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• In mining exploration and production, models of the subsurface are constructed using
Gaussian Processes (GPs) to interpolate between samples of the ground (drill core).

• Drilling the ground for samples is expensive and time-consuming. In value-dense
commodities, sampling is a production bottleneck. Optimal sampling is thus desirable.

• Commonly in industry, samples target the location with the highest Kriging variance.

• However, this variance implicitly depends on estimates of the kernel parameters.

• A methodology is proposed that fits multiple GPs with sets of parameter estimates from
Monte Carlo Simulations to account for parametric and model prediction uncertainty.

• The goal is to produce maps to make quantitative uncertainty assessments possible.
These shall be used as one of the optimality criteria for optimal experimental designs.

Approach for Quantifying Parametric Uncertainty

CONCLUSIONS & FUTURE WORK

• Kernels with structurally unidentifiable parameters, e.g. the Gaussian kernel in
Sahimi[2], should be avoided. Alternative formulations that fix the numerical parameter
a = 1/3, e.g. in Rossi and Deutsch[3], should be used instead.

• In industry practice, kernel parameter uncertainty, local anisotropies and qualitative
factors are often accounted for by fitting the kernel by hand[3]. Instead, regression
should be used and the variance-covariance matrix should be computed so that the
effect of parametric uncertainty can be quantified and propagated to the GP.

• Future Model-based optimal experiment designs will include a criterion to capture
the effect of parametric uncertainty on the GP. This will be based on the Fisher Infor-
mation Matrix and constitute second design objective in model discrimination work.
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Formulation of Models
• The kernel of the GP consists of a correlation function R(h), relating the semivariance

γ(h) of concentration at distance h and the distribution variance ௓ߪ
ଶ of concentrations.

• Simple (biased) Kriging is a form of GP which gives the best linear estimate of the
mean expected concentration at an unsampled location Z using the estimator መܼ, and
the variance of estimates ஻௄ߪ)

ଶ ) based on the expected square error to the mean.

• The estimators are based on the samples ௜ܼand their relative importance weights .௜ݓ

• The optimal weights can࢏࢝ be found from samples i and j by substituting (3) into (2):

• And then minimising the Kriging variance: ∂ ஻௄ߪ
ଶ / ∂ wi = 0:

• For all unsampled locations this results in a weights matrix W and correlation matrices
between sampled points A, and sampled and unsampled locations P. This can be

solved as it is a linear system of equations with no degrees of freedom.[2]

1. Generating Ground Truth & Sampling: A known kernel, which describes the spatial
correlation structure of concentration likelihood at different points, is used to generate
ground truth concentration data. Some points are sampled; the rest are to be modelled.

2. Estimation of Kernel Parameters: Models based on different kernels are suggested
and the kernel parameters are estimated based on magnitude and position of samples.

3. Estimation of Kriging Weights: Kriging weights determine the relative importance of
samples for the GP. They are estimated for all proposed kernels; once with the optimal
kernel parameters and once with the range of likely kernel parameters (MC simulation).

4. Parameter identifiability: Compare predicted concentrations and variances from the
single-pass and the Monte Carlo GP. If the difference is significant, reducing parametric
uncertainty must be prioritised in experiment designs or the model rejected altogether.

Spherical Kernel [2] :

Gaussian Kernel [2] :

Where s is the sill, n the nugget effect, r the characteristic range of correlations and a is constant.

2. Estimation of Kernel Parameters from Sampled Locations

3. Estimation of Kriging Weights & Fitting Gaussian Processes
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Spherical Kernel: Variance-
Covariance Matrix for Parameters

1 2 3

1 4.14

2 -0.39 0.20

3 0.54 -0.18 0.18

Figure 3 – True distribution of metal grade with 80
random sampling locations used in analysis

Gaussian Kernel: Variance-Covariance Matrix for Parameters

1 2 3 4

1 3.95 x 1015

2 3.98 x 106 0.78

3 -4.18 x 106 -0.77 0.77

4 5.50 x 1016 5.54 x 107 -5.83 x 107 7.66 x 1017
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1. Generation of Candidate Models & Ground Truth

Kernel Parameters

Parameter True Values Spherical Kernel Estimates Gaussian Kernel Estimates

r 17 8.68 8.68

n 3 2.31 2.31

s 20 4.23 4.23

a - - 251.62

Figure 1: 3D model of a mineral deposit [1] with different concentrations in the blue, yellow
and orange clouds. Drilled samples are in dark blue and a schematic of a drill is shown.
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Figure 2 – Semivariance (squared concentration difference)
between sampled point pairs vs. distance between them
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