
Proceedings of Machine Learning Research vol 132:1–49, 2021 32nd International Conference on Algorithmic Learning Theory

Online Learning of Facility Locations

Stephen Pasteris S.PASTERIS@CS.UCL.AC.UK
University College London, London, UK

Ting He T.HE@CSE.PSU.EDU
Pennsylvania State University, University Park, PA, USA

Fabio Vitale FABIO.VITALE@INRIA.FR
University of Lille & INRIA, Lille, France

Shiqiang Wang WANGSHIQ@US.IBM.COM
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Mark Herbster M.HERBSTER@CS.UCL.AC.UK

University College London, London, UK

Editors: Vitaly Feldman, Katrina Ligett and Sivan Sabato

Abstract
In this paper, we provide a rigorous theoretical investigation of an online learning version of the
Facility Location problem which is motivated by emerging problems in real-world applications. In
our formulation, we are given a set of sites and an online sequence of user requests. At each trial,
the learner selects a subset of sites and then incurs a cost for each selected site and an additional cost
which is the price of the user’s connection to the nearest site in the selected subset. The problem
may be solved by an application of the well-known Hedge algorithm. This would, however, require
time and space exponential in the number of the given sites, which motivates our design of a novel
quasi-linear time algorithm for this problem, with good theoretical guarantees on its performance.
Keywords: Machine learning, Online optimisation, Facility location problem

1. Introduction

In this paper we consider an online learning version of the Facility location problem where users
need to be served one at a time in a sequence of trials. The goal is to select, at each trial, a subset
of a given set of sites, and then pay a loss equal to their total “opening cost” plus the minimum
“connection cost” for connecting the user to one of the sites in the subset. More precisely, we are
given a set of N sites. At the beginning of each trial, an opening cost and a connection cost for
the arriving user are associated with each site and are unknown. At each trial, the learner has to
select a subset of sites and incurs a loss given by the minimum connection cost over the selected
sites plus the sum of the opening costs of all selected sites. After each subset selection, the opening
and connection costs of all sites are revealed.

To solve this problem, we design and rigorously analyse an algorithm which belongs to the
class of online learning algorithms that make use of the Exponentiated gradient method (Kivinen
and Warmuth, 1997). We measure, and rigorously analyse, the performance of our method by
comparing its cumulative loss with that of any fixed subset of sites. Moreover, our algorithm is very
scalable: it requires a per-trial time quasi-linear in N and logarithmic in the number of trials, and
requires a total space linear in N .

c© 2021 S. Pasteris, T. He, F. Vitale, S. Wang & M. Herbster.

ONLINE LEARNING OF FACILITY LOCATIONS

The Facility location problem is one of the most well-studied problems in the Operations Re-
search literature (Cornuéjols et al., 1990; Laoutaris et al., 2007; Shmoys et al., 1997). In this work
we focus on an online version of this problem, which encompasses problems where both the opening
and connection costs of the sites change over time. As far as we are aware, this is the first investi-
gation of this online learning version of the Facility location problem. Our formulation is general
and very natural, and can model several real-world applications. In the mobile edge computing con-
text, computing capabilities are pushed from the centralised cloud to the network edge (Wang et al.,
2018, 2015, 2019). The users that need to be served move dynamically and the main challenge
consists in reducing the user-perceived latency. In our problem formulation, the connection cost of
the sites and can be interpreted as the transmission cost. The opening costs can be viewed as arising
from the cost incurred by the resource contention among different service entities. It is natural to
assume that this cost grows proportionally to its demand and that it commonly cannot be deduced
from information available before having to select the subset of sites.

Concrete problems like selecting and matchmaking groups of players with low latency to each
other in online multiplayer gaming can also be cast into this framework. This is a very challenging
problem because of the real-time interaction required for online computer games, the difficulties in
predicting user request locations and the lack of guarantees of timely delivery and network capacity,
which in turn can be viewed as related to the connection costs of the sites in our formulation.
Another example is represented by robo-taxis (self-driving taxis) services which are being piloted
in a number of major metropolitan areas. In this example, the connection cost of each site can
be viewed again as depending on several unpredictable variables which will be typically revealed
after the service is used. Furthermore, the opening cost, i.e., the cost of activating a service, can be
viewed, for instance, as arising by different services competing for the same resources.

More generally, the connection cost for each site can be viewed as defined by the fixed location
of the site (e.g., an edge server (Wang et al., 2019)) and the location of the current service request
(e.g., the edge server directly covering the requesting user). Then, each trial corresponds to the
service of one request, which is assumed to be delay-sensitive and needs to be served immediately
(e.g., matchmaking requests for multi-player online games). This interpretation implies that our
formulation models a discrete event-driven system, where each trial starts with the placement of
the service and ends with the arrival of a new request, not necessarily from the same user. This
justifies the assumption of arbitrarily changing connection costs, although the location of a real user
will have a temporal correlation. Switching from one service placement to another generally incurs
some operation cost and some delay. In this work, we assume that the service is stateless (i.e., no
migration needed) so that the operation cost is mainly the cost of activating the service at the newly
selected sites. Furthermore, we assume that the inter-arrival time between consecutive requests is
relatively large compared to the service switching time, so that the switching delay can be ignored
(we leave the consideration of switching cost/delay to future work).

We point out that our problem formulation is not restricted to two-dimensional (geographic)
distances, nor even metric spaces. Our formulation captures opening and connection cost models
that are very general. More specifically, the connection costs in our model are not required to be
metric-conforming.

2

ONLINE LEARNING OF FACILITY LOCATIONS

1.1. Related Work

Our problem is an online learning version of the classic “(Uncapacitated) Facility Location Prob-
lem” (FLP) (Cornuéjols et al., 1990; Laoutaris et al., 2007; Shmoys et al., 1997) in which all costs
and all T users are given a-priori and the aim is to select a set of sites that approximately minimises
the sum of the “opening costs” of those sites plus the sum of the minimum “connection cost” from
each user to the selected sites. With no other assumptions it has been shown that, by reduction of
the “Weighted Set Cover problem” (Chvatal, 1979) to FLP, it is impossible (unless P=NP) to get
a polynomial-time algorithm that obtains an approximation ratio better than logarithmic in T in
general (Dinur and Steurer, 2014).

FLP reduces to the Weighted Set Cover (WSC) problem, in which the greedy algorithm for set
cover can give an approximation ratio that is logarithmic in T . In the reduction, each subset of users
appears N times: each time with a corresponding site. Given a subset of users and a site, the weight
of that instance of the subset is equal to the opening cost of the site plus the sum of the connection
costs (to that site) of the users in the subset. Although the size (i.e., the number of given subsets)
of the equivalent WSC problem is exponential in T , the greedy algorithm will, on each iteration,
only select a subset from one of NT known subsets (where N is the number of possible sites) and
will hence run in polynomial time. When the distances satisfy the requirement of a metric (which
is not enforced in our problem), then constant approximation ratio algorithms for FLP are known
(Charikar and Guha, 1999; Guha and Khuller, 1998; Jain and Vazirani, 2001).

Algorithms have been developed for online linear optimisation where the set of allowed vectors
is an arbitrary compact subset of Rm (Fujita et al., 2013; Kakade et al., 2009; Kalai and Vempala,
2003; Hazan et al., 2018). These algorithms utilise an α-approximation algorithm for the offline
linear optimisation problem. The Online learning of a Weighted Set Cover (OWSC) is such a
problem and the greedy algorithm is a (ln(T) + 1)-approximation algorithm. Due to the reduction
of FLP to WSC, it would appear that this could solve our problem. Hence, we will now argue that
our problem does not reduce to OWSC in the way that FLP reduces to WSC (albeit with a number
of sets exponential in T). On each trial we have a single user so the base set of WSC in the reduction
contains only the single user. This means that all sets in the reduction cover the base set. Since every
set in the cover corresponds to a single site, and the set covers the base set, the weight of that set
must be equal to the sum of the opening and connection costs of that site. The sum of the weights
of two sets therefore does not necessarily equal the loss incurred by selecting both those sites (in
our problem), which is equal to the sum of the opening costs of the sites plus the minimum (not the
sum) of their connection costs. Hence, OWSC does not correspond to our problem.

We will now discuss using offline algorithms with the well known “Follow The Leader” (FTL)
strategy for our problem. FTL is perhaps the most simple online learning algorithm: the action we
choose on any trial is that which would minimise the sum of the losses of the previous trials if it had
been selected on all those trials (we call this action “the leader”). Due to the NP-hardness of FLP
we cannot expect to be able to do FTL exactly (with an efficient algorithm) but we could use the
greedy algorithm (or constant factor approximation algorithms for metric cases) to approximate the
leader, and then use the approximate leader instead. However, doing this results in a deterministic
algorithm and we prove, in Section 10, that no deterministic algorithm can achieve the (expected)
loss bound of our algorithm. FTL hence does not have the performance guarantee of our algorithm,
even if the actual leader could be found. Optimisation oracles can, however, be used to give online
algorithms with good loss bounds via the “Follow The Perturbed Leader” (FTPL) strategy (Gonen

3

ONLINE LEARNING OF FACILITY LOCATIONS

and Hazan, 2019; Suggala and Netrapalli, 2020): but here the oracle is required to be optimal up to a
(small) constant additive factor which, as stated above, requires a super-polynomial time algorithm
(unless P=NP). Also, FTL/FTPL with the greedy strategy has a per trial time complexity of Θ(nT)
whilst that of ours is only Θ(n ln(n) ln(T)).

Another improvement over the FTL approach is that of “Hedge” (Freund and Schapire, 1995)
which maintains a weight for each possible action and draws, on any trial, an action with probability
proportional to its weight. Actions which have performed well so far have higher weights than
those that have not performed well. Unlike FTL, Hedge has a non-vacuous bound for our problem.
However, each subset of sites is an action so there are exponentially many, implying that Hedge has
an exponential time and space complexity. The idea of Hedge has been extended to algorithms such
as “Component Hedge” (Koolen et al., 2010) where, like our problem, each action is a subset of
a set of components (in our case the sites). However, Component Hedge assumes that the loss on
each trial is a weighted sum over the components in the action so cannot deal with the connection
cost (which is a minimisation over sites in the action). Like Hedge, our algorithm is one of a
family of algorithms that use the “Exponentiated Gradient method” (Kakade and Tewari; Kivinen
and Warmuth, 1997) to update probability distributions by using gradients.

A variant of FLP which is close in spirit to ours is the “Online Facility Location problem”
(OFL) (Fotakis, 2011; Cygan et al., 2018; Meyerson, 2001) which has been extensively studied.
In this problem, like in ours, the game runs over a set of trials, with a single user request on each
trial. In OFL, the costs are fixed and if a site has been selected on any trial it is selected on all
future trials and we pay its cost only once. In addition, our problem is different in a number of
other ways: 1) In OFL, the location of the next user is seen before choosing a potentially new site,
whilst in our problem the next user location is unknown. 2) In our problem, the opening costs vary
from trial to trial and are unknown, whilst in OFL, they are known and fixed. 3) OFL assumes the
connection costs satisfy the conditions of a metric, whilst ours does not have to. The two problems
are sufficiently distinct so that a methodology for one does not imply a methodology for the other.

Perhaps the closest work to ours is that of (the facility location special case of) “MaxHedge” (Pas-
teris et al., 2019a). In the problem that MaxHedge solves, the learner, like in our problem, picks
a subset of sites, each with unknown cost, and then a user appears. The difference from our prob-
lem is that, in the problem of MaxHedge, the user gives us a reward based on its distance rather
than giving us a penalty (the connection cost) based on distance. The objective is to maximise the
profit: which is the difference between the reward and the total cost of selecting the sites. Prob-
lems involving the maximisation of a profit are very different from those of minimising a loss, in
that having an α-approximation algorithm for one does not give an approximation algorithm for
the other. For example, suppose we have the problem of maximising an objective function y(·)
which takes values in [0, 1] and suppose that we have an α-approximation algorithm for the prob-
lem: for some α < 1. Then an equivalent minimisation problem is to minimise ȳ(·) := 1 − y(·).
Suppose then that the optimal feasible solution x∗ has y(x∗) = 1 − ε for some small ε > 0,
and that the approximation algorithm finds a feasible solution x with y(x) = α(1 − ε). Then
ȳ(x) = (1− y(x)) = (((1−α)/ε) +α)ε = (((1−α)/ε) +α)ȳ(x∗) so as ε→ 0 the approximation
factor for the minimisation problem limits to infinity. Hence, the problem of MaxHedge is very
different from ours. We now briefly compare the mechanics of the two algorithms. MaxHedge is
based on the online optimisation (via Projected gradient descent) of an objective function defined
on [0, 1]N whilst our algorithm is based on the online optimisation (via Exponentiated gradient de-
scent) of a very different objective function defined on the N -dimensional probability simplex. The

4

ONLINE LEARNING OF FACILITY LOCATIONS

objective functions of both algorithms are based on the sorting of sites introduced in (Pasteris et al.,
2019b). Both algorithms work by sampling sites from the (normalisation of the) vectors that result
from these online optimisations; but whilst the number of sites drawn by MaxHedge is proportional
to the one-norm of the vector, that of ours is necessarily fixed. Because of this, in order for our
algorithm to select arbitrarily sized sets of sites, we need additional mechanics: specifically the
introduction of “dummy sites” and a “doubling trick” (which itself generalises and improves the
analysis of that found in (Herbster et al., 2016)). The analysis of our algorithm is also very different
from that of MaxHedge.

It is also worth noting here that the additive-inverse of the total cost is sub-modular and online
approximate sub-modular maximisation has been well studied in the literature (Roughgarden and
Wang, 2018; Anari et al., 2019). However, the inapplicability of these methods is covered in the
above argument that approximately minimising a function is a different problem from approximately
maximising its additive-inverse (plus a constant).

1.2. Structure of the Paper

This paper is structured as follows. In Subsection 1.3 we define some of the notation that is used
throughout the paper. In Section 2 we introduce our problem and give the loss-bound of our algo-
rithm. In Section 3 we give our algorithm and describe its mechanics. In Section 4 we give two
subrountines in order to make the algorithm of Section 3 efficient. In Section 5 we define the nota-
tion used in the analysis of the algorithm. In Section 6 we give the theoretical concepts that underly
the analysis of the algorithm. In Section 7 we mathematically formulate and analyse our algorithm.
In Section 8 we prove all of the theorems that were stated during the analysis of the algorithm (i.e.
in sections 4, 6 and 7). Section 9 describes how online classification can be formulated in terms of
the theory of Section 6 and is intended as an example for the reader to familiarise themselves with
the theoretical concepts. In Section 10 we prove that no deterministic algorithm, e.g. follow the
(approximate) leader, can achieve the bound on the (expected) loss that our algorithm does.

1.3. Definitions

We now define the notation used throughout the paper. We define R+ := {x ∈ R | x ≥ 0}. Given
real numbers x, x′ ∈ R we define [x, x′] = {y ∈ R | x ≤ y ≤ x′}. We define N to be the set
of positive integers. Given x ∈ R+ we define dxe := min{n ∈ N | n ≥ x}. Given n ∈ N we
define [n] := {m ∈ N : m ≤ n}. We shall overload the notation [·] by treating it also as standard
brackets: i.e. for any mathematical object x, [x] is just another way of writing x. Given any vector
x ∈ RP , for some P ∈ N, we define xi to be it’s i-th component. Given a set S we define P(S)
to be the power-set of S: that is, the set of all subsets of S. Given P ∈ N, a subset S of RP , a
differentiable function f : S → R, and some x ∈ S we define ∇f(x) to be the gradient of f
evaluated at x. In addition we define ∂if(x) to be the ith component of ∇f(x). Given P ∈ N we
define ∆P to be the set of vectors x in RP such that

∑
i∈[P] xi = 1 and for all i ∈ [P] we have

xi ≥ 0. Given a predicate π, we define I(π) to be its indicator function: that is, I(π) := 0 if π is
false and I(π) := 1 if π is true. Given P ∈ N we define 1P to be the vector in RP in which each
component is equal to 1.

Additional definitions, required for the analysis of the algorithm, will be given in Section 5.

5

ONLINE LEARNING OF FACILITY LOCATIONS

2. Problem Description and Result

We now introduce an online learning version of the classic “Facility location problem”, which we
call the “Facility location game”. The Facility location game is based on the following family of
functions. We have constants C,D ∈ R+ and define X := P([N]) \ {∅} for some given natural
number N . Given c ∈ [0, C]N and d ∈ [0, D]N we define the function `c,d : X → R+ by:

`c,d(X) :=
∑
i∈X

ci + min
i∈X

di

Intuitively we have N sites and a single user. Each site i has an “opening cost” ci, which is the cost
of opening a facility there, and a “connection cost” di, which is the cost of connecting the user to
it. We open facilities on the set X of selected sites. We pay the total cost

∑
i∈X ci for opening the

facilities plus the cost mini∈X di of connecting the user to the nearest open facilility. The Facility
location game is a repeated game between Learner and Nature that runs over trials t = 1, 2, . . . T .
On trial t:

1. Nature selects ct ∈ [0, C]N and dt ∈ [0, D]N but does not reveal them to Learner.

2. Learner chooses Xt ∈ X .

3. ct and dt are revealed to Learner.

4. Learner incurs loss `ct,dt(X
t)

The goal of Learner is to chooseXt in such a way that it incurs a small cumulative loss
∑T

t=1 `ct,dt(X
t)

in expectation (over an internal randomisation of its choices). The problem of choosing, in retro-
spect, the set X∗ that minimises the objective function

∑T
t=1 `ct,dt(X

∗) is the famous “Facility
location problem”. We seek an efficient algorithm for Learner whose expected cumulative loss is
bounded with respect to this objective function evaluated at any X∗ ∈ X .

In this paper we will present an efficient algorithm for Learner in which, for any set X∗ ∈ X ,
we have:

E

(
T∑
t=1

`ct,dt(X
t)

)
∈ O

(
ln(T)

T∑
t=1

`ct,dt(X
∗) + |X∗|(C +D) ln(T)

√
ln(N)T

)
(1)

The algorithm is efficient in that it runs in a time of O(N ln(N) ln(T)) per trial.
We now argue that this bound on the expected cumulative loss is good for a polynomial-time

algorithm. We first consider the first term on the right hand side of Equation (1). As noted above,
the problem of minimising, in retrospect,

∑T
t=1 `ct,dt(X

∗) is the facility location problem. This
problem is NP-hard and it has been shown, via reduction from the Set cover problem, that, unless
P = NP, no polynomial time algorithm can achieve an approximation ratio better than (1−ε) ln(T)
in general, for every ε ∈ R+ (Dinur and Steurer, 2014). With this negative result in hand we do
not expect to see a polynomial time algorithm for the Facility location game whose expected loss is
smaller than O

(
ln(T)

∑T
t=1 `ct,dt(X

∗)
)

in general. We now turn to the second term in the right
hand side of Equation (1). Since the loss of any action (i.e. selection of set X) is bounded above
by NC +D, and there are 2N − 1 possible actions, the standard analysis of the (exponential time)
Hedge algorithm, leads to a regret bound of O

(
(NC +D)

√
NT

)
. This is close to, and often

outperformed by, our term O
(
|X∗|(C +D) ln(T)

√
ln(N)T

)
.

6

ONLINE LEARNING OF FACILITY LOCATIONS

3. The Algorithm

In this section we give our algorithm for Learner, when playing the Facility location game. We
will build up the algorithm gradually: starting from the classic exponentiated gradient algorithm
(Kivinen and Warmuth, 1997) for online convex optimisation on a simplex, and progressing via two
intermediate algorithms for the Facility location game. Each algorithm builds on the last in that
it uses the previous algorithm’s methods as subroutines in its own methods. The two intermediate
algorithms have a parameter K ∈ N and have bounds on the cumulative loss, relative to a fixed
set of sites, only when the fixed set of sites has cardinality equal to K and bounded above by K,
respectively.

In Section 7 we will reformulate all the algorithms in this section formally as “strategies” for
instances of what we call “online optimisation games” and analyse their performance. In order
to understand Section 7 it is necessary to first read sections 5 and 6 which contain the required
definitions and theoretical concepts respectively. The proofs of all theorems in these sections are to
be found in Section 8.

All algorithms in this section have three methods: initialise, play and update(·). The
method initialise takes no parameters and has no output, play takes no parameters but returns
an output, and update(·) takes a single parameter but has no output. For an algorithm A we will
refer to its methods as initialiseA, playA and updateA(·) .

Each algorithm runs over trials t = 1, 2, . . . , T . On each trial t it outputs some object Xt and
then receives some input yt. This process is given in Algorithm 1:

Algorithm 1 Algorithm A

1: initialiseA

2: For trials t = 1, 2, . . . , T :
3: Xt ← playA

4: updateA(yt)

The inputs to updateA are convex functions when A is the Exponentiated gradient algorithm,
and a pair of (opening and connection cost) vectors when A is one of the algorithms for the Facility
location game. For the Facility location game algorithms we have yt := (ct,dt). The outputs of
playA are vectors when A is the Exponentiated gradient algorithm and sets when A is one of the
algorithms for the Facility location game.

3.1. The Exponentiated Gradient Method

In Algorithm 2 we give the methods of our base algorithm CO(N,G), which takes, as inputs,
convex functions yt : [0, 1]N → R and outputs vectors Xt in ∆N . The parameter G is an upper
bound on the magnitude of any component of the (sub)gradient of any of the input functions yt,
anywhere on ∆N . The name CO stands for “Convex Optimisation” and it implements the well
studied “Exponentiated gradient method”. The following property is well known:

If the algorithm CO(N,G) is inputted with functions y1, y2, · · · , yT that obey the above prop-
erties, then the output X1, X2, · · · , XT satisfies:∑

t∈[T]

yt(Xt)− yt(X∗) ≤ 2G
√

ln(N)/T (2)

7

ONLINE LEARNING OF FACILITY LOCATIONS

for any X∗ ∈ ∆N . Note that the objective of the Exponentiated gradient method is to minimise∑
t∈[T] yt(Xt).
When the method updateCO is called as a subroutine in another algorithm, the line “global λ←

f(w)” sets a global variable λ equal to f(w). This will be used in our final algorithm FL.

Algorithm 2 CO(N,G)

1: initialise:
2: w ← 1N/N

3: η ← 1
G

√
ln(N)
T

4: play:
5: return w

6: update(f):
7: global λ← f(w)
8: g ← ∇f(w)
9: For i ∈ [N]: ui ← wi exp(−ηgi)

10: Z ←
∑

i∈[N] ui
11: For i ∈ [N]: wi ← ui/Z

3.2. An Algorithm for when the Cardinality of a Comparator Set is Known

In Algorithm 3 we give the methods of our first algorithm FL•(N,C,D,K) for the facility location
game; where N,C and D are defined as in Section 2. Note that we now also have a parameter K:
we will only compare the performance of the algorithm to that of any fixed sets of sites which has
cardinality K. When the method play is called we choose a vector p ∈ ∆N and then form the
output X by drawing Kdln(T)/2e sites with replacement from the probability distribution on [N]
characterised by p. Let pt be the value of p on trial t. We will now describe how and why pt is
selected:

Let fc,d be the function f created in the method updateFL• when it is inputted with (c,d).
That is, for all w ∈ ∆N :

fc,d(w) := Υc ·w + dv(N) +
∑

i∈[N−1]

(
dv(i) − dv(i+1)

)∑
j∈[i]

wv(j)

Υ

where Υ := Kdln(T)/2e and v(1), v(2), · · · v(N) is an ordering of [N] such that dv(i+1) ≤ dv(i)

for all i ∈ [N − 1].
The function fc,d has the following four crucial properties:

1. fc,d is convex.

2. The magnitude of any component of the gradient of fc,d , anywhere on ∆N , is no more than
(C +D)Kdln(T)/2e

8

ONLINE LEARNING OF FACILITY LOCATIONS

3. Suppose we have some w ∈ ∆N . Let X̃ be a random set of Kdln(T)/2e sites drawn i.i.d.
with replacement from the probability distribution characterised by w. Then we have that
fc,d(w) is an upper bound on the expected value of `c,d(X̃) .

4. The value of
∑

t∈[T] fct,dt(p
∗), minimised over all p∗ ∈ ∆N is bounded as:

min
p∗∈∆N

∑
t∈[T]

fct,dt(p
∗) ≤ dln(T)/2e

∑
t∈[T]

`ct,dt(X
∗) +D

√
T

for any selection of sites X∗ with cardinality K.

Property 3 implies that the expected value of `c,d(X) is bounded above by fc,d(p), when
X and p are as in playFL• . Since the objective is to minimise the expected cumulative loss∑

t∈[T] `ct,dt(Xt) and Xt is the output of playFL• on trial t, this bound shows that we can, in-
stead, seek to minimise

∑
t∈[T] fct,dt(p

t). Due to the convexity of fc,d this is exactly the goal
of the Exponentiated gradient method, so we use the Exponentiated gradient method with inputs
{fct,dt | t ∈ [T]} to produce our sequence {pt | t ∈ [T]}.

By utilising Equation (2), and recalling the above properties, we then have:

E

∑
t∈[T]

`ct,dt(Xt)


≤
∑
t∈[T]

fct,dt(p
t)

≤ min
p∗∈∆N

∑
t∈[T]

fct,dt(p
∗) + 2(C +D)Kdln(T)/2e

√
ln(N)/T (3)

≤ dln(T)/2e
∑
t∈[T]

`ct,dt(X
∗) + (2K(C +D)dln(T)/2e+D)

√
ln(N)T (4)

for any selection of sites X∗ with cardinality K. Note that Equation (3) is a rewriting of Equation
(2) using the bound on the gradient components given in the above properties.

Of course, to run the algorithm we must sampleKdln(T)/2e sites from a probability distribution
over [N] characterised by a vector p ∈ ∆N and, during the subrountine updateCO(f), compute
the value and gradient of f(w). In Section 4 we show how to perform each of these tasks in a time
of O(N ln(N) ln(T)).

3.3. An Algorithm for when a Bound on the Cardinality of a Comparator Set is Known

In Algorithm 4 we give the methods of our second algorithm FL◦(N,C,D,K) for the facility
location game. Instead of being able to compare against just fixed sets of sites with cardinality
equal to K, we can now compare against any fixed sets of sites with cardinality bounded above
by K. To do this we add N “dummy” sites, each with zero opening cost, and use the algorithm
FL•(2N,C,C + D,K) on this extended collection of sites. When playFL◦ is called we simply
take the output from playFL• , which is a subset of the 2N sites, and remove the dummy sites.
Since we can’t choose the empty set, if all sites in the output of playFL• are dummy sites then we
will simply choose {1} as the output of playFL◦ , which has a total cost of no more than C + D.

9

ONLINE LEARNING OF FACILITY LOCATIONS

Algorithm 3 FL•(N,C,D,K)

1: initialise:
2: Υ← Kdln(T)/2e
3: A← CO(N, (C +D)Υ)
4: initialiseA

5: play:
6: p← playA

7: For all i ∈ [Υ] sample some ki ∈ [N] with probability pki
8: X ← {j ∈ [N] | ∃i ∈ [Υ] : ki = j}
9: return X

10: update(c,d):
11: Sort [N] as v(1), v(2), · · · v(N) such that dv(i+1) ≤ dv(i) for all i ∈ [N − 1]

12: Define f : [0, 1]N → R+ by:

f(w) := Υc ·w + dv(N) +
∑

i∈[N−1]

(
dv(i) − dv(i+1)

)∑
j∈[i]

wv(j)

Υ

13: updateA(f)

Because of this we assign a connection cost of C +D to all the dummy sites. We can now compare
to any fixed set X∗ of sites in [N] with cardinality no greater than K: if |X∗| < K we simply
add K − |X∗| dummy sites to it so the cardinality becomes K and we can then use the bound of
FL•(2N,C,C +D,K). By Equation (4) our bound on the expected cumulative loss is then:

E

∑
t∈[T]

`ct,dt(Xt)

 ≤ ⌈ ln(T)

2

⌉ ∑
t∈[T]

`ct,dt(X
∗)+(2K(2C+D)

⌈
ln(T)

2

⌉
+(C+D))

√
ln(2N)T

(5)
For any subset of sites X∗ with cardinality no greater than K.

3.4. The Main Algorithm

By Equation (5) The algorithm FL◦(N,C,D,N) gives us a bound of:

E

∑
t∈[T]

`ct,dt(Xt)

 ≤ ⌈ ln(T)

2

⌉ ∑
t∈[T]

`ct,dt(X
∗)+(2N(2C+D)

⌈
ln(T)

2

⌉
+(C+D))

√
ln(2N)T

for any set of sites X∗. We will now turn the factor N into |X∗|, which will often be significantly
smaller. We note, however, that by doing this we incur an additional constant multiplicative factor
to the bound.

In Algorithm 5 we give the methods of our main algorithm FL(N,C,D) which works by per-
forming a “doubling trick” with FL◦. During the method updateFL, the method updateFL◦ is

10

ONLINE LEARNING OF FACILITY LOCATIONS

Algorithm 4 FL◦(N,C,D,K)

1: initialise:
2: A← FL•(2N,C,C +D,K)

3: play:
4: X̂ ← playA

5: X ← X̂ ∩ [N]
6: If X = ∅ then set X ← {1}
7: return X

8: update(c,d):
9: For all i ∈ [N] set ĉi ← ci and d̂i ← di

10: For all i ∈ [2N] \ [N] set ĉi ← 0 and d̂i ← C +D
11: updateA(ĉ, d̂)

called and hence so is updateCO. During the method updateCO a global variable λ is modi-
fied. Let λt be the value of λ at the end of trial t. We define a := dln(T/2)e(4C + 2D) and
b := C + D. The trials are divided into segments S0, S1, S2 · · · . At the start of segment Si the al-
gorithm FL◦(N,C,D, d2i(a+ b)− b)/ae) is initialised and runs until the sum of the values λt over
trials t in the segment so far exceeds 2i+1(a + b)

√
ln(2N)T . When this happens, Si finishes and

Si+1 starts. In sections 6.3 and 7.4 we analyse our doubling trick (Section 6.3 defines and analyses
the doubling trick in general and then Section 7.4 applies it to the facility location game) which,
combined with Equation (5), gives a bound, for FL(N,C,D), of:

E

(
T∑
t=1

`ct,dt(X
t)

)
∈ O

(
ln(T)

T∑
t=1

`ct,dt(X
∗) + |X∗|(C +D) ln(T)

√
ln(N)T

)
for any non-empty set of sites X∗. By using the subroutines of Section 4 the time complexity of
this algorithm is only O(N ln(N) ln(T)) per trial.

4. Efficient Computation

In this section we give two subroutines for the algorithm of Subsection 3.2, bringing the time com-
plexity of the algorithm of Subsection 3.4 down to O(N ln(N) ln(T)) per trial. The proofs of both
theorems in this section are to be found in Section 8

4.1. Computing λ and g

When the method updateCO is run as a subroutine of updateFL• we have some f defined by:

f(p) := Υc · p+ dv(N) +
∑

i∈[N−1]

(
dv(i) − dv(i+1)

)∑
j∈[i]

pv(j)

Υ

(6)

and for some w ∈ ∆N we need to compute λ := f(w) and g := ∇f(w). Algorithm 6 shows how
to compute both of these quantities in timeO(N). The following theorem asserts the correctness of
Algorithm 6:

11

ONLINE LEARNING OF FACILITY LOCATIONS

Algorithm 5 FL(N,C,D)

1: initialise:
2: a← dln(T)/2e(4C + 2D)
3: b← C +D
4: θ ← 1
5: K ← d(θ(a+ b)− b)/ae
6: A← FL◦(N,C,D,K)
7: initialiseA

8: l← 0

9: play:
10: X ← playA

11: return X

12: update(c,d):
13: updateA(c,d)
14: l← l + λ
15: if l ≥ 2(a+ b)θ

√
ln(2N)T :

16: θ ← 2θ
17: K ← dθ(a+ b)− b)/ae
18: A← FL◦(N,C,D,K)
19: initialiseA

20: l← 0

Theorem 1 Given the function f defined in Equation (6) and the outputs, λ, g of Algorithm 6 we
have that λ = f(w) and g = ∇f(w)

Algorithm 6 Computing λ and g
1: s1 ← wv(1)

2: For i = 1, 2, . . . N − 2:
3: si+1 ← si + wv(i+1)

4: λ← Υc ·w + dv(N) +
∑

i∈[N−1]

(
dv(i) − dv(i+1)

)
sΥ
i

5: s′N−1 ←
(
dv(N−1) − dv(N)

)
sΥ−1
N−1

6: For i = N − 1, N − 2, . . . 2:
7: s′i−1 = s′i +

(
dv(i−1) − dv(i)

)
sΥ−1
i−1

8: For i ∈ [N] set gv(i) ← Υci + Υs′i
9: return λ, g

4.2. Multiple Samples from a Finite Set

In Algorithm 7 we present an algorithm for the efficient sampling of many sites in [N] from a prob-
ability distribution characterised by a vector p ∈ ∆N . This algorithm is required in the method

12

ONLINE LEARNING OF FACILITY LOCATIONS

playFL• . Algorithm 7 has the following notation: given an oriented full binary tree and some inter-
nal node j we define /(j) and .(j) to be the left and right child of j respectively. The algorithm has
two methods: the method initialise(p) constructs the data-structure, taking a time of O(N). The
method sample samples a single point and takes a time of O(ln(N)). The computational com-
plexities of both methods are clear, whilst the correctness is confirmed by the following theorem:

Theorem 2 Suppose we have some i ∈ [N] and p ∈ ∆N . Then, given initialise(p) is run
a-priori, the method sample returns i with probability pi.

Algorithm 7 Sampling from a Finite Set
1: initialise(p):
2: H ← dln(N)e
3: N ′ ← exp(H)
4: For all i ∈ [N ′] \ [N] set pi ← 0
5: Construct a full, oriented and balanced binary tree B of height H .
6: Construct an arbitrary bijection τ from the leaves of B into N ′.
7: For all leaves j, of B, set p′j ← pτ(i)

8: For δ = H − 1, H − 2, · · · 1:
9: For all nodes j of B at depth δ set p′j = p′/(j) + p′.(j)

10: sample:
11: Set v0 to be the root of of the B.
12: For δ = 0, 1, · · ·H − 1
13: Sample a random number rδ uniformly at random from [0, 1]

14: If rδ ≤ p′/(vδ)/
(
p′/(vδ) + p′.(vδ)

)
then set vδ+1 ← /(vδ). Else set vδ+1 ← .(vδ)

15: return τ(vH)

5. Definitions

We now define the notation used in the analysis of the algorithm.
We let ω ∈ R+ be a surrogate for ∞. Throughout the paper we will always assume the limit

ω →∞.
Given sets S and S ′ we define 〈S,S ′〉 to be the set of functions from S into S ′.
Given a set S and a natural number T ′ we define ST ′ to be the set of sequences of elements

of S of length T ′. Given f ∈ ST ′ we define ft to be the t-th element of the sequence f . Given a
sequence f ∈ ST ′ and a function β : S → Ŝ for sets S and Ŝ , we define β(f) as the sequence in
ŜT ′ with [β(f)]t := β(ft) for all t ∈ [T ′].

We define the maximum of the empty-set, max ∅, equal to 0.

5.1. Measures and Integrals

We note that, although the definitions in this subsection are about measures, the reader need not be
proficient in measure theory in order to understand the paper.

13

ONLINE LEARNING OF FACILITY LOCATIONS

When we talk of a “set” in what follows, we implicitly assume that the set has a natural associ-
ated set of measurable subsets.

Given a measure µ on a set S and a function f : S → R we let
∫
S f [µ] be the Lebesgue integral

of f with respect to measure µ. Note that if S is a finite set then
∫
S f [µ] =

∑
x∈S f(x)µ({x}) .

A measure µ on a set S is a “probability measure” if and only if
∫
S f [µ] = 1, when f : S → R

is such that f(x) = 1 for all x ∈ S. We let ∆S be the set of all probability measures on S.
Given a set S and some x ∈ S we define δ(x) ∈ ∆S such that for all measurable subsets S ′ of

S we have [δ(x)](S ′) = I(x ∈ S ′). Informally, δ(x) is the probability measure in which all the
probability mass in concentrated on x, so that any sample from δ(x) is equal to x (with probability
1). Note that for all f : S → R we have

∫
S f [δ(x)] = f(x) .

Given a measure µ on a set S and a value a ∈ R+ we define aµ to be the measure on S defined
by [aµ](S ′) = aµ(S ′) for all measurable subsets S ′ of S. Given, in addition, a measure µ′ on S we
define µ + µ′ to be the measure on S such that [µ + µ′](S ′) = µ(S ′) + µ′(S ′) for all measurable
subsets S ′ of S.

Given sets S and Ŝ , a probability measure µ ∈ ∆S and a function f : S → ∆Ŝ we define∫
S f [µ] to be equal to the probability measure p ∈ ∆Ŝ defined by, for all measurable subsets Ŝ ′ of
Ŝ , p(Ŝ ′) :=

∫
S [f(·)](Ŝ ′) [µ] where [f(·)](Ŝ ′) is the function that maps x ∈ S to [f(x)](Ŝ ′) .

6. Online Optimisation Games and the Conversion of Strategies

Here we introduce the theoretical definitions and results that underpin the development of the al-
gorithm. First, we define the notion of an “Online Optimisation Game” (OOG) of which many
problems in the subject of online learning are instances of. As we define an OOG we also define
the notion of a “strategy” for Learner and its “generalised regret” which measures its performance.
After defining OOGs we then define two ways in which to convert a class of strategies for one class
of OOG into a strategy for another: specifically via “transformations” and our “doubling trick”. The
proofs of both theorems in this section are to be found in Section 8

6.1. Online Optimisation Games

We now define an “Online Optimisation Game” (OOG). An OOG G is defined by the following:

• XG is the set of Learner’s possible actions.

• FG is a set of “loss” functions from XG into R+.

• λG is a “complexity” function from XG into R+. Actions that have higher complexity are in
some sense less natural.

• TG is the number of trials in the game. We will assume that all OOGs G in this paper have
TG := T .

Informally, learning proceeds in trials t = 1, 2, ...T. On trial t:

1. Nature chooses a loss function ft ∈ FG but does not reveal it to Learner

2. Learner (randomly) chooses an action xt ∈ XG

14

ONLINE LEARNING OF FACILITY LOCATIONS

3. ft is revealed to Learner

4. Learner suffers loss ft(xt)

Given an online optimisation game G we make the following definitions. Note that we have
dropped the subscript G on its elements.

Definition 3 A “strategy” is any σ ∈
〈
FT ,∆X

〉T in which, given t ∈ [T] and f ,f ′ ∈ FT with
fs = f ′s for all s ∈ [t− 1], we have σt(f) = σt(f

′). Let ΩG be the set of all strategies.

Informally, a strategy σ defines, on every trial t, a probability measure σt(f) from which xt
is drawn. This probability depends on Nature’s actions ft′ for all t′ < t (since it cant depend on
Nature’s future selections). Hence, we have the condition that if fs = f ′s for all s ∈ [t− 1], we have
σt(f) = σt(f

′).
The expected average loss of a strategy σ ∈ ΩG when Nature’s sequence of selections is f is

then:
L (σ,f) :=

1

T

∑
t∈[T]

∫
X
ft [σt(f)]

To evaluate the performance of a strategy σ ∈ ΩG we compare its expected average loss to that of
a strategy γx

′
that always chooses xt = x′ for some x′ ∈ X. Specifically, we define a constant

strategy:

Definition 4 Given x ∈ X we define γx ∈ ΩG by γxt (f) := δ(x) for all t ∈ [T] and f ∈ FT .

and we define the “generalised regret” RσG : R+ × R+ → R+ by:

Definition 5 Given σ ∈ ΩG we define its “generalised regret” RσG ∈ 〈R+ × R+,R+〉 by:

RσG (L,Γ) := max{L (σ,f) | f ∈ Q(L,Γ)}

whereQ(L,Γ) is the set of all f ∈ FT such that there exists x ∈ X with λ(x) ≤ Γ and L (γx,f) ≤
L.

Where unambiguous we will drop the subscript and superscript from RσG .

6.2. Transformations

In this paper we will, on two occasions, transform an OOG G into a special case of an OOGH (note
that this does not mean that G is itself a special case ofH). A “transformation”W from G intoH is
defined by the following:

• A function ψW : XG → XH with λH(ψW(x)) ≤ λG(x) for all x ∈ XG .

• A function αW : XH → ∆XG .

• A function βW : FG → FH such that for all f ∈ FG and x ∈ XH we have:

[βW(f)](x) ≥
∫
XG
f [αW(x)] .

15

ONLINE LEARNING OF FACILITY LOCATIONS

Now suppose we have a transformation W from G into H. We define a function φW : R+ ×
R+ → R+ by:

φW(L,Γ) := max{[βW(f)](ψW(x)) | (x, f) ∈ XG ×FG , f(x) ≤ L, λG(x) ≤ Γ}

and we define the function mW : ΩH → ΩG by:

[mW(σ)]t(f) :=

∫
XH

αW [σt(βW(f))]

for all σ ∈ ΩH and f ∈ FTG . Note that in order to sample x from [mW(σ)]t(f) one simply samples
x̂ from σt(βW(f)) and then samples x from αW(x̂). The following theorem bounds the generalised
regret of mW(σ):

Theorem 6 Suppose we have OOGs G andH and a strategy σ forH. Suppose also that we have a
transformation,W , from G into H such that φW is bounded above (pointwise) by a function φ̂ that
is concave in its first argument. We then have:

R
mW (σ)
G (L,Γ) ≤ RσH(φ̂(L,Γ),Γ) .

6.3. A General Doubling Trick

In this section we introduce a generalisation of doubling trick which was introduced in (Herbster
et al., 2016). However, our analysis is sharper, giving us significantly smaller loss bounds.

This subsection deals with complexity functions that evaluate to infinity on some actions. To
get some intuition behind infinite complexities we advise the reader to first read Section 9 .

In this section we consider a general OOG G with min{λG(x) | x ∈ XG} = 1 and such that
there exists a function ζ ∈ FG in which ζ(x) := 0 for all x ∈ XG . As stated in the definitions, we
use ω as a surrogate for infinity, taking the limit ω → ∞. We will also drop the subscript G from
XG and FG .

First, given θ ∈ R+ we denote by λθG the function from XG into R+ defined by:

λθG(x) := I(λG(x) > θ)ω

and we define the OOG Gθ by:

• XGθ := X .

• FGθ := F .

• λGθ := λθG .

Now suppose we have some ν, ρ ∈ R+ and, for all θ ∈ R+, a strategy σθ for the OOG Gθ which
has a generalised regret of:

Rσ
θ

Gθ (L,Γ) ≤ νL+ ρθ + Γ .

We will now construct a strategy σDT for the OOG G and will bound its generalised regret. We
start with the following definitions:

16

ONLINE LEARNING OF FACILITY LOCATIONS

Definition 7 Given θ ∈ R+ we define:

qθ := max

{∫
X
ft[σ

θ
t (f)]

∣∣∣∣ f ∈ FT , t ∈ [T]

}
.

Definition 8 Given f ∈ FT and τ, τ ′ ∈ [T] with τ ′ > τ we define f [τ,τ ′] ∈ FT by:

• f [τ,τ ′]
t := ft+τ for all t ∈ [τ ′ − τ] .

• f [τ,τ ′]
t := ζ for all t ∈ [T] with t > τ ′ − τ .

We now define the strategy σDT:

Definition 9 Given f ∈ FT we iteratively define the sequence {σDT
t (f) : t ∈ [T]}, as well as

sequences θ, l ∈ RT and τ ∈ NT , which all implicitly depend on f , as follows:

• θ1 := 1 .

• τ1 := 0 .

• σDT
1 (f) := σθ11 (f [0,T]) .

• l1 :=
∫
X f1 [σDT

1 (f)] .

For all t ∈ [T − 1] we define the following:

• If lt < 2θtρT then:

– θt+1 := θt .

– τt+1 := τt .

– σDT
t+1(f) := σθtt+1−τt(f

[τt,T]) .

– lt+1 := lt +
∫
X ft+1 [σDT

t+1(f)] .

• If lt ≥ 2θtρT then:

– θt+1 := 2θt .

– τt+1 := t .

– σDT
t+1(f) := σ

θt+1

1 (f [t,T]) .

– lt+1 :=
∫
X ft+1 [σDT

t+1(f)] .

The next theorem gives bounds the general regret of the strategy σDT.

Theorem 10 σDT has a generalised regret bounded by:

Rσ
DT

G (L,Γ) ≤ 5νL+ 8ρΓ +
1

T

dlog2(Γ)e∑
i=1

q2i .

17

ONLINE LEARNING OF FACILITY LOCATIONS

7. The Development of the Strategy

In this section we develop a strategy σFL(N,C,D) for the OOG F̃L(N,C,D) defined by:

• XF̃L := P([N]) \ {∅} .

• λF̃L(X) = |X | for all X ∈ XF̃L .

• FF̃L :=
{
`c,d | c ∈ [0, C]N and d ∈ [0, D]N

}
.

where, for c ∈ [0, C]N , d ∈ [0, D]N and X ∈ XF̃L we have:

`c,d(X) :=
∑
i∈X

ci + min
i∈X

di .

Our strategy has a generalised regret R bounded as:

R(L,Γ) ∈ O

(
L ln(T) + Γ(C +D) ln(T)

√
ln(N)

T

)
.

To construct our strategy we will move between different OOGs: using the strategy of one OOG
to build, via transformations or the doubling trick, a strategy for the next. Recalling that ω is our
surrogate for infinity (i.e. we assume the limit ω →∞), the sequence of OOGs is as follows:

1. C̃O. This is the classic game of online convex optimisation over a simplex.

2. ˜FL•. This game is the same as F̃L except that it has a parameter K such the complexity of a
set X is λ ˜FL•(X) := ωI(|X| 6= K).

3. ˜FL◦. This game is the same as F̃L except that it has a parameter K such the complexity of a
set X is λ ˜FL◦(X) := ωI(|X| > K).

4. F̃L.

Note that the above OOGs correspond to the algorithms of Section 3: each OOG Ã corresponding
to the algorithm A. For each algorithm A, described in Section 3, we will, in this section, define
and analyse a strategy σA, for one of the above OOGs Ã, which is implemented by A. The proofs
of all theorems in this section are to be found in Section 8 .

7.1. The Game C̃O

We shall approach the facility location game via the well studied OOG C̃O(N,G) for some N ∈ N
and G ∈ R+. In this subsection we shall refer to C̃O(N,G) as C̃O, which is defined by:

• XC̃O := ∆N .

• FC̃O is the set of (differentiable) convex functions f : [0, 1]N → R in which ∂if(x) ∈ [0, G]
for all x ∈ ∆N and i ∈ [N] .

• λC̃O(x) := 0 for all x ∈ ∆N .

18

ONLINE LEARNING OF FACILITY LOCATIONS

We now define the Exponentiated gradient strategyσCO(N,G) for C̃O. We first define η := 1
G

√
ln(N)
T .

Given some f ∈ FT
C̃O

we define σCO(N,G)
t (f) as follows:

Define w1 := 1N/N and for all t ∈ [T] and i ∈ [N] define:

wt+1
i :=

wti exp(−η∂ift(wt))∑
j∈[N]w

t
j exp(−η∂jft(wt))

.

We then define:
σ

CO(N,G)
t (f) := δ(wt) .

The following theorem is a well known result.

Theorem 11 The strategy σCO(N,G) has a generalised regret R which is bounded as:

R(L,Γ) ≤ L+G
√

2 ln(N)/T .

7.2. The Game ˜FL•

In this section, given some K ∈ [N], we consider the OOG ˜FL•(N,C,D,K) which is identical to
FL except that:

λ ˜FL•(N,C,D,K)
(X) := ωI(|X| 6= K)

for all X ∈ XF̃L. In this subsection we will refer to ˜FL•(N,C,D,K) as ˜FL•. Letting Υ :=

Kdln(T)/2ewe will, in this section, create and analyse a transformationY from ˜FL• into C̃O(N, (C+
D)Υ). We first define two functions. We define a function v : RN × [N] → [N] such that, for all
d ∈ RN , we have:

• {v(d, i) : i ∈ [N]} = [N] .

• dv(d,i+1) ≤ dv(d,i) ∀i ∈ [N − 1] .

and we define the function µ : [N]Υ → X ˜FL• such that for all s ∈ [N]Υ we have:

µ(s) := {i ∈ [N] | ∃j ∈ [Υ] : sj = i} .

We now define the transformation Y from ˜FL• into C̃O(N, (C +D)Υ) by:

ψY(X)i := I(i ∈ X)/K ∀i ∈ [N], X ∈ X ˜FL• : |X| = K .

ψY(X)i is arbitrary ∀i ∈ [N], X ∈ X ˜FL• : |X| 6= K .

αY(w) :=
∑
s∈[N]Υ

∏
i∈[Υ]

wsi

 δ(µ(s)) .

[βY(`c,d)](w) := Υc ·w + dv(d,N) +
∑

i∈[N−1]

(
dv(d,i) − dv(d,i+1)

)∑
j∈[i]

wv(d,j)

Υ

.

for all w ∈ XC̃O(N,(C+D)Υ) and (c,d) ∈ [0, C]N × [0, D]N . Note that, given w ∈ ∆N , it is easy
to sample from αY(w): just sample Υ points i uniformly at random, and with replacement, with
probability wi. The fact that Y is a true transformation follows from the following two theorems:

19

ONLINE LEARNING OF FACILITY LOCATIONS

Theorem 12 For all (c,d) ∈ [0, C]N × [0, D]N we have that βY(`c,d) ∈ FCO(N,(C+D)Υ) .

Theorem 13 For all (c,d) ∈ [0, C]N × [0, D]N and w ∈ ∆N we have:

[βY(`c,d)](w) ≥
∫
X ˜FL•

`c,d [αY(w)] .

We have the following theorem:

Theorem 14 For all L,Γ ∈ R+ we have φY(L,Γ) ≤ dln(T)/2eL+D
√

1/T + Γ .

We define σFL•(N,C,D,K) := mY
(
σCO(N,(C+D)Υ)

)
. Combining theorems 6, 11 and 14 gives us:

Theorem 15 σFL•(N,C,D,K) has a generalised regret R that is bounded by:

R(L,Γ) ≤ dln(T)/2eL+ (2Kdln(T)/2e(C +D) +D)
√

ln(N)/T + Γ .

7.3. The Game ˜FL◦

In this section, given some K ∈ [N], we consider the OOG ˜FL◦(N,C,D,K) which is identical to
FL except that:

λ ˜FL◦(N,C,D,K)
(X) := ωI(|X| > K)

for all X ∈ XF̃L. In this subsection we will refer to ˜FL◦(N,C,D,K) as ˜FL◦. We will now analyse
a transformation Z from ˜FL◦ into ˜FL•(2N,C,C +D) which is defined as follows:

ψZ(X) := X ∪ {N + i : i ≤ K − |X|} ∀X ∈ X ˜FL◦ : |X| ≤ K .

ψZ(X) is arbitrary ∀X ∈ X ˜FL◦ : |X| > K .

αZ(X ′) := δ(X ′ ∩ [N]) ∀X ′ ∈ X ˜FL•(2N,C,C+D)
: X ′ ∩ [N] 6= ∅ .

αZ(X ′) := δ({1}) ∀X ′ ∈ X ˜FL•(2N,C,C+D)
: X ′ ∩ [N] = ∅ .

βZ(`c,d) = `ĉ,d̂ ∀c,d ∈ RN .

where ĉ, d̂ ∈ R2N are defined so that:

ĉi := ci, d̂i := di ∀i ∈ [N] .

ĉi := 0, d̂i := C +D ∀i ∈ [2N] \ [N] .

The following theorem asserts that Z is a genuine transformation:

Theorem 16 Z is a transformation from ˜FL◦(N,C,D,K) into ˜FL•(2N,C,C +D,K) .

We also have the following theorem:

Theorem 17 For all L,Γ ∈ R+ we have φZ(L,Γ) ≤ L+ Γ .

We define σFL◦(N,C,D,K) := mZ

(
σ

˜FL•(2N,C,C+D)
)

. Combining theorems 6, 15 and 17 gives us:

Theorem 18 σFL◦(N,C,D,K) has a generalised regret R that is bounded by:

R(L,Γ) ≤ dln(T)/2eL+ (2Kdln(T)/2e(2C +D) + (C +D))
√

ln(2N)/T + Γ .

20

ONLINE LEARNING OF FACILITY LOCATIONS

7.4. The Game F̃L

In this subsection we will refer to the OOG F̃L(N,C,D) as F̃L .
By considering the game ˜FL◦(N,C,D,N) we automatically have that the strategyσFL◦(N,C,D,N)

gives us a generalised regret R, for the game F̃L, that is bounded by:

R(L,Γ) ≤ dln(T/2)eL+ (2Ndln(T)/2e(2C +D) + (C +D))
√

ln(2N)/T .

Utilising the doubling trick of Subsection 6.3 on the game ˜FL◦(N,C,D,K) gives us a strategy,
σFL(N,C,D), for the game F̃L, with generalised regret R bounded by

R(L,Γ) ∈ O

(
L ln(T) + Γ(C +D) ln(T)

√
ln(N)

T

)
.

Specifically, we define a := dln(T/2)e(4C + 2D), b := C +D and the OOG G, which appears
in Subsection 6.3, the same as F̃L except that λG(X) := (aK + b)/(a + b). For all θ ≥ 1 we
then define the strategy σθ, appearing in Subsection 6.3, as equal to σFL◦(N,C,D,d(θ(a+b)-b)/ae).
Combining theorems 10 and 18 gives us the following theorem:

Theorem 19 Define a := dln(T)/2e(4C + 2D), b := C + D, and the OOG G as the same as
F̃L except that λG(X) := (aλF̃L(X) + b)/(a + b) for all K ∈ XF̃L(N,C,D). Also define σθ :=

σFL◦(N,C,D,d(θ(a+b)-b)/ae) for all θ ≥ 1. Then the strategy σDT, as defined in Definition 9, has a
generalised regret, with respect to the OOG F̃L(N,C,D), of:

Rσ
DT

F̃L
(L,Γ) ∈ O

(
L ln(T) + Γ(C +D) ln(T)

√
ln(N)

T

)
.

With Theorem 19 in hand we let our strategy σFL(N,C,D) be equal to σDT .

8. Proofs

We now prove the theorems in sections 4, 6 and 7, in order.

8.1. Proof of Theorem 1

By a simple induction we have, for all i ∈ [N − 1], si =
∑

j∈[i]wv(j). This immediately gives us
λ = f(w). Also, this gives us, via another induction, that, for all i ∈ [N − 1]:

s′i =
N−1∑
k=i

(
dv(k) − dv(k+1)

)
sΥ−1
k

=

N−1∑
k=i

(
dv(k) − dv(k+1)

)∑
j∈[k]

wv(j)

Υ−1

Now, the derivative of
(∑

j∈[k]wv(j)

)Υ
with respect to wv(i) is equal to 0 if k < i and equal to

Υ
(∑

j∈[k]wv(j)

)Υ−1
if k ≥ i. This means that Υs′i is the derivative of

21

ONLINE LEARNING OF FACILITY LOCATIONS

∑
k∈[N−1]

(
dv(k) − dv(k+1)

) (∑
j∈[k]wv(j)

)Υ
with respect to wv(i). Since Υci is the derivative of

c · w with respect to wv(i) we then have that gv(i) is the derivative of f(w) with respect to wv(i).
This completes the proof.

�

8.2. Proof of Theorem 2

We utilise the notation defined in Algorithm 7. Given a node u, of B we let ⇓(u) be the set of leaves
of B which are descendants of u.

Lemma 20 We have p′v0
= 1.

Proof We first prove, via reverse induction on δ (i.e. from δ = H to δ = 0) that for all nodes u at
depth δ we have p′u =

∑
j∈⇓(u) pτ(j). This is clearly the case when δ = H because then u is a leaf

so p′u = pτ(u) and ⇓(u) = {u} so
∑

j∈⇓(u) pj = pτ(u). Suppose the inductive hypothesis holds for
δ = δ′ (for some δ′ ∈ [H]). Then, if u is at depth δ′ − 1, we have that /(u) and .(u) are a depth δ′

so: ∑
j∈⇓(u)

pτ(j) =
∑

j∈⇓(/(u)∪⇓(.(u)))

pτ(j)

=
∑

j∈⇓(/(u))

pτ(j) +
∑

j∈⇓(.(u))

pτ(j)

= p′/(u) + p′.(u)

= p′u

so the inductive hypothesis holds for δ = δ − 1. This proves the inductive hypothesis and hence
that:

p′v0
=

∑
j∈⇓(v0)

pτ(j)

=
∑
k∈[N ′]

pk

=
∑
k∈[N]

pk

= 1

Now let l := τ−1(i) where i is as in the theorem statement. For all δ ∈ {0} ∪ [H], let aδ be the
ancestor of l at depth δ. We have the following lemma:

Lemma 21 We have:
P(l = vH | vδ = aδ) =

pi
p′aδ

22

ONLINE LEARNING OF FACILITY LOCATIONS

Proof
We prove via reverse induction on δ (i.e. from δ = H to δ = 0)
When δ = H we have aδ = l so:

P(l = vH | vδ = aδ) = P(l = vH | vH = l)

= 1

=
pi
pτ(l)

=
pi
p′l

=
pi
p′aδ

so the inductive hypothesis holds for δ = H . Now suppose the inductive hypothesis holds for δ = δ′

(for some δ′ ∈ [H]). We now show that it holds for δ = δ′ − 1. Firstly, if aδ′ = /(aδ′−1), we have:

P(vδ′ = aδ′ | vδ′−1 = aδ′−1) = P

(
rδ′−1 ≤

p′/(vδ′−1)

p′/(vδ′−1) + p′.(vδ′−1)

)

=
p′/(vδ′−1)

p′/(vδ′−1) + p′.(vδ′−1)

=
p′aδ′

p′/(vδ′−1) + p′.(vδ′−1)

and if aδ′ = .(aδ′−1), we have:

P(vδ′ = aδ′ | vδ′−1 = aδ′−1) = P

(
rδ′−1 >

p′/(vδ′−1)

p′/(vδ′−1) + p′.(vδ′−1)

)

= 1−
p′/(vδ′−1)

p′/(vδ′−1) + p′.(vδ′−1)

=
p′.(vδ′−1)

p′/(vδ′−1) + p′.(vδ′−1)

=
p′aδ′

p′/(vδ′−1) + p′.(vδ′−1)

so in either case we have:

P(vδ′ = aδ′ | vδ′−1 = aδ′−1) =
p′aδ′

p′/(vδ′−1) + p′.(vδ′−1)

=
p′aδ′
p′vδ′−1

=
p′aδ′
p′aδ′−1

23

ONLINE LEARNING OF FACILITY LOCATIONS

and hence, by the inductive hypothesis we have:

P(l = vH | vδ′−1 = aδ′−1)

=P(l = vH | vδ′ = aδ′ ∧ vδ′−1 = aδ′−1)P(vδ′ = aδ′ | vδ′−1 = aδ′−1)

=P(l = vH | vδ′ = aδ′)P(vδ′ = aδ′ | vδ′−1 = aδ′−1)

=
pi
p′aδ

P(vδ′ = aδ′ | vδ′−1 = aδ′−1)

=
pi
p′aδ

p′aδ′
p′aδ′−1

=
pi

p′aδ′−1

so the inductive hypothesis holds for δ = δ′ − 1 and hence holds for all δ.

Taking δ := 0 in Lemma 21, and noting that the algorithm returns i if and only it vH = l then
gives us that the probability of returning i is:

P(l = vH) = P(l = vH | v0 = a0)

=
pi
p′a0

=
pi
p′v0

= pi (7)

where Equation (7) comes from Lemma 20.
�

8.3. Proof of Theorem 6

Given f ∈ FTG we have:

L (mW(σ),f) =
1

T

∑
t∈[T]

∫
XG
ft [[mW(σ)]t(f)]

=
1

T

∑
t∈[T]

∫
XG
ft

[∫
XH

αW [σt(βW(f))]

]

=
1

T

∑
t∈[T]

∫
XG
ft

∫
XH

[αW] [σt(βW(f))]

=
1

T

∑
t∈[T]

∫
XG

∫
XH

ft [αW] [σt(βW(f))]

=
1

T

∑
t∈[T]

∫
XH

∫
XG
ft [αW] [σt(βW(f))]

=
1

T

∑
t∈[T]

∫
XH

(∫
XG
ft [αW]

)
[σt(βW(f))]

24

ONLINE LEARNING OF FACILITY LOCATIONS

≤ 1

T

∑
t∈[T]

∫
XH

βW(ft) [σt(βW(f))]

= L (σ, βW(f))

Now suppose we have L,Γ ∈ R+. Let:

f̄ := argmaxf∈Q(L,Γ){L (mW(σ),f)}

where Q(L,Γ) is the set of all f ∈ FT such that there exists x ∈ XG with λG(x) ≤ Γ and
L (γx,f) ≤ L. Note that by the definition of generalised regret, and the above inequaltiy, we have:

R
mW (σ)
G (L,Γ) = L

(
mW(σ), f̄

)
≤ L

(
σ, βW(f̄)

)
Since f̄ ∈ Q(L,Γ) choose x ∈ XG such that with λG(x) ≤ Γ andL

(
γx, f̄

)
≤ L. Since λG(x) ≤ Γ

we have, by definition of a transformation, that λH(ψW(x)) ≤ Γ. By definition of φW(L,Γ) and
the fact that φ̂ is non-negative and concave in its first argument, we have:

L
(
γψW (x), βW(f̄)

)
=

1

T

∑
t∈[T]

[βW(f̄t)](ψW(x))

≤ 1

T

∑
t∈[T]

φW(f̄t(x),Γ)

≤ 1

T

∑
t∈[T]

φ̂(f̄t(x),Γ)

≤ φ̂

 1

T

∑
t∈[T]

f̄t(x),Γ


= φ̂

(
L
(
γx, f̄

)
,Γ
)

≤ φ̂(L,Γ)

So we have ψW(x) ∈ XH such that L
(
γψW (x), βW(f̄)

)
≤ φ̂(L,Γ) and λH(ψW(x)) ≤ Γ. By

definition of generalised regret, we then have:

L
(
σ, βW(f̄)

)
≤ RσH(φ̂(L,Γ),Γ)

Combining with the above inequality that RmW (σ)
G (L,Γ) ≤ L

(
σ, βW(f̄)

)
gives us the result.

�

8.4. Proof of Theorem 10

We now analyse the strategy σDT. First, choose some arbitrary f ∈ FT and take the notation in
Definition 9 when applied to f . Now let j be such that θT+1 = ρ2j and let x be an arbitrary element
of X. For all i ∈ [j] ∪ {0} let si be the first trial t on which θt = 2i. We define sj+1 := T + 1 .
Note that, for all i ∈ [j] ∪ {0}, we have that:

{t ∈ T | θt = 2i} = {t ∈ T | si ≤ t < si+1}

and for all t′ ∈ {t ∈ T | θt = 2i} we have τt′ = si − 1.
We start with the following lemma:

25

ONLINE LEARNING OF FACILITY LOCATIONS

Lemma 22 For all i ≤ j we have:

si+1−1∑
t=si

∫
X
ft [σDT

t (f)] ≤ TL
(
σ2i ,f [si−1,si+1−1]

)
Proof

si+1−1∑
t=si

∫
X
ft [σDT

t (f)] =

si+1−1∑
t=si

∫
X
ft [σθtt−τt(f

[τt,T])]

=

si+1−1∑
t=si

∫
X
ft [σθtt−si+1(f [si−1, T])]

=

si+1−1∑
t=si

∫
X
ft [σθtt−si+1(f [si−1, si+1−1])] (8)

=

si+1−1∑
t=si

∫
X
f

[si−1, T]
t−si+1 [σθtt−si+1(f [si−1, si+1−1])]

=

si+1−1∑
t=si

∫
X
f

[si−1, si+1−1]
t−si+1 [σθtt−si+1(f [si−1, si+1−1])]

≤
T∑
t=si

∫
X
f

[si−1, si+1−1]
t−si+1 [σθtt−si+1(f [si−1, si+1−1])]

≤
T+si−1∑
t=si

∫
X
f

[si−1, si+1−1]
t−si+1 [σθtt−si+1(f [si−1, si+1−1])]

=

T∑
t′=1

∫
X
f

[si−1, si+1−1]
t′ [σθtt′ (f

[si−1, si+1−1])]

=

T∑
t′=1

∫
X
f

[si−1, si+1−1]
t′ [σ2i

t′ (f
[si−1, si+1−1])]

= TL
(
σ2i ,f [si−1,si+1−1]

)
We Equation (8) comes from the fact that σθtt′ (f

′) is independent of f ′t′′ for all t′′ > t′ (for any
t′ ∈ T and f ∈ FT).

Lemma 23 Given i is such that i ≤ j and λG(x) ≤ 2i, we have:

TL
(
σ2i ,f [si−1,si+1−1]

)
≤ ρ2iT + ν

si+1−1∑
t′=si

ft′(x)

26

ONLINE LEARNING OF FACILITY LOCATIONS

Proof We have λG2i (x) = λ2i

G (x) = 0 so, by the generalised regret of σ2i we have:

TL
(
σ2i ,f [si−1,si+1−1]

)
≤TRσ2i

G2i

(
L
(
γx,f [si−1,si+1−1]

)
, 0
)

≤TνL
(
γx,f [si−1,si+1−1]

)
+ Tρ2i

=Tρ2i + ν
T∑
t=1

∫
X
f

[si−1,si+1−1]
t [δ(x)]

=Tρ2i + ν
T∑
t=1

f
[si−1,si+1−1]
t (x)

=Tρ2i + ν

(si+1−1)−(si−1)∑
t=1

f
[si−1,si+1−1]
t (x) + ν

T∑
t=(si+1−1)−(si−1)+1

f
[si−1,si+1−1]
t (x)

=Tρ2i + ν

si+1−si∑
t=1

f
[si−1,si+1−1]
t (x) + ν

T∑
t=(si+1−1)−(si−1)+1

f
[si−1,si+1−1]
t (x)

=Tρ2i + ν

si+1−si∑
t=1

f
[si−1,si+1−1]
t (x) + ν

T∑
t=T−(si+1−1)−(si−1)+1

ζ(x)

=Tρ2i + ν

si+1−si∑
t=1

f
[si−1,si+1−1]
t (x)

=Tρ2i + ν

si+1−si∑
t=1

ft+si−1(x)

=Tρ2i + ν

si+1−1∑
t′=si

ft′(x)

Combining lemmas 22 and 23 gives us the following lemma:

Lemma 24 We have:

si+1−1∑
t=si

∫
X
ft [σDT

t (f)] ≤ ρ2iT + ν

si+1−1∑
t=si

ft(x)

for all i ∈ N with 2i ≥ λGθ(x) and i ≤ j.

Proof Direct from lemmas 22 and 23

27

ONLINE LEARNING OF FACILITY LOCATIONS

Lemma 25 For any k ≤ j with 2k ≥ λGθ(x) we have:

T∑
t=sk

∫
X
ft [σDT

t (f)] ≤ ρ(2j+1 − 2k)T + νTL (γx,f)

Proof
T∑

t=sk

∫
X
ft [σDT

t (f)] =

j∑
i=k

si+1−1∑
t=si

∫
X
ft [σDT

t (f)]

=

j∑
i=k

ρ2iT + ν

si+1−1∑
t=si

ft(x)

 (9)

= ρ(2j+1 − 2k)T + ν

j∑
i=k

si+1−1∑
t=si

ft(x)

= ρ(2j+1 − 2k)T + ν

T∑
t=sk

ft(x)

≤ ρ(2j+1 − 2k)T + ν

T∑
t=1

ft(x)

= ρ(2j+1 − 2k)T + νTL (γx,f)

where Equation (9) comes from Lemma 24

Lemma 26 For all i ≤ j we have:

lsi+1−1 =

si+1−1∑
t=si

∫
X
ft [σDT

t (f)]

where lsi+1−1 is as in Definition 9.

Proof From Definition 9 we have lsi =
∫
X fsi [σDT

si (f)] and for all t ∈ [T] with si ≤ t < si+1 we
have lt+1 := lt +

∫
X ft+1 [σDT

t+1(f)] so by induction we have the result.

Lemma 27 For any k ≤ j + 1 We have:

sk−1∑
t=1

∫
X
ft [σDT

t (f)] ≤ 2ρ2kT +
k−1∑
i=1

q2i

Proof Let i be an arbitrary number such that i < k. By Definition 9, we must have that either
lsi+1−1 =

∫
X ft [σDT

si+1−1(f)] or lsi+1−2 < 2ρθsi+1−2T = 2ρ2iT . In either case we must have:

lsi+1−1 < 2ρ2iT +

∫
X
ft [σDT

si+1−1(f)]

28

ONLINE LEARNING OF FACILITY LOCATIONS

= 2ρ2iT +

∫
X
ft σ

2i

si+1−1−τt(f
[τt,T])

≤ 2ρ2iT + q2i

Substituting into the equality of Lemma 26 gives us:

si+1−1∑
t=si

∫
X
ft [σDT

t (f)] < 2ρ2iT + q2i

so:

sk−1∑
t=1

∫
X
ft [σDT

t (f)] =
k−1∑
i=1

si+1−1∑
t=si

∫
X
ft [σDT

si+1−1(f)]

=
k−1∑
i=1

(
2ρ2iT + q2i

)
≤ 2ρ2kT +

k−1∑
i=1

q2i

Lemma 28 If λG(x) ≤ 2j−1 We have:

ρ2j−1 ≤ νL (γx,f)

Proof From Definition 9 we have lsj−1 ≥ 2 · 2j−1ρT so, by lemmas 24 and 26 we have:

2jρT ≤ lsj−1

=

sj−1∑
t=sj−1

∫
X
ft [σDT

t (f)]

≤ ρ2j−1T + ν

sj−1∑
t=sj−1

ft(x)

≤ ρ2j−1T + ν

T∑
t=1

ft(x)

= ρ2j−1T + ν

T∑
t=1

∫
X
ft [δ(x)]

= ρ2j−1T + νTL (γx,f)

so ρ2j−1 = (2− 1)ρ2j−1 = ρ2j − ρ2j−1 ≤ νL (γx,f)

29

ONLINE LEARNING OF FACILITY LOCATIONS

Lemma 29 If λG(x) ≤ 2j−1 then:

L
(
σDT,f

)
≤ 5νL (γx,f) + 2ρλG(x) +

1

T

k−1∑
i=1

q2i

where k := min{k ≤ j | λG(x) ≤ 2k}

Proof Combining lemmas 25, 27 and 28 gives us:

L
(
σDT,f

)
=

1

T

T∑
t=1

∫
X
ft [σDT

t (f)]

=
1

T

sk−1∑
t=1

∫
X
ft [σDT

t (f)] +
1

T

T∑
sk

∫
X
ft [σDT

t (f)]

≤

(
2ρ2k +

1

T

k−1∑
i=1

q2i

)
+ (ρ(2j+1 − 2k) + νL (γx,f))

= νL (γx,f) + ρ2k + ρ2j+1 +
1

T

k−1∑
i=1

q2i

≤ νL (γx,f) + ρ2k + 4νL (γx,f) +
1

T

k−1∑
i=1

q2i

which, since 2k−1 < λG(x), is bounded above by:

5νL (γx,f) + 2ρλG(x) +
1

T

k−1∑
i=1

q2i

Lemma 30 If λG(x) > 2j−1 then:

L
(
σDT,f

)
< 8ρλG(x) +

1

T

j∑
i=1

q2i

Proof By Lemma 27 we have:

L
(
σDT,f

)
=

1

T

T∑
t=1

∫
X
ft [σDT

t (f)]

=
1

T

sj+1−1∑
t=1

∫
X
ft [σDT

t (f)]

≤ 2ρ2j+1 +
1

T

j∑
i=1

q2i

30

ONLINE LEARNING OF FACILITY LOCATIONS

= 8ρ2j−1 +
1

T

j∑
i=1

q2i

< 8ρλG(x) +
1

T

j∑
i=1

q2i

Lemma 31 We have:

L
(
σDT,f

)
≤ 5νL (γx,f) + 8ρλG(x) +

1

T

dlog2(λG(x))e∑
i=1

q2i

Proof Direct from lemmas 29 and 30

So we have shown that for any x ∈ X and f ∈ FT we have:

L
(
σDT,f

)
≤ 5νL (γx,f) + 8ρλG(x) +

1

T

dlog2(λG(x))e∑
i=1

q2i

Theorem 10 follows.
�

8.5. Proof of Theorem 11

Given vectors a, b ∈ ∆N we let D(a, b) be the relative entropy between a and b. That is:

D(a, b) =
∑
i∈[N]

ai ln

(
ai
bi

)

It is a standard result that D(a, b) ≥ 0.
Suppose now that we have some f ∈ FT

C̃O
. Let u be an arbitrary vector in ∆N and for all t ∈ T

let wt be as defined in the text (in the definition of σCO(N,G)).
Since ft is convex we have, by definition of a convex function:

ft(w
t)− ft(u) ≤ (∇ft(wt)) · (wt − u)

so, by letting gt = ∇ft(wt) we have:∑
t∈T

(ft(w
t)− ft(u)) ≤

∑
t∈T

(gt ·wt − gt · u) (10)

Let:
Zt :=

∑
i∈[N]

wti exp(−ηgti)

31

ONLINE LEARNING OF FACILITY LOCATIONS

Since, for all t ∈ [T − 1], we have wt+1
i = wti exp(−ηgti)/Zt we obtain:

D(u,wt)−D(u,wt+1) =
∑
i∈[N]

ui ln

(
wt+1
i

wti

)

=
∑
i∈[N]

ui ln

(
exp(−ηgti)

Zt

)
= −η

∑
i∈[N]

uig
t
i −

∑
i∈[N]

ui ln(Zt)

= −ηu · gt − ln(Zt)

= −ηu · gt − ln

∑
i∈[N]

wti exp(−ηgti)


≥ −ηu · gt − ln

∑
i∈[N]

wti

(
1− ηgti +

1

2
η2
(
gti
)2) (11)

= −ηu · gt − ln

1− ηwt · gt +
1

2
η2
∑
i∈[N]

wti(g
t
i)

2


≥ −η(u · gt −wt · gt)− 1

2
η2
∑
i∈[N]

wti(g
t
i)

2 (12)

≥ −η(u · gt −wt · gt)− 1

2
η2
∑
i∈[N]

wtiG
2

= −η(u · gt −wt · gt)− 1

2
η2G2

where equations (11) and (12) come from the inequalities exp(−x) ≤ 1 − x + x2/2 (for x ≥ 0)
and ln(1 + x) ≤ x respectively.

So we have:

D(u,wt)−D(u,wt+1) ≥ −η(u · gt −wt · gt)− 1

2
η2G2

which implies:

D(u,w1)−D(u,wT+1) =
∑
t∈[T]

D(u,wt)−D(u,wt+1) ≥
∑
t∈[T]

−η(u · gt−wt · gt)− 1

2
η2G2T

so, since relative entropies are positive, we obtain:

D(u,w1) ≥
∑
t∈[T]

−η(u · gt −wt · gt)− 1

2
η2G2T

which, upon rearranging and substituting into Equation (10) gives us:∑
t∈T

(ft(w
t)− ft(u)) ≤

∑
t∈T

(gt ·wt − gt · u)

32

ONLINE LEARNING OF FACILITY LOCATIONS

≤ 1

η
D(u,w1) +

1

2
ηG2T

=
1

η

∑
i∈[N]

ui ln (Nui) +
1

2
ηG2T

≤ 1

η

∑
i∈[N]

ui ln (N) +
1

2
ηG2T

≤ 1

η
ln (N) +

1

2
ηG2T

= G
√

2T ln(N)

This implies that:

L
(
σCO(N,G),f

)
=

1

T

∑
t∈[T]

∫
∆N

ft [σ
CO(N,G)
t (f)]

=
1

T

∑
t∈[T]

∫
∆N

ft [δ(wt)]

=
1

T

∑
t∈[T]

ft(w
t)

=
1

T

(∑
t∈T

(ft(w
t)− ft(u))

)
+

1

T

∑
t∈T

ft(u)

≤ G
√

2 ln(N)

T
+

1

T

∑
t∈T

ft(u)

= G

√
2 ln(N)

T
+

1

T

∑
t∈T

∫
∆N

ft [δ(u)]

= G

√
2 ln(N)

T
+

1

T

∑
t∈T

∫
∆N

ft [γut]

≤ G
√

2 ln(N)

T
+ L (γu,f) (13)

We are now ready to bound the generalised regret. Suppose we have L,Γ ∈ R+ and assume
f ∈ FC̃O and u ∈ XC̃O are such that λC̃O(u) ≤ Γ and L (γu,f) ≤ L. By Equation (13) we have:

L
(
σCO(N,G),f

)
≤ L (γu,f) +G

√
2 ln(N)

T
≤ L+G

√
2 ln(N)

T

Maximising across all such u gives us the result.
�

8.6. Proof of Theorem 12

Suppose we have c ∈ [0, C] and d ∈ [0, D]. We first show that βY(`c,d) is convex. This is true
since, first,

∑
j∈[i]wv(d,j) is linear and the function g : R+ → R+ with g(x) := xΥ is convex,

33

ONLINE LEARNING OF FACILITY LOCATIONS

and hence
(∑

j∈[i]wv(d,j)

)Υ
is a convex function of a linear function and hence convex. Hence∑

i∈[N−1]

(
dv(d,i) − dv(d,i+1)

) (∑
j∈[i]wv(d,j)

)Υ
is a positive sum of convex functions and hence

convex. Since Υc ·w+ dv(d,N) is linear and hence convex, we then have that βY(`c,d) is a positive
sum of two convex functions and is hence convex.

We now show that ‖∇βY(`c,d)(w)‖∞ ≤ Υ(C + D) for all w ∈ ∆N which will complete the
proof. We have:

∂v(d,i)[βY(`c,d)](w) = Υcv(d,i) + Υ
N−1∑
j=i

(
dv(d,i) − dv(d,i+1)

)∑
j∈[i]

wv(d,j)

Υ−1

≤ Υcv(d,i) + Υ

N−1∑
j=i

(
dv(d,i) − dv(d,i+1)

)∑
j∈[N]

wv(d,j)

Υ−1

≤ Υcv(d,i) + Υ
N−1∑
j=i

(
dv(d,i) − dv(d,i+1)

)
1Υ−1

= Υcv(d,i) + Υ
N−1∑
j=i

(
dv(d,i) − dv(d,i+1)

)
≤ Υcv(d,i) + Υdv(d,i)

≤ ΥC + ΥD

�

8.7. Proof of Theorem 13

Suppose we have some c ∈ [0, C]N , d ∈ [0, D]N and w ∈ ∆N . For X ∈ P([N]) we define
g(X) :=

∑
i∈X ci and for all i ∈ [N] we define hi(X) := I(X ⊆ {v(d, j) : j ∈ [i]}) We start

with the following lemma:

Lemma 32 We have: ∫
XFL•

g [αY(w)] ≤ Υw · c

Proof We have: ∫
XFL•

g [αY(w)] =

∫
XFL•

g

 ∑
s∈[N]Υ

δ(µ(s))
∏
i∈[Υ]

wsi


=

∑
s∈[N]Υ

∏
i∈[Υ]

wsi

∫
XFL•

g [δ(µ(s))]

=
∑
s∈[N]Υ

∏
i∈[Υ]

wsi

 g(µ(s))

34

ONLINE LEARNING OF FACILITY LOCATIONS

≤
∑
s∈[N]Υ

∏
i∈[Υ]

wsi

 ∑
j∈[Υ]

csj

=
∑
j∈[Υ]

∑
s∈[N]Υ

∏
i∈[Υ]

wsi

 csj

(14)

We now analyse the term
∑
s∈[N]Υ

(∏
i∈[Υ]wsi

)
csj for all j ∈ [N]. Without loss of generality let

j = N . Then we have:

∑
s∈[N]Υ

∏
i∈[Υ]

wsi

 csj =
∑
s∈[N]Υ

∏
i∈[Υ]

wsi

 csN

=
∑

sN∈[N]

∑
s∈[N]Υ−1

∏
i∈[Υ]

wsi

 csN

=
∑

sN∈[N]

wsN csN

∑
s∈[N]Υ−1

 ∏
i∈[Υ−1]

wsi


=

∑
sN∈[N]

wsN csN

 ∏
i∈[Υ−1]

∑
si∈[N]

wsi


=

∑
sN∈[N]

wsN csN

 ∏
i∈[Υ−1]

1


=

∑
sN∈[N]

wsN csN

= w · c

Substituting into the above gives us the result.

Lemma 33 For all i ∈ [N] we have:

∫
XFL•

hi [αY(w)] =

∑
j∈[i]

wv(d,j)

Υ

Proof Letting V := {v(d, j) : j ∈ [i]} we have:

∫
XFL•

hi [αY(w)] =

∫
XFL•

hi

 ∑
s∈[N]Υ

δ(µ(s))
∏
i∈[Υ]

wsi



35

ONLINE LEARNING OF FACILITY LOCATIONS

=
∑
s∈[N]Υ

∏
i∈[Υ]

wsi

∫
XFL•

hi [δ(µ(s))]

=
∑
s∈[N]Υ

∏
i∈[Υ]

wsi

hi(µ(s))

=
∑
s∈[N]Υ

∏
i∈[Υ]

wsi

 I(k ∈ V ∀k ∈ µ(s))

=
∑
s∈[N]Υ

∏
i∈[Υ]

wsi

 I(sj ∈ V ∀j ∈ [Υ])

=
∑
s∈[N]Υ

∏
i∈[Υ]

wsi

 I(s ∈ V Υ)

=
∑
s∈V Υ

∏
i∈[Υ]

wsi


=
∏
i∈[Υ]

∑
si∈V

wsi

=
∏
i∈[Υ]

∑
s∈V

ws

=

(∑
s∈V

ws

)Υ

=

∑
j∈[i]

wv(d,j)

Υ

Lemma 34 For all X ∈ X ˜FL• we have:

`c,d(X) = g(X) + dv(d,N) +
∑

i∈[N−1]

(
dv(d,i) − dv(d,i+1)

)
hi(X)

Proof Let j be such that v(d, j) = argmini∈X di. For all i < j we have that v(d, j) /∈ {v(d, k) :
k ∈ [i]} so since v(d, j) ∈ X we have X 6⊆ {v(d, k) : k ∈ [i]} and hence hi(X) = 0. On the
other hand, for all k such that v(d, k) ∈ X , we have, by definition of j, that dv(d,k) ≥ dv(d,j) so,
by definition of v, we have v(d, k) ≤ v(d, j) and so for all i ≥ j we have v(d, k) ∈ {v(d, k′) :
k′ ∈ [i]}. Hence, for all i ≥ j we have X ⊆ {v(d, k) : k ∈ [i]} which implies hi(X) = 1. Putting
together gives us hi(X) = I(i ≥ j). This implies:

dv(d,N) +
∑

i∈[N−1]

(
dv(d,i) − dv(d,i+1)

)
hi(X)

36

ONLINE LEARNING OF FACILITY LOCATIONS

= dv(d,N) +
∑

i∈[N−1]

(
dv(d,i) − dv(d,i+1)

)
I(i ≥ j)

= dv(d,N) +
N−1∑
i=j

(
dv(d,i) − dv(d,i+1)

)
= dv(d,N) +

(
dv(d,j) − dv(d,N)

)
= dv(d,j)

= min
i∈X

di

By definition of g(X) we then obtain the result.

We are now ready to prove the theorem. By Lemma 34 we have that:∫
XFL•

`c,d [αY(w)]

=

∫
XFL•

g [αY(w)] + dv(d,N)

∫
XFL•

1 [αY(w)] +
∑

i∈[N−1]

(
dv(d,i) − dv(d,i+1)

) ∫
XFL•

hi [αY(w)]

Substituting in lemmas 32 and 33 gives us the result.
�

8.8. Proof of Theorem 14

Recall that, by definition of φY , we have:

φY(L,Γ) := max{[βY(f)](ψY(x)) | (x, f) ∈ X ˜FL• ×F ˜FL• , f(x) ≤ L, λ ˜FL•(x) ≤ Γ}

Suppose we have L,Γ ∈ R+. When Γ ≥ ω we trivially have that [βY(f)](ψY(X)) ≤ ω for all
X ∈ X ˜FL• and f ∈ F ˜FL• so:

φY(L,Γ) ≤ ω ≤ Γ ≤ dln(T)/2eL+D
√

1/T + Γ

Now let’s consider the case that Γ < ω. Suppose we have some (X, f) ∈ X ˜FL• × F ˜FL• with
f(x) ≤ L, and λ ˜FL•(x) ≤ Γ. Let c ∈ [0, C]N and d ∈ [0, D]N be such that `c,d = f and let
w = ψY(X). Since λK(X) < ω we have |X| = K and hence also wi := I(i ∈ X)/K. Let k be
such that v(d, k) = argmini∈X di. For all i ∈ [N − 1] we have:∑

j∈[i]

wv(d,j)

Υ

≤

∑
j∈[N]

wv(d,j)

Υ

= 1Υ = 1

and for i ∈ [k − 1] we have:∑
j∈[i]

wv(d,j)

Υ

≤

 ∑
j∈[N]\{k}

wv(d,j)

Υ

37

ONLINE LEARNING OF FACILITY LOCATIONS

=

∑
j∈[N]

wv(d,j)

− wv(d,k)

Υ

= (1− 1/K)Υ

≤ exp(−1/K)Υ

= exp(−1/K)Kdln(T)/2e

= exp(−dln(T)/2e)
≤ exp(− ln(T)/2)

=
√

1/T

Substituting both these inequalities into the definition of [βY(`c,d)](w) gives us

[βY(`c,d)](w)

= Υc ·w + dv(d,N) +
∑

i∈[N−1]

(
dv(d,i) − dv(d,i+1)

)∑
j∈[i]

wv(d,j)

Υ

≤ Υc ·w + dv(d,N) +
k−1∑
i=1

(
dv(d,i) − dv(d,i+1)

)√
1/T +

N−1∑
i=k

(
dv(d,i) − dv(d,i+1)

)
= Υc ·w +

k−1∑
i=1

(
dv(d,i) − dv(d,i+1)

)√
1/T + dv(d,k)

= Υc ·w +
√

1/T

k−1∑
i=1

(
dv(d,i) − dv(d,i+1)

)
+ dv(d,k)

= Υc ·w +
√

1/T
(
dv(d,1) − dv(d,k)

)
+ dv(d,k)

≤ Υc ·w + dv(d,1)

√
1/T + dv(d,k)

≤ Υc ·w +D
√

1/T + dv(d,k)

≤ Υc ·w +D
√

1/T + min
i∈X

di

= Υ
∑
i∈X

ci/K +D
√

1/T + min
i∈X

di

≤ Kdln(T)/2e
∑
i∈X

ci/K +D
√

1/T + min
i∈X

di

≤ dln(T)/2e
∑
i∈X

ci +D
√

1/T + min
i∈X

di

≤ dln(T)/2e

(
min
i∈X

di +
∑
i∈X

ci

)
+D

√
1/T

= dln(T)/2e`c,d(X) +D
√

1/T

So, since Γ = 0, we have:

[βY(f)](ψY(X)) ≤ dln(T)/2e`c,d(X) +D
√

1/T + Γ

38

ONLINE LEARNING OF FACILITY LOCATIONS

≤ dln(T)/2eL+D
√

1/T + Γ

Since this holds for any (X, f) ∈ X ˜FL• ×F ˜FL• with f(x) ≤ L and λ ˜FL•(x) ≤ Γ, we have:

φY(L,Γ) ≤ dln(T)/2eL+D
√

1/T + Γ

8.9. Proof of Theorem 15

The result comes directly from theorems 6, 11 and 14
�

8.10. Proof of Theorem 16

Given X ∈ X ˜FL◦ with |X| > K we have λ ˜FL◦(X) = ω. Since, for all X ′ ∈ X ˜FL•(2N,C,C+D)
we

have λ ˜FL•(2N,C,C+D)
(X ′) ≤ ω we trivially have that λ ˜FL•(2N,C,C+D)

(ψZ(X)) ≤ λ ˜FL◦(X). On
the other hand, suppose we have X ∈ X ˜FL◦ with |X| ≤ K. Then |ψZ(X)| = |X|+ |{N + i : i ≤
K − |X|}| = |X| + K − |X| = K and hence λ ˜FL•(2N,C,C+D)

(ψZ(X)) = 0 = λ ˜FL◦(X). So in
any case λ ˜FL•(2N,C,C+D)

(ψZ(X)) ≤ λ ˜FL◦(X).

Now suppose we have some f ∈ F ˜FL◦ . Let c,d be such that f = `c,d and let ĉ, d̂ ∈ R2N be
defined as:

ĉi := ci, d̂i := di ∀i ∈ [N]

ĉi := 0, d̂i := C +D ∀i ∈ [2N] \ [N]

Note then that βZ(`c,d) = `ĉ,d̂. Since ĉ ∈ [0, C]2N and d̂ ∈ [0, C+D]2N we have that βZ(`c,d) ∈
FFL•(2N,C,C+D,K). All that is left to show is that [βZ(`c,d)](X ′) ≥

∫
XFL◦

`c,d [αZ(X ′)] for all
X ′ ∈ X ˜FL•(2N,C,C+D)

and (c,d) ∈ [0, C]N × [0, D]N . We have two cases:

• In the case that X ′ ∩ [N] = ∅ then for all i ∈ X ′ we have i ∈ [2N] \ [N] so ĉi = 0 and
d̂i = C +D. This means that:

[βZ(`c,d)](X ′) = `ĉ,d̂(X ′) =
∑
i∈X′

ĉi + min
i∈X′

d̂i = C +D ≥ c1 + d1

= `c,d({1}) =

∫
XFL◦

`c,d [δ({1})] =

∫
XFL◦

`c,d [αZ(X ′)]

• In the case that X ′ ∩ [N] 6= ∅ choose i ∈ X ′ ∩ [N] that minimises d̂i. Since i ∈ [N] we have
d̂i ≤ D < C +D = d̂j for all j ∈ X ′ \ [N] so:

min
j∈X′

d̂j = d̂i = min
j∈X′∩[N]

d̂j = min
j∈X′∩[N]

dj

and we also have: ∑
j∈X′

ĉj =
∑

j∈X∩[N]

ĉj +
∑

j∈X∩([2N]\[N])

ĉj

=
∑

j∈X∩[N]

cj +
∑

j∈X∩([2N]\[N])

0

39

ONLINE LEARNING OF FACILITY LOCATIONS

=
∑

j∈X∩[N]

cj

so:

[βZ(`c,d)](X ′) = `ĉ,d̂(X)

=
∑
j∈X′

ĉj + min
j∈X′

d̂j

=
∑

j∈X∩[N]

cj + min
j∈X′∩[N]

dj

= `c,d(X ∩ [N])

=

∫
XFL◦

`c,d [δ(X ′ ∩ [N])]

=

∫
XFL◦

`c,d [αZ(X ′)]

�

8.11. Proof of Theorem 17

Given L,Γ ∈ R+ suppose we have (X, f) ∈ X ˜FL◦ ×F ˜FL◦ with f(X) ≤ L and λ ˜FL◦(X) ≤ Γ
If Γ ≥ ω we trivially have that [βZ(f)](ψZ(X)) < ω ≤ L + Γ so suppose now that Γ < ω.

Then we have that λ ˜FL◦(X) < ω and hence |X| ≤ K.
Let c,d be such that f = `c,d and let ĉ, d̂ ∈ R2N be defined as:

ĉi := ci, d̂i := di ∀i ∈ [N]

ĉi := 0, d̂i := C +D ∀i ∈ [2N] \ [N]

Note then that βZ(`c,d) = `ĉ,d̂ so:

[βZ(f)](ψZ(X)) = [βZ(`c,d)](ψZ(X))

= `ĉ,d̂(ψZ(X))

=
∑

i∈ψZ(X)

ĉi + min
i∈ψZ(X)

d̂i

=
∑

i∈ψZ(X)

ĉi + min
i∈ψZ(X)∩[N]

d̂i

=
∑

i∈ψZ(X)

ĉi + min
i∈ψZ(X)∩[N]

di

=
∑

i∈ψZ(X)∩[N]

ci + min
i∈ψZ(X)∩[N]

di

=
∑
i∈X

ci + min
i∈X

di

40

ONLINE LEARNING OF FACILITY LOCATIONS

= `c,d(X)

= f(X)

≤ L
≤ L+ Γ

So, in either case, we have [βZ(f)](ψZ(X)) ≤ L + Γ. Since this applies to all (X, f) with
f(X) ≤ L and λ ˜FL◦(X) ≤ Γ we hence have that φW(L,Γ) ≤ L+ Γ

�

8.12. Proof of Theorem 18

Direct from theorems 6, 15 and 17
�

8.13. Proof of Theorem 19

Note first that since min{λF̃L(X) | X ∈ XF̃L} = 1 we also have min{λG(X) | X ∈ XG} = 1
which is required to use the doubling trick. We define the quantities ν and ρ as equal to dln(T)/2e
and (a+ b)

√
ln(2N)/T respectively. Defining Gθ (from G), for all θ ≥ 1, as in Subsection 6.3 we

have, for all X ∈ XG :

λGθ(X) = λθG(X)

= I(λG(X) > θ)ω

= I((aλF̃L(X) + b)/(a+ b) > θ)ω

= I(λF̃L(X) > ((a+ b)θ − b)/a)ω

= I(|X| > ((a+ b)θ − b)/a)ω

= I(|X| > b(a+ b)θ − b)/ac)ω
= λ ˜FL◦(N,C,D,b(θ(a+b)−b)/ac)(X)

Hence we have that Gθ = ˜FL◦(N,C,D, b(θ(a + b) − b)/ac) so by Theorem 18 we have that the
strategy σθ has a generalised regret, with respect to Gθ, of

Rσ
θ

Gθ (L,Γ)

=Rσ
θ

˜FL◦(N,C,D,b(θ(a+b)−b)/ac)(L,Γ)

=Rσ
FL◦(N,C,D,b(θ(a+b)-b)/ac)
˜FL◦(N,C,D,b(θ(a+b)−b)/ac)(L,Γ)

≤dln(T)/2eL+ (2bθ(a+ b)− b)/acdln(T)/2e(2C +D) + (C +D))
√

ln(2N)/T + Γ

≤dln(T)/2eL+ (2(θ(a+ b)− b)/a)dln(T)/2e(2C +D) + (C +D))
√

ln(2N)/T + Γ

=dln(T/2)eL+ ((θ(a+ b)− b)/a)a+ b)
√

ln(2N)/T + Γ

=dln(T/2)eL+ θ(a+ b)
√

ln(2N)/T + Γ

=νL+ ρθ + Γ

41

ONLINE LEARNING OF FACILITY LOCATIONS

which is required for the doubling trick. Since all the conditions for the doubling trick are now
satisfied we can invoke Theorem 10, giving us:

Rσ
DT

G (L,Γ) ≤ 5νL+ 8ρΓ +
1

T

dlog2(Γ)e∑
i=1

q2i (15)

where q2i is defined as in Subsection 6.3. That is:

qθ := max

{∫
X
ft[σ

θ
t (f)] | f ∈ FT , t ∈ [T]

}
which, by above, is equal to:

max

{∫
X
ft[σ

FL◦(N,C,D,b(θ(a+b)-b)/ac)(f)] | f ∈ FT , t ∈ [T]

}
Fix some Γ ∈ R+ and let K := (Γ(a+ b)− b)/a.

Since the strategy σFL◦(N,C,D,bθ(a+b)-b)/ac) always selects a set of at most dln(T)eb(θ(a+ b)−
b)/ac sites we have qθ ≤ dln(T)/2eb(θ(a+ b)− b)/acC +D so we have:

dlog2(Γ)e∑
i=1

q2i ≤
dlog2(Γ)e∑
i=1

dln(T)/2e
⌊

2i(a+ b)− b
a

⌋
C +D

≤
dlog2(Γ)e∑
i=1

dln(T)/2e2
i(a+ b)− b

a
C +D

≤
dlog2(Γ)e∑
i=1

dln(T)/2e2
i(a+ b)

a
C +D

≤ dln(T)/2e2
dlog2(Γ)e+1(a+ b)

a
C +D

≤ dln(T)/2e8Γ(a+ b)

a
C +D

= dln(T)/2e8Γ(a+ b)− b
a

C + 8dln(T)/2e b
a
C +D

= dln(T)/2e8Γ(a+ b)− b
a

C + 8dln(T)/2e C +D

(4C + 2D)dln(T)/2e
C +D

= dln(T)/2e8Γ(a+ b)− b
a

C + 8
C +D

4C + 2D
C +D

= dln(T)/2e8Γ(a+ b)− b
a

C + 4C +D

= 8dln(T)/2eKC + 4C +D

so:

1

T

dlog2(Γ)e∑
i=1

q2i ∈ O
(

ln(T)

T
(KC + C +D)

)

42

ONLINE LEARNING OF FACILITY LOCATIONS

⊆ O

(
K(C +D)

√
ln(N)

T

)
(16)

We also have:

ρΓ = Γ(a+ b)

√
ln(2N)

T

=
aK + b

a+ b
(a+ b)

√
ln(2N)

T

= (aK + b)

√
ln(2N)

T

∈ O

(
K(C +D) ln(T)

√
ln(N)

T

)
(17)

Combining equations (15), (16) and (17) gives us:

Rσ
DT

G (L,Γ) ∈ O

(
L ln(T) +K(C +D) ln(T)

√
ln(N)

T

)
which implies the result.

�

9. Hypothesis Classes and Infinite Complexities

In this paper we utilise complexity functions that (informally) evaluate as infinite on some actions.
Hence, to give an idea of what these infinities mean, we now consider, as an example, the general
task of “online classification”. Since infinity is not actually a number we will instead use, as a
surrogate, a number ω and take the limit ω →∞.

In an online classification problem we have a set S and a set H of functions from S into
{−1, 0, 1} that are known to Learner. We call H the “hypothesis space”. We also have a “com-
plexity” function λ′ : H → R+. Nature chooses some h ∈ H a-priori but doesn’t reveal it to
Learner. Learning proceeds in trials t = 1, 2, ..., T . On trial t:

1. Nature chooses some st ∈ S with h(st) 6= 0 and reveals it to Learner.

2. Learner chooses some ŷt ∈ {−1, 1}

3. h(st) is revealed to Learner

4. If ŷt 6= h(st) then Learner incurs a mistake.

Given a strategy for Learner we define its “mistake bound” to be a function M : R+ → R+ such
that M(β) is the maximum number of mistakes made by the algorithm if nature chooses h with
λ′(h) ≤ β.

An example of online classification is “online linear classification” of dimension n in which
S = {s ∈ Rn : ‖s‖ ≤ 1} and each hypothesis h is defined by a pair (w, µ) ∈ S × (0, 1) such that

h(s) = I(|w · s| ≥ µ) sign(w · s) and λ′(h) = 1/µ

43

ONLINE LEARNING OF FACILITY LOCATIONS

The famous “Perceptron” algorithm achieves a mistake bound of M(β) ≤ β2 for online linear
classification.

We can formulate online classification as an online optimisation game G as follows:

• XG = 〈S, {−1, 0, 1}〉

• FG is the set of all f ∈ 〈XG ,R+〉 such that there exists (s, y) ∈ S × {−1, 1} with f(g) =
I(g(s) 6= y) for all g ∈ XG

• Given g ∈ XG we have λG(g) := I(g /∈ H)ω + I(g ∈ H)λ′(g)

This game is equivalent to online classification by the following relationships (where ft and gt are
Nature’s and Learner’s actions on trial t respectively).

• ft(gt) = I(gt(st) 6= h(st))

• ŷt = gt(st)

• If a mistake is made on trial t then ft(gt) = 1. Otherwise ft(gt) = 0

Given a strategy σ with mistake bound M(·), its generalised regret RσG satisfies:

RσG (L,Γ) ≤ Lω +
1

T
M(Γ) + ωI(Γ ≥ ω)

So, in Online classification, complexities evaluate as infinite on actions that correspond to func-
tions that are not in the hypothesis space: i.e. those that Nature cannot choose.

10. The Failure of Deterministic Algorithms

In this section we prove that no deterministic algorithm, e.g. follow the (approximate) leader, can
achieve the (expected) loss bound of our algorithm; even if the opening costs do not vary from trial
to trial. Specifically we prove the following theorem and corollary:

Theorem 35 Take the online learning problem of Section 2 with C := 1 and D := 1. Suppose
we have a deterministic algorithm A for Learner and a function B : (R+)3 → R+ such that
B is monotonic increasing in its first variable and, for all ε ∈ R+ , there exists N,T ∈ N with
B(2/

√
N,N, T) < ε. Then, for all ε ∈ R+ there exists an N and T such that there are N sites, T

trials, and a sequence of Natures selections of cost vectors {ct,dt ∈ [0, 1]N : t ∈ [T]}, and a set
X∗ ∈ P([N]) \ ∅ such that:

B

(
1

T

T∑
t=1

`ct,dt(X
∗), N, T

)
< ε

and:
1

T

T∑
t=1

`ct,dt(X
t) ≥ 1

where Xt is selection of A at trial t. In addition, the selection of opening cost vectors need not vary
from trial to trial. i.e. there exists c ∈ [0, 1]N such that ct := c for all t ∈ [T].

44

ONLINE LEARNING OF FACILITY LOCATIONS

Theorem 35 has the following corollary:

Corollary 36 For any deterministic algorithm A for Learner, for the problem of Section 2 then:

E

(
T∑
t=1

`ct,dt(X
t)

)
/∈ O

(
ln(T)

T∑
t=1

`ct,dt(X
∗) +N(C +D) ln(T)

√
ln(N)T

)

where Xt is selection of A on trial t and X∗ is an arbitrary set of sites.

Corollary 36 follows from Theorem 35 by choosing the function B (in Theorem 35) such that
B(L,N, T) := ln(T)L+ 2N ln(T)

√
ln(N)/T

We now prove Theorem 35. Suppose we have some arbitrary ε ∈ R+. Choose N and T such
that B(2/

√
N,N, T) < ε. Let Xt be the selection of A at trial t. We define the fixed opening cost

vector c by ci := 1/
√
N for all i ∈ [N].

Definition 37 We partition [T] into two sets, Λ and Υ, where:

• Λ := {t ∈ [T] : |Xt| ≤
√
N}

• Υ := {t ∈ [T] : |Xt| >
√
N}

Since the algorithm is deterministic, Nature can know the choice of Xt before it chooses dt.
Hence, we now define an adversarial choice of this vector:

• If t ∈ Λ then for all i ∈ Xt set dti := 1 and for all i ∈ [N] \Xt set dti := 0.

• If t ∈ Υ then for all i ∈ [N] set dti := 0

Lemma 38 We have:
1

T

∑
t∈[T]

`ct,dt(X
t) ≥ 1

Proof Note that if t ∈ Λ we have:

`ct,dt(X
t) ≥ min

i∈[N]
dti

= min
i∈[N]

1

= 1

and if t ∈ Γ we have:

`ct,dt(X
t) ≥

∑
i∈Xt

cti

=
∑
i∈Xt

ci

=
∑
i∈Xt

1/
√
N

45

ONLINE LEARNING OF FACILITY LOCATIONS

= |Xt|/
√
N

≥
√
N/
√
N

= 1

So in either case we have `ct,dt(X
t) ≥ 1 and hence 1

T

∑
t∈[T] `ct,dt(X

t) ≥ 1.

Lemma 39 There exists X∗ ∈ P([N]) \ ∅ such that:

B

(
1

T

T∑
t=1

`ct,dt(X
∗), N, T

)
< ε

Proof We define j := argmini∈[N] |{t ∈ Λ : i ∈ Xt}| and define X∗ := {j}. We have:∑
i∈[N]

|{t ∈ Λ : i ∈ Xt}| =
∑
i∈[N]

∑
t∈Λ

I
(
i ∈ Xt

)
=
∑
t∈Λ

∑
i∈[N]

I(i ∈ Xt)

=
∑
t∈Λ

|Xt|

≤
∑
t∈Λ

√
N

≤ T
√
N

Hence we have that:

|{t ∈ Λ : j ∈ Xt}| ≤ (1/N)
∑
i∈[N]

|{t ∈ Λ : i ∈ Xt}|

≤ (1/N)T
√
N

= T/
√
N

Note that on trial t ∈ Λ we have dtj = 1 if j ∈ Xt and dtj = 0 otherwise. Also on a trial t ∈ Γ we
have dtj = 0. This means: ∑

t∈[T]

dtj =
∑
t∈Λ

dtj +
∑
t∈Γ

dtj

=
∑
t∈Λ

dtj

=
∑

t∈Λ:j∈Xt

dtj +
∑

t∈Λ:j /∈Xt

dtj

= |{t ∈ Λ : j ∈ Xt}|

≤ T/
√
N

46

ONLINE LEARNING OF FACILITY LOCATIONS

And hence, since X∗ = {j} :

1

T

∑
t∈[T]

`t(X∗) =
1

T

∑
t∈[T]

(
ctj + dtj

)
=

1√
N

+
1

T

∑
t∈[T]

ctj

=
1√
N

+
1

T

∑
t∈[T]

1√
N

= 2/
√
N

So B is monotonic increasing in its first variable we then have:

B

(
1

T

T∑
t=1

`ct,dt(X
∗), N, T

)
< B

(
2/
√
N,N, T

)
which, by our choice of N and T , is bounded above by ε.

Lemmas 38 and 39 imply Theorem 35.
�

11. Conclusions and Ongoing Work

In this paper, we have proposed a novel online learning version of the classic Facility location
problem. We have proposed an algorithm for this problem and derived bounds on its expected loss
relative to that of the any fixed set of sites. Ongoing work for this problem includes:

• Complement our study by carrying out an experimental evaluation of our algorithm on real-
world datasets.

• Extend the algorithm to the bandit setting (Auer et al., 2002; Robbins, 1952), when only the
total cost, or perhaps total opening cost and minimum connection cost, is revealed on each
trial.

• In some real-world domains, we may have to pay a migration cost to move sites while select-
ing a subset of sites, or may be limited to how far we can move them. We would like to design
an algorithm to handle such problems.

Acknowledgments

This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of De-
fence under Agreement Number W911NF-16-3-0001. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
hereon.

47

ONLINE LEARNING OF FACILITY LOCATIONS

References

Nima Anari, N. Haghtalab, J. Naor, Sebastian Pokutta, M. Singh, and A. Torrico. Structured robust
submodular maximization: Offline and online algorithms. In AISTATS, 2019.

Peter Auer, Nicol Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM J. Comput., 32(1):48–77, 2002. URL http://dblp.
uni-trier.de/db/journals/siamcomp/siamcomp32.html#AuerCFS02.

Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the facility location and
k-median problems. In In Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, pages 378–388, 1999.

V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research,
4(3):233–235, 1979. URL https://EconPapers.repec.org/RePEc:inm:ormoor:
v:4:y:1979:i:3:p:233-235.

G. Cornuéjols, G. Nemhauser, and L. A. Wolsey. The uncapacitated facility location problem. 1990.

M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski. Online facility location with deletions. ArXiv,
abs/1807.03839, 2018.

I. Dinur and David Steurer. Analytical approach to parallel repetition. ArXiv, abs/1305.1979, 2014.

D. Fotakis. Online and incremental algorithms for facility location. SIGACT News, 42:97–131,
2011.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an applica-
tion to boosting. In EuroCOLT, 1995.

T. Fujita, K. Hatano, and E. Takimoto. Combinatorial online prediction via metarounding. In ALT,
2013.

A. Gonen and Elad Hazan. Learning in non-convex games with an optimization oracle. In COLT,
2019.

S. Guha and S. Khuller. Greedy strikes back: improved facility location algorithms. In SODA ’98,
1998.

Elad Hazan, Wei Hu, Y. Li, and Zhiyuan Li. Online improper learning with an approximation oracle.
ArXiv, abs/1804.07837, 2018.

M. Herbster, Stephen Pasteris, and M. Pontil. Mistake bounds for binary matrix completion. In
NIPS, 2016.

K. Jain and V. Vazirani. Approximation algorithms for metric facility location and k-median prob-
lems using the primal-dual schema and lagrangian relaxation. J. ACM, 48:274–296, 2001.

S. Kakade and A. Tewari. Online improper learning with an approximation oracle. Lecture Notes.

Sham M. Kakade, A. Kalai, and Katrina Ligett. Playing games with approximation algorithms.
SIAM J. Comput., 39:1088–1106, 2009.

48

http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp32.html#AuerCFS02
http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp32.html#AuerCFS02
https://EconPapers.repec.org/RePEc:inm:ormoor:v:4:y:1979:i:3:p:233-235
https://EconPapers.repec.org/RePEc:inm:ormoor:v:4:y:1979:i:3:p:233-235

ONLINE LEARNING OF FACILITY LOCATIONS

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. In COLT, 2003.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Inf. Comput., 132:1–63, 1997.

Wouter M. Koolen, Manfred K. Warmuth, and Jyrki Kivinen. Hedging structured concepts. In
COLT, 2010.

Nikolaos Laoutaris, Georgios Smaragdakis, K. Oikonomou, I. Stavrakakis, and Azer Bestavros.
Distributed placement of service facilities in large-scale networks. IEEE INFOCOM 2007 - 26th
IEEE International Conference on Computer Communications, pages 2144–2152, 2007.

A. Meyerson. Online facility location. Proceedings 2001 IEEE International Conference on Cluster
Computing, pages 426–431, 2001.

Stephen Pasteris, F. Vitale, Kevin S. Chan, Shiqiang Wang, and M. Herbster. Maxhedge: Maximiz-
ing a maximum online. In AISTATS, 2019a.

Stephen Pasteris, Shiqiang Wang, M. Herbster, and T. He. Service placement with provable guar-
antees in heterogeneous edge computing systems. IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, pages 514–522, 2019b.

H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Math-
ematical Society, 58:527–535, 1952.

T. Roughgarden and J. Wang. An optimal learning algorithm for online unconstrained submodular
maximization. In COLT, 2018.

D. Shmoys, Éva Tardos, and K. Aardal. Approximation algorithms for facility location problems
(extended abstract). In STOC ’97, 1997.

Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the perturbed
leader is optimal. In ALT, 2020.

L. Wang, Lei Jiao, T. He, J. Li, and M. Mühlhäuser. Service entity placement for social virtual
reality applications in edge computing. IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, pages 468–476, 2018.

Shiqiang Wang, R. Urgaonkar, K. Chan, Ting He, Murtaza Zafer, and K. Leung. Dynamic service
placement for mobile micro-clouds with predicted future costs. IEEE Transactions on Parallel
and Distributed Systems, 28:1002–1016, 2015.

Shiqiang Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. Leung. Dynamic service migra-
tion in mobile edge computing based on markov decision process. IEEE/ACM Transactions on
Networking, 27:1272–1288, 2019.

49

	Introduction
	Related Work
	Structure of the Paper
	Definitions

	Problem Description and Result
	The Algorithm
	The Exponentiated Gradient Method
	An Algorithm for when the Cardinality of a Comparator Set is Known
	An Algorithm for when a Bound on the Cardinality of a Comparator Set is Known
	The Main Algorithm

	Efficient Computation
	Computing and g
	Multiple Samples from a Finite Set

	Definitions
	Measures and Integrals

	Online Optimisation Games and the Conversion of Strategies
	Online Optimisation Games
	Transformations
	A General Doubling Trick

	The Development of the Strategy
	The Game
	The Game
	The Game
	The Game

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 6
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 12
	Proof of Theorem 13
	Proof of Theorem 14
	Proof of Theorem 15
	Proof of Theorem 16
	Proof of Theorem 17
	Proof of Theorem 18
	Proof of Theorem 19

	Hypothesis Classes and Infinite Complexities
	The Failure of Deterministic Algorithms
	Conclusions and Ongoing Work

