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Abstract

Acute promyelocytic leukaemia (APL) is usually treated using All-trans Retinoic acid
(ATRA), but this has potentially life-threatening side effects; prompting the search for
novel treatments. Interference with purine metabolism, through inhibition of the enzyme
inosine monophosphate dehydrogenase (IMPDH) causes differentiation of HL60 cells, an
APL cell line; however, the exact mechanism of action is unknown. Purine metabolism is
complex with many internal regulatory mechanisms, thus determining expected outcomes
within this system is difficult. The aim of this study was to provide insights into purine
metabolism in HL60 cells and investigate the effects of IMPDH inhibition on this system,
using a dual approach of mathematical modelling and experimentation.

Through refinement and expansion of an existing framework, an HL60 cell specific
mathematical model of purine metabolism was established that allows examination of
key metabolites. This model is robust with a stable steady state. IMPDH inhibition was
simulated and metabolite concentrations were determined.

Experimental data was obtained from IMPDH inhibitor treated HL60 cells. Compar-
ison of this data to model output showed low concordance; however this is partly due to
the literature data used to refine the model, which this new data also failed to match.
Nevertheless, with further refinement the model will be a useful tool in furthering our
understanding of purine metabolism in HL60 cells and specifically the effects of IMPDH
inhibition. Furthermore, the model could be used to identify other potential novel targets
within the purine metabolic network which could be used as new APL therapies.

Additionally, this study provides previously uncharacterised data of purine levels in
HLG60 cells treated with either an IMPDH inhibitor or ATRA alongside guanosine. Fur-
thermore, data showed a synergistic effect on HL60 cell differentiation when ATRA was
used alongside an IMPDH inhibitor, raising the possibility of using both drugs together

clinically to treat APL.



Impact Statement

Acute myeloid leukaemia (AML) is the most common form of myeloid leukaemia and
in the UK each year it accounts for approximately 2 % of cancer deaths. There are
different forms of the disease, such as Acute promyelocytic leukaemia (APL), and various
cells lines exist which are used to study the disease in vitro. HL60 cells, an APL cell line,
have been shown to have altered metabolism and differentiate in the presence of inosine
monophosphate dehydrogenase (IMPDH) inhibitors. IMPDH is a crucial enzyme in the
purine metabolic network, however the exact mechanism by which IMPDH inhibition
brings about HLGO cell differentiation is unknown.

Purine metabolism is a very complicated system with many internal feedback mech-
anisms and as such it is especially difficult to make predictions regarding the outcomes
when the system is perturbed. Therefore, the main part of this work was to create a
mathematical model of the purine metabolic network specific to HL60 cells. The re-
sultant model is a useful tool which serves to elucidate some of the details of purine
metabolism and the effects IMPDH inhibitors have on the system; ultimately garnering
new insights into this area of research.

Furthermore, the model could be used and adapted by others to investigate purine
metabolism in their own systems of interest. Indeed, this thesis provides a detailed record
of how to tailor the model to a specific cell type and as such the procedures detailed within
could be followed to create a model specific for any cell or tissue type of interest. Thus,
the model has the potential to be used in the study of purine metabolism in a variety of
other contexts outside of APL, such as diseases affecting purine metabolism among others.
Furthermore, model predictions could be used to better understand how current or future
therapies for any disease that target enzymes within this network will potentially affect
purine metabolites, furthering our understanding of these drugs’ pharmacodynamics.

The experimental data obtained in this study increases the available existing data on



purine nucleotide levels in cells differentiated with either All-trans Retinoic acid (ATRA)
or the IMPDH inhibitors Mycophenolic acid or Mizoribine. Furthermore, the data ob-
tained from cells treated with differentiating agents in the presence of guanosine is pre-
viously uncharacterised and as such adds to the knowledge available on this topic.

Lastly, the observation of a synergistic effect on HL60 cell differentiation when lower
doses of ATRA are used in combination with an IMPDH inhibitor may translate to
potential clinical applications. This synergy raises the possibility of treating patients
with APL with the two drugs together in the hope that the lower doses of both may
ameliorate some of the potential side effects seen with these drugs.

In conclusion, given the renewed interest in the altered metabolic landscape of leukaemic
cells and the advances in metabolomics technology, it is hoped that the results presented

here will prove to be a useful resource to aid in this new direction of research.
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Chapter 1: Introduction

Humans have many regulatory mechanisms and systems that help the body to main-
tain equilibrium. If an infection occurs within the body, then specialised cells, tissues
and organs collectively known as the immune system are activated to fight the infection
and ultimately return the body to a steady state. The immune system can be subdivided
into the innate and adaptive parts, which share a degree of overlap and synergy (Janeway
and Medzhitov, 2002; Chaplin, 2010; Turvey and Broide, 2010; Yatim and Lakkis, 2015).
The innate immune system is capable of generating a rapid immune response which can
occur within minutes but has no lasting immunological memory (Janeway and Medzhi-
tov, 2002; Chaplin, 2010; Turvey and Broide, 2010). In contrast, the adaptive immune
response is generally slower to initiate but yields a response that is more specific and
targeted against the pathogen encountered (Bonilla and Oettgen, 2010; Chaplin, 2010;
Yatim and Lakkis, 2015). It also allows for the development of varying degrees of im-
munological memory which facilitates a quicker and more efficient response should the
same pathogen be encountered in the future (Janeway and Medzhitov, 2002; Bonilla and
Oettgen, 2010; Chaplin, 2010; Yatim and Lakkis, 2015). Another important function of
the immune system is to monitor for abnormal or uncontrolled growth of cells, both of
which can result in the development of cancer. The immune system also maintains a state
of non-responsiveness to normal self components which is termed self-tolerance, but in
some instances this can be disrupted resulting in the development of autoimmune disease
(Janeway and Medzhitov, 2002; Chaplin, 2010).

Organs that have a role in the immune system include the spleen, bone marrow and
lymph nodes, while specialised immune tissues exist within many other organs, such as
the lungs (Janeway and Medzhitov, 2002; Turvey and Broide, 2010; Yatim and Lakkis,
2015). The cells of the immune system can circulate between these tissues and organs

via the blood and lymphatic vessels. In addition, some immune cells are present within
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peripheral tissues, whilst others are recruited to these tissues when pathogens are detected
(Chaplin, 2010; Turvey and Broide, 2010; Marshall et al., 2018).

The cells of the immune system can be classified as either myeloid or lymphoid but
ultimately they are all derived from self-renewing haematopoietic stem cells (HSC) in the
bone marrow (Chaplin, 2010). Through the process of haematopoietic differentiation,
HSC give rise to both myeloid and lymphoid progenitors which generate all the cells in
the myeloid and lymphoid lineages, respectively. The lymphoid lineage contains cells
such as B cells, T cells and natural killer cells, whilst the myeloid progenitor gives rise
to monocytes and macrophages, granulocytes, dendritic cells, erythrocytes and platelets
(Chaplin, 2010). With the exception of erythrocytes and platelets, all cells formed from
HSC are collectively know as leukocytes. Each type of leukocyte has specific roles within
the immune system; for example B cells can produce antibodies which can neutralise
pathogenic particles, whilst macrophages can ingest and destroy foreign material, in a
process known as phagocytosis (Gordon, 2008; Marshall et al., 2018).

Granulocytic cells, part of the innate immune system, are so called as they contain cy-
toplasmic granules, the specific staining of these granules along with nuclear conformation
further divides granulocytes into three subclasses: basophils, eosinophils and neutrophils
(Marshall et al., 2018). The cytoplasmic granules in basophils stain with the basic dye
methylene blue and they have lobed nuclei, whilst the acidic dye eosin red stains the gran-
ulocytic cytoplasm of eosinophils, which have bilobed nuclei (Stone et al., 2010). Lastly,
neutrophils have granules that are stained with both acidic and basic dyes and their
nuclei are multilobed. Neutrophilic maturation occurs in the bone marrow and involves
the sequential progression through different immature cell types until the cell terminally
differentiates into a mature neutrophil (Hager et al., 2010; Rosales, 2018). During the
maturation process, granules containing different constituents are synthesised at different
stages; first to appear are the primary or myeloperoxidase containing granules, followed
by the secondary granules which are rich in lactoferrin, an iron-binding protein, and

lastly the tertiary granules containing matrix metalloproteinases (Sheshachalam et al.,
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2014; Rosales, 2018). Mature neutrophils then enter into the blood, where they are the
most abundant type of leukocyte (Héger et al., 2010; Rosales, 2018). However, they live
for only a few days before undergoing programmed cell death and being replaced (Beutler,
2004; von Vietinghoff and Ley, 2008; Rosales, 2018).

When an infection or injury occurs the circulating neutrophils are recruited into tis-
sues, where they perform phagocytic functions (Chaplin, 2010; Rosales, 2018). After
neutrophils ingest microorganisms they kill them using one of two methods (Chaplin,
2010). Firstly, through the use of hydrolytic enzymes, contained within their cytoplas-
mic granules, which digest the microorganism and secondly using highly toxic reactive
oxygen species (ROS) that are generated by the metabolic process respiratory burst,
which occurs during phagocytosis (Beutler, 2004; Chaplin, 2010). Only terminally dif-
ferentiated neutrophils are capable of phagocytosis and thus respiratory burst. This fact
is utilised experimentally to determine if precursor myeloid cells have undergone full dif-
ferentiation, as only terminally differentiated myeloid cells of the innate immune system
can be induced to produce ROS (Goldsby et al., 2002).

Problems involving haematopoietic differentiation or the control of programmed cell
death in leukocytes can lead to cancer (Hospital et al., 2017). Generally, if the aberrant
cells are associated with the lymph nodes or other lymphatic sites then the cancer is

know as lymphoma, otherwise it is termed leukaemia (Tebbi, 2021).

1.1 Leukaemia

Leukaemia is the result of dysregulation of differentiation and/or uncontrolled prolif-
eration of precursor leukocytes from the bone marrow (Hospital et al., 2017). These
immature cells, also termed blast cells, are highly proliferative and can directly result in
the plethora of symptoms associated with leukaemia. When these cells are released into
the blood they are unable to function in the same way as mature leukocytes, therefore
leading to increased susceptibility to infection (De Kouchkovsky and Abdul-Hay, 2016;

Newell and Cook, 2021). Other symptoms of leukaemia include: bleeding, bruising, fa-
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tigue, weight loss and swollen lymph nodes (Shephard et al., 2016). Several of these
symptoms are caused by other improperly functioning blood cells, such as platelets and
erythrocytes, whose proper generation and maturation has been disrupted by the large
volume of leukaemic cells in the bone marrow (Dohner et al., 2015; Thomas and Majeti,
2017; Newell and Cook, 2021).

Leukaemia can be classified as either chronic or acute. In the former, the disease
progresses slowly often over years and symptoms are slow to develop as the aberrant
leukocytes usually retain some function. However in the latter, the disease progresses
very quickly with rapid onset of symptoms (CRUK, 2019).

Around 9,900 new cases of leukaemia are diagnosed every year in the UK, approx-
imately 3 % of all cancers diagnosed annually. It is the twelfth most common form of
cancer in the UK with incidence increasing with age; most cases are reported in individ-
uals aged 80 - 85 and around 40 % of all new cases are in those aged 70 or over (CRUK,
2022). Leukaemia accounts for around 3 % of all cancer related deaths annually in the
UK, with approximately 4,700 deaths each year; about 60 % of these are in patients aged
75 years and over.

There are four main types of leukaemia: Chronic lymphocytic leukaemia (CLL), Acute
lymphocytic leukaemia (ALL), Chronic myeloid leukaemia (CML) and Acute myeloid
leukaemia (AML) (Shephard et al., 2016). The first two types involve lymphoid cells,
whilst the latter two involve cells in the myeloid lineage. Myeloid leukaemia accounts for
around 4,100 leukaemia diagnoses each year, with approximately 3,000 of those being the
AML form (BloodCancerUK, 2019; CRUK, 2022). AML also accounts for around 2 % of
all cancer deaths each year in the UK (CRUK, 2022).

1.2 Acute Myeloid Leukaemia (AML)

Acute myeloid leukaemia (AML) is a cancer of the precursors of granulocytes, where af-
fected cells continually proliferate and never differentiate into the terminal granulocytic

state (Hospital et al., 2017). There are different mutations that give rise to the various
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types of AML and research strongly suggests that these mutations can arise in either
the HSC or subsequent progenitor cells of the myeloid lineage (Bonnet, 2005). As well
as the differences in mutations present, leukaemic cells in AML can also exhibit differ-
ing cytological features and thus AML can be classified in different ways. Traditionally
the French-American-British (FAB) classification system was used, which categorises the
disease into seven subtypes based upon morphological characteristics, as outlined in Ta-
ble 1.1 (Bennett et al., 1976). However with advances in genetic sequencing, the main
system now adopted categorises AML based on patients’ genetic markers and appears to
be used more as a tool for prognostic guidance and treatment selection. This system,
defined by the World Health Organisation (WHO), is detailed in Table 1.2 (Arber et al.,
2016). Within this system, types 1 and 4 are further subdivided based upon specific

mutation or cytology present (Arber et al., 2016).

Type Description

MO Undifferentiated acute myeloblastic leukaemia

M1 Acute myeloblastic leukaemia with minimal maturation
M2 Acute myeloblastic leukaemia with maturation

M3 Acute promyelocytic leukaemia (APL)

M4 Acute myelomonocytic leukaemia

M4 eos Acute myelomonocytic leukaemia with eosinophilia

M5 Acute monocytic leukaemia

M6 Acute erythroid leukaemia

M7 Acute megakaryoblastic leukaemia

Table 1.1: French-American-British AML classification.

Recently, extensive investigations have been conducted into the metabolic landscape
in cancer, including in AML. Although these build on much earlier work, which showed
that cancer cells switch to a heavy reliance on aerobic glycolysis for their increased energy
requirements compared to healthy cells, termed the Warburg effect (Warburg et al., 1927;
Warburg, 1956), the recent advances in metabolomics and our increased understanding

of metabolic control through gene expression, has led to renewed interest and exploration
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Type Description

AML with recurrent genetic abnormalities
AML with myelodysplasia-related changes
Therapy-related myeloid neoplasms

AML, not otherwise specified

Myeloid sarcoma

S OB WD

Myeloid proliferations related to Down syndrome

Table 1.2: World Health Organisation's AML classification.

in this area of research in AML. As well as the switch in ATP production method,
AML leukaemic cells also exhibit other metabolic changes, such as increased lipid and
amino acid metabolism (Dembitz and Gallipoli, 2021; Mesbahi et al., 2022). Indeed,
these observations are being further investigated in both the exploration of novel drug
therapies and in the analysis of patient response and/or resistance to current treatment
options (Stuani et al., 2019; Gregnningsaeter et al., 2020; Dembitz and Gallipoli, 2021;
Kim et al., 2021; Lo Presti et al., 2021). In the former, new drugs have been licensed
for use in the treatment of AML (Stuani et al., 2019; Dembitz and Gallipoli, 2021).
Whilst in the latter, the observed correlation between certain altered metabolic states
and poor prognostic outcome has raised the possibility of incorporating additional drugs,
which specifically target this dysregulated metabolism, into current therapeutic regimes
(Rashkovan and Ferrando, 2019; Grenningseeter et al., 2020; Dembitz and Gallipoli, 2021;
Kim et al., 2021; Lo Presti et al., 2021).

Whilst this area of research is gaining momentum, it may be some time before the full
benefits will be seen in the clinic. As such, standard chemotherapeutic protocols using
cytotoxic drugs are currently used in the treatment of most forms of AML. However,
more specific, targeted therapies are used for certain types of the disease, especially in

one particular form of the disease called Acute promyelocytic leukaemia (Roboz, 2012).
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1.3 Acute Promyelocytic Leukaemia (APL)

Acute promeylocytic leukaemia (APL) was first identified as a distinct form of AML in
the 1950s and was associated with an extremely poor prognosis and a rapidly progres-
sive disease course (Hillestad, 1957; Thomas, 2019). Patients exhibit a propensity for
severe bleeding, blood clots, increased susceptibility to infection, fatigue and weight loss
(Hillestad, 1957; BloodCancerUK, 2019). APL is rare and accounts for around 10 %
of all AML cases (Zelent et al, 2001). It is listed as subtype M3 in the FAB based
system of classification whilst it is encompassed by type 1 ‘AML with recurrent genetic
abnormalities’ in the WHO system under the specific subdivision: APL with PML-RARA
(Bennett et al., 1976; Arber et al., 2016). As such it is a specific form of AML with a well
characterised genetic mutation. The mutation typically involves the translocation of chro-
mosome 17q12; specifically within the Retinoic acid receptor &« (RARA) gene (Kondo and
Sasaki, 1979; Mitelman, 1983b; de Thé et al., 1990; Alcalay et al., 1991). RARA encodes
for the well characterised nuclear receptor and transcription factor RARa (Petkovich
et al., 1987). RARa is a member of the Retinoic acid receptor family, which bind to
DNA as heterodimers with members of another nuclear receptor family: Retinoid X re-
ceptors (RXR) (Yu et al., 1991; Leid et al., 1992; Kastner et al., 1995). The RARa-RXR
complex binds DNA and, in the absence of ligand, recruits transcriptional co-repressors
which suppress transcriptional activity of the target genes. However, upon binding of
Retinoic acid (RA) derived ligands, conformational changes within the proteins occur
which result in the dissociation of the co-repressors and recruitment of transcriptional co-
activators, thus facilitating transcription (Dilworth and Chambon, 2001). Downstream
targets of Retinoic acid signalling include p21C"PV/WAFL which is an inhibitor of cyclin
dependent kinases resulting in cell cycle arrest, and the transcription factors PU.1 and
C/EBPa, which are crucial for myeloid development (Harper et al., 1993; Lawson and
Berliner, 1999; Tassefl et al., 2017). PU.1 and C/EBPa are essential for the acquisition

of phenotypic characteristics of mature myeloid cells as they induce the expression of
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proteins such as p47-phox, which is critical for the respiratory burst process, and CD11b
(Jackson et al., 1995; Lawson and Berliner, 1999; Tasseff et al., 2017). The key features

of RAR« function in myeloid development are shown in Figure 1.1.
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Figure 1.1: Retinoic acid signalling in myeloid cell development. Retinoic acid receptor «
(RAR®) binds DNA in conjunction with Retinoid X receptor (RXR). In the absence of Retinoic
acid (RA) derived ligands, the RARa-RXR complex binds co-repressor proteins which sup-
press transcription of RA responsive genes (A). The addition of RA results in conformational
changes, the dissociation of co-repressors and the recruitment of co-activators, resulting in
the transcription of RA responsive genes such as CDKNI1A, SPI1, and CEBPA; which encode
p21CIPL/WAFL Pl 1, and C/EBPa, respectively; this leads to the cessation of proliferation
and subsequent differentiation into mature myeloid cells (B).

In the majority of cases, the other chromosome involved in the translocation is chro-
mosome 15; specifically at a locus within 1522, the gene at this site being termed myl or
more recently PML, for promyelocytic leukaemia (Kondo and Sasaki, 1979, 1982; Mitel-

man, 1983a,b; Borrow et al., 1990; de Thé et al., 1990). This translocation results in a
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fusion gene between PML and RARA which is transcribed and translated to yield an
aberrant fusion protein, PML-RARa (de Thé et al., 1990; Kakizuka et al., 1991). In
addition, alternative splice variants of PML-RARA are generated which encode aberrant
PML proteins lacking the C-terminal regions (Pandolfi et al., 1992). The translocation
also results in the reciprocal RARA-PML fusion gene in most patients (Alcalay et al.,
1992). The relative importance of these different aberrant proteins is unclear but mice ge-
netically modified to express the PML-RAR« fusion protein in cells of the myeloid lineage
develop leukaemia suggesting that this is an important component of leukaemogenesis in
APL patients (Grisolano et al., 1997; He et al., 1998; Westervelt et al., 2003).

The PML-RARa protein is still able to form heterodimers with RXR but can also
homodimerise; both of these types of dimers are able to bind DNA and modulate tran-
scription of RAR target genes (de Thé et al., 1991; Kakizuka et al., 1991; Kastner et al.,
1992; Perez et al., 1993). PML-RARw suppresses endogenous RAR transcriptional activ-
ity, implying that the fusion protein acts as a transcriptional repressor at physiological
levels of RA (Kakizuka et al., 1991). However, addition of exogenous high dose RA is able
to induce RAR transcriptional activity, suggesting that PML-RARa can still function as
an activating transcription factor (de Thé et al., 1991; Kakizuka et al., 1991).

More recently alternative translocation partners for chromosome 17 have been iden-
tified in patients with an APL-like phenotype, however these only account for a tiny
fraction of cases (Liquori et al., 2020). It has been shown that some of these variants
respond to the standard treatment for APL, whilst others do not and it would appear
that these new variants are not covered by the WHO classification of APL (Arber et al.,
2016; Liquori et al., 2020). Indeed, the WHO updated their definition of APL in 2016 to
remove the previous reference to ‘t(15:17)q(22,12)’ as some patients do not have this clas-
sical chromosomal translocation but, via complex chromosomal rearrangements or other
mechanisms, still have the PML-RARa fusion protein (Arber et al., 2016). Thus, this
new definition of ‘APL with PML-RARA’ highlights the importance of the PML-RAR«

fusion protein in determining prognosis and treatment protocols.
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The most common treatment given for APL is All-trans Retinoic acid (ATRA), which
is an activating ligand for RAR proteins (Petkovich et al., 1987). The addition of ATRA
results in removal of the transcriptional block produced by the PML-RAR« fusion pro-
tein thereby facilitating differentiation (Kakizuka et al., 1991; He et al., 1998). ATRA
treatment can be given in conjunction with chemotherapy but more recently it has been
used alongside arsenic trioxide (ATO) which appears to act on the PML portion of the
fusion protein (Zhu et al., 2001). These more tailored therapies have revolutionised APL
treatment and significantly improved prognosis. This form of AML is now considered to
be the most curable, with 80-100 % of patients cured when given a combination therapy
comprising either ATRA 4+ ATO or ATRA + chemotherapy (Thomas, 2019). Although
ATRA is used clinically to treat APL, 2-48 % of patients develop a life-threatening condi-
tion known as differentiation syndrome which is believed to be caused by an inflammatory
response induced by the differentiating leukaemic cells (Lo-Coco et al., 2008; Stahl and
Tallman, 2019; Thomas, 2019). In addition, resistance to ATRA can develop and some of
the alternative chromosomal variants are insensitive to this treatment (Gallagher, 2002;
Liquori et al., 2020). Taken together, these observations signal the need for the identifi-
cation of other drugs that could be used in conjunction with ATRA or as an alternative

therapy for the treatment of APL.

1.3.1 The HL60 cell line

Several human cell lines have been isolated from patients with different forms of AML
(Sak and Everaus, 2016) which are used to study the disease in vitro, one such example
is the HL60 cell line (Collins et al., 1977; Gallagher et al., 1979). These cells were
isolated from a patient who was diagnosed with APL, thus according to the FAB system,
available at the time, she was classified as having subtype M3 (Collins et al., 1977;
Gallagher et al., 1979). Cytologically, HL60 cells have large rounded nuclei and numerous
myeloperoxidase positive cytoplasmic granules (see Figure 1.2; left panel); features usually

seen in progranulocytes (Gallagher et al., 1979).
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Figure 1.2: HL60 cells before and after differentiation. Cells were treated with ATRA (right
panel) or left untreated (left panel) and visualised using a transmission electron microscope.
Photomicrographs courtesy of G. Thomas.

However, more recently the M3 classification has been questioned as HL60 cells lack
some of the other typical characteristics of this subgroup; namely, other morphological
features and crucially the t(15:17) chromosomal translocation (Gallagher et al., 1979;
Dalton et al., 1988). It has therefore been proposed that HL60 cells did in fact originate
from a cancer of the M2 subtype (Dalton et al, 1988) and is thus an AML cell line.
Indeed, under the WHO’s classification these cells would not be classified as APL as
they lack the PML-RARA fusion gene. Nevertheless, the HL60 cell line is similar to
APL in one very important respect: it responds to the usual treatment for APL, ATRA
(Breitman et al., 1980). So, regardless of their exact origin, HL60 cells can be induced
to differentiate in wvitro through the addition of ATRA into cells resembling terminally
differentiated neutrophils, which show morphological and phenotypic characteristics of
this cell type (see Figure 1.2, right panel). Hence for the purpose of this thesis, HL60
cells will be regarded as an APL cell line and used as a model for the examination of the
differentiating effects of ATRA and other potential drugs on APL.

It has been shown that ATRA driven differentiation in HL60 cells brought about
a decrease in activity of a key enzyme in purine metabolism: inosine monophosphate

dehydrogenase (IMPDH) (Knight et al, 1987). Furthermore, other drugs have been

26



shown to induce HL60 cell differentiation; one such class being IMPDH inhibitors (Lucas
et al., 1983a,b; Sokoloski et al., 1986; Inai et al., 2000). These findings suggest a possible
link between HL60 cell differentiation and the purine metabolic network that could be

exploited in the development of new targeted therapies for AML.

1.4 Purines and their metabolism

Purines are vital cellular components found in all cells. As well as providing the building
blocks for nucleic acids, purines are involved in myriad processes and functions including
cell signalling, protein modification, as well as energy exchange. The two purine bases,
adenine and guanine, are heterocyclic compounds composed of both a six and a five
carbon ring but with different side groups, see Figure 1.3. The addition of a ribose
group in position 9 creates the nucleosides adenosine and guanosine. These ribose groups
can be phosphorylated up to three times generating the nucleotides adenosine/guanosine

mono/di/tri-phosphate.

Adenine H\N/H

; N
—< I

H

Guanine

H

Figure 1.3: Chemical structures of adenine and guanine.
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The purine metabolic network involves both the creation of all the nucleotides and
their degradation along with the production and removal of ribonucleic acid (RNA) and
deoxyribonucleic acid (DNA) and the generation of uric acid (UA) which is ultimately
excreted from the body as urea in urine. The network consists of two pathways for the
generation of nucleotides: the de novo and salvage pathways (see Figures 1.4 and 1.5,
respectively). In the former, nucleotides are formed from small metabolites such as ribose-
5-phosphate (R5P) and phosphoribosylpyrophosphate (PRPP) through a series of 10
reactions, the product of which is inosine monophosphate (IMP) which is then converted
to either AMP or GMP; both via a two step process. Whereas in the latter, the free

bases, adenine and guanine are salvaged to directly form AMP and GMP, respectively.
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Figure 1.4: The de novo pathway of purine metabolism. Schematic based on the network
from KEGG Kanehisa and Goto (2000). Abbreviated metabolite names (boxes), enzyme gene
symbols and Enzyme Commission numbers are shown.
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Figure 1.5: The adenine and guanine salvage pathways of purine metabolism. Schematic
based on the network from KEGG Kanehisa and Goto (2000). Abbreviated metabolite names
(boxes), enzyme gene symbols and Enzyme Commission numbers are shown.

There are many inherited diseases that affect individual enzymes within the network
and cause dysregulation of purine metabolism. These illnesses range in severity from mild
to life-threatening and involve numerous systems and organs of the body, including the

immune system, brain and liver. The wide spectrum of symptoms include: muscle weak-
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ness, myalgia, deafness, gout, immunodeficiency, liver and kidney problems, mental &
psychomotor retardation, seizures and premature death (Balasubramaniam et al., 2014).

The crucial nature of purines, and thus their metabolism, coupled with the multi-
tude of diseases that can occur due to their metabolic dysregulation, has meant that
purines and their metabolism have been extensively studied (Hartman and Buchanan,
1959; Murray, 1971; Balasubramaniam et al., 2014). Indeed, several mathematical mod-
els covering specific aspects of purine metabolism have been developed to further aid our
understanding of this complex system (Frank Starmer et al., 1975; Franco and Canela,
1984; Heinmets, 1989; Bartel and Holzhiitter, 1990; Curto et al., 1998b). Of particular
note are the models created by Curto et al. (1997, 1998a,b), which are whole body rep-
resentations of the purine metabolic network in humans, that have been used to study

certain diseases of purine metabolism in silico (Curto et al., 1998a).

1.5 Inosine monophosphate dehydrogenase (IMPDH)

As mentioned earlier, the final product of the 10 step de novo pathway is IMP, which
is then converted into either AMP or GMP. For GMP synthesis, the next reaction con-
verts IMP to xanthosine monophosphate (XMP) and is catalysed by the enzyme inosine
monophosphate dehydrogenase (IMPDH). As this reaction is the rate limiting step in
committed guanylate de novo synthesis, IMPDH is a crucial enzyme within the purine

metabolic network. The reaction catalysed by IMPDH is as follows:

IMP + NAD" + H,0 MPPH s Mp + NADH + HT

The enzyme kinetics for this reaction follow an ordered Bi-Bi mechanism; with the sub-
strate IMP binding first followed by NAD™ and the products dissociating in the order
NADH followed by XMP (Carr et al., 1993). GMP inhibits the reaction in a competitive
way with respect to IMP binding and XMP also exhibits product inhibition, again com-

peting with the substrate IMP (Holmes et al., 1974). Other purines also inhibit but with
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much less effect; thus in the mathematical models created by Curto et al. (1998b) only
GMP inhibition was included in the reaction dynamics for IMPDH (Holmes et al., 1974;
Curto et al., 1998b).

The enzyme IMPDH appears to be present in most organisms, with the exception of
a couple of protozoan species (Hedstrom, 2009). Crystal structures of IMPDH revealed
a tetrameric structure, with each of the four monomers having, in most species, two
domains. The larger of the two domains is the catalytic component, comprising of an
(B/)g barrel, whilst the smaller regulatory domain is termed a Bateman domain and
contains two CBS sequence motifs, so called as they are similar to that found in the
cystathionine beta synthase enzyme (Goldstein et al., 2003; Hedstrom, 2009).

It has been shown that two isoforms of IMPDH exist in humans: type I and type II
(Natsumeda et al., 1990). The two isoforms are highly homologous, having 84 % protein
sequence identity (Natsumeda et al., 1990). Importantly, the kinetic parameters for the
metabolites involved in the reaction catalysed by IMPDH (namely, the substrates IMP &
NAD and the inhibitors XMP & GMP) are similar for both isoforms (Carr et al., 1993).

Although kinetically similar, the expression patterns for the two isoforms differ. Type
I appears to be constitutively expressed, whereas type II expression is more variable
(Natsumeda et al., 1990; Konno et al, 1991). It has been shown that type II is up-
regulated in many tumour cells and leukaemic cells compared to normal control tissue,
with samples from patients with AML having one of the highest levels of the leukaemic
cells tested (Konno et al., 1991; Nagai et al., 1991, 1992). It therefore appears that type
IT is up-regulated in proliferating cells and moreover, it has been shown that levels of
IMPDH type II expression decrease upon differentiation of leukaemic cells, leaving type I
as the predominant isoform in differentiated cells (Nagai et al., 1992). Furthermore, this
up-regulation of IMPDH type II also holds for certain leukaemia cell lines including HL60
cells (Konno et al., 1991). Finally, the up-regulation of type II correlated with increased
activity of IMPDH in leukaemic cells, implying that the enhanced expression of type II

is responsible for the increased IMPDH activity (Nagai et al., 1991).
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1.6 IMPDH inhibitors

Due to its importance within the purine metabolic network and the strong correlation
between cellular proliferation and IMPDH activity, therapeutic targeting of IMPDH has
been extensively investigated (Jackson et al., 1975; Shu and Nair, 2008; Cuny et al., 2017).
It has been shown that interference with this enzyme impairs proliferation of various cell
types, including lymphocytes as well as leukaemia cell lines such as HL60 cells (Lucas
et al., 1983a; Eugui et al, 1991). Highly proliferative cells, such as lymphocytes and
cancer cells, have a higher requirement for guanylates which cannot be adequately met
through the salvage pathway alone and thus they have a higher dependence on de novo
synthesis of purines (Allison and Eugui, 2000; Hedstrom, 2009). As such, relative reliance
on de novo versus salvage generation of nucleotides determines the extent to which cells
and tissues are susceptible to IMPDH inhibitors (Hedstrom, 2009).

Various drugs have been isolated or synthesised that inhibit the catalytic function of
IMPDH; most are nucleoside analogues and several are used clinically in the treatment
of various diseases (Hedstrom, 2009; Cholewinski et al., 2015; Cuny et al., 2017).

Tiazofurin, synthesised in 1977, has antiviral and anticancer properties against solid
cancers as well as leukaemias and was classified as an orphan drug in the USA for the
treatment of Chronic myelogenous leukemia, although severe potential side-effects limits
its use (Srivastava et al., 1977; O’Dwyer et al., 1984; Tricot et al., 1989; Hedstrom, 2009).

Ribavirin, another synthetic IMPDH inhibitor, shows even greater antiviral properties
than Tiazofurin (especially against DNA and RNA viruses) and for many years was
the main treatment for chronic Hepatitis C infection in combination with interferon «.
However, due to the side-effects of this regimen and the development of more specific
Hepatitis C therapies its usage has become more limited (Sidwell et al., 1972; Schalm
et al., 1997; Mathur et al., 2018).

Mizoribine (MZ), first isolated from FEupenicillium brefeldianum, is licenced for use

in Japan as a treatment for certain autoimmune diseases such as rheumatoid arthritis
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and as an immunosuppressive agent for organ transplant rejection therapy, due to its
targeted suppression of de novo purine synthesis; the predominant production method
in lymphocytes (Goldstein et al., 2003; Ishikawa et al., 2003; Pankiewicz and Goldstein,
2003; Shu and Nair, 2008).

Mycophenolic acid (MPA), originally isolated from a type of Penicillium over 100 years
ago, (Bentley, 2000) is also used clinically to prevent transplant rejection (Hedstrom,
2009; Cholewiniski et al., 2015). Kinetic data for MPA suggests that IMPDH type II is
around four-fold more sensitive to this inhibitor than IMPDH type I (Carr et al., 1993).
This opened up the possibility of using MPA in the treatment of certain cancers, espe-
cially leukaemia, as these drugs would be more targeted towards neoplastic cells due to
their increased expression of IMPDH type II and it would be hoped that, due to their
more limited effect on healthy cells, side effects would be more limited. Furthermore,
studies showed that MPA resulted in differentiation of leukaemia cell lines, including
HLG60 cells (Lucas et al., 1983a; Inai et al., 2000). However, metabolism of MPA in vivo
involves glucuronidation to Mycophenolic acid glucuronide, an inactive form of the drug
which is unable to penetrate cell membranes (Sweeney et al., 1972; Bullingham et al.,
1998). This has therapeutic importance as certain tumour cells have higher glucuronida-
tion abilities or lower B-glucuronidase activities thus affecting the drugs efficacy in these
settings (Sweeney et al., 1971; Hedstrom, 2009).

Recently a novel modified IMPDH inhibitor, called FF-10501-01, was developed that
inhibited proliferation and induced apoptosis in AML patient samples in vitro and also
resulted in partial remission in a phase 1/2a clinical trial (Yang et al., 2017; Garcia-
Manero et al., 2020). However, as with other IMPDH inhibitor therapies, undesirable
side-effects were reported which ended the trial (Garcia-Manero et al., 2020).

Therefore, despite a plethora of potential clinical uses of IMPDH inhibitors as antiviral
and anticancer therapies, their use has been limited due to the unfavourable side-effects of
some and /or the in vivo inactivation of others which has led to concerted efforts to develop

modified IMPDH inhibitors that are free from these undesirable properties (Pankiewicz
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and Goldstein, 2003; Cholewiniski et al., 2015; Cuny et al., 2017).

1.6.1 Mechanism of action of IMPDH inhibitors

The mechanism by which IMPDH inhibitors result in cellular differentiation is still not
fully understood, however it is believed that the resultant reduction in guanylate levels
upon inhibition is important (Lucas et al., 1983a; Sokoloski et al., 1986). This is supported
by evidence that shows that the addition of an exogenous source of guanosine at the
time of IMPDH inhibitor treatment, prevents the differentiating capabilities of IMPDH
inhibitors in leukaemia cell lines (Sokoloski et al., 1986; Inai et al., 1997). This effect
appears to be due to the recycling of guanosine through the salvage pathway to form
GMP, thus rescuing cellular guanylate levels. Indeed, cells genetically deficient in the
HGPRT salvage enzyme still differentiate upon treatment with both IMPDH inhibitors
and guanosine (Sokoloski et al., 1986), supporting the theory that guanylate levels are
key in determining cell fate upon IMPDH inhibition.

In Drosophila melanogaster, IMPDH has been found to also act as a transcription fac-
tor, repressing expression of genes required for proliferation (Kozhevnikova et al., 2012).
In human studies, IMPDH has been found to localise to the nucleus, with nuclear local-
isation increased upon treatment with IMPDH inhibitors (Juda et al., 2014). Thus it is
possible that IMPDH may also act as a transcription factor in humans, but this has not
yet been investigated experimentally. In Drosophila melanogaster, MPA treatment did
not affect the transcriptional repressor activity of IMPDH, suggesting that transcriptional
activity is unlikely to explain the effects of IMPDH inhibition on cellular differentiation
(Kozhevnikova et al., 2012). Furthermore, the ability of guanosine supplementation to
counteract IMPDH inhibitors, strongly suggests that the mechanism underlying IMPDH

inhibitor driven differentiation is related to purine nucleotide levels.

1.6.2 Differentiation of HL60 cells by IMPDH inhibitors

Whilst it has been shown that IMPDH inhibitors cause HL60 cells to cease proliferation

and differentiate into granulocytes, precisely how these drugs achieve these effects is un-
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known (Lucas et al., 1983a; Sokoloski et al., 1986). In addition to IMPDH inhibitors,
various other agents can induce differentiation in HL60 cells in wvitro, some of these
act on the purine metabolic network whilst others have distinct modes of action. The
folate metabolism inhibitor 5,10-dideazatetrahydrofolic acid (DDATHF) inhibits glyci-
namide ribonucleotide transformylase (a reaction in the de novo purine synthesis path-
way) (Sokoloski et al., 1989), whilst deazaguanosine is another IMPDH inhibitor and
6-mercaptopurine inhibits both IMPDH and PRPP amidotransferase; the first step in
the de novo pathway (Chiang et al., 1984; Elgemeie, 2005). Although other HL60 cell
differentiating agents, such as ATRA; dimethyl sulphoxide (DMSO); and 3-deaza-(+/-)-
aristeromycin, work on cellular processes distinct from purine metabolism, they still cause
a decrease in GTP levels (Lucas et al., 1983a; Chiang et al., 1984; Aarbakke et al., 1986;
Pilz et al., 1997). Thus cellular levels of guanylates appear to be an important common
factor in HL60 maturation, regardless of differentiating agent and/or mechanism.
Furthermore, studies have been conducted that examined the effect of the IMPDH
inhibitors MPA and MZ on certain nucleotide levels. It has been shown that MPA affects
the levels of GTP, ATP to a lesser extent, and possibly GDP, whereas MZ affects levels
of GTP (Lucas et al., 1983a; Sokoloski et al., 1986; Inai et al., 1997). Taken together
with the aforementioned differentiation experiments involving the addition of exogenous
guanosine and those involving the HGPRT deficient HL60 cell line, these results imply
that it is the decrease in intracellular guanylate levels that results in maturation of HL60
cells upon treatment with IMPDH inhibitors. However, the range of purines examined
is somewhat limited and thus it still remains unclear if it is the exact level of GTP or
its concentration relative to other metabolites (e.g. the GTP:GDP ratio) that causes
HL60 cells to differentiate after treatment with IMPDH inhibitors. Therefore, a more
comprehensive examination of purine concentrations in HL60 cells treated with either
MPA or MZ, seemed like a prudent next step to further increase our understanding of

IMPDH inhibitor driven differentiation in this APL cell line.
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1.7 Principles of High performance liquid chromatog-

raphy (HPLC)

One method for monitoring the levels of purines in cells is High performance liquid chro-
matography (HPLC). This uses the principles of liquid chromatography, which involves
both a mobile (liquid) and stationary phase (McMaster, 2007a). A mixture of molecules
is dissolved in the liquid phase and they are separated based on their relative mobil-
ity as they pass through the stationary phase (McMaster, 2007a). Conventionally, the
stationary phase consists of particles contained within a column. However as noted by
Martin and Synge (Martin and Synge, 1941), better column efficiency can be achieved
by using smaller beads, with a higher pressure. This is the inherent principle of HPLC,
which operates at higher pressures in order for the mobile phase to pass through the
stationary phase that is comprised of very small uniform particles (Nesterenko and Pala-
mareva, 2019). This allows for the separation of more species in a faster time compared
to standard column chromatography (McMaster, 2007a; Meyer, 2010).

After an analyte is eluted from the stationary phase it passes through a detector which
records the signal from that metabolite. These signals, or peaks, provide both qualitative
and quantitative information, and collectively the peaks from all analytes generate a
chromatogram for the sample (Meyer, 2010).

One of the most amenable types of HPLC is Reversed-phase liquid chromatography
(RP-HPLC) in which the mobile phase is polar, whilst the stationary phase is a non-
polar bonded silica. The mobile phase consists of a polar organic solvent in an aqueous
buffer, whilst the most commonly used stationary phase is an 18-carbon silane (Meyer,
2010; Soliven et al., 2013). A gradient method is usually used with this form of HPLC,
such that the concentration of organic solvent is increased over time, thus decreasing
the polarity of the mobile phase (Meyer, 2010). The analytes bind to the octadecylsilane
coated surface of the stationary phase and as the polarity of the mobile phase decreases the

metabolites detach from the stationary phase and are eluted (McMaster, 2007a; Meyer,
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2010).

An amendment to RP-HPLC that is particularly useful when acids, bases and neutral
analytes are all present in a sample, is the addition of an ion-pair reagent (Meyer, 2010).
This type of compound has one hydrophobic end which binds to the non-polar stationary
phase, whilst the other end of the molecule is charged and sticks outwards from the
stationary phase into the mobile phase where it can interact with the metabolites (Garcia-
Alvarez-Coque et al., 2015). The exact mechanism of analyte retention in ion-pair RP-
HPLC is unclear (McMaster, 2007b), but metabolites elute depending upon the strength
of their interaction with the ion-pair reagent.

Ion-pair RP-HPLC is the technique most often used for the study of mixtures of
nucleotides as they are very hydrophilic, charged molecules (Werner et al., 1989; Huang
et al., 2003). The ion-pair reagent binds to the phosphate group, with more reagent
binding the greater the number of phosphates present, thus nucleotides elute in order
of increasing phosphate number. The ion-pair reagent most often used for nucleotide
separation is Tetrabutylammonium hydrogen sulphate (TBAHS), with compound elution
achieved via a gradient method with increasing methanol concentration. Compounds are
detected using a UV detector; with wavelength set at 254 nm, the wavelength at which

the heterocyclic bases of purines characteristically absorb light.

1.8 Rationale and aims

Theoretically, other compounds that induce the differentiation of HL60 cells, or other
AML cell lines, could also be efficacious in AML treatment. IMPDH inhibitors are
one such drug that has been shown to induce HL60 cell differentiation (Lucas et al.,
1983a,b; Sokoloski et al., 1986). Experimentation that provides a more accurate picture
of cellular purine levels upon IMPDH inhibitor driven differentiation is a valuable step in
furthering our understanding of how these drugs cause HL60 cell maturation. However,
purine metabolism is a complex system involving numerous feedback mechanisms and

thus experimentally obtained data of nucleotide and nucleoside levels may be difficult to
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interpret within this metabolic context. I therefore decided to use a mathematical model
of purine metabolism in conjunction with these experimentally derived data of purine

levels to facilitate a greater understanding of this differentiation process.

37



Chapter 2: Mathematical Introduction

Mathematics has been used in the study of biology for centuries and the development
of specific tools and methodologies has helped facilitate a better understanding of these
complex processes and systems. However, when adopting a mathematical modelling
approach to a biological problem it is initially worth spending time to consider the main
purpose of, and expected outcome from, the model, so that it is a worthwhile endeavour.
Model choice should be carefully considered, as many different modelling frameworks
exist, e.g. stochastic or deterministic; continuous or discrete, etc., each aspect of which
will be able to better capture certain behaviours within a biological system and their
combined use will produce a specific model output. Once a suitable model type has
been chosen, an assessment of the underlying biological system should be undertaken
to determine which parts are of most interest and should thus be included in the model
explicitly, if possible. The use of assumptions and simplification forms the next important
step in model creation, as any mathematical representation of a biological system will
be unable to account for the myriad complex dynamics and behaviours inherent to the
biology. This is a balancing act, where assumptions and simplifications are chosen so that
the model can be as realistic as possible, whilst still being able to produce useful outputs.
This is because, a model that is very realistic but so complicated that its output cannot
be interpreted in terms of the biology is as unhelpful as a model that is so simplistic that
its output provides no further insight into the underlying biology. Thus, correct model
choice and construction is an important part of the model building process to ensure that
the framework adopted can provide a realistic representation of the system and that the
output produced is useful and can be interpreted within the context of the biology being
modelled.

A common feature of many mathematical descriptions of biology is ordinary differ-

ential equations, which provide an appropriate representation for a very diverse range
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of biological phenomena. In addition, these mathematical systems have the advantage
that there exist many analytical tools and computer programs that can be used in their

analysis.

2.1 Ordinary differential equations (ODE)

Differential equations are used to describe how one variable changes relative to another,
for example dX/dY = F(X,Y) which denotes the change in variable X relative to vari-
able Y and is determined by a function involving both X and Y. Their use is ubiquitous
throughout science, where they are used to describe many physical and biological pro-
cesses e.g. motion, fluid mechanics and disease modelling.

If Y is replaced by time, ¢, then dX/dt, also written as X, allows for the examination
of variable X over time. A set of such equations, e.g. X; = F(Xy, Xo, ..., X, t); 1 =
1,2, ..., n, can be established, where the rate of change of each variable is determined
by its interaction with all other variables. Moreover, taken together this set allows the
collective behaviour of the whole system of variables to be described over time. If, for
example, X; represent population sizes or metabolic concentrations (which are quantities
that are often most usefully studied over time) then it is clear to see how differential equa-
tions offer us a framework for the mathematical examination of multivariable biological

systems, such as metabolic networks, and their evolution over time.

2.2 Reaction kinetics

The mathematical study of enzyme-catalysed reactions dates back to the early twentieth
century when it was realised that our understanding of these systems was being limited by
the amount of information that could be obtained through experimentation alone (Henri,
1903; Michaelis and Menten, 1913; Johnson and Goody, 2011). Therefore, quantitative
models of these systems were posited as a useful tool for furthering our understanding of
this area. These mathematical representations would allow for certain kinetic quantities

to be estimated that would otherwise be difficult or impossible to obtain. Initial work in
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this area built upon the theories and methodologies used in the field of chemistry and in

particular the The Law of Mass Action.

2.2.1 Mass action

The theory of mass action was introduced by Waage and Gulberg in 1864 via their work
on the formation of esters from acids and alcohols (Waage and Gulberg, 1986). Contrary
to prevailing theories at the time, which proposed that molecular affinities were the
driving force for the progression of reactions, Waage and Gulberg theorised that the rate
of reaction also depends upon the concentrations of the substances involved (Waage and

Gulberg, 1986; Voit et al., 2015), thus giving rise to the following law:

The Law of Mass Action. The rate of change of the concentration of a product is

proportional to the product of the concentrations of the substrates that produce it.

So, for example, given a simple reaction that involves two substrates, A and B, that

combine to produce one product, C, i.e.:

A+B—C

then the rate of change in the concentration of product, C, is defined as:

where [Y] = denotes the concentration of species Y

k = is the rate constant

The Law of Mass Action can also be mathematically derived from thermodynamic
principles, whereby the progress of the reaction is considered in terms of the probability
of the two metabolites colliding and having the necessary energy required to participate
in the reaction (Koudriavtsev et al., 2001; Savageau, 2009; Voit et al., 2015). The Law of

Mass Action is applicable to both (enzyme) catalysed and uncatalysed reactions and for
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simple systems or parts of systems a mass action representation can be sufficient. However
for more complicated systems, such as enzyme-driven reactions, more tailored alternatives
have been derived. These alternatives were created so that the specific reactants and more
complex kinetic interactions inherent to enzyme-catalysed reactions, such as the enzyme
species itself and reaction modifiers, could be modelled more explicitly, in an attempt
to better capture the underlying dynamics of these systems. A well known and very

commonplace example being the Michaelis-Menten equation.

2.2.2 Michaelis-Menten equation

The seminal work of Michaelis and Menten in 1913 (Michaelis and Menten, 1913; Johnson
and Goody, 2011) built on the earlier work of Henri in 1903 (Henri, 1903) and together
with the work of Briggs and Haldane in 1925 (Briggs and Haldane, 1925) led to the
derivation of one of the most widely used equations in biochemical reaction kinetics; the
Michaelis-Menten equation. Taking the simplest version of an enzyme-catalysed reaction;
whereby a substrate, S, is converted to a product, P, by enzyme, E, and using the
principle that an intermediate complex, known as the enzyme-substrate complex, ES, is

formed during this reaction; gives rise to the following reaction scheme:

k
S+E=—=ES™E4+p

k_q
where k; = rate constant for reactioni; i =1, 2

The formation of product P is considered to be irreversible, whilst the formation of ES
is defined as reversible; thus k_q is the rate constant for the backwards part of reaction
1 and kq is the rate constant for the forward part of this reaction. Using the The Law of
Mass Action, equations for the rate of change of each species in the above reaction can

be defined as follows:
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ds

—

- = —klE][S] + k4 [ES] (2.1a)
% = —ky[E][S] + (k_1 + k) [ES] (2.1b)
@ — K [E][S] - (k_1 + ko) [ES] (2.1¢)
% = ky[ES] = v (2.1d)

where [Y] = denotes the concentration of species Y

v = the rate of reaction

Several assumptions are then made, as follows:

Assumptions:

1. The free-ligand approximation, which requires the substrate concentration to far

exceed that of the enzyme and leads to

2. The quasi-steady state assumption, that states that the concentration of ES is con-

stant, i.e. d[ES]/dt =0

3. The enzyme remains unchanged by the reaction, so total enzyme Ey = E + ES

Substituting Assumption 2 into Equation 2.1c leads to:

_ Kk[E][S]
B8] = G (2.2)

Using Assumption 3 with Equation 2.2 gives:

_ k1[Eo][S]
S| = &7 i (12_1 k) (2.3)

After substituting Equation 2.3 into Equation 2.1d and dividing by k1, this leads to the
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Michaelis-Menten equation:

Vinax[S]
V= —-" 2.4
K + [S] (24)
where Vinax = ka[Eo] the maximum achievable velocity of the reaction
k_ k
K, = % which is called the Michaelis constant
1

Although the Michaelis-Menten rate law is widely used, the equations become very
complicated as the number of entities involved (substrates and modifiers) increases and
so the analysis of such systems becomes mathematically intractable (Savageau, 1972).
Therefore, alternative representations were sought for more complicated reactions and
indeed for whole biochemical systems that are easier to mathematically analyse. This
required re-examination of the underlying reaction dynamics and the search for suitable

mathematical tools that could be utilised in their analysis.

2.3 Biochemical Systems Theory (BST)

Biochemical systems tend to be non-linear in nature and their behaviour correspondingly
complex. Indeed, Wong and Hanes (1962) showed that the reaction rate of all enzyme-
catalysed reactions could be written as a ratio of polynomials, an example of this is the
Michaelis-Menten rate equation (Equation 2.4). However, analysis of such non-linear
systems is a complicated procedure which is computationally intensive, if not impossi-
ble (Savageau, 1969b, 1970). To mitigate this, a standard mathematical technique was
suggested as a way of approximating the system so that it could be more easily anal-
ysed. The technique is known as linearisation; whereby a linear function is computed
that approximates the original function at a specific point (Savageau, 1972, 2009). The
advantage of this method is that once the system is rewritten as a linear function, all
the common mathematical tools that exist for the examination of linear functions can
be utilised thus making the analysis far easier. However, this simplified version of the

system is only an accurate representation of the underlying function at one point and
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thus its use is limited, as obtaining useful information about the system as a whole is
not possible due to the restricted range of validity of the approximation (Savageau, 1972,
2009).

Savageau (1969a,b, 1970) proposed an alternative method which still involved some
linearisation, but the main novelty came from first recasting the system. This new frame-
work involves the use of power-law approximations, which are based on the non-linearity
of the system but they have the advantage of being relatively easy to mathematically
analyse, even though they are non-linear functions. This power-law based system became
known as Biochemical Systems Theory (BST), with several variants and extensions being
added over time (Sorribas, 1988; Sorribas and Savageau, 1989a,b,c; Savageau, 1991). In-
deed, those responsible for the establishment of BST consider various other mathematical
representations of reaction kinetics to be specific versions of BST, including Michaelis-
Menten, mass action and Metabolic Control Theory (MCT) (Savageau et al., 1987a,b;
Sorribas and Savageau, 1989b; Savageau, 1996).

The principles of BST are underpinned by two key concepts in mathematics, namely
Bode’s analysis and Taylor’s Theorem (Bode, 1945; Thomas and Finney, 1996); both of
which are used widely throughout mathematics, physics and engineering. Bode’s analysis
allows for a change of coordinates to be performed on the system, whilst Taylor’s Theorem
is a classically used linearisation method.

Bode (1945) studied in the field of electrical engineering, where his work involved
the examination of non-linear systems. His work became known as Bode’s analysis and
gave rise to a specific type of graph called Bode plots; which are ubiquitous throughout
electrical engineering and control theory. Bode realised that if the non-linear system
was transformed into logarithmic coordinates, the function could be approximated using
piecewise linear approximations. This involves computing multiple linear functions that
each approximate a different small section of the original function and collectively they
provide an approximation for the whole function over its entire range (Bode, 1945). As

these approximations are linear, the system is significantly easier to analyse, facilitating
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a better understanding of the underlying problem.

Savageau (1969a,b, 1970) was able to appreciate the similarities between the systems
studied by Bode and the rate laws of enzyme-catalysed reactions; namely, that both sys-
tems can be written as rational functions, specifically ratios of polynomials. In addition,
the functions studied by Bode had a few other specific properties (Bode, 1945), thus for

Bode’s analysis to be applicable, the following criteria need to hold:

Criteria:
1. The function is a ratio of polynomials
2. The degree of the numerator is less than or equal to the degree of the denominator

3. All constants are real and positive

Indeed, in their work defining standard properties of reaction rate equations, Wong
and Hanes (1962) also showed that by definition all of the above criteria hold. Therefore,
equations representing enzyme-catalysed reaction rates are analogous to the functions
studied by Bode thus allowing the techniques of Bode analysis to be directly applied in
the study of these systems.

Once the change of coordinates had been performed, suitable linear functions needed
to be identified that could approximate the system in logarithmic space; this is where

Savageau utilised Taylor’s Theorem (Savageau, 1969a,b, 1970).

Taylor’s Theorem. Any continuous function, F(X), in an open interval that has n-

dn+11:(X)
axn+1

continuously differentiable derivatives (i.e. the deriwative of F(X) exists) over

that interval, can be approximated at a specific point, op, in the interval by a polynomial.

Namely,
dF(X,y) 1 d?>F(X,))
F(X) = F(Xop) + T"”(x — Xop) + ET;”(X — Xop)*+
1 d°F(Xop) 3 1 d"F(Xop)
iW(x = Xop)? ot e (X = Xop)”
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where  Xop = X evaluated at the point op
a

dXk

k! =1x2x3x...xk isk factorial

= the kth derivative of F with respect to X

The specific point of the approximation is called the operating point, op.

The Taylor approximation can be linearised to the case where n = 1, whereby it is
restricted to just the first two terms, the constant and first order term, and all other terms
of higher order are discarded (Voit, 2000). Indeed, Taylor showed that after linearisation
the approximation is still an exact match for the original function at the operating point,
whilst close to the operating point the approximation is still very similar to F(X), but
far from the operating point nothing can be said about the original function (Thomas
and Finney, 1996; Voit, 2000).

In Bode’s analysis multiple linear approximations are computed that provided a piece-
wise approximation of the original function. However, Savageau (1972) concluded that
when dealing with enzyme reactions rates, it is in fact possible to use just one piece of
Bode’s piecewise approximation, i.e. just compute one linear approximation at a spe-
cific point (Torres and Voit, 2002). Although, this would seem counter-intuitive and it
would appear that this method would then be limited in validity in the same way as the
standard linearisation methods mentioned above, it is in fact a reasonable simplification
due to the mathematical and biological context of these systems (Torres and Voit, 2002).
Namely, as the linearisation is conducted in logarithmic space, the range of validity of the
approximation is wider than it would be in rectangular coordinates and the physiolog-
ical concentration ranges within which these biological systems operate is fairly narrow
(Savageau, 1969b, 1972; Voit, 1992; Torres and Voit, 2002). Indeed, experimentation has
shown that these models can accurately represent certain systems when input concen-
trations are increased by multiple-fold changes (Savageau, 1972; Voit, 1992). Moreover,
as these approximations are themselves non-linear they are better able to capture the,

often complex, non-linear reaction dynamics of the underlying system (Savageau, 1970).
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Therefore, it is sufficient to compute a single linear function at one operating point as
this is a suitable approximation of the original function over most conditions that are
physiologically possible and plausible.

The method derived by Savageau (1969a,b, 1970) proceeds as outlined below; firstly

for a one-variable system, then for the more general multivariable system.

2.3.1 BST formulation for a single variable system

For a reaction involving one metabolite Xj, the rate of reaction, or flux, v is a function
of Xy, i.e. v = v(X7). Applying Bode’s analysis, thereby transforming both the rate
function and metabolites to logarithmic coordinates, gives logv = v(logX7)*.

Next applying Taylor’s Theorem to this function yields:

d{logv(X1,0p)}
d{logX;}

le{logv(XLop)}

2t d{logXi}?

logv = logv(X1,p) + (logX1 —logXi,0p) +

(logXy — logXLop)2 +...

1 d"{logo(X1,p)}
n!  d{logXy}"

(logX1 — logXi,0p)" (2.5)

where  Xj,, = Xj evaluated at the operating point

d*{logv}

i{logX; }F = the kth derivative of logv with respect to logXj
08 A1

k! =1x2x3x...xk is k factorial

*Whilst this notation may not necessarily conform to rigorous mathematical conventions, it shall
be used here so as to align with the existing literature on BST (Savageau, 1972, 1988; Savageau et al.,
1987a) which is approached from a bioengineering perspective. For example, the recasting of the function
v = v(X7) into logarithmic space yielding logv = v(logX;) would not hold true in the strictest mathe-
matical sense as the mapping of Xj to v is not the same as the mapping of logXj to logv. However, for
consistency with the relevant literature, the bioengineering approach shall be adopted throughout this
thesis.
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By performing linearisation on this function, i.e. restricting the function to n = 1, the

following is obtained:

d{logv(XLop)}
d{logXy}

logv = logv(X1,0p) + (logX1 —logX1,0p) (2.6)

If some of the terms are now redefined, then this equation becomes:

logv = loga + f1log Xy (2.7)
d{logv(X1,0p) }
where loga = logv(X1,0p) — {logX:} logX1,0p
_ d{logv(xl,orl)} _ dU(Xl,op) % Xl,op
1 d{lOgXl} Xm U(Xl,op)

Finally, converting back to rectangular coordinates, i.e. taking exponents of both sides
gives:

v = zxX{l (2.8)

where & = the rate constant

f1 = the kinetic order

2.3.2 BST formulation for a multivariable system

In the more general case, with a system of r reactions involving n species X1, Xp, ..., Xy,
the flux v; for the ith reaction is a function of all n metabolites, i.e. v; = v;(Xy, Xo, ..., Xy).
Applying the method of Bode and transforming both the rate function and metabolites
to logarithmic coordinates, gives logv; = v;(logXy, logXa, ..., l0gXy). Next, using Tay-

lor’s Theorem in the new coordinate system and restricting to n = 1, yields:

n a{logvi(XLop; Xz,op/ ey Xn,OP)}
logv; = 10gvi(Xu,0p, X2.0p, -+, Xnop) + ]; d{logX;}

(long — longlop)

(2.9)
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where  Xj,, = Xj evaluated at the operating point

J

9 {logvi}
d{logX;}k

n
Y; = the sum of the terms Y3, Y2, ..., Yy
=1
= the kth partial derivative of logv; with respect to logX;

Redefining some of the terms, this becomes:

logv; = loga; + fi1logXy + finlogXo + ... + finlogX, (2.10)

" 0{10gvi(X1,0p, X209, ---» Xnop)}
where lOgOCl' = logvi(XLop, leop, ey Xn,op) - ];1 l (gj{log;(r;} Lo

- a{logvi(xl,op/ XZ,op/ sy Xn,op)}
v d{logX;}
avi(Xl,op/ XZ,op/ Ry Xn,op) Xj,op

= X forij=1,...,n
aX] Z71'(X1,op/ XZ,op/ ceey Xn,op) /

longlop

Finally, converting back to rectangular coordinates gives:

n .o
v = X xfe | xfn = ociHX]f” (2.11)
j=1

where «; = the rate constant for reaction i

fij = the kinetic order for metabolite X]' in reaction i
n

Yj = the product of the terms Y7, Y, ..., Yy
=1

]

2.3.3 Generalised Mass Action (GMA)

Using the framework of BST, different mathematical variants were determined which
differ in the way they deal with the aggregation of fluxes. The three variations being:
Generalised Mass Action (GMA), S-systems and Half-system (Savageau, 1996; Voit, 2000,
2013). Each version has advantages and disadvantages, but the version that shall be con-

sidered here is GMA due to its better handling of branch-point dynamics, i.e. when
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one metabolite is involved in the synthesis of two other metabolites through two distinct
reactions, which is a common feature of the purine system being studied. Indeed, Curto
et al. (1998b) and others (De Atauri et al., 1999) showed that the GMA model variant
produces results that more closely reflect clinical findings compared to S-system formu-
lations and that GMA models are better able to capture system dynamics further from
the operating point. Therefore, GMA provides a framework that is more accurate over a
wider range of physiological conditions.

The formulation of a GMA model for the above generalised reaction system proceeds
thusly. Firstly, the rate of change of each metabolite X} can be described in terms of the

reaction rates, or fluxes, that produce it and those that consume it, such that:

ax -

where ¢; = the stoichiometric coefficient for reaction v;

vf = is the flux of a reaction that synthesises Xj

v; = is the flux of a reaction that degrades Xj

Replacing each flux with its power-law approximation from Equation 2.11, gives:

. Tk n+m fi
Xp=) o [T X" fork=1...n (2.13)
i=1 j=1
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where 7, C r the subset of reactions that affect the concentration of metabolite X}

r = the full set of reactions in the system

n
Y | Y; = the sum of the terms Yy, Y, ..., Yy
j=1
a; = the rate constant for reaction i

n = the number of dependent variables

m = the number of independent variables

n
HY] = the product of the terms Y7, Y, ..., Yy,
j=1
fij = the kinetic order for metabolite X; in reaction #, which is defined as:

Jvj Xj,op
= X : 2.14
Ji (E)Xj) op (Vi)op 214

0
where (—) = the partial derivative of v; with respect to X; evaluated at
oP  the operating point

Xj,op = the concentration of metabolite j at the operating point

(vi)op = the flux value of reaction i at the operating point

Finally, once the kinetic orders for all the metabolites involved in a reaction have been
computed, the rate constant can be calculated using the fact that, by definition of Taylor’s
Theorem, the approximation is identical to the original function at the operating point,
thus:

8 = _(@)op (2.15)

where (v;)op = the flux value of reaction i at the operating point

X op = the concentration of metabolite j at the operating point

As highlighted in the above derivation, certain information about the system needs
to be known prior to the construction of a GMA model, namely the concentration of
each metabolite at the operating point and the value of each flux at the operating point.

This information is often obtained from experimental data and usually involves Michaelis-
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Menten formulations of the reactions; thus kinetic parameters, such as K;;, Viuax and K;,

are often utilised as shown in the below example.
2.3.3.1 GMA example system

To illustrate how to construct a GMA model, consider the following example system
which consists of four dependent variables X7, X5, X3, X4 and three reactions, with fluxes
defined as vy, vp, v3, as shown in Figure 2.1. The synthesis of metabolite X; and the
degradation of species X3 and Xy are independent of all the metabolites in the system,
thus Xj is produced at a constant rate ki, whilst X3 and X4 are degraded at constant

rates, ko and ks, respectively. Furthermore, metabolite X3 inhibits reaction 3.
X3
(2 :
01
X— X

X4

Figure 2.1: Schematic for GMA formulation example. X;, X5, X3, X4 are metabolites and
v1, U2, U3 are the reaction fluxes. Solid arrows represent reactions, whilst dotted arrows
indicate inhibitory regulations.

The reaction fluxes for the system are then given by:
v = alX{“ Uy = ochgzz U3 = a3X§32X§33 (2.16)

where «; = the rate constant for reaction i

fij = the kinetic order for metabolite X; in reaction i

The equation for the rate of change of concentration for each variable is thus defined as

52



follows:

Xl = k1 — 01 = k1 — IX1X{11

Xz =01 —0p—03 = DqX{H — Dézxgzz — 0(3X£32X§33

_ p (2.17)
X3 = Uy — k2 = 042X222 — k2

X4 = U3 — k3 = tX3X£32X§33 — k3

As an example, consider reaction 3 which produces Xy, along with appropriate kinetic
and inhibitory data outlined below. Metabolite X3 at a concentration of 2000 pM inhibits

reaction 3 by 18 % therefore,

10g(0.82)

X[ =1-018 <= fz = 10g(2000)

= —0.03

Also, using the standard Michaelis-Menten formulation as shown in Equation 2.4 along

with Equation 2.14, the kinetic order for X, in reaction 3 is given by:

Taking a K, value of 12 pM for substrate X, and a concentration of 33 pM for X5 at the

operating point gives:
12

— =027
fa2 12+ 33 0

Finally, assuming a concentration of 12 pM for metabolite X3 at the operating point and
a flux value of 2.3 pmol min—! (10° cells)*1 for reaction 3 at the operating point then,

the rate constant for reaction 3 can be calculated using Equation 2.15 as follows:

(03)op 2.3
f f 0.27 —0.03
X2,3§p X3,303P 33 x 12

Therefore, the equation for the flux v3 becomes:

v3 = 0.97X9% X700
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Using the same method for reactions 1 and 2, with a Kj; of 21 pM for Xj in reaction 1
plus a concentration of 25 pM for Xj at the operating point and a K, of 7.3 pM for X,

in reaction 2, the kinetic orders f11; and f; become:
f11 = 0.46 and f22 =0.18

Taking these kinetic orders along with the operating point flux values of v1 equal to
8.7 ymol min~! (107 cells) ! and v, equal to 5.1 pmol min~! (10% cells) ™!, yields the rate
constants:

x1 = 2.00 and ay = 2.71

Thus the fluxes v; and v, are defined as:
v; =2.00X%4  and v, =2.71X918

After substituting the equations for the three fluxes into Equation 2.17, the full system

in GMA form is prescribed as below:

Xy = kg —2.00x746

X, = 2.00x%46 — 2,71 X918 — 0.97X9-% x ;003
1 2 2 3 (2 18)

X3 = 2.71X318 —k,

Xy = 0.97X3%7 X500 — ks

2.4 Mathematical model of purine metabolism

As previously mentioned, there already exists a mathematical model of human purine
metabolism created by Curto et al. (1997, 1998b). Three different mathematical formu-
lations for this model were described by Curto et al. (1998b): Complemented Michaelis-
Menten (CMM), S-system and GMA. The latter is publicly available from the BioModels
database (Li et al., 2010) under unique identifier BIOMDO0000000015, where it can be
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downloaded in Systems Biology Markup Language (SBML) format (Hucka et al., 2003).

This model describes the network from a single main input metabolite PRPP, through
the production of nucleotides and deoxynucleotides, RNA and DNA synthesis and degra-
dation, to waste product (uric acid) production and its final excretion from the system (see
Appendix A for a schematic of the model). It consists of 16 dependent variables, two in-
dependent variables (see Table 2.1) and 37 metabolic reactions (see Table 2.2) prescribed
by a set of 37 ODE equations. As shown in Table 2.1, several of the variables represent a
group of metabolites, e.g. variable Xy corresponds to the collective pooled concentration
of Ado, AMP, ADP and ATP. Moreover, there are multiple inbuilt regulatory controls
within the system, in the form of internal inhibitory and activatory feedback mechanisms.

Although the models of Curto et al. (1997, 1998a,b) were tested, including against data
for specific purine metabolic diseases, and they appear to be an accurate representation
of the dynamics of the purine metabolic system; they do have some inherent limitations.
Firstly, the pooling together of certain metabolites into one variable, means that their
individual concentrations cannot be readily modelled. Secondly, they are whole body
models and thus they may not be suitable for use in modelling purine metabolism in
certain cell or tissue types. In particular, purine metabolism is crucial for many types of
cancer cells, due to their high requirements for purines for DNA synthesis, but whether

these models are appropriate for use in these cells remains to be determined.

95



Variable Conc. (M) Metabolite(s) Conc. (pM)

Dependent variables

X1 5 PRPP 5

Xo 100 IMP 100

X3 0.2 S-AMP 0.2

Xy 2500 Ado, AMP, ADP, ATP 0.5, 200, 400, 1900
X5 4 SAM 4

X6 1 Ade 1

Xy 25 XMP 25

X3 400 GMP, GDP, GTP 25, 75, 300
X9 6 dAdo, dAMP, dADP, dATP 0.1, 0.5, 1.4, 4
X10 3 dGMP, dGDP, dGTP 0.1,05, 24
X11 28600 RNA 28600

X172 5160 DNA 5160

X3 10 HX, Ino, dIno 6.9, 3,0.1

X14 5 Xa 5

X1s5 5 Gua, Guo, dGuo 05,44, 0.1
X16 100 UA 100

Independent variables

X17 18 R5P 18

X1s 1400 Pi 1400

Table 2.1: Metabolites from the Curto et al. (1998b) model of human purine metabolism.
Metabolite name along with its corresponding variable annotation and initial concentration as
defined by Curto et al. (1998b) are shown.
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Abbreviation Reaction

PRPPS R5P 4+ ATP — PRPP + AMP
DEN PRPP + glutamine + HyO — b-5-phosphoribosyl-1-amine
+ glutamate + PPi
(is a pathway, this is the first step)
GPRT Gua + PRPP — GMP + PPi
HPRT HX + PRPP — IMP + PPi
APRT Ade + PRPP — AMP + PPi
PYR Represents pyrimidine synthesis
IMPDH IMP + NAD + H,O — XMP + NADH
GMPS XMP + ATP + glutamine — GMP + AMP + PPi + glutamate
ASUC IMP + L-aspartate + GTP — S-AMP + GDP + Pi
ASLI S-AMP — AMP + fumarate
GMPR GMP + NADPH == IMP + NADP + NHj
AMPD AMP — IMP + NHj3
MAT methionine + ATP — SAM + Pi + PPi
TRANS protein + SAM — methylated protein + S-adenosyl-L-homocysteine

(is a pathway, this is the first step)
POLYAM SAM — decarboxylated SAM

(is a pathway, this is the first step)
INUC IMP + H,O — Ino + Pi
GNUC GMP + HyO — Guo + Pi

continued on the next page
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Abbreviation

Reaction

DGNUC

GDRNR

ADRNR

ADA

DADA

ARNA

GRNA

RNAA

RNAG

ADNA

GDNA

DNAA

DNAG

HXD

XD

GUA

ADE

HXE

XE

UAE

dGMP + H,O — dGuo + Pi

GDP + NADPH — dGDP + NADP + H,O
ADP+ NADPH — dADP + NADP + H,O
Ado — Ino+ NHj

dAdo — dIno + NHj

ATP+ RNA, — PPi+ RNA, 4

GTP+ RNA, — PPi+ RNA, 4

Hydrolysis of RNA into AMP

Hydrolysis of RNA into GMP

dATP + DNA, — PPi+ DNA,+1

dGTP + DNA, — PPi+ DNA, 1
Hydrolysis of DNA into dAMP

Hydrolysis of DNA into dAGMP

HX + HyO + (NAD or O;) — Xa+ (NADH or HyO,)

Xa+ HyO + (NAD or Oy) — UA + (NADH or H,O,)

Gua + H,O — Xa+ NHj;

oxidation of Ade to 2,8-dihydroxyadenine and excretion of both

excretion of HX
excretion of Xa

excretion of UA

Table 2.2: Reactions from the Curto et al. (1998b) model of human purine metabolism.
Each reaction along with its abbreviated name as defined by Curto et al. (1998b) is shown.
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Chapter 3: Model Adaptation

3.1 Model refinement

The GMA model of purine metabolism established by Curto et al. (1998b), was down-
loaded in SBML format (Hucka et al., 2003) from the BioModels database (Li et al., 2010)
using the unique identifier BIOMDO0000000015. This was initially imported into the mod-
elling software COPASI (Hoops et al., 2006), but subsequently the model equations were
coded directly into Matlab version R2015b (The MathWorks Inc., 2015). The following
model adaptations and simulations were carried out using Matlab version R2015b (The
MathWorks Inc., 2015), unless otherwise stated.

In order to more accurately examine the mode of action of IMPDH inhibitors on
leukaemic cells, it was decided to examine the model to see if it was likely to be a true
representation of purine metabolism in HL60 cells and adapt it as required. To do this I
used RNAseq data, which detects transcript levels, as a proxy measure for enzyme abun-
dance and activity, to determine whether the enzymes in the purine metabolic network

and mathematical model were present in this cell type.

3.1.1 RNAseq analysis for ATRA treated HL60 cells

RNA sequencing (RNAseq) is a high throughput technique used to analyse gene expres-
sion. mRNA is isolated from cells and the enzyme reverse transcriptase is used to create
complimentary DNA (¢cDNA). This ¢cDNA is then cut into small fragments and special
adapters are added to the ends which allow the fragments to be anchored in place. A
DNA polymerase is then added along with fluorescently labelled nucleotides which are
used to build a complementary copy of the cDNA. The fluorescence is read at each cycle
of base incorporation, enabling the mRNA sequence to be determined.

I utilised a set of RN Aseq data, obtained from the online database GEO (Edgar et al.,

2002) under accession number GSE28123, from a study involving brain tissue, liver tissue,
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K562 cells and HL60 cells (Raz et al., 2011). The samples analysed were HL60 cells that
either had been treated with ATRA or were untreated cells. The data, as normalised by
Raz et al. (2011), from three biological replicates for each condition was used without
further adjustment. Details of the sample identifiers from the GEO database (Edgar
et al., 2002) for the six samples used are listed in Appendix B.

The list of enzymes used in the Curto et al. (1998b) model was converted to a list of
gene symbols (see Appendix B for details) and the corresponding data was extracted from
the RNAseq dataset, using the programming language R, version 2.14.1 (R Development
Core Team, 2021).

To account for the fact that some enzymatic activities are performed by more than
one gene product, the mRNA levels for each isozyme gene were summed to generate a
single value for each enzymatic activity and these values were then averaged across the
three replicate samples. The mean Reads Per Million (RPM) count for each enzyme
for the three replicates was analysed to determine whether or not these enzymes were
expressed. This analysis revealed that the majority of the enzymes included in the model
are present in these cells (see Table 3.1); with only one gene under one experimental
condition (GDA in ATRA treated cells) falling below the cut-off threshold of five RPM
that was used by Raz et al. (2011).

Next, the logs fold change between the ATRA treated and untreated cells was cal-
culated, i.e. loga(treated/untreated). These values were then used to generate a graph-
ical picture of how the expression level of each enzyme changes upon treatment, using
Cytoscape (Shannon et al., 2003). To do this, the KGML formatted version of the hu-
man purine metabolic network (reference: hsa00230) was downloaded from the KEGG
database (Kanehisa and Goto, 2000) and imported into Cytoscape (Shannon et al., 2003).
This generated a schematic for the network similar to that in KEGG which was hand
curated to remove enzymes, metabolites and reactions that do not occur in humans.
Moreover, the network was terminated at Uric acid to coincide with the network used by

Curto et al. (1997, 1998Db).
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Gene Untreated ATRA Gene Untreated ATRA
PRPS  109.666667  26.533333 GDA 7.533333 3.966667
HPRT  44.833333  20.966667 PPAT  53.033333  5.433333
APRT 13.666667 10.333333 GART 131.833333 33.366667
ADSS 01.433333  53.366667 PFAS 44766667  25.900000
IMPDH  255.400000  84.433333 PAICS 284.100000 48.566667
GMPS  111.300000 34.066667 ATIC  90.166667  23.933333
AMPD  66.033333  98.133333 ITPA  21.666667  11.433333
GMPR  49.800000  60.700000 GUK1 19.566667  10.400000
XDH 6.233333 5.033333 NME  381.066667 179.266667
NT5 114.833333  144.066667 ADSL  84.666667  34.200000
POLR 1303.366667 947.200000 POL  983.333333 570.966667
ADA 37.300000  33.366667 ADK  84.333333  38.533333
RRM  320.900000 149.866667

Table 3.1: Relevant Reads Per Million values from the Raz et al. (2011) RNAseq data set.
RNAseq data from HL60 cells were utilised and Reads Per Million (RPM) values for genes
corresponding to enzymes in the purine metabolic network were extracted to confirm their
presence in this cell type.

The attributes list in Cytoscape includes a ‘KEGG.label first’ field which is the
attribute that is used to refer to the enzymes in the schematic produced (Shannon
et al., 2003). Therefore, the logs fold-change values were assigned to the correspond-
ing ‘KEGG.label.first” name so they could be imported into Cytoscape. The enzyme
nodes were then coloured according to these values; so that enzymes with mRNA lev-
els that increase upon treatment with ATRA are blue, whilst those that decrease upon
treatment are yellow. Enzymes that are not present in the purine network as defined by
Curto et al. (1998b) are coloured grey (see Figure 3.1).

This comparison revealed that most of the enzymes in the network were down-
regulated upon treatment with ATRA; with only three enzymes, namely adenosine monophos-
phate deaminase, guanosine monophosphate reductase and 5’-nucleotidase (AMPD, GMPR,
and NT5, respectively), being up-regulated. The largest decrease in expression was ob-

served within the de novo pathway (see Figure 3.1). This overall decrease in enzyme
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expression in the network is consistent with the fact that administration of ATRA will
cause these cells to stop proliferating and differentiate into granulocytes. Therefore, the
cells’ requirements for purine nucleotides will decrease as they will no longer be synthe-
sising new DNA.

With the model now having been checked to ensure that it is appropriate for use
in HL60 cells, attention then turned to investigating how the model could be used to
examine the effect of IMPDH inhibitors on these cells. Specifically, how the model could
be adapted so that the metabolites of interest could be independently assessed during

simulations of IMPDH inhibition.
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Figure 3.1: Comparison of mRNA expression levels between HL60 cells treated with ATRA and untreated cells. Boxes represent enzymes
whilst circles represent metabolites. Blue indicates that mRNA expression decreases upon treatment with ATRA, whilst yellow represents
an increase upon treatment. Grey denotes enzymes that are not present in the purine network as defined by Curto et al. (1998b). Data is
from Raz et al. (2011) and visualisation was performed using Cytoscape (Shannon et al., 2003).



3.2 Model version 1

As mentioned earlier, one of the limitations of the Curto et al. (1998b) model is that
certain metabolites are pooled together into single variables. Importantly, the adenylate
& adenosine and guanylate metabolites are grouped into variables X4 and Xg, respec-
tively. This is problematic since I am interested in the absolute levels of many of these
nucleotides, especially GTP, GDP and ATP. Therefore, the pooled variables X, and Xg
were removed from the model and replaced by separate variables for adenosine and each
of the adenylate and guanylate nucleotides, as outlined in Table 3.2, thus allowing each

species to be modelled separately and their individual concentrations to be examined.

Adenylate & adenosine pool (Xj4) Guanylate pool (X3)
Variable Metabolite Variable Metabolite
Xam AMP Xsm GMP
X4p ADP Xsp GDP
Xyt ATP XsT GTP
Xya Adenosine

Table 3.2: Variable nomenclature for previously pooled adenylate & adenosine and guanylate
metabolites.

Full incorporation of these new variables into the existing model required both the
replacement of the old pooled variables, from all equations, with the appropriate new
variable that is the actual substrate, product or modulator in the reaction, and the
creation of new equations that represent the biochemical reactions that exist between
the newly defined variables. This firstly required redefining each existing kinetic order
that involved either Xy or Xg so that the individual concentration of the precise species

involved, rather than the pooled concentration, was used. This was achieved using in-

64



formation already present in Curto et al. (1998b) as the specific entity, from the pooled
metabolites, that actually participates in each reaction is noted in the appendix (Curto
et al., 1998b). Next, equations for the newly defined reactions needed to be established
and kinetic orders determined. This required a database and literature search to identify
the exact interconversion reactions that occur in humans between the previously pooled
metabolites Ado, AMP, ADP and ATP and those that occur between the species GMP,
GDP and GTP. Moreover, kinetic data was also acquired from the literature that was
used to generate kinetic orders for these new reactions. Once both of these steps had been
completed, steady state equations along with biochemically and experimentally derived
constraints were utilised such that initial flux values for the system could be computed
at the operating point. This then enabled the rate constant for each reaction in the
amended system to be determined, as per the method used in Curto et al. (1998b), thus
eventually producing a fully prescribed system of equations that can be used to model

purine metabolism in HL60 cells and the effect of IMPDH inhibitors on the network.

3.2.1 Amendment of existing reactions

For both the adenylate & adenosine and guanylate pools, the specific metabolites which:
1) act as substrates for reactions beginning at the pools; 2) are products of reactions
ending at the pools; and 3) are inhibitors or activators of reactions affected by the pools
were determined, using information in Curto et al. (1998b). The kinetic orders for these
reactions were recalculated using the values and enzymatic information in Curto et al.

(1998b), correcting for individual metabolite concentrations, and are detailed in Appendix

C.

3.2.2 New interconversion reactions

New reactions for the interconversions between the metabolites within each pool were
then determined. The full set of interconversion reactions between these metabolites in
humans, as defined in the KEGG database (Kanehisa and Goto, 2000), was considered.

Figure 3.2 shows the entire set of adenylate & adenosine interconversions, while Figure 3.3
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details all of the guanylate interconversions; with enzymes represented by their Enzyme

Commission (EC) number.

:2.7.1.20/2.7.1.74= < 2.74.3 > < 2.7.1.40/2.7.4.6 >
\/

3.1.3.5 3.6.1.5 3.6.1.3/3.6.1.5/3.6.1.15

Figure 3.2: Interconversion reactions between Ado, AMP, ADP and ATP. Data is specific for
humans and was obtained from the KEGG database (Kanehisa and Goto, 2000). Abbreviated
metabolite names (boxes) and EC numbers are shown.

3.6.1.19

T

< 2.7.4.8 > < 2.7.4.6/2.7.1.40 >
\/ \/

3.6.1.5/3.6.1.6 3.6.1.5

Figure 3.3: Interconversion reactions between GMP, GDP and GTP. Data is specific for
humans and was obtained from the KEGG database (Kanehisa and Goto, 2000). Abbreviated
metabolite names (boxes) and EC numbers are shown.

The enzymes responsible for these interconversion reactions were then examined to see
if it was appropriate to include them in the model. Thus, enzymes EC 3.6.1.3, 3.6.1.5,
3.6.1.6, 3.6.1.15 and 3.6.1.19 were excluded as their sites of action are extracellular;
EC 2.7.1.40 was discounted as it is a key glycolytic enzyme and its activity is regulated
by other sources beyond the scope of this model; and finally EC 2.7.1.74 was discarded
as it does not actually catalyse the reaction defined in the KEGG pathway (Lemmens
et al., 1996; Kanehisa and Goto, 2000; Smith et al., 2002).

Since commencement of this project, several changes to the KEGG database have
been implemented. Enzymes EC 2.7.1.74 and 2.7.1.40 have been removed from the KEGG
purine network, thus confirming the validity of their exclusion from the model (Kanehisa
and Goto (2000), accessed 2022). In addition, enzyme EC 3.6.1.19 has been renamed

EC 3.6.1.9 and enzyme EC 3.6.1.3 has been removed and replaced by EC 3.6.1.-; nonethe-
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less, both of these enzymes retain their extracellular sites of action. Lastly, enzyme
EC 2.7.4.6 has been amended to remove the isozyme adenylate kinase 3, which received
the new EC number 2.7.4.10. However, as adenylate kinase 3 has minimal catalytic
activity with ATP as a substrate it was also excluded from the list of enzymes that was
to be incorporated into the model (Noma et al., 2001).

Lastly, using the methodology used in Curto et al. (1998b), reversible reactions were
replaced by their net flux, as observed in vivo. This applied to the reactions: EC 2.7.1.20,
2.7.4.3,2.7.4.6 and 2.7.4.8, for which their net flux goes in the direction left to right as seen
in Figures 3.2 and 3.3 Therefore, the refined interconversion schemes for the adenylate &
adenosine and guanylate pools are shown in Figures 3.4 and 3.5, respectively, with the

enzymes involved listed in Table 3.3.

ADOK (2.7.1.20)

Ado >
~_

ANUC (3.1.3.5)

ADEK (2.7.4.3) ADPK (2.7.4.6)

Figure 3.4: Hand curated adenylate & adenosine interconversion reactions. Abbreviated
metabolite names (boxes), abbreviated enzyme names and EC numbers are shown.

GUK (2.7.4.8)

GMP > coP ] >[ctP ]

Figure 3.5: Hand curated guanylate interconversion reactions. Abbreviated metabolite names
(boxes), abbreviated enzyme names and EC numbers are shown.

GDPK (2.7.4.6)
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EC number Enzyme name Abbreviation

2.7.1.20 Adenosine kinase ADOK
2.7.43 Adenylate kinase ADEK
2.7.4.6 Nucleoside-diphosphate kinase ADPK/GDPK
2.74.8 Guanylate kinase GUK
3.135 5'-Nucleotidase ANUC

Table 3.3: List of hand curated adenylate & adenosine and guanylate interconversion reaction
enzymes. Enzyme abbreviation and EC number corresponding to Figures 3.4 and 3.5 are shown
along with each enzymes’ full name.

3.2.3 ATP synthesis and degradation

Considering these two sets of interconversion reactions together and in the context of
the existing model, a couple of points became evident. Firstly, as is apparent from their
EC numbers, GDPK and ADPK are both catalysed by the same enzyme, nucleoside-
diphosphate kinase (EC 2.7.4.6), and are in fact the forward and back steps of the same

reaction, namely:

GDPK
GDP + ATP ——=— GTP + ADP
ADPK

Secondly, whilst there are eight reactions (four new and four existing reactions) that
result in ATP degradation, the only reaction that synthesises ATP is ADPK. ADPK uses
GTP as a phosphate donor to produce ATP from ADP yet the only source of GTP in
the network is from the opposing reaction GDPK, which is assumed to be predominant
in vivo. Thus ATP production via ADPK will be negligible. Therefore, another source
of ATP production seemed a necessary inclusion in the model. The main source of ATP
production is through oxidative phosphorylation and can be modulated by many factors
including external stimuli which are outside the scope of this model. Thus the reaction
ATPSYN was incorporated into the model as a source of ATP, in the form of a simple mass
action equation which converts its only substrate ADP into ATP. In addition, inclusion

of a term for ATP degradation (called ATPDEG) via cellular processes outside of purine
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metabolism; which are myriad and yield ADP as a byproduct, seemed prudent otherwise
the incorporation of ATPSYN alone would artificially drive other reactions within the
network that yield ADP to compensate for its use in ATP synthesis. The mass action

equations for these new reactions are outlined below:

Oatpsyn = Xatpsyn [ADP] = “atpsynXALD

Uatpdeg = “utpdeg[ATP] = “atpdegXélT

Next, the kinetic orders for these newly defined reactions needed to be calculated.
This was achieved using the same methodology as Curto et al. (1998b), along with Equa-
tion 2.14 and kinetic data sourced from appropriate literature, utilising human data
wherever possible (Table 3.4 details this kinetic data). Appendix C provides more de-
tails about these calculations and the mathematical GMA equations used, along with the

calculated kinetic orders for the new interconversion reactions.
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Reaction Metabolite Type Substrate K, (pM) K; (pM) Source
Ado Substrate 0.4 Palella et al. (1980)
ADOK ATP Substrate 75 Palella et al. (1980)
AMP Competitive inhibitor w.r.t Ado 0.4 140 Palella et al. (1980)
ADP Non-competitive inhibitor N/A 50 Palella et al. (1980)
ADEK AMP Substrate 80 Tsuboi and Chervenka (1975)
ATP Substrate 90 Tsuboi and Chervenka (1975)
ADP Substrate 40 Mourad and Parks (1966)
ADPK GTP Substrate 150 Mourad and Parks (1966)
GMP Non-competitive inhibitor N/A 650 Mourad and Parks (1966)
AMP Substrate 31,000, h=1.5 Itoh and Oka (1985)
ANUC P Competitive inhibitor w.r.t AMP app 38,000 Itoh and Oka (1985)
at Pi=1000 h=1.7
ATP Substrate 1330 Kimura and Shimada (1988)
GDPK GDP Substrate 31 Kimura and Shimada (1988)
GMP Non-competitive inhibitor N/A 650 Mourad and Parks (1966)
GUK ATP Substrate 190 Agarwal et al. (1978)
GMP Substrate 18 Agarwal et al. (1978)

Table 3.4: Kinetic data for each of the adenylate & adenosine and guanylate interconversion reactions. K, and K; values for substates
and inhibitors, respectively, are shown along with details of the relevant literature.



3.2.4 Rate constant calculations

The final step to fully incorporate the newly separated variables and their interconversion
reactions into the model, was to calculate a rate constant for each of the 45 reactions in the
expanded system. This was achieved by first calculating the flux value for each reaction
in the network at the operating point. These were determined utilising the methodology
in Curto et al. (1998b), whereby a system of 45 simultaneous equations involving all
of the 45 fluxes in the system was established and solved. The steady state equations
for the dependent metabolites defined in Curto et al. (1998b), excluding those for Xy
and Xg, were used without amendment. In addition to these 14 equations, the steady
state equations for the individual adenylate & adenosine and guanylate metabolites were

determined, as follows:

Xga : Otrans + Uanuc = Uada T Vadok

XamM : Uprpps + Ugmps + Vaprt + Ugsli
TUrnaa + Vadok = Vampd + Vadek + Vanuc

XaD ' Vadok + 2Vagdek + Uguk 1 Ugdpk
T0atpdeg = Vadrnr + Vadpk + Vatpsyn

Xyt : Undpk + Vatpsyn = OUprpps + Ugmps + Umat + Varna + Ogdok
+ Ugdek + Oouk + Uadpk + Uatpdeg

Xsm : Ugprt + Ugmps + Urnag - = Ugmpr + Ugnuc + Vguk
Xsp : Vasuc + Uguk + Undpk =  Ugdrnr + Ugdpk
XgT : Ugdpk = Yasuc + Ugrna + Ugdpk

The two RNA and two DNA constraints and the 17 experimentally based constraints
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from Curto et al. (1998b) were also used without modification, except for the sixth con-
straint: Ugsuc = 5 Vjypap. According to Snyder and Henderson (1973) and Hershfield and
Seegmiller (1976), this relationship is appropriate for cells in stationary phase whereas
the constraint Ugsuc = Vjppgn is more suitable for dividing cells. Since HL60 cells are
continually proliferating, the latter condition was used.

In addition to these steady state equations and constraints, three additional flux
relationships were required to produce a system of 45 simultaneous equations. The first
of these was derived from the fact that the cellular levels of ATP and ADP remain roughly

constant in HL60 cells at a ratio of 10:1 (Bradbury et al., 2000), thus giving:

Uatpsyn = 10 Uatpdeg

Secondly, as previously mentioned, it was assumed that the reversible reaction

GDPK
GDP + ATP === GTP + ADP
ADPK

catalysed by the enzyme nucleoside-diphosphate kinase would tend to go in the forward

direction; thus the following constraint was included:

Ugdpk = 10 Uadpk

Lastly, the literature search for kinetic data for the new interconversion reactions yielded
the following constraint between the new reaction ANUC and the existing reaction INUC
(Spychala et al., 1988):

Vinue ~ 15 Vanuc

This system of 45 simultaneous equations was solved using the computer program
Mathematica (Wolfram Research Inc., 2010) to yield initial values for the 45 fluxes in the
system. These values were then used with Equation 2.15 to calculate the rate constant

for each of the 45 reactions in the system. The full system of simultaneous equations, the
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flux values they yielded and the calculated rate constants are detailed in Appendix C.
With all the kinetic orders and rate constants now defined, the system of 45 ODE
equations was coded into Matlab version R2015b (The MathWorks Inc., 2015) and anal-
yses conducted to investigate the effect of IMPDH inhibition on the network. Data was
obtained from the literature that suggests that MPA inhibits IMPDH by approximately
28 % (Ahmed and Weidemann, 1995). This level of inhibition was simulated by mul-
tiplying the rate constant for the reaction IMPDH by 0.72. These simulations resulted
in the concentration of ATP increasing drastically: a percentage change of 392 % (see

Figure 3.6). Therefore, a re-examination of the model was undertaken.

12000 1

9000 1

6000 1

ATP Concentration (uM)

3000 1

0Oe+00 5e+04 1le+05
Time (min)

Figure 3.6: ATP concentration from model version 1 with simulation of 28 % IMPDH
inhibition. The grey line shows the steady state concentration of ATP from the same model
without inhibition.
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3.3 Model version 2

The large increase in ATP concentration observed in the model upon IMPDH inhibition,
suggested that the control of ATP (production and degradation) was not correct and so
the new interconversion reactions including ATPSYN and ATPDEG were re-examined

to determine if they could be modelled better.

3.3.1 ATP synthesis and degradation revisited

Initially, it was decided to see if the ATPSYN and ATPDEG reactions could be removed.
However, this resulted in the model crashing due to the level of ATP reaching zero
within a few seconds of simulation. Next, examination of the adenylate & adenosine (and
then guanylate) species as a separate group in isolation from the rest of the model was
attempted. However, this could not be achieved as some of the flux out of the isolated
system is recycled back in to it and, as this fraction is unknown, it is not possible to
produce a closed system that can be examined.

Therefore, returning to the system as a whole, a logical simplification was to again
adopt the procedure used by Curto et al. (1998b) and replace the two reactions catalysed
by the enzyme nucleoside-diphosphate kinase, GDPK and ADPK, with the net flux for
this reaction (termed NDPK) going in the forward, GDPK, direction resulting in synthesis
of GTP. In addition, the separate synthesis and degradation reactions for ATP (ATPSYN
and ATPDEG, respectively) were also replaced with one reaction, termed PHOSPHO,
representing the net flux for ATP production. As this reaction covers a multitude of
processes beyond the model’s remit a simple mass action representation was again chosen,

as shown below:

fphospho4D fphosph04T
Uphospho = Xphospho [ADP]fphDSphMD [ATP]fphOSPhOH = ‘XphosphoX4D X4T

Thus, the final set of new reactions that were included in the model are detailed in

Table 3.5

4



Abbreviation Reaction

ADEK AMP + ATP — 2ADP

ADOK Ado+ ATP — AMP + ADP Adenylate & adenosine
ANUC AMP + H,0 — Ado + Pi ( reactions

PHOSPHO Net flux for ATP synthesis

NDPK GDP + ATP — GTP + ADP Guanylate

GUK GMP + ATP — GDP + ADP } reactions

Table 3.5: Final set of new adenylate & adenosine and guanylate interconversion reactions.
Enzyme abbreviations and corresponding reactions are shown.

To complete the amendments outlined above, the parameters for this new system were
redefined as required. The kinetic orders for NDPK remained unchanged from those of
GDPK whilst values of 0.5 and -0.1 were chosen for the kinetic orders fphospho4D and
fphosphoaT, respectively.

Next, the flux values were redefined by utilisation of the system of simultaneous
equations described above (and in Appendix C) with the exclusion of the constraint
involving vatpsyn / Uatpdeg and the one involving vggpk / Uadpk, thus creating a system of 43
equations that was solved to provide initial flux values for the 43 reactions in this network.
Lastly, the rate constants were calculated using these flux values and Equation 2.15. The
flux values along with the rate constants for this system are detailed in Appendix C.

Again, this system of 43 ODE equations was coded into Matlab version R2015b (The
MathWorks Inc., 2015) and simulations conducted. 28 % IMPDH inhibition was simu-
lated, which again resulted in an extreme increase in ATP concentration (a percentage
change of 520 %, see Figure 3.7) and thus another re-examination of the system was

undertaken.
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Figure 3.7: ATP concentration from model version 2 with simulation of 28 % IMPDH
inhibition. The grey line shows the steady state concentration of ATP from the same model
without inhibition.

3.4 Final model - version 3

Given that ATP concentration is still increasing greatly upon simulation of IMPDH in-
hibition, the next stage of model revision firstly focussed on the reaction PHOSPHO,
specifically its kinetic orders. These had previously been defined as best approximations,
as the processes that this reaction represents are complex and beyond the scope of this
model. Therefore, in an attempt to more systematically define both of the kinetic orders
for this reaction, fphospho4D and fphosph04T, it was decided to conduct a parameter sweep

using the ranges outlined below:

0.3 < fphosphoan < 0.6 in increments of 0.05

—0.16 < fonosphoar < —0.1 in increments of — 0.01
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However, there appeared to be little difference between any of these possible combinations
of values (see Appendix D) and thus the kinetic orders were maintained as before, i.e.
fphosphoap = 0.5 and fpposphoar = -0.1. Next, an inspection of the behaviour of the
original Curto et al. (1998b) model was conducted and although ATP in this model is
pooled together with the other adenylates & adenosine in the variable Xy, the increase
seen with the new model upon IMPDH inhibition is not recapitulated with the Curto
et al. (1998b) model; which only produced a percentage change of 5.8 % in the adenylate
& adenosine pool (see Figure 3.8). Furthermore, the Curto et al. (1998b) model appears

to produce a fairly robust steady state (Curto et al., 1997).

28004

27004

2600 1

ATP Concentration (uM)

25001

0 2500 5000 7500 10000
Time (min)

Figure 3.8: Adenylate & adenosine pool concentration from Curto et al. (1998b) model with
simulation of 28 % IMPDH inhibition. The grey line shows the steady state concentration of
ATP from the same model without inhibition.
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3.4.1 Model tweaking towards the Curto et al. (1998b) model
steady state

As the Curto et al. (1998b) model appears to produce a fairly robust steady state (Curto
et al., 1997), it seemed appropriate to attempt to achieve a similar steady state with the
new model. Therefore, the initial flux values for the existing reactions were set equal to
the steady state flux values achieved by the Curto et al. (1998b) model (see Appendix
D). This left just the flux values for the new interconversion reactions to be determined.
This was achieved by solving two small systems of simultaneous equations, one for each
of the split pools, comprised of steady state equations. An equation was constructed for
each metabolite in the pool such that the net efflux of existing reactions was set equal to
the net influx of new reactions. In addition, one extra constraint from the previous set
of simultaneous equations was also needed to solve the adenylate & adenosine system.
Figures 3.9 and 3.10 show the influx and efflux from each of these pools of metabolites

and the sets of simultaneous equations are detailed in Table 3.6.

GMPS + RNAG + GPRT

GDRNR

GMP GDP

GNUC + GMPR ASUC

GTP

GRNA + ASUC

Figure 3.9: Influx and efflux from guanylate metabolites. Existing reactions from the Curto
et al. (1998b) model are indicated with black arrows, whilst the new interconversion reactions
are denoted with orange arrows.
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TRANS

ADA

Ado
APRT + ASLI +
PRPPS + GMPS
+ RNAA ADRNR

AMP ADP | ——»
AMPD
ATP

GMPS + PRPPS
+ MAT + ARNA

Figure 3.10: Influx and efflux from adenylate & adenosine metabolites. Existing reactions
from the Curto et al. (1998b) model are indicated with black arrows, whilst the new inter-
conversion reactions are denoted with orange arrows and the grey arrow represents reactions
whose value was determined from the equivalent guanylate system, see Figure 3.9.

However, whilst solving these systems of simultaneous equations for the new reaction
fluxes, it became apparent that the existing steady state flux values from the Curto et al.
(1998b) model did not in fact result in an exact steady state, i.e. the sum of fluxes into a
metabolite did not equal the sum of fluxes out of it. Although the differences were small,
probably due to rounding errors, it was decided to correct for these small inaccuracies

when calculating the new reaction flux values.

3.4.2 Flux value adjustments

To produce no change in the adenylate & adenosine pool concentration at steady state,
the flux value for the reaction ADA was tweaked slightly and similarly for the guanylate
pool the flux value for GNUC was tweaked accordingly. In addition, three further fluxes

were altered from their steady state value in the Curto et al. (1998b) paper to account
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Metabolite Existing reaction net efflux New reaction net influx

GMP Ugnuc + Ogmpr — Ugmps — Urnag — Ugprt - Uguk

GDP Ugdrnr — Vasuc Uguk — Undpk

GTP Ugrna + Oasuc OUndpk

Ado Uampd — Qaprt — Uasli — Uprpps — Ugmps — Urnaa Uadok — Yadek — Yanuc

AMP Uada — Otrans Oanuc — Yadok

ADP Oadrnr — vndpk - Z)guk Vadok + Zvadek - Uphospho

ATP Uprpps + Ogmps + Omat + Varna + Undpk + Uguk ~ Uphospho — Vadek — Vadok
Additional constraint: ;. = 150,

Table 3.6: Guanylate and adenylate & adenosine steady state simultaneous equation systems.
The additional constraint (taken from the set of equations used to yield flux values for previous
versions of the model) is required in order to solve the set of simultaneous equations for the
adenylate & adenosine system.

for this slight change in flux in the network. Therefore, v}, was amended to remove the
extra flux from the network that was produced by tweaking v44,, whilst vg,, and vy, were
adjusted to negate the effect of altering vgp,c. The original steady state and tweaked flux
values are detailed in Appendix D.

These amended flux values along with the remaining steady state flux values produced
by the Curto et al. (1998b) model were then used to solve the two systems of simultaneous
equations detailed in Table 3.6 to yield flux values for the new reactions (these are listed
in Appendix D).

In addition, as the model defined by Curto et al. (1998b) is a whole body model and
the new model will be used to represent the network in the HL60 cell line, it seemed

appropriate to scale the model accordingly.
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3.4.3 Better scaling

A literature search was undertaken to acquire enzymatic rate data for one reaction, from
HL60 cells, from which all the flux values in the network could be scaled. The reaction
PRPPS was chosen, as it is the first reaction in the network, and the data was used to scale
the whole system to values appropriate for 1x10° HL60 cells (Ahmed and Weidemann,
1994). Thus, the unit for flux values in the model is now pmol min~! (10° HL60 cells) 1.
Again, the rate constants for the whole system were recalculated using these new flux
values and Equation 2.15. The kinetic orders for this final model version are detailed in
Table 3.7, whilst the full set of flux values and rate constants for this system are listed in
Tables 3.8 and 3.9, respectively. In addition, Figure 3.11 shows the model schematic for
this final model. The system of 43 ODE equations for this model (version 3) are detailed
in Table 3.10; these were again coded into Matlab version R2015b (The MathWorks Inc.,

2015) and simulations were conducted (see Code Appendix for the Matlab code).
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fades = 0.55

fampdlS =—01
fastiz = 0.99
fdada9 =1.0
fden18 = —0.08
fdnap9 =042
fgdrnrl() =—0.39
Fompsz = 0.16
Fepriis = 042
fupriz = —0.89
fhxe1s = 1.12
finucz =038

fpolyamS =09
fprppslS =07
ftmnsS = 0.33
fra1a = 0.55

fadrnr9 =-03
faprtl =0.5
fasch =04
fdenl =20

fdgnuclO =1.0
fdnaplO =033

Fompra = —0.15
fgnuclS =—-0.34
fgualS =05

fhprt13 =048
fimpdhz =0.15

finucl8 = —0.36
Forppst = —0.03
Foyrt = 1.27
fuael6 =221

fadrnrlO = 0.87

fuprt6 =0.75
fasuclS = —0.05
fdenZ = —0.06
fanan12 = 1.0
fgdrnr9 =-12
Fompr7 = —0.76
foprn = 1.2
fhprtl =11
fuxa13 = 0.65
fimpdh7 = —0.09
fmatS = —0.6
Forppsiz = 0.65
frnanll =1.0
fxel4 =20

Reactions

present

in original

> Curto et al. (1998b)
model,

so value

unchanged

fadasa = 0.97
famdeT = —0.03
fasuc4M =-024
fden4D = —0.06
fdenSD = —0.06
Fomprant = —0.01
Fompra = 023
Fompsar = 0.12

fimpthM = —0.03
Forppsan = —0.36
Forppssp = —0.04

fadrnr4D =01
faprt4M =-08
fasucST =02
fden4T = —0.028
fdenST = —0.016
Fomprap = —0.02
Fomprsp = 0.18
fgnucSM =09
fmat4T =02
Forppsar = 0.007
frnap4T = 0.05

fampd4M =081
fastiam = —0.95
fden4M =—0.17
fdenSM =—0.14
fgdranD =04
Fomprar = —0.04
FomprsT = 0.29
fgprtSM =12
fprpps4M =-01

Forppssmt = —0.004

frnapST =0.13

Reactions

present

in original

Curto et al. (1998b)
> model,

but redefined

so specific
metabolite

is used

fadok4A =044
fadokar = 0.038
frmuc4M =137
feuksm = 0.42
fnapksm = —0.037

fphospho4T =—01

fadokam = —0.39
fadekam = 0.29
fanucl8 =—-0.21
fudprar = 0.41
fuapksp = 0.29

fadokap = —0.89
fadekaT = 0.045
Foukar = 0.091
funapkar = 0.41

fphospho4D =05

New
reactions

i

J
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Table 3.7: Kinetic order values for the final model. Values for kinetic orders for unchanged
reaction and metabolite combinations are set equal to those from the Curto et al. (1998b)
model. Kinetic order values for the existing reactions involving previously pooled metabolites
were redefined using the appropriate individual metabolite concentration.
orders for the new reactions were calculated using the kinetic data in Table 3.4, along with
the GMA equations detailed in Appendix C.

Finally, kinetic



Uada = 0.023 Vade = 0.00011 Vpdna = 0.11
Vgdrny = 0.0022  Ugppg = 0.062  vgpry = 0.011
Oarna = 21.87 Ousli — 0.0881 Ogsuc = 0.088
Udada = 0.0022 Ugen = 0.026 Vdgnuc = 0.0011
VUdnaa = 0.11 Vdnag = 0.075 Vgdna = 0.075 Reactions
Ugdrnr = 0.0011  vgpr = 0.0057  vgmps = 0.018 present
Venuc = 0.053 Veprt = 0.041 Vorna = 14.58 in original
Ugua = 0.013 Opprt = 0.041 Upxd = 0.013 Curto et al. (1998b)
Unye = 0.00054 Vimpdh = 0.018 Vinue = 0.029 model
Umat = 0.17 Upolyam = 0.011 Vprpps = 0.23
Opyr = 0.11 Urpaa = 21.87 Urnag = 14.58
Utrans = 0.15 Uyae = 0.025 Uxe = 0.00032
Uyd = 0.025
Vadek = 22.28 Vadok = 0.13 Vanue = 0.0019 New
Uguk = 14.58 Ondpk = 14.67  Uppospho = 73.94 } reactions

Table 3.8: Initial flux values for the final model. The values for existing fluxes were set
equal to the steady state flux values produced by the Curto et al. (1998b) model and then
scaled to 10° HL60 cells. The new interconversion fluxes were computed by solving the set
of steady state equations for the adenylate & adenosine and guanylate pools and then scaled
to 107 HL60 cells. All values are in pmol min~—! (10° HL60 cells)~!.
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Kgq, = 0.045 a4, = 0.00011 Xgdna = 0.036
Xadrnr = 0.00080 Kampd = 0.0022 Waprt = 0.34
Karna = 7.14 n,s1; = 66.55 Ngsue = 0.023
Xgada = 0.00037 Xg0n = 0.024 Kdenuc = 0.00037
Xdnaq = 0.000021  agpee = 0.000015 Xodng = 0.025
Qogrmr = 0.0026  Ggmpr = 0.0088  &gmps = 0.0042
Xgnue = 0.034 agprt = 0.15 Xgrna = 4.76 >
Kgua = 0.0057 Kpprt = 0.14 apg = 0.0029
Kpye = 0.000041 (Ximpdh = 0.013 Kinuc — 0.0099
ot = 0084 &poryam = 0.0032  @prpps = 0.0039
Kpyr = 0.0141 Xynaa = 0.00076 Krnag = 0.00051
Ktrans = 0.097  ayg. = 0.00000097  aye = 0.000013
ag = 0.011 )
Kadek = 3.49 a0k = 218.61 X anue = 0.0000062 }
gk = 1.91 Xppk = 0.21 Xphospho = 7-87

Reactions

present

in original

Curto et al. (1998b)
model

New
reactions

Table 3.9: Rate constants for the final model. Values were calculated using Equation 2.15,
kinetic orders and flux values from Tables 3.7 and 3.8, respectively, and initial metabolite

concentrations as detailed in Table 2.1.
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Figure 3.11: Network schematic of the final model. Dependent variables (metabolites)
are shown in boxes whilst independent variables (R5P and Pi) are denoted by circles. Solid
black arrows represent reactions, whilst dashed blue arrows indicate activatory regulations and
dotted red arrows denote inhibitory modifications.
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Metabolite ODE equation

Y o fprppsl fprpps4M fprpps4D fprpps4T fprppsSM fprppsSD fprppsl7 fprppslS
PRPP Xi = aprpps Xy Xy Xyp Xgr Xem Xsp Xi7 Xig

fa rtl fa t4M fa rt6
—aaprt Xy Xy Xg"

fdenl fdenZ fden4M fden4D fden4T fdenSM fdenSD fdenST ,fden18
—aen X7 XM X Xap T Xar Xem Xsp Xsr X8
fgprtl fgprtSM fgprtlS
—agprt Xy Xgar - X5

fhprtl thprtZ thprt13

—Appre X 2 13
foyr
—apyr Xy
IMP XZ — aampdxicz]z\rszM Xécz’}mdeT X{gmpdlS

fdenl fdenZ fden4M fden4D fden4T fdenSM fdenSD fdenST fﬂlenlS
+agen Xl XZ X4M X4D X4T XSM X8D XST X18

fgmprZ fgmpr4M fgmpr4D fgmpr4T fgmpﬁ fgmprSM fgmprSD fgmprST
Tagmpr Xy Xy Xyp Xar X7 Xgm Xgp Xt

fhprtl fhprtz fhprtlS
Fappn Xy X X

fasch fasuc4M fasucBT fasuclS
—Aasuc X" Xy Xgr Xg

fimpdn2 ~ fimpdn7 < fimpdnsm
XGimpiiz xSimpdi7

—Aimpdh SM

finuc2 ~7 finucis
_ainuCXZTnuC Xllgnuc

SAM X5 - amatxi(r;"m”xgmm - aPolyumXé[pOlW% - ﬂtmnngtrWSS
Ade X6 - aPOZWngpOlwms - aadeXérm6 - auprtx{apm XZI\FZMMX?W%
dA POO| Xg = aadmrxiczlzz)irnMD Xgadrn@ X{aodrnrlo + adnaaX{gmnu
g, ngnaw X{gmzplo g X 5"“ o
dG pool X = a dnag X{ dnant2 g Bdrar Xé( ngVnVSD Xg g9 7 {gd,mm
_adgnch{ggnucm — ﬂgdnaxgmpg X{gmplo

continued on the next page
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Metabolite ODE equation

RNA Xq1
DNA X1p
HX pool X13
Xa X14

Guo pool X5

UA X16

Ado X4A
AMP Xap
ADP Xup

fmup4T frnupST
Aarna Xyt XgT

frnap4T frnapST
+ agrmaXyr " Xgr

_arnaaxfiinanll _ arnagxlinanll

fdnup9 fdmzplO fdnap9 fdnaplO
aadnaxg Xlo + agdﬂaX9 XlO
fanan12 fanan12
_adnauxlzmm - adnugxlzmm

A X{ hprtl Xg hprt2 X{ gprﬂS — X{ gxelﬁ» — 4y X {gxdw
agqu{éuﬂS I ahde{gde o axeX{ZeM . ade{ZdM
Adgnuc X{ ‘égnuclO + Bgnue Xé‘ é]g\r/tIuCSM X {gnmg

aXdX{ZdM - auaex{guﬂé

atransXé(tmnSS + aanuCXiCiXZ”MM X{g””ds

—Apdq Xﬁﬁlﬂ% — Aok X£ :zglok4A XfI »]z\%mM X;{ u[n;okélD ij; %ggku

faprit < faprtam < faprie li li
ﬂaprtxlapr Xﬁ&r X6aw +aasliX§asz3X£§\s/It4M

fgmps4T fgmps7
FTagmps Xy X7

fprppsl fprpps4M fprpps4D fprpps4T fprppsSM fprppsSD fprppsl7 fprppslS
+aP7’PP5 Xl X4M X4D X4T XSM XSD X17 X18
+a X rnanll +a Xfadok4A Xfadok4M Xfudok4D Xfud0k4T
rmaa:11 adok 4 A 4M 4D 4T
fampd4M fampdST fampdlS f dek4 M f dekdT
“ampaXyy Xgr Xig — BadekXghy o XyT
_aanuCX4[]chuC4M X{usnudS
fguk4T fgukSM fndpk4T fndkaM fndkaD
AueXyr Xy + AnapkXyr Xgm Xgp
ok XZ wokiA Xi wdokiM Xf; adokiD Xi’ L VI Xz]; ek Xf; adekdT

f hospho4D f hospho4T
pnosp X pnosp

fadrnr4D fudrnr9 fudrnrlO
Xip X" X0 — Aphospho Xy AT

—Apdrnr

continued on the next page
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Metabolite ODE equation

Y _ fphospho4D fphospho4T frnap4T frnapST
ATP Xyr = aphosphoX4D Xy — Agrna Xy = X3
_ agmps Xi%mPS4T X;XWP57 _ amatXi[n]{aMT XgmutS

—Aprpps

fguk4T fgukSM fndpk4T fndkaM fndkaD
—aqukXyr  Xgpm — OnapkXyr Xgm Xgp
e Xi igok4A XZ; L]l\LjIOk4M Xi‘ %okélD Xi‘ %gokn A X{ ?\%MM Xi‘ %geku

: FompsaT <, fomps7 Foprtt < fopri8M ~foprtis
P = XX 4 e XXX g X

fprppsl fprpps4M fprpps4D fprpps4T fprpps8M fprppsSD fprppsl7 fprppslS
Xl X4M X4D X4T XSM XSD X17 X18

fgmpr2 fgmpr4M fgmpr4D fgmpr4T fgmpﬁ fgmprSM fgmprSD fgmprST
—agmpr Xy Xy Xap Xy X7 Xy Xsp o Xar

e Xé( g]z\r/tIuCSM X{ inuclS — g ijli %‘ukﬂ X é’%kgM
GDP Xsp = Aasuc Xg asuc2 Xf; »}\s/}tc4M X{; %EuCST X{pésuclg + agu Xi; gTuk4T x gﬂkw
~Agirnr Xg %lmrSD Xg gdrnr X{ %drnr1o — By Xi r]lfipk4T Xé’ ;;\jpksM X ggjpkgp
cTP KT = g X T XM a0 g xS xefoemeant x frast xefrovars
—grma Xf; rapdT Xg roapsT

Table 3.10: ODE equations for the final model. The ODE equation for each metabolite is
defined as the sum of all the reactions that produce it minus all the reactions that degrade it,
where fluxes are defined in GMA form. Variables consisting of pooled metabolites are defined
as follows: dA pool represents dAdo, dAMP, dADP and dATP; dG pool refers to dGMP,
dGDP and dGTP; HX pool encompasses HX, Ino and dIno; Guo pool equates to Gua, Guo
and dGuo.

3.5 Examination of the model

To asses the validity and accuracy of the final model, steady state analysis and sensitivity
analysis were performed along with the re-creation of some of the model tests conducted
by Curto et al. (1997). The steady state analysis was conducted in COPASI (Hoops
et al., 2006) and showed that the model is asymptotically stable, as all real parts of the
systems’ eigenvalues are negative (see Appendix E). The asymptotic stability of the final

model (version 3) matches that seen with the original Curto et al. (1997, 1998b) model
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(see Appendix E). Therefore similar to the Curto et al. (1997, 1998b) model, this new
model is locally stable meaning it will return to its steady state after small perturbations

in the system.

3.5.1 Sensitivity analysis

Sensitivity analysis investigates how sensitive the model is to its parameters and inde-
pendent variables. If the sensitivity of the model is being computed with respect to the
system’s parameters, then the values computed are called (parameter) sensitivities, whilst
the values calculated for the system with respect to its independent variables are referred
to as logarithmic gains. Sensitivity analysis can be performed by simulating a 1 % change
in each parameter (or independent variable) in turn and comparing the steady state value
of each metabolite and flux to their steady state value in the unperturbed system (Sor-
ribas and Savageau, 1989c). The sensitivity (or logarithmic gain) values produced can be
interpreted in the following way: a value of 0.5 for metabolite or flux Y with respect to
parameter (or independent variable) z, means that if z is altered by 1 % then this would
result in a 0.5 % change in the value of Y. Usually the lower the absolute value of the
sensitivities and logarithmic gains the more robust the model.

From the above description of sensitivity analysis it would appear to be a purely math-
ematical concept, however it does have a meaningful biological interpretation. Namely,
parameter sensitivities represent response to an inherent change within the organism
being modelled, e.g. a genetic mutation, and show how the organism responds to this
permanent system change (Voit, 2000). In contrast, logarithmic gains can be considered
to model a change in environmental conditions and show how the system responds to
the altered stimuli, resources, etc. that are present within this new environment (Voit,
2000). Thus, sensitivity analysis provides useful insights into the model being studied as
well as being a useful tool to measure system robustness.

To compare the new model’s sensitivities to those of the Curto et al. (1997, 1998b)

model, parameter sensitivities were calculated for all the model’s kinetic orders; these are
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shown in Appendix E. Most of these sensitivities were evaluated using COPASI (Hoops
et al., 2006), except for kinetic orders that are common to multiple reactions (e.g. fmap4T
for reactions ARNA and GRNA) for which sensitivities were computed using Matlab, as
COPASI is unable to correctly deal with such parameter sensitivities. These results reveal
that 99 % of the 6016 sensitivities have an absolute value of less than five, with 89 %
being less than one. Of the remaining values, only 14 sensitivities have an absolute value
greater than 10 (see Figure 3.12). Of these, some are related to marginal metabolites such
as the HX pool which Curto et al. (1998b) considered to be inconsequential. In addition,
Curto et al. (1997) note that higher sensitivities associated with the reaction PRPPS are
to be expected as this is a crucial reaction within purine metabolism. Overall, the fact
that the vast majority of the model’s sensitivities are less than one indicates that the
steady state is robust.

In addition to sensitivities, logarithmic gains for the independent metabolites were
also computed using COPASI (Hoops et al., 2006); these are shown in Appendix E. All
of the 128 logarithmic gains have an absolute value of less than 2.5, with 89 % being less
than one, again indicating that the model is robust.

As the results from the steady state analysis and sensitivity analysis are very similar
to those seen with the Curto et al. (1997, 1998b) model this indicates that, like the Curto
et al. (1998b) model, this new model has a robust steady state but is still able to respond

to physiological perturbations (Curto et al., 1997, 1998b).
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Figure 3.12: Parameter sensitivities with values greater than 10. Sensitivities were calculated
for all fluxes and metabolites with respect to all kinetic order parameters. Values greater than
10 are shown for fluxes (squares) and metabolites (circles).

3.5.2 Model simulation tests

As well as comparing the final model (version 3) to the Curto et al. (1998b) model in
terms of their steady states and sensitivities, some of the model tests conducted by Curto
et al. (1997, 1998b) were also performed on this new model, using the same methods of

simulation as Curto et al. (1997, 1998b). Firstly, the ability of the model to maintain
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consistent levels of the adenylate & adenosine pool and the guanylate pool was assessed.
As noted by Curto et al. (1997), the concentrations of these pools remain relatively
constant over different conditions and thus this was tested by separately altering the
initial concentration of each dependent variable (£100 pM) and recording the largest
deviation produced in each of the pools before the system returned to its steady state.
These simulations were performed using the new final model with the concentration of
the previously pooled metabolites added together (see Table 3.11) to enable comparison

with the Curto et al. (1997) model output.
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Variable Metabolite Normal conc. (pM)

Adjusted conc. (uM)

A pool conc. (pM)

G pool conc. (pM)

Without alteration to any variable Initial Steady state Initial Steady state
2500.5 2780.7371 400.0 386.0210
With alteration to described variable Minimum  Maximum  Minimum  Maximum
Xi PRPP 5 105 2500.5 2780.7386 386.1694 400.0
X5 IMP 100 1 2475.4074 2780.7384 385.3423 400.3190
X5 IMP 100 200 2500.5 2780.7370 386.5106 400.0
X3 S-AMP 0.2 100.2 2500.5 2780.7368 386.3928 400.0
X5 SAM 4 104 2500.5 2780.7364 386.3028 400.0
Xs Ade 1 101 2500.5 2780.7368 385.8138 400.0
Xy XMP 25 125 2398.1829 2780.7386 387.0713 430.4710
Xo dA pool 6 106 2500.5 2780.7380 386.1965 400.0
X190 dG pool 3 103 2415.9524 2780.7427 387.6541 411.6959
X11 RNA 28600 28500 2500.5 2780.7372 384.0632 400.0
X11 RNA 28600 28700 2500.5 2780.7370 387.2792 404.9020
X12 DNA 5160 5060 2500.5 2780.7450 384.8607 400.0
X12 DNA 5160 5260 2500.5 2780.7375 387.1420 400.0
X13 HX pool 10 110 2500.5 2780.7372 385.9720 400.0
X14 Xa 5 105 2500.5 2780.7374 386.0082 400.0
Xi5 Guo pool 5 105 2447.6989 2780.7389 386.7472 415.2938
Xi6 UA 100 1 2500.5 2780.7369 385.9571 400.0
X1 UA 100 200 2500.5 2780.7364 385.9860 400.0

Table 3.11: Consistency of previously pooled metabolite concentrations. Simulations were performed using the final model. Initial
concentrations of the dependent variables were increased or decreased (where appropriate) by 100 uM. The concentrations of the previously
pooled adenylate & adenosine and guanylate metabolites were summed and the largest deviation produced in these concentrations before
the system returned to its steady state was recorded. dA pool represents the pooled metabolites dAdo, dAMP, dADP and dATP, whilst
dG pool indicates the grouping: dGMP, dGDP and dGTP. HX pool equates to the collective species HX, Ino and dIno, whilst Guo pool
refers to the group consisting of Gua, Guo and dGuo.



Comparing these results to those produced by the Curto et al. (1997) model (see
Appendix E) shows that the new model is able to maintain relatively consistent levels of
the adenylate & adenosine and guanylate pools and, similar to the Curto et al. (1997)
model, the largest deviations from the steady state values are produced when the level
of XMP, the dG pool or the Guo pool is altered.

Next, PRPPS superactivity was simulated by doubling the value of the rate constant
for the reaction PRPPS and lastly, HGPRT deficiency was modelled by reducing the
rate of this reaction to 1 % of its original level; this was achieved by reducing the rate
constants for both of the reactions HPRT and GPRT, which are both catalysed by the
enzyme HGPRT, to 1 % of their original values.

The results from both of these analyses show that the new model performs in a
similar way to the Curto et al. (1997, 1998b) model, both in terms of the percentage
change in metabolites and fluxes monitored and in the closeness of these simulated results
to available data from patients with diseases that cause these metabolic changes. The
results from both test simulations from the new model are shown in Table 3.12; along
with both clinical data and model results from Curto et al. (1997, 1998b).

Collectively, these three tests show that the new model (version 3) is able to match
the performance of the Curto et al. (1998b) model in its ability to re-create experimental
and clinical data, and together with the steady state and sensitivity analyses highlight
that the new model is robust and should hopefully provide a useful tool to model purine

metabolism in HL60 cells.
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Metabolite Curto Curto PRPPS % Clinic data Model 3 Model 3 PRPPS % Clinic data

or flux at op superactivity change from Curto at op superactivity change scaled
X1 5 7.8 156 13-29 5 7.8 157 13-29
X13 10 41 410 30 10 445 445 30
X14 5 15 300 10 5 14.7 295 10
X16 100 131 131 300 100 130.9 131 300
Vden 2.39 4.7 197 4.7-12.4 0.026 0.052 196 0.052-0.14
Metabolite Curto Curto 1 % % Clinic data Model 3 Model 31 % % Clinic data
or flux at op HGPRT change from Curto at op HGPRT change scaled
X3 10 70.6 706 71 10 89.3 893 71
X14 5 225 450 15 5 26.7 534 15
X16 100 145.7 146 150 100 151.7 152 150
Vden 2.39 6.3 264 40 0.027 0.080 302 0.4406
Vhxe 0.05 0.4 880 0.45 0.00054 0.0063 1162 0.0050
(P 2.30 5.3 230 7-14 0.025 0.064 251 0.077-0.15
Vxe 0.03 0.6 2000 0.27 0.00032 0.0091 2853 0.0030

Table 3.12: PRPPS superactivity and HGPRT deficiency simulation results. PRPPS superactivity (top panel) was simulated by doubling
the rate constant for the reaction PRPPS, whilst HGPRT deficiency (bottom panel) was simulated by reducing the rate constants for the
reactions HPRT and GPRT; concentrations and fluxes shown are for metabolites and reactions that are affected by PRPPS (top panel)
and HGPRT (bottom panel) activity and for which there is clinical data available. Simulation results are shown for both the new model
(version 3) and the Curto et al. (1997, 1998b) model. Clinical data is taken from Curto et al. (1997, 1998b), where appropriate references
can be found. op is the operating point. All clinical data for metabolites has units pM, whilst flux data from Curto et al. (1997, 1998b)
has units: pmol min~—! (Body weight 1) and scaled flux data has units: pmol min—! (10° HL60 cells)~!.



3.6 Issues with the model

Simulations of 28 % IMPDH inhibition were conducted with this final model (version
3), which again resulted in a large increase in the concentration of ATP; a percentage
change of 528 % (see Figure 3.13). Therefore, a search of the literature was undertaken to
find purine data for IMPDH inhibited cells. This yielded concentration data for certain
metabolites in HL60 cells after treatment with MPA. In addition, fluxes for some reactions
in the network were also obtained from MPA treated HL60 cells; this along with the

aforementioned metabolite data are detailed in Table 3.13.

10000 1

ATP Concentration (uM)

5000 1

0.0e+00 2.56+06 5.06+06 7.56+06 1.0e+07
Time (min)

Figure 3.13: ATP concentration from the final model with simulation of 28 % IMPDH
inhibition. The grey line shows the steady state concentration of ATP from the same model
without inhibition.
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Metabolite change (% of control) Experimental details

PRPP IMP ADP  ATP GTP Conc. (M) Time (h) Source
150 103 5 72 Ahmed and Weidemann (1995)
58 71 23 1 72 Lucas et al. (1983a)
~ 70 ~ 25 3 48 Collart and Huberman (1990)
~ 85 ~ 15 10 24 Sokoloski et al. (1986)
20-24 1-10 24 Inai et al. (2000)
No change 23 2 96 Inai et al. (2000)
Flux change (% of control) Experimental details
IMPDH PRPPS DEN ASUC GMPS HGPRT APRT Conc. (pM) Time (h) Source
72 91 28 82 71 302 100 5 72 Ahmed and Weidemann (1995)

Table 3.13: Literature data for MPA treated HL60 cells. Values shown are percentage of control (untreated cells). Time is period of
exposure to the IMPDH inhibitor MPA.



With this newly acquired data, it was decided to perform a search of the model param-
eter space in an attempt to find parameters which could better re-create this experimental

data.

3.6.1 Grid search parameter simulations

Due to the large number of parameters that are present in the model, it was decided
to target specific reactions in the network in the parameter grid search. Firstly, the
reactions involved in degrading ATP and IMP were chosen as it was noted that upon
simulation of IMPDH inhibition the level of HX was not increasing as much as expected;
intuitively, a build up of IMP should have led to an increased rate of degradation of IMP
to HX. In addition, the enzymatic data in Table 3.13 suggested that IMPDH inhibitors
affect other enzymes in the network, albeit perhaps only as a knock-on effect via gene
regulation. Therefore, two simulations were conducted; one whereby the ATP and IMP
degradation enzymes along with a few others related to the other adenylate & adenosine
and guanylate species were altered, and the second where reactions with kinetic data
upon IMPDH inhibition (see Table 3.13) were adjusted.

For each enzyme that was perturbed, a factor, p, was multiplied by the rate constant
value for that reaction, where p took the following values: 1/3, 0.5, 0.8, 1.5, 2, 3. For the
analysis without literature data, a level of IMPDH inhibition of 28 % was used; whilst
for the analysis of enzymes with data, the rate constant for the reaction IMPDH was also
multiplied by the factor p. Some of the selected reactions are catalysed by an enzyme
that also catalyses other reactions in the network, thus the corresponding rate constants
for all these enzymes are altered by the same multiplication factor. The list of reactions
in each set of simulations is outlined below; reactions that are catalysed by the same

enzyme are grouped together:

1. ADA/DADA, GMPR, INUC/ANUC/GNUC, ADRNR/GDRNR, MAT, TRANS,
AMPD, ASLI

2. IMPDH, PRPPS, DEN, ASUC, GMPS, HPRT/GPRT, APRT
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The new steady state concentration values from these simulations were compared to
those from the literature and suitable parameter sets were defined as those that pro-
duced metabolic concentrations that lay within reasonable ranges that encompassed the

literature values, as outlined in Table 3.14.

Metabolite % change from data Acceptable % range

PRPP 150 140-160
IMP 103 90-110
ADP 58 45-65
ATP 82 65-85
GTP 22 18-27

Table 3.14: Metabolite concentration ranges for parameter grid search. Values shown are
percentage of control (untreated cells) and are the average value for each metabolite from
the available literature data, see Table 3.13. Also detailed are parameter ranges for use in
determining acceptable parameter sets.

The results from the first set of simulations showed that it is possible to reduce the
level of ATP upon IMPDH inhibition and still match with most of the other data. There
were 54 sets of these parameters that were able to match with four of the five concentration
ranges (IMP, ADP, ATP and GTP), these are detailed in Appendix F.

The results from the second set of simulations showed that no sets of parameters were
able to match to the metabolite data ranges when any level of IMPDH inhibition was
present.

As the results from both of these simulations show, it was not possible to find pa-
rameter values that were able to match to the concentration range set for PRPP. Indeed,
this metabolite is a special case as it is the first dependent metabolite in the system as
it is synthesised from the independent species R5P. Therefore, it was suggested that the
level of R5P be raised as this should only serve to increase the level of PRPP and not
affect the model in any other way, as R5P is an independent metabolite and thus does
not have any regulatory control within the model. It was therefore decided to expand

the scope of these grid search analyses by combining both of the above simulations and
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to also include the level of R5P within the parameter search.

3.6.2 Combined large-scale parameter simulations

As in the previous simulations, p was used as a multiplication factor for the reaction rate
constants, but this time the actual values of p were determined by sampling from one
of two uniform distributions; the first covering the range 1/3-1 and the second spanning
the range 1-3; such that each distribution was sampled an equal number of times. In
addition, the concentration of R5P was altered by a multiplication factor whose values
were selected by sampling from a uniform distribution in the range 1.2-2.

Two different simulations were conducted using this method, each with 1,000,000
simulations. The first had a fixed level of 28 % IMPDH inhibition, whilst the second
allowed IMPDH inhibition to vary between 0-70 %, i.e. the range of the multiplication
factor for the IMPDH rate constant was 0.3—1, with values again being determined by
sampling from a uniform distribution over this range.

The results from these simulations showed that it was possible to produce metabolite
concentrations that satisfied the predefined ranges for all five metabolites (as outlined in
Table 3.14), however the number of parameter sets which achieved this was very small.
Only four sets of parameters from the first simulation were able to produce concentration
matches, whilst only two parameter sets matched from the second set of simulations; all
six parameter sets are detailed in Appendix F.

Therefore, using the first type of simulation (i.e. with the level of IMPDH inhibition
set to 28 %), a larger parameter search with 4,000,000 simulations was undertaken. This
resulted in more parameter sets which could achieve concentrations within the predefined
ranges for all five metabolites; there were 22 sets in total and these are outlined in Ap-
pendix F. Closer examination of these 22 parameter sets revealed a number of consistent

patterns for certain reactions, these are shown in Figure 3.14 and detailed below:
« INUC/ANUC/GNUC rates are always increased

o DEN rate is always decreased
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o GMPS rate is always decreased

« HPRT/GPRT rates are always decreased

GPRT

HPRT

lPHospHo

’ADRNR

Figure 3.14: Model network with parameter search results. Dependent variables are shown
in boxes whilst independent variables are denoted by circles. Arrows represent reactions; with
cyan arrows indicating reaction rates that are always decreased in the parameter search results,
whilst orange arrows indicate reaction rates that are always increased in those simulations.
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Activatory and inhibitory modifications are omitted for simplicity.

The consistent decrease in the de novo pathway (DEN) is expected due to product

inhibition by IMP, which accumulates in the presence of IMPDH inhibitors. Similarly,
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the flux through GMPS would be lowered due to a lack of XMP. In contrast, the other
patterns involve enzymes that catalyse multiple reactions within the network; some with
GMP and others with IMP, as a product or substrate. As such the behaviour seen is
more complicated to decipher, as one would anticipate the system to enhance mechanisms
that degrade IMP, whilst decreasing those that synthesise it, whereas the opposite would
be expected for GMP. Therefore, the decrease seen in the salvage pathways (HPRT /G-
PRT) is probably due to decreased HX salvage via HPRT, which obscures the anticipated
increase in guanine salvage (GPRT). Similarly, the increase in 5’-nucleotidease activity
(INUC/ANUC/GNUCQ) is likely to represent an increased flux through INUC, and per-
haps ANUC, which is masking the expected decrease in GMP hydrolysis (GNUC). In
light of these results, in future analyses of this type, it would seem prudent to uncouple
INUC, ANUC and GNUC as well as HPRT and GPRT, given that the substrate/product
concentrations for their individual reactions vary greatly upon IMPDH inhibition and
thus their reaction rates are unlikely to respond in a similar manner.

Nevertheless, these results show that it is possible for the model to match the exper-
imental observations; however, the sparsity of data available limits the ability to deter-
mine whether the model is fully recapitulating the effect of IMPDH inhibitors on purine
metabolism. Therefore, experimentation was conducted to broaden the scope of metabo-
lite data available for HL60 cells to facilitate further testing of the model to improve its

accuracy.
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Chapter 4: Experimental Methods and

Results

4.1 Materials and methods

4.1.1 Purine standards

All HPLC purine standards (all from Sigma, except XMP which was from Santa Cruz)
were made as 100 mM stock solutions in 100 mM Tris pH 8.7, except adenosine and guano-
sine which were dissolved in DMSO and hypoxanthine which was dissolved in DMSO to
produce a 50 mM stock solution. All standards were stored in aliquots at -20 °C until
needed. All purine standards for HPLC were used at a final concentration of 1 mM unless
otherwise stated.

Guanosine and adenosine for use in differentiation experiments were both dissolved
in cell culture media immediately before use at a concentration of 100 pM and used at a
final concentration of 50 pM.

The adenylate kinase inhibitor P!, P5-diadenosine pentaphosphate, Ap5A (Sigma),
was prepared as a stock solution of 10 mM by dissolving in 100 mM Tris pH 8.7 and
stored at -20 °C until needed.

Ribose 5-phosphate, R5P (Sigma), was prepared as a 10 mM stock solution by dis-

solving in 100 mM Tris pH 8.7 and was stored at -20 °C until needed.

4.1.2 Differentiating agents

All-trans Retinoic acid, ATRA (Sigma), was prepared as a 100 mM stock solution in
absolute ethanol. Mycophenolic Acid, MPA (Sigma), was prepared as a 20 mM stock
solution by dissolving in absolute ethanol. Mizoribine, MZ (MedChemExpress), was

prepared as a 25 mM stock solution in PBS. All were stored at -80 °C until needed with
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ATRA stored in the dark and handled with minimal exposure to light.

4.1.3 HPLC procedure

HPLC experiments were conducted using two different systems: a Waters system and an
Agilent machine. The Waters system comprised a 1525 dual pump, a 717+ Autosampler
and a 2487 dual wavelength UV /Visible light detector. Breeze software (version 3.3) was
used to control the system and collect and process the data. The Agilent machine was
an Agilent Infinity IT 1260 machine with Agilent ChemStation software, used to operate
the machine and analyse the data.

Purines were separated using ion-pair RP-HPLC with a gradient elution method. A
Supelcosil LC-18-T column of 5 pm particle size was used together with the ion-pair
reagent Tetrabutylammonium hydrogen sulphate, TBAHS (Fisher Chemical, Laboratory
reagent grade). Various gradient elution methods were tried, with the following producing

acceptable resolution and reproducibility:

Protocol 1 Protocol 2 Protocol 3
Time (min) %A Time (min) %A Time (min) %A
0.0 100 0 100 0 100
2.5 100 3.0 100 9.0 80
10.0 80 17.0 80 10.0 60
21.0 60 41.0 60 30.0 0
27.0 0 48.5 0 35.0 0
32.0 0 55.0 0 40.0 95
32.1 100 55.1 100 80.0 95
37.0 100 60.0 100 85 100
Flow rate: 1.5 ml/min Flow rate: 1.25 ml/min Flow rate: 1.0 ml/min
Temperature: Not set Temperature: 19 °C Temperature: 35 °C

Table 4.1: HPLC gradient methods and specifications. Described are the alternative gradient
methods utilised, along with details of the flow rate and temperature settings used.

HPLC buffers were made fresh before use, from stock solutions of 100 mM TBAHS,
1 M KHPOy4 (Sigma, >98 %) and Methanol (LiChrosolv, hypergrade for LC-MS) with
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pH adjusted with concentrated HCI, as below:

Buffer A: 100 mM KHsPO4 + 4 mM TBAHS, pH 4

Buffer B: 70 mM KH5PO,4 + 4 mM TBAHS + 30 % Methanol, pH 5.5

All samples and standards were filtered before analysis using a 0.2 pm HPLC syringe
filter (Whatman) and buffers were filtered and de-gassed using a vacuum filtration pump
before use.

For some analyses the temperature of the column was fixed and maintained through-
out, either by immersing the column in a temperature controlled water bath or an oven,
see Table 4.1 for details of temperatures used.

Purines were detected by measuring absorbance at 254 nm. Integration of the area
under the peak corresponding to each metabolite was computed using either the Breeze

or Agilent ChemStation software to yield the absorbance for each purine.

4.1.4 Calibration curves

HPLC calibration was conducted using serial dilutions for each standard such that a range
of concentrations was produced for each metabolite. These spanned a central value that
estimated the concentration of each purine present in an HL60 cell extract, as determined
by HPLC analysis. The range spanned a logjg fold change above and below this central
value, in half-log;g increments, thus creating a series of five concentrations from which
the calibration curves were constructed. Some metabolites were not detected, or were
present at very low levels, in the HL60 cell extract thus their central value was estimated
based on other metabolite levels. However, when all 11 sets of standards were initially
analysed via HPLC all of the lowest concentrations were undetectable, therefore this
calibration standard was dropped from each set and replaced by an additional higher
concentration. See Appendix G for details of the ranges used for each calibration curve
and the concentration of each species in untreated HL60 cells as determined by HPLC.
Calibration curves were plotted and the line of best fit was determined for each metabolite

using the programming language R, version 4.0.3 (R Development Core Team, 2021). See
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Appendix G for the full set of eleven purine calibration curves and calibration equations.

4.1.5 Cell culture

HLG0 cells, obtained from Public Health England (catalogue number: ECACC 98070106),
were maintained in RPMI 1640 plus GlutaMAX™ (Gibco, Life Technologies) supple-
mented with 10 % (v/v) Foetal Bovine Serum, FBS (Gibco, Life Technologies), plus
100 units/ml Penicillin and 100 pg/ml Streptomycin (Sigma), at 37 °C in a 5 % v/v COq
atmosphere. 50 ml cultures in T75 plastic cell culture flasks (Thermo Fisher Scientific)

were maintained at a density between 2x10° and 1x10% with passaging every 42 h to

72 h.

4.1.6 Phosphoribosylpyrophosphate synthetase (PRPPS) assay

HL60 cells were centrifuged at 200 x g for 5 min at 4 °C and the supernatant aspirated.
The pellet was resuspended in PBS and washed twice by centrifugation. The resulting
pellet was resuspended in 1 ml of 1 mM EDTA, 1 mM DTT in PBS (Buffer A) and
placed on ice. A small volume was removed for cell counting. The sample was sonicated
on ice using a probe sonicator on 50 % duty cycle, power setting 4 for 10 s. The sample
was mixed gently and the process repeated twice. The cell lysate was then centrifuged
in a TLA-45 rotor to remove debris at 40,000 x g for 40 min at 4 °C. The supernatant
was passed through a NAP™-10 column (previously equilibrated with Buffer A) and the
protein was eluted with 1.5 ml Buffer A. The protein concentration in the eluate was
estimated by measuring optical absorbance at 280 nm using a NanoDrop™ instrument
(Thermo Fisher Scientific). Protein extracts were incubated at 37 °C, for varying time
periods, with an equal volume of reaction mixture: 50 mM Tris pH 7.4, 5 mM MgCl,
1 mM EDTA, 1 mM DTT, 32 mM NaHsPOy, 0.5 mM MgATP, 0.15 mM R5P, 0.25 mM
Ap5A. After the required time period, the reaction was stopped by adding an excess of
EDTA and the sample was placed on ice. Control samples already containing an excess
of EDTA prior to the addition of the protein extract, were placed straight on ice without

incubation. The resulting solutions were transferred to YM-10 Centricon® centrifugal
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filter devices (Millipore) and centrifuged in a J2-20 rotor at 9770 x g for >12 h at 4 °C to
remove protein and other large molecules. The recovered filtrates were stored at -80 °C

until analysis via HPLC. The area under the curve corresponding to AMP on each chro-
matogram was determined and was converted to a concentration using the HPLC cali-
bration curve and equation for AMP (see Appendix G, for the calibration curve plot and

equation).

4.1.7 Flow cytometry analysis of HL60 cell differentiation

Six or 12 well plates were seeded with 2x10° HL60 cells/ml (final volume: 3 ml or 1 ml,
respectively) in the presence or absence of differentiating agents and/or guanosine or
adenosine, as a negative control. In most cases cells were maintained for three days
before analysis by flow cytometry, however initial experiments were conducted on each of
one to seven days after set-up. The final concentration of agents added were as follows:
ATRA 1 pM; MPA 1 pM (2 pM also tried initially); MZ 50 pM (100 pM also tried
initially); guanosine 50 pM; adenosine 50 pM. Cells were collected and centrifuged at
200 x g for 5 min at 4 °C. The pellet was resuspended in PBS and the cells were
washed once. The supernatant was aspirated and the pellet resuspended in a 2 % anti-
CD11b antibody (Bio-Rad, Rat anti-Mouse CD11b:Alexa Fluor® 488, Clone number:
M1/70.15, Catalogue number: MCAT4GA488, also cross-reactive with Human CD11b),
5 % FBS solution in PBS. The sample was left on ice for 30 min in the dark, after which
time it was washed with PBS. The pellet was resuspended in PBS and the sample was
analysed by flow cytometry on an Attune™ NxT Acoustic Focusing Cytometer (Thermo
Fisher Scientific). Alexa Fluor® 488 was excited by the blue laser and detected using
a 530/30 nm bandpass filter. An unstained sample of control (untreated) HL60 cells
that were not incubated with the anti-CD11b antibody was used to set the gate. The
programming language R, version 4.0.3 (R Development Core Team, 2021), along with

the package CytoExploreR (Hammill, 2021) were used to analyse the data.
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4.1.7.1 Effects of combining ATRA and IMPDH inhibitors

The above experimental procedure for analysing HL60 cell differentiation was followed
except that cells were maintained in media containing various combinations of the dif-
ferentiating drugs for four days (three days in initial experiments). In addition, varying
concentrations of the drugs were used: MPA at 0.1 pM, MZ at 5 pM and ATRA ranging

from 1 nM to 1 pM.

4.1.8 HLG60 cell reactive oxygen species detection experiments

Twelve well plates were seeded with 2x10° HL60 cells/ml (final volume 1 ml) in the
presence or absence of differentiating agents and were maintained for three days. Cells
were then stimulated with 200 nM phorbol 12-myristate 13-acetate (PMA) for 30 min at
37°Cinab % v/v COg atmosphere to induce reactive oxygen species (ROS) production.
The reagent from the Deep Red Cellular ROS Assay Kit (abcam: ab186029) was added
to the cells as per the manufacturer’s instructions and incubated for 45 min at 37 °C in
a b % v/v COg atmosphere. Cells were then harvested and centrifuged at 200 x g for
5 min at 4 °C. The pellet was resuspended in PBS and the cells were washed once. The
supernatant was aspirated and the pellet resuspended in a 2 % anti-CD11b antibody (Bio-
Rad, Rat anti-Mouse CD11b:Alexa Fluor® 488, Clone number: M1/70.15, Catalogue
number: MCAT4GA488, also cross-reactive with Human CD11b), 5 % FBS solution in
PBS. The sample was left on ice for 30 min in the dark, and then washed with PBS. The
pellet was resuspended in PBS and the sample was analysed by flow cytometry on an
Attune™ NxT Acoustic Focusing Cytometer (Thermo Fisher Scientific). Alexa Fluor®
488 was excited by the blue laser and detected using a 530/30 nm bandpass filter and
Deep Red Cellular ROS detection reagent was excited by the red laser and detected in
the 670/14 nm channel. Cells labelled with either anti-CD11b or Deep Red Cellular ROS
detection reagent alone were used to set the gate for the other fluorophore. In addition,
an unstained sample of control (untreated) HL60 cells that were not incubated with the

anti-CD11b antibody or the Deep Red Cellular ROS detection reagent was used as an
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additional negative control. The programming language R, version 4.0.3 (R Development
Core Team, 2021), along with the package CytoExploreR (Hammill, 2021) were used to

analyse the data.

4.1.9 HLG60 cell purine extraction

HLG60 cells were centrifuged at 200 x g for 5 min at 4 °C. The cell pellet was washed
twice with PBS (Sigma) and then resuspended in PBS to give a total volume of 300 pl.
A small volume was removed for cell counting. An equal volume of ice cold 6 % (w/v)
trichloroacetic acid (TCA) was added before vortexing for 20 s and then placing on ice
for 10 min. The sample was then centrifuged at 300 x g for 10 min at 4 °C. 0.5 ml of
supernatant was recovered and neutralised with the addition of 5 M KoCOj3 to approx.
pH 6 (checked with high resolution pH indicator paper).

Samples prepared for HPLC calibration curves and peak assignment were stored at
-20 °C until needed. In addition, samples obtained from cell cultures treated with differ-

entiating reagents were also stored at -20 °C until HPLC analysis.

4.1.10 HPLC analysis of HL60 cell purine levels

T75 cell culture flasks (Thermo Fisher Scientific) were seeded with 2x10° HL60 cells/ml
(final volume 50 ml) in the presence or absence of differentiating agents and/or guanosine.
The concentration of agents added were as follows: ATRA 1 pM; MPA 1 pM; MZ 50 pM;
guanosine 50 pM. Cells were maintained for three days at 37 °C in a 5 % v/v COq
atmosphere; with control cells, i.e. those without any differentiation agents present,
being passaged as required. The cells were then lysed as per the extraction method
detailed in 4.1.9 and the resulting solution analysed via HPLC, as outlined in 4.1.3.
In each chromatogram, the area under the curve corresponding to each metabolite was
determined and converted to a concentration using the relevant calibration curve and

equation (see Appendix G, for the calibration curve plots and equations).
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4.1.11 Statistical analysis

To analyse the statistical significance of drug treatments on HL60 cell differentiation,
a Kruskal-Wallis test followed by pairwise comparisons using a Conover post-hoc test,
with Benjamini-Hochberg correction for multiple comparisons, was conducted using the R
package PMCMRplus (Pohlert, 2021). Differences with a p-value < 0.05 were considered

significant.

4.2 Results

4.2.1 Phosphoribosylpyrophosphate synthetase (PRPPS) assay

As the refined mathematical model of purine metabolism is to be used to investigate the
network in HLG60 cells, part of the refinement process was to scale the model from a whole
body model to one appropriate for 10° HL60 cells. Data from HL60 cells for the reaction
rate of the first enzyme in the network, PRPPS, was obtained from the literature (Ahmed
and Weidemann, 1994) and used to scale the model accordingly. However, it was decided
to perform an enzyme assay using HL60 cells to determine the reaction rate for PRPPS in
order to either confirm the rate obtained by Ahmed and Weidemann (1994) or provide an
alternative value with which to scale the model. Therefore, utilising a protocol adapted
from that used by Torres et al. (1996) the reaction rate of PRPPS was determined from
HL60 cell extracts. The reaction was assessed over a time course consisting of the time
points: 0, 5, 10, 20, 30, and 40 min, with metabolite concentrations from each time point
being analysed via HPLC (see Appendix H for chromatograms). The reaction catalysed

by PRPPS is as follows:

R5P + ATP LREPS, pRPP 4+ AMP

Therefore, the reaction rate can be determined by calculating the rate of AMP pro-

duction. As shown in Appendix H, AMP production, and thus the rate of reaction, is
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linear for the first 20 min or so, therefore the reaction rate was calculated using data
from within this time period. This experiment was performed twice; one yielded a value
greater than the value from Ahmed and Weidemann (1994) and the other produced a
value less than the value from the literature; 3.49 pmolmin~! (10° HL60 cells)~! and
0.08 pmol min—! (109 HL60 cells)’l, respectively. Therefore, it was decided to continue
to use the value of 0.23 pmolmin~! (10° HL60 cells)~! from Ahmed and Weidemann
(1994) as a reasonable estimate for this reaction rate. This produced a scaling factor of

0.011, with which all the model’s fluxes were adjusted.

4.2.2 Flow cytometry analysis of HL60 cell differentiation

To assess the differentiating ability of IMPDH inhibitors, HL60 cells were incubated with
either MPA, MZ or ATRA and analysed via flow cytometry (example gating strategy
shown in Appendix H) for expression of CD11b; a cell surface marker present on differ-
entiated myeloid cells of the innate immune system. In previous investigations into the
effect of MPA or MZ on HL60 cells, a variety of both incubation periods and concentra-
tions of IMPDH inhibitors were used (Ahmed and Weidemann, 1995; Inai et al., 1997,
2000). To identify the optimal length of incubation and the ideal concentration for the
two IMPDH inhibitors, initial experiments were conducted on each of days one to seven
with ATRA at a final concentration of 1 pM and MPA at both 1 pM & 2 pM and MZ at
both 50 pM & 100 pM.

Figure 4.1 shows the percentage of differentiated cells in each sample and indicates
that ATRA driven differentiation increases over the time course. However, differentiation
mediated by the IMPDH inhibitors MPA and MZ peaks at day two, with the level decreas-
ing substantially from day four. Therefore, although the optimal length of incubation for
ATRA appears to be four days or more, as the level of differentiation produced by both
MPA and MZ decreases notably from day four, day three was chosen as a compromise

for use in future flow cytometry and HPLC differentiation experiments.
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Figure 4.1: Time course of HL60 cell differentiation. HL60 cells were incubated with ATRA,
MPA or MZ or were left untreated for the number of days indicated and the percentage of
differentiated cells was determined via expression of CD11b, as assessed via flow cytometry.
Results from n=1 experiments are shown.



In addition, Figure 4.2 indicates there was little difference in the level of differentiation
between the two concentrations of MPA and the two concentrations of MZ at both three

and four days, thus all subsequent experiments were conducted with MPA at a final

concentration of 1 pM and MZ at 50 pM.
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Figure 4.2: Effect of MPA and MZ concentration on HL60 cell differentiation. HL60 cells
were incubated with MPA at either 1 yM or 2 pM or MZ at either 50 uM or 100 pM for either
three or four days and the percentage of differentiated cells was determined via expression of
the cell surface marker CD11b, as assessed via flow cytometry. Results from n=1 experiments
are shown.
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Figure 4.3 shows that differentiation of HL60 cells is significantly increased upon
treatment with either ATRA, MPA or MZ. Furthermore, combinations of ATRA with
either MPA or MZ were also assessed and as indicated in Figure 4.3 the level of HL60
cell differentiation was further significantly increased when a combination of ATRA and

an IMPDH inhibitor was used compared to either drug alone.
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Figure 4.3: Statistical significance of drug treatments on HL60 cell differentiation. HL60
cells were incubated with 1 yM ATRA and/or 1 yM MPA or 50 pM MZ for three days and
the percentage of differentiated cells was determined via expression of CD11b, as assessed
via flow cytometry. Representative results from n=>5 experiments are shown in the left panel,
whilst a statistical analysis of this data is shown in the right panel. Data were analysed using a
Kruskal-Wallis test, followed by a Conover post-hoc test with Benjamini-Hochberg correction
for multiple comparisons; p-values < 0.05 were considered significant.

To assess the preventative effects of guanosine on IMPDH inhibitor driven differenti-
ation, cells were incubated with guanosine along with ATRA, MPA or MZ or combina-
tions thereof. In addition, adenosine was used instead of guanosine in some experiments

to confirm that the effect seen is specific to guanosine and is not common to other nu-
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cleosides. Figure 4.4 highlights that the cellular differentiation observed with MPA and
MZ is reduced when guanosine is present, whilst differentiation seen with ATRA alone
or in combination with either MPA or MZ is less affected by the addition of guanosine.
Moreover, the addition of adenosine had no affect on the differentiating ability of MPA,
MZ or ATRA, as shown in Figure 4.5.
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Figure 4.4: Effect of guanosine on the differentiating abilities of IMPDH inhibitors. HL60
cells were incubated with 1 pM ATRA and/or 1 yM MPA or 50 uM MZ for three days. 50 uM
guanosine (Guo) was also added where indicated and the percentage of differentiated cells
was determined via expression of CD11b, as assessed via flow cytometry. Results from n=1
experiments are shown.
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Figure 4.5: Effect of adenosine on the differentiating abilities of IMPDH inhibitors. HL60
cells were incubated with 1 pM ATRA and/or 1 uM MPA or 50 pM MZ for three days. 50 uM
adenosine (Ado) was also added where indicated and the percentage of differentiated cells
was determined via expression of CD11b, as assessed via flow cytometry. Results from n=1
experiments are shown.

4.2.2.1 Effects of combining ATRA and IMPDH inhibitors

It had previously been shown that the use of ATRA in combination with an IMPDH
inhibitor had a synergistic effect on HL60 cell differentiation compared to using ATRA
or an IMPDH inhibitor alone (unpublished data, G. Thomas, see Appendix H). However,
as shown in Figure 4.3, this effect was not observed with ATRA and MPA or MZ at the
concentrations used. Therefore, to investigate this further, it was decided to reduce the
concentration of ATRA, in the range 1 nM to 1 pM, and use MPA and MZ at 10 % of
their previous levels (0.1 pM and 5 pM, respectively). Figure 4.6 shows that with ATRA

at a concentration of 10 nM and MZ at 5 pM, the effect on differentiation was more than
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additive compared to when the two drugs were used separately. However, this effect was
not seen with ATRA in combination with MPA and thus, as the level of differentiation
increases with increasing length of incubation with ATRA (as shown in Figure 4.1) it was
decided to increase the length of exposure of HL60 cells to the reduced concentrations of
ATRA plus an IMPDH inhibitor to four days. Figure 4.7 illustrates that with a four day
incubation period and when using 10 nM ATRA, 0.1 pM MPA and 5 pM MZ, ATRA plus
either MPA or MZ has a more than additive effect on cellular differentiation compared

to incubation with either drug alone.
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Figure 4.6: Synergistic effect of low dose ATRA plus low dose MZ. HL60 cells were incubated
with 10 nM ATRA and/or 0.1 yM MPA or 5 yM MZ for three days. The percentage of
differentiated cells was determined via expression of CD11b, as assessed via flow cytometry.
Results from n=1 experiments are shown.
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Figure 4.7: Synergistic effect of low dose ATRA plus low dose IMPDH inhibitor. HL60 cells
were incubated with 10 nM ATRA and/or 0.1 pM MPA or 5 pM MZ for four days. The
percentage of differentiated cells was determined via expression of CD11b, as assessed via
flow cytometry. Results from n=1 experiments are shown.

4.2.3 HLG60 cell reactive oxygen species detection experiments

In addition to expression of CD11b, differentiated myeloid cells of the innate immune
system produce ROS in response to appropriate stimuli. To assess whether ATRA, MPA
and MZ are able to induce HL60 cells to acquire this ability, a ROS assay was performed.
Cells were incubated with either ATRA, MPA, MZ or combinations of these for three days
before stimulation with PMA. As illustrated in Figure 4.8 ATRA and/or MPA or MZ
again induced HL60 cells to express CD11b whilst the addition of PMA further increased
this expression. ROS were not detected in any of the unstimulated cells or the stimulated
control cells. In contrast, treatment with PMA and ATRA and/or an IMPDH inhibitor

resulted in high levels of ROS production (see Figure 4.8).
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Figure 4.8: Production of ROS by stimulated ATRA and/or IMPDH inhibitor treated HL60
cells. HL60 cells were incubated with 1 pM ATRA and/or 1 pM MPA or 50 yM MZ for three
days. Cells were then stimulated with PMA for 30 min where indicated and CD11b expression
and ROS production were assessed via flow cytometry. Results from n=1 experiments are

shown.
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4.2.4 HPLC analysis of HL60 cell purine levels

To investigate the change in purine concentrations after differentiation, HL60 cells were
incubated with either ATRA, MPA, or MZ + /- guanosine for three days and the purine
levels were assessed via HPLC (see Appendix H for example chromatograms). Many of
the purine concentrations in these samples were very low or below the level of detection.
This was the case for IMP across the full set of experimental conditions and interestingly
for HX in all samples except those where guanosine was present. In addition, the peaks
corresponding to AMP and Ado could not be consistently resolved, similarly the elution
times for GMP and Guo were very similar and thus the levels of these four metabolites
could not be reliably determined. Furthermore, the peak corresponding to XMP could
not be reliably determined across the entire set of experiments. Therefore, IMP, HX,
AMP, Ado, GMP, Guo and XMP were all excluded from further analysis.

Concentration data for ATP, ADP, GTP and GDP were analysed and the results,
as a percentage of the control (untreated) condition, are shown in Figure 4.9 for those
samples without the addition of guanosine.

The levels of the adenylates from cells treated with either MPA or MZ were fairly
consistent, whereas there was more variation in guanylate levels between these two con-
ditions. There was also variation between the results for ATRA treated and IMPDH
inhibitor treated cells. In addition, the data for MPA treated cells also failed to match
the existing comparable (1 pM MPA for 72 h) literature data (Lucas et al., 1983a) for
the metabolites ADP, ATP and GTP.

Comparison of data from IMPDH inhibitor treated HL60 cells with model simulations
showed concordance between the level of GTP from MZ treated cells and the model
results. However, the data for the other nucleotides and that from MPA failed to match

the model output.
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Figure 4.9: Percentage change in purine concentrations after differentiation. HL60 cells
were incubated with either 1 pM ATRA, 1 yM MPA or 50 pM MZ for three days and purine
levels were assessed via HPLC. Percentage change was calculated using control cells which
were incubated in the absence of differentiating agents. Percentage change values for Model
+ Inhibition were computed using purine levels from the model with 28 % IMPDH inhibition
simulated along with steady state purine levels without simulation of inhibition. Lastly, also
included are the percentage change values for three of the nucleotides as determined by Lucas
et al. (1983a) for HL60 cells treated with 1 yM MPA for 72 h relative to untreated cells. Data
from two experiments is shown, except for MZ.
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Next, ratios for specific nucleotide combinations were then computed from both the
experimental data and the model results; these are shown in Figure 4.10. These showed
a reduction in the GTP:GDP ratio upon IMPDH inhibition, whereas the ATP:ADP and
ATP:GTP ratios both increased after treatment. However, the absolute values of these

ratios were markedly different between the model results and the experimental data.
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Figure 4.10: HL60 cell nucleotide ratios after differentiation. HL60 cells were incubated with
either 1 pM ATRA, 1 uM MPA or 50 pM MZ for three days and purine levels were assessed
via HPLC. Ratios for the Model were determined from steady state levels, whilst ratios for
Model + Inhibition were computed using nucleotide levels from the model with 28 % IMPDH
inhibition simulated. For experimental data, ratios were calculated using the mean values
from two experiments, with the exception of MZ where data from a single experiment was
used.
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To assess the effect of the addition of guanosine on purine levels, cells incubated in
the presence of guanosine were compared to those cultured without guanosine for each
differentiating agent (see Figure 4.11). These comparisons highlight that the addition of
guanosine results in a decrease in the level of both adenylates, whilst the levels of both
guanylates increase when guanosine is present, except for the MPA treated cells. In this
case, the levels of both guanylates fail to be rescued by the addition of guanosine; with
GTP only increasing slightly and GDP decreasing in the presence of guanosine.

Finally, the effect of combining ATRA with an IMPDH inhibitor on purine levels was
examined by comparing cells treated with the two drugs to those treated with a single
differentiating agent. As shown in Figure 4.12, when cells were treated with ATRA plus
MPA or MZ the levels of adenylates were further decreased compared to cells treated with
each drug separately. However, as seen in the rest of the data, the change in guanylate
levels was more variable. The level of guanylates from ATRA plus MPA treated cells
was lower than from cells incubated with either drug alone. However, cells treated with
ATRA plus MZ had higher levels of GDP than cells incubated with either of those drugs
separately, whilst the level of GTP was higher than the level in cells solely exposed to
MZ.
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Figure 4.11: Percentage change in purine concentrations after incubation with guanosine.
HL60 cells were incubated with either 1 pM ATRA, 1 uM MPA or 50 pM MZ for three days
either in the presence or in the absence of guanosine and purine levels were assessed via HPLC.
Percentage change was calculated using control cells which were incubated in the absence of
differentiating agents and guanosine. Data from two experiments is shown, except for MZ

and Guo + MZ.
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Figure 4.12: Percentage change in purine concentrations after combination treatment. HL60
cells were incubated with 1 yM ATRA, 1 pM MPA or 50 pyM MZ or combinations thereof for
three days and purine levels were assessed via HPLC. Percentage change was calculated using
control cells which were incubated in the absence of differentiating agents. Data from two
experiments is shown, except for MZ and ATRA + MZ.
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Chapter 5: Discussion and Conclusions

5.1 Data interpretation and model comparison

5.1.1 Model scaling

In order to make this new mathematical model of purine metabolism more specific to
HLG60 cells, it was decided to scale the system based on an HL60 cell specific value for the
first enzyme in the model: PRPPS. Although experimentation was conducted to obtain
such a value, as these produced values either side of the available literature data (Ahmed
and Weidemann, 1994), it was decided to continue using the value from Ahmed and
Weidemann (1994) as a reasonable estimate and scale the model accordingly. Together
with the RNAseq analysis, this scaling allowed the model to be adapted to one that
is specifically tailored to HL60 cells which should help ensure any predictions are more

reliable and relevant to this cell type.

5.1.2 Cellular changes upon IMPDH inhibition

5.1.2.1 Phenotypic markers

The flow cytometry data clearly highlights that incubation of HL60 cells with either an
IMPDH inhibitor or ATRA results in cellular differentiation, as seen by the increased
expression of CD11b; a cell surface marker present on differentiated myeloid cells of the
innate immune system. Moreover, an interesting observation from these experiments was
the apparent increased level of cell death seen when certain differentiating agents were
used, particularly MZ. Although cell number was not measured immediately prior to flow
cytometry analysis, given that each condition was seeded with the same number of cells,
an examination by eye of the size of each cell pellet during the washing steps appeared to
reveal increased cellular toxicity by MZ. Indeed, the inclusion of a cell viability marker

would have allowed for a more quantitative examination of cellular survival and drug
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toxicity.

In addition, the increase in expression of CD11b was also seen in cells treated with
both ATRA and guanosine, but to a lesser extent. Indeed, the expression of CD11b by
cells treated with both ATRA and guanosine was approximately 41 % of that seen with
cells incubated with ATRA alone, a phenomenon previously seen by Wright (1987). In
contrast, in line with earlier studies (Inai et al., 2000), the expression of CD11b did not
increase in cells that were incubated with guanosine and an IMPDH inhibitor. More-
over, when HL60 cells were incubated with adenosine and either an IMPDH inhibitor
or ATRA, CD11b expression was unchanged from cells treated with the differentiating
agent alone, in concordance with previous findings (Ahmed and Weidemann, 1995). Col-
lectively, these results therefore indicate that guanylate levels appear to be an important
factor in IMPDH inhibitor driven differentiation and to a lesser extent ATRA driven

differentiation.
5.1.2.2 Functional assay

Results from the functional assay involving detection of ROS indicate that treatment
with either ATRA, MPA or MZ results in cells that possess the ability to produce ROS
after appropriate stimulation; a property inherent to mature myeloid cells of the innate
immune system. Taken together with the results from the flow cytometric analysis of
CD11b expression, these data confirm that treatment with either MPA or MZ induces
differentiation of HL60 cells towards a neutrophil-like phenotype, as shown previously

(Inai et al., 1997, 2000).
5.1.2.3 Purine levels

HPLC analysis of HL60 cell purine levels yielded reliable results for only four metabolites:
ATP, ADP, GTP and GDP. This data showed fairly good consistency in the change in
both adenylate levels between HL60 cells treated with MPA and those incubated with
MZ. However, this was not the case for either of the guanylate levels. These data suggest

that perhaps there is some difference between these two IMPDH inhibitors in terms of
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their effect on the purine metabolic network that was previously uncharacterised. Indeed,
there is little data available on the purine levels of MZ treated HL6G0 cells.

A comparison of the results for MPA treated cells with the most comparable literature
data set (Lucas et al., 1983a) showed poor concordance. However, other studies suggest
that ATP levels after treatment with MPA remain very similar to control levels, which
more closely matches the experimental data obtained here, although the experimental
conditions were slightly different (see Table 3.13 and Inai et al. (2000)). Furthermore, as
Lucas et al. (1983a) was the main source of literature data for adenylate and guanylate
levels that was used in the model parameter search simulations (see 3.6.1), the experi-
mental data from this study also failed to match the equivalent model output.

Nucleotide ratio comparisons showed that the ATP:ADP ratio increases after treat-
ment and that this increase is similar regardless of the differentiating agent used. Further-
more, the results from the model with 28 % IMPDH inhibition simulated also showed a
slight increase in this ratio with the value being very similar to those seen experimentally,
although the ATP:ADP ratio for the steady state model without inhibition simulated was
quite different to the experimental control value. The ATP:GTP ratio also increased af-
ter HL60 cell differentiation and the same pattern was seen with the model results when
IMPDH inhibition was simulated; however the level of these increases was not consistent
between any of the experimental conditions or the model. Lastly, the GTP:GDP ratio
decreased upon treatment with an IMPDH inhibitor and simulation of IMPDH inhibition
in the model but increased slightly in ATRA treated cells.

Therefore, from this data, it would appear that differentiation of HL60 cells causes
a fairly consistent increase in the ATP:ADP ratio regardless of the differentiating agent
used. However, given the inconsistent values observed in the data for the other ratios
and the difference in ratios between the control sample and the steady state model, it is
difficult to ascertain whether the model is responding appropriately.

Examination of purine nucleotide levels from cells incubated in the presence of guano-

sine revealed that once again the change in adenylate levels was more consistent across
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the set of samples compared to guanylate levels. Intuitively, an increase in guanylate
levels would be expected when cells are incubated in the presence of guanosine as the free
base will be converted to GMP via the salvage pathway. Indeed, guanylate levels were
higher than in control cells for all samples except MPA plus guanosine, again highlighting
the inconsistency in the results from MPA treated samples. In contrast to the results
for guanylate levels, the addition of guanosine produced a uniform decrease in adenylate
levels in all cells. This may be due to inhibition of the de novo pathway by salvaged
guanylates, resulting in reduced adenylate synthesis.

Throughout the HPLC nucleotide data it was apparent that there were discrepancies
between the guanylate levels in MPA treated cells and those in MZ incubated cells. This
was somewhat unexpected as it had been assumed that the effects of MPA and MZ on
purine levels would be similar, especially given the dearth of data available on purine levels
from MZ treated cells. Instead these data suggest that perhaps there is a difference in the
underlying biology of these two drugs. Indeed, they differ in their inhibitory mechanism;
MZ is a competitive inhibitor with respect to IMP, whilst MPA is uncompetitive with
respect to both substrates (Wu, 1994; Hager et al., 1995; Link and Straub, 1996; Allison
and Eugui, 2000); but whether this difference can explain the observed discrepancies in
purine levels is unclear.

The decrease in nucleotide levels seen here in all differentiated cells, regardless of
differentiating agent used, coupled with the decrease in expression levels of enzymes
involved in the de novo and salvage pathways in ATRA treated cells, as shown in the
RNAseq data (see Figure 3.1), indicates a decrease in purine synthesis in differentiated
cells. These results raise the question: does differentiation subsequently lead to a decrease
in purine production, or can these cells be forced to differentiate just by decreasing
their purine synthesis? The fact that IMPDH inhibitors induce differentiation of HL60
cells supports the latter hypothesis, however these two hypotheses may not be mutually
exclusive. Nevertheless, the fact that the addition of guanosine partly prevented the

differentiation of ATRA treated cells, indicates that the purine metabolic network plays
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a role, at least in part, in differentiation of these cells. This therefore raises the question of
whether targeting other enzymes within the purine metabolic network might also result in
differentiation of HL60 cells; this could be a novel exploratory avenue for the development

of new drug therapies to treat APL.

5.1.3 Effects of combining ATRA and IMPDH inhibitors

As indicated in the flow cytometry results, there is a synergistic effect on HL60 cell dif-
ferentiation when using ATRA and an IMPDH inhibitor together, but only when the
incubation time is increased to four days and the two drugs are used at lower concentra-
tions.

Furthermore, purine nucleotide analysis of cells differentiated using a combination of
ATRA and an IMPDH inhibitor showed similar trends to the rest of the HPLC data, with
the effect on adenylate levels being more consistent than the effect on guanylate levels.
Specifically, the levels of adenylates decrease further in cells treated with both ATRA
and MPA or MZ, compared to cells treated with any of the differentiating agents alone,
whereas the pattern for guanylate levels differs depending upon which IMPDH inhibitor
is used alongside ATRA; further supporting the hypothesis that there are some inherent
mechanistic differences between the actions of MPA and MZ.

It would have been interesting to compare these data with simulations from the model,
however this was not possible as there is no way within the modelling system to simu-
late the effects of ATRA. Nevertheless, analysis of this data indicates that combining
ATRA and an IMPDH inhibitor generally increases the effect on purine nucleotide levels
compared to using a single differentiating agent alone.

This intriguing observation of synergy between ATRA and IMPDH inhibitors raises
the possibility of using the two drugs together clinically at lower doses to treat APL in
the hope that it may reduce some of the unfavourable side effects often seen with these

drugs, whilst still being able to cause differentiation of immature neutrophils.
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5.2 Model evaluation

Using published RNAseq data (Raz et al., 2011) and rate of reaction data for the enzyme
PRPPS (Ahmed and Weidemann, 1994), the Curto et al. (1998b) purine metabolic model
was adapted to create a version specific to HL60 cells, which was then expanded to allow
the levels of key metabolites to be modelled separately. Further refinement of the model
was undertaken, via parameter search simulations, which revealed that the model was
capable of reproducing available literature data of purine nucleotide concentrations after
IMPDH inhibition. This model is robust with a stable steady state, thus facilitating
comparison of the new experimental data with model output. However, as discussed
above, concordance of the data and model was generally low. As noted, this will partly
be due to the source of data for the parameter search simulations; which also failed to
match the data acquired here.

Furthermore, the model could only be assessed against a limited set of four purines
due to the inability to reliably measure the concentrations of seven other metabolites
experimentally. This meant a thorough evaluation of model validity could not be per-
formed. Nevertheless, the model is a useful tool and with further work could provide

useful insights into the effects of IMPDH inhibitors on the purine metabolic network.

5.3 Future work

To expand the current available data, the next logical step would be to further optimise
the HPLC method to allow resolution of all purine metabolites of interest. Although
substantial effort was made to achieve this, it is hoped that amendments to the protocol
and/or the addition of a mass spectrometry based detection method may be able to
resolve this key issue.

If this data could be obtained, then the model could be further refined using a subset
of this data as an alternative source for new parameter search simulations, with the

remainder of this data being used to validate the newly refined model. As mentioned
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earlier, it would seem prudent to uncouple certain reactions that are catalysed by a
common enzyme in these new parameter search simulations, namely HPRT & GPRT; and
INUC, ANUC & GNUC. This is because one would expect IMPDH inhibition to have
opposing effects on those reactions involving GMP and those involving IMP (and perhaps
AMP). Once the model had been further refined using the new data and parameter search
results, it could then be used to explore other potential drug targets within the purine
metabolic network, with model predictions then being tested experimentally, to try to
identify potential new drug treatments for use in AML therapy.

In addition, it would have been interesting to be able to compare the model with the
newly acquired data for purine nucleotide levels in guanosine treated cells. One way to
achieve this would be to make guanosine an independent variable in the model so that its
concentration remains constant. However, guanosine is currently grouped together into a
pool with guanine and deoxyguanosine and as such the validity and feasibility of such an
approach is unclear. Therefore, extending the model to separate this pool (as done here
for the guanylate and adenylate pools) seems like a logical next step to allow the effect
of the addition of guanosine, both in the presence and absence of IMPDH inhibition, to
be modelled.

As mentioned above, it would be interesting to repeat some of the flow cytometry
analysis with the inclusion of a cell viability marker to assess cell death and investigate
drug toxicity effects.

As the publicly available RNAseq data used in this study was from ATRA treated
HLG60 cells only, it would be useful to have equivalent data for IMPDH inhibitor treated
cells so that further assessment of the differences and similarities between these two classes
of drug could be assessed. Moreover, with the recent advances in metabolomics techniques
since commencement of this project, an examination of proteomics or metabolomics data
from both HL60 cells treated with ATRA and from those treated with an IMPDH in-
hibitor would provide a more accurate picture of purine levels in these cell after differen-

tiation.
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Finally, as the purine nucleotide analysis from cells treated with a combination of
ATRA and an IMPDH inhibitor was conducted at three days and using the original
concentrations of differentiating agents, it would seem appropriate to repeat this analysis
using the increased time frame and with ATRA, MPA and MZ at the lower concentrations

which were shown to produce a synergistic effect on HL60 cell differentiation.

5.4 Conclusions

Refinement and expansion of an existing mathematical model of purine metabolism was
undertaken resulting in the creation of an HL60 cell specific model of this network, which
allowed for the examination of key metabolites during simulations of IMPDH inhibition.
The model is robust, with a stable steady state and performed in a similar manner to
the original Curto et al. (1998b) model during various test simulations. The sparsity of
available literature data hampered efforts to further refine the model, thus necessitating
the need to generate additional purine metabolite concentrations to continue this work.

Experimentation was undertaken to better understand the effects of IMPDH inhibitors
on HL60 cells and consisted of three parts: 1) an assessment of differentiation; 2) a func-
tional study; and 3) determination of metabolite concentrations. Flow cytometric anal-
yses of CD11b expression and ROS production showed that treatment with either MPA
or MZ resulted in HL60 cell differentiation and acquisition of both phenotypic and func-
tional properties of mature myeloid cells of the innate immune system; confirming that
the HPLC analysis conducted provides data on purine levels from differentiated cells.
This HPLC data highlights a general decrease in purine nucleotide levels upon differenti-
ation, for both IMPDH inhibitor and ATRA treated cells. Furthermore, the addition of
guanosine was shown to prevent the differentiating abilities of IMPDH inhibitors, and to
a lesser extent ATRA, whilst assessment of purine nucleotide levels from these samples
provides insights into these conditions which were previously uncharacterised.

A comparison of the experimentally obtained purine concentration data with the

model output was undertaken. However, discrepancies between this new data and that

134



in the literature resulted in low concordance between the model and this experimental
data. Nevertheless it is hoped that, with further experimentation and possible refinement,
this model may prove useful for further investigation of IMPDH inhibition and purine
metabolism in the HL60 cell line, which may yield predictions that provide insights into

potential novel treatments for APL and perhaps other forms of AML.
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Appendices

Appendix A

This appendix contains the network schematic for the Curto et al. (1998b) model.
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Figure A.1: Network schematic from the Curto et al. (1998b) model. Dependent variables
(metabolites) are shown in boxes, whilst independent variables (RSP and Pi) are depicted
without boxes. Thick solid arrows represent fluxes, whilst activatory regulations are indicated
by thin arrows and inhibitory controls are denoted by dashed arrows.
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Appendix B

Contained in this appendix are two tables relating to the RNAseq data analysis. The
first details the sample information, whilst the second provides information on the gene
symbols relating to the purine metabolic enzymes investigated in the analysis.

Untreated Treated with ATRA
RPM2_1_12fclch9 RPM2_1_12_FC1CH7
RPM2_1_12fclch10 RPM2_1_12_FC1CHS8
RPM11_12_11fc2ch15 RPM11_12_11_FC2CH14

Table B.1: HL60 cell samples used in RNAseq data analysis. Samples are listed using their
unique identifier from the GEO database (Edgar et al., 2002).

Enzyme abbreviation Gene symbol

ADA,/DADA ADA
ADE/HXD /XD XDH
ADEK AK1
ADNA/GDNA POL_MU, POLAI, POLA2, POLB, POLD],

POLD2, POLD3, POLD4, POLDS, POLE,
POLE2, POLE3, POLE4, POLG, POLG2,
POLH, POLI, POLK, POLL, POLM,
POLN, POLQ, POLS

ADOK ADK
ADPK/GDPK NME1, NME2, NME3, NME4,
NME5, NME6, NME7
ADRNR/GDRNA RRM1, RRM2, RRM2B
AMPD AMDP1, AMDP2, AMPD3
APRT APRT
ARNA/GRNA POLRIA, POLRI1B, POLRI1C, POLRI1D, POLRIE,

POLR2A, POLR2B, POLR2C, POLR2D, POLRZ2E,
POLR2F, POLR2G, POLR2H, POLR2I, POLR2J,
POLR2J2, POLR2J3, POLR2K, POLR2L, POLR3A,
POLR3B, POLR3C, POLR3D, POLR3E, POLR3F,
POLR3G, POLR3H, POLR3K

ASLI ADSL

ASUC ADSS

continued on the next page
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Enzyme abbreviation

Gene symbol

DEN PPAT, GART, PFAS, PAICS, ATIC

DGNUC NT5C

DNAA/DNAG DNASE1, DNASE2

GMPR GMPR, GMPR2

GMPS GMPS

GUA GDA

GUK GUK1

HPRT/GPRT HPRT1

IMPDH IMPDH1, IMPDH2

INUC/ANUC/GNUC NT5CIA, NT5C1B, NT5C2, NT5C3

MAT MATIA, MAT2A

NTPP ITPA

POLYAM AMD1

PRPPS PRPS1, PRPS2

RNAA/RNAG RNASE1, RNASE2, RNASE3, RNASE4,
RNASE6, RNASE7, RNASES

TRANS PCMTI, ICMT

Table B.2: List of purine enzyme abbreviations with corresponding gene names. These were
used to extract data from the Raz et al. (2011) RNAseq data set corresponding to enzymes
present in the purine metabolic network.
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Appendix C

This appendix provides information on the derivation of the GMA kinetic orders and
equations for the new interconversion reactions as well as details of the sets of simul-
taneous equations used to calculate the initial flux values for model versions 1 and 2.
Also included here are six tables detailing the kinetic orders, initial flux values and rate
constants for model versions 1 and 2.

fij equations used for interconversion reactions

Substrates

. K . o Vmax[s]
fij = Kot S derivative of v;; = Ko + [ w.r.t. [S]

Used for substrates of reactions: ADOK, ADEK, ADPK, ANUC (plus Hill coefficient),
GDPK/NDPK and GUK.

Competitive inhibition

—|I|K
fij= ] [IT derivative of v;; = me{ 5]
K; (Kn (1+3) +5])

Used for inhibitors of reactions: AMP for ADOK and Pi for ANUC

Non-competitive inhibition

o~
M+ ) (1) Kt 15)

Used for inhibitors of reactions: ADP for ADOK, GMP for ADPK and GMP for GDPK.

Hill’s functions

~~

plus Hill coefficient).

Vinax |S] w.r.t. [I]

derivative of v;; =

Raise [S] to the power of n in the above Michaelis-Menten equations. Used for reaction:
ANUC

Apparent K,

I
Kn'? = Ky, <1 + [K—]>
1

Used for inhibitor of reaction: Pi for ANUC.

155



GMA equations for the interconversion reactions

ADEK
AMP + ATP — 2ADP

Ky, for AMP = 80 pM and K, for ATP = 90 pM, giving fageram = 0.286 and fugerar =
0.0452. No inhibition or activation.

_ fadekam 7 fadeksT
Ondek = “adekX4£]lvf Xﬁ"e

ADOK
Ado+ ATP — AMP + ADP

Ky, for Ado = 0.4 pM and K, for ATP = 75 pM, giving fuioraa = 0.444 and fgoar =
0.038. Product inhibition by AMP and ADP. AMP inhibits competitively w.r.t. Ado,
with K; = 140 pM, giving f,4okapm = —0.388 whilst ADP inhibits non-competitively, with
K; = 50 pM, giving fagokap = —0.889. Initially ignoring Ado inhibition as only seen at
high concentrations of Ado.

_ fadokaA 7 fadokaM 7 fadokaD ~7 fadokaT
Oadok = “adokxﬁqo Xﬁ\/f X47j)0 Xﬁ"o

ADPK
ADP + GTP — ATP + GDP

Kin for ADP = 40 pM and Ky, for GTP = 150 pM, giving foipap = 0.0909 and fgpks7 =
0.333. GMP inhibits non-competitively with, K; = 650 puM, giving fsapksm = —0.0370.
Initially ignoring GDP inhibition so as to follow the method adopted by Curto et al.
(1998b) whereby the kinetic orders for substrates are calculated using the standard
Michaelis-Menten equation, without inhibition. In the equation for substrate inhibition,
the Kj, for the non-inhibiting substrate is modified by the inhibitor (see above).

fadpkaD <, fadpksM < fadpksT
adpk = CadpkXyp Xgm Xgr

ANUC
AMP + H,0 — Ado + Pi

This reaction exhibits cooperativity w.r.t. the substrate AMP, with K, for AMP =
31,000 pM and a Hill coefficient of n = 1.5, giving fiuucapr = 1.375. The product Pi
inhibits competitively w.r.t. AMP altering both the K;, and n values. A concentration
of 1000 pM of Pi produces Ky/¥ = 38,000 yM (implying K; = 4428.57 pM) and n = 1.7,
giving fanuc1s = —0.212. Initially ignoring alternative substrate inhibition (e.g. by GMP
and IMP etc.) and activation as done by Curto et al. (1998b), so only including inhibition
by Pi.
Vanue = wanucxi}v\r/t[ucfiMx{gnuclS
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GDPK/NDPK

GDP + ATP — GTP + ADP
Kin for ATP = 1330 pM and Ky, for GDP = 31 pM, giving fegprar = 0.412 and feapksp =
0.292. GMP inhibits non-competitively with K; = 650 pM, giving fgdpkgM = —0.0370.
Initially ignoring ADP inhibition so as to follow the method adopted by Curto et al.
(1998b) whereby the kinetic orders for substrates are calculated using the standard

Michaelis-Menten equation, without inhibition. In the equation for substrate inhibition,
the Ky, for the non-inhibiting substrate is modified by the inhibitor (see above).

_ fedpkaT ~,fgdpksM <, fedpksD
Vgdpk = &gapk Xyt Xgp Xgp

GUK
GMP + ATP — GDP + ADP

Kin for ATP = 190 pM and Ky, for GMP = 18 pM, giving feukar = 0.0909 and foxsm =
0.419. No inhibition or activation.

_ f Quk4T f guk8M
Vguk = AgueXyr Xgp

ATPDEG
ATP — ADP

Reaction for the generic degradation of ATP, via multiple enzymes. No inhibition or
activation.

Uatpdeg = ‘XatpdegXALT
ATPSYN
ADP — ATP

Reaction for the generic synthesis of ATP, via multiple enzymes. No inhibition or acti-
vation.

Vatpsyn = Xatpsyn X4D
PHOSPHO
ADP — ATP

Reaction for the net synthesis of ATP, via multiple processes. ADP is an activator,
whilst ATP inhibits the reaction. However, as this reaction represents multiple processes,
no kinetic data is available thus the kinetic orders are set at: fphosph04D = 0.5 and

fphospho4T =—0.1.

fphospho4D fphospho4T
Uphospho = ‘xphosphon;D X4T
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Set of simultaneous flux equations for models 1 and 2

Steady state equations

X1 Uprpps = Ugprt + Onprt + Vaprt + Uden + Upyr
X2t Ugen + Ugmpr + Vampd + Uhprt = Vimpdh + Vasuc + Vinuc
X3 Uasuc = Uggli

X5: Umat = Otrans + Upolyam

X6 Upolyam = Vaprt T Vade

X7: Uimpdh = Ugmps

X9 © Uadrnr + Udnaa = Vadna T Vdada

Xi0': Ugdrnr + Udnag = Ygdna + Udgnuc

X111 Uarna + Ugrna = Urnag + Urnaa

X12 ¢ Yadna + Ugdna = Udnag T Vdnaa

X131 Vada + Vdada + Vinue = Unprt + Uhxd + Uhxe
X141 Upxd + Ugua = Uxg + Uxe

Xi5: Udgnuc + Ugnuc = Ugprt + Ugua

X16* Uxd = Vuae

X4A : Utrans + Yanue = Vada + Vadok

Xam ' Uprpps + Ugmps + Vaprt + Vasii + Urnaa + Vadok = Vampd + Vadek + Vanuc

XaD © Vadok + 2Vadek + Vguk + Vgdpk + Vatpdeg = Vadrnr + Vadpk + Vatpsyn

X4T ¢ Uadpk + Vatpsyn = Uprpps + Ugmps + Umat + Yarna + Ugdok + VUndek + Uguk + Ugdpk + Vatpdeg
XsM : Ugprt + Ugmps + Urnag = Ugmpr + Ugnuc + Uouk

X8D * Vasuc + Vguk + Vadpk = Vgdrnr + Vgdpk

XgT ! Ugdpk = Vasuc + Og¢rna + Oadpk

RINA and DNA constraints

Oarna = %Ugrmz
Ornaa = %Urnag
Uadna = %vgdna
Udnaa = %vdnag
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Experimentally based constraints

Vyge ~ 2.27 pmol min~' (Body weight) !

Uxd + Uppre ~ 4.9 pmol min~1 (Body weight) !
Ohprt =~ 3 Upxd

Ohprt =~ Ugprt

Vgdrnr + Ugnuc = 9 Vempr

Oaprt & 1 pmol min~—' (Body weight) !

Uﬂdﬂ ~ [AdO] ~
Vdada [dAdo] 10

Venuc ., [GMP]
Sagme > 1dcmp] ~ 220

Otrans ~ 14 pymol min~' (Body weight) ™1
Opyr & 10 pmol min=1 (Body weight) !
Vade = 0.01 pmol min~—' (Body weight) !
Unxe = 0.05 pmol min~' (Body weight) !
Uxe = 0.03 pmol min~—' (Body weight )~

Oampd ~ 3 Vada

Vadna + Vgdna = 17 pmol min~! (Body weight) !

Varna + Vgrna = 3300 pmol min~! (Body weight) 1

Vasuc ~ Vimpdh Altered from value in Curto et al. (1998b)

Oinuc =~ 15 Oanuc

Oatpsyn = 10 Uatpdeg

For model 1 only
Ugdpk = 10 Uadpk }
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fade6 = 0.55

fampd18 =-0.1
fastiz = 0.99
fdada9 =1.0
fden18 = —0.08
fdnap9 =042
fgdrnrlO = —0.39
fgmps7 =0.16
fgprtlS = 0.42
fhprtz = —0.89
fhxel3 =112
finch =038

fpolyamS =09
fprppsl8 =07
ftmns5 =0.33
fxa14 = 0.55

fadrnr9 =-03
faprtl =05
fasch =04
fdenl =20

fdgnuclO =1.0
fdnaplO =0.33

fgmprz = —0.15
fgnuclS = —0.34
fgualS =05
fupri1z = 0.48
fimpth =0.15
finuclS = —0.36
Forppst = —0.03
for1 =127
fuael6 =221

fadrnrlO = 0.87

faprte = 0.75
fasuclS = —0.05
fdenZ = —0.06
fdnanlz =1.0
fgdrnr9 =-12
fgmpr7 = —0.76
fgprtl =12
fhprtl =11
fhxa1z = 0.65
fimpany = —0.09
fmatS = —0.6
fprppsl7 = 0.65
frmmll =1.0
fxel4 =20

fada4A =0.97
fampdST = —0.03
fasuc4M = —-0.24
fden4D = —0.06
fdenSD = —0.06
fgmpr4M = —0.01
fgmprSM =023
fgmps4T =0.12
fimpthM = —0.03

fadrnﬂlD =0.1
faprt4M =-0.8
fasuc8T =02
fden4T = —0.028
fdenST = —0.016
fgmpr4D = —0.02
fgmprSD =0.18
fgnucSM =09
fmat4T =02

fampd4M = 0.81

fastiam = —0.95
fden4M = —0.17
fden8M = —0.14

fgdranD =04
fgmpr4T = —0.04
fgmprST =029

fgprtSM = —-1.2.
fprpps4M =-01

fWPPS‘lD = —0.36 fprpps4T = 0.007 fprppng = —0.004

fprpps8D = —0.04

frnap4T = 0.05

frnapST =0.13

Reactions

present

in original

Curto et al. (1998b)
model,

so value

unchanged

Reactions

present

in original

Curto et al. (1998b)
model,

but redefined

so specific
metabolite

is used

Table C.1: Kinetic order values for existing reactions for model versions 1 and 2. Values for
kinetic orders for unchanged reaction and metabolite combinations are set equal to those from
the Curto et al. (1998b) model. Kinetic order values for existing reactions involving previously
pooled metabolites were redefined using the appropriate individual metabolite concentration.
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fadokan = 0.44
fadokar = 0.038
fanuc4M =137
feuksm = 0.42

fadok4M = —0.39
fadek4M =0.29
fanuc18 = -0.21

fadok4D = —0.89
fadekaT = 0.045
feukar = 0.091

fadpk4D = 0.091
fedpkaT = 0.41

fadkaM = —0.037
Fedpks = —0.037

fadpksT = 0.33
fedpksp = 0.29

}

fndpk4T =041
fphospho4D =05

fndkaM = —0.037
fphospho4T =—01

fndkaD =029

}

Table C.2: Kinetic order values for the new interconversion reactions for

Reactions in
models 1 & 2

Reactions in
model 1

Reactions in
model 2

model versions

1 and 2. Values were calculated using the kinetic data in Table 3.4, along with the GMA

equations detailed above.

Vada = 0.39 Vade = 0.01 VUpdna = 10.2
Oudrnr = 0.039 vampd =1.17 Uaprt =1.0
Varna = 1980.0 Ousli — 1.6 Vasuc = 1.6
Odada = 0.039 Oden = 2.36 Udgnuc = 0.019

Vdnaa = 10.2 Vdnag = 6.8 Vgdna = 6.8
Vgdrny = 0.019 Vempr = 0.53 Vemps = 1.60
Vonuc = 4.73 Ugprt = 3.68 Vgrna = 1320.0 ’
Vgua = 1.075 Upprt = 3.68 Oped = 1.23

Ohxe = 0.05 Uimpdh = 1.60 Oinuec = 4.52
Umat = 15.01 Upolyam = 1.01 Uprpps = 20.71

Upyr = 10.0 Urnaa = 1980.0 Urnag = 1320.0
Vtrans = 14.0 Vyge = 2.27 Uxe = 0.03

Vg = 2.27

Oadek = 2017.36 Oudok = 13.91 U,dek = 146.85
Vanue = 0302 Ugrpgeg = 743.36  Vatpsyn = 7433.58
Vgapk = 146845 gy = 1320.02

Reactions

present

in original

Curto et al. (1998b)
model

New
reactions

Table C.3: Initial flux values for model version 1. These were calculated using the full set of
45 simultaneous equations listed above. Values are in pmol min—! (Body weight)~!.
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KXpda = 0.76 Kade — 0.01 KXadna — 3.34
Xagrnr = 0.014  a4ppg = 0.039 &aprt = 31.0
Karna = 646.7 . = 1210.13 Nasue = 0.42
K gada = 0.0065 Kgen = 2.13 Xggnuc = 0.0063
Xgnaa = 0.002 &gy, = 0.0013 Xgdng = 2.23 Reactions
Xgdrny = 0.044 Kgmpr = 0.82 Xgmps = 0.39 present
Agnuc = 3.07 Agprt = 12.9 Xgrna = 431.13 in original
Kgua = 048 pprt = 1249 Wpg = 0.27 Curto et al. (1998b)
hye = 0.0038  &jpan = 118 iy = 1.54 model
Kot = 7.62 & potyam = 0.29 Xprpps = 0.35
apyr = 1.30 KXrnaa = 0.069 Arnag = 0.046
Ktrans = 8.86  wyge = 0.000086  ay, = 0.0012
Kyg = 0.94
Kadek — 315.55 Kadok = 22869.1 “adpk =14.33 New
Xgnuc = 0.00096  agrpgeg = 0.39  agrpsyn = 18.58 reactions

“gdpk = 20.90

Qg = 172.71

Table C.4: Rate constants for model version 1. Values were calculated using Equation 2.15,
flux values from Table C.3, appropriate kinetic orders from Tables C.1 and C.2 and initial
metabolite concentrations as detailed in Table 2.1.
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Uada = 0.39 Vaq0 = 0.01 Vpdna = 10.2
Vadrnr = 0.039 Uampd = 1.17 Vaprt = 1.0
Varna = 1980.0 Ugsii = 1.6 Vasuc = 1.6
Vdada = 0.039 Vden = 2.36 Udgnuc = 0.019

Odnaa = 10.2 Udnag = 6.8 vgdna =6.8
Ugdrnr = 0.019 Oompr = 0.53 Ugmps = 1.6
Ognuc = 4.73 Ogprt = 3.68 Ugrna = 1320.0

Ugua = 1.08 Uhprt = 3.68 Upyd = 1.23

Upxe = 0.05 Uimpdh = 1.6 Vinue = 4.52
Umat = 15.01 Upolyam = 1.01 Vprpps = 20.71

Vpyr = 10.0 Urnaa = 1980.0 Urnag = 1320.0
Utrans = 14.0 Vyge = 2.27 Uxe = 0.03

Vg = 2.27
Updek = 2017.36 044500 = 13.91 Vanue = 0.30

Vguk = 1320.02 Upgpk = 13216 U050 = 6690.22
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Reactions

present

in original

Curto et al. (1998b)
model

New
reactions

Table C.5: Initial flux values for model version 2. These were calculated using the set of 43
simultaneous equations listed above. Values are in pmol min—! (Body weight)~!.



0,0, = 0.0084
&gy = 0.00015

&3040 = 0.000071
&4paa = 0.000022
Cgdrnr = 0.00049

a0, = 0.00011
ampa = 0.00045
e = 13.33
& gen = 0.023
&dnag = 0.000015
&gmpr = 0.0090
tgprt = 0.14
s = 0.14
“impdh = 0.013
& potyam = 0.0032
&rnaa = 0.00076

&yqe = 0.00000095

&ygna = 0.037
Qapre = 0.34
Kasuc = 0.0046
&agnuc = 0.000069

tgdna = 0.025
Kgmps = 0.0047
Ugrna = 475
&g = 0.0030
Wipye = 0.017

“prpps - 0-0038
arnag - 0.00051
xxe = 0.000013

dgnuc = 0.034
tgua = 0.0053
&pxe = 0.000042
&mat = 0.084
&pyr = 0.014
Ktrans = 0.098
ayy = 0.010
Kadek — 3.48
gy = 1.90

Kadok — 251.88
‘Xndpk =0.21

&anue = 0.000011
D‘phospho =7.84

}

Reactions

present

in original

Curto et al. (1998b)
model

New
reactions

Table C.6: Rate constants for model version 2. Values were calculated using Equation 2.15,
flux values from Table C.5, appropriate kinetic orders from Tables C.1 and C.2 and initial
metabolite concentrations as detailed in Table 2.1.
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Appendix D

Contained in this appendix are five tables related to parameter simulations and values.
The first two detail the effect of changing the kinetic orders for the reaction PHOSPHO,
whilst the next two tables contain the steady state flux values from the Curto et al.

(1998b) model and the adjustments made to ensure a zero net flux in the system.

last table shows the initial flux values for the new interconversion reactions.

FohosphoADP fphosphoATP PRPPS IMP S-AMP SAM Ade XMP dA pool dG pool RNA DNA
0.30 -0.10 4.93 95.01 0.19 4.08 1.03 23.16 5.92 2.92 28,692.83 5,087.59
0.30 -0.11 4.93 94.94 0.19 4.08 1.03 23.20 5.92 2.93 28,681.02 5,089.85
0.30 -0.12 4.93 94.88 0.19 4.08 1.03 23.23 5.92 2.93 28,670.09 5,091.94
0.30 -0.13 4.93 94.82 0.19 4.07 1.02 23.26 5.93 2.93 28,659.95 5,093.88
0.30 -0.14 4.93 94.77 0.19 4.07 1.02 23.28 5.93 2.93 28,650.52 5,095.68
0.30 -0.15 4.93 94.72 0.19 4.07 1.02 2331 5.93 2.93 28,641.73 5,097.37
0.30 -0.16 4.93 94.67 0.19 4.07 1.02 23.33 5.93 2.94 28,633.51 5,098.94
0.35 -0.10 4.94 95.16 0.20 4.09 1.03 23.09 591 2.92 28,719.15 5,082.57
0.35 -0.11 4.94 95.09 0.20 4.09 1.03 23.12 5.91 2.92 28,706.63 5,084.96
0.35 -0.12 4.93 95.02 0.19 4.08 1.03 23.16 5.92 2.92 28,695.03 5,087.17
0.35 -0.13 4.93 94.96 0.19 4.08 1.03 23.19 5.92 2.93 28,684.25 5,089.23
0.35 -0.14 4.93 94.91 0.19 4.08 1.03 23.22 5.92 2.93 28,674.20 5,091.15
0.35 -0.15 4.93 94.85 0.19 4.07 1.02 23.24 5.93 2.93 28,664.82 5,092.95
0.35 -0.16 4.93 94.80 0.19 4.07 1.02 23.27 5.93 2.93 28,656.04 5,094.63
0.40 -0.10 4.94 95.31 0.20 4.10 1.04 23.02 591 2.92 28,744.13 5,077.81
0.40 -0.11 4.94 95.23 0.20 4.09 1.03 23.06 5.91 2.92 28,731.00 5,080.31
0.40 -0.12 4.94 95.16 0.20 4.09 1.03 23.09 591 2.92 28,718.80 5,082.64
0.40 -0.13 4.94 95.10 0.20 4.09 1.03 23.12 591 2.92 28,707.44 5,084.80
0.40 -0.14 4.93 95.04 0.19 4.08 1.03 23.15 5.92 2.92 28,696.84 5,086.82
0.40 -0.15 4.93 94.98 0.19 4.08 1.03 23.18 5.92 2.93 28,686.93 5,088.72
0.40 -0.16 4.93 94.92 0.19 4.08 1.03 2321 5.92 2.93 28,677.63 5,090.49
0.45 -0.10 4.94 95.44 0.20 4.10 1.04 22.95 5.90 291 28,767.88 5,073.29
0.45 -0.11 4.94 95.36 0.20 4.10 1.04 22.99 5.90 291 28,754.19 5,075.90
0.45 -0.12 4.94 95.29 0.20 4.10 1.04 23.03 591 2.92 28,741.47 5,078.32
0.45 -0.13 4.94 95.22 0.20 4.09 1.03 23.06 591 2.92 28,729.60 5,080.58
0.45 -0.14 4.94 95.16 0.20 4.09 1.03 23.09 5.91 2.92 28,718.50 5,082.69
0.45 -0.15 4.94 95.10 0.20 4.09 1.03 23.12 5.91 2.92 28,708.11 5,084.67
0.45 -0.16 4.93 95.04 0.19 4.08 1.03 23.15 5.92 2.92 28,698.35 5,086.54
0.50 -0.10 4.94 95.57 0.20 4.11 1.04 22.89 5.89 201 28,790.47 5,069.01
0.50 -0.11 4.94 95.49 0.20 4.10 1.04 22.93 5.90 291 28,776.31 5,071.69
0.50 -0.12 4.94 95.42 0.20 4.10 1.04 2297 5.90 291 28,763.11 5,074.20
0.50 -0.13 4.94 95.34 0.20 4.10 1.04 23.00 5.90 291 28,750.79 5,076.54
0.50 -0.14 4.94 95.28 0.20 4.09 1.04 23.03 5.91 2.92 28,739.25 5,078.74
0.50 -0.15 4.94 95.22 0.20 4.09 1.03 23.06 5.91 2.92 28,728.43 5,080.80
0.50 -0.16 4.94 95.16 0.20 4.09 1.03 23.09 591 2.92 28,718.26 5,082.74
0.55 -0.10 4.95 95.70 0.20 4.11 1.05 22.83 5.89 2.90 28,811.99 5,064.93
0.55 -0.11 4.94 95.61 0.20 4.11 1.04 22.87 5.89 291 28,797.41 5,067.69
0.55 -0.12 4.94 95.53 0.20 4.11 1.04 2291 5.90 291 28,783.80 5,070.27
0.55 -0.13 4.94 95.46 0.20 4.10 1.04 2295 5.90 291 28,771.07 5,072.69
0.55 -0.14 4.94 95.39 0.20 4.10 1.04 22.98 5.90 291 28,759.14 5,074.95
0.55 -0.15 4.94 95.33 0.20 4.10 1.04 23.01 5.90 2.92 28,747.93 5,077.09
0.55 -0.16 4.94 95.27 0.20 4.09 1.04 23.04 591 2.92 28,737.38 5,079.09
0.60 -0.10 4.95 95.81 0.20 4.12 1.05 22,78 5.88 2.90 28,832.52 5,061.04
0.60 -0.11 4.95 95.73 0.20 4.12 1.05 22.82 5.89 2.90 28,817.57 5,063.87
0.60 -0.12 4.94 95.65 0.20 4.11 1.05 22.86 5.89 291 28,803.60 5,066.52
0.60 -0.13 4.94 95.57 0.20 4.11 1.04 22.89 5.89 291 28,790.51 5,069.00
0.60 -0.14 4.94 95.50 0.20 4.11 1.04 22.93 5.90 291 28,778.23 5,071.33
0.60 -0.15 4.94 95.44 0.20 4.10 1.04 22.96 5.90 291 28,766.67 5,073.52
0.60 -0.16 4.94 95.37 0.20 4.10 1.04 22.99 5.90 291 28,755.78 5,075.59

The

Table D.1: Effect of changing PHOSPHO kinetic orders 1. Simulations were performed
with slight changes to the kinetic order parameters fphospho4D and fphosphog for the reaction

PHOSPHO. Metabolite steady state values, in uM, for each of these simulations is shown.
dA pool represents the pooled metabolites dAdo, dAMP, dADP and dATP, whilst dG pool

refers to the group consisting of dGMP, dGDP and dGTP.
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FonosphodDP  FohosphoaTP _ HXpool  Xa  Guopool UA  Ado  AMP ADP ATP GMP GDP _ GTP

0.30 -0.10 9.68 4.84 4.86 99.21 0.53 199.09 417.70 2,096.67 24.66 65.87 296.14
0.30 -0.11 9.67 4.84 4.86 99.19 0.53 198.92 417.92 2,088.67 24.66 66.13 295.64
0.30 -0.12 9.66 4.84 4.86 99.18 0.53 198.77 418.11 2,081.30 24.65 66.37 295.17
0.30 -0.13 9.65 4.83 4.85 99.16 0.53 198.63 418.30 2,074.48 24.65 66.60 294.74
0.30 -0.14 9.64 4.83 4.85 99.15 0.53 198.50 418.47 2,068.15 24.65 66.81 294.34
0.30 -0.15 9.63 4.83 4.85 99.14 0.53 198.38 418.63 2,062.27 24.64 67.00 293.97
0.30 -0.16 9.62 4.83 4.85 99.13 0.53 198.26 418.78 2,056.78 24.64 67.19 293.62
0.35 -0.10 9.70 4.85 4.86 99.25 0.53 199.45 417.22 2,114.59 24.67 65.29 297.26
0.35 -0.11 9.69 4.85 4.86 99.23 0.53 199.28 417.45 2,106.05 24.67 65.56 296.73
0.35 -0.12 9.68 4.84 4.86 99.21 0.53 199.12 417.66 2,098.16 24.66 65.82 296.23
0.35 -0.13 9.67 4.84 4.86 99.20 0.53 198.97 417.86 2,090.85 24.66 66.06 295.77
0.35 -0.14 9.66 4.84 4.86 99.18 0.53 198.83 418.04 2,084.07 24.66 66.28 295.35
0.35 -0.15 9.65 4.84 4.85 99.17 0.53 198.70 418.21 2,077.75 24.65 66.49 294.95
0.35 -0.16 9.64 4.83 4.85 99.16 0.53 198.57 418.37 2,071.85 24.65 66.68 294.58
0.40 -0.10 9.72 4.86 4.86 99.28 0.53 199.80 416.77 2,131.72 24.68 64.75 298.33
0.40 -0.11 9.71 4.85 4.86 99.27 0.53 199.62 417.01 2,122.69 24.67 65.03 297.77
0.40 -0.12 9.70 4.85 4.86 99.25 0.53 199.45 417.23 2,114.34 24.67 65.30 297.25
0.40 -0.13 9.69 4.85 4.86 99.23 0.53 199.29 417.44 2,106.60 24.67 65.55 296.76
0.40 -0.14 9.68 4.84 4.86 99.22 0.53 199.14 417.63 2,099.39 24.66 65.78 296.31
0.40 -0.15 9.67 4.84 4.86 99.20 0.53 199.00 417.81 2,092.67 24.66 66.00 295.89
0.40 -0.16 9.66 4.84 4.86 99.19 0.53 198.88 417.98 2,086.38 24.66 66.20 295.49
0.45 -0.10 9.74 4.86 4.86 99.32 0.53 200.14 416.34 2,148.12 24.69 64.24 299.34
0.45 -0.11 9.73 4.86 4.86 99.30 0.53 199.94 416.59 2,138.65 24.68 64.53 298.76
0.45 -0.12 9.72 4.86 4.86 99.28 0.53 199.77 416.82 2,129.88 24.68 64.80 298.21
0.45 -0.13 9.71 4.85 4.86 99.26 0.53 199.60 417.03 2,121.73 24.67 65.06 297.71
0.45 -0.14 9.70 4.85 4.86 99.25 0.53 199.45 417.23 2,114.14 24.67 65.30 297.23
0.45 -0.15 9.69 4.85 4.86 99.23 0.53 199.30 417.42 2,107.05 24.67 65.53 296.79
0.45 -0.16 9.68 4.84 4.86 99.22 0.53 199.16 417.60 2,100.42 24.66 65.75 296.37
0.50 -0.10 9.76 4.87 4.86 99.35 0.53 200.45 415.93 2,163.83 24.69 63.75 300.32
0.50 -0.11 9.75 4.87 4.86 99.33 0.53 200.25 416.19 2,153.97 24.69 64.06 299.71
0.50 -0.12 9.74 4.86 4.86 99.31 0.53 200.07 416.43 2,144.82 24.68 64.34 299.14
0.50 -0.13 9.73 4.86 4.86 99.29 0.53 199.90 416.65 2,136.30 24.68 64.60 298.61
0.50 -0.14 9.72 4.86 4.86 99.28 0.53 199.74 416.86 2,128.36 24.68 64.85 298.12
0.50 -0.15 9.71 4.85 4.86 99.26 0.53 199.58 417.05 2,120.93 24.67 65.09 297.66
0.50 -0.16 9.70 4.85 4.86 99.25 0.53 199.44 417.24 2,113.97 24.67 65.31 297.22
0.55 -0.10 9.78 4.88 4.86 99.38 0.53 200.75 415.54 2,178.89 24.70 63.30 301.24
0.55 -0.11 9.77 4.87 4.86 99.36 0.53 200.55 415.80 2,168.68 24.69 63.61 300.61
0.55 -0.12 9.76 4.87 4.86 99.34 0.53 200.36 416.05 2,159.18 24.69 63.90 300.03
0.55 -0.13 9.75 4.87 4.86 99.32 0.53 200.18 416.28 2,150.34 24.69 64.17 299.48
0.55 -0.14 9.74 4.86 4.86 99.31 0.53 200.01 416.50 2,142.07 24.68 64.42 298.97
0.55 -0.15 9.73 4.86 4.86 99.29 0.53 199.86 416.70 2,134.34 24.68 64.66 298.49
0.55 -0.16 9.72 4.86 4.86 99.27 0.53 199.71 416.89 2,127.08 24.68 64.89 298.04
0.60 -0.10 9.80 4.88 4.86 99.41 0.53 201.04 415.17 2,193.35 24.71 62.87 302.13
0.60 -0.11 9.79 4.88 4.86 99.39 0.53 200.83 415.44 2,182.81 24.70 63.18 301.48
0.60 -0.12 9.78 4.87 4.86 99.37 0.53 200.63 415.69 2,173.01 24.70 63.47 300.88
0.60 -0.13 9.76 4.87 4.86 99.35 0.53 200.45 415.93 2,163.86 24.69 63.75 300.32
0.60 -0.14 9.75 4.87 4.86 99.33 0.53 200.28 416.15 2,155.30 24.69 64.01 299.79
0.60 -0.15 9.74 4.86 4.86 99.32 0.53 200.12 416.36 2,147.28 24.68 64.26 299.29
0.60 -0.16 9.73 4.86 4.86 99.30 0.53 199.97 416.56 2,139.75 24.68 64.50 298.83

Table D.2: Effect of changing PHOSPHO kinetic orders 2. Simulations were performed
with slight changes to the kinetic order parameters f,nospnoap @nd fpnospnoat for the reaction
PHOSPHO. Metabolite steady state values, in pM, for each of these simulations is shown.
HX pool represents the pooled metabolites HX, Ino and dlno, whilst Guo pool refers to the
group consisting of Gua, Guo and dGuo.
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Oude = 2079 0y00 = 0.0099  0pgpy = 10.04 0,3 = 0.2
Oampd = 5.64 Ogprt = 1.0 Varna = 1985.63 Ugsti = 8.0

vgsuc — 8.0 Udada — 0.2 Uden — 2.4 Udgnuc = 0.1
Odnaa = 10.04 Udnag =6.83 Ugdml =6.83 Ugdrnr =0.1
Ugmpr — 0.51 vgmps - 1.6 Ugnuc - 4.81 ngrt - 3.75

Uorna = 1323.54  vgyy = 1.15 Upprt = 3.68 Uped = 1.19
Upre = 0.047 Vimpdn = 1.6 Vinue = 2.64 Umat = 14.99
Vpolyam = 1.0 vprpps = 20.88 Vpyr = 10.04  Uppge = 1985.56

Urnag = 1323.61  Upraps = 13.98 Uyge = 2.31 Uve = 0.031

Vg = 2.31

Table D.3: Steady state flux values from the Curto et al. (1998b) model. Values are in
umol min~! (Body weight)~!.

Flux Value in Curto et al. (1998b) model Adjusted value
Vada 2.07949 2.08137

Venuc 4.80719 4.8053

Vgua 1.15436 1.15246

Ohre 0.0473136 0.049198

Uxe 0.0307238 0.028825

Table D.4: Adjusted flux values from the Curto et al. (1998b) model. Listed are the steady
state Curto et al. (1998b) model flux values and the adjusted values that ensure zero net flux
in and out of the adenylate & adenosine and guanylate pools at steady state, as determined
by solving the two sets of simultaneous equations as detailed in Table 3.6. Values are in
umol min~! (Body weight)~!.

Vudek = 20233 0pgor = 12.075 Vanue = 0.18
Vguk = 1323.64  Dpgpp = 133154 0pppspno = 6713.65

Table D.5: Unscaled initial flux values for the new reactions for the final model. Values were
computed by solving the two sets of steady state equations for the adenylate & adenosine and
guanylate pools, as detailed in Table 3.6. All values are in umol min—! (Body weight) 1.
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Appendix E

This appendix contains two tables relating to model output and nine sensitivity analysis
figures. The first table details the eigenvalues for the new model (version 3) along with
those from the Curto et al. (1998b) model, whilst the second table shows the consistency
in concentration of certain variables in the Curto et al. (1998b) model. The first five
graphs show the parameter sensitivities for each flux in the system with respect to the
kinetic orders, whilst the next three graphs show the equivalent sensitivities for each of
the dependent variables in the network. Lastly, the final figure details the logarithmic
gains for all the metabolites and fluxes in the system with respect to both independent
variables.

Final model (version 3) Curto et al. (1998b) model

Real part Imaginary part Real part Imaginary part
-1.440E-06 0 -5.080E-02 0
-6.027E-06 -2.482E-06 -2.890E-03 0
-6.027E-06 2.482E-06 -1.380E-04 0
-2.037E-04 0 -1.240E-03 0
-5.382E-04 0 -1.62E-02 0
-5.470E-04 0 -4.950E-02 3.170E-04
-5.591E-04 0 -4.950E-02 -3.170E-04
-2.743E-03 0 -2.650E-01 0
-2.962E-03 0 -2.440E-01 0
-4.393E-03 0 -3.710E-01 0
-8.003E-03 0 -6.160E-01 0
-8.847E-03 0 -7.430E-01 0
-1.660E-02 0 -1.491E4-00 0
-3.167E-02 0 -5.533E+00 0
-3.928E-02 0 -3.630E+00 0
-6.129E-02 -2.476E-03 -3.960E+01 0
-6.129E-02 2.476E-03

-1.029E-01 0

-1.554E-01 0

-2.5634E-01 0

-4.358E-01 0

Table E.1: Model eigenvalues. Eigenvalues for the new model were calculated using COPASI
(Hoops et al., 2006), whilst those from the Curto et al. (1998b) model were detailed in Curto
et al. (1997).
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Figure E.1: Parameter sensitivities for fluxes 1. Sensitivities were calculated for all fluxes
with respect to all kinetic order parameters.
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Figure E.3: Parameter sensitivities for fluxes 3. Sensitivities were calculated for all fluxes
with respect to all kinetic order parameters.
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Figure E.4: Parameter sensitivities for fluxes 4. Sensitivities were calculated for all fluxes
with respect to all kinetic order parameters.
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Figure E.5: Parameter sensitivities for fluxes 5. Sensitivities were calculated for all fluxes
with respect to all kinetic order parameters.
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Figure E.7: Parameter sensitivities for metabolites 2. Sensitivities were calculated for all
metabolites with respect to all kinetic order parameters. Guo pool represents the pooled
metabolites Gua, Guo and dGuo, whilst HX pool refers to the group consisting of HX, Ino
and dlno.
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Figure E.8: Parameter sensitivities for metabolites 3. Sensitivities were calculated for all
metabolites with respect to all kinetic order parameters.
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Variable Metabolite Normal Externally set Transitional extreme Transitional extreme

name concentration concentration value of adenylates value of guanylates
(nM) (nM) (X4) (uM) (X8) (uM)
X1 PRPP 5 105 2504 (max) 405 (max)
X IMP 100 200 2536 (max) 401 (max)
X IMP 100 1 2454 (min) 400
X3 S-AMP 0.2 100.2 2595 (max) 397 (min)
X5 SAM 4 104 2589 (max) 401 (max)
Xs Ade 1 101 2591 (max) 394 (min)
X7 XMP 25 125 2416 (min) 425 (max)
Xo dA pool 6 106 2524 (max) 399 (min)
X10 dG pool 3 103 2402 (min) 410 (max)
Xy RNA 28600 28700 2514 (max) 409 (max)
X4 RNA 28600 28500 2478 (min) 393 (min)
X13 HX pool 10 110 2515 (max) 399 (min)
X15 Guo pool 5 105 2432 (min) 417 (max)

Table E.2: Consistency of X4 and Xg metabolites in the Curto et al. (1998b) model. Initial concentrations of the dependent variables
were increased or decreased (where appropriate) by 100 pM and the largest deviation produced in these concentrations before the system
returned to its steady state was recorded. Data is from Curto et al. (1997). dA pool represents the pooled metabolites dAdo, dAMP,
dADP and dATP, whilst dG pool indicates the grouping: dGMP, dGDP and dGTP. HX pool equates to the collective species HX, Ino and
dIno, whilst Guo pool refers to the group consisting of Gua, Guo and dGuo.



Appendix F

Contained in this appendix are two tables that detail parameter sets that produced
acceptable metabolite concentrations in the parameter search simulations.

Parameter multiplication factors Metabolite concentrations

(D)ADA GMPR I/A/GNUC A/GDRNR MAT TRANS AMPD ASLI PRPP IMP ADP ATP GTP
0.333 3.0 2.0 15 2.0 0.5 15 0.333 4.640 87.617 263.769 1,534.740 75.798
0.333 3.0 2.0 15 2.0 0.5 15 0.5 4.640 87.617 263.769 1,534.732 75.798
0.333 3.0 2.0 15 2.0 0.5 15 0.8 4.640 87.617 263.769 1,534.739 75.798
0.333 3.0 2.0 1.5 2.0 0.5 15 15 4.640 87.617 263.769 1,534.729 75.798
0.333 3.0 2.0 15 2.0 0.5 15 2.0 4.640 87.617 263.769 1,5634.741 75.798
0.333 3.0 2.0 15 2.0 0.5 15 3.0 4.640 87.617 263.769 1,534.739 75.798
0.333 3.0 2.0 3.0 15 0.333 15 0.333 4.630 87.293 265.311 1,585.201 75.743
0.333 3.0 2.0 3.0 15 0.333 15 0.5 4.630 87.293 265.311 1,585.209 75.743
0.333 3.0 2.0 3.0 1.5 0.333 1.5 0.8 4.630 87.293 265.311 1,585.201 75.743
0.333 3.0 2.0 3.0 15 0.333 15 15 4.630 87.293 265.311 1,585.201 75.743
0.333 3.0 2.0 3.0 15 0.333 15 2.0 4.630 87.293 265.311 1,585.213 75.743
0.333 3.0 2.0 3.0 15 0.333 15 3.0 4.630 87.293 265.311 1,585.208 75.743
0.5 3.0 2.0 0.333 2.0 0.5 15 0.333 4.614 87.199 270.042 1,659.730 75.853
0.5 3.0 2.0 0.333 2.0 0.5 15 0.5 4.614 87.199 270.042 1,659.731 75.853
0.5 3.0 2.0 0.333 2.0 0.5 15 0.8 4.614 87.199 270.042 1,659.731 75.853
0.5 3.0 2.0 0.333 2.0 0.5 1.5 1.5 4.614 87.199 270.042 1,659.730 75.853
0.5 3.0 2.0 0.333 2.0 0.5 15 2.0 4.614 87.199 270.042 1,659.730 75.853
0.5 3.0 2.0 0.333 2.0 0.5 15 3.0 4.614 87.199 270.042 1,659.729 75.853
0.5 3.0 2.0 0.5 2.0 0.5 15 0.333 4.633 87.491 265.266 1,565.595 75.726
0.5 3.0 2.0 0.5 2.0 0.5 15 0.5 4.633 87.491 265.266 1,565.596 75.726
0.5 3.0 2.0 0.5 2.0 0.5 15 0.8 4.633 87.491 265.266 1,565.594 75.726
0.5 3.0 2.0 0.5 2.0 0.5 15 15 4.633 87.491 265.266 1,565.594 75.726
0.5 3.0 2.0 0.5 2.0 0.5 15 2.0 4.633 87.491 265.266 1,565.595 75.726
0.5 3.0 2.0 0.5 2.0 0.5 15 3.0 4.633 87.491 265.266 1,565.595 75.726
0.5 3.0 2.0 0.8 2.0 0.5 15 0.333 4.665 87.992 257.335 1,417.745 75.501
0.5 3.0 2.0 0.8 2.0 0.5 15 0.5 4.665 87.992 257.335 1,417.739 75.501
0.5 3.0 2.0 0.8 2.0 0.5 1.5 0.8 4.665 87.992 257.335 1,417.740 75.501
0.5 3.0 2.0 0.8 2.0 0.5 15 15 4.665 87.992 257.335 1,417.743 75.501
0.5 3.0 2.0 0.8 2.0 0.5 15 2.0 4.665 87.992 257.335 1,417.732 75.501
0.5 3.0 2.0 0.8 2.0 0.5 1.5 3.0 4.665 87.992 257.335 1,417.740 75.501
0.5 3.0 2.0 15 15 0.5 15 0.333 4.757 91.091 259.918 1,415.972 79.085
0.5 3.0 2.0 1.5 15 0.5 15 0.5 4.757 91.091 259.918 1,415.972 79.085
0.5 3.0 2.0 15 15 0.5 15 0.8 4.757 91.091 259.918 1,415.977 79.085
0.5 3.0 2.0 15 15 0.5 15 15 4.757 91.091 259.918 1,415.980 79.085
0.5 3.0 2.0 1.5 15 0.5 15 2.0 4.757 91.091 259.918 1,415.981 79.085
0.5 3.0 2.0 15 15 0.5 15 3.0 4.757 91.091 259.918 1,415.977 79.085
0.5 3.0 2.0 2.0 15 0.333 15 0.333 4.630 87.258 265.213 1,585.545 75.616
0.5 3.0 2.0 2.0 15 0.333 15 0.5 4.630 87.258 265.212 1,585.551 75.616
0.5 3.0 2.0 2.0 15 0.333 15 0.8 4.630 87.258 265.212 1,585.556 75.616
0.5 3.0 2.0 2.0 15 0.333 15 15 4.630 87.258 265.212 1,585.562 75.616
0.5 3.0 2.0 2.0 15 0.333 15 2.0 4.630 87.258 265.212 1,585.549 75.616
0.5 3.0 2.0 2.0 15 0.333 15 3.0 4.630 87.258 265.212 1,585.564 75.617
0.8 3.0 2.0 0.333 15 0.5 15 0.333 4.740 90.803 264.221 1,496.044 79.107
0.8 3.0 2.0 0.333 1.5 0.5 1.5 0.5 4.740 90.803 264.221 1,496.045 79.107
0.8 3.0 2.0 0.333 15 0.5 15 0.8 4.740 90.803 264.221 1,496.045 79.107
0.8 3.0 2.0 0.333 15 0.5 15 15 4.740 90.803 264.221 1,496.046 79.107
0.8 3.0 2.0 0.333 15 0.5 15 2.0 4.740 90.803 264.221 1,496.046 79.107
0.8 3.0 2.0 0.333 1.5 0.5 1.5 3.0 4.740 90.803 264.221 1,496.045 79.107
15 3.0 2.0 0.333 15 0.333 15 0.333 4.652 87.509 258.912 1,473.071 75.025
15 3.0 2.0 0.333 15 0.333 15 0.5 4.652 87.509 258.912 1,473.071 75.025
15 3.0 2.0 0.333 15 0.333 15 0.8 4.652 87.509 258.912 1,473.071 75.025
15 3.0 2.0 0.333 15 0.333 15 15 4.652 87.509 258.912 1,473.071 75.025
15 3.0 2.0 0.333 15 0.333 15 2.0 4.652 87.509 258.912 1,473.071 75.025
15 3.0 2.0 0.333 15 0.333 15 3.0 4.652 87.509 258.912 1,473.071 75.025

Table F.1: Parameter grid search results. Simulations were conducted whereby the rate
constants for specific reactions were multiplied by multiplication factors and the resulting
concentrations of specific metabolites were examined. The parameter sets shown are those
that produce metabolite concentrations that lie within predefined ranges as detailed in Ta-
ble 3.14. Parameter multiplication factors for the respective rate constants are shown along
with the relevant resultant metabolite concentrations, in pM.
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08T

Parameter multiplication factors Metabolite concentrations

(D)ADA GMPR I/A/GNUC A/GDRNR MAT TRANS AMPD ASLI PRPPS DEN ASUC GMPS H/GPRT APRT IMPDH RSP  PRPP IMP ADP ATP GTP
Parameter grid search large-scale simulation run 1
2.328 0.919 1.973 0.696 1.420 1.487 2.441 1.135 0.804 0.452 1.704 0.343 0.607 2.962 0.720 1.960 7.647 98.109 259.983 1587.868 64.547
2.679 2.913 2.466 0.417 1.301 1.977 0.624 2.172 0.894 0.456 0.952 0.513 0.954 0.570 0.720 1.850 7.329 99.097 245.400 1315.577 63.303
1.568 1.981 0.676 2.186 2.644 1.679 1.598 2.843 0.801 0.306 1.463 0.873 0.638 1.885 0.720 1.440 7.334 100.365 256.963 1336.293 74.719
0.813 2.272 1.870 2.933 2.398 1.539 2.001 2.401 0.750 0.335 1.307 0.600 0.629 1.107 0.720 1.858 7.500 91.076 236.140 1296.789 55.328

Parameter grid search large-scale simulation run 2

0.402 1.310 1.872 2.090 0.710 2.382 1.506 0.384 0.816 0.508 0.903 0.749 0.447 1.698 0.955 1.667 7.557 104.825 259.136 1410.293 73.836
0.369 1.601 1.984 0.763 0.447 1.908 0.896 2.141 0.912 0.379 0.469 1.304 0.610 0.990 0.975 1.262 7.445 109.664 232.730 1247.919 57.536

Parameter grid search large-scale simulation run 3

2.602 0.931 1.414 0.476 1.759 0.957 1.010 0.808 0.868 0.549 0.818 0.574 0.466 0.607 0.720 1.363 6.943 100.526 261.428 1517.520 72.130
2.405 0.504 2.863 0.934 2.030 0.804 0.952 1.852 1.066 0.511 0.779 0.776 0.842 2.589 0.720 1.431 6.944 91.314 265.882 1811.106 61.421
2.170 1.584 1.265 0.742 2.454 2.840 2.443 0.379 1.078 0.821 2.672 0.710 0.487 0.678 0.720 1.276 7.160 87.419 264.705 1539.762 66.627
2.692 0.970 2.182 0.463 0.960 0.436 0.713 0.813 1.042 0.346 0.463 0.671 0.690 0.868 0.720 1.238 7.349 90.219 269.510 1815.656 67.701
0.400 0.755 2.209 2.942 1.645 1.667 0.615 1.786 0.880 0.306 0.509 0.346 0.758 1.101 0.720 1.782 7.825 91.625 269.227 1551.474 75.838
1.796 1.753 1.474 1.422 0.692 1.746 1.419 2.981 0.916 0.321 0.976 0.650 0.441 2131 0.720 1.254 7.906 90.590 244.699 1448.498 58.348
0.741 0.650 1.747 2.670 0.633 2.832 2.536 0.418 0.882 0.501 1.522 0.507 0.578 2.809 0.720 1.343 7.013 98.938 257.668 1430.181 70.555
1.794 0.512 1.514 2.491 2.855 2.168 1.839 1.804 0.948 0.836 1.862 0.506 0.454 2.029 0.720 1.530 7.197 99.164 257.297 1418.493 67.002
2.526 1.088 1.786 0.511 1.381 1.760 0.533 0.845 0.865 0.542 0.850 0.356 0.549 0.916 0.720 1.716 7.501 99.267 267.666 1739.216 65.137
2.053 0.919 1.970 0.980 2.146 2.331 0.778 2.898 0.995 0.743 1.283 0.703 0.555 2.234 0.720 1.611 7.489 103.410 261.954 1618.411 61.841
2.328 0.456 1.812 2.125 0.766 0.984 1.276 2.615 0.763 0.502 0.854 0.647 0.505 0.373 0.720 1.804 7.282 100.684 263.293 1662.029 67.429
0.857 0.944 1.559 2.044 1.371 1.399 0.879 0.753 0.750 0.477 0.639 0.595 0.466 0.306 0.720 1.663 7.137 100.480 261.369 1607.521 66.678
1.382 0.350 2.634 2.876 1.830 0.861 1.455 0.639 0.893 0.384 0.997 0.830 0.732 1.986 0.720 1.975 7.786 89.767 259.895 1507.294 69.336
0.939 0.362 2.417 2.518 0.312 0.996 1.863 2.719 0.934 0.303 0.998 0.310 0.751 2.640 0.720 1.500 7.762 93.201 255.832 1617.714 62.535
2.068 0.392 2.484 1.678 2.608 2.150 2501 0.475 0.994 0.679 2.339 0.740 0.738 1.879 0.720 1.798 7.243 88.429 260.156 1477.886 65.802
1.614 0.307 2.811 0.417 1.195 2.443 0.927 0.379 1.165 0.648 0.998 0.996 0.773 0.634 0.720 1.337 7.278 101.930 258.379 1529.448 63.769
1.193 1.245 2.591 0.904 2.894 1.862 0.477 2.288 0.956 0.535 0.789 0.337 0.797 2.989 0.720 1.797 7.442 103.058 259.885 1663.115 58.167
1.649 1.491 1.830 1.779 1.033 1.275 2.503 2.137 0.782 0.397 1.461 0.392 0.505 0.683 0.720 1.756 7.611 95.086 259.746 1773.156 57.865
1.473 0.940 1.971 0.943 1.154 1.844 0.575 1.764 0.977 0.334 0.722 0.824 0.690 2.854 0.720 1.481 7.839 88.273 269.989 1629.361 72.871
2.784 0.992 2.975 0.752 0.430 1.857 0.990 0.301 1.167 0.362 0.793 0.503 0.864 0.654 0.720 1.283 7.827 91.656 244.335 1409.786 59.164
0.570 1.222 2.450 0.790 2.208 2.980 0.789 1.323 0.959 0.370 0.894 0.893 0.833 2.854 0.720 1.720 7.841 98.278 266.968 1785.779 57.794
1.234 0.639 2.182 1.329 1.718 2.350 1.404 2.009 0.933 0.541 1.219 0.718 0.594 2.757 0.720 1.489 7.284 91.479 245.407 1432.942 56.063

Table F.2: Parameter grid search large-scale simulation results. Simulations were conducted whereby the rate constants for specific
reactions were multiplied by multiplication factors and the resulting concentrations of specific metabolites were examined. The parameter
sets shown are those that produce metabolite concentrations that lie within predefined ranges as detailed in Table 3.14. Parameter
multiplication factors for the respective rate constants are shown along with the relevant resultant metabolite concentrations, in pM.



Appendix G

This appendix contains two tables and two figures relating to HPLC calibration. The first
table details the concentration ranges used for each metabolite from which the calibration
curves were constructed. These calibration curves are shown in the following two figures,
whilst the final table shows the calibration equations obtained from these curves.

Metabolite Concentration range (pM) Cell est. (pM)
Adenosine 2.0 6.3 20.0 632 200.0 T
AMP 10.0¥ 31.6 100.0 316.2 1000.0 24.0
ADP 10.0 31.6* 100.0 316.2 1000.0 23.0
ATP 50.0 158.1 499.9 1581.0 5000.0 135.0
HX 3.0 95 30,0 949 300.0 11.0
IMP 2.0 6.3 20.0 632 200.0 4.0
Guanosine 2.0 6.3 20.0 63.2 200.0 T
GMP 0.7 2.4 7.5 23.7 75.0 2.0
GDP 3.0 9.5 30,0 949 300.0 10.0
GTP 20.0 632 200.0 632.4 2000.0 69.0
XMP 2.0 6.3 20.0 632 200.0 0.4%

Table G.1: Metabolite concentration ranges used for HPLC calibration curves. Metabolite
concentrations (as determined via HPLC) from extracts of HL60 cells were used to esti-
mate suitable concentration ranges for the construction of calibration curves. * These sam-
ples had technical issues so results from these were excluded from the calibration curves.
7 Concentrations for these metabolites were not detectable via HPLC in the HL60 cell ex-
tract whereas 1 was barely detectable in this sample, thus calibration standards for these three
metabolites were selected based upon reasonable estimates.
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Figure G.1: HPLC calibration curves for Ado, AMP, ADP, ATP, HX and IMP. The curves
were constructed via HPLC analysis of the calibration standards as shown in Table G.1.
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Figure G.2: HPLC calibration curves for Guo, GMP, GDP, GTP and XMP. The curves were
constructed via HPLC analysis of the calibration standards as shown in Table G.1.
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Metabolite Calibration equation

Adenosine y =092+ 0.97x
AMP y = 0.59 + 0.99x
ADP y=047 +x
ATP y=081+x

HX y=036+x
IMP y=0.53+x
Guanosine y = 0.69 + 0.94x
GMP y =0.77+0.99x
GDP y=18+x

GTP y=0.55+x
XMP y = 0.63 + 0.98x

Table G.2: HPLC calibration equations. The equation of the line of best fit for the calibration
curve for each purine (see Figures G.1 and G.2) is shown. Calibration standards as shown
in Table G.1 were analysed via HPLC and equations were calculated using the programming
language R, version 4.0.3 (R Development Core Team, 2021).
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Appendix H

Contained in this appendix are five figures of experimental data. The first shows the
HPLC chromatograms for the PRPPS assay time course, whilst the second shows the
change in AMP concentration over this time course. The third figure is the gating strategy
used for the flow cytometry analysis, whilst the fourth figure shows the effect of adding
ATRA and MZ on HL60 cells. The last figure shows the HPLC chromatograms for the
HL60 cell differentiation experiments.

Reaction time 0 min Reaction time 5 min
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400 400
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0 —fM N ‘L—J{ 0 *«U
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Figure H.1: Chromatograms for PRPPS assay time course. To determine the rate of reaction
for the enzyme PRPPS, HL60 cell protein extracts were incubated with the reaction substrates
for the time periods 0, 5, 10, 20, 30, and 40 min. AMP production was then assessed via
HPLC and used to determine the rate of reaction. AMP, ATP and Ap5A standards were used
to determine peak assignment as shown in grey.
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Figure H.2: Change in AMP concentration over PRPPS assay time course. The concentra-
tion of AMP was assessed via HPLC over the time course which consisted of the time points:
0, 5, 10, 20, 30, and 40 min.
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Figure H.3: Example flow cytometry gating strategy. Cells were gated as indicated to remove

debris and doublets.
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Figure H.4: Effect of ATRA plus MZ. HL60 cells were incubated for three days in the
presence of either 1 yM ATRA, 17 pyM MZ or both, or left untreated. The percentage of
differentiated cells was determined via expression of CD11b, as assessed via flow cytometry.
Results courtesy of G. Thomas (unpublished data) from n=1 experiments are shown.
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Figure H.5: HPLC chromatograms from HL60 cell differentiation experiments. Cells were incubated for three days in the presence of
1 pM ATRA, 1 uyM MPA or 50 pM MZ or combinations, or left untreated. 50 pM guanosine was added where indicated. Purine nucleotide
levels were assessed via HPLC, with purine standards used to determine peak assignment as shown in grey.



Code Appendix

This appendix contains the Matlab code for the final model that was used for simulations.

function Model 3() %GMA version of expanded model with PRPPS scalability

%Time
t0 = 0;
tf = 10000000;

step = t£/1000;
tspan = [tO:step:tf];
%Initial concentrations

%The entries 4 and 8 have been left blank, as these corresponded to the
%A and T pools in the original model, thus the same indexing is retained

X0(1,1) = 5; %PRPP

X0(2,1) = 100; %IMP

X0(3,1) = 0.2; %S—AMP
X0(5,1) = 4; %hSAM

X0(6,1) = 1; %Ade

X0(7,1) = 25; %XMP

X0(9,1) = 6; %dAdo dAMP dADP dATP
X0(10,1) = 3; %dGMP dGDP dGTP
X0(11,1) = 28600; %RNA

X0(12,1) = 5160; %DNA

X0(13,1) = 10; %HX Ino dIno
X0(14,1) = 5; %Xa

X0(15,1) = 5; %Gua Guo dGuo
X0(16,1) = 100; %Uric Acid
X0(17,1) = 18; %R5P

X0(18,1) = 1400; %Pi

X0(19,1) = 0.5; %Ado

X0(20,1) = 200; %AMP

X0(21,1) = 400; %ADP

X0(22,1) = 1900; %ATP

X0(23,1) = 25; %GMP

X0(24,1) = 75; %GDP

X0(25,1) = 300; %GTP
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J#Reaction parameters

%ha is a vector of the rate constants - scaled based on PRPPS assay
hand to umol min~-1 (1079 cells)”-1. prpps scaling = 0.23/20.8826
»f is a matrix of kinetic orders

a(1,1) = 0.0449046; %ada
£(1,19) = 0.97; %fadadA
a(2,1) = 0.000109213; %ade
£f(2,6) = 0.55; %fade6b
a(3,1) = 0.0362616; %adna
£(3,9) = 0.42; %fdnap9
£(3,10) = 0.33; %fdnap10

a(4,1) = 0.000800949; %adrnr

£f(4,21) = 0.1; Y%fadrnr4D
£(4,9) = -0.3; %fadrnr9
£(4,10) = 0.87; %fadrnri10

a(5,1) = 0.00208149; Y%ampd

£(5,20) = 0.8; %fampd4M
£(5,25) = -0.03; %fampd8T
£(5,18) = -0.1; Y fampd18
a(6,1) = 0.340758; haprt
f(6,1) = 0.5; %hfaprtl
£(6,20) = -0.8; %hfaprt4M
£f(6,6) = 0.75; %hfaprt6
a(7,1) = 7.14296; Y%arna
£(7,22) = 0.05; %hfrnapdT
£(7,25) = 0.13; %frnap8T
a(8,1) = 66.5529; %asli
£(8,3) = 0.99; %fasli3
£(8,20) = -0.95; Y%faslidM
a(9,1) = 0.0228738; %asuc
£(9,2) = 0.4; Y%fasuc?2
£(9,20) = -0.24; %fasuc4M
£(9,25) = 0.2; %fasuc8T
£(9,18) = -0.05; %fasucl8

a(10,1) = 0.00036816; %dada
£(10,9) = 1; %fdada9

191



a(11,1)

f(11,1)

f(11,2)

f(11,20)
£(11,21)
£(11,22)
f(11,23)
f(11,24)
£(11,25)
£(11,18)

a(12,1) =
£(12,10)

a(13,1) =
£(13,12)

a(14,1) =

%fdnanl?2 =

a(15,1)
%fdnap9
%fdnap10

a(16,1) =
£(16,24)
£(16,9) =
£(16,10)

a(17,1)
£(17,2)
£(17,20)
£(17,21)
£(17,22)
£(17,7) =
£(17,23)
£(17,24)
£(17,25)

a(18,1) =
£(18,22)
£(18,7) =

a(19,1) =
£(19,23)
£(19,18)

0.0238581; Yden

2; %fdenil
-0.06; %fden2
= -0.1675; %fdendM
= -0.06; %fden4D
= -0.028; %fdendT
= -0.14; %fden8M
= -0.06; %fden8D
= -0.016; %fden8T
= -0.08; %fden18
0.0003703; %hdgnuc

=1; %fdgnuc10

0.0000214311; Y%dnaa
1; Y%fdnani?2

0.0000145749; Y%dnag
1; Duplicated, see dnaa reaction 13

0.0246572; Y%gdna
0.42; Duplicated, see adna reaction 3
= 0.33; Duplicated, see adna reaction 3

0.00258804; %gdrnr

= 0.4; %fgdrnr8D
-1.2; %fgdrnr9
= -0.39; %fgdrnri10

0.00879106; ’%gmpr

-0.15; hfgmpr2
= -0.01; % gmpraM
= -0.02; %fgmpraD
= -0.04; %EfgmpraT

-0.76; hfgmpr7
= 0.23; %fgmpr8M
= 0.18; %fgmpr8D
= 0.29; %Efgmpr8T

0.00424414; 7gmps
= 0.12; %Egmps4T
0.16; hfgmps7

0.0342927; Y%gnuc

= 0.9; hfgnuc8M
= -0.34; %fgnuci8
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a(20,1) = 0.145077; hegprt
£(20,1) = 1.2; Y fgprtl
£(20,23) = -1.2; hfgprt8M
£(20,15) = 0.42; hfgprtib
a(21,1) = 4.76121; hgrna

%frnap4T = 0.05; Duplicated, see arna reaction 7
%frnap8T = 0.13; Duplicated, see arna reaction 7

a(22,1) = 0.00567657; %gua

£f(22,15) = 0.5; %fgualb
a(23,1) = 0.137843; Jhprt
£(23,1) = 1.1; Y fhprt1
£(23,2) = -0.89; %hfhprt2
£(23,13) = 0.48; %fhprti13

a(24,1) = 0.0000411046; %hxe
£(24,13) 1.12; %fhxel3

a(25,1) = 0.00293751; %hxd

£(25,13) = 0.65; %fhxd13
a(26,1) = 0.0129618; %impdh
£(26,2) = 0.15; %fimpdh?2
£(26,7) = -0.09; %fimpdh?
£(26,23) = -0.03; %fimpthM
a(27,1) = 0.00992128; Y%inuc
£(27,2) = 0.8; %finuc?2
£(27,18) = -0.36; %finucl8

a(28,1) = 0.0837889; %mat

£(28,22) = 0.2; %fmatdT
£(28,5) = -0.6; Y%fmath
a(29,1) = 0.0031882; %polyam
£(29,5) = 0.9; %fpolyamb
a(30,1) = 0.00388122; Yprpps
£(30,1) = -0.03; hiprppsi
£(30,20) = -0.1; hiprpps4M
£(30,21) = -0.36; %hiprpps4D
£(30,22) = 0.007; hiprppsAT
£(30,23) = -0.004; hiprpps8M
£(30,24) = -0.04; HhEprpps8D
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£(30,17) = 0.65; hiprpps17
£(30,18) = 0.7; hiprppsi8
a(31,1) = 0.0143271; Y%pyr

£(31,1) = 1.27; hfpyrl
a(32,1) = 0.000764646; Y%rnaa
£f(32,11) = 1; Y%frnanii

a(33,1) = 0.000509727; ‘%rnag
%frnanil = 1; Duplicated, see rnaa reaction 32

a(34,1) = 0.097451; Y%trans
£(34,5) = 0.33; %ftransbh
a(35,1) = 0.000000969372;%uae
£(35,16) = 2.21; %fuaelb

a(36,1) = 0.0000126991; %xe

£(36,14) = 2; Y%fxeld
a(37,1) = 0.010521; %xd
£(37,14) = 0.55; %fxd14
a(38,1) = 1.90748; hguk
£(38,22) = 0.0909091; %fguk4T
£(38,23) = 0.418605; %fguk8M
a(39,1) = 0.208753; %ndpk
£(39,22) = 0.411765; %Endpk4aT
£(39,23) = -0.037037; %Endpk8M
£(39,24) = 0.292453; %fndkaD
a(40,1) = 218.609; %adok
£(40,19) = 0.444444; %fadok4A
£(40,20) = -0.38835; %fadok4M
£(40,21) = -0.888889; %fadok4D
£(40,22) = 0.0379747; %fadok4T
a(41,1) = 3.48562; Y%adek
£(41,20) = 0.285714; %fadek4M

f(41,22) = 0.0452261; %fadek4T
a(42,1) = 0.00000620633; hanuc

f(42,20) = 1.37458; %fanuc4M
£(42,18) = -0.2123; %fanuci8
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a(43,1) = 7.86588,; %phospho

£(43,21) = 0.5; %fphospho4D
£(43,22) = -0.1; %fphospho4T
options = odeset('NonNegative', ones(size(X0)));
tic
[t1, Y] = odel5s(@Reactions, tspan, X0, options, a, f);
toc

assignin('base', 'Y', Y);
assignin('base', 'f', f);
assignin('base', 'a', a);
assignin('base', 'X0', X0);
v = Fluxes(Y', a, f);
assignin('base', 'v', v);

end

function [dxdt] = Reactions(t, X, a, f) %Reaction equations

%PRPP
dxdt(1,1) = a(30,1)*(X(1,1)7£(30,1))*(X(20,1)"£(30,20))*(X(21,1)"£(30,21))*
(X(22,1)"£(30,22))*(X(23,1)"£(30,23))*(X(24,1) "f(30,24)) *
(X(17,1)°£(30,17))*(X(18,1)"£(30,18)) ...
—a(6,1)*(X(1,1)"f(6,1))*(X(20,1)"f(6,20))*(X(6,1)"f(6,6))...
—a(11,1)*(X(1,1)"f(11,1))*(X(2,1)"f(11,2))*(X(20,1)"f(11,20) ) *
(X(21,1)"f(11,21))*(X(22,1)"£(11,22) )*(X(23,1) ~f(11,23) ) *
(X(24,1)°f(11,24))*(X(25,1) £ (11,25) ) *(X(18,1)"f(11,18)) ...
-—a(20,1)*(X(1,1)"£(20,1))*(X(23,1)"f(20,23))*(X(15,1)"£f(20,15)) ...
-—a(23,1)*(X(1,1)"f(23,1))*(X(2,1)"£(23,2))*(X(13,1)"f(23,13)) ...
-a(31,1)*(X(1,1)"f(31,1));

%IMP
dxdt(2,1) = a(5,1)*(X(20,1)7£(5,20))*(X(25,1)"£(5,25))*(X(18,1)"f(5,18)) ...
+a(11, D)* (X1, 1)"f(11,1))*(X(2,1)"f(11,2) ) *(X(20,1)"f(11,20) ) *
(X(21,1)"f(11,21))*(X(22,1)"£(11,22) )*(X(23,1) "f(11,23) ) *
(X(24,1)7£(11,24))*(X(25,1)"£(11,25) ) *x(X(18,1)"f(11,18)) ...
+a(17,1)*(X(2,1) £ (17,2))*(X(20,1) ~f(17,20) ) *(X(21,1)~£(17,21) ) *
(X(22,1)"f(17,22) )% (X(7,1)~f(17,7))*(X(23,1) ~f(17,23) ) *
(X(24,1)"f(17,24) )% (X(25,1)"f(17,25)) . ..
+a(23,1)*(X(1,1)°£(23,1))*(X(2,1)°£(23,2))*(X(13,1)"£(23,13)) ...
—a(9,1)*(X(2,1)°f(9,2))*(X(20,1)"f(9,20))*(X(25,1)"f(9,25) ) *
(X(18,1)°£(9,18)) ...
-—a(26,1)*(X(2,1)"f(26,2))*(X(7,1)"f(26,7))*(X(23,1)"f(26,23)) ...
—a(27,1)*(X(2,1)"f(27,2))*(X(18,1)"f(27,18));
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%S—-AMP
dxdt(3,1) = a(9,1)*(X(2,1)°£(9,2))*(X(20,1)"f(9,20))*
(X(25,1)°£(9,25))*(X(18,1)"f(9,18)) ...
-a(8,1)*(X(3,1)"f(8,3))*(X(20,1)"£(8,20));

%SAM

dxdt(5,1) = a(28,1)*(X(22,1)"f(28,22))*(X(5,1)"f(28,5))...
-—a(29,1)*(X(5,1)"f(29,5)) ...
-a(34,1)*(X(5,1)"f(34,5));

%Ade

dxdt(6,1) = a(29,1)*(X(5,1)7£(29,5))...
—a(2,1)*x(X(6,1)°f(2,6))...
—a(6,1)*x(X(1,1)"°f(6,1))*(X(20,1)"f(6,20))*x(X(6,1)"f(6,6));

%XMP

dxdt(7,1) = a(26,1)*(X(2,1)7£(26,2))*(X(7,1)"£(26,7))*(X(23,1)"£(26,23)) ...

-a(18,1)*(X(22,1)"f(18,22))*(X(7,1)"£f(18,7));

%dAdo dAMP dADP dATP

dxdt(9,1) = a(4,1)*(X(21,1)7£(4,21))*(X(9,1)7£(4,9))*(X(10,1)"£(4,10)) ...
+a(13,1)*(X(12,1)"f(13,12)) ...
-a(3,1)*(X(9,1)7£(3,9))*(X(10,1)"£(3,10)) ...
-a(10,1)*(X(9,1)"£(10,9));

%dGMP dGDP dGTP

dxdt(10,1) = a(14,1)*(X(12,1)"£(13,12))...
+a(16,1)*(X(24,1)"f(16,24))*(X(9,1)"£(16,9))*(X(10,1)"f(16,10)) ...
-—a(12,1)*(X(10,1)"f(12,10)). ..
-—a(15,1)*(X(9,1)"f(3,9))*(X(10,1)"f(3,10));

%RNA

dxdt(11,1) = a(7,1)*(X(22,1)°£(7,22))*(X(25,1)"f(7,25)) ...
+a(21,1)*(X(22,1)"£(7,22))*(X(25,1)"f(7,25)) . ..
-—a(32,1)*(X(11,1)"f(32,11)) ...
-—a(33,1)*(X(11,1)"f(32,11));

%DNA

dxdt (12,1) = a(3,1)*(X(9,1)"f(3,9))*(X(10,1)"f(3,10))...
+a(15,1)*(X(9,1)°£(3,9))*(X(10,1)"£(3,10)) ...
—a(13,1)*(X(12,1)"f(13,12)) ...
—a(14,1)*(X(12,1)"f(13,12));

%HX Ino dIno

dxdt(13,1) = a(1,1)*(X(19,1)"£(1,19))...
+a(10,1)*(X(9,1)"£(10,9)) ...
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+a(27,1)*(X(2,1)"f(27,2) )*(X(18,1)"f(27,18)) . ..
-—a(23,1)*(X(1,1)7£(23,1))*(X(2,1)"f(23,2))*(X(13,1)"f(23,13)) ...
-—a(24,1)*(X(13,1)"f(24,13)). ..

-a(25,1)*(X(13,1)"f(25,13));

%Xa

dxdt(14,1) = a(22,1)*(X(15,1)7£(22,15)) ...
+a(25,1)*(X(13,1)°f(25,13)) ...
-a(36,1)*(X(14,1)°f(36,14)) ...
-a(37,1)*(X(14,1)°£(37,14));

%Gua Guo dGuo

dxdt(15,1) = a(12,1)*(X(10,1)"f(12,10))...
+a(19,1)*(X(23,1)"£(19,23) ) *x(X(18,1)"f(19,18)) ...
-a(20,1)*(X(1,1)°£(20,1))*(X(23,1)"£(20,23))*(X(15,1)"f(20,15)) ...
-a(22,1)*(X(15,1)"f(22,15));

%Uric Acid
dxdt(16,1) = a(37,1)*(X(14,1)"f(37,14)) ...
-a(35,1)*(X(16,1)"f(35,16));

%Ado
dxdt(19,1) = a(34,1)*(X(5,1)"f(34,5))...
+a(42,1)*(X(20,1)"f(42,20))*(X(18,1)"f(42,18)). ..
—a(1,1)*(X(19,1)"f(1,19)). ..
-a(40,1)*(X(19,1)"£(40,19))*(X(20,1) ~f(40,20)) *
(X(21,1)°£(40,21))*(X(22,1)"£(40,22)) ;

%AMP

dxdt(20,1) = a(6,1)*(X(1,1)"f(6,1))*(X(20,1)"£(6,20))*(X(6,1)"f(6,6))...

+a(8,1)*(X(3,1)7£(8,3))*(X(20,1)°£(8,20)) ...
+a(18,1)*(X(22,1)"£(18,22) ) * (X(7,1)"£f(18,7)) . ..
+a(30,1)*(X(1,1)"£(30,1))*(X(20,1) £ (30,20)) *(X(21,1)"£(30,21) ) *
(X(22,1)"£(30,22))*(X(23,1)"£(30,23))*(X(24,1)"f(30,24)) *
(X(17,1)"£(30,17))*(X(18,1)"£(30,18)) ...
+a(32,1)*(X(11,1)"f(32,11)) ...
+a(40,1)*(X(19,1)"f(40,19))*(X(20,1)"£(40,20))*(X(21,1)~f(40,21)) *
(X(22,1)7£(40,22)) ...
-a(5,1)*(X(20,1)"£(5,20) ) *(X(25,1)"f(5,25) ) *(X(18,1)"£(5,18)) . ..
-—a(41,1)*(X(20,1)"f(41,20))*(X(22,1)"f(41,22))...
-a(42,1)*(X(20,1)"f(42,20))*(X(18,1)"f(42,18));

%ADP
dxdt(21,1) = a(38,1)*(X(22,1)"f(38,22))*(X(23,1)"f(38,23)) ...

+a(39,1)*(X(22,1)7£(39,22))*(X(23,1)"£(39,23))*(X(24,1)"£(39,24)) ...

+a(40,1)*(X(19,1)7"£(40,19))*(X(20,1) £ (40,20) ) *(X(21,1)"f(40,21) ) *
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(X(22,1)7£(40,22)) ...
+2%a(41,1)*(X(20,1)"f(41,20))*(X(22,1)"f(41,22)) ...
—a(4,1)*(X(21,1)"f(4,21))*(X(9,1)"f(4,9))*(X(10,1)"f(4,10)). ..
-—a(43,1)*(X(21,1)"f(43,21))*(X(22,1)"f(43,22));

%ATP
dxdt (22,1) = a(43,1)*(X(21,1)"f(43,21))*(X(22,1)"f(43,22)) ...
—a(7,1)*(X(22,1)"f(7,22))*(X(25,1)"f(7,25)) ...
-a(18,1)*(X(22,1)"f(18,22))*(X(7,1)"f(18,7)) ...
-a(28,1)*(X(22,1)"f(28,22))*(X(5,1)"f(28,5)) ...
-a(30,1)*(X(1,1)"£(30,1))*(X(20,1)"£(30,20))*(X(21,1)"f(30,21) ) *
(X(22,1)"£(30,22))*(X(23,1)"£(30,23))*(X(24,1) "f(30,24)) *
(X(17,1)"£(30,17))*(X(18,1)"£(30,18)) ...
-a(38,1)*(X(22,1)"f(38,22))*(X(23,1)"f(38,23)) ...
-—a(39,1)*(X(22,1)"f(39,22))*(X(23,1)"f(39,23) ) *(X(24,1)"£(39,24)) ...
-a(40,1)*(X(19,1)"f(40,19))*(X(20,1)"f(40,20))*(X(21,1)"f(40,21) ) *
(X(22,1)7£(40,22)) ...
-a(41,1)*(X(20,1)"f(41,20))*(X(22,1)"f(41,22));

%GMP

dxdt(23,1) = a(18,1)*(X(22,1)7£(18,22))*(X(7,1)"£(18,7)). ..
+a(20,1)*(X(1,1)"£(20,1))*(X(23,1)"f(20,23) ) *(X(15,1)"£(20,15)) ...
+a(33,1)*(X(11,1)"f(32,11)) ...
—a(17,1)*(X(2,1)"f(17,2) ) *(X(20,1) £ (17,20))*(X(21,1)"f(17,21) ) *

(X(22,1)"f(17,22) )% (X(7,1)~f(17,7))*(X(23,1) £ (17,23) ) *
(X(24,1)°f(17,24) )% (X(25,1)"f(17,25)) . ..

-a(19,1)*(X(23,1)°f(19,23))*(X(18,1)"f(19,18)) ...
-a(38,1)*(X(22,1)"f(38,22))*(X(23,1)"f(38,23));

%GDP
dxdt(24,1) = a(9,1)*(X(2,1)7£(9,2))*(X(20,1)7£(9,20))*(X(25,1)7£(9,25) ) *
(X(18,1)7£(9,18)) ...
+a(38,1)*(X(22,1)7£(38,22))*(X(23,1)7£(38,23)) ...
-a(16,1)*(X(24,1)7£(16,24))*(X(9,1)7£(16,9) ) *(X(10,1)"£(16,10)) . ..
-a(39,1)*(X(22,1)7£(39,22))*(X(23,1)"£(39,23))*(X(24,1)"£(39,24));

%GTP
dxdt(25,1) = a(39,1)*(X(22,1)7£(39,22))*(X(23,1)7£(39,23))*(X(24,1)7£(39,24)) ...
-—a(9,1)*(X(2,1)"f(9,2))*(X(20,1)"£(9,20) ) *(X(25,1)"f(9,25) ) *
(X(18,1)"£(9,18)) ...
—a(21,1)*(X(22,1)"f(7,22))*(X(25,1) £ (7,25));

end
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function

v(1,1) =
v(2,1) =
v(3,1) =
v(4,1) =
v(5,1) =
v(6,1) =
v(7,1) =
v(8,1) =
v(9,1) =

v(10,1)
v(11,1)

v(12,1)
v(13,1)
v(14,1)
v(15,1)
v(16,1)
v(17,1)

v(18,1)
v(19,1)
v(20,1)
v(21,1)
v(22,1)
v(23,1)
v(24,1)
v(25,1)
v(26,1)
v(27,1)
v(28,1)
v(29,1)
v(30,1)

v(31,1)
v(32,1)
v(33,1)
v(34,1)
v(35,1)
v(36,1)
v(37,1)

[v] = Fluxes(Y, a, f) %Flux calculations at end time point

a(1,1)*(Y(19,end) "f(1,19));

a(2,1)*(Y(6,end)"£(2,6));

a(3,1)*(Y(9,end)"f(3,9))*(Y(10,end) "£(3,10));

a(4,1)*(Y(21,end) "f(4,21))*(Y(9,end) "f(4,9))*(Y(10,end) "f(4,10));

a(5,1)*(Y(20,end) " f(5,20))*(Y(25,end) “f(5,25))*(Y(18,end) "f(5,18));

a(6,1)*(Y(1,end) " f(6,1))*(Y(20,end) "f(6,20))*(Y(6,end) " f(6,6));

a(7,1)*(Y(22,end) "£(7,22))*(Y(25,end) “£(7,25));

a(8,1)*(Y(3,end)"f(8,3))*(Y(20,end) "£(8,20));

a(9,1)*(Y(2,end) "£(9,2))*(Y(20,end) "£(9,20))*(Y(25,end) "f(9,25)) *
(Y(18,end)"f(9,18));

= a(10,1)*(Y(9,end) "£(10,9));

a(11,1)*(Y(1,end) "f(11,1))*(Y(2,end) "f(11,2))*(Y(20,end) “f(11,20))*
(Y(21,end) " £(11,21))*(Y(22,end) "£(11,22))*(Y(23,end) "f(11,23))*
(Y(24,end)"f(11,24))*(Y(25,end) "f(11,25))*(Y(18,end) "f(11,18));

a(12,1)*(Y(10,end) "£(12,10));

= a(13,1)*(Y(12,end) "£(13,12));

a(14,1)*(Y(12,end) "£(13,12));

a(15,1)*(Y(9,end) "£(3,9))*(Y(10,end) "£(3,10));

a(16,1)*(Y(24,end) "f(16,24))*(Y(9,end) " (16,9))*(Y(10,end) " (16,10));
a(17,1)*(Y(2,end) “f(17,2))*(Y(20,end) “f(17,20))*(Y(21,end) £ (17,21) ) *
(Y(22,end) " f(17,22))*(Y(7,end) " £ (17,7))*(Y(23,end) "£(17,23) ) *
(Y(24,end)"£(17,24))*(Y(25,end) "£(17,25));

= a(18,1)*(Y(22,end) "£(18,22))*(Y(7,end) "£(18,7));

= a(19,1)*(Y(23,end) “£(19,23))*(Y(18,end) £ (19,18));

= a(20,1)*(Y(1,end)"£(20,1))*(Y(23,end) ~£(20,23))*(Y(15,end) “£(20,15));
= a(21,1)*(Y(22,end) “£(7,22))*(Y(25,end) "£(7,25));

a(22,1)*(Y(15,end) "£f(22,15));
a(23,1)*(Y(1,end)"£(23,1))*(Y(2,end) “f(23,2))*(Y(13,end) “f(23,13));

= a(24,1)*(Y(13,end) "f(24,13));

= a(25,1)*(Y(13,end) "f(25,13));

= a(26,1)*(Y(2,end) £ (26,2))*(Y(7,end) £ (26,7))*(Y(23,end) "f(26,23));
= a(27,1)*(Y(2,end) ~£(27,2))*(Y(18,end) "f(27,18));

a(28,1)*(Y(22,end) "f(28,22))*(Y(5,end) "f(28,5));

a(29,1)*(Y(5,end) "£(29,5));

a(30,1)*(Y(1,end) ~f(30,1))*(Y(20,end) ~f(30,20))*(Y(21,end) ~£(30,21))*
(Y(22,end) "£(30,22))*(Y(23,end) “f(30,23))*(Y(24,end) " (30,24) ) *

(Y(17,end)"£(30,17))*(Y(18,end) “£(30,18));

= a(31,1)*(Y(1,end)"f(31,1));
= a(32,1)*x(Y(11,end) "f(32,11));
= a(33,1)*(Y(11,end) "£(32,11));
= a(34,1)*(Y(5,end) "f(34,5));

a(35,1)*(Y(16,end) "f(35,16));
a(36,1)*(Y(14,end) £ (36,14));
a(37,1)*(Y(14,end) £ (37,14));
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v(38,1)
v(39,1)
v(40,1)

v(41,1)
v(42,1)
v(43,1)

end

a(38,1)*(Y(22,end) "£(38,22))*(Y(23,end) "£(38,23));

= a(39,1)*(Y(22,end) "£(39,22))*(Y(23,end) "£(39,23) ) *x(Y(24,end) "£(39,24));

a(40,1)*(Y(19,end) £ (40,19))*(Y(20,end) ~f(40,20)) *(Y(21,end) “f (40,21) ) *
(Y(22,end) "£(40,22));

a(41,1)*(Y(20,end) "f(41,20))*(Y(22,end) "f(41,22));

a(42,1)*(Y(20,end) "f(42,20))*(Y(18,end) ~f(42,18));

a(43,1)*(Y(21,end) "f(43,21))*(Y(22,end) "£(43,22));
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