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SUMMARY

Population exposure to indoor air pollution may be modified by socio-economic factors in a
number of ways, but such factors are rarely considered in indoor air quality models. Here, we
present a model which estimates exposure to indoor PM2.s across income groups for the Greater
London childhood population. The model uses a national time-activity database, which gives
the percentage of each population group in different residential and non-residential
microenvironments and links this to simulated domestic indoor concentrations from the
building physics model, EnergyPlus, and for non-residential microenvironments to a mass-
balance model with empirically measured building air change rates selected according to a
probabilistic approach. The results display distributions of exposure across income groups for
children in London, where median daily exposure is 14.4 ug/m? for children in the lowest
income quintile versus 11.7 ug/m? for those in the highest income quintile.
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1 INTRODUCTION

Associations between indoor air pollution and detrimental health outcomes have been
demonstrated in the literature for different population groups (Gaffin et al., 2018). Recognition
of the variation in indoor exposure and susceptibility that exists between different subgroups
of the populations has led to the development of indoor air pollution models which estimate
exposure between age groups (Dimitroulopoulou et al., 2017), but this is not yet reflected for
populations of different socio-economic status (SES).

Population exposure to indoor air pollution may be modified by SES in a number of ways:
Lower-income homes are on average more airtight with smaller floor areas, which has
limitations for the removal of indoor-sourced air pollution. Individuals of low SES are more
likely to smoke, live in areas with higher concentrations of outdoor air pollution, and in
overcrowded homes where cooking durations will be longer to accommodate the larger
household size (Ferguson et al., 2021).

Children are highly susceptible to developing negative health impacts from air pollution
exposure due to their immature immune and lung systems. Those between the ages of 7 — 12
years old may spend upwards of 87% of their time indoors, and those younger than 3 years old
up to 100% of their time (Coombs et al., 2016), making children from low-income homes
particularly vulnerable to indoor exposures.



Quantifying personal exposure across SES requires incorporating variations in time-activity
patterns, physical characteristics of indoor microenvironments and socio-economic
determinants, but no integrated assessment of these factors has been undertaken to date. Here,
we present a model which estimates exposure to indoor PMzs across income groups for the
Greater London childhood population. Determinants of inequalities and policy implications are
discussed.

2 MATERIALS/METHODS

2.1 Model overview

The model takes results from EnergyPlus simulations for the home and combines them with
estimates for other indoor micro-environments to produce a library of indoor concentrations
for domestic and non-domestic micro-environments. Indoor concentrations in non-domestic
micro-environments are estimated using a probabilistic framework where indoor levels are
modelled as a function of outdoor concentrations using a mass-balance approach. The library
of indoor concentrations is then overlayed with childhood time-activity patterns inferred from
empirical survey data to produce estimates of indoor exposure for different income groups.

2.2. Time-activity survey
Childhood time-activity patterns for all indoor micro-environments (domestic and non-
domestic) were inferred from the NatCen Time-use survey (Gershuny & Sullivan, 2017). The
survey collected data for 4,741 UK households between 2014 - 2015 on respondent’s daily
activities in ten-minute intervals via a self-completed diary. From the data, reported
activities/locations were broadly grouped into twelve micro-environments:

e Indoor domestic (bedroom, lounge, kitchen, bathroom);

¢ Indoor non-domestic (school, workplace, commercial buildings);

e Qutside;

e Transport (bus, car, train and tram/underground).
Across the child survey population, micro-environments where > 10% of the population were
for any given 10-minute interval were included in the analysis. The selected micro-
environments were: Bathroom, bedroom, kitchen, lounge, outdoors, school, car and bus
microenvironments. The resulting dataset showed the proportion of the total population in each
of the eight final micro-environments in ten-minute intervals for a representative weekday and
weekend. Population time-activity data was further disaggregated by each child’s household
income group, to link with the concentration data.

2.2. Home concentrations

The building physics tool EnergyPlus (US DoE, 2020) was used to model domestic indoor
PM:s concentrations for the 1,996 London buildings surveyed in the 2010 English Housing
Survey (EHS) (DCLG, 2011b) for a representative summer and winter week. Eight dwelling
archetypes broadly representative of the London housing stock were used and reported building
fabric properties were parameterised using the Reduced data Standard Assessment Procedure
(Rd SAP) (BRE, 2009). Simulation results for each of the 1,996 buildings were then weighted
by a household grossing factor to produce regional estimates for Greater London,
approximately 3,049,047 households in 2010. This sample was subset to include only
households with at least one child aged under 18 in residence, resulting in 1,032,222
households.

Concentrations of PMa2s from cooking, smoking and outdoors were included in the model.
Dwellings in the EHS sample with at least one occupant who identified as a smoker were



assumed to allow smoking to occur indoors, in the living room. This was carried out at a
frequency of eleven cigarettes per day, which is in line with empirical data for the UK (ONS,
2017). Within the EHS sample, the proportion of households with at least one smoker was
23.1% for homes in the lowest income quintile, versus 9.6% for those in the highest income
quintile. Analysis of the NatCen Time-use survey suggested that those of lower SES may
spend, on average, a greater amount of time per day in the dwelling and it was assumed that
those who spend a greater amount of time indoors will have longer cooking durations. This is
supported by the literature, which found individuals of lower SES spent between 10 and 20
minutes longer cooking per day (Adams & White, 2015). Within EnergyPlus, households
which identified as being below the low-income threshold (LIT) were assumed to spend an
extra 20 minutes cooking per day on weekdays.

2.3. Outdoor concentrations

Data for outdoor concentrations was obtained from the London Datastore, which has annual
mean PMoas concentrations in 2013 for Greater London output areas (GLA, 2017).
Concentration data from 2013 was selected as this is the most concurrent year to the EHS
dataset (2010) for which mapped PMas data is available. Area-PM25 concentrations were
overlaid with Lower Layer Super Output Areas (LSOA) boundaries and paired with the
equivalent local-area measure of SES, in this case the 2010 Indices of Multiple Deprivation
(IMD) data (DCLG, 2011a). The IMD ranks small areas on a number of domains characterising
the local environment to give each LSOA a ranking of relative deprivation in England. Areas
are then aggregated by deprivation deciles. Information regarding each dwellings 2010 IMD
classification is also included in the EHS dataset, thus the two datasets could be linked. Average
outdoor PM2 .5 concentrations were spatially joined with each LSOAs 2010 IMD classification,
aggregated by decile. Summary statistics for outdoor concentrations are outlined in Table 1.
For each dwelling in the EHS, a random outdoor concentration was sampled from one of the
ten distributions shown in Table 1, depending on the household’s 2010 IMD classification.

Table 1. Summary statics for outdoor PM2 5 concentrations per IMD decile.

IMD decile Mean (ug/m?) SD (ug/m*)  Minimum (ug/m*)  Maximum (ug/m?)
1- Most deprived 16.3 0.627 14.7 18.9
2 16.2 0.675 14.6 19.5
3 16.2 0.721 14.5 20.2
4 16.1 0.764 14.5 19.6
5 16.1 0.790 14.5 19.8
6 16.0 0.767 14.3 20.3
7 15.9 0.772 14.4 19.4
8 159 0.860 14.3 21.1
9 15.7 0.772 14.3 21.0
10 - Least deprived 154 0.458 14.4 19.2

2.4. School concentrations

Indoor concentrations in the classroom were estimated using a mass-balance approach, which
models indoor PM25 as a function of outdoor concentrations and building air change rates.
Taking the outdoor concentration level selected for each child’s home environment, school
concentrations were estimated using the general mass-balance equation that describes the
indoor concentration profile;

dCin
D Lm® = g P Cope(t) — (a+K) - Ciu(6) + 2



Where Cin(f) and Cou(t) are the indoor and outdoor concentrations, respectively (ug/m?); P is
the penetration factor (dimensionless); a is the air change rate (h'!); k is the deposition rate (h-
1; Vis the volume of the indoor space (m?); Q is the indoor emission rate (pg/hr).

A distribution of building air change rates (ACH) was constructed based on empirical
measurements carried out in eight UK primary schools. Average classroom ACH was 4.0 0.3
h'! when windows were open and 0.6 = 0.1 h! when windows were closed (Bako-Biro et al.,
2012). Distributions for both scenarios were assumed to follow a lognormal distribution and
are displayed in Figure 1. To estimate classroom ACH, each distribution was randomly
sampled from, assuming classroom windows were closed in the winter and open during
summer. Deposition rate was assumed to be 0.15 h'! and 0.10 h"! in winter and summer,
respectively (Long et al., 2001) and the penetration factor was kept constant at 0.8. The volume
for school classrooms was assumed to be 137.5 m?, in line with space requirements for UK
classrooms. In the absence of combustion-sources, the literature suggests that resuspension of
infiltrated particles by occupant movement is the primary cause of high indoor concentrations
(Kalimeri et al., 2019). The indoor emission rate due to occupant movement was assumed to
be 2.3E+01 pg/hr per pupil, taken from an empirical study (Nasir & Colbeck, 2013) and the
number of pupils per class was assumed to be 28, the London average for Key Stage 1.
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Figure 1. a) Sampling distribution (n = 1000) for school classrooms ACH (h-1) with windows closed
(a) open (b). Mean values highlighted in red.

2.5. Travel concentrations

For travel micro-environments, the parameters for deposition and penetration were assumed to
be the same as the classroom environment. A distribution of vehicle air change rates for cars
and buses was generated using reported ACH (h!) values in published studies. Values for car
and bus volume were 2.5 and 66 m?, respectively, as used by Smith et al. (2016). No indoor
sources were assumed apart from resuspension by occupant movement. Buses were assumed
to have 50 passengers (Smith et al., 2016) whilst cars were assumed to have two. Distributions
for all scenarios followed a lognormal distribution and are shown in Fig 2. Mean ACH were
39 h'! and 12.6 h! for cars, and 18.3 h'! and 2.9 h'! for buses when windows were open and
closed, respectively.



Distribution of bus air change rates
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Figure 2. Sampling distribution of vehicle ACH (h-1) (n=1000) for bus (a-b) and car (c-d)
microenvironments. The red dashed line represents the mean value for each distribution.

2.6. Data processing

A library of indoor concentrations was constructed by running the model #=1000 times to
stabilise results for each of the approximately 2 million children, across 1,032,222 different
households. The library of indoor concentrations of PM2.s was then overlayed with the time-
activity information, using Equation 2, to produce a time-weighted average exposure to PMzs
for each ten-minute interval. Results were aggregated by household income quintile to examine
inequalities.

2) E(t;) = Xj=1C(t)P(t;)

Where E(t;) is the total exposure for the child population at each ten-minute time interval; C(t;) is the
indoor concentration in microenvironment j for the equivalent time-stamp and P(%;) is the proportion
of the population in micro-environment j.

3 RESULTS

Mean and median daily exposure for each income group is shown below in Table 2. Median
concentrations may better represent the exposure faced by children in each group as data was
lognormally distributed. Children in the lowest income quintile have the highest exposure to
PM: s, whilst those in the highest quintile have the lowest exposure, but this relationship is non-
linear, and those in the fourth income quintile are exposed to higher PM2.s concentrations than
those in the third quntile.

Table 2. Distribution of daily exposure to PM, s, by childhood household income quintile.

Household income Population (n)  Mean (pg/m®) SD (ug/m?) Median (pg/m’)  IQR (ug/m?)

quintile




1 217,024 22.7 19.6 14.4 18.4
2 405,646 20.5 16.1 13.8 13.2
3 337,798 20.4 15.2 12.9 13.8
4 487,091 19.9 16.0 13.5 12.9
5 552,802 17.5 14.3 11.7 9.97

3.2. Daily variations

To analyse how exposure varies throughout the day, the median for each ten-minute interval
was calculated for the five populations shown in Table 2. Daily peaks were largely driven by
indoor sources, such as cooking and smoking events. On weekdays, the peak before 8am is
driven by cooking, which then drops to background school concentrations (~9 ug/m?) where
there are no indoor sources other than resuspension (Fig 3). Likewise on weekends, peak
concentrations are driven by indoor sources in the home micro-environment. As indoor sources
are the main drives of exposure, concentrations are highest in winter as lower window-opening
frequencies limits the role of ventilation to reduce indoor concentrations. Night-time exposure
is the lowest, as bedroom concentrations are not driven by indoor combustion events but by
outdoor background levels.
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Figure 3. Daily variations in exposure by type of day and season, aggregated by childhood
household income status.

3.3. Test for significance

To assess if differences in PM2s exposures between income groups were statistically
significant, the assumption of normality was checked using a Shapiro-Wilk’s test which
confirmed data was not normally distributed (p=2.50e-57). A Kruskall-Wallis rank sum test
was then carried out and confirmed that there were significant differences between income
groups (p=2e-12, df=4). Pairwise comparisons were then computed using Wilicoxon rank sum
test to analyse within group variance. P-values between income groups are shown below in
Table 3. Results suggest that only children from households in the lowest and highest income
categories have significantly higher and lower exposure to PMa.s, respectively.

Table 3. P-values between income groups.
Household income 1 2 3 4
quintile




2 0.42 - - -

3 0.06 0.17 - -

4 0.03 0.16 0.81 -

5 le-10 1e-09 3e-07 7e-06
4 DISCUSSION

Children from lower-income homes had the highest exposure, and this was driven by higher
smoking rates, longer cooking durations, higher ambient concentrations and dwellings with
smaller floor areas for the distribution of internal pollution. Results align with empirical data,
where indoor exposure to PM2s ranged between 19 — 29 ug/m™ across the child sample
(Wheeler et al., 2000). The high peaks shown in Fig. 3 from cooking activities align with
measurements conducted in the South-East of England, where PM2.s concentrations reached
120 pg/m? for electric cooking (Nasir & Colbeck, 2013).

Actions to drive down childhood exposure in London should focus on reducing outdoor
concentrations in deprived parts of the city, increasing awareness regarding the harm of indoor
smoking and ensuring homes are properly ventilated when cooking. Reducing pupil class sizes
may prevent the indoor environment at the school acting as a reservoir for outdoor air pollution.

4.1. Limitations

The approach here assumed two deterministic occupancy cooking schedules, varied by SES,
as indicated by the time-use data. Whilst based off of empirical survey data, two occupancy
cooking schedules will not capture the full range of cooking techniques across the London
population, which can lead to appreciable differences in indoor air pollution (Abdullahi et al.,
2013).

A simple mass-balance approach was used to estimate indoor concentrations in the school and
travel micro-environments where the only socio-economic effect were the outdoor air pollution
concentrations. Pupil class-size has steadily increased in state-funded primary and secondary
schools in England, which may result in greater particle concentrations due to resuspension
from occupant movement (Kalimeri et al., 2019). As the mass-balance approach considers the
impact of resuspension for a given number of occupants, there is scope to introduce variable
classroom occupant densities within the work presented here, but sufficient data to
parameterise the equation for varied occupancy across levels of school deprivation was not
available when the model was developed.

5 CONCLUSIONS

The work here provides an estimation of childhood exposure to indoor PM2.s across multiple
microenvironments for the London population. The tool aims to quantify exposure disparities,
accounting for the variations in the quality of the building, characteristics of the surrounding
environment and population time-activity patterns, so that changes to which can be understood
in terms of their contribution to indoor air pollution inequalities. Highlighting how indoor
exposures may vary for populations of different SES draws attention to wider issues regarding
housing and environment inequalities. With rising inequality in London, environmental
exposures play an important role in generating health inequalities from social disadvantage.
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