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A B S T R A C T   

Machine learning technologies and translation of artificial intelligence tools to enhance the patient experience 
are changing obstetric and maternity care. An increasing number of predictive tools have been developed with 
data sourced from electronic health records, diagnostic imaging and digital devices. In this review, we explore 
the latest tools of machine learning, the algorithms to establish prediction models and the challenges to assess 
fetal well-being, predict and diagnose obstetric diseases such as gestational diabetes, pre-eclampsia, preterm 
birth and fetal growth restriction. We discuss the rapid growth of machine learning approaches and intelligent 
tools for automated diagnostic imaging of fetal anomalies and to asses fetoplacental and cervix function using 
ultrasound and magnetic resonance imaging. In prenatal diagnosis, we discuss intelligent tools for magnetic 
resonance imaging sequencing of the fetus, placenta and cervix to reduce the risk of preterm birth. Finally, the 
use of machine learning to improve safety standards in intrapartum care and early detection of complications will 
be discussed. The demand for technologies to enhance diagnosis and treatment in obstetrics and maternity 
should improve frameworks for patient safety and enhance clinical practice.   

1. Introduction 

The digitisation of health records along with advancements in 
biomedical imaging and medical devices has led to an increase in clin
ical, biological and imaging data. Within these vast data sets of growing 
complexity and scale, lies the opportunity to understand challenging 
disease processes in obstetrics and maternity care where timely in
terventions can change the outcome for both mothers and babies. New 
approaches in computer science and statistics are required to identify 
actionable insights within these clinical conditions (de Marvao et al., 
2020). Machine learning is a branch of artificial intelligence that uses 
computer algorithms to identify patterns within large raw datasets, ac
quire knowledge and apply this to different tasks (Ahn and Lee, 2022; 
Dhombres, 2022). A single machine learning model could analyse more 
data than a clinician would encounter over the duration of the in
dividual’s career. The multi-disciplinary field of computer science, en
gineering and maternal-fetal medicine is increasingly enabling 
researchers to apply machine learning tools that are transforming ob
stetrics and maternity care. 

1.1. Differences between machine learning and deep learning platforms 

Artificial intelligence refers to computer systems which perform 
tasks that typically require human intelligence. These systems mimic 
human behaviour and can be programmed to complete automated 
processes (Fig. 1). One example of artificial intelligence which is prev
alent in maternity care is the Dawes Redman computerised Car
diotocograph (CTG) analysis system, that can recognise and diagnose 
pathological features of electronic fetal heart rate traces before labour. 
The numerical CTG analysis was developed from a database of over 
73,500 CTGs in the largest study of its kind (Pardey et al., 2002). This 
has subsequently been developed into an automated CTG that is used to 
determine fetal wellbeing and hypoxia in the antenatal period (Alfirevic 
et al., 2017). This form of artificial intelligence follows a sequence of 
programmed commands to formulate an analysis and diagnosis. In 
contrast, machine learning enables systems to learn from experience and 
improve performance without specific programming. Compared to 
traditional statistical methods which classify or regress data, machine 
learning algorithms can handle multiple dimensional datasets with large 
numbers of variables (Averbuch et al., 2022). As they do not require 
interactions to be pre-specified, they are able to detect novel 
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relationships. These models are also dynamic and can be continuously 
updated with training data to reflect temporal changes. 

Machine learning algorithms are broadly divided into supervised and 

unsupervised categories (Fig. 2). Supervised algorithms use labelled 
data to learn interactions between predictor variables as input and 
target variables as outcomes. For example in obstetrics, the outputs 
could be ‘preterm birth’ and ‘term birth.” The model adjusts the 
weighting of predictor variables as more data becomes available and 
inputted to the system. This approach trains the model to predict out
comes such as preterm birth in unseen datasets. Unsupervised algo
rithms learn interactions within unlabelled datasets. These systems 
identify clusters and associations between variables which may not have 
been evident to the clinician (Li et al., 2021; Averbuch et al., 2022). This 
can lead to the discovery of new patterns such as a disease mechanism. 
Additionally, deep learning progressively learns more complex re
lationships as data passes through each layer within a multilayer neural 
network and are useful in analysing large data sets such as electronic 
health records. Convolutional neural networks (CNN) are used more 
specifically in medical image recognition and can abstract spatial fea
tures from input data (de Marvao et al., 2020). 

2. Aims of study 

The present study reviewed the latest advances on using machine 
learning tools for use in obstetrics, maternal-fetal medicine and prenatal 
diagnosis. This includes 1. Risk stratification models for the early 
diagnosis of gestational diabetes and pre-eclampsia 2. diagnostic im
aging tools which automate detection of anatomical structures 3. 
ensemble models to predict preterm birth, image segmentation models 
for 3D image reconstruction in fetal MRI 4. antepartum and intrapartum 

Fig. 1. Schematic illustrating the relationship between machine learning 
tools. Artificial intelligence is the programming of machines to mimic human 
behaviour. Machine learning is a subset of artificial intelligence and refers to 
computer algorithms which can learn from experience and improve perfor
mance without specific programming. Deep learning is a subset of machine 
learning, uses multi-layered neural networks to progressively learn more 
complex relationships as data passes through each layer. 

Fig. 2. Differences between supervised and unsupervised machine learning algorithms. Supervised algorithms use labelled data to learn interactions between 
variables and outcomes using regression and classification models designed to predict outcomes. Some examples of supervised machine learning models include 
decision tree, random forest, linear regression, logistic regression and supervised vector machine. Unsupervised algorithms learn novel interactions within unlabelled 
datasets and the models are designed to analyse datasets by identifying clusters and association between variables. Examples of unsupervised machine learning 
models include K means, hierarchical and apiori. 
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CTG classification models 5. fetal ECG classification models and 6. 
decision-assist tools for intrapartum care. 

3. Methods 

In devising our search strategy, we incorporated the principles from 
the guidelines for systematic reviews and meta-analysis (PRIMSA), but 
specific protocol registration was not performed (Page et al., 2021). We 
searched across Web of Science and PubMed databases using a combi
nation of the following search terms: machine learning, deep learning, 
obstetrics, maternal medicine, gestational diabetes, pre-eclampsia, 
preterm birth, fetal growth restriction, prenatal ultrasound, ultraso
nography, fetal MRI, CTG classification, intrapartum care, fetal ECG, 
tocography, electrohysterography and fetal movements monitoring. A 
total of 60 peer reviewed papers dating from January 1, 2018 onwards 
were included. We excluded case reports, conference proceedings and 
opinion pieces. References from review papers were examined manually 
to identify any additional work. Studies using all machine learning 
models were included to demonstrate the breadth of current work. 
Quality assessments for risk of bias were not performed, although evi
dence quality was considered in the descriptive analysis of included 
works. Whilst is it not practical to list all the papers that fall in the scope 
of the selection criteria, we have included representative papers for the 
purpose of this review and the search list as supplementary information. 
A quantitative analysis of results did not appear appropriate for this type 
of scoping review, and this was established prior to commencing data
base searches. 

4. Results 

4.1. Risk stratification tools for disease prediction in maternal-fetal 
medicine 

Early screening of conditions in pregnancy enable early intervention 
strategies that could reduce the risk of disease burden (Bertini et al., 
2022). For many conditions, there is a lack of consensus in approaches 
for antenatal care screening world-wide (Bulletins-Obstetrics, 2018). 
Current scoring systems are based on conventional methods to classify 
and regress data using statistical models. Many of these assessment tools 
have had limited updates over time to account for temporal changes in 
the population and up to date research (Mateen et al., 2020). In recent 
years, approaches to stratify patient risk using machine learning algo
rithms has been explored using electronic health records and more 
recently data from digital recording devices and are summarised in 
Table 1. 

4.1.1. Gestational diabetes 
Gestational diabetes is commonly diagnosed in the second and third 

trimester of pregnancy with earlier screening offered to women with 
selected risk factors. Predicting gestational diabetes in the first trimester 
could allow lifestyle intervention strategies to be implemented at a time 
of greater impact (Mateen et al., 2020). Table 1 summarises the key 
studies with values for performance indicators. A recent meta-analysis 
compared 30 machine learning algorithms to predict gestational dia
betes using electronic health records and other datasets (X. Zhang et al., 
2022). Of these, 16 models for first trimester gestational diabetes 
screening performed well in predicting the disease compared to current 
clinical assessment tools from the National Institute of Health (area 
under receive operating curve, 0.86 and 0.67, respectively, Table 1) 

Table 1 
Machine learning model with performance data to predict gestational diabetes and pre-eclampsia.  

Study Machine learning model Prediction Performance Key findings 

Early prediction of gestational diabetes 
Artzi et al., (2020) Gradient boosted model, 2355 features. 

Electronic data for 588,622 pregnancies, 
0–20 weeks gestational age 

Early prediction (<20 weeks 
gestational age) of 
gestational diabetes 

auROC = 0.85 Large, granular dataset, model out-performed 
current baseline risk scores (auROC = 0.68), 
retrospective data, no external validation, 
model bias not assessed 

Simpler model based on 
9 feature selection 
auROC = 0.80 

Araya et al., 2021 Primary component analysis, 29 features. 
Electronic data for 39 pregnancies, 12–28 
weeks gestational age 

Maternal thyroid profiles 
classification with 
gestational diabetes 

Thyroid profiles 
separated distribution of 
patients 

Differences in gestational diabetes and normal 
glucose tolerance. Small dataset, no external 
validation, limited performance assessment 

Yang et al., (2022) 3 models: multilinear regression, random 
forest and XGBoost. 14 features. Data from 
EHR and bluetooth monitoring devices for 
1857 pregnancies 

Identify patients with 
gestational diabetes at risk of 
high blood glucose levels 

XGBoost Multicentre design, external validation 
performed. comprehensive performance 
assessment. Improved accuracy required prior 
to transition to clinical practice 

MSE 0.020 
(0.020–0.021) 
R2 0.519 (0.505–0.530) 
MAE 0.108 
(0.107–0.110) 

Early prediction of pre-eclampsia 
Marić et al., (2020) 2 models: elastic net, gradient boosting 

algorithm. 67 features. Electronic data for 
16370 births 

Develop an early prediction 
model for pre-eclampsia 

Elastic net New insights, appropriate feature selection. 
Retrospective, single centre study, no external 
validation, model bias not assessed 

Prediction of early onset 
pre-eclampsia 
auROC 0.89 (0.84–0.95) 
TPR 72.3%, FPR 8.8% 

Lafuente-Ganuza 
et al., 2020 

Decision tree model. Electronic data for 
309 pregnancies 

Identify and validate cut off 
values screening tests for 
early onset pre-eclampsia 

Combined sFlt-1/PlGF 
ratio >45 and NT- 
proBNP value > 174: 

Suitable controls, new insights provided, cost- 
effective clinical application risk of model bias 
not assessed 

PPV 86% (95% CI: 
79.2–92.6) 

Zhang et al., (2022) Light gradient boosting machine, 43 
features. Electronic data for 248 
pregnancies 

Correlation between severe 
pre-eclampsia and blood 
data characteristics 

Binary classification 
using AST, direct 
bilirubin and APTT: 

Clear inclusion and exclusion criteria for 
participants. Risk of bias (selection and model) 
not assessed. Single centre no external 
validation sens. 88.37%, spec. 

77.27%, AUC 89.74% 
PPV 65.96%. 

All studies sourced data from electronic health records, paper clinical records or patient monitoring devices. Sample size ranged 39 pregnancies to 588,622 preg
nancies. Several studies used gradient boosting machines. Features refer to the selected variables inputted into the predictive model. Performance parameters include 
area under the receiver operating curve (auROC), mean squared error (MSE), R-squared (R2), mean absolute error (MAE), sensitivity (sens.), specificity (spec.), true 
positive rate (TPR), false positive rate (FPR), negative predictive value (NPV), positive predictive value (PPV). 
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(Mateen et al., 2020). Though many of the predictive variables identi
fied amongst early screening models are present in current assessment 
tools, some new insights were provided for variables such as age and 
fasting glucose. One prominent study included in this meta-analysis was 
conducted by Artzi and colleagues who developed a gradient boosted 
machine learning algorithm from 2355 features using retrospective data 
sourced from electronic health records for 588,622 pregnancies (Artzi 
et al., 2020). The model’s accuracy in predicting gestational diabetes 
(auROC 0.85) outperformed current baseline risk scores (auROC 0.68), 
even with a simplified model using 8 features (auROC 0.80). However, 
external validation of performance in a more ethnically diverse pro
spective population is required. Another study considered the potential 
for thyroid function tests to be used as a secondary tool for diagnosing 
GDM in borderline cases. Using a principal component analysis in a 
small population they determined that thyroid patterns correlated with 
the development of gestational diabetes (Araya et al., 2021). Though 
this provided novel insights, an objective assessment of the model per
formance and risk of bias was not performed and results will need to be 
replicated in a larger, more diverse dataset. More recently, a digital 
monitoring system was used to identify women at highest risk of 
developing gestational hypergylcaemia (Yang et al., 2022). In this study, 
data from Bluetooth-enabled digital blood glucose management system 
was used to develop a machine learning based regression model 
(Table 1). This is one of the few externally validated models where 
model performance was assessed but there was a need for improved 
predictive accuracy prior to a transition to clinical practice. In summary, 
machine learning algorithms with data from digital devices could be 
used to streamline clinical workflows and provide a more cost-effective 
patient-centred care. 

4.1.2. Pre-eclampsia 
Machine learning algorithms are being developed to formulate early 

prediction of pre-eclampsia, a condition characterised by raised blood 
pressure and proteinuria in the last trimester of pregnancy. The models 
can consider more variables than current risk assessment tools, with 
high performance, using data sourced from electronic patient health 
records (Marić et al., 2020). They can also optimise the use of predictive 
biomarkers, such as soluble FMS-like tyrosine kinase 1 (sFlt1), placental 
growth factor (PIGF) and B-type natriuretic peptide (BMP) used in early 
screening tests to improve test accuracy (Lafuente-Ganuza et al., 2020). 
Algorithms can identify novel biomarkers for integration into existing 
clinical-based patient screening methods. In one study, liver function 
tests and coagulation tests appeared useful in screening for early onset 
pre-eclampsia (Z. Zhang et al., 2022). These studies highlight the po
tential to develop algorithms for early disease prediction and to optimise 
approaches in patient screening that in the future could also provide 
mechanistic insights. Unsupervised models which cluster data could be 
useful in understanding the disease aetiology although this area is less 
explored. Commonly, current models lack external validation and as
sessments of bias within the model which could inflate estimates of 
predictive accuracy. In addition, a multicentric approach using datasets 
that correlate findings in a larger and more diverse population could be 
integrated into screening methods and would have a broader clinical 
application. 

4.2. Applications of machine learning technologies for diagnostic imaging 

4.2.1. Fetal ultrasonography 
Table 2 summarises the machine learning models to classify and 

diagnose abnormalities seen on obstetric ultrasound (Chen et al., 2021). 
3D convolutional neural networks have been applied to automate the 

Table 2 
Deep learning model with performance data to predict fetal abnormalities by ultrasonography.  

Study Deep learning model Datasets Prediction aims Performance 

Yang et al., 
2018 

3D Fully Convolutional network and 
recurrent neural networks 

104 prenatal ultrasound volumes 
from 104 women 10–14 weeks 
gestation 

Fully automated segmentation of 
anatomical structures in first trimester 
ultrasound 

Correlation with experts: 
test set 0.938 
validation set 0.922 

Arnaout 
et al., 
(2021) 

Ensemble neural network 107,823 images sourced from 
1326 echocardiograms, 18–24 
weeks gestational age 

Identify recommended cardiac views and 
distinguish between normal hearts and 
complex CHD 

AUC 0.99 
Aggregated residual visual block net 
(ARVBNet) 

Sensitivity 95% CI 84–99% 
Specificity 96% CI 95–97% 
NPV 100% 

Dong et al., 
(2019) 

Convolutional neural Network 2032 positive samples [cardiac 
four-chamber planes, 5000 
negative samples (non-CFPs) 

Automate quality control of fetal 
ultrasound cardiac four-chamber planes 

highest mean average precision 
(mAP) 93.52% at 101 frames per 
second (FPS) 
PASCAL VOC dataset: 
highest mAP 81.2% 

Miyagi and 
Miyake, 
2020 

Neural network Japan Society of Ultrasonics in 
Medicine dataset (2003) 

Accurate estimation of fetal weight based 
on bi-parietal diameter, abdominal 
circumference, and femur length. 

Difference between observed and 
predicted value 
Test data set 12.5% 
All datasets 20% 

Fung et al., 
(2020) 

Geometric Machine Learning INTERGROWTH-21st dataset (n =
4607) 

To improve estimates of fetal gestational 
age and provide personalised predictions 
of future growth. 

Gestational age could be estimated 
for pregnancies between 20 and 30 
weeks gestation to within 3 days INTERBIO-21st Fetal Study (n =

3076) 
Naimi et al., 

(2018) 
Quantile regression, random forest 
(RF), Bayesian additive regression trees 
(BART), generalised boosted models 
(GBM) 

Magee-Womens obstetric maternal 
and infant data (18,517 
pregnancies) 

Predict fetal weight over the course of 
gestation using ex-utero information. 
Assess relationship between smoking and 
fetal weight 

Pearson correlation coefficient 
(actual and predicted weight) 

high risk pregnancies dataset (n =
240) 

RF 0.985, Generalised linear 0.977, 
BART 0.986, quantile regression 
0.976, GBM 0.986 

Lu et al., 
(2020) 

Ensemble random forest (RF), XGBoost, 
light GBM) 

4212 clinical electronic health 
records 

Predict fetal weight at different gestational 
ages in the absence of ultrasound 
examination 

Mean Relative Error 6% 
accuracy 64.3% 

Baños et al., 
2018 

Regression Single centre prospective cohort of 
677 women 19–24 + 6 gestation 

Identify women at risk of spontaneous 
preterm birth 

discriminative performance of 
cervical texture based score 

Primary Component Analysis (PCA) sens.70.4%, spec.77.4% 
+LR 3.1 (2.2–4.3), -LR 0.4 (0.2–0.7) 

Several studies used neural networks which appeared high performing. Publicly available datasets were used in several studies. Performance was assessed using 
correlation coefficients, sensitivity (sens.), specificity (spec.), positive predictive value (PPV), negative predictive value (NPV), area under receiver operating curve 
(auROC), mean average precision (mAP), mean relative error (MRE), positive likelihood ratio (+LR) and negative likelihood ratio (-LR). 
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identification of structures such as the fetal pole, gestational sac and 
placenta seen on first trimester volumetric ultrasound (Yang et al., 
2018). Neural networks have also been applied to improve the diagnosis 
of congenital heart defects on fetal echocardiography and show similar 
predictive performance to expert clinicians (Arnaout et al., 2021). 
Ensemble models can automate quality control in fetal echocardiogra
phy. One study used convolutional neural networks and aggregated 
residual visual block net (ARVBNet) to recognise internal structures of 
the fetal heart with high precision (93.52%) and scored whether this 
recognition was true (Dong et al., 2019). An example of how the process 
of assessing fetal echocardiography using convolutional neural networks 
for predicting fetal heart structures is shown in Fig. 3. A four chamber 
view of the fetal heart is inputted to the model and undergoes a complex 
series of steps including feature extraction, convolution, pooling, flat
tening, classification and probabilistic distribution to generate an output 
which predicts the fetal structure of interest. 

Furthermore, estimated fetal weight has typically been investigated 
using applied regression models. However, significant discrepancies 
persist between fetal biometry and actual birth weights. Deep learning 
has been applied to improve the accuracy of estimated fetal weight using 
ultrasound biometry (Miyagi and Miyake, 2020). Though superior to 
regression models, this method could not reliably estimate the weight of 
non-standard fetuses such as those in multiple pregnancy or with 
congenital anomalies. Other studies have used large datasets sourced 
from electronic health records, INTERGROWTH-21st and the Magee 
Obstetric Maternal and Infant (MOMI) database to forecast fetal growth 
trajectories with varying performance (Lu et al., 2020), Fung et al. 
(2020), Naimi et al. (2018); Lu et al. (2020). Cervical insufficiency is an 
important risk factor leading to recurrent pregnancy loss and sponta
neous preterm birth. Cervical length and funnelling can be assessed with 
transvaginal ultrasound. Researchers performed a quantitative analysis 
of tissue texture in 700 ultrasound images of the cervix to identify 
women at risk of preterm birth (Baños et al., 2018). This broader eval
uation of multiple features appears superior in specificity for preterm 
birth than traditional measurements of cervical length for the assess
ment of cervical function. Another study combined sonographic features 
for asymptomatic women with cervical shortening, amniotic fluid 
metabolomics, proteomics, clinical and demographic factors with good 
predictions for preterm birth (auROC 0.883) using deep learning model 
(Bahado-Singh et al., 2019). It is possible that more machine learning 
approaches will develop tools in diagnostic imaging with pooled data
sets which can circumvent uncertainties in current predictive methods. 

4.2.2. Fetal magnetic resonance imaging 
MRI is being increasingly used to image the fetus and placenta in 

prenatal diagnosis. It provides a more detailed view of soft tissues which 

can be difficult to characterise by ultrasound (Ronneberger et al., 2015). 
Fetal and maternal motion can corrupt 2D image slices making it diffi
cult to reconstruct images. Studies applying machine learning in fetal 
MRI are summarised in Table 3. Several studies have developed auto
mated pipelines for fetal brain reconstruction using ensemble ap
proaches (Ebner et al., 2020; Salehi et al., 2018; Ronneberger et al., 
2015). The model constructed by Ebner and colleagues appeared to have 
fewer imbalances and improved efficiency working on the whole image 
when assessed using Dice coefficient scores (Ebner et al., 2020). Another 
study developed a deep learning model to predict neurodevelopmental 
outcomes in very preterm infants using clinical and image data (He 
et al., 2020). The early identification of neurodevelopmental deficits in 
cognition, language and motor skills could allow early targeted in
terventions to improve clinical outcomes. 

Accurate reconstructions of placental images are important when 
planning fetal surgery in conditions such as twin to twin transfusion 
syndrome (Wang et al., 2018). Variation in the placental orientation and 
location can make it challenging to automate image segmentation. A 
deep learning framework provided accurate image segmentation in 2D 
and 3D, preserving image resolution with good performance (Wang 
et al., 2018). Placental imaging is also important in the diagnosis of 
Placenta Accreta Spectrum, a condition characterised by abnormal 
trophoblast invasion of part or all the placenta into the myometrium of 
the uterine wall which is associated with high maternal mortality (7%). 
Improving detection of this disease has been explored with ensemble 
deep learning models (Ye et al., 2022) and MRI derived-texture analysis 
(Romeo et al., 2019). Many of the studies within this area use advanced 
machine learning models for image segmentation but few studies 
combine MRI and large clinical datasets which reflect a diverse patient 
population from multiple centres. 

4.3. Decision-assist tools for intrapartum management 

4.3.1. Prediction and classification models for fetal monitoring 
Cardiotocography is the most prevalent diagnostic tool used for 

continuous fetal monitoring and assessments of fetal distress (Cömert 
et al., 2019). They display biophysical signals for the fetal heart rate and 
uterine contractions (Hoodbhoy et al., 2019; Chen and Yin, 2022). Using 
current standards for interpretation there is a high degree of inter and 
intra-observer variation. To reduce the disparities in cardiotocography 
interpretation, computational methods are being developed. Re
searchers used a combination of machine learning algorithms to assess 
30 diagnostic features in intrapartum cardiotocography monitoring 
using advanced signal processing. 12 features were identified as the 
most relevant in predicting fetal hypoxia with 88.6% accuracy and 94% 
specificity (Hoodbhoy et al., 2019). Many more recent studies have 

Fig. 3. Application of convolutional neural networks in prenatal ultrasound. Anatomical structures were identified to differentiate between normal and 
abnormal findings of the fetal heart. This was achieved by inputting images of the four chamber view of the fetal heart as seen on a fetal echocardiogram. After 
extraction of features, data was inputted to the model and underwent a complex series of steps involving convolution, pooling, flattening, classification and 
probabilistic distribution to generate an output. The output is a prediction of the anatomical structures in the input image and in this example is labelled as the right 
ventricle (indicated by black dashed box). 
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achieved higher levels of accuracy. One example is a deep learning 
classification model for cardiotocography using a combination of Alex
Net architecture and support vector machines (Mehbodniya et al., 
2022). Here 23 attributes were dynamically programmed and fed 
through the algorithm with accuracy (99.7%). In the last year, many 
promising studies have been published within this area of research (Fei 
et al., 2022; Muhammad Hussain et al., 2022; Mehbodniya et al., 2022; 
Park et al., 2022; Cheng et al., 2022). 

Non-invasive fetal electrocardiography (ECG), an alternative to 
cardiotocography, monitors fetal wellbeing using abdominal ECG sig
nals acquired from electrodes placed on the mother’s abdomen (Zhang 
and Yu, 2020). The main challenge faced when using this technology is 
signal interference, mainly attributed to the dominant maternal ECG 
which overlaps in temporal and frequency domains. Machine learning 
and deep learning approaches are being developed to reduce noise 
interference in signal processing (Abel et al., 2022). Early approaches 
subtract ‘repetitive noise’ attributed to the maternal ECG from the 
abdominal ECG signal (Ungureanu et al., 2009). More recently, re
searchers have used deep learning approaches to detect fetal QRS 
complexes from raw signals and recorded improved performance (PPV 
92.25% F1-score 94.1%) after extraction of a fetal ECG signal from a 
single channel abdominal ECG (Zhong et al., 2019). Removal of 
maternal ECG from the abdominal ECG signal with short-time Fourier 
transform and a convolutional auto-encoder appeared effective (Zhong 
et al., 2020). In another study, clustering and primary component 
analysis to extract fetal ECG had high performance (PPV of 95.35%, 
F1-measure of 95.78%.) (Zhong et al., 2020) and a hidden Markov 
model (HMM)-based supervised algorithm demonstrated high accuracy 
and sensitivity (97.1% and 100%, respectively) (Huque et al., 2019). 

External tocography is used to monitor uterine activity during labour 
and in women presenting with threatened preterm labour. Periods of 
poor signal quality are common when using this technology, and human 
interpretation is subjective. An adaboost algorithm was developed to 
approximate human interpretation with 93.8% classification accuracy in 
women >35 weeks gestation (Reynolds et al., 2020). This appeared 
more robust than earlier methods to automate uterine contraction 
detection which showed falls in sensitivity and PPV on low quality re
cordings (Horoba et al., 2016). Recently, algorithms from electro
hysterography signals, acquired by electrodes placed on the mother’s 
abdomen are being developed to predict embryo implantation for IVF 
patients (Sammali et al., 2021) and preterm birth (Cheng et al., 2022; 
Prats-Boluda et al., 2021, Nieto-del-Amor et al., 2022). One method 
using novel multichannel entropy features appeared accurate in pre
dicting preterm birth (90.5%) (Cheng et al., 2022). Fetal movements are 
an important indicator of fetal wellbeing and are presently monitored by 
maternal perception. This method is prone to inaccuracy due to varia
tion in an individual’s perception of vibration, the buffering effect of 
amniotic fluid which impairs detection of subtle movements such as 
hand activity, and the false perception of intestinal peristalsis as fetal 
movements (Hijazi et al., 2010). Wearable devices for out of hospital 
monitoring of fetal movements are now being developed using accel
erometers based on machine learning (Zhang et al., 2022; Xu et al., 
2022). An Extra Trees Classifier model showed good accuracy (86.6%) 
and precision (86.1%) in detecting fetal movements in 20 women, 
comparable to ultrasound. The use of collaborative datasets replicative 
in a larger pregnant population and external, real-time validation may 
accelerate the transition of predictive algorithms predictive algorithms 
models for fetal monitoring to clinical practice. 

Table 3 
Deep learning models to predict fetal structures using magnetic resonance imaging.  

Study Deep learning model Datasets Prediction Performance 

Ebner 
et al., 
(2020) 

Convolutional neural networks (P-net, 
U net) 

Single centre, group A: 134 stacks 
(37 fetuses), group B1: 167 stacks (32 
fetuses), group B2 105 stacks (15 
fetuses) 

Automate localisation, segmentation 
and super-resolution reconstruction of 
fetal brain MRI 

P-net accuracy 

Support Vector Regression Group A 86.54%, Group B1 84.74% 
Group B2 83.67% 

Super Resolution Reconstruction P-Net + ML DICE  
Group A 93.21%, Group B1 93.87% 
Group B2 92.94% 

Salehi 
et al., 
(2018) 

Fully convolutional network (U-net, 
voxelwise pp, voxelwise). Machine 
learning model (SIFT features, random 
forest, conditional random field) 

Single centre Automatic segmentation method 
which independently segments 
sections of the fetal brain in 2D fetal 
MRI slices in real-time. 

Highest performing model using 
challenging test set 

285 stacks from 33 fetal MRIs at 
22–38 weeks gestation 

U net DICE 78.83% sens. 71.97% 
spec.99.82%. 

He et al., 
(2020) 

Deep transfer learning neural network ABIDE-I repository Early prediction of neurodevelopment 
in very preterm infant 

Cognition model: Accuracy 81.5% (SD 
3.2%), sens. 74% (SD 4.9%), spec. 
88.9% (SD 3.1%) LR+ 6.6 (SD 1.9) FPR 
(11.1% (SD 3.1%) AUC 0.86 (SD 0.05) 

+ prospective recruitment (2 
centres). 884 children/adults 
291 neonates, 33 preterm infants 

Wang 
et al., 
(2018) 

Convolutional neural networks (P- net, 
R-netCRF-net) 

T2-weighted MRI scans of 25 
pregnant women (trimester 2):925 
slices. Brain Tumor Segmentation 
Challenge (BraTS) dataset: 274 cases 

Accurate medical image segmentation 
method compared to automatic 
segmentation by convolution neural 
network 

Placenta segmentation 
DICE 89.31% (SD 5.33%) 
ASSD(pixels) 1.22 (SD 0.55) 
Brain tumor segmentation 
DICE 89.93% (SD 6.49%) 
ASSD(pixels) 1.43 (SD 1.16) 

Ye et al., 
(2022) 

Logistic regression support vector 
machine primary component analysis 

Retrospective recruitment from 2 
centres: 407 pregnant women 
undergoing preoperative MRI 

Model for the prediction of Placenta 
Accreta Spectrum using data from 
clinical records and MRI. 

Combined learning model evaluation 
following external testing 
AUC 0.857 (0.808–0.894) 
Accuracy 0.852 
Sensitivity 0.904 
Specificity 0.769 

Romeo 
et al., 
(2019) 

Random Forest Placenta praevia and suspicious 
Placenta Accreta Spectrum (n = 64). 
Positive MRI (n = 20) 12 accreta, 7 
increta 

Assess the presence of placenta accreta 
spectrum in patients with placenta 
praevia 

Highest performing model 

K-nearest neighbour (k-NN) 1 percreta. Negative MRI (n = 44) k-NN 
Naïve Bayes (NB) Accuracy 98.1 Precision, 98.7, 

Sensitivity 97.5, Specificity 98.7, N◦

Features 26 
Multilayer perceptron (MLP) 

Image segmentation models typically followed steps of localisation, segmentation, intensity correction, motion correction, and space alignment. Most datasets were 
sourced from single centres. Performance measures included DICE coefficient scores (DICE), accuracy, sensitivity (sens.), specificity (spec.), false positive rate (FPR), 
area under the receiver operating curve (AUC), average symmetric surface distance (ASSD) and precision. 
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4.3.2. Predictive models to optimise intrapartum care 
A number of preliminary studies have explored applications of ma

chine learning in intrapartum care. Pain management is an important 
aspect of intrapartum care. Epidural analgesia is the current gold stan
dard for labour pain relief. However, it is estimated that 0.9%–25% of 
patients experience breakthrough pain (Tan et al., 2021). One study 
developed two machine learning models (Random Forest, XGBoost) that 
identify patients who are most likely to experience pain and compared 
this to a Logistic regression model (Tan et al., 2021). The authors 
identified 13 features which were predictive across the three models, 
with similar performance. However, the omission of predictive param
eters from the algorithms may have impacted performance. Malposition 
of the fetal head in labour is associated with increased obstetric inter
vention and failed operative vaginal delivery (Ghi et al., 2022). A study 
developed a feed-forward neural network model (88.7% accuracy, 
85.4% precision), using transperineal ultrasound images from 15 ma
ternity units to correctly identify fetal head position during the second 
stage of labour. It was concluded that automating the assessment of fetal 
head position could assist in making clinical decisions around the 
management of labour and mode of delivery. Other studies developed 
algorithms to predict complications in labour. A supervised machine 
learning model to predict shoulder dystocia, an obstetric emergency, 
showed superior accuracy (AUC 0.866) compared to estimates using 
fetal weight alone (AUC 0.772) or in combination with maternal dia
betes (AUC 0.784) (Tsur et al., 2020). Machine learning and regression 
models to predict post-partum haemorrhage were developed from 152, 
279 deliveries, showing good to excellent discrimination (Venkatesh 
et al., 2020). A gradient boosted model was developed to stratify pa
tients as high or low risk of obstetric anal sphincter injury (AUC 0.756, 
95% CI 0.732–0.780) (Chill et al., 2021). Such models could support 
decisions for the management of labour. Interestingly, a random forest 
model (eCART) predicted the risk of patient death or transfer to inten
sive care (AUC 0.86) with higher accuracy than current early warning 
scores (Arnolds et al., 2022). This study proposed that early warning 
algorithms could be optimised with machine learning to enable the 
appropriate implementation of early interventions. In summary, ma
chine learning algorithms for intrapartum care show great variation in 
model design, dataset and feature selection and not ready for a clinical 
setting. The role of quality standards will be important when developing 
reputable models for a multi-centre framework in clinical practice. 
Whilst intrapartum care is a high-risk area of obstetrics, intelligent tools 
could improve the delivery of safe intrapartum care for early prediction 
and detection of complications without clinical deterioration. 

5. Future strategies of machine learning 

The breadth of machine learning applications in obstetrics indicates 
the potential of algorithms to improve early prediction, optimise and 
standardise diagnostic imaging and improve patient care. However, 
many studies require further development before transition to a clinical 
setting. Whilst increasing numbers of machine learning algorithms are 
being developed using electronic healthcare records, it is important that 
quality standards are consistent. CODE-EHR was recently developed to 
improve the design and reporting of research studies using electronic 
healthcare data (Kotecha et al., 2022). The framework specifies mini
mum standards for dataset construction, quality assessment of data, 
definition of outcomes, data analysis that follow ethics and governance. 
Adhering to these standards will improve comparability between models 
and their impact. In predictive risk stratification models, there are sig
nificant disparities in the selection of features and sample sizes, making 
comparisons between works more challenging. Many models aimed to 
improve diagnostic accuracy, sensitivity and specificity through super
vised approaches rather than uncovering new patterns between vari
ables to understand disease processes. Many researchers model identical 
data sets using multiple methods to identify which tool will perform 
best. Some models incorporated large numbers of features to improve 

diagnostic accuracy. These types of models may be impractical within a 
clinical setting, narrowing the scope of their application (Chen et al., 
2021). Validating models with an external dataset is an important step 
which has not been performed consistently. This process is key when 
assessing the performance of a model, particularly when the training 
dataset has been developed from a small or less diverse population. It is 
also important to consider bias within the model which may lead to the 
overestimation of performance. The prediction model risk of bias 
assessment tool (PROBAST) is a quality assessment tool for artificial 
intelligence which could identify this (Collins et al., 2021). Smart de
vices are being developed for blood pressure monitoring and it is 
possible that future risk stratification models for pre-eclampsia will 
utilise this data (Yang et al., 2022). In diagnostic imaging particularly 
fetal MRI, the field of computer vision is advancing rapidly enabling 
methods that are transferable to medical imaging. Though some larger 
collaborative studies have been completed in prenatal ultrasonography 
(Fung et al., 2020, Kim et al., 2022), the approaches have not yet been 
observed in fetal MRI where many works use datasets from single cen
tres and with smaller numbers. In intrapartum management, studies 
lacked external validation or quality assessment (Tan et al., 2021; Ghi 
et al., 2022; Tsur et al., 2020; Venkatesh et al., 2020; Chill et al., 2021) 
but are a first step in developing clinical decision assist tools to improve 
safety standards. Developing multicentric databases with public avail
ability and having multi-disciplinary and international collaborations 
will therefore accelerate research and improve the diversity of datasets 
to better represent minority groups (Meshaka et al., 2022, Malani et al., 
2023). 

6. Conclusion 

Machine learning applications in obstetrics and maternity care are 
rapidly evolving. Increasingly, predictive algorithms incorporate data 
from electronic health records and frameworks are now being developed 
to standardise the quality and design of studies using large datasets, 
particularly in diagnostic imaging. Presently many models lack external 
validation, a necessary step before algorithms can be transitioned into 
clinical practice. Quality assessment for bias within models using tools 
such as PROBAST may reduce the inflation of performance measures. 
Decision-assistive tools for the delivery of intrapartum care are in pre
liminary stages and so far, pilot studies have identified areas of interest. 
As smart technology advances, it is possible that more algorithms using 
datasets from these recording devices will be created. Developing mul
ticentric databases, increasing multi-disciplinary working and promot
ing international collaboration will accelerate the advancement of this 
emerging area in research. 
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