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SPECIAL FEATURE:
Selecting a Best Model

INTRODUCTION: THE CHALLENGE 
OF SELECTING A MODEL

It’s the age-old dilemma: What is the 
best forecasting model for you? This has 

always been a challenging question for 
researchers and practitioners alike. Being 
able to identify the best model could lead 
to substantial performance benefits. 
Further, performance-ranking different 
forecasting models supports setting 
better weights for forecast combinations.

A fundamental problem, however, is 
that the model that has performed 
comparatively well given the observed 
(historical) data will not necessarily be the 
model that performs best in the future. 
The underlying patterns in observed data 
are always subject to change.

While forecast model selection is 
important, the forecasting community 
has not fully coalesced around the proper 
ways to accomplish this, and several 
approaches have been developed. One 
aspect these approaches have in common 
is that they focus wholly on the observed 
data – not considering their forecasts of 
the future in the selection decision. 

We believe this is a significant oversight. 
In this paper, after discussion of existing 

approaches to model selection, we propose 
an enhancement that incorporates the 
representativeness of a model’s forecasts 
as a new component in the model-
selection decision. It does so by providing 
a reality check on the reasonableness 
of the generated forecasts. Testing on 
numerous actual time series shows 
this enhancement to improve forecast 
performance.

JUDGMENT IN MODEL SELECTION

Recent studies have shown that individu-
als are able to select models such that 
the average forecasting performance is 
as good as selection based on some sta-
tistical criteria. An examination of judg-
ment in model selection was featured in 
the Summer 2019 issue of Foresight (Is-
sue 54), beginning with Fotios’s article 
on the application of judgment for model 
selection (Petropoulos, 2019). Several 
Commentaries pointed out that the com-
mendable performance of judgmental 
model selection offers an attractive alter-
native to the reliance on automatic selec-
tion in forecasting software as well as a 
way forward for those with algorithmic 
aversion.

PREVIEW Statistical criteria for selecting a best forecasting method from a group of candi-
dates have been proposed, studied, and implemented widely in forecasting software. Very 
well-known are information criteria, such as the AIC, which balance performance and com-
plexity, and validation techniques, which examine forecasting performance in a holdout 
sample. So it’s a breath of fresh air to have a distinctly new take on method selection, which is 
what Fotios and Enno are presenting here. They offer strong evidence that method selection 
can be improved by accounting for the representativeness of the forecasts.
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In addition, Fotios reported that combin-
ing forecasts, either by aggregating the 
forecasts of small groups (judgmental 
aggregation) or averaging the forecasts 
of models selected statistically with those 
selected judgmentally, could significantly 
outperform straight statistical approach-
es. Moreover, while he found that statisti-
cal approaches will select the best models 
more often (compared to humans), they 
will also select the worst model more 
frequently. In other words, humans are 
better able to avoid the worst outcomes.

■ �The forecasting community has not fully 
coalesced around the proper ways to select a 
forecasting method, and several approaches 
have been developed. None of the established 
model-selection rules make use of the forecasts 
that will eventually be used for decision 
making. Information criteria and validation/
cross-validation approaches explicitly assume 
that whichever method produced the best 
forecasts previously will be the best model 
forward.

■ �Our new approach for selecting among 
forecast models is based on examination 
of the forecasts made for real-time future 
periods, the actuals for which are not yet 
knowable. It is based on representativeness, 
the degree to which these forecasts are a 
natural continuation of the observed data.

■ �We describe and illustrate a new criterion 
for method selection that considers the 
representative of the forecasts as well as 
the accuracy with which the methods fit the 
observed data. We call this the REP.

■ �Finally, we compare REP with two main 
existing criteria for method selection, the 
AIC and cross-validation (CV) using a large 
number and wide variety of time series from 
previous M competitions. We believe the 
results are highly promising and point to 
deeper exploration into the psychology of 
human input into forecast-method selection.

Key Points
The way we apply judgment to the task of 
model selection is fundamentally differ-
ent from the way statistical approaches 
such as information criteria work. The 
key difference seems to lie in what in-
formation is being used. Statistical ap-
proaches work “backwards” in the sense 
of examining observed data values and 
measuring forecasting performance over 
past periods (both in terms of perfor-
mance in tracking the in-sample fit or the 
out-of-sample performance on data held 
out from model fit). 

We humans, in contrast, look “forward” 
and compare the pattern of forecasts 
produced by each forecasting model 
with our mental extrapolations of the 
data pattern. Brain imaging experiments 
by Weiwei Han and colleagues (2019) 
revealed that humans reject models for 
which the forecasts look unreasonable. 
In other words, we use a visualization of 
forecasts for which the actual data are 
not yet available to select models that 
produce a pattern that best matches past 
data: the forecasts that are representative. 

Motivated by this realization, we 
devised an algorithmic approach to 
forecast selection based on the concept 
of representativeness. A full description 
and analysis of the algorithm is in our 
new article in the journal Management 
Science (Petropoulos and Siemsen, 2022). 
Here we will describe and illustrate how 
model selection works based on this new 
criterion of representativeness. We begin 
with an overview of model-selection 
criteria.

MODEL-SELECTION CRITERIA

Most statistical criteria for model 
selection are based, directly or indirectly, 
on forecast-error metrics, with smaller 
errors over a designated period being 
preferable.

Information Criteria
Information criteria are based on how 
well the model fits the in-sample data but 
contains a penalty for the size/complexity 
of the model. The penalty is designed 
to avoid overfitting – introduction of 
additional model complexity that adds 
little new value. 
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Information criteria, such as the Akaike’s 
Information Criterion (AIC) and Bayesian 
Information Criterion (BIC), are in wide 
use. Implementations for them are readily 
provided within open-source forecasting 
packages, such as the forecast and smooth 
packages for R statistical software. They 
are also reported in many commercial 
packages and used in some of these for 
model selection. Some versions build 
in corrections for small sample size. For 
instance, the functions ets() and auto.
arima() of R’s forecast package rely, by 
default, on the AIC values corrected for 
small sample sizes (AICc).

The in-sample fit of each model is mea-
sured either by the mean squared error 
(MSE) or the likelihood function (which 
measures how likely we would see the 

observed data, given the model). The 
penalty is based on the number of model 
parameters to be estimated. The premise 
of an information criterion follows Oc-
cam’s Razor in that, among all solutions 
with the same performance, the simplest 
one should be selected. In comparing the 
values of an information criterion across 
models, lower values indicate superior 
performance.

One caveat is that information criteria 
values are not always directly compara-
ble across different models, especially if 
we are comparing models from different 
families, such as an exponential smooth-
ing vs. an ARIMA model. The difficulty 
arises from how the likelihood function 
is computed and how initial values have 
been specified; for instance, differencing 
is often required for ARIMA models but 
not exponential smoothing. In general, 
then, information criteria should not be 
used when the data are transformed in 
different ways, or when different orders 
of integration have been applied. 

In addition, information criteria may er-
roneously select a simpler model when 
the sample size is small and the sample 
data are highly variable. That said, the 
selection of a misspecified model – either 
one that is simpler or one that is more 
complex – will not necessarily degrade 
forecast performance, a point we return 
to later in this article.

Baki Billah and colleagues (2006) com-
pared different statistical criteria for 
choosing among exponential-smoothing 
models and reported that information 
criteria, particularly the AIC, performed 
best in their simulations. Stephan Kolas-
sa (2011) showed how the values of infor-
mation criteria may be used to calculate 
weights for combining the forecasts of 
different models. 

Validation and Cross-Validation 
Validation and cross-validation approaches 
split the available data into training and 
validation sets, using the former to fit a 
model and the latter to measure the out-
of-sample performance of the forecasts. 
The model with the best validation per-
formance is then taken forward to pro-
duce forecasts for future periods. 

The principle of out-of-sample evaluation 
is that forecasting performance should 
be measured on data that have not been 
used in the training of the models. 

In the validation approach, only one set 
of forecasts is produced for a time series, 
and these are tested against the data in 
the validation set of that series. This ap-
proach is simple and relatively fast; how-
ever, it is still slower than selection based 
on information criteria, as the selected 
model needs to be fitted twice: once for 
the validation step and once to produce 
forecasts for future periods. In addition, 
the forecast-error metrics that are cal-
culated blend multiple forecast horizons 

The existing selection criteria all consider past data as well as the forecasts that 
correspond to observations up until the latest available time period. None of these 
approaches, however, make use of the forecasts for future periods.
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from a fixed origin, so no insights emerge 
as to how forecast accuracy changes as the 
horizon of the forecast lengthens.

A better alternative to validation is cross-
validation, in which model fitting and 
evaluation is repeated from multiple 
forecast origins. While there are several 
forms in use, for time-series data the roll-
ing origin evaluation is most appropriate. 
Here, a model is fit with the training data 
and forecasts made for multiple horizons 
in the validation set. The window of the 
training data is expanded to include the 
first time period in the validation set. The 
model is reestimated and forecasts made 
from the new origin. The process contin-
ues until all data in the validation set have 
been incorporated into the training set. 
The procedure can be time-consuming 
and requires the availability of long time 
series to support evaluations over mul-
tiple origins.

Additionally, for cross-validation in gen-
eral, one needs to decide between expand-
ing or rolling training windows, overlap-
ping or nonoverlapping validation sets, 
and how often validation forecasts should 
be produced. For additional reading on 

time-series validation and cross-valida-
tion, the reader is referred to Tashman 
(2000) and Bergmeir and Benítez (2012).

Times-Series Features 
Apart from information criteria and 
validation approaches, model selection has 
been based on time-series features, such as 
trend, seasonality, autocorrelation, cycle, 
randomness, series length and variability, 
and interdemand interval for intermittent 
data (Petropoulos and colleagues, 2014). 
Since there is no universal method that is 
best for every time series, the goal is to 
identify the best forecasting method for 
the particular features of “my data.”

Given a pool of models and a set of 
reference series, the features are used to 
train meta-learning algorithms. Here each 

series in the reference set is split into 
a training and a test set (Talagala and 
colleagues, 2021). The training set of each 
series is used to calculate values for the 
time-series features as well as to produce 
forecasts for the test set, and this is done 
for each of the models in the pool. 

A meta-learning model is trained to 
select between models by comparing 
how performance of the forecasts of the 
various models in the pool is related to 
the values of the features. The reference 
series can be publicly available data sets, 
such as the M4 competition data, or even 
synthetically generated series that possess 
the desired features (Kang and colleagues, 
2020). The R packages tsfeatures and 
gratis can be used to calculate the values 
of time-series features and generate 
synthetic series based on them.

A variation of this approach is the rule-
based forecasting RBF system from Arm-
strong, Collopy, and Adya. These are sets 
of “if/then” rules distilled from experi-
ence of forecasting experts to select and 
combine among a set of simple time-se-
ries models (Adya and colleagues, 2001). 

SELECTION BY REPRESENTATIVENESS

These various selection criteria all con-
sider past data as well as the forecasts 
that correspond to observations up until 
the latest available time period. Informa-
tion criteria use in-sample comparisons 
between actual and predicted – also called 
fitted – values. Validation approaches use 
out-of-sample forecasts; however, these 
forecasts still occur during past time pe-
riods (the validation sets correspond to 
appropriate holdouts). 

None of these approaches, however, 
make use of the forecasts for future peri-
ods - that is, forecasts for which the ac-
tual observations remain unknown. More 
explicitly, none of the established model-
selection rules make use of the forecasts 

Representativeness of a model’s forecasts as a new component in the model- 
selection decision provides a reality check on the reasonableness of the generated 
forecasts.
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that will eventually be used for decision 
making. Information criteria and valida-
tion/cross-validation approaches explic-
itly assume that whichever method pro-
duced the best forecasts previously will be 
the best model forward. 

This principle strikes us as, at the very 
least, naive. Our new approach for select-
ing among forecast models is based on ex-
amination of the forecasts made for real-
time future periods, the actuals for which 
are not yet knowable. The evaluation of 
such forecasts, given that the actual data 
are not yet available, is based on the de-
gree to which these forecasts are a natural 
continuation of the past observed data. 
We call this rep-
resentativeness. 
For example, a 
flat/level fore-
cast would not 
be represen-
tative of data 
with a strong 
trend, nor 
would a trend-
only model be 
representative 
of data that 
exhibit strong 
seasonal behav-
ior. 

REP Defined
We define the 
representative-
ness gap as the 
lack of representativeness of a forecast 
compared to past actuals, and use this 
concept in conjunction with the perfor-
mance of the in-sample forecasts (fitted 
values). This approach effectively replaces 
the complexity penalty applied by infor-
mation criteria by the representativeness 
gap. In essence, we propose that selecting 
between forecasting models should be a 
balance between in-sample fit and repre-
sentativeness. Conceptually, this new cri-
terion, REP, can be expressed as

REP = performance gap + representativeness gap

Similar to information criteria, model 
forecasts with lower REP values should be 
preferred to those with higher. If two sets 

of forecasts offer the same in-sample per-
formance, the one with better represen-
tativeness – a lower representativeness 
gap – should be selected. This is not the 
same as selecting the least complex of two 
equally performing models.

Representativeness (and its gap) can be 
measured in different ways, all of which 
are based on comparisons of the forecasts 
for the future with the available data up to 
the present. Such comparisons are asyn-
chronous, in the sense that the forecasts 
and the data to be compared refer to dif-
ferent time periods. As such, some scal-
ing and transformations may be required 
to place the “present” and the “future” on 

the same level.

For series with 
multiplicative 
(trend or sea-
sonal) patterns, 
l o g a r i t h m i c 
t r a n s f o r m a -
tions can be 
needed. If the 
data are peri-
odic – with pat-
terns that re-
peat at regular 
intervals such 
as monthly 
seasonality – 
the compari-
sons must be 
aligned, so that 
the respective 
periods (e.g., 

the same month) of the past data and the 
forecasts are compared.

Measurement of representativeness can 
not only be made for point forecasts but 
prediction intervals as well. Other choices 
include the error metrics used, the length 
of the forecast horizon (i.e., length of the 
data window for the comparisons), the 
use of a single window or multiple win-
dows of past data, and the use of equal or 
unequal weights to average representa-
tiveness across multiple windows of data.

Calculating the REP for Point Forecasts
The calculation of REP follows a number 
of steps, each of which can be adapted to 
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the specifics of the data at hand. Figure 1 
provides an illustrative example. The his-
torical data are plotted in black in the top 
panel. These represent monthly sales of a 
toy product over a period of six years. An 
upward trend and a seasonal pattern are 
evident. 

We produce forecasts with two methods: 
Holt’s linear trend exponential smoothing 
(that ignored the seasonal pattern) and 
the Holt-Winters exponential smoothing 
with multiplicative seasonality. The fore-
casts for the next year (next 12 months) 
are depicted by the red and blue lines in 
the first panel.

1. �The first step is to produce forecasts 
using all available historical data, 
without splitting a series into training 
and validation sets.

2. �Specify the window of forecasts over 
which representativeness is to be mea-
sured. It simplifies things to match 
the forecast horizon with the period-
icity of the data, so for monthly data 
– a periodicity of 12 – we set the fore-
cast horizon to be 12 months ahead.

3. �Split the sample data into buckets 
such that (i) each bucket is at least as 

long as the forecasts’ window, and (ii) 
the first period of each bucket corre-
sponds to the respective first period 
of the forecasts. In the toy example, 
we split the in-sample data into five 
windows/buckets, each a length of 
12 months to match the forecasting 
horizon and each bucket beginning 
with the same month of the year. This 
ensures that seasonal patterns will be 
aligned when comparisons are per-
formed.

4. �The fourth step is to perform any 
needed scaling and transformations. 
For each bucket in our illustrative 
data, we aligned the scales and did a 
Box-Cox transformation to stabilize 
the variance and transform multi-
plicative patterns into additive ones. 
This is to be done for the forecasts as 
well.

5. �For each individual bucket, the rep-
resentativeness gap is measured in 
terms of the closeness of the past data 
points to the point forecasts. Most 
simply, we sum the absolute distances 
between a (scaled and transformed) 
bucket of past data and the forecasts. 
For our toy example, the result of this 
step is five sums of absolute differ-
ences.  

6. �The final step is to take an average 
of the resulting bucket sums from 
the prior step. This could be an un-
weighted average, but we recommend 
a weighted mean to give more em-
phasis to the more recent years. In 
particular, we recommend that the 
weight for each bucket is one half of 
its more recent adjacent bucket; that 
is, the weights are decreasing by 50% 
as we move back from the most recent 
bucket. 

In Figure 1, the middle frame highlights 
the representativeness gap for the trend-
ed-only forecast – the red line in the top 
frame. The large representativeness gap 
reflects mainly the seasonal departure 
of the data from the trend line. The bot-
tom frame shows the forecasts from a 
trended/seasonal (Holt-Winters) model 
– the blue forecasts. It is clear that the 

Figure 1. A Toy Example on Measuring Representativeness 
(and Its Gap), adapted from Petropoulos and Siemsen (2022)
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representativeness gap is much lower now 
that we’ve also accounted for seasonality. 
Once the representativeness gap has been 
calculated, then the value of the REP 
criterion is calculated as the sum of the 
representativeness gap and the in-sample 
performance gap. For the toy data, the in-
sample performance gap is the mean of 
absolute differences between the actual 
and fitted values over the five years. 

PERFORMANCE COMPARISON OF 
SELECTION APPROACHES

To evaluate how our REP criterion fares 
against information criteria and cross-
validation, we compared the three criteria 
on a large collection of real data from the 
M, M3, and M4 forecasting competitions. 
We used these three criteria to select and 
to combine models from the exponential-
smoothing family. For the latter, we 
calculated weights based on how the 
individual models performed on the 
particular selection criterion.

Table 1 offers a selective summary of the 
empirical results. (These were more fully 
reported in Petropoulos and Siemsen, 
2022). For Table 1, we present forecast ac-
curacy results for the yearly and monthly 
data frequencies. The metric reported is 
the mean absolute scaled error (MASE), 
originally proposed by Rob Hyndman 
(see Hyndman, 2006) as a scale-free met-
ric suitable for measuring accuracy across 
multiple time series (including intermit-
tent series).

For point forecasts, the REP selection 
rule outperforms both the information 
criterion and cross-validation, and does 
so for both the yearly and monthly data. 
For the yearly frequency, REP was more 
accurate than AICc (Akaike’s Information 
Criterion corrected for small sample 
sizes) and cross-validation (CV) by 8.2% 
and 5.5% respectively. Differences in 
performance were statistically significant 
in most of the cases, especially for yearly, 
quarterly, and monthly data. 

In addition, we found that REP selects 
the best (among a class of exponential 
smoothing) models more often than 

information criteria, while more 
frequently avoiding the worst of these 
models. The good performance of REP 
was evident not only when it was used 
to select/combine models within the 
exponential-smoothing family, but also 
within the ARIMA family of models, or 
even between models of different families.

We note too that combinations of models 
based on REP outperformed AICc and CV 
in terms of estimating uncertainty as well 
as accuracy in the point forecasts, using 
the mean scaled interval score and a 95% 
confidence level. 

We also performed sensitivity analyses 
to examine the performance of REP 
under different conditions. Two principal 
findings:

• �First, we considered the case of using 
only the representativeness gap in 
measuring REP, leaving out the in-
sample performance. We observed 
that even excluding the performance 
gap leaves the REP approach superior 
to selection based on the AICc . This is 
very important for cases in which the 
available forecasts are not accompanied 
by in-sample fits, as it is usual for purely 
judgmental forecasts. 

• �Second, we analyzed the performance 
of REP for different forecast horizons 
and found that REP performs strongly 
across all horizons (short, medium, and 
long) – and in fact, its advantage relative 
to the information and cross-validation 
criteria grows at longer horizons.

Table 1. Summary Accuracy Results, adapted from  
Petropoulos and Siemsen (2022)

	
Selection	 AICc	     3.405	           0.941

		  CV	     3.307	           0.921

		  REP	     3.125	           0.918

Combination	 AICc	     3.351	           0.933

		  CV	     3.300	           0.916

		  REP	     3.101	           0.906

Yearly Data  Monthly Data
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CONCLUSION

As a means of selecting between forecast 
models, representativeness – with the 
strong empirical performance of REP – 
has earned its way into the criteria for 
model selection. Similar to information 
criteria, REP consists of two parts: how 
well the model fits the historical data 
and a penalty. Contrary to information 
criteria, the penalty is not based on 
model complexity but rather on the 
representativeness of the forecasts, the 
degree to which the resulting forecasts 
are perceived as a natural extension of the 
historical data.
Our study offers more evidence that 
the infusion of human judgment into 
algorithms, such as the manner in which 
we use visualizations of the forecasts, can 
improve the performance of both existing 
algorithms and judgment alone. That 

said, there is still much to distill from how 
humans approach forecasting and how 
we can translate such insights to further 
improve our forecasting algorithms.
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INTRODUCTION

Fotios and Enno introduce us to the 
representativeness criterion for select-

ing between different statistical-fore-
casting models. To use this criterion, we 
take samples from historic datasets and 
then compare the patterns in successive 
chunks of these data with the pattern in 
a similar-length chunk provided by the 
forecasts. The less similar the pattern 
in the forecasts is to the patterns in the 
historical data, the less representative the 
forecasts are of the data series: in other 
words, the bigger the representativeness 
gap. To obtain a value of the representa-
tiveness criterion (REP), the representa-
tiveness gap is added to the performance 
gap, the in-sample difference between 
forecasts and outcomes. The model with 
the lowest REP value is the one selected. 

Fotios and Enno compare the success of 
the REP criterion with that of two estab-
lished approaches, the Akaike informa-
tion criterion (AIC) and cross-validation 
(CV), in selecting between models from 
the exponential smoothing family. To do 
this, they used forecasts produced by the 
models for real series drawn from those 
used in forecasting competitions and 
found that REP produced higher forecast 
accuracy than the other two approaches. 
Even using the representativeness gap 
alone, excluding the performance gap, 
produced higher forecast accuracy than 
using the information criterion.

ARE THE RESULTS GENERALIZABLE?

These results are impressive. How gener-
alizable are they? In their original presen-
tation of the representativeness criterion, 
Petropoulos and Siemsen (2022) showed 

that REP is more effective than AIC and 
CV not just in selecting between alter-
native exponential-smoothing models, 
but also in selecting between alterna-
tive ARIMA models. Furthermore, they 
went on to demonstrate that it is more 
effective than CV in selecting between 
heterogeneous model types (exponential 
smoothing, ARIMA, Theta model) for 
lower-frequency data (yearly, quarterly, 
monthly, weekly) and similar to CV for 
higher-frequency data (daily, hourly). 
Thus the REP approach generalizes well 
across model types. 

What about generalization across series 
types? In their empirical work, the au-
thors used 103,830 series; some were 
from those used in the M and the M3 
forecasting competitions, but most came 
from the M4 forecasting competition. 
These series were drawn from a wide vari-
ety of different domains; for example, M4 
series were taken from industries, ser-
vices, tourism, imports and exports, de-
mographics, education, labour and wages, 
government, households, bonds, stocks, 
insurances, loans, real estate, transporta-
tion, and natural resources and the envi-
ronment. In fact, Spiliotis and colleagues 
(2020) provide evidence that the M4 
series are statistically representative of 
real-world series. So we can say that the 
findings reported on representativeness 
hold, on average, for the types of series 
from which models are used to make fore-
casts in the real world. 

Of course, this does not mean we can be 
certain that Fotios and Enno’s conclu-
sions will hold for a particular type of 
series. We know from the Makridakis 
forecasting competitions that there is no 
overall optimal way to make forecasts; 
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We can say that the findings reported on representativeness hold, on average, for 
the types of series from which models are used to make forecasts in the real world.
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instead, particular approaches suit par-
ticular types of series better than others. 
Similarly, different ways of selecting be-
tween forecasting models may be appro-
priate for different types of series. 

NONLINEAR SERIES

Consider two types of series that might 
be interesting for future analysis: non-
linear series and trended series. In both 
these cases, patterns in past data may 
not be a perfect guide to the patterns we 
should expect in future data. Generally, 

M4 series showed a high degree of lin-
earity (Spiliotis and colleagues, 2020), 
but there are specific domains (finance, 
meteorology) in which series are better 
characterized as nonlinear (Mandelbrot 
and Hudson, 2008). 

Differences between nonlinear series can 
be characterized by their Hurst exponent 
(H); for most financial series it varies be-
tween 0.3 and 0.7 (Sang and colleagues, 
2001). An H value of 0.5 corresponds to a 
random walk; an H value greater than 0.5 
means that the series changes direction 
less frequently than a random walk – it is 
persistent; an H value less than 0.5 means 
that it changes more frequently than a 
random walk – it is anti-persistent. For ex-
ample, daily stock returns for Caterpillar 
can be characterised by a Hurst exponent 
of 0.329 (Sang and colleagues, 2001). This 
means that trends in the series are likely 
to continue for a while before reversing 
and continuing in the opposite direction, 
only to eventually reverse again. (Also, a 
correlogram of this series shows a long, 
slow decline, indicating long-range de-
pendencies in the data.)

How should we proceed? It may look 
as if such series are describing a non-
deterministic seasonal process, but these 
patterns are transient so they cannot 
be used to make adequate long-range 
forecasts. The best approach could be to 

start by establishing that the series is 
indeed nonlinear and determining the 
nature of its nonlinearity by, for example, 
extracting its Hurst exponent. Doing so, 
however, requires analysis of a very long 
data series, which is not typically avail-
able, except in some applications, such 
as high-frequency trading. We can still 
use established forecasting models and 
expect them to produce adequate short-
term forecasts; for example, with a Hurst 
exponent of 0.329, we know there is a 
good chance of the current trend continu-
ing over the next few periods.  

MODEL SELECTION CRITERIA FOR 
NONLINEAR SERIES

Would REP provide the best way of select-
ing between models to provide forecasts 
from nonlinear series? Assuming (as the 
authors do) that the data-generation 
process is unknown to forecasters, the 
length of the forecast window would be 
set equal to the apparent periodicity in 
the data series, and the candidate models 
(e.g., from the exponential-smoothing 
family) would each provide forecasts for 
that window. The representativeness gap 
between each set of forecasts and data in 
each of the previous windows would then 
be calculated in the way that Fotios and 
Enno describe. 

Given the apparent “seasonal” patterns in 
nonlinear series, the representativeness 
gap may be smallest for the exponential 
smoothing models that include seasonal 
component. Also, given the transience 
of these seasonal patterns, such models 
may fit better when the discount factor 
is higher (i.e., when greater emphasis is 
placed on comparing forecasts with more 
recent time windows).

What about the AIC approach? 
Petropoulos and Siemsen (2022) provide 
examples of where this approach fails: 
forecasts did not follow trends in the data 
series because of the penalty applied to 
complexity. Complex models are likely to 

The question would then be whether nonlinear series are better forecast by the 
simpler exponential models selected by AIC and CV or by the more complex ones 
selected by REP.
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be needed in attempts to account for the 
behaviour of nonlinear series, and so the 
complexity penalty could result in AIC se-
lecting a simpler model than that chosen 
by REP in this case as well. 

How about the CV approach? It does not 
penalize model complexity, but it is likely 
to be affected by the transient nature 
of apparent trends and seasonalities in 
nonlinear series: patterns present in the 
training sets may not remain present in 
validation sets. As a result, CV may also 
select a simpler model than REP. 

The question would then be whether 
nonlinear series are better forecast by 
the simpler exponential models selected 
by AIC and CV or by the more complex 
ones selected by REP. Here our arguments 
about the types of models that might be 
favoured by different selection criteria 
are, of course, speculative, but they are 
designed to support our point that it 
would be worth carrying out empirical 
research to compare different ways of 
selecting between models for particular 
types of series – in this case, nonlinear 
series.

TRENDED SERIES

We now turn to trended series. The au-
thors point out that their development of 
the REP criterion was at least partly trig-
gered by findings from judgmental-fore-
casting research that indicate that people 
try to make their sequence of forecasts 
look like (i.e., have the same characteris-
tics as) the data series. One major find-
ing is that when making forecasts from 
trended series, people tend to place their 

forecasts below upward trend lines and 
above downward ones (Eggleton, 1982; 
Harvey and Reimers, 2013). 

It appears that when forecasting from 
linear or exponentially increasing trends 
in data series, people take into account 
not only the data in front of them but 
also their knowledge of the real world. 

That knowledge tells them that nothing 
continues to increase or decrease forever 
(entropy apart). Instead, trends even-
tually become asymptotic or turn into 
cycles. Forecasters factor this knowledge 
into their judgments as trend damping. 
Statistical forecasters have also discov-
ered the value of trend damping: Gardner 
and McKenzie (1985) showed that add-
ing an ad hoc damping term can improve 
performance of exponential-smoothing 
models that take trends into account. In 
summary, the steepness of trends in past 
data cannot be considered to be a perfect 
guide to the steepness of trends in future 
data.

It is possible to add an ad hoc damping 
term to forecast sequences that contain 
trends. In Figure 1 of their paper, the 
trend-only and the trend and seasonal 
forecasts could be subject to a small 
amount of damping to improve their ac-
curacy. However, this would have two 
effects. First, it would make the forecast 
sequence (window 6 in Figure 1) less rep-
resentative of the data in the windows of 
the data series (windows 1-5 in Figure 1). 
As a result, the representativeness gap 
would increase. However, on the basis of 
Gardner and McKenzie’s (1985) findings, 
we would expect the performance gap 
to decrease. If this latter effect is larger, 
REP would be lower when a damping 
term is used to improve forecasts. So our 
question is whether REP can select an 
exponential model with damping over 
one without damping. The AIC approach 
is less likely to do this because addition 
of the damping term will be subject to a 
complexity penalty.  

INFLUENCE ON JUDGMENTAL 
FORECASTING

Fotios and Enno have described how the 
innovative work on representativeness 
was at least partially triggered by research 
on judgmental forecasting. We can ask 
how their ideas might influence work on 
judgmental forecasting. 

The steepness of trends in past data cannot be considered to be a perfect guide to 
the steepness of trends in future data.
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There has long been a debate about the rel-
ative effectiveness of purely judgmental, 
purely statistical, and hybrid approaches 
to forecasting. Lawrence and colleagues 
(1985) concluded from their studies that 
“judgmental extrapolation is on average 
no less accurate than statistical forecast-
ing and, in a number of subgroups of the 
time series, was the most accurate” (p 25). 
In the M2 competition (Makridakis and 
colleagues, 1993), forecasts produced by 
purely statistical methods were compared 
with those produced by people who had 
access to statistical methods but who 
could judgmentally adjust the forecasts 
produced by those methods to take ac-
count of additional information. There 
was little difference between these two 

types of forecasts at short horizons, but 
purely statistical forecasts tended to be 
superior at longer horizons. The authors 
conclude that “no judgmental revisions 
ought to be made to the quantitative 
forecasts without making sure before-
hand about the need and value of such 
revisions” (pp. 17-18). 

In conclusion, circumstances in which 
judgment adds quality to forecasting 
processes still need to be identified more 
precisely. However, it should be possible 
to use the REP criterion to select not just 
between purely statistical approaches 
but also between statistical approaches, 
pure judgmental forecasting, and hybrid 
approaches that combine statistical and 
judgmental contributions in various 
ways.
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