compounds and Potential Targets of 'SZY-
YYH-SDH'

A total of 45 active compounds of the three drugs 'SZY-
YYH-SDH' were obtained from the TCMSP database, of

which SZY, YYH, and SDH contained 20, 23, and 2 com-
pounds, respectively, and 15, 23, and 2 compounds, respec-
tively, after neglecting the components without predicted
targets, for a total of 36 compounds after de-weighting. The
TCMSP database and SwissTargetPrediction database were
used to obtain the potential targets corresponding to the
above active ingredients. Among them, 207 were SZY, 510
were YYH and 34 were SDH, for a total of 305 after de-
duplication (Table S2). Each drug, its active compounds, and
corresponding targets were imported into Cytoscape 3.9.1 to
establish a 'drugs-compound-target' interactions network
containing 344 nodes and 784 edges (Fig. 3).

3.2.2. PMO Disease Targets

We screened for DEGs between PMO samples and nor-
mal samples in the GSE161361 dataset at [logFC| > 1 and P
< 0.05 (Fig. 4A). A total of 5580 genes (Table S3) were
identified in the analysis, of which 3837 were up-regulated
and 1743 were down-regulated. In addition, a total of 917
disease targets were obtained through the Genecards, TTD
database, with 914 after de-duplication. A total of 153 cross-
targets were obtained after intersecting the disease targets
obtained from GEO with those from Genecards and TTD
using the bioinformatics online tool (Fig. 4B), which was
used to build the PMO disease target dataset.

3.2.3. Construction and Analysis of PPI Networks

The intersection of PMO disease targets and the predict-
ed targets of 'SZY-YYH-SDH' was obtained using the bioin-
formatics online tool, and a total of 24 cross-targets were
obtained (Fig. 5A). To explore the mechanism of action of
'SZY-YYH-SDH' in the treatment of PMO, the 24 targets
were imported into the String database to construct a PPI
network (Fig. 5B). The network consisted of 110 nodes and
1108 edges with median DC, CC, and BC values of 6.500,
0.560, and 3.819, respectively. We selected 10 core targets
based on topological analysis with the criteria of DC > 2x
median, CC and BC > median (Table S4), from which the
core target network was constructed (Fig. 5C).
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3.2.4. GO, KEGG Enrichment Analysis

We performed GO and KEGG enrichment analysis on 24
targets in the PPI network. The GO enrichment results in-
cluded a total of three categories: biological process (BP),
molecular function (MF), and cellular component (CC).
Among them, 184 items were BP, 39 were MF, and 26 were
CC. The top 20 BP, MF, and CC items in terms of P-value
are shown in the form of bubble plots (Figs. 6A-C). The top
5 P-Value ranked items in each category are presented in a
bar chart (Fig. 6D). The above information is summarized in
Table (S5). BP mainly relates to the positive regulation of
transcription, DNA-templated, positive regulation of protein
phosphorylation, etc. MF relates to identical protein binding,
enzyme binding, protease binding, efc. CC relates to macro-
molecular complex, synapse, membrane raft, etc.

Twenty-four common targets were assessed by KEGG
pathway enrichment analysis (P <0.05 for significance lev-
el). They were enriched to a total of 83 pathways (Table S6).
We visualized the pathways with the top 20 P-value values
(Fig. 7A and B). Among them, the pathway with the lowest
P-value was EGFR tyrosine kinase inhibitor resistance, and
the others were the PI3K-Akt signalling pathway, Hepatocel-
lular carcinoma, Endometrial cancer, etc.

We selected five significant pathways from the KEGG
enrichment analysis (PI3K-Akt signalling pathway, Focal
adhesion, HIF-1 signalling pathway, Thyroid hormone sig-
nalling pathway, and Estrogen). The 'drugs-component-
target-pathway-disease' network was mapped using Cyto-
scape 3.9.1 (Fig. 7C). The network contained 48 nodes and
148 edges. The CytoHubba plug-in was used to analyse the
parameters of each node in the network, and the top 5 tar-
gets, components, and pathways with Degree values are
shown in the Table. The Sankey diagram was constructed
using the bioinformatics online tool based on the linkage
between target genes and enrichment pathways (Fig. 7D),
and the PI3K-Akt signalling pathway map was rendered us-
ing 'PathView' (Fig. 8).

3.2.5. Target Organ Network Analysis

We assessed the mRNA levels of 24 targets in tissues and
organs, which showed a significant increase in mRNA lev-
els, mainly in 76 tissues and organs associated with PMO. Of
these, those involving a high number of endocrine system
targets were Thyroid (11), Pineal-night (12), Pineal-day (11),
and PancreaticIslet (9); TestisSeminiferousTubule (9) in the
male reproductive system, Prostate (11), Spinal cord (9) in the
central nervous system, SmoothMuscle (10) in the vegetative
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article).

nervous system; 721 B lymphoblasts (14), Lympho-
ma_burkitts (Raji) (9) in the lymphatic system (9); Lung (9)
in the respiratory system; Liver (14), Colorectaladenocarci-
noma (10), Colon (11) in the digestive system; Heart (10) in
the circulatory system; CD105+ Endothelial (10), CD10
4 Monocytes (10), CD14+ Monocytes (10), CD33+ Mye
loid (13), CD34+ (9), CD56+ NKCells (13) in the immune
system. The results suggest that the therapeutic effect of
'SZY-YYH-SDH' on PMO may involve multiple systems in
the body and that these tissues and organs are closely related
to the targets of 'SZY-YYH-SDH' intervention. Target site
and tissue organ information are provided in Table S7. The
above information was used to construct the target-organ
network diagram (Fig. 9), which contains a total of 100
nodes and 455 edges.

3.2.6. Molecular Docking Validation

We evaluated the binding between the screened active
drugs and targets by molecular docking to validate the above
data mining and network pharmacology predictions. We
crossed the targets enriched by the PI3K-Akt signalling
pathway with the core nodes in the PPI network and selected
six intersecting targets as the recipient pairs (VEGFA,

TPP53, AKT1, EGFR, MAPK1, and PTEN). The top 5 ac-
tive ingredients (Quercetin, Luteolin, Stigmasterol, Sitos-
terol, and Chryseriol) in the 'drugs-component-target-
pathway-disease' network were used as docking ligands and
their binding ability was predicted by AutoDock Tools soft-
ware, as provided in Tables (S8 and S9), respectively. The
binding energy between each respective protein and com-
pound was plotted as a heat map (Fig. 10).

It is generally considered that binding energy <-1.2
kcal-mol-1 indicates good binding activity between receptors
and ligands. In this study, receptors and ligands with binding
energies <-9.0 kcal-mol-1 were Quercetin-PTEN, Stigmas-
terol-EGFR, Stigmasterol- PTEN, Sitosterol - EGFR, Sitos-
terol - PTEN, and the docking results were visualized in 2D
and 3D using Ligplot and Pymol software for their hydrogen
bonding and hydrophobic interactions (Fig. 11).

4. DISCUSSION

In this study, the literature on TCM for PMO was col-
lected from multiple databases through the TCMISS V2.5
software. The prescriptions that met the criteria of 'oral' and
'Chinese medicinal preparation’' were screened, and the drug
combination with the highest confidence level, namely
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'SZY-YYH-SDH!', was selected after data analysis. We then
used the TCMSP and SwissTargetPrediction databases to
predict and screen the main active ingredients of the three
drugs and their targets and established the 'SZY-YYH-SDH'
target dataset. The OMIM, GeneCards, and GEO databases
were also used to search for targets related to PMO, and a
disease target dataset was established. Their targets were
intersected and imported into the STRING database to create
PPI network diagrams and imported into Cytoscape 3.9.1
software for visualization. A total of 10 core targets were
screened using the CytoHubba plug-in with the criteria of
DC > 2 times median, CC and BC > median. The 24 inter-
secting targets were imported into the DAVID 6.8 database
for GO, KEGG enrichment analysis, and finally, the pathway
represented by the PI3K-Akt signalling pathway was ob-
tained. They were also imported into the BioGps database
for analysis of their distribution in human target organs. Fi-
nally, the targets enriched to the five core drug components
(Quercetin, Luteolin, Stigmasterol, Sitosterol, Chryseriol)
and PI3K-Akt signalling pathway were validated using Au-
toDockTools 1.5.6 and Autodocak vina, with the core PPI
network in the molecular docking validation of six intersect-
ing targets (VEGFA, TP53, AKT1, EGFR, MAPK1, PTEN)
of the node showing that there was a tight binding relation-
ship among EGFR, PTEN and Quercetin, Stigmasterol, Si-
tosterol, three components. The results of the molecular
docking were visualised and analysed in 2D and 3D using
Ligplot and Pymol software.

In this study, the active ingredients with the top 5 De-
grees in the 'drugs-component-target-pathway-disease' net-
work were screened. Quercetin is a flavonoid with a variety
of pharmacological effects, including anti-inflammatory,
antioxidant, and cardiovascular protection [12]. Yuan et al.
found that Quercetin promoted BMSC proliferation and os-
teogenic differentiation and increased BMD and improved
bone biomechanical properties in a devitalized rat model,
possibly through inhibition of TNF-a, leading to nuclear
factor-kB (NF-«B) activation and degradation of f -linked
proteins by Quercetin [13]. Luteolin is also a flavonoid with
a variety of pharmacological effects, including anti-
inflammatory and anti-cancer [14, 15]. Kim et al. found that
Luteolin reduced the differentiation of bone marrow mono-
cytes and Raw264.7 cells into osteoclasts and inhibited oste-
oclast bone resorption [16]. Stigmasterol is a phytosterol
with pharmacological properties that have a variety of phar-
macological effects, such as anti-inflammatory, anti-
atherosclerotic, and immunomodulatory [17-19]. Sitosterol is
a major phytosterol found in plants and has been claimed for
centuries to have many medical benefits, including anti-
inflammatory, anti-allergic, and other pharmacological ef-
fects [20]. Wang et al. found that B-Sitosterol treatment of a
rat model of glucocorticoid-induced osteoporosis attenuated
the increase in bone resorption markers and the decrease in
osteogenic markers, possibly due to 3 -Sitosterol's ability to
mediate the regulation of the nuclear factor kappa-f lig-
and/osteoprotegerin and RunX2 pathways [21]. Chryseriol is
a natural flavonoid with pharmacological effects, such as
antioxidant, anti-inflammatory, and immunomodulatory
[22]. Tai et al. found that Chryseriol significantly increased
the growth of MC3T3-E1 cells and caused a significant ele-
vation of alkaline phosphatase activity, collagen content, and

nodule mineralization in the cells, confirming that Chryseriol
may help prevent the development of osteoporosis [23].

The targets we enriched through the PI3K-Akt signalling
pathway have a total of six intersecting targets with core
nodes in the PPI network, namely VEGFA, TP53, AKTI,
EGFR, MAPKI1, and PTEN. Vascular endothelial growth
factor A (VEGFA) is a heparin-binding pleiotropic cytokine
produced by many cell types in the bone microenvironment,
including endothelial cells and osteochondral lineage cells
[24]. Yu et al. found that miR-16-5p was a target gene of
VEGFA and showed a negative correlation with VEGFA
[25]. Tumour protein p5S3 (TP53) is a transcription factor that
is associated with cell cycle arrest, apoptosis, and metabo-
lism and acts mainly as a suppressor of tumours [26-28]. Yu
et al. [29] found that TP53 gene expression and serum p53
levels were upregulated in osteoporotic patients and mouse
models of osteoporosis. It was also reported that hMSCs
from patients with osteoporosis showed significantly higher
expression of TP53 [25]. These findings suggest that p53
may play a central role in the development of osteoporosis.
Akt is a family of three serine/threonine protein kinases
(Aktl, Akt2, and Akt3) that regulate a host of cellular func-
tions, including cell survival, proliferation, differentiation,
and intermediary metabolism [30], and AKT1 is an overac-
tive proto-oncogene in many cancers and is an important
promoter of osteoblast-osteoclast coupling [31, 32]. Wang et
al. demonstrated that Tanshinone modulates AKTI, pro-
motes proliferation, and inhibits apoptosis in MSCs cells,
and confirmed that Tanshinone ameliorates glucocorticoid-
induced bone loss via activation of the AKTI1 signalling
pathway [33]. Epidermal growth factor receptor (EGFR)
signalling is essential for tissue homeostasis and when acti-
vated, stimulates intracellular signalling cascades, such as
Mitogen-activated protein kinases (MAPKs) and PI3Ks,
which significantly affect cell behavior [34, 35]. Previous
studies have found that EGFR-specific inhibitors or knock-
down of EGFR in osteoblasts blocked EGFR activity in
mice, leading to impaired bone formation [36]. In contrast,
studies by Chandra and Yang et al. both found that osteo-
blast proliferation and apoptosis were regulated by the acti-
vation of EGFR, thereby promoting bone formation [37, 38].
MAPKSs play an important role in cell proliferation, differen-
tiation, and apoptosis as well as in the regulation of inflam-
mation [39], while MAPKI1 is a common gene in pathways,
such as reactive oxygen species, PI3K-Akt signalling path-
way, and TNF signalling pathway [40]. Xiao et al. found
[41] that puerarin relies on the MAPK/NF-kB signalling
pathway to inhibit osteoclastogenesis and thereby prevent
bone resorption. The PTEN gene encodes a tumour suppres-
sor protein that regulates the biological functions of many
malignant tumours [42].

KEGG enrichment analysis of 24 intersecting targets of
PMO 'SZY-YYH-SDH' further revealed that the drug mole-
cules could exert regulatory effects through multiple path-
ways, including PI3K-Akt signalling pathway, focal adhe-
sion, HIF-1 signalling pathway, thyroid hormone signalling
pathway, and estrogen signalling pathway. Among them, the
PI3K/Akt signalling pathway is an important mitogenic sig-
nalling pathway that plays an important role in a variety of
cellular processes, including growth, survival, proliferation,
and activity [43]. Akt has been reported to be closely associ-
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ated with skeletal development, which is significantly de-
layed when the Aktl gene is knocked out in rats, while
downstream of Akt signalling can be regulated by regulating
mTORC1/S6K1 protein to promote osteoblast differentiation
and inhibit osteoblast apoptosis [44]. In addition, the
PI3K/AKT pathway activates gene expression of osteogenic
differentiation markers, such as OPN, ALP, and BMP-2,
thereby promoting osteoblast differentiation and prolifera-
tion [45]. Conversely, it has been demonstrated that osteo-
clast differentiation and bone resorption capacity can be in-
hibited by inhibiting PI3K/AKT signaling [46]. Focal adhe-
sions are specialized structures at the cellular-extracellular
matrix contact points, where bundles of actin filaments are
anchored to transmembrane receptors of the integrin family
through a multimolecular complex of junctional plaque pro-
teins, and are essential for bone development and osteocyte
mechanotransduction [47, 48]. HIF-a pathway is the central
regulator of the adaptive response to low oxygen levels and
also plays a key role in angiogenesis-osteogenesis coupling
[49]. Thyroid hormone signalling pathways have also been
shown to play a key role in the regulation of bone growth,
with thyroid hormone regulating other types of bone cells,
such as chondrocytes, osteoblasts, osteoclasts, and insulin-
like growth factor 1 [50, 51], while in most hyperthyroid
states, low levels of thyroid stimulating hormone can directly
affect bone [52]. It is well known that the decrease in estro-
gen levels after menopause is one of the main causes of os-
teoporosis in female patients [53]. Estrogen activates the
Estrogen signalling pathway, and not only regulates bone
resorption and promotes bone formation, but also regulates
the differentiation of bone marrow mesenchymal stem cells
into osteoblasts, maintaining the metabolic balance of bone
cells [54, 55].

Molecular docking results showed that the binding ener-
gies between Quercetin-PTEN, Stigmasterol-EGFR, Stig-
masterol- PTEN, Sitosterol - EGFR, and Sitosterol - PTEN
were all < -9.0 kcal-mol-1, indicating good binding between
the components and targets activity. As shown in Fig. (7),
Quercetin is derived from YYH, Stigmasterol from SZY and
SDH, while Sitosterol belongs to the same three drugs.
Therefore, we can speculate that the 'SZY-YYH-SDH' can
act on PTEN and EGFR through Quercetin from YYH,
Stigmasterol from SZY and SDH, Sitosterol from YYH,
SZY, and SDH, and on PMO through the PI3K-Akt signal-
ling pathway.

CONCLUSION

In this study, the active ingredients and potential targets
of 'SZY-YYH-SDH' for the treatment of PMO were searched
and analyzed. A total of 24 core nodes were identified, a PPI
interaction network map was established, and the functions
of the targets were correlated. In addition, this study
screened five important components for the treatment of
PMO, namely Quercetin, Luteolin, Stigmasterol, Sitosterol,
and Chryseriol, and verified their binding activities with the
core targets EGFR and PTEN using molecular docking tech-
niques. In conclusion, this analysis by data mining, network
pharmacology, and molecular docking techniques can pro-
vide some basis and reference for subsequent clinical studies
on the treatment of PMO.
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