
Modelling childhood exposure to indoor air pollution across socio-economic 

groups 
 

Lauren Ferguson*1,3, Jonathon Taylor2, Phil Symonds1, Michael Davies1 

 
1Institute for Environmental Design and Engineering, BSEER, University College London, UK 
2Department of Civil Engineering, Tampere University, Finland. 
3Public Health England, Harwell Science and Innovation Campus, Chilton, UK 

 
*Corresponding email: lauren.ferguson.17@ucl.ac.uk     

 

SUMMARY 

Population exposure to indoor air pollution may be modified by socio-economic factors in a 

number of ways, but such factors are rarely considered in indoor air quality models. Here, we 

present a model which estimates exposure to indoor PM2.5 across income groups for the Greater 

London childhood population. The model uses a national time-activity database, which gives 

the percentage of each population group in different residential and non-residential 

microenvironments and links this to simulated domestic indoor concentrations from the 

building physics model, EnergyPlus, and for non-residential microenvironments to a mass-

balance model with empirically measured building air change rates selected according to a 

probabilistic approach. The results display distributions of exposure across income groups for 

children in London, where median daily exposure is 14.4 ug/m3 for children in the lowest 

income quintile versus 11.7 ug/m3 for those in the highest income quintile. 
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1 INTRODUCTION 

Associations between indoor air pollution and detrimental health outcomes have been 

demonstrated in the literature for different population groups (Gaffin et al., 2018). Recognition 

of the variation in indoor exposure and susceptibility that exists between different subgroups 

of the populations has led to the development of indoor air pollution models which estimate 

exposure between age groups (Dimitroulopoulou et al., 2017), but this is not yet reflected for 

populations of different socio-economic status (SES). 

 

Population exposure to indoor air pollution may be modified by SES in a number of ways: 

Lower-income homes are on average more airtight with smaller floor areas, which has 

limitations for the removal of indoor-sourced air pollution. Individuals of low SES are more 

likely to smoke, live in areas with higher concentrations of outdoor air pollution, and in 

overcrowded homes where cooking durations will be longer to accommodate the larger 

household size (Ferguson et al., 2021).  

 

Children are highly susceptible to developing negative health impacts from air pollution 

exposure due to their immature immune and lung systems. Those between the ages of 7 – 12 

years old may spend upwards of 87% of their time indoors, and those younger than 3 years old 

up to 100% of their time (Coombs et al., 2016), making children from low-income homes 

particularly vulnerable to indoor exposures. 

 



Quantifying personal exposure across SES requires incorporating variations in time-activity 

patterns, physical characteristics of indoor microenvironments and socio-economic 

determinants, but no integrated assessment of these factors has been undertaken to date. Here, 

we present a model which estimates exposure to indoor PM2.5 across income groups for the 

Greater London childhood population. Determinants of inequalities and policy implications are 

discussed. 

 

2 MATERIALS/METHODS  

 

2.1 Model overview 

The model takes results from EnergyPlus simulations for the home and combines them with 

estimates for other indoor micro-environments to produce a library of indoor concentrations 

for domestic and non-domestic micro-environments. Indoor concentrations in non-domestic 

micro-environments are estimated using a probabilistic framework where indoor levels are 

modelled as a function of outdoor concentrations using a mass-balance approach. The library 

of indoor concentrations is then overlayed with childhood time-activity patterns inferred from 

empirical survey data to produce estimates of indoor exposure for different income groups.  

 

2.2. Time-activity survey  

Childhood time-activity patterns for all indoor micro-environments (domestic and non-

domestic) were inferred from the NatCen Time-use survey (Gershuny & Sullivan, 2017). The 

survey collected data for 4,741 UK households between 2014 - 2015 on respondent’s daily 

activities in ten-minute intervals via a self-completed diary. From the data, reported 

activities/locations were broadly grouped into twelve micro-environments: 

• Indoor domestic (bedroom, lounge, kitchen, bathroom); 

• Indoor non-domestic (school, workplace, commercial buildings); 

• Outside; 

• Transport (bus, car, train and tram/underground). 

Across the child survey population, micro-environments where ≥ 10% of the population were 

for any given 10-minute interval were included in the analysis. The selected micro-

environments were: Bathroom, bedroom, kitchen, lounge, outdoors, school, car and bus 

microenvironments. The resulting dataset showed the proportion of the total population in each 

of the eight final micro-environments in ten-minute intervals for a representative weekday and 

weekend. Population time-activity data was further disaggregated by each child’s household 

income group, to link with the concentration data. 

 

2.2. Home concentrations 

The building physics tool EnergyPlus (US DoE, 2020) was used to model domestic indoor 

PM2.5 concentrations for the 1,996 London buildings surveyed in the 2010 English Housing 

Survey (EHS) (DCLG, 2011b) for a representative summer and winter week. Eight dwelling 

archetypes broadly representative of the London housing stock were used and reported building 

fabric properties were parameterised using the Reduced data Standard Assessment Procedure 

(Rd SAP) (BRE, 2009). Simulation results for each of the 1,996 buildings were then weighted 

by a household grossing factor to produce regional estimates for Greater London, 

approximately 3,049,047 households in 2010. This sample was subset to include only 

households with at least one child aged under 18 in residence, resulting in 1,032,222 

households.  

 

Concentrations of PM2.5 from cooking, smoking and outdoors were included in the model. 

Dwellings in the EHS sample with at least one occupant who identified as a smoker were 



assumed to allow smoking to occur indoors, in the living room. This was carried out at a 

frequency of eleven cigarettes per day, which is in line with empirical data for the UK (ONS, 

2017). Within the EHS sample, the proportion of households with at least one smoker was 

23.1% for homes in the lowest income quintile, versus 9.6% for those in the highest income 

quintile. Analysis of the NatCen Time-use survey suggested that those of lower SES may 

spend, on average, a greater amount of time per day in the dwelling and it was assumed that 

those who spend a greater amount of time indoors will have longer cooking durations. This is 

supported by the literature, which found individuals of lower SES spent between 10 and 20 

minutes longer cooking per day (Adams & White, 2015). Within EnergyPlus, households 

which identified as being below the low-income threshold (LIT) were assumed to spend an 

extra 20 minutes cooking per day on weekdays. 

 

2.3. Outdoor concentrations  

Data for outdoor concentrations was obtained from the London Datastore, which has annual 

mean PM2.5 concentrations in 2013 for Greater London output areas (GLA, 2017). 

Concentration data from 2013 was selected as this is the most concurrent year to the EHS 

dataset (2010) for which mapped PM2.5 data is available. Area-PM2.5 concentrations were 

overlaid with Lower Layer Super Output Areas (LSOA) boundaries and paired with the 

equivalent local-area measure of SES, in this case the 2010 Indices of Multiple Deprivation 

(IMD) data (DCLG, 2011a). The IMD ranks small areas on a number of domains characterising 

the local environment to give each LSOA a ranking of relative deprivation in England. Areas 

are then aggregated by deprivation deciles. Information regarding each dwellings 2010 IMD 

classification is also included in the EHS dataset, thus the two datasets could be linked. Average 

outdoor PM2.5 concentrations were spatially joined with each LSOAs 2010 IMD classification, 

aggregated by decile. Summary statistics for outdoor concentrations are outlined in Table 1. 

For each dwelling in the EHS, a random outdoor concentration was sampled from one of the 

ten distributions shown in Table 1, depending on the household’s 2010 IMD classification. 

 

Table 1. Summary statics for outdoor PM2.5 concentrations per IMD decile. 
IMD decile Mean (g/m3) SD (g/m3) Minimum (g/m3) Maximum (g/m3) 

1- Most deprived 

2 

3 

4 

5 

6 

7 

8 

9 

10 - Least deprived 

16.3 

16.2 

16.2 

16.1 

16.1 

16.0 

15.9 

15.9 

15.7 

15.4 

0.627 

0.675 

0.721 

0.764 

0.790 

0.767 

0.772 

0.860 

0.772 

0.458 

14.7 

14.6 

14.5 

14.5 

14.5 

14.3 

14.4 

14.3 

14.3 

14.4 

18.9 

19.5 

20.2 

19.6 

19.8 

20.3 

19.4 

21.1 

21.0 

19.2 

 

2.4. School concentrations  

Indoor concentrations in the classroom were estimated using a mass-balance approach, which 

models indoor PM2.5 as a function of outdoor concentrations and building air change rates. 

Taking the outdoor concentration level selected for each child’s home environment, school 

concentrations were estimated using the general mass-balance equation that describes the 

indoor concentration profile; 
 

1) 
𝑑𝐶𝑖𝑛(𝑡)

𝑑𝑡
= 𝑎 ∙ 𝑃 ∙ 𝐶𝑜𝑢𝑡(𝑡) − (𝑎 + 𝑘) ∙ 𝐶𝑖𝑛(𝑡) +

𝑄

𝑉
 

 



Where Cin(t) and Cout(t) are the indoor and outdoor concentrations, respectively (µg/m3); P is 

the penetration factor (dimensionless); a is the air change rate (h-1); k is the deposition rate (h-

1); V is the volume of the indoor space (m3); Q is the indoor emission rate (µg/hr). 

 

A distribution of building air change rates (ACH) was constructed based on empirical 

measurements carried out in eight UK primary schools. Average classroom ACH was 4.0 ± 0.3 

h-1 when windows were open and 0.6 ± 0.1 h-1 when windows were closed (Bakó-Biró et al., 

2012). Distributions for both scenarios were assumed to follow a lognormal distribution and 

are displayed in Figure 1. To estimate classroom ACH, each distribution was randomly 

sampled from, assuming classroom windows were closed in the winter and open during 

summer. Deposition rate was assumed to be 0.15 h-1 and 0.10 h-1 in winter and summer, 

respectively (Long et al., 2001) and the penetration factor was kept constant at 0.8. The volume 

for school classrooms was assumed to be 137.5 m3, in line with space requirements for UK 

classrooms. In the absence of combustion-sources, the literature suggests that resuspension of 

infiltrated particles by occupant movement is the primary cause of high indoor concentrations 

(Kalimeri et al., 2019). The indoor emission rate due to occupant movement was assumed to 

be 2.3E+01 µg/hr per pupil, taken from an empirical study (Nasir & Colbeck, 2013) and the 

number of pupils per class was assumed to be 28, the London average for Key Stage 1. 

 

 
Figure 1. a) Sampling distribution (n = 1000) for school classrooms ACH (h-1) with windows closed 

(a) open (b). Mean values highlighted in red. 

 

2.5. Travel concentrations 

For travel micro-environments, the parameters for deposition and penetration were assumed to 

be the same as the classroom environment. A distribution of vehicle air change rates for cars 

and buses was generated using reported ACH (h-1) values in published studies. Values for car 

and bus volume were 2.5 and 66 m3, respectively, as used by Smith et al. (2016). No indoor 

sources were assumed apart from resuspension by occupant movement. Buses were assumed 

to have 50 passengers (Smith et al., 2016) whilst cars were assumed to have two. Distributions 

for all scenarios followed a lognormal distribution and are shown in Fig 2. Mean ACH were 

39 h-1 and 12.6 h-1 for cars, and 18.3 h-1 and 2.9 h-1 for buses when windows were open and 

closed, respectively.  
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Figure 2. Sampling distribution of vehicle ACH (h-1) (n=1000) for bus (a-b) and car (c-d) 

microenvironments. The red dashed line represents the mean value for each distribution. 

 

2.6. Data processing 

A library of indoor concentrations was constructed by running the model n=1000 times to 

stabilise results for each of the approximately 2 million children, across 1,032,222 different 

households. The library of indoor concentrations of PM2.5 was then overlayed with the time-

activity information, using Equation 2, to produce a time-weighted average exposure to PM2.5 

for each ten-minute interval. Results were aggregated by household income quintile to examine 

inequalities. 
 

2) 𝐸(𝑡𝑖) =  ∑ 𝐶(𝑡𝑖)𝑃(𝑡𝑖)𝑗=1  

 

Where E(ti) is the total exposure for the child population at each ten-minute time interval; C(ti) is the 

indoor concentration in microenvironment j for the equivalent time-stamp and  P(ti) is the proportion 

of the population in micro-environment j.  

 

3 RESULTS 

Mean and median daily exposure for each income group is shown below in Table 2. Median 

concentrations may better represent the exposure faced by children in each group as data was 

lognormally distributed. Children in the lowest income quintile have the highest exposure to 

PM2.5, whilst those in the highest quintile have the lowest exposure, but this relationship is non-

linear, and those in the fourth income quintile are exposed to higher PM2.5 concentrations than 

those in the third quntile.  

 

Table 2. Distribution of daily exposure to PM2.5, by childhood household income quintile. 
Household income 

quintile 

Population (n) Mean (g/m3) SD (g/m3) Median (g/m3) IQR (g/m3) 

F
re

q
u

e
n
c
y

0 2 4 6 8 10 12 14

0
1
0
0

2
5
0

ACH (h
-1

)

a) ACH, windows closed

F
re

q
u

e
n
c
y

0 20 40 60 80 100 140

0
2

0
0

4
0

0

ACH (h
-1

)

b) ACH, windows open

Distribution of bus air change rates
F

re
q

u
e

n
c
y

0 10 20 30 40 50 60

0
2
0

0
4

0
0

ACH (h
-1

)

c) ACH, windows closed

F
re

q
u
e

n
c
y

0 50 100 150

0
1
0
0

2
0
0

ACH (h
-1

)

d) ACH, windows open

Distribution of car air change rates



1 

2 

3 

4 

5 

217,024 

405,646 

337,798 

487,091 

552,802 

22.7 

20.5 

20.4 

19.9 

17.5 

19.6 

16.1 

15.2 

16.0 

14.3 

14.4 

13.8 

12.9 

13.5 

11.7 

18.4 

13.2 

13.8 

12.9 

9.97 

 

3.2. Daily variations  

To analyse how exposure varies throughout the day, the median for each ten-minute interval 

was calculated for the five populations shown in Table 2. Daily peaks were largely driven by 

indoor sources, such as cooking and smoking events. On weekdays, the peak before 8am is 

driven by cooking, which then drops to background school concentrations (~9 g/m3) where 

there are no indoor sources other than resuspension (Fig 3). Likewise on weekends, peak 

concentrations are driven by indoor sources in the home micro-environment. As indoor sources 

are the main drives of exposure, concentrations are highest in winter as lower window-opening 

frequencies limits the role of ventilation to reduce indoor concentrations. Night-time exposure 

is the lowest, as bedroom concentrations are not driven by indoor combustion events but by 

outdoor background levels. 

 

 
Figure 3. Daily variations in exposure by type of day and season, aggregated by childhood 

household income status. 

 

3.3. Test for significance  

To assess if differences in PM2.5 exposures between income groups were statistically 

significant, the assumption of normality was checked using a Shapiro-Wilk’s test which 

confirmed data was not normally distributed (p=2.50e-57). A Kruskall-Wallis rank sum test 

was then carried out and confirmed that there were significant differences between income 

groups (p=2e-12, df=4). Pairwise comparisons were then computed using Wilicoxon rank sum 

test to analyse within group variance. P-values between income groups are shown below in 

Table 3. Results suggest that only children from households in the lowest and highest income 

categories have significantly higher and lower exposure to PM2.5, respectively. 

 

Table 3. P-values between income groups. 
Household income  
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2 
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1e-10 
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1e-09 
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4 DISCUSSION 

Children from lower-income homes had the highest exposure, and this was driven by higher 

smoking rates, longer cooking durations, higher ambient concentrations and dwellings with 

smaller floor areas for the distribution of internal pollution. Results align with empirical data, 

where indoor exposure to PM2.5 ranged between 19 – 29 µg/m-3 across the child sample 

(Wheeler et al., 2000). The high peaks shown in Fig. 3 from cooking activities align with 

measurements conducted in the South-East of England, where PM2.5 concentrations reached 

120 µg/m3 for electric cooking (Nasir & Colbeck, 2013). 

 

Actions to drive down childhood exposure in London should focus on reducing outdoor 

concentrations in deprived parts of the city, increasing awareness regarding the harm of indoor 

smoking and ensuring homes are properly ventilated when cooking. Reducing pupil class sizes 

may prevent the indoor environment at the school acting as a reservoir for outdoor air pollution. 

 

4.1. Limitations  

The approach here assumed two deterministic occupancy cooking schedules, varied by SES, 

as indicated by the time-use data. Whilst based off of empirical survey data, two occupancy 

cooking schedules will not capture the full range of cooking techniques across the London 

population, which can lead to appreciable differences in indoor air pollution (Abdullahi et al., 

2013). 

 

A simple mass-balance approach was used to estimate indoor concentrations in the school and 

travel micro-environments where the only socio-economic effect were the outdoor air pollution 

concentrations. Pupil class-size has steadily increased in state-funded primary and secondary 

schools in England, which may result in greater particle concentrations due to resuspension 

from occupant movement (Kalimeri et al., 2019). As the mass-balance approach considers the 

impact of resuspension for a given number of occupants, there is scope to introduce variable 

classroom occupant densities within the work presented here, but sufficient data to 

parameterise the equation for varied occupancy across levels of school deprivation was not 

available when the model was developed.  

 

5 CONCLUSIONS 

The work here provides an estimation of childhood exposure to indoor PM2.5 across multiple 

microenvironments for the London population. The tool aims to quantify exposure disparities, 

accounting for the variations in the quality of the building, characteristics of the surrounding 

environment and population time-activity patterns, so that changes to which can be understood 

in terms of their contribution to indoor air pollution inequalities. Highlighting how indoor 

exposures may vary for populations of different SES draws attention to wider issues regarding 

housing and environment inequalities. With rising inequality in London, environmental 

exposures play an important role in generating health inequalities from social disadvantage. 
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