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Abstract

In this thesis, we study the problem of adaptive online learning in several

different settings. We first study the problem of predicting graph labelings

online which are assumed to change over time. We develop the machinery of

cluster specialists which probabilistically exploit any cluster structure in the

graph. We give a mistake-bounded algorithm that surprisingly requires only

O(log n) time per trial for an n-vertex graph, an exponential improvement over

existing methods.

We then consider the model of non-stationary prediction with expert advice

with long-term memory guarantees in the sense of Bousquet and Warmuth [1],

in which we learn a small pool of experts. We consider relative entropy

projection-based algorithms, giving a linear-time algorithm that improves on

the best known regret bound [2]. We show that such projection updates may be

advantageous over previous “weight-sharing” approaches when weight updates

come with implicit costs such as in portfolio optimization. We give an algorithm

to compute the relative entropy projection onto the simplex with non-uniform

(lower) box constraints in linear time, which may be of independent interest.

We finally extend the model of long-term memory by introducing a new

model of adaptive long-term memory. Here the small pool is assumed to

change over time, with the trial sequence being partitioned into epochs and

a small pool associated with each epoch. We give an efficient linear-time

regret-bounded algorithm for this setting and present results in the setting of

contextual bandits.



Impact Statement

The work contained in this thesis has the following potential benefits both

inside and outside academia. Firstly, this thesis contains several novel algo-

rithms developed for a variety of machine learning problems, with worst-case

performance guarantees. These algorithms and the ideas therein may form the

basis for future research and improvements in online machine learning. Further-

more, while this thesis is presented in the context of online machine learning,

some of the ideas are much more general and may be of independent interest.

For example, the machinery of cluster specialists developed in Chapter 3 for

predicting on graphs is quite general and could have many uses outside of online

learning. As another example, we give an algorithm to compute the relative

entropy projection onto the simplex with non-uniform box constraints in linear

time which may have quite general applicability.

Regarding the potential benefits outside of academia, while this research in

adaptive online learning is theoretical, we do include experiments on real-world

data (Chicago bicycle sharing data). Our results show promising algorithms

for predicting the states of bicycle-sharing stations around a city as they evolve

over time. This is a small example of how such algorithms could be used in

city transport optimization, or more generally for public safety.

Finally, we give a brief reflection on the ethical considerations of this work.

While the scope of applicability of online learning algorithms is wide, this

research in regret-bounded online learning is foundational in nature and we

therefore cannot foresee the extent of any societal impacts (positive or negative)

this research may have.
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Chapter 1

Introduction

1.1 Motivation

The impact that the field of machine learning and artificial intelligence has

had on the world in recent years is hard to overstate. From supercomputers

to the phones in our pockets, machine learning techniques and algorithms are

increasingly used in our lives. This use of machine learning methods would not

be possible without the enormous amounts of data that are captured around

the world every day.

The field of machine learning can be broadly split into two camps, batch

learning and online learning. In batch learning, a complete dataset is used

to train a predictor, after which predictions are made. Conversely, in online

learning, data arrives sequentially and a predictor must make predictions at

each step or trial and learn incrementally. Online learning algorithms typically

have a small memory footprint and often do not require one to store data.

As such, with the vast amount of data being generated and recorded today,

online learning algorithms and techniques are becoming increasingly important.

Furthermore, the world is in a constant state of flux. From seasonal changes in

the weather to the mass movements of people throughout a city every day, an

attractive property of many online learning algorithms is their ability to adapt

to change and continue to predict accurately.

In this thesis, we develop and study several online learning algorithms in
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various settings. A core feature of these algorithms is their adaptability. That

is, we assume that the nature of the data on which they make predictions is

changing over time, and the algorithms must adapt accordingly. Throughout

this thesis, we will also have a secondary focus on efficiency. While “efficiency”

will refer to the computational performance of the algorithms studied (in both

time and space complexity) for most of this thesis, the word will occasionally

be used in a different context to compare different algorithms.

1.2 Contributions

The main original contributions of this thesis are as follows.

1.2.1 Online Learning on Graphs

We develop the machinery of cluster specialists for the problem of predicting

graph labelings. Cluster specialists probabilistically exploit the cluster structure

in the graph. We present an algorithm for using cluster specialists to predict

switching graph labelings online. Our proposed algorithm has two variants, of

which one surprisingly only requires O(log n) time on any trial on an n-vertex

graph, an exponential speed-up over existing methods. We prove switching

mistake-bound guarantees for both variants of our cluster specialist algorithm.

1.2.2 Online Learning with Expert Advice

We present an O(n)-time per trial projection-based algorithm for which we

prove the best known regret bound for tracking experts with memory. We show

that this projection-based algorithm is intimately related to a more traditional

“weight-sharing” algorithm, which we show is a new method for Mixing Past

Posteriors (MPP) [1]. We show that this method surprisingly corresponds to

the algorithm with the previous best known regret bound for this problem [2].

We give an efficient O(n)-time algorithm for computing exact relative entropy

projection onto a simplex with non-uniform (lower) box constraints. We provide

a guarantee which favors projection-based updates over weight-sharing updates

when updating weights may incur costs.
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1.2.3 Adaptive Long-Term Memory

We introduce a refined model for “switching with memory,” which we study in

both full-information and partial-information settings. We present results in

the setting of contextual bandits. We develop an algorithm that is capable of

learning an “adaptive” small pool (as in the switching with memory setting)

that is changing over time. Our algorithm requires only O(n) time per trial,

where n is the number of policies (experts).

1.3 Publications
The results of Chapter 3 on online prediction of switching graph labelings were

presented at NeurIPS 2019 and published in the proceedings:

• Mark Herbster and James Robinson. Online prediction of switching graph

labelings with cluster specialists. In Advances in Neural Information

Processing Systems, volume 32, 2019.

The work was done in collaboration with Mark Herbster.

The results of Chapter 4 on improved regret bounds for tracking experts with

memory were presented at NeurIPS 2021 and published in the proceedings:

• James Robinson and Mark Herbster. Improved regret bounds for tracking

experts with memory. In Advances in Neural Information Processing

Systems, volume 34, pages 7625–7636, 2021.

The work was done in collaboration with Mark Herbster.

At the time of writing the results of Chapter 5 on adaptive long-term memory

are to be submitted for peer review and publication:

• Stephen Pasteris, James Robinson, Massimiliano Pontil, and Mark Herb-

ster. Adaptive long-term memory for experts and bandits. Submitted for

review, 2023.

In that work we present results and an algorithm for the combined settings

of adaptive long-term memory and multitask learning. These results are
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independent. The multitask setting is out of the scope of this thesis, and

we therefore present results on adaptive long-term memory only (that is, for

the “single task” setting). The work was done in collaboration with Stephen

Pasteris, Mark Herbster, and Massimiliano Pontil.

1.4 Thesis Structure
The content of this thesis is organized as follows. In Chapter 2, we give a

gentle introduction to the general online learning protocol studied in this thesis.

We then give a brief overview of the various online learning problems studied

in each chapter of this thesis, including the problems of online prediction on

graphs, prediction with expert advice, and prediction with partial feedback.

In Chapter 3, we present our main results on predicting a switching sequence

of graph labelings, including experiments. In Chapter 4, we present our main

results on tracking a small pool of experts using projection-based algorithms. In

Chapter 5 we present our main results on adaptive long-term memory, including

experiments. Finally, in Chapter 6 we give some concluding remarks.



Chapter 2

Background

In this chapter, we give some background into the various online learning

settings considered in this thesis. Since each chapter of this thesis is somewhat

self-contained, we give a more specific and detailed background and review of

the relevant literature in each chapter.

2.1 Online Learning

We first introduce the online learning protocol. In this protocol, learning

proceeds in trials. Let Y be an outcome space, and let y1, y2, . . . , yT ∈ Y be

a sequence of outcomes incrementally revealed to a learner over T trials by

nature. Before the learner observes the outcome yt on trial t however, they

must make a prediction ŷt ∈ D, where D is a prediction space. We take the

pessimistic view by focusing on the failures of the learner rather than its

successes by defining a non-negative loss function ℓ : D × Y → [0,∞].

Note that we may be required to distinguish between D and Y, since

although there are many natural problems where Y = D, they may be different.

For example, if we were to predict whether or not it will snow tomorrow,

we would have Y = {0, 1}, and might require our algorithm to output the

probability of it snowing tomorrow, and thus D = [0, 1]. The learner may also

receive some side information, xt ∈ X , such as predictions of the probability

of snow tomorrow from n weather stations, in which case X = Dn. The

general online learning protocol is given in Protocol 1. Usually, no statistical
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Protocol 1 The Online Learning Protocol
for t← 1 to T do

Learner receives xt ∈ X
Learner predicts ŷt ∈ D
Nature observes yt ∈ Y
Learner receives ℓ(ŷt, yt)

end for

assumptions are made about the nature of the data, and thus the online learning

protocol can be viewed as a game between the learner and nature, which

may very well be adversarial.

As an example, a common loss function used in regression problems is

the square-loss, given by ℓ(ŷ, y) = (ŷ − y)2, in which case we usually have

D = Y = R or D = R and Y = [−Y, Y ] for some positive constant Y .

Another example is the logarithmic loss, for prediction space D = [0, 1]

and outcome space {0, 1}:

ℓ(ŷ, y) =

− log (ŷ), y = 1

− log (1− ŷ), y = 0, .

As a final example consider the case that D = {0, 1}, Y = {0, 1}, and

ℓ(ŷ, y) = Jŷ ̸= yK, where JpredK is equal to 1 if the predicate pred is true and

0 otherwise. This setting defines the mistake-bound model, first introduced by

Littlestone [6]. Note that the total loss accumulated by the learner over the

T trials coincides with the number of mistakes made. In Chapter 3, we present

results within this mistake-counting setting.

2.2 Online Learning with Expert Advice
Central to this thesis is the classic problem of online prediction with expert

advice [7, 8, 9]. In this model, before making each prediction, the learner

listens to a set of n experts who each make their own predictions. Thus the

learner receives xt ∈ Dn. These experts may be machine learning algorithms,



2.2. Online Learning with Expert Advice 20

Protocol 2 The Prediction with Expert Advice Protocol
for t← 1 to T do

Learner receives expert predictions xt ∈ Dn

Learner predicts ŷt ∈ D
Nature reveals yt ∈ Y
Learner receives ℓt = ℓ(ŷt, yt)
Expert i receives ℓti = ℓ(xti, y

t) for i ∈ [n]
end for

humans, or even virtual constructions. The learner bases its prediction on

the advice of the experts. After the prediction is made and the true outcome is

revealed by nature, the learner and all experts each incur a loss, measured

by the loss function. In the case that the learner receives information on all

expert losses on each trial, we call this the full-information setting. Later we

discuss the setting where the learner receives only partial feedback. The set

of experts may be infinite, but for simplicity we will assume for now that it is

finite. The protocol for prediction with expert advice is given in Protocol 2.

Note that we have introduced ℓt := ℓ(ŷt, yt) and ℓti := ℓ(xti, y
t) (the loss of

expert i) for convenience.

Recall that we make no statistical assumptions on the nature of how the

data is generated, indeed we assume that it may be generated adversarially

by nature. Of course, if nature is truly adversarial, then the learner has

little hope of performing well since it can incur a maximal loss on every trial.

The goal of the learner is then to predict well relative to a predetermined

comparison class of predictors. In the case of prediction with expert advice,

this is the set of experts themselves. For a given data sequence, we define the

regret of the learner with respect to expert i as

R(i) :=
T∑
t=1

ℓt −
T∑
t=1

ℓti .

We call this the standard regret model. This measure of regret relative to a

fixed expert, i, is of course very restrictive. An extension to this model, and
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central to this thesis, is the notion of “switches” in the data, such that different

experts may perform well at different times. In this setting, the performance of

the learner is compared to the best sequence of experts. For any comparison

sequence of experts i1:T = i1, . . . , iT ∈ [n] the regret of the learner with respect

to this sequence is defined as

R(i1:T ) :=
T∑
t=1

ℓt −
T∑
t=1

ℓtit . (2.1)

Our goal in this thesis will be to derive efficient algorithms with good regret

bound guarantees for such settings.

2.2.1 Specialists

An extension to the problem of learning with expert advice is that of specialists.

First introduced in [10], specialists are defined as experts who can abstain from

predicting on any given trial. Thus the learner may now receive predictions

xt ∈ (D ∪ {□})n, where □ represents an abstention. A specialist that abstains

is said to be asleep, while a specialist that offers a prediction is said to be

awake.

Specialist algorithms have proved to be powerful tools for developing

adaptive online learning algorithms [2, 11, 12], and we make use of the notion

of specialists in this thesis in Chapter 3 and Chapter 5.

2.3 Online Learning on Graphs
In Chapter 3, we consider the problem of predicting binary labelings of a graph.

Let G = (V,E) be an undirected, connected, n-vertex graph with vertex set V ,

and edge set E. Consider Protocol 3 which describes the learner predicting a

binary labeling of a graph in the online setting.

Note that here we have defined mt := ℓ(ŷt, yt) = Jŷt ̸= ytK. In this simple

game, the goal of learner is to minimize the total number of mistakes,

T∑
t=1

mt = |{t : ŷt ̸= yt}| .
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Protocol 3 The Binary Graph Label Prediction Protocol
Nature presents a graph G = (V,E)
for t← 1 to T do

Nature queries a vertex it ∈ V = {1, 2, . . . , n}
Learner predicts the label ŷt ∈ {−1, 1} of it
Nature presents the true label yt ∈ {−1, 1}
Learner suffers loss mt = Jŷt ̸= ytK

end for

Again, we do not assume that there is a fixed labeling on the graph, but instead

that this labeling is changing over time, and to do well our algorithm must

adapt to these changes in labelings. Consider an example of services placed

throughout a city, such as public bicycle sharing stations. As the population

uses these services the state of each station–such as the number of available

bikes–naturally evolves throughout the day, at times gradually and others

abruptly, and we might want to predict the next state of any given station at

any given time. Since the location of a given station as well as the state of

nearby stations will be relevant to this learning problem, it is natural to use a

graph-based approach.

Another setting might be a graph of major road junctions (vertices) con-

nected by roads (edges), in which one wants to predict whether or not a junction

is congested at any given time. Traffic congestion is naturally non-stationary

and also exhibits both gradual and abrupt changes to the structure of the

labeling over time [13].

Both of these examples demonstrate real-world instances of Protocol 3.

The goal of Chapter 3 is to develop efficient algorithms–as well as their mistake

bound guarantees–that can predict the labelings of these graphs online when

they are changing over time.

2.4 Partial Information
We now introduce two further variants of Protocol 2 which have proven to be

very useful in many real-world settings [14]. The first variant is the notion of an
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Protocol 4 The Partial-Information Protocol
for t← 1 to T do

Learner chooses wt ∈ ∆A

Learner selects action at ∼ wt

Nature reveals ℓtat ∈ [0, 1]
Learner receives ℓt = ℓtat

end for

action rather than a prediction. Instead of the learner predicting with ŷt ∈ D,

the learner instead maintains a weight distribution over a set of A actions, and

on each trial samples an action from this is distribution. The second variant

is the notion of partial information (or bandits). In this setting, on each trial

the learner only receives feedback from nature about the selected action on

that trial. This setting is given in Protocol 4, where we assume that losses

take values in [0, 1]. Since the learner does not know on any given trial how

it would have faired by selecting an alternative action, it must thus try to find

a balance between exploration (finding good actions) and exploitation (playing

actions that appear to be good). See [14] for an overview and history into this

problem.

In Chapter 5 we will study a particular instance of the partial information

problem known as adversarial contextual bandits. Closely related to the problem

of prediction with expert advice, in the contextual bandits setting, nature

presents a context vector to the learner who has access to a number of

policies which, given this context vector, output distributions over the available

actions. The learner bases its prediction on the advice of the policies, and

our (expected) regret is measured with respect to the best policy, or sequence

of policies in the non-stationary case. We define this setting more formally in

Chapter 5.
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2.5 Thesis Focus
In this chapter we gave a brief introduction to a variety of topics and protocols

in online machine learning. The focus of this thesis is on the development

of efficient adaptive algorithms and proving good performance guarantees in

these settings. While we cover a variety of problems, the techniques used and

developed in this work all have roots in prediction with expert advice and the

extensions introduced previously.

2.6 Notation
We finally introduce some notation that is used across this thesis. Where a

chapter contains notation specific to that chapter only, it is defined in place.

We define N to be the set of natural numbers (not including zero) and

for all n ∈ N we define [n] := {1, . . . , n}. Given a set X and some n ∈ N, an

n-dimensional vector over X is a sequence of n elements of X. Given x, an

n-dimensional vector, the i-th component of x is denoted xi. The set of all n-

dimensional vectors over X is denoted Xn. Let ∆n := {u ∈ [0, 1]n : ∥u∥1 = 1}

be the (n−1)-dimensional probability simplex. Let 1 denote the vector (1, . . . , 1)

and 0 denote the vector (0, . . . , 0). Let ei denote the ith standard basis vector.

We define D(u,w) :=
∑n

i=1 ui log
ui

wi
to be the relative entropy between u and

w. We denote component-wise multiplication as u⊙w := (u1w1, . . . , unwn).

For p ∈ [0, 1] we define H(p) := −p ln p− (1− p) ln (1− p) to be the binary

entropy of p, using the convention that 0 ln 0 = 0.



Chapter 3

Online Prediction of Switching

Graph Labelings

3.1 Introduction to the Chapter

In this chapter we address the problem of predicting the labeling of a graph

online when the labeling is changing over time. We briefly introduced the model

of predicting a binary labeling online in Section 2.3. Recall that in this model,

on every trial nature queries a vertex in the graph, for which the learner

predicts a binary label. Nature then reveals the true label, and the learner

is either correct or incurs a mistake. We will assume in our model that the

labeling chosen by nature is changing over time, and our algorithm must adapt

to this change in labeling.

In this chapter we present an algorithm based on a specialist [10] approach;

we develop the machinery of cluster specialists, which probabilistically exploits

the cluster structure in the graph. The chapter is organized as follows. We

first introduce some additional notation required for this chapter only. We

then introduce the model in Section 3.2 and review the relevant literature.

In Section 3.4 we present the Switching Cluster Specialists algorithm

(SCS), a modification of the method of specialists [10] with the novel machinery

of cluster specialists, a set of specialists that, in a rough sense, correspond to

clusters in the graph. We consider two distinct sets of specialists, Bn and Fn,
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where Bn ⊂ Fn. With the smaller set of specialists, Bn, the bound is only

larger by a factor of log n. On the other hand, we will see that prediction

is exponentially faster per trial, remarkably requiring only O(log n) time to

predict. In Section 3.7 we present results of experiments on Chicago Divvy

Bicycle Sharing data.

3.1.1 Notation

We first introduce some additional notation specific to this chapter. Let

G = (V,E) be an undirected, connected, n-vertex graph with vertex set V =

{1, 2, . . . , n} and edge set E. Each vertex of this graph may be labeled with

one of two states {−1, 1} and thus a labeling of a graph may be denoted by

a vector µ ∈ {−1, 1}n where µi denotes the label of vertex i. The underlying

assumption in our model is that we are predicting vertex labels from a sequence

µ1, . . . ,µT ∈ {−1, 1}n of graph labelings over T trials. The set

K := {t ∈ {2, . . . , T} : µt ̸= µt−1} ∪ {1}

contains the first trial of each of the |K| “segments” of the prediction problem.

Each segment corresponds to a time period when the underlying labeling is

unchanging. The cut-size of a labeling µ on a graph G is defined as

ΦG(µ) := |{(i, j) ∈ E : µi ̸= µj}| ,

i.e., the number of edges between vertices of disagreeing labels.

We let rG(i, j) denote the resistance distance (effective resistance) between

vertices i and j when the graph G is seen as a circuit where each edge has unit

resistance (e.g., [15]). The effective resistance for an unweighted graph G can

be written as

rG(i, j) =
1

min
µ∈Rn
{
∑

(p,q)∈E
(µp − µq)2 : µi = 0, µj = 1}
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The resistance diameter of a graph is RG := max
i,j∈V

rG(i, j). The resistance

weighted cut-size of a labeling µ is

Φr
G(µ) :=

∑
(i,j)∈E:µi ̸=µj

rG(i, j) .

For u ∈ ∆n we define H(u) :=
∑n

i=1 ui log2
1
ui

to be the entropy of u.

In this chapter, for u,w ∈ ∆n we define D(u,w) =
∑n

i=1 ui log2
ui

wi
to be the

relative entropy between u and w with base 2. For a vector w and a set of

indices I let w(I) :=
∑

i∈I wi.

3.2 Background and Related Work

As discussed, if nature is strictly adversarial in choosing its labelings, then

the learner can easily incur a mistake on every trial, but if nature is regular

or simple, then there is hope that the learner may incur only a few mistakes.

Thus, a central goal of mistake-bounded online learning is to design algorithms

whose total number of mistakes can be bounded relative to the complexity of

nature’s labeling of the graph. This (non-switching) graph labeling problem

has been studied extensively in the online learning literature [16, 17, 18, 19, 20].

The problem of predicting the labeling of a graph in the batch setting

was introduced as a foundational method for semi-supervised (transductive)

learning. In this setting, the graph was built using both the unlabeled and

labeled instances. The seminal work by [21] used a metric on the instance space

and then built a kNN or ϵ-ball graph. The partial labeling was then extended to

the complete graph by solving a mincut-maxflow problem where opposing binary

labels represented sources and sinks. In practice, this method suffered from

very unbalanced cuts. Significant practical and theoretical advances were made

by replacing the mincut/maxflow model with methods based on minimizing

a quadratic form of the graph Laplacian. Influential early results include but

are not limited to [22, 23, 24]. A limitation of the graph Laplacian-based

techniques is that these batch methods–depending on their implementation–
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typically require Θ(n2) to Θ(n3) time to produce a single set of predictions.

Predicting the labeling of a graph in the online setting was introduced

by [25]. The authors proved bounds for a Perceptron-like algorithm with a

kernel based on the graph Laplacian. Common to all of these papers is that a

dominant term in their mistake bounds is the (resistance-weighted) cut-size.

The Perceptron-like algorithm of [25] with kernel K := L+ (the pseudo-inverse

of the graph Laplacian) has a mistake bound of

4ΦG(µ)DGbal(µ) , (3.1)

where DG is the diameter of the graph and bal(µ) := (1 − 1
n
|
∑n

i=1 µi|)−2 is

a measure of label balance in the graph. This label balance term makes the

bound very sensitive, for example, a heavily imbalanced labeling (such as all but

one vertices having the same label) gives bal(µ) = O(n2), causing the bound

to be vacuous. Since this work, there has been a number of extensions and

improvements in bounds including but not limited to [16, 17, 20, 26, 27, 28].

An explicit Kernel-Perceptron algorithm was presented in [29], with the

following kernel

Kb
c = L+ + b11⊤ + cI (3.2)

for b > 0, c ≥ 0. The bound obtained by the Perceptron in the graph

setting depends only on the cut-size and the diameter of the graph. Note that

these terms are only indirectly related to the number of vertices in the graph.

Concretely, in the realizable case for b = 1, c = 0, the mistake bound obtained

when learning a labeling µ ∈ {−1, 1}n is then given by

4ΦG(µ) +

(
1

n

n∑
i=1

µi

)2
 (RG + 1) (3.3)

where RG is the resistance diameter of G. In this chapter we consider an

extension of this Kernel-Perceptron algorithm which allows switching, using it

as a benchmark in our experiments.
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From a simplified perspective, the methods for predicting the labeling of a

graph (online) are split into two approaches. The first approach, as we have

seen, works directly with the original graph and is usually based on a graph

Laplacian [17, 20, 25]; it provides bounds that utilize the additional connectivity

of non-tree graphs, which are particularly strong when the graph contains

uniformly-labeled clusters of small (resistance) diameter. The drawbacks of

this approach are that the bounds are weaker on graphs with large diameters,

and that computation times are slower.

The second approach is to approximate the original graph with an ap-

propriately selected tree or “line” graph [16, 18, 26, 19]. This enables faster

computation times and bounds that are better on graphs with large diameters.

These algorithms may be extended to non-tree graphs by first selecting a

spanning tree uniformly at random [18] and then applying the algorithm to

the sampled tree. This randomized approach induces expected mistake bounds

that also exploit the cluster structure in the graph (see Section 3.3). We take

this approach in this chapter.

In [16] the linearization of G to a so-called spine, S, was introduced. A

very exciting result was that a Bayesian treatment of predicting according to

P (µit = yt|µi1 = y1, . . . , µit−1 = yt−1) was shown to be equivalent to predicting

with the 1-nearest neighbor algorithm on S, which can be done in O(n log n)

time. This led to a mistake bound of

2ΦG(µ) log2

(
n− 1

2ΦG(µ)

)
+

2ΦG(µ)

ln 2
+ 1 (3.4)

which is a vast improvement on graphs with a large diameter. We will also

employ such a linearization technique in our method.

3.2.1 Switching Prediction

Recall that in this work our goal is to predict a (switching) sequence of graph

labelings online. Switching in the mistake- or regret-bound setting refers to

the problem of predicting an online sequence when the “best comparator” is
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changing over time. In the simplest of switching models the set of comparators

is structureless, and we simply pay per switch. A prominent early result in

this model is [30] which introduced the fixed-share update, which will play a

prominent role in our main algorithm. We will also study this update much

more closely in Chapter 4 in the context of prediction with expert advice.

Other prominent results in the structureless model include but are not limited

to [1, 2, 31, 32, 33, 34]. A stronger model is to prove instead a bound that

holds for any arbitrary contiguous sequence of trials. Such a bound is called

an adaptive-regret bound. This type of bound automatically implies a bound

on the structureless switching model. Adaptive-regret was introduced in [35]1

other prominent results in this model include [11, 34, 36].

The structureless model may be generalized by introducing a divergence

measure on the set of comparators. Thus, whereas in the structureless model

we pay for the number of switches, in the structured model we instead pay

for the sum of divergences between successive comparators. This model was

introduced in [37]; prominent results include [34, 38].

In [32] a variation of the fixed-share algorithm was given to allow certain

exponentially large sets of comparators. In [35, 39] meta-algorithms were

introduced with regret bounds which convert any “black box” online learning

algorithm into an adaptive algorithm. Such methods could be used as an

approach to predict switching graph labelings online, however these meta-

algorithms introduce a factor of O(log T ) to the per-trial time complexity of

the base online learning algorithm. In the online switching setting we will aim

for our fastest algorithm to have O(log n) time complexity per trial.

In this work we utilize specialists [10, 2, 11] by introducing a tailor-made

set of specialists designed for the problem of predicting graph labelings. In [40]

a similar approach of designing sets of specialists for the problems of predicting

volatility of options and students’ tests results was given.

In [27] the authors also consider switching graph label prediction. How-

1However, see the analysis of WML in [7] for a precursory result.
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ever, their results are not directly comparable to ours since they consider the

combinatorially more challenging problem of repeated switching within a small

set of labelings contained in a larger set. That setup was a problem originally

framed in the experts setting and posed as an open problem by [41] and solved

in [1]. We also study this setting more closely in Chapter 4 in the experts

setting. If we apply the bound in [27] to the case where there is not repeated

switching within a smaller set, then their bound is uniformly and significantly

weaker than the bounds in this paper and the algorithm is quite slow, requiring

Θ(n3) time per trial in a typical implementation. Also contained in [27] is a

baseline algorithm based on a kernel perceptron with a graph Laplacian kernel.

The bound of that algorithm has the significant drawback of scaling with the

“worst” labeling in a sequence of labelings. However, it is simple to implement,

and we use it as a benchmark in our experiments.

3.3 Random Spanning Trees and Linearization

Since we operate in the transductive setting where the entire unlabeled graph

is presented to the learner beforehand, this affords the learner the ability to

perform any reconfiguration to the graph as a preprocessing step. Recall that

the bounds of most existing algorithms for predicting a labeling on a graph are

usually expressed in terms of the cut-size of the graph under that labeling. A

natural approach then is to use a spanning tree of the original graph which can

only reduce the cut-size of the labeling.

The effective resistance between vertices i and j, denoted rG(i, j), is equal

to the probability that a spanning tree of G drawn uniformly at random (from

the set of all spanning trees of G) includes (i, j) ∈ E as one of its n− 1 edges

(see e.g., [42]). As first observed by [26], by selecting a spanning tree uniformly

at random from the set of all possible spanning trees, mistake bounds expressed

in terms of the cut-size then become expected mistake bounds now in terms

of the effective-resistance-weighted cut-size of the graph. That is, if R is a

random spanning tree of G then E[ΦR(µ)] = Φr
G(µ) and thus Φr

G(µ) ≤ ΦG(µ).
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Figure 3.1: Two uniformly-labeled cliques, each of size m joined by ℓ ≤ m edges.
The cut-size of the given labeling is ℓ whereas the effective-resistance-
weighted cut-size is O(1).

A random spanning tree can be sampled from a graph efficiently using a random

walk or similar methods (see e.g., [43]).

To illustrate the power of this randomization, consider the simplified

example of a graph with two cliques each of size n
2
, where one clique is labeled

uniformly with “+1” and the other “-1” with an additional arbitrary n
2

“cut”

edges between the cliques (see Figure 3.1). This dense graph exhibits two

disjoint clusters, and ΦG(µ) = n
2
. On the other hand Φr

G(µ) = Θ(1), since

between any two vertices in the opposing cliques there are n
2

edge-disjoint paths

of length ≤ 3 and thus the effective resistance between any pair of vertices is

Θ( 1
n
). Note that since bounds usually scale linearly with (resistance-weighted)

cut-size, the cut-size bound would be vacuous but the resistance-weighted

cut-size bound would be small.

We will make use of this preprocessing step of sampling a uniform random

spanning tree, as well as a linearization of this tree to produce a (spine) line-

graph, S. The linearization of G to S as a preprocessing step was first proposed

by [16] and has since been applied in, e.g., [18, 44]. In order to construct S, a

random-spanning tree R is picked uniformly at random. A vertex of R is then

chosen, and the graph is fully traversed using a depth-first search generating an

ordered list VL =
{
il1 , . . . , il2m+1

}
of vertices (where m ≤ |E|) in the order they

were visited. Vertices in V may appear multiple times in VL. A subsequence

VL′ ⊆ VL is then chosen such that each vertex in V appears only once. The

line graph S is then formed by connecting each vertex in VL′ to its immediate

neighbors in VL′ with an edge. We denote the edge set of S by ES and let ΦS(µ)

denote the cut-size of the labeling µ with respect to the linear embedding S.
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Surprisingly, as stated in the lemma below, the cut on this linearized graph is

no more than twice the cut on the original graph.

Lemma 1 ([16]). Given a labeling µ ∈ {−1, 1}n on a graph G, for the mapping

G → R → S, as above, we have ΦS(µ) ≤ 2ΦR(µ) ≤ 2ΦG(µ).

By combining the above observations we may reduce the problem of

learning on a graph to that of learning on a line graph. In particular, if we have

an algorithm with a mistake bound of the form M ≤ O(ΦG(µ)) this implies we

then may give an expected mistake bound of the form M ≤ O(Φr
G(µ)) by first

sampling a random spanning tree and then linearizing it as above.

One caveat of this, however, depends on whether nature is oblivious or

adaptive. If nature is oblivious, we assume that the learner’s predictions

have no effect on the labels chosen by nature (or equivalently all labelings are

chosen beforehand). Conversely, if nature is adaptive, then nature’s labelings

are assumed to be adversarially chosen in response to the learner’s predictions.

In this work we will only state the deterministic mistake bounds in terms

of the cut-size, which will hold for oblivious and adaptive adversaries, while

the expected bounds in terms of resistance-weighted cut-sizes will hold for an

oblivious adversary.

For the remainder of this chapter we let Φt := Φ(µt), where the cut

Φ is either with respect to G or to the linear embedding S, depending on

the algorithm. Finally, we define the max cut of the distinct labelings as

Φ̂ := maxk∈K Φk.

3.4 Switching Specialists
In this section we present a new method based on the idea of specialists, which

we briefly introduced in Section 2.2.1. We will see that although the achieved

bounds are slightly worse than other methods for predicting a single labeling

of a graph, the derived advantage is that it is possible to obtain “competitive”

bounds with fast algorithms to predict a sequence of changing graph labelings.

Our inductive bias for this problem will be to predict well when a labeling
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has a small (resistance-weighted) cut-size. The complementary perspective

of this implies that the labeling consists of a few uniformly labeled clusters.

This suggests maintaining a collection of basis functions where each function

is specialized to predict a constant function on a given cluster of vertices. To

accomplish this technically, we introduce the following method of applying the

idea of specialists to graphs. In this context, we introduce a set of specialists,

E , where we treat a specialist ε ∈ E as simply a prediction function from an

input space to an extended output space with abstentions. So for us the input

space is just V = [n], the vertices of a graph; and the extended output space is

{−1, 1,□} where {−1, 1} corresponds to predicted labels of the vertices, but

“□” indicates that the specialist abstains from predicting. Thus a specialist

specializes its prediction to part of the input space, and in our application the

specialists correspond to a collection of clusters that cover the graph, each

cluster uniformly predicting −1 or 1. We call these functions cluster specialists.

In Algorithm 1, Switching Cluster Specialists, we give our switching

specialists method. The algorithm maintains a weight vector wt ∈ ∆|E| over

the specialists in which the magnitudes may be interpreted as the current

confidence we have in each of the specialists. On each trial we are presented

with a node it ∈ V , and we define the set of non-abstaining specialists by

At : {ε ∈ E : ε(it) ̸= □}. Given the true label, yt ∈ {−1, 1} of it, we define the

set of correct specialists by Yt := {ε ∈ E : ε(it) = yt}. Our algorithm’s updates

and analyses are a combination of three standard methods: i) Halving loss

updates, ii) specialists updates, and iii) (delayed) fixed-share updates. The loss

update (3.5) zeros the weight components of incorrectly predicting specialists,

while the non-predicting specialists are not updated at all. In (3.5) we give our

delayed fixed-share style update. Note that our algorithm is also conservative,

that is, we only update weights on trials that the algorithm makes a mistake.

Let ẇt
ε be the weight of specialist ε after incorporating the loss incurred on

trial t. The standard fixed share update [30] may be written in the following
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Algorithm 1 Switching Cluster Specialists
Input: Specialists set E ; α ∈ [0, 1]
Initialize: w1 ← 1

|E|1; ẇ0 ← 1
|E|1; p← 0; m← 0

1: for t← 1 to T do
2: receive it ∈ V
3: At ← {ε ∈ E : ε(it) ̸= □}
4: for all ε ∈ At do ▷ delayed share update
5: wt

ε ← (1− α)m−pεẇt−1
ε + 1−(1−α)m−pε

|E| (3.5)
6: end for
7: predict ŷt ← sign(

∑
ε∈At

wt
ε ε(it))

8: receive yt ∈ {−1, 1}
9: Yt ← {ε ∈ E : ε(it) = yt}

10: if ŷt ̸= yt then ▷ loss update

11: ẇt
ε ←


0 ε ∈ At ∩ Ȳt

ẇt−1
ε ε ̸∈ At

wt
ε
wt(At)
wt(Yt)

ε ∈ Yt

(3.6)

12: for all ε ∈ At do
13: pε ← m
14: end for
15: m← m+ 1
16: else
17: ẇt ← ẇt−1

18: end if
19: end for

form

wt
ε = (1− α)ẇt−1

ε +
α

|E|
, (3.7)

where the parameter α ∈ [0, 1] is interpreted as the switching rate. We revisit

this update in more detail in Chapter 4. Although (3.7) superficially appears

different to (3.5), in fact these two updates are exactly the same in terms of

predictions generated by the algorithm. This is because (3.5) caches updates

until the given specialist is again active. The purpose of this computationally

is that if the active specialists are, for example, logarithmic in size compared to

the total specialist pool, we may then achieve an exponential speedup over (3.7);

which in fact we will exploit.

Before we give our mistake bound guarantee for the Switching Cluster

Specialists algorithm, we require the following definition of well-formedness
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with respect to a comparator set of weights u ∈ ∆|E|.

Definition 2 (Well-formedness). A comparator u ∈ ∆|E| is well-formed if

∀ v ∈ V , there exists a unique ε ∈ E such that ε(v) ̸= □ and uε > 0, and

furthermore there exists a π ∈ (0, 1] such that ∀ε ∈ E : uε ∈ {0, π},

In other words, a comparator u is said to be well-formed if each specialist

in the support of u has the same mass π and these specialists disjointly cover

the input space (V ). In the next section this definition will allow us to learn a

labeling of a graph by learning a set of weights of a suitably chosen specialist

set.

We will also require the following defintition of consistency of a comparator,

u ∈ ∆|E|.

Definition 3 (Consistency). A comparator u ∈ ∆|E| is consistent with the

labeling µ ∈ {−1, 1}n if u is well-formed and uε > 0 implies that for all v ∈ V

that ε(v) ∈ {µv,□}.

That is, on every trial there is no active incorrect specialist assigned “mass”

by the comparator u.

In the following theorem we give our switching specialists bound. We will

see that the dominant cost of switching from trial t to t + 1 is given by the

non-symmetric quantity JE(ut,ut+1) := |{ε ∈ E : utε = 0, ut+1
ε ≠ 0}|. That is,

we pay only for each new specialist introduced, but we do not pay for “removing”

specialists.

Theorem 4. For a given specialist set, E , let ME denote the number of mistakes

made in predicting the online sequence (i1, y
1), . . . , (iT , y

T ) by Algorithm 1.

Then,

ME ≤
1

π1
log |E|+

T∑
t=1

1

πt
log

(
1

1− α

)
+

|K|−1∑
i=1

JE
(
uki ,uki+1

)
log

(
|E|
α

)
, (3.8)

for any sequence of consistent and well-formed comparators u1, . . . ,ut ∈ ∆|E|

where K := {k1 = 1< · · · < k|K|} :={t∈ [T ] :ut ̸= ut−1}∪{1}, and πt := ut(Yt).
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Proof. Recall that the cached share update (3.5) is equivalent to perform-

ing (3.7). We thus simulate the latter update in our analysis. We first argue

the inequality

Jŷt ̸= ytK ≤ 1

ut(Yt)

(
D(ut,wt)−D(ut, ẇt)

)
, (3.9)

as this is derived by observing that

D(ut,wt)−D(ut, ẇt) =
∑
ε∈E

utε log
ẇt

ε

wt
ε

=
∑
ε∈Yt

utε log
ẇt

ε

wt
ε

≥ ut(Yt)Jŷt ̸= ytK ,

where the second line follows the fact that utε log
ẇt

ε

wt
ε
= 0 if ε ̸∈ Yt as either the

specialist ε predicts “□” and ẇt
ε = wt

ε or it predicts incorrectly and hence utε = 0.

The third line follows as for ε ∈ Yt, ẇt
ε

wt
ε
≥ 2 if there has been a mistake on trial

t and otherwise the ratio is ≥ 1. Indeed, since Algorithm 1 is conservative,

this ratio is exactly 1 when no mistake is made on trial t, thus without loss of

generality we will assume the algorithm makes a mistake on every trial.

For clarity we will now use simplified notation and let πt := ut(Yt). We

now prove the following two inequalities,

1

πt

[
D(ut, ẇt)−D(ut,wt+1)

]
≥ − 1

πt
log

(
1

1− α

)
, (3.10)

and

1

πt
D(ut,wt+1)− 1

πt+1
D(ut+1,wt+1) ≥ − 1

πt
H(ut) +

1

πt+1
H(ut+1)

− JE
(
ut,ut+1

)
log

(
|E|
α

)
. (3.11)

which we will add to (3.9) to create a telescoping sum of relative entropy terms
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and entropy terms. For the sake of brevity we will define

D̃t :=
1

πt
D(ut,wt+1)− 1

πt+1
D(ut+1,wt+1) .

Now, (3.10) is proved with the following

D(ut, ẇt)−D(ut,wt+1) =
∑
ε∈E

utε log
wt+1

ε

ẇt
ε

≥
∑
ε∈E

utε log

(
(1− α)ẇt

ε

ẇt
ε

)
= log (1− α) ,

where the inequality has used wt+1
ε ≥ (1− α)ẇt

ε from (3.7).

To prove (3.11) we first define the following sets.

Θt := {ε ∈ E : ut−1
ε ̸= 0, utε = 0} ,

Ψt := {ε ∈ E : ut−1
ε ̸= 0, utε ̸= 0} ,

Ωt := {ε ∈ E : ut−1
ε = 0, utε ̸= 0} .

We now expand the following

D̃t =
1

πt
D(ut,wt+1)− 1

πt
D(ut+1,wt+1) +

1

πt
D(ut+1,wt+1)

− 1

πt+1
D(ut+1,wt+1)

=
1

πt

∑
ε∈E

utε log

(
utε
wt+1

ε

)
− 1

πt

∑
ε∈E

ut+1
ε log

(
ut+1
ε

wt+1
ε

)
+

1

πt

∑
ε∈E

ut+1
ε log

(
ut+1
ε

wt+1
ε

)
− 1

πt+1

∑
ε∈E

ut+1
ε log

(
ut+1
ε

wt+1
ε

)
= − 1

πt
H(ut) +

1

πt
H(ut+1) +

∑
ε∈E

(
utε
πt
− ut+1

ε

πt

)
log

(
1

wt+1
ε

)
− 1

πt
H(ut+1) +

1

πt+1
H(ut+1)

+
∑
ε∈E

(
ut+1
ε

πt
− ut+1

ε

πt+1

)
log

(
1

wt+1
ε

)
. (3.12)
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Recall that a comparator u ∈ ∆|E| is well-formed if ∀ v ∈ V , there exists

a unique ε ∈ E such that ε(v) ̸= □ and uε > 0, and furthermore there exists a

π ∈ (0, 1] such that ∀ε ∈ E : uε ∈ {0, π}, i.e., each specialist in the support of

u has the same mass π and these specialists disjointly cover the input space

(V ). Thus, by collecting terms into the three sets Θt+1, Ψt+1, and Ωt+1 we have

∑
ε∈E

(
utε
πt
− ut+1

ε

πt

)
log

(
1

wt+1
ε

)
=
∑

ε∈Θt+1

utε
πt

log

(
1

wt+1
ε

)
+
∑

ε∈Ψt+1

(
utε
πt
− ut+1

ε

πt

)
log

(
1

wt+1
ε

)
−
∑

ε∈Ωt+1

ut+1
ε

πt
log

(
1

wt+1
ε

)
=
∑

ε∈Θt+1

utε
πt

log

(
1

wt+1
ε

)
+
∑

ε∈Ψt+1

(
1− ut+1

ε

πt

)
log

(
1

wt+1
ε

)
−
∑

ε∈Ωt+1

ut+1
ε

πt
log

(
1

wt+1
ε

)
, (3.13)

and similarly

∑
ε∈E

(
ut+1
ε

πt
− ut+1

ε

πt+1

)
log

(
1

wt+1
ε

)
=
∑

ε∈Ψt+1

(
ut+1
ε

πt
− 1

)
log

(
1

wt+1
ε

)
+
∑

ε∈Ωt+1

(
ut+1
ε

πt
− 1

)
log

(
1

wt+1
ε

)
. (3.14)

Substituting (3.13) and (3.14) into (3.12) and simplifying gives

D̃t = − 1

πt
H(ut) +

1

πt+1
H(ut+1) +

∑
ε∈Θt+1

utε
πt

log

(
1

wt+1
ε

)
−
∑

ε∈Ωt+1

log

(
1

wt+1
ε

)
≥ − 1

πt
H(ut) +

1

πt+1
H(ut+1)− |Ωt+1| log

(
|E|
α

)
, (3.15)

where the inequality has used the fact that α
|E| ≤ wt+1

ε ≤ 1 from (3.7).

Summing over all trials then leaves a telescoping sum of relative entropy
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terms, a cost of 1
πt log (

1
1−α

) on each trial, and |Ωt+1| log ( |E|α ) for each switch.

Thus,

T∑
t=1

Jŷt ̸= ytK ≤ 1

π1
D(u1,w1) +

1

π1
H(u1) +

T∑
t=1

1

πt
log

(
1

1− α

)

+

|K|−1∑
i=1

JE
(
uki ,uki+1

)
log

(
|E|
α

)
, (3.16)

where JE(u
ki ,uki+1) = |Ωki+1

|, and since w1 = 1
|E|1, we can combine the

remaining entropy and relative entropy terms to give 1
π1D(u1,w1)+ 1

π1H(u1) =

1
π1 log |E|, concluding the proof.

The bound in the above theorem depends crucially on the best sequence

of consistent and well-formed comparators u1, . . . ,uT . The consistency require-

ment implies that on every trial there is no active incorrect specialist assigned

“mass” (ut(At \ Yt) = 0). We may eliminate the consistency requirement by

“softening” the loss update (3.5). The well-formedness requirement may also be

eliminated at considerable complication to the form of the bound.

Note that the above bound is “smooth” in that it scales with a gradual

change in the comparator. In the next section we describe the novel specialists

sets that we have tailored to graph-label prediction so that a small change in

comparator corresponds to a small change in a graph labeling.

3.5 Cluster Specialists

In order to construct the cluster specialists over a graph G = (V,E), we first

construct a line graph as described in Section 3.3. A cluster specialist is then

defined by εl,ry (·) which maps V → {−1, 1,□} where

εl,ry (v) :=

y l ≤ v ≤ r ,

□ otherwise.
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Hence cluster specialist εl,ry (v) corresponds to a function that predicts the label

y if vertex v lies between vertices l and r and abstains otherwise. Recall that

by sampling a random spanning tree, the expected cut-size of a labeling on

the spine is no more than twice the resistance-weighted cut-size on G. Thus,

given a labeled graph with a small resistance-weighted cut-size with densely

interconnected clusters and modest intra-cluster connections, this implies a cut-

bracketed linear segment on the spine will, in expectation, roughly correspond

to one of the original dense clusters.

We now introduce two sets of cluster specialists for our problem of predict-

ing on a graph. Before we do so, however, we require the following definitions

which will characterize these sets.

Definition 5 (Covering). We say that a subset of specialists Cµ ⊆ E ⊆ 2{−1,1,□}n

from basis E covers a labeling µ ∈ {−1, 1}n if for all v ∈ V = [n] and ε ∈ Cµ we

have ε(v) ∈ {µv,□} and if v ∈ V then there exists ε ∈ Cµ such that ε(v) = µv.

Definition 6 (Completeness). The basis E ⊆ 2{−1,1,□}n is complete if every

labeling µ ∈ {−1, 1}n is covered by some Cµ ⊆ E.

With these definitions, we now consider two complete basis sets of cluster

specialists.

3.5.1 Basis Fn

We first introduce the basis set

Fn := {εl,ry : l, r ∈ [n], l ≤ r; y ∈ {−1, 1}} .

The basis Fn is clearly complete, and in fact has the following approxima-

tion property: for any µ ∈ {−1, 1}n there exists a covering set Cµ ⊆ Fn such

that |Cµ| = ΦS(µ) + 1. This follows directly as a line with k− 1 cuts is divided

into k segments. See Figure 3.2 and Figure 3.3 for a visualization of the basis

Fn for n = 8.

We now illustrate the use of basis Fn to predict the labeling of a graph.

For simplicity, we illustrate by considering the problem of predicting a single
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Spi
ne
S

Figure 3.2: Representation of basis set F1,8 for a single parameter y. Gray circles
represent specialists. A line connecting specialist εl,ry to node v ∈ S
implies εl,ry (v) ̸= □.

Spi
ne
S

(ε
1,1 )

(ε
2,4 )

(ε
5,6 )

(ε
7,8 )

Figure 3.3: Representation of the smallest subset of basis set F1,8 needed to cover
a given labeling µ of cut-size ΦS(µ) = 3.
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graph labeling without switching. As there is no switch we will set α := 0 and

thus if the graph is labeled with µ ∈ {−1, 1}n with cut-size ΦS(µ) then we will

need ΦS(µ)+1 specialists to predict the labeling and thus the comparators may

be post-hoc optimally determined so that u = u1 = · · · = uT and there will be

ΦS(µ) + 1 components of u each with “weight” 1
ΦS(µ)+1

, thus 1
π1 = ΦS(µ) + 1,

since there will be only one specialist (with non-zero weight) active per trial.

Since the cardinality of Fn is n2 + n, by substituting into (3.8) we have that

the number of mistakes will be bounded by (ΦS(µ) + 1) log (n2 + n). Note for

a single graph labeling on a spine this bound is not much worse than the best

known result [16, Theorem 4]. In terms of computation time, however, it is

significantly slower than the algorithm in [16] requiring Θ(n2) time to predict

on a typical trial since on average there are Θ(n2) specialists active per trial.

3.5.2 Basis B1,n
We now introduce the basis B1,n which has Θ(n) specialists and only requires

O(log n) time per trial to predict with only a small increase in bound. The

basis is defined as

Bp,q :=

{ε
p,q
−1, ε

p,q
1 } p = q

{εp,q−1, ε
p,q
1 }∪Bp,⌊ p+q

2
⌋ ∪ B⌊ p+q

2
⌋+1,q p ̸= q ,

and is analogous to a binary tree. See Figure 3.4 and Figure 3.5 for a visu-

alization of the basis B1,n for n = 8. We have the following approximation

property for Bn := B1,n,

Proposition 7. The basis Bn is complete. Furthermore, for any la-

beling µ ∈ {−1, 1}n there exists a covering set Cµ ⊆ Bn such that

|Cµ| ≤ 2(ΦS(µ) + 1)⌈log2 n
2
⌉ for n > 2.

Proof. We first give a brief intuition of the proof; any required terms will be

defined more completely later. For a given labeling µ ∈ {−1, 1}n of cut-size

ΦS(µ), the spine S can be cut into ΦS(µ) + 1 clusters, where a cluster is a

contiguous segment of vertices with the same label. We will upper bound



3.5. Cluster Specialists 44

Spi
ne
S

Figure 3.4: Representation of basis set B1,8 for a single parameter y. Gray circles
represent specialists. A line connecting specialist εl,ry to node v ∈ S
implies εl,ry (v) ̸= □.

Spi
ne
S

(ε
7,8 )

(ε
5,6 )

(ε
3,4 )

(ε
1,1 )

(ε
2,2 )

Figure 3.5: Representation of the smallest subset of basis set B1,8 needed to cover
a given labeling µ of cut-size ΦS(µ) = 3.
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the maximum number of cluster specialists required to cover a single cluster,

and therefore obtain an upper bound for |Cµ| by summing over the ΦS(µ) + 1

clusters.

Without loss of generality, we assume n = 2r for some integer r and thus

the structure of Bn is analogous to a perfect binary tree of depth d = log2 n.

Indeed, for a fixed label parameter y we will adopt the terminology of binary

trees such that for instance we say specialist εi,jy for i ̸= j has a so-called

left-child ε
i,⌊ i+j

2
⌋

y and right-child ε
⌈ i+j

2
⌉,j

y . Similarly, we say that εi,⌊
i+j
2

⌋
y and

ε
⌈ i+j

2
⌉,j

y are siblings, and εi,jy is their parent. Note that any specialist is both an

ancestor and a descendant of itself, and a proper descendant of a specialist is a

descendant of one of its children. Finally the depth of specialist εi,jy is defined

to be equal to the depth of the corresponding node in a binary tree, such that

ε1,ny is of depth 0, ε1,
n
2

y and ε
n
2
+1,n

y are of depth 1, etc.

The first claim of the proposition is easy to prove as {εi,i−1, ε
i,i
1 : i ∈ [n]} ⊂ Bn

and thus any labeling µ ∈ {−1, 1}n can be covered. We now prove the second

claim of the proposition.

We will denote a uniformly-labeled contiguous segment of vertices by

the pair (l, r), where l, r ∈ [n] are the two end vertices of the segment. For

completeness, we will allow the trivial case when l = r. Given a labeling µ ∈

{−1, 1}n, let Lµ := {(l, r) : 1 ≤ l ≤ r ≤ n;µl = . . . = µr;µl−1 ̸= µl;µr+1 ≠ µr}

be the set of maximum-sized contiguous segments of uniformly-labeled vertices.

Note that µl−1 or µr+1 may be vacuous. When the context is clear, we will also

describe (l, r) as a cluster, and as the set of vertices {l, . . . , r}.

For a given µ ∈ {−1, 1}n and cluster (l, r) ∈ Lµ, we say B(l,r) ⊆ Bn is an

(l, r)-covering set with respect to µ if for all εi,jy ∈ B(l,r) we have l ≤ i, j ≤ r,

and if for all k ∈ (l, r) there exists some εi,jy ∈ B(l,r) such that i ≤ k ≤ j and

y = µk. That is, every vertex in the cluster is “covered” by at least one specialist

and no specialists cover any vertices k /∈ (l, r). We define Γ(l,r) to be the set of

all possible (l, r)-covering sets with respect to µ.
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We now define

δ(B(l,r)) := |B(l,r)|

to be the complexity of B(l,r) ∈ Γ(l,r).

For a given µ ∈ {−1, 1}n and cluster (l, r) ∈ Lµ, we wish to produce

an (l, r)-covering set of minimum complexity, which we denote B∗
(l,r) :=

argmin
B(l,r)∈Γ(l,r)

δ(B(l,r)). Note that an (l, r)-covering set of minimum complexity

cannot contain any two specialists which are siblings since they can be removed

from the set and replaced by their parent specialist.

Lemma 8. For any µ ∈ {−1, 1}n, for any (l, r) ∈ Lµ, the (l, r)-covering set of

minimum complexity, B∗
(l,r) = argmin

B(l,r)∈Γ(l,r)

δ(B(l,r)) contains at most two specialists

of each unique depth.

Proof. We first give an intuitive sketch of the proof. For a given µ ∈ {−1, 1}n

and cluster (l, r) ∈ Lµ assume that there are at least three specialists of equal

depth in B∗
(l,r), then any of these specialists that are in the “middle” may be

removed, along with any of their siblings or proper descendants that are also

members of B∗
(l,r) without creating any “holes” in the covering, decreasing the

complexity of B∗
(l,r).

We use a proof by contradiction. Suppose for contradiction that for a given

µ ∈ {−1, 1}n and (l, r) ∈ Lµ, the (l, r)-covering set of minimum complexity,

B∗
(l,r), contains three distinct specialists of the same depth, εa,by , εc,dy , εe,fy . With-

out loss of generality, let a, b < c, d < e, f . Note that we have l ≤ a < f ≤ r.

We consider the following two possible scenarios: when two of the three spe-

cialists are siblings, and when none are.

If εa,by and εc,dy are siblings, then we have εa,dy ∈ Bn and thus

{εa,dy } ∪ B∗
(l,r) \ {εa,by , εc,dy } is an (l, r)-covering set of smaller complexity, leading

to a contradiction. The equivalent argument holds if εc,dy and εe,fy are siblings.

If none are siblings, then let εc′,d′y be the sibling of εc,dy and let εC,D
y be

the parent of εc,dy and εc′,d′y . Note that a, b < c′, d′, c, d and c′, d′, c, d < e, f and

hence l < C < D < r. If an ancestor of εC,D
y is in B∗

(l,r), then B∗
(l,r) \ {εc,dy } is an



3.5. Cluster Specialists 47

(l, r)-covering set of smaller complexity, leading to a contradiction. Alternatively,

if no ancestor of εC,D
y is in B∗

(l,r), then εc
′,d′
y or some of its proper descendants

must be in B∗
(l,r), otherwise there exists some vertex k′ ∈ (c′, d′) such that there

exists no specialist εi,jy ∈ B∗
(l,r) such that i ≤ k′ ≤ j, and therefore B∗

(l,r) would

not be an (l, r)-covering set. Let εp,qy be a descendant of εc′,d′y which is contained

in B∗
(l,r). Then {εC,D

y } ∪ B∗
(l,r) \ {εc,dy , εp,qy } is an (l, r)-covering set of smaller

complexity, leading to a contradiction.

We conclude that there can be no more than 2 specialists of the same

depth in B∗
(l,r) for any µ ∈ {−1, 1}n and any (l, r) ∈ Lµ.

We now prove an upper bound on the maximum minimum-complexity of

an (l, r)-covering set under any labeling µ.

Corollary 9. For all µ ∈ {−1, 1}n,

max
(l,r)∈Lµ

min
B(l,r)∈Γ(l,r)

δ(B(l,r)) ≤ 2 log
n

2
. (3.17)

Proof. For any µ ∈ {−1, 1}n, and (l, r) ∈ Lµ, since B∗
(l,r) can contain at

most 2 specialists of the same depth (Lemma 8) an (l, r)-covering set of

minimum-complexity can have at most two specialists of depths 2, 3, . . . , d.

This set cannot contain two specialists of depth 1 as they are siblings. This

upper bounds the maximum minimum-complexity of any (l, r)-covering set by

2(d− 2) = 2 log n
2
.

Finally we conclude that for any labeling µ ∈ {−1, 1}n of cut-size ΦS(µ),

there exists Cµ ⊆ Bn such that |Cµ| ≤ 2 log2 (
n
2
)(ΦS(µ) + 1).

From a computational perspective, the binary tree structure ensures that

there are only Θ(log n) specialists active per trial, leading to an exponential

speed-up in prediction. A similar set of specialists were used for obtaining

adaptive-regret bounds in [36, 39] and data-compression in [45]. In those works,

however, the “binary tree” structure is over the time dimension (trial sequence),

whereas in this work the binary tree is over the space dimension (graph), and a
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µ

µ′

Figure 3.6: An example of two labelings, µ and µ′, on S. In this case the
Hamming-like divergence on cut edges H(µ,µ′) = 4. Observe that
H(µ,µ′) ≤ 2∥µ− µ′∥1 and is often significantly smaller.

fixed-share update is used to obtain adaptivity over the time dimension.2 We

also note that in [46] the Fixed Share update was combined with specialists

and applied to real-world data. In their setting however, it is assumed that

the “good” specialist is always active during a given segment, and thus not

applicable to our setting of learning disjoint specialists which cover the input

space, and can therefore be inactive during these segments.

In the corollary that follows we will exploit the fact that by making the

algorithm conservative we may reduce the usual log T term in the mistake

bound induced by a fixed-share update to log log T . A conservative algorithm

only updates the specialists’ weights on trials on which a mistake is made.

Furthermore, the bound given in the following corollary is smooth as the cost

per switch will be measured with a Hamming-like divergence H on the “cut”

edges between successive labelings, defined as

H(µ,µ′) :=
∑

(i,j)∈ES

J JJµi ̸= µjK ∨ Jµ′
i ̸= µ′

jKK ∧ JJµi ̸= µ′
iK ∨ Jµj ̸= µ′

jKK K .

See Figure 3.6 for an illustration of this divergence between labelings.

Observe that H(µ,µ′) is smaller than twice the hamming distance between

µ and µ′ and is often significantly smaller. To achieve the bounds we will now

seek to upper bound the divergence J in terms of H.

First, recall the definition of consistency of a comparator given in Def-

inition 3 (that u(At \ Yt) = 0 for all t ∈ [T ]). A subtlety is that there are

many distinct sets of specialists consistent with a given labeling. For example,

2An interesting open problem is to try to find good bounds and time complexity with
sets of specialists over both the time and space dimensions.
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consider a uniform labeling on S. One may “cover” this labeling with a single

specialist or alternatively n specialists, one covering each vertex. For the sake

of simplicity in bounds we will always choose the smallest set of covering

specialists. Thus we introduce the following notion of minimal-consistency.

Definition 10 (Minimal consistency). A comparator u ∈ ∆|E| is minimal-

consistent with the labeling µ ∈ {−1, 1}n if it is consistent with µ and the

cardinality of its support set |{uε : uε > 0}| is the minimum of all comparators

consistent with µ.

We now have the following proposition which upper bounds the divergence

J in terms of H.

Proposition 11. For a linearized graph S, for comparators u,u′ ∈ ∆|Fn| that

are minimal-consistent with µ and µ′ respectively,

JFn(u,u
′) ≤ min (2H(µ,µ′),ΦS(µ

′) + 1) .

Proof. We will prove both inequalities separately. We first show that

JFn(u,u
′) ≤ ΦS(µ

′) + 1. This follows directly from the fact that

JE(u,u
′) := |{ε ∈ E : uε = 0, u′ε ̸= 0}| and therefore

JFn(u,u
′) ≤ |{ε ∈ Fn : u′ε ̸= 0}| = ΦS(µ

′) + 1 .

We now prove JFn(u,u
′) ≤ 2H(µ,µ′). Recall that if µ ̸= µ′ then by definition of

the minimal-consistent comparators u and u′, the set {ε ∈ Fn : uε = 0, u′ε ̸= 0}

corresponds to the set of maximum-sized contiguous segments of vertices in

S sharing the same label in the labeling µ′ that did not exist in the labeling

µ. From here on we refer to a maximum-sized contiguous segment as just a

contiguous segment.

When switching from labeling µ to µ′, we consider the following three

cases. First, when a non-cut edge (with respect to µ) becomes a cut edge (with

respect to µ′), second when a cut edge (with respect to µ) becomes a non-cut
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edge (with respect to µ′), and lastly when a cut edge remains a cut edge, but

the labelings of the two corresponding vertices are “swapped.”

Case 1: For an edge (i, j) ∈ ES such that Jµi = µjK ∧ Jµ′
i ̸= µ′

jK there exists

two new contiguous segments of vertices sharing the same label that did not

exist in the labeling µ, their boundary being the edge (i, j).

Case 2: Conversely for an edge (i, j) ∈ ES such that Jµi ̸= µjK ∧ Jµ′
i = µ′

jK

there exists one new contiguous segment of vertices sharing the same label that

did not exist in the labeling µ, that segment will contain the edge (i, j).

Case 3: Finally for an edge (i, j) ∈ ES such that

JJµi ̸= µjK ∧ Jµ′
i ̸= µ′

jKK ∧ JJµi ̸= µ′
iK ∧ Jµj ̸= µ′

jKK

there exists two new contiguous segments of vertices sharing the same label

that did not exist in the labeling µ, their boundary being the edge (i, j).

We conclude that the number of new contiguous segments of vertices

sharing the same label that did not exist in the labeling µ is upper bounded by

2
∑

(i,j)∈ES

JJµi ̸= µjK ∨ Jµ′
i ̸= µ′

jKK ∧ JJµi ̸= µ′
iK ∨ Jµj ̸= µ′

jKK .

In the following corollary we summarize the results of the SCS algorithm

using the basis sets Fn and Bn with an optimally-tuned switching parameter α.

Corollary 12. For a connected n-vertex graph G and with randomly sam-

pled spine S, the number of mistakes made in predicting the online sequence

(i1, y
1), . . . , (iT , y

T ) by the SCS algorithm with optimally-tuned α is upper

bounded with basis Fn by

O

Φ1 log n+

|K|−1∑
i=1

H(µki ,µki+1) (log n+ log |K|+ log log T )


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and with basis Bn by

O

Φ1 log n+

|K|−1∑
i=i

H(µki ,µki+1) (log n+ log |K|+ log log T )

 log n


for any sequence of labelings µ1, . . . ,µT ∈ {−1, 1}n such that µt

it = yt for all

t ∈ [T ].

Proof. Since Algorithm 1 has a conservative update, we may ignore trials on

which no mistake is made and thus, from the point of view of the algorithm,

a mistake is made on every trial, we will therefore assume that T =M . This

will lead to a self-referential mistake bound in terms of the number of mistakes

made, which we will then iteratively substitute into itself.

Let c := log2 e, we will use the fact that log2

(
1

1− x
y+x

)
≤ cx

y
for x, y > 0.

We will first optimally tune α to give our tuned mistake bound for a general

basis set E , and then derive the bounds for bases Fn and Bn respectively. The

value of α that minimizes (3.8) is

α =

|K|−1∑
i=1

JE
(
uki ,uki+1

)
T∑
t=1

1
πt +

|K|−1∑
i=1

JE(uki ,uki+1)

, (3.18)

which when substituted into the second term of (3.8) gives

ME ≤
1

π1
log |E|+ c

|K|−1∑
i=1

JE
(
uki ,uki+1

)
+

|K|−1∑
i=1

JE
(
uki ,uki+1

)
log
|E|
α
. (3.19)

We now upper bound 1
α

for substitution in the last term of (3.19) for bases Fn

and Bn separately.

Basis Fn : For Fn observe that |E| = n2+n, and since any labeling µ ∈ {−1, 1}n

of cut-size ΦS(µ) is covered by ΦS(µ)+1 specialists, we have that πt = 1
ΦS(µt)+1

on all trials. We let the number of mistakes made by SCS with basis Fn be
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denoted by MFn . Thus (3.19) immediately becomes

MFn ≤
(
Φ1 + 1

)
log |Fn|+ c

|K|−1∑
i=1

JFn

(
uki ,uki+1

)
+

|K|−1∑
i=1

JFn

(
uki ,uki+1

)
log

(
|Fn|
α

)
. (3.20)

To upper bound 1
α

we note that if uki ̸= uki+1 then JFn

(
uki ,uki+1

)
≥ 1,

and that for Fn, 1
πi

= Φki + 1 ≤ n, thus from (3.18) we have

1

α
= 1 +

T∑
t=1

1
πt

|K|−1∑
i=1

JFn(u
ki ,uki+1)

≤ 1 +
nT

|K| − 1

=
nT + |K| − 1

|K| − 1

≤ (n+ 1)T

|K| − 1
.

Substituting 1
α
≤ (n+1)T

|K|−1
into (3.20) gives

MFn ≤
(
Φ1 + 1

)
log |Fn|

+

|K|−1∑
i=1

JFn

(
uki ,uki+1

)[
log (e|Fn|) + log (n+ 1) + log

(
T

|K| − 1

)]
.

(3.21)

We now exploit the fact that our algorithm is conservative which will allow

us to reduce the log T term in our bound to log log T by substituting the

self-referential mistake bound into itself. We first simplify (3.21) and substitute
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T =MFn to give

MFn ≤
(
Φ1 + 1

)
log |Fn|+

|K|−1∑
i=1

JFn

(
uki ,uki+1

)
log

(
e|Fn|(n+ 1)

|K| − 1

)
︸ ︷︷ ︸

=:Z

+

|K|−1∑
i=1

JFn

(
uki ,uki+1

)
︸ ︷︷ ︸

=:J

logMFn

≤ Z + J log (Z + J logMFn)

≤ Z + J logZ + J logJ + J log logMFn ,

using log (a+ b) ≤ log (a) + log (b) for a, b ≥ 2. We finally use the fact that

J = O(n|K|) to give J logJ = O(J log (n|K|)) and similarly

J logZ = O(J log (Φ1 log n+ J log n))

= O(J log ((n+ J ) log n)))

= O(J log (n+ J ))

= O(J log (n|K|)) ,

to give

MFn ≤ O

Φ1 log n+

|K|−1∑
i=1

JFn

(
uki ,uki+1

)
(log n+ log |K|+ log log T )

 .

Basis Bn: For Bn we apply the same technique as above, but first observe the

following. Without loss of generality assume n = 2r for some integer r, we then

have |E| = 4n− 2. We let the number of mistakes made by SCS with basis Bn
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be denoted by MBn . Thus for basis Bn (3.19) becomes

MBn ≤ 2 log
n

2

(
Φ1 + 1

)
log |Bn|+ c

|K|−1∑
i=1

JBn

(
uki ,uki+1

)
+

|K|−1∑
i=1

JBn

(
uki ,uki+1

)
log
|Bn|
α

. (3.22)

Recall proposition 7 (that |Cµ| ≤ 2 log2 (
n
2
)(ΦS(µ) + 1)) and since πt = 1

|Cµ| ,

then for any labeling µt ∈ {−1, 1}n of cut-size ΦS(µ
t) we have

1

2(ΦS(µt) + 1) log n
2

≤ πt ≤ 1

ΦS(µt) + 1
.

We then apply the same argument upper bounding 1
α
,

1

α
= 1 +

T∑
t=1

1
πt

|K|−1∑
i=1

JBn(u
ki ,uki+1)

≤ 1 +
2n log

(
n
2

)
T

|K| − 1

≤
2n log

(
n
2

)
T + |K| − 1

|K| − 1

≤
(
2n log

(
n
2

)
+ 1
)
T

|K| − 1
,

and substituting 1
α
≤ (2n log (n

2
)+1)T

|K|−1
into the last term of (3.22) gives

MBn ≤ 2 log2

(n
2

) (
Φ1 + 1

)
log |Bn|

+

|K|−1∑
i=1

JBn

(
uki ,uki+1

)[
c+ log |Bn|+ ln 2n+ log

(
T

|K| − 1

)
+ log log n

]
.

Applying the same recursive technique as above yields a bound of

MBn ≤ O

Φ1 (log n)2 +

|K|−1∑
i=1

JBn

(
uki ,uki+1

)
(log n+ log |K|+ log log T )

 .
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Using the same argument given in proposition 7 for any two labelings

µ,µ′ ∈ {−1, 1}n, for two consistent well-formed comparators u,u′ ∈ ∆|Bn|

respectively, and for two consistent well-formed comparators û, û′ ∈ ∆|Fn|, we

have that JBn(u,u
′) ≤ 2 log

(
n
2

)
JFn(û, û

′). Finally we use JFn ≤ 2H(µ,µ′)

from Proposition 11 to complete the proof.

Thus the bounds are equivalent up to a factor of log n, although the

computation times vary dramatically.

We now briefly consider arguments towards a lower bound for this problem.

Note that tight upper and lower bounds were proven for graph label prediction

on trees in [26]. We give a sketch of a simple argument for a lower bound on

the number of mistakes made for predicting a switching sequence of labelings

on S. We first describe how introducing and removing cuts can force mistakes

in the simplest case.

Given a single graph-labeling problem on S with a cut-size Φ(µ) = 1, it is

not difficult for an adversary to force O(log n) mistakes. Thus in the switching

case if S is uniformly labeled, and a single cut is introduced, then the learner

can be forced to make O(log n) mistakes. Additionally, when switching from a

labeling on S with cut-size Φ(µ) = 2, to a uniform labeling, a single mistake

can be forced.

Now for a switching sequence of graph labelings, µ1, . . . ,µT , let Φ(µt)≪ n

for all t. For a labeling µ, S can be divided into Φ(µ) + 1 segments of length
n

Φ(µ)+1
. Each segment can be made independent of one another by fixing the

boundary vertices between segments. We therefore have Φ(µ) + 1 independent

learning problems, and an adversary can force Θ(log ( n
Φ(µ)

)) mistakes for every

cut introduced and 1 mistake for every 2 cuts removed.

While the bounds in Corollary 12 reflect the smoothness of the sequence

of labelings, we pay O(log n+ log |K|+ log log T ) for every cut removed and

introduced for basis set Fn, with an additional logarithmic factor for basis

Bn. There is therefore an interesting gap between these bounds and the

sketched lower bound, not least of which caused by the log log T term, which
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we conjecture should be possible to remove.

Note that we may avoid the issue of needing to optimally tune α using

the following method proposed by [47] and by [33]. We use a time-varying

parameter and on trial t we set αt =
1

t+1
. We have the following guarantee for

this method.

Proposition 13. For a connected n-vertex graph G and with randomly sampled

spine S, the SCS algorithm with bases Fn and Bn in predicting the online

sequence (i1, y
1), . . . , (iT , y

T ) now with time-varying α set equal to 1
t+1

on trial

t achieves the same asymptotic mistake bounds as in Corollary 12 with an

optimally-tuned α, under the assumption that ΦS(µ
1) ≤

∑|K|−1
i=1 JE(u

ki ,uki+1).

Proof. Using a time-dependent α we can re-write (3.8) as

ME ≤
1

π1
log |E|+

T∑
t=1

1

πt
log

(
1

1− αt

)
+

|K|−1∑
i=1

JE
(
uki ,uki+1

)
log

(
|E|
αki+1

)
, (3.23)

and letting αt :=
1

t+1
, and letting c := log2 e, gives the following,

ME ≤
1

π1
log |E|+

T∑
t=1

1

πt
log

(
1

1− 1
t+1

)

+

|K|−1∑
i=1

JE
(
uki ,uki+1

)
log (|E| (ki+1 + 1)) (3.24)

≤ 1

π1
log |E|+ c

T∑
t=1

1

πt

1

t
+

|K|−1∑
i=1

JE
(
uki ,uki+1

)
log (|E|T ) (3.25)

≤ 1

π1
log |E|+ c

(
max
t∈[T ]

1

πt

) T∑
t=1

1

t
+

|K|−1∑
i=1

JE
(
uki ,uki+1

)
log (|E|T ) (3.26)

≤ 1

π1
log |E|+

(
max
t∈[T ]

1

πt

)
log (eT ) +

|K|−1∑
i=1

JE
(
uki ,uki+1

)
log (|E|T ) (3.27)

where the step from (3.24) to (3.25) has used log2 (1 + x) ≤ cx for x > 0, and the

step from (3.26) to (3.27) has used
∑
t∈[T ]

1
t
<
∫ T

1
1
t
dt+ 1 = ln (eT ) = 1

c
log2 (eT ).
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We now use the following upper bound on max
t∈[T ]

1
πt ,

max
t∈[T ]

1

πt
≤ 1

π1
+

|K|−1∑
i=1

JE(u
ki ,uki+1) ,

and the assumption that
|K|−1∑
i=1

JE(u
ki ,uki+1) ≥ 1

π1 , to give

max
t∈[T ]

1

πt
≤ 2

|K|−1∑
i=1

JE(u
ki ,uki+1) . (3.28)

Substituting (3.28) into (3.27) then gives

ME ≤
1

π1
log |E|+ 2

|K|−1∑
i=1

JE
(
uki ,uki+1

)(
log (eT ) +

1

2
log (|E|T )

)

=
1

π1
log |E|+ 2

|K|−1∑
i=1

JE
(
uki ,uki+1

)(1

2
log (|E|) + log (e) +

3

2
log (T )

)
.

Using a conservative update (see section 3.5), we similarly set αt :=
1

m+1
,

where m is the current number of mistakes of the algorithm. We next use the

same “recursive trick” as that in the proof of Corollary 12. The proof follows

analogously, leaving

MFn ≤ O

Φ1 log n+

|K|−1∑
i=1

JFn

(
uki ,uki+1

)
(log n+ log |K|+ log log T )


for the basis set Fn, and

MBn ≤ O

Φ1 (log n)2 +

|K|−1∑
i=1

JBn

(
uki ,uki+1

)
(log n+ log |K|+ log log T )


for the basis set Bn.
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Algorithm 2 Switching Graph Perceptron
Input: Graph G; γ > 0
Initialize: w1 ← 0; K ← L+

G +max
i∈[n]

(e⊤
i L

+
G ei)11

⊤

1: for t← 1 to T do
2: receive it ∈ V
3: predict ŷt ← sign(wt

it)
4: receive yt ∈ {−1, 1}
5: if ŷt ̸= yt then
6: ẇt ← wt + yt

Keit
Kit,it

7: if ∥ẇt∥K > γ then
8: wt+1 ← ẇt

∥ẇt∥K
γ ▷ Projection step

9: else
10: wt+1 ← ẇt

11: end if
12: else
13: wt+1 ← wt

14: end if
15: end for

3.6 The Switching-Graph Perceptron

Before we present results of experiments of predicting switching graph labelings,

we first introduce an additional algorithm that addresses the graph-switching

problem using a variant of the Kernel Perceptron which will serve as a bench-

mark in our experiments in Section 3.7. This algorithm is not novel to this work.

Indeed, this approach and corresponding mistake bound was first sketched

out for the switching graph labeling setting in [27, Sec. 6.2]. For the sake of

completeness we include the algorithm here (Algorithm 2) and give a proof of

its mistake bound in Appendix A.

In Chapter 4 we will study adaptive algorithms that employ projection

updates, primarily building on the work of [37]. In that paper the switching

perceptron algorithm is presented, which forms the basis of Algorithm 2.

Intuitively the approach controls the weights of the algorithm by projecting

the weight vector onto a suitable convex set, Γ. In this case, a sphere of radius

γ centered at the origin.

The key to the approach in the switching graph labeling setting is to use
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Algorithm Time Mistake Bound

SCS-F O(n2) O
(∑

k∈K
Φk (log n+ log |K|+ log log T )

)
SCS-B O(log n) O

((∑
k∈K

Φk (log n+ log |K|+ log log T )

)
log n

)
SGP O(n) O

(∑
k∈K

√
ΦkΦ̂RG

)
Table 3.1: Mistake bounds and per-trial time complexities of the algorithms given

for predicting switching graph labelings.

the following graph kernel (introduced by [29])

K := L+
G +RL11

⊤

where L+
G denotes the pseudo-inverse of the graph Laplacian, and RL :=

maxi(e
⊤
i L

+
G ei),. The norm induced by this kernel is denoted ∥µ∥K :=√

µ⊤K−1µ, for which we have the following properties: maxi(e
⊤
iKei) ≤ 2RG

and if µ∈ {−1,1}n then ∥µ∥2K = Θ(Φ(u)) (for details see [29]). The following

theorem then follows from refinements of these properties and [37, Theorem

10].

Theorem 14. The Switching Graph Perceptron (see Algorithm 2) with

kernel K = L+
G + RL11

⊤ and RL := maxi(e
⊤
i L

+
G ei), and radius parameter

γ = maxt ∥µt∥K incurs no more than

O

(∑
k∈K

√
ΦkΦ̂RG

)

mistakes in predicting the online sequence (i1, y
1), . . . , (iT , y

T ) for any sequence

of labelings µ1, . . . ,µT ∈ {−1, 1}n such that µit = yt for all t ∈ [T ].

For completeness we provide a proof of Theorem 14 in Appendix A. Note

that a naive computation of ∥ẇt∥K would require O(n2) time, however, since
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after the Perceptron makes a mistake we have

∥ẇt∥2K = ∥wt + yt
vit

∥vit∥2K
∥2K = ∥wt∥2K +

1

∥vit∥2K
+

2ytwit

∥vit∥2K
, (3.29)

where vit := Keit , and ∥vit∥2K = e⊤
itKK−1Keit = Kit,it . The value of ∥ẇt∥K

can therefore be updated on each trial in O(1) time. The Switching Graph

Perceptron algorithm therefore has O(n) time complexity.

3.7 Experimental Results
In this section we present results of experiments on real data. At the time of

data collection, the city of Chicago contained 608 public bicycle stations for

its “Divvy Bike” sharing system. Current and historical data is available from

the City of Chicago3 containing a variety of features for each station, including

latitude, longitude, number of docks, number of operational docks, and number

of docks occupied. The latest data on each station is published approximately

every ten minutes.

We used a sample of 72 hours of data, from 4 : 55am on 8th April

2019 to 4 : 55am on 11th April 2019. The first 24 hours of data were used

for parameter selection, and the remaining 48 hours of data were used for

evaluating performance. Any stations that were not in service during any of

the 72 hours were removed from the dataset (in this case there was only one

such station). On each ten-minute snapshot we took the percentage of empty

docks of each station. We created a binary labeling from this data by setting a

threshold of 50%. Thus each bicycle station is a vertex in our graph, and the

label of each vertex indicates whether that station is “mostly full” or “mostly

empty.” See Figure 3.7 for two example labelings. Due to this thresholding the

labels of some “quieter” stations were observed not to switch, as the percentage

of available docks rarely changed. These stations tended to be on the “outskirts,”

and thus we excluded these stations from our experiments, giving 404 vertices

in our graph.

3https://data.cityofchicago.org/Transportation/Divvy-Bicycle-Stations-Historical/eq45-8inv

https://data.cityofchicago.org/Transportation/Divvy-Bicycle-Stations-Historical/eq45-8inv


3.7. Experimental Results 61+
−

Leaflet	(http://leafletjs.com)

+
−

Leaflet	(http://leafletjs.com)

Figure 3.7: An example of two binary labelings taken from the morning and evening
of the first 24 hours of data. An ‘orange’ label implies that station is
< 50% full and a ‘black’ label implies that station is ≥ 50% full.

Using the geodesic distance between each station’s latitude and longitudinal

position a connected graph was built using the union of a k-nearest neighbor

graph (k = 3) and a minimum spanning tree. For each instance of our algorithm

the graph was then transformed in the manner described in Section 3.3, by

first drawing a spanning tree uniformly at random and then linearizing using

depth-first search.

As natural benchmarks for this setting we considered the following four

methods of prediction:

1. “Global”: For all vertices predict with the most frequently occurring

label of the entire graph from the training data.

2. “Local”: For each vertex predict with its most frequently occurring label

from the training data.

3. “Temporal-Global”: For all vertices at any given time predict with the

most frequently occurring label of the entire graph at that time from the
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Figure 3.8: Mean cumulative mistakes over 25 iterations for all algorithms and
benchmarks over 48 hours (8640 trials) on a 404-vertex graph. A
comparison of the mean performance of SCS with bases Fn and Bn
(SCS-F and SCS-B respectively) using an ensemble of size 1 and 65 is
shown. Error bars represent one standard deviation.

training data.

4. “Temporal-Local”: For each vertex at any given time predict with that

vertex’s label observed at the same time in the training data.

We also compare our algorithms against the kernel Perceptron described in

Section 3.6.

Following the experiments of [18] in which ensembles of random spanning

trees were drawn and aggregated by an unweighted majority vote, we tested

the effect on performance of using ensembles of instances of our algorithms,

aggregated in the same fashion. We tested ensemble sizes in {1, 3, 5, 9, 17, 33, 65},

using odd numbers to avoid ties.

For every ten-minute snapshot (labeling) we queried 30 vertices uniformly

at random (with replacement) in an online fashion, giving a sequence of 8640
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Table 3.2: Mean error ± std over 25 iterations on a 404-vertex graph for all algo-
rithms and benchmarks, and for all ensemble sizes of SCS-Fand SCS-B.

Ensemble Size
Algorithm 1 3 5 9 17 33 65

SCS-F 1947 ± 49 1597 ± 32 1475 ± 30 1364 ± 28 1293 ± 26 1247 ± 21 1218 ± 19
SCS-B 1438 ± 32 1198 ± 27 1127 ± 25 1079 ± 24 1050 ± 23 1032 ± 22 1021 ± 18
Kernel Perceptron 3326 ± 43 - - - - - -
Local 3411 ± 55 - - - - - -
Global 4240 ± 44 - - - - - -
Temporal (Local) 2733 ± 42 - - - - - -
Temporal (Global) 3989 ± 44 - - - - - -

Table 3.3: Parameter ranges used for optimizing the three algorithms with tunable
parameters.

Algorithm Parameter Range Optimal Value

Kernel Perceptron γ 3.5− 5 3.89
SCS-F α 1× 10−12 − 1× 10−6 7.4× 10−10

SCS-B α 1× 10−5 − 5× 10−4 3.0× 10−4

trials over 48 hours. The average performance over 25 iterations is shown in

Figure 3.8. There are several surprising observations to be made from our

results. Firstly, both SCS algorithms performed significantly better than all

benchmarks and competing algorithms. Additionally basis Bn outperformed

basis Fn by quite a large margin, despite having the weaker bound and being

exponentially faster. Finally, we observed a significant increase in performance

of both SCS algorithms by increasing the ensemble size (see Figure 3.8).

Table 3.3 shows the parameter ranges searched over for the two variants

of our SCS algorithm, and the kernelized Perceptron algorithm. Parameters

were tuned using an exhaustive search over the ranges specified in Table 3.3,

taking the mean minimizer over 10 iterations.

Interestingly when tuning α we found basis Bn to be very robust, while Fn

was very sensitive. This observation combined with the logarithmic per-trial

time complexity suggests that SCS with Bn has promise to be a very practical

algorithm.



Chapter 4

Improved Regret Bounds for

Tracking Experts with Memory

4.1 Introduction to the Chapter

In this chapter we address the problem of sequential prediction with expert

advice [7] in a non-stationary environment with long-term memory guarantees

in the sense of Bousquet and Warmuth [1]. We introduced the prediction

with expert advice setting in Chapter 2. Recall that in this model nature

sequentially generates outcomes which the learner attempts to predict. Before

making each prediction, the learner listens to a set of n experts who each

make their own predictions. The learner bases its prediction on the advice of

the experts. After the prediction is made and the true outcome is revealed by

nature, the accuracies of the learner’s prediction and the expert predictions

are measured by a loss function. The learner receives information on all

expert losses on each trial. We make no distributional assumptions about the

outcomes generated, indeed nature may be assumed to be adversarial. The goal

of the learner is to predict well relative to a predetermined comparison class

of predictors, in this case the set of experts themselves. Unlike the standard

regret model, where the learner’s performance is compared to the single best

predictor in hindsight, our aim is for the learner to predict well relative to

a sequence of comparison predictors. That is, “switches” occur in the data
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sequence and different experts are assumed to predict well at different times.

In this work our focus is on the case when this sequence consists of a

few unique predictors relative to the number of switches. Thus most switches

return to a previously “good” expert, and a learner that can exploit this fact

by “remembering” the past can adapt more quickly than a learner who has

no memory and must re-learn the experts after every switch. The problem

of switching with memory in online learning is part of a much broader and

fundamental problem in machine learning: how a system can adapt to new

information yet retain knowledge of the past. This is an area of research in

many fields, including for example, catastrophic forgetting in artificial neural

networks [48, 49].

The chapter is organized as follows. We first introduce the model and

discuss related work, giving a detailed overview of the previous results on which

we improve. In Section 4.3 we give our main results, a regret bound which holds

for two algorithms, and an algorithm to compute relative entropy projection

with non-uniform lower box constraints in linear time. In Section 4.5 we derive

a new “geometric-decay mixing scheme” for the first experts memory algorithm

(Mixing Past Posteriors [1]), and show the correspondence to the current best

known algorithm [2].

4.1.1 Notation

We first define the following additional notation which is specific to this chapter.

Let ∆α
n := {u ∈ [0, α]n : ∥u∥1 = α} be a scaled simplex. We define ri S to be

the relative interior of the set S. For two vectors α and β we say α ⪯ β if

and only if αi ≤ βi for all i = 1, . . . , n, and α ⪰ β if and only if αi ≥ βi for all

i = 1, . . . , n.

4.2 Background and Related Work
We now formally introduce the model of sequential prediction with expert

advice. In this setting nature generates elements from an outcome space,

Y while the predictions of the learner and the experts are elements from a
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prediction space, D. Given a non-negative loss function ℓ : D × Y → [0,∞],

learning proceeds in trials. On each trial t = 1, . . . , T : 1) the learner receives

the expert predictions xt ∈ Dn, 2) the learner makes a prediction ŷt ∈ D,

3) nature reveals the true label yt ∈ Y, and 4) the learner suffers loss

ℓt := ℓ(ŷt, yt) and expert i suffers loss ℓti := ℓ(xti, y
t) for i = 1, . . . , n. Common

to all of the algorithms we will consider in this chapter is a weight vector,

wt ∈ ∆n, where wt
i can be interpreted as the algorithm’s confidence in expert i

on trial t. In this work we assume that the learner uses a prediction function

pred : ∆n × Dn → D to generate its prediction ŷt = pred(wt,xt) on trial

t. A classic example is to predict with the weighted average of the expert

predictions, that is, pred(wt,xt) = wt · xt, although for some loss functions

improved bounds are obtained with different prediction functions (see e.g., [50]).

In this chapter we will assume (c, η)-realizability of ℓ and pred [1, 51, 52]. That

is, there exists constants c, η > 0 such that for all w ∈ ∆n, x ∈ Dn, and y ∈ Y ,

ℓ(pred(w,x), y) ≤ −c ln

(
n∑

i=1

wie
−ηℓ(xi,y)

)
.

This includes η-exp-concave losses when pred(wt,xt) = wt · xt and c = 1
η
. For

simplicity we present regret bound guarantees that assume (c, 1
c
)-realizability,

that is cη = 1. This includes the log loss with c = 1, and the square loss

with c = 1
2

when D = Y = [0, 1]. For any comparison sequence of experts

i1:T = i1, . . . , iT ∈ [n] the regret of the learner with respect to this sequence

is defined as

R(i1:T ) :=
T∑
t=1

ℓt −
T∑
t=1

ℓtit .

We consider and derive algorithms which belong to the family of “exponential

weights” (EW) algorithms (see e.g., [53, 7, 50]). After receiving the expert

losses the EW algorithm applies the following incremental loss update to the

expert weights,

ẇt
i =

wt
ie

−ηℓti∑n
j=1w

t
je

−ηℓtj
. (4.1)
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4.2.1 Static setting

In the static setting the learner competes against a single expert (i.e., i1 =

. . . = iT ). For the static setting the EW algorithm sets wt+1 = ẇt for the next

trial, and for (c, 1
c
)-realizable losses and prediction functions achieves a static

regret bound of R(i1:T ) ≤ c lnn.

4.2.2 Switching

In the switching (without memory) setting the learner competes against

a sequence of experts i1, . . . , iT with k :=
∑T−1

t=1 [it ̸= it+1] switches. The well-

known Fixed-Share algorithm [30] solves the switching problem with the update

wt+1 = (1− α)ẇt + α
1

n
, (4.2)

by forcing each expert to “share” a fraction of its weight uniformly with all

experts.1 Recall that we used this update in Chapter 3 for achieving switching

guarantees with cluster specialists. The update is parameterized by a “switching”

parameter, α ∈ [0, 1]. With an optimally-tuned α = k
T−1

the regret with respect

to the best sequence of experts with k switches is

R(i1:T ) ≤ c

(
(k + 1) lnn+ (T − 1)H

(
k

T − 1

))
≤ c

(
(k + 1) lnn+ k ln

(
T − 1

k

)
+ k

)
. (4.3)

4.2.3 Switching with Memory

Freund [41] gave an open problem to improve on the regret bound (4.3)

when the comparison sequence of experts is comprised of a small pool of

size m := | ∪Tt=1 {it}| ≪ k. Using counting arguments Freund gave an

exponential-time algorithm with the information-theoretic ideal regret bound

1Technically in the original Fixed-Share update each expert shares weight to all other
experts, i.e., wt+1

i = (1− α)ẇt
i +

α
n−1

∑
j ̸=i ẇ

t
j . The two updates achieve essentially the same

regret bound and are equivalent up to a scaling of α.
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of R(i1:T ) ≤ c ln (
(
n
m

)(
T−1
k

)
m(m− 1)k), which is upper-bounded by

c

(
m lnn+ k ln

(
T − 1

k

)
+ (k −m+ 1) lnm+ k +m

)
. (4.4)

The first efficient algorithm solving Freund’s problem was presented in the

seminal paper [1]. This work introduced the notion of a mixing scheme, which

is a distribution γt+1 with support {0, . . . , t}. Given γt+1, the algorithm’s

update on each trial is the mixture over all past weight vectors,

wt+1 =
t∑

q=0

γt+1
q ẇq , (4.5)

where ẇ0 := 1
n
1, and γ10 := 1. Intuitively, by mixing all “past posteriors”

(MPP) the weights of previously well-performing experts can be prevented from

vanishing and recover quickly. An efficient mixing scheme requiring O(n)-time

per trial is the “uniform” mixing scheme given by γt+1
t = 1− α and γt+1

q = α
t

for 0 ≤ q < t. A better regret bound was proved with a “decaying” mixing

scheme, given by

γt+1
q =

1− α q = t

α 1
(t−q)ρ

1
Zt

0 ≤ q < t ,

(4.6)

where Zt =
∑t−1

q=0
1

(t−q)ρ
is a normalizing factor, and ρ ≥ 0. With a tuning of

α = k
T−1

and ρ = 1 this mixing scheme achieves a regret bound of2

R(i1:T ) ≤ c

(
m lnn+ 2k ln

(
T − 1

k

)
+ k ln (m− 1) + k + k ln ln (eT )

)
. (4.7)

It appeared that to achieve the best regret bounds, the mixing scheme needed

to decay towards the past. Unfortunately, computing (4.6) exactly requires the

storage of all past weights, at a cost of O(nt)-time and space per trial. Observe

that these schemes set γt+1
t =1−α, where typically α is small, since intuitively

switches are assumed to happen infrequently. All updates using such schemes

2(4.7) is a simplified upper bound of the bound given in [1, Corollary 9], using ln (1 + x) ≤
x.
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Sequence

Specialist 1

Specialist 2

Specialist 3

Specialist 4

Specialist 5

Figure 4.1: An example trial sequence of experts (colors) and the m = 5 circadian
specialists required to predict exactly as the sequence. A filled square
implies a specialist is awake, and predicts according to that expert
(color). An empty square impies a specialist is asleep, and abstains
from predicting.

are of the form

wt+1 = (1− α)ẇt + αvt , (4.8)

where vt ∈ ∆n is a function of the past weights ẇ0, . . . , ẇt−1. We will refer

to (4.8) as the generalized share update (see [34]). Fixed-Share is a special case

when vt = 1
n

for all t. This generalized share update features heavily in this

chapter.

For a decade it remained an open problem to give the MPP update a

Bayesian interpretation. This was finally solved in [2] with the use of circadian

specialists.3 We briefy introduced the notion of specialists in Chapter 2, and

used the technique of specialists in Chapter 3 for prediction on graphs. In

this context however, given n experts, each specialist on each trial t is either

awake and predicts in accordance with a prescribed base expert, or is asleep

and abstains from predicting. For n base experts and finite time horizon T

there are therefore n2T circadian specialists. For Freund’s problem an assembly

of m circadian specialists can predict exactly as the comparison sequence of

experts (see Figure 4.1 for an example sequence).

The Bayesian interpretation of the MPP update given in [2, Theorem 2]

was simple: to define a mixing scheme γt+1 was to induce a prior over this set

of circadian specialists. The authors of [2] proposed a simple Markov chain

prior over the set of circadian specialists, giving an efficient O(n)-time per trial

3In [2] these specialists are called partition specialists, in this thesis however we refer to
them as circadian specialists.
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algorithm with the regret bound

R(i1:T ) ≤ c

[
m ln

n

m
+mH

(
1

m

)
+ (T − 1)H

(
k

T − 1

)
+(m− 1)(T − 1)H

(
k

(m− 1)(T − 1)

)]
(4.9)

≤ c

(
m lnn+ 2k ln

T − 1

k
+ (k −m+ 1) lnm+ 2(k + 1)

)
, (4.10)

which is currently the best known regret bound for Freund’s problem. In

this work we slightly improve on the bound (4.9) for tracking experts with

memory (Theorem 15). We also show that in fact this Markov prior on

circadian specialists corresponds to a geometrically-decaying mixing scheme

for MPP (Proposition 24). The regret bounds discussed in this chapter all

rely on optimally tuning one or more parameters, which in practice are usually

unknown, and this is true for our regret bound.

Adaptive online learning algorithms with memory have been shown to

have better empirical performance than those without memory [54], and to

be effective in real-world applications such as intrusion detection systems [55].

While considerable research has been done on switching with memory in online

learning (see e.g., [1, 2, 12, 34, 56, 57]), there remain several open problems.

Firstly, there remains a gap between the best known regret bound for an efficient

algorithm and the information-theoretic ideal bound (4.4). Present in both

bounds (4.7) and (4.10) is the factor of 2 in the second term, which does not

appear in (4.4). In [2] this was interpreted as the cost of co-ordination between

specialists, essentially one “pays” twice per switch as one specialist falls asleep

and another awakens. In this chapter we make some small progress towards

closing this gap by avoiding such additional costs the first time each expert is

learned by the algorithm. That is, we pay to remember but not to learn.

Secondly, unless n is very large the bound (4.9) beats Fixed-Share’s

bound (4.3) only when m≪ k, but suffers when m is even a moderate fraction

of k. A natural question is can we improve on Fixed-Share when we relax the

assumption that m ≪ k, and only a few members of a sequence of experts
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Figure 4.2: A comparison of the regret bounds discussed in this chapter for
m∈ [2, k+1] with n=500000, k=40, and T =4000. Fixed-Share’s
bound is constant with respect to m. In this case previous “mem-
ory” bounds (blue & yellow) are much worse than Fixed-Share for larger
values of m while our bound (red) improves on Fixed-Share for all
m∈ [2, k] (for sufficiently large n).

need remembering (consider for instance, m > k/2)? In this chapter we prove

a regret bound that is not only tighter than (4.9) for all m, but for sufficiently

large n improves on Fixed-Share for all m ≤ k. In Figure 4.2 this behavior is

shown for several existing regret bounds and our regret bound. Note that as

m→ k, then the bound (4.4) from Freund’s argument is slightly worse than

even Fixed Share. This is due to the fact that the quantity
(
n
m

)(
T−1
k

)
m(m− 1)k

“over counts” the number of sequences with k switches containing m distinct

experts.

Our regret bound will hold for two algorithms; one utilizes a weight-

sharing update in the sense of (4.8), and the other utilizes a projection update.

Why should we consider projections? Consider for example a large model

consisting of many weights, and to update these weights costs time and/or

money. Alternatively consider the application of regret-bounded adaptive

algorithms in online portfolio selection (see e.g., [58, 59]). Here each “expert”

corresponds to a single stock and the weight vector wt corresponds to a
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(normalized) portfolio. If ℓti is the negative log return of stock i after day

t, then the loss function ℓt := − ln
∑n

i=1w
t
ie

−ℓti is the negative log return of

the portfolio. This loss is (1, 1)-realizable by definition (although there is no

prediction function [11]), and the daily price changes in the market naturally

induce the “loss update” (4.1) by updating the portfolio weights. The algorithm’s

secondary update (projection or weight-sharing) requires the investor to then

actively buy/sell to re-balance the portfolio after each trading period, but

doing so may incur transaction costs proportional to the amount bought or

sold (see e.g., [60, 58]). In Section 4.4 we motivate the use of projections

over weight-sharing in this context, proving that projections are strictly more

“efficient.” Online portfolio selection with transaction costs is an active area of

research [58, 61, 62, 63], and many tools developed for the problem of prediction

with expert advice have been used in this area (see e.g., [59, 64, 65, 66]).

4.2.4 Related Work

Switching (without memory) in online learning was first introduced in [7] (see

also the earlier [67] and independently in the context of universal coding in [68]),

and extended with the Fixed-Share algorithm [30]. An extensive literature

has built on these works, including but not limited to [1, 2, 11, 12, 32, 34,

36, 37, 57, 69, 70, 71, 72]. Relevant to this work are the results for switching

with memory [1, 2, 12, 34, 57, 70]. The first was the seminal work of [1]. The

best known result is given in [2], which we improve on. In [57] a reduction of

switching with memory to switching without memory is given, although with

a slightly worse regret bound than [1]. Related to the experts model is the

bandits setting, which was addressed in the memory setting in [57], and we also

consider in Chapter 5.

In [34] a unified analysis of both Fixed-Share and MPP was given in the

context of online convex optimization. They observed the generalized share

update (4.8) and slightly improved the bounds of [1]. Adaptive regret [7, 11,

36, 73] has been used to prove regret bounds for switching but unfortunately

does not generalize to the memory setting. This chapter primarily builds on
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the work of [1] with a new geometrically-decaying mixing scheme, and on [37]

with a new relative entropy projection algorithm. Related to the problem of

prediction with expert advice is that of universal coding in information theory

(see e.g., [74, 75, 76] for a discussion). Similarly, related to the problem of

tracking experts with memory is the problem of universal coding for switching

sources with repeating statistics (see e.g., [68, 77, 78] and references therein).

4.3 Projection onto Dynamic Sets (PoDS)

In this section we give a relative entropy projection-based algorithm for tracking

experts with memory. We show how the projection update used by this

algorithm is intimately related to the generalized share update (4.8). In the

following subsection we propose a specific update rule for our algorithm for

which we improve on the best known regret bound for this problem.

Given a non-empty set C ⊆ ∆n and a point w ∈ ri ∆n we define

P(w; C) := argmin
u∈C

D(u,w)

to be the projection with respect to the relative entropy of w onto C [79]. Such

projections were first introduced for switching (without memory) in online

learning in [37], in which after every trial the weight vector ẇt is projected

onto C = [α
n
, 1]n ∩ ∆n, that is, the simplex with uniform box constraints.

For prediction with expert advice this projection algorithm has the regret

bound (4.3) (see [34]). Indeed, we will refer to wt+1 = P(ẇt; [α
n
, 1]n ∩∆n)

as the “projection analogue” of (4.2). For tracking experts with memory our

algorithm will instead project onto a set C that is updated on each trial, such

that each weight does not fall below a certain threshold that is learned for each

expert.

Given β ∈ (0, 1)n such that ∥β∥1 ≤ 1, let

C(β) := {x ∈ ∆n : xi ≥ βi, i = 1, . . . , n}
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C(β)

w

P(w; C(β))

Figure 4.3: An illustration of the relative-entropy projection of the point w ∈ ∆3

onto the set C(β) = {x ∈ ∆3 : xi ≥ βi, i = 1, . . . , 3}, which is central to
our algorithm.

be a subset of the simplex which is convex and non-empty. Given w ∈

ri ∆n, intuitively P(w; C(β)) is the projection of w onto the simplex with

(non-uniform) lower box constraints β (see Figure 4.3 for an illustration).

Relative entropy projection updates for tracking experts with memory were

first suggested in [1, Section 5.2]. The authors observed that for any MPP

mixing scheme γt+1, the update (4.5) can be replaced with

wt+1 = P(ẇt; {w ∈ ∆n : w ⪰ γt+1
q ẇq, q = 0, . . . , t}) , (4.11)

and achieve the same regret bound. We build on this concept in this work.

Observe that for any choice of γt+1 the set {w ∈ ∆n : w ⪰ γt+1
q ẇq, q = 0, . . . , t}

corresponds to the set C(β) where

βi = max
0≤q≤t

γt+1
q ẇq

i (i = 1, . . . , n) . (4.12)

In this work we give an algorithm to compute the projection P(w; C(β))

exactly for any C(β) in O(n) time (Algorithm 5). With this algorithm and the

mapping (4.12), one immediately obtains the projection analogue of MPP for

any mixing scheme γt+1 at essentially no additional computational cost. We

point out, however, that for arbitrary mixing schemes computing β from (4.12)

takes O(nt)-time on trial t, improving only when some structure of the scheme

can be exploited. We therefore propose the following method of Projection

onto Dynamic Sets (“PoDS”) for tracking experts with memory efficiently.
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Algorithm 3 PoDS-θ
Input: n > 0, η = 1

c
> 0, α ∈ [0, 1], θ ∈ [0, 1]

1: init: w1← 1
n
; β1←α1

n

2: for t←1 to T do
3: receive xt ∈ Dn

4: predict ŷt = pred(wt,xt)
5: receive yt ∈ Y
6: for i←1 to n do
7: ẇt

i←
wt

ie
−ηℓti∑n

j=1 w
t
je

−ηℓt
j

8: end for
9: wt+1←P(ẇt; C(βt)) (4.13)

10: βt+1←(1− θ)βt + θαẇt

11: end for

Just as (4.8) generalizes the Fixed-Share update (4.2), we propose PoDS as

the analogous generalization of the update wt+1=P(ẇt; C(α1
n
)) (the projection

analogue of Fixed-Share). PoDS maintains a vector βt ∈ ∆α
n, and on each trial

updates the weights by setting wt+1=P(ẇt; C(βt)). Intuitively PoDS is the

projection analogue of (4.8) with βt corresponding simply to αvt. In some

cases βt = αvt for all t (e.g., for Fixed-Share), but in general equality may

not hold since βt and vt can be functions of past weights, which may differ

for weight-sharing and projection algorithms. Recall that (4.8) encapsulates

all MPP mixing schemes that set γt+1
t =1−α. PoDS implicitly captures the

projection analogue of all such mixing schemes. This simple formulation of

PoDS allows us to define new updates, which will correspond to new mixing

schemes. In the following section we give a simple update for PoDS and improve

on the best known regret bound. In Section 4.3.2 we discuss Algorithm 5 and

the efficient computation of the projection P(w; C(β)).

4.3.1 A Simple Update Rule for PoDS

We now suggest a simple update rule for βt in PoDS for tracking experts

with memory. The regret bound for this algorithm is given in Theorem 15

(see Figure 4.2). We first set β1 = α1
n

to be uniform, and with a parameter
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0 ≤ θ ≤ 1 update βt on subsequent trials by setting

βt+1 = (1− θ)βt + θαẇt . (4.14)

We refer to PoDS with this update as PoDS-θ. Intuitively the constraint vector

βt is updated in (4.14) by mixing in a small amount of the current weight

vector, ẇt, scaled such that ∥βt+1∥1 = α. If expert i predicted well in the

past, then its constraint βt
i will be relatively large, preventing the weight from

vanishing even if that expert suffers large losses locally. Using Algorithm 5 in

its projection step, PoDS-θ has O(n) per-trial time complexity.

As discussed, the vector βt of PoDS is conceptually equivalent to the

vector αvt of the generalized share update (4.8). If PoDS has a simple update

rule such as (4.14) then it is straightforward to recover the weight-sharing

equivalent by simply “pretending” equality holds on all trials. We now do

this for PoDS-θ. Clearly we have v1 = 1
n
, and if βt = αvt and βt+1 = αvt+1,

then vt+1= 1
α
βt+1= 1

α
(1−θ)βt + θẇt=(1−θ)vt + θẇt. This then leads to an

efficient sharing algorithm, which we call Share-θ. In Section 4.5 we show this

algorithm is in fact a new MPP mixing scheme, which surprisingly corresponds

to the previous best known algorithm for this problem. Both PoDS-θ and

Share-θ use the same parameters (α and θ), differing only in the final update

(see Algorithms 3 and 4).

In the following theorem we give the regret bound which holds for both

PoDS-θ and Share-θ.

Theorem 15. For any comparison sequence i1, . . . , iT containing k switches

and consisting of m unique experts from a set of size n, if α = k
T−1

and

θ = k−m+1
(m−1)(T−2)

, the regret of both PoDS-θ and Share-θ with any prediction

function and loss function which are (c, 1
c
)-realizable is

R(i1:T ) ≤ c

(
m lnn+ (T − 1)H

(
k

T − 1

)
+ (m− 1)(T − 2)H

(
k −m+ 1

(m− 1)(T − 2)

))
. (4.17)
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Algorithm 4 Share-θ
Input: n > 0, η = 1

c
> 0, α ∈ [0, 1], θ ∈ [0, 1]

1: init: w1← 1
n
; v1← 1

n

2: for t←1 to T do
3: receive xt ∈ Dn

4: predict ŷt = pred(wt,xt)
5: receive yt ∈ Y
6: for i←1 to n do
7: ẇt

i←
wt

ie
−ηℓti∑n

j=1 w
t
je

−ηℓt
j

8: end for
9: wt+1←(1− α)ẇt + αvt (4.15)

10: vt+1←(1− θ)vt + θẇt (4.16)
11: end for

Proof. We first prove the bound for PoDS-θ, and then prove that Share-θ has

the same bound. We use the relative entropy D(ut,wt) as a measure of progress

of the algorithm, where ut is a comparator vector which we take to be a basis

vector ei for some i ∈ [n] corresponding to the locally best expert it in hindsight

on trial t. Recall that the comparator sequence i1, . . . , iT is partitioned with k

switches into k + 1 segments, where a segment is defined as a sequence of trials

where the comparator is unchanged, i.e. ia = . . . = ib for some a < b.

Recall that pred and ℓ are assumed to be (c, 1
c
)-realizable. That is, for

any wt ∈ ∆n, xt ∈ Dn, and yt ∈ Y , there exists η > 0 such that

ℓ(pred(w,x), y) ≤ −c ln
n∑

i=1

wie
−ηℓ(xi,y) (4.18)

holds with cη = 1.

We first establish that

ℓt − ℓtit ≤ c
(
D(ut,wt)−D(ut, ẇt)

)
(4.19)
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holds for all t. Expanding the relative entropy terms gives

D(ut,wt)−D(ut, ẇt) =
n∑

i=1

uti ln
ẇt

i

wt
i

=
n∑

i=1

uti ln
wt

ie
−ηℓti

wt
i

∑n
j=1w

t
je

−ηℓtj

= −η
n∑

i=1

utiℓ
t
i − ln

n∑
j=1

wt
je

−ηℓtj

≥ −ηℓtit +
1

c
ℓt ,

where the inequality follows from (4.18). Multiplying both sides by c

gives (4.19).

We now find lower bounds, δ, for D(ut, ẇt)−D(ut+1,wt+1) to give non-

negative terms of the form D(ut, ẇt)−D(ut+1,wt+1)− δ ≥ 0, which we will

multiply by c and add to (4.19) to give a telescoping sum of relative entropy

terms. We consider three distinct cases for the different values of ut over the T

trials.

For the first case, we consider when there is no switch immediately after

trial t (i.e., ut = ut+1). We use Corollary 19 with u = ut, w = ẇt, and β = βt.

It follows then by definition that p = wt+1 and we obtain

D(ut, ẇt)−D(ut+1,wt+1) ≥ ln (1− α) , (4.20)

which gives a telescoping sum of relative entropy terms within in each segment,

paying c ln(1/(1− α)) for every trial where ut = ut+1.

For the two remaining cases, we will consider the segment boundaries, that

is, the case when there is a switch and ut ̸= ut+1. W.l.o.g let ut = ej and let

ut+1 = ek for any j ̸= k (that is we switch from expert “j” to expert “k” after
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trial t). We then have the following

D(ut, ẇt)−D(ut+1,wt+1) =
n∑

i=1

uti ln
uti
ẇt

i

−
n∑

i=1

ut+1
i ln

ut+1
i

wt+1
i

= ln
1

ẇt
j

+ lnwt+1
k , (4.21)

thus we collect a ln (1/ẇt
j) term from the last trial of the segment of expert j

and a ln (wt+1
k ) term from the first trial of the new segment of expert k. We

now consider the remaining two cases: when trial t+ 1 is the first time expert

k predicts well, and when trial t+ 1 is a trial on which we “re-visit” expert k.

For the first of these two cases, we consider the first time expert k starts

to predict well. We then use (4.13) and (4.14) to give

lnwt+1
k ≥ ln βt

k ≥ ln ((1− θ)t−1β1
k) = ln

(
(1− θ)t−1α

n

)
. (4.22)

Substituting (4.22) into (4.21), we therefore pay −c ln ((1− θ)t−1 α
n
) to switch

to a new expert for the first time on trial t+ 1.

Finally for the second of these two cases, we consider when expert k has

predicted well before. Let trial q < t denote the last trial of expert k’s most

recent “segment.” We then have the following (again using (4.13) and (4.14)),

lnwt+1
k ≥ ln βt

k ≥ ln ((1− θ)t−q−1βq+1
k ) ≥ ln ((1− θ)t−q−1αθẇq

k) . (4.23)

By substituting (4.23) into (4.21) for each segment boundary, and summing over

these boundaries, we therefore pay −c ln ((1− θ)t−q−1αθ) in order to telescope

the ln (ẇq
k) term with the ln (1/ẇq

k) term from the end of expert k’s most recent

segment ending on trial q.

Putting these together we thus pay c ln (1/(1− α)) for every trial on which

we don’t switch (from Corollary 19), we pay c ln (1/(1− θ)) for every expert in

our pool that isn’t predicting well or involved in a switch on every trial (i.e.,

m− 1 times, on non-switch trials, and m− 2 times on switch trials, from (4.22)

and (4.23)), and finally when we switch to an expert k before trial t+1 we pay
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c ln (n/α) if it is the first time to track expert k (there are m− 1 such trials),

and c ln (1/αθ) otherwise (there are k −m+ 1 such trials).

Summing over all trials, and using D(u1,w1) ≤ lnn then gives

T∑
t=1

ℓt −
T∑
t=1

ℓtit ≤
T∑
t=1

c
(
D(ut,wt)−D(ut, ẇt) +D(ut, ẇt)−D(ut+1,wt+1)

)
≤ cD(u1,w1) + c(T − k − 1) ln

(
1

1− α

)
+ c(m− 1) ln

(n
α

)
+ c((m− 1)(T − 1)− k) ln

(
1

1− θ

)
+ c(k −m+ 1) ln

(
1

αθ

)
≤ cm lnn+ c(T − k − 1) ln

(
1

1− α

)
+ ck ln

(
1

α

)
+ c((m− 1)(T − 1)− k) ln

(
1

1− θ

)
+ c(k −m+ 1) ln

(
1

θ

)
. (4.24)

The optimal tuning of α and θ that minimizes (4.24) is given by α = k
T−1

and

θ = k−m+1
(m−1)(T−2)

. Substituting these values into (4.24) gives a bound of

cm lnn+ c(T − 1)H
(

k

T − 1

)
+ c(m− 1)(T − 2)H

(
k −m+ 1

(m− 1)(T − 2)

)
,

which completes the proof for PoDS-θ.

We now prove that Share-θ has the same bound with an almost identi-

cal argument as the proof just given for PoDS-θ. Firstly observe that (4.21)

is independent of the algorithm update and therefore holds for both algo-

rithms. Additionally, observe that the proof for PoDS-θ relies on the inequal-

ities (4.19), (4.20), (4.22), and (4.23). We now prove that these inequalities

hold for Share-θ, and thus the two algorithms share the same bound.

Firstly we observe that inequality (4.19) holds since both algorithms use

the same loss update, and we assume that the prediction function and loss

function are (c, 1
c
)-realizable.
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Secondly, it follows directly from the update (4.15) that (4.20) holds for

Share-θ when ut = ut+1, since wt+1 ≥ (1− α)ẇt and therefore

D(ut, ẇt)−D(ut+1,wt+1) =
n∑

i=1

uti ln
wt+1

i

ẇt
i

≥
n∑

i=1

uti ln
(1− α)ẇt

i

ẇt
i

= ln (1− α) .

The proof that (4.22) holds follows directly from the updates (4.15)

and (4.16) and the fact v1 = 1
n
. That is, for the first time expert “k” ap-

pears on trial t+ 1,

lnwt+1
k ≥ ln (αvtk) ≥ ln ((1− θ)t−1αv1k) = ln

(
(1− θ)t−1α

n

)
.

Similarly, the proof that (4.23) holds follows directly from the up-

dates (4.15) and (4.16). That is, when we return to expert “k” on trial t+ 1,

lnwt+1
k ≥ ln (αvtk) ≥ ln ((1− θ)t−q−1αvq+1

k ) ≥ ln ((1− θ)t−q−1αθẇq
k) .

Having shown that the inequalities (4.19), (4.20), (4.22), and (4.23) hold for

Share-θ, the remainder of the proof follows exactly as the proof for PoDS-θ.

The regret bound (4.17) is at least c((m−1) ln T−1
k
−(k−m+1) ln k

k−m+1
)

tighter than the currently best known bound (4.9). Thus if m≪ k then the

improvement is ≈cm ln T
k
, and as m→k+1 then the improvement is ≈ck ln T

k
.

Additionally note that if m= k+1 (i.e., every switch we track a new expert)

the optimal tuning of θ is zero, and PoDS-θ reduces to setting βt = α1
n

on every trial. That is, we recover the projection analogue of Fixed-Share.

This is also reflected in the regret bound since (4.17) reduces to (4.3). Since

xH( y
x
) ≤ y ln (x

y
) + y, the regret bound (4.17) is upper-bounded by

R(i1:T ) ≤ c

[
m lnn+ k ln

T − 1

k
+ (k −m+ 1) ln

T − 2

k −m+ 1

+ (k −m+ 1) ln (m− 1) + 2k −m+ 1

]
.

Comparing this to (4.10), we see that instead of paying c ln T−1
k

twice on every
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Algorithm 5 P(w; C(β)) in O(n) time
Input: w ∈ ri ∆n;β ∈ (0, 1)n s.t. ∥β∥1 ≤ 1
Output: w′ = P(w; C(β))
1: init: W← [n]; r←w ⊙ 1

β
; Sw←0; Sβ←0

2: while W ≠ ∅ do
3: ϕ←median({ri : i ∈ W})
4: L←{i ∈ W : ri < ϕ}
5: Lβ←

∑
i∈L βi; Lw←

∑
i∈Lwi

6: M←{i ∈ W : ri = ϕ}
7: Mβ←

∑
i∈M βi; Mw←

∑
i∈Mwi

8: H←{i ∈ W : ri > ϕ}
9: λ← 1−Sβ−Lβ

1−Sw−Lw

10: if ϕλ < 1 then
11: Sw←Sw + Lw +Mw

12: Sβ←Sβ + Lβ +Mβ

13: if H = ∅ then
14: ϕ←min({ri : ri > ϕ, i ∈ [n]})
15: end if
16: W←H
17: else
18: W←L
19: end if
20: end while
21: λ← 1−Sβ

1−Sw

22: ∀i : 1, . . . , n : w′
i←

{
βi ri < ϕ

λwi ri ≥ ϕ

switch, we pay c ln T−1
k

once per switch and c ln T−2
k−m+1

for every switch we

remember an old expert (k −m+ 1 times). Unlike previous results for tracking

experts with memory, PoDS-θ and its regret bound (4.17) smoothly interpolate

between the two switching settings. That is, it is capable of exploiting memory

when necessary and on the other hand does not suffer when memory is not

necessary (see Figure 4.2).

4.3.2 Computing P(w; C(β))

Before we consider PoDS-θ and Share-θ further, we discuss the computation of

the projection P(w; C(β)). In [37] the authors showed that computing relative

entropy projection onto the simplex with uniform box constraints is non-trivial,

but gave an algorithm to compute it in O(n) time. We give a generalization
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of their algorithm to compute P(w; C(β)) exactly for any non-empty set C(β)

in O(n) time. As far as we are aware our method to compute exact relative

entropy projection onto the simplex with non-uniform (lower) box constraints

in linear time is the first, and may be of independent interest (see e.g., [80]).

We first develop intuition by sketching out the form that P(w; C(β)) must

take, and then describe how Algorithm 5 computes this projection efficiently.

This is stated formally in Theorem 16. Firstly consider the case that w ∈ C(β),

then trivially P(w; C(β)) = w, due to the non-negativity of D(u,w) and the

fact that D(u,w) = 0 if and only if u = w [79]. For the case that w /∈ C(β),

this implies that the set {i ∈ [n] : wi < βi} is non-empty. For each index i in

this set, we will see that the projection of w onto C(β) must set the component

wi to its corresponding constraint value βi. The remaining components are

then normalized, such that
∑n

i=1wi = 1. However, doing so may cause one (or

more) of these components wj to drop below its constraint βj. In the proof

of Theorem 16 we show that the projection algorithm must find the set of

components Ψ of least cardinality to set to their constraint values such that

when the remaining components are normalized, no component lies below its

constraint, and that this can be done in linear time.

Consider the following inefficient approach to finding Ψ. Given w and

C(β), let r = w ⊙ 1
β

be a “ratio vector.” First sort r in ascending order, and

then sort w and β according to the ordering of r. If r1 ≥ 1 then Ψ = ∅ and

we are done (⇒ w ∈ C(β)). Otherwise for each a = 1, . . . , n:

1. Let the candidate set Ψ
′
= [a].

2. Let w′ = w except for each i ∈ Ψ
′ set w′

i = βi.

3. Re-normalize the remaining components of w′.

4. Let r′ = w′ ⊙ 1
β
.

The set Ψ is then the candidate set Ψ
′ of least cardinality such that r′ ⪰ 1.

This approach requires sorting r and therefore even an efficient implementation
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takes O(n log n) time. Algorithm 5 finds Ψ without having to sort r. It

instead specifies Ψ uniquely with a threshold, ϕ, such that Ψ = {i : ri < ϕ}.

Algorithm 5 finds ϕ through repeatedly bisecting the set W = [n] by finding

the median of the set {ri : i ∈ W} (which can be done in O(|W|) time [81]),

and efficiently testing this value as the candidate threshold on each iteration.

The smallest valid threshold then specifies the set Ψ. The following theorem

states the time complexity of the algorithm and the form of the projection,

which is used in the proof of Theorem 15.

Theorem 16. For any β ∈ (0, 1)n such that ∥β∥1 ≤ 1, and for any w ∈ ri ∆n,

let p = P(w; C(β)), where C(β) = {x ∈ ∆n : xi ≥ βi, i = 1, . . . , n}. Then p is

such that for all i = 1, . . . , n,

pi = max

{
βi;

1−
∑

j∈Ψ βj

1−
∑

j∈Ψwj

wi

}
, (4.25)

where Ψ := {i ∈ [n] : pi = βi}. Furthermore, Algorithm 5 computes p in O(n)

time.

We now prove the two statements of Theorem 16 separately. The proof of

the theorem follows very closely to the proof of Theorem 7 in [37] (including

Claims 1, 2, and 3). There the problem is concerned with uniform constraints,

whereas we consider non-uniform constraints. In particular Claims 17 and 18

given below are generalizations of Claims 2 and 3 of [37]. The proof of the

second statement of Theorem 16 is almost identical to the proof of Theorem 7

in [37]. We first give a sketch of the proofs of the two statements of Theorem 16.

For the first statement, recall that Ψ := {i ∈ [n] : pi = βi} is the set of

indexes of components which must be set to their constraint values. To prove

the first statement we will show that given w and C(β), each component of

the point P(w; C(β)) either takes the value of its lower box constraint, βi, or

is equal to wi multiplied by a factor λ, with

λ =
1−

∑
i∈Ψ βi

1−
∑

i∈Ψwi

.
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We then argue that each component pi = max {βi;λwi} for i = 1, . . . , n.

For the second statement, we first show that Ψ, which uniquely specifies

P(w; C(β)), is the set of minimum cardinality such that when all other com-

ponents are re-normalized, no component lies below its constraint value, and

then show that Algorithm 5 finds this set in O(n) time.

Proof of the first statement of Theorem 16. Recall the first statement of the

theorem: that P(w; C(β)) takes the form (4.25). Given w and the non-

empty set C(β), the point P(w; C(β)) is the minimizer of the following convex

optimization problem

min
u

D(u,w)

s.t. βi − ui ≤ 0, i = 1, . . . , n

1 · u− 1 = 0 .

(4.26)

Since D(u,w) is convex in its first argument, and C(β) is a convex set,

then (4.26) has a unique minimizer, which we denote by p.

Constructing the Lagrangian of (4.26) with Lagrange multipliers ξ ⪰

0, ν ∈ R,

L(u, ξ, ν) =
n∑

i=1

ui ln
ui
wi

+ ξ⊤(β − u) + ν(1 · u− 1) ,

and setting ∇uL(u, ξ, ν) = 0 gives for i = 1, . . . , n,

∂L
∂ui

= ln
ui
wi

+ 1− ξi + ν = 0 .

This then gives for i = 1, . . . , n,

pi = wie
ξi−1−ν .

Since D(u,w) is convex in its first argument, and (4.26) has only linear

constraints then strong duality holds and we may exploit the complementary
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slackness Karush-Kuhn-Tucker necessary condition of the optimal solution (see

e.g., [82, Chapter 5]). That is, ξi(βi − pi) = 0 for all i = 1, . . . , n. Therefore for

any i such that pi > βi, the corresponding Lagrange multiplier is zero, and we

have

pi = wie
−1−ν .

Recall Ψ = {i : pi = βi}, we then have

1 =
n∑

i=1

pi =
∑
i∈Ψ

pi +
∑

i∈[n]\Ψ

pi =
∑
i∈Ψ

βi +
∑

i∈[n]\Ψ

wie
−1−ν .

Re-arranging gives

e−1−ν =
1−

∑
i∈Ψ βi∑

i∈[n]\Ψwi

=
1−

∑
i∈Ψ βi

1−
∑

i∈Ψwi

.

Therefore for each index i ∈ [n], either i is in Ψ which implies pi = βi, or i /∈ Ψ

and therefore pi = λwi, where

λ =
1−

∑
j∈Ψ βj

1−
∑

j∈Ψwj

.

We now establish that pi = max {βi;λwi} for all i = 1, . . . , n. Observe

that if i ∈ Ψ, then pi = wie
ξi−1−ν = βi, and since the Lagrange multiplier

ξi ≥ 0 then pi ≥ wie
−1−ν = λwi.

For i /∈ Ψ, then this implies pi = λwi > βi, since if pi = βi then i ∈ Ψ,

and if pi < βi then we have a contradiction since p is not a feasible solution

to (4.26). We therefore conclude that p is such that for all i = 1, . . . , n,

pi = max

{
βi;

1−
∑

j∈Ψ βj

1−
∑

j∈Ψwj

wi

}
,

which completes the proof of the first statement of the Theorem.

The proof of the second statement of Theorem 16 will rely on the following

two claims.
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Claim 17. Given w and β, let r := w ⊙ 1
β
. Without loss of generality, for

i < j assume ri ≤ rj. Let λ =
1−

∑
i∈Ψ βi

1−
∑

i∈Ψ wi
, then

p =
(
β1, . . . , β|Ψ|, λw|Ψ|+1, . . . , λwn

)
. (4.27)

Proof. In the proof of the first statement of Theorem 16 we established that p

is a permutation of (4.27), that is, either pi = βi or pi = λwi for i = 1, . . . , n.

We also established that pi = max {βi;λwi} for i = 1, . . . , n.

Suppose p is not in the form of (4.27). Then there exists a < b such that

pa = λwa and pb = βb (that is, b ∈ Ψ and a /∈ Ψ).

If pa = λwa then by the first statement of Theorem 16 we have λwa > βa.

However since ra ≤ rb, and λ > 0, this implies λwa

βa
≤ λwb

βb
. We then have

1 < λwa

βa
≤ λwb

βb
, which implies λwb > βb. However we necessarily assumed

that pb = βb. This violates the first statement of Theorem 16 that pb =

max {λwb, βb}, and thus contradicts our assumption that p is the minimizer

of (4.26). Hence our supposition that p is not in the form of (4.27) is false.

Claim 18. Let Ψ′ = {1, . . . , k}, and Ψ′′ = {1, . . . , k+1}, and let λ′ = 1−
∑

i∈Ψ′ βi

1−
∑

i∈Ψ′ wi
,

and λ′′ = 1−
∑

i∈Ψ′′ βi

1−
∑

i∈Ψ′′ wi
. Then let

u′ =

 k︷ ︸︸ ︷
β1, . . . , β|Ψ′|, λ

′w|Ψ′|+1, . . . , λ
′wn

 ,

and

u′′ =

 k+1︷ ︸︸ ︷
β1, . . . , β|Ψ′′|, λ

′′w|Ψ′′|+1, . . . , λ
′′wn

 ,

then D(u′,w) ≤ D(u′′,w).

Proof. Consider the following convex optimization problem for some w ∈ ri ∆n,

min
u

D(u,w)

s.t. βi − ui = 0, i = 1, . . . , k

1 · u− 1 = 0 .

(4.28)
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The point u′ is the unique minimizer of (4.28), while u′′ clearly also satisifies

the constraints of (4.28) and is therefore a feasible solution. This implies that

D(u′,w) ≤ D(u′′,w).

Proof of the second statement of Theorem 16. Recall the second statement of

the theorem: that Algorithm 5 computes P(w; C(β)) in linear time. We prove

this statement by first showing that the set Ψ corresponding to this projection

is the set of components of minimal cardinality to set to their constraint values

such that when the other components are normalized, no component lies below

its constraint value. We then prove that Algorithm 5 computes the projection

by finding this set in linear time.

In the proof of the first statement of the theorem we proved that p has the

form (4.25). Thus p is uniquely specified by the set Ψ = {i ∈ [n] : pi = βi} ⊆

{1, . . . , n}. There are therefore 2n possible solutions. Claim 17 proves that

the magnitude of the ratio of a component and its constraint is smaller for a

component to be set to its constraint value than a component to be normalized.

That is, if i ∈ Ψ and j /∈ Ψ, then wi

βi
≤ wj

βj
. This reduces the number of feasible

solutions to n.

Given these n possible solutions, claim 18 shows that if Ψ′ ⊆ Ψ′′ with

corresponding candidate projection vectors u′ and u′′ respectively, then

D(u′,w) ≤ D(u′′,w). Thus to compute the projection, one must find the set

Ψ of minimum cardinality whose corresponding candidate projection vector is

in C(β).

Observe that this “minimal” set Ψ is specified uniquely by a threshold, ϕ,

such that Ψ = {i ∈ [n] : ri < ϕ}, where ri = wi

βi
, for i = 1, . . . , n. Algorithm 5

finds Ψ by finding this threshold. The algorithm initially computes the vector

r = w⊙ 1
β

and when ϕ has been found, the algorithm sets all components of wi

where ri < ϕ to their thresholds βi, and normalizes the remaining components.

We now discuss how the algorithm finds ϕ in linear time. On each iteration

a candidate threshold is examined. These candidate thresholds are determined

from an index set W, which is initially set to {1, . . . , n}. On each iteration
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the threshold ϕ is chosen as the median of the ratios in the set {ri : i ∈ W}

(line 3). This can be done in O(|W|) time [81]. The approach used is a divide

and conquer method, however from a practical perspective this could also

be replaced with a randomized median-finding algorithm with average time

complexity O(|W|) [83]. If |W| is even, then the algorithm can choose between

the |W|
2

and the |W|+1
2

largest element arbitrarily. The set W is then sorted into

two sets, L and H, where L = {i ∈ W : ri < ϕ} and H = {i ∈ W : ri > ϕ}.

The normalizing constant λ is then computed (line 9). If λϕ < 1, then by

Claims 17 and 18 the true threshold must be larger than the current candidate

threshold ϕ, and must therefore correspond to ri for an index i contained in

H. Otherwise the true threshold must be either equal to the current candidate

threshold, or must correspond to ri for an index i contained in L.

Since ϕ was taken to be the median, then the algorithm iterates this

procedure, setting W = L or W = H as appropriate. Additionally, since ϕ was

taken to be the median, then max {|L|; |H|} ≤ 1
2
|W|. When W = ∅, then the

algorithm has found ϕ, and the projection is computed.

There are a maximum of ⌈log n+ 1⌉ iterations of lines 2-18, with the ith

iteration taking O( n
2i
) time. The algorithm therefore takes O(n) time to find

ϕ, and the time complexity of the algorithm is therefore O(n).

We have the following Corollary which follows from Theorem 16, which

we use in our proof of Theorem 15.

Corollary 19. Let 0 < α < 1. Then for any u ∈ ∆n, w ∈ ri ∆n, and

β ∈ ri ∆α
n, let p = P(w; C(β)). Then,

D(u,w)−D(u,p) ≥ ln (1− α) . (4.29)

Proof. Let Ψ := {i ∈ [n] : pi = βi}. Recall from Theorem 16 that the projected

vector p takes the form (4.25). Expanding the relative entropy terms of (4.29)
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then gives the following,

D(u,w)−D(u,p) =
n∑

i=1

ui ln

(
pi
wi

)

≥
n∑

i=1

ui ln


(
1−

∑
j∈Ψ βj

)
wi(

1−
∑

j∈Ψwj

)
wi


= ln

(
1−

∑
j∈Ψ βj

1−
∑

j∈Ψwj

)
≥ ln (1− α) ,

where the first inequality follows from the definition of pi in (4.25) and the

fact that max{a, b} ≥ b. The second inequality follows from the fact that∑
j∈Ψwj ≥ 0 and

∑
j∈Ψ βj ≤ α.

4.4 Projection vs. Sharing in Online Learning
We now briefly consider the two types of updates discussed in this chapter

(projection and weight-sharing) when updating weights may incur costs. Recall

the motivating example introduced in Section 4.2 was in online portfolio

selection with transaction costs. It is straightforward to show that in this model

transaction costs are proportional to the ℓ1-norm of the difference in the weight

vectors before and after re-balancing, that is, ∥wt+1 − ẇt∥1. In Theorem 20

we give a result which in this context guarantees the “cost” of projecting is less

than that of weight-sharing.

To compare the update of PoDS and the generalized share update (4.8),

we must consider for a set of weights ẇt, the point P(ẇt; C(βt)) and the point

(1− α)ẇt + αvt. However these points depend on βt and vt respectively, which

may themselves be functions of previous weight vectors ẇ1, . . . , ẇt−1, which as

discussed are generally not the same for each of the two algorithms. To compare

the two updates equally we therefore assume that the current weights are the

same (i.e., they must both update the same weights ẇt), and additionally that

βt = αvt. The following theorem states that under mild conditions, PoDS is
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strictly less “expensive” than its weight-sharing counterpart.

Theorem 20. Let 0 < α < 1. Then for any v ∈ ri ∆n, let β = αv, and for

any w ∈ ri ∆n such that w ̸= v, let S(w,v) := (1− α)w + αv. Then,

∥P(w; C(β))−w∥1 < ∥S(w,v)−w∥1 .

Before proving Theorem 20, we introduce some additional notation. Let

p := P(w; C(β)), and for brevity let s := (1− α)w + αv. We then define the

following sets,

Pinc := {i ∈ [n] : pi > wi} , Pdec := {i ∈ [n] : pi ≤ wi} ,

Sinc := {i ∈ [n] : si > wi} , Sdec := {i ∈ [n] : si ≤ wi} .

The subscripts inc and dec correspond to the relative change in the weights

before and after the corresponding update - whether they increase or decrease,

respectively.

We first require the following corollary, which follows naturally from

Theorem 16.

Corollary 21. If i ∈ Pinc then pi = βi.

Proof. Recall that Theorem 16 states that p is such that for i = 1, . . . , n,

pi = max {βi;λwi} ,

where λ =
1−

∑
j∈Ψ βj

1−
∑

j∈Ψ wj
is a normalizing constant. We first establish that λ ≤ 1.

Suppose λ > 1, then this implies
∑

i∈Ψwi >
∑

i∈Ψ βi. In this case there must

exist i ∈ Ψ such that wi > βi. However if λ > 1 then λwi > wi > βi, but since

i ∈ Ψ then pi = βi, which must be greater than λwi by Theorem 16. This leads

to a contradiction and thus our supposition that λ > 1 is false.

The form of p implies that i ∈ Pinc if and only if wi < βi, since if wi ≥ βi

then this implies that either pi = βi ≤ wi or pi = λwi ≤ wi, and in both of
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these cases i must be in Pdec. It then follows that if i ∈ Pinc then pi = βi since

otherwise pi = λwi ≤ wi < βi which is a contradiction.

Recall that it is assumed that w ̸= v and thus the definition of s implies

that Sinc is non-empty. We use this fact in the following two lemmas. The first

states that if a weight wi were to increase after the projection update, then it

would always increase after the weight-sharing update.

Lemma 22. Pinc ⊆ Sinc.

Proof. For any i ∈ [n] we have

si − wi = (1− α)wi + αvi − wi = α (vi − wi) ,

and it follows that i ∈ Sinc if and only if wi < vi. Using Corollary 21 we

conclude that if i ∈ Pinc, then wi < pi = βi = αvi < vi and then i must also be

in Sinc.

Lemma 23. ∥p−w∥1 = 2
∑

i∈Pinc
(pi−wi), and ∥s−w∥1 = 2

∑
i∈Sinc

(si−wi).

Proof. We prove the first equality by observing that

∥p−w∥1 =
n∑

i=1

|pi − wi| =
∑

i∈Pinc

(pi − wi) +
∑

i∈Pdec

(wi − pi) ,

and since the total weight does not change after an update (i.e.,
∑n

i=1 pi =∑n
i=1wi), necessarily we have

∑
i∈Pinc

(pi − wi) =
∑

i∈Pdec
(wi − pi). Since∑n

i=1 si =
∑n

i=1wi, the same argument can be used to prove the second

claim.

Proof of Theorem 20. Using Corollary 21, and the definition of s, we have for

i ∈ Pinc,

si−wi = (1−α)wi+αvi−wi = α(vi−wi) = βi−αwi = pi−αwi > pi−wi , (4.30)

where the inequality arises from the fact that α < 1. Finally combining this
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inequality with Lemmas 22 and 23 gives

∥p−w∥1 = 2
∑

i∈Pinc

(pi − wi) (Lemma 23)

< 2
∑

i∈Pinc

(si − wi) (Equation 4.30)

≤ 2
∑
i∈Sinc

(si − wi) (Lemma 22)

= ∥s−w∥1 . (Lemma 23)

Thus if one has to pay to update weights, projection is the economical

choice. It is illustrative to demonstrate how large the gap between the “cost”

incurred by the projection and sharing updates can be. We will do so for the

Fixed-Share update, that is, we set v = 1
n
1 and C(β) = [α

n
, 1] ∩∆n. Consider

the following example, let

wi =


α

n−1
, i = 1, . . . , n− 1

1− α, i = n .

Observe that since all constraints of C(β) are satisfied, P(w; C(β)) = w

and thus ∥P(w; C(β))−w∥1 = 0 and we incur no costs for projecting in this
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instance. Meanwhile observe that Sinc = {1, . . . , n− 1} and thus

∥s−w∥1 = 2
∑
i∈Sinc

si − wi

= 2
n−1∑
i=1

(1− α)wi +
α

n
− wi

=
2α

n

n−1∑
i=1

(1− nwi)

=
2α

n

n−1∑
i=1

(
1− αn

n− 1

)
=

2α(n− 1)

n
− 2α2 , (4.31)

which is maximized for α = n−1
2n

, the limit of which as n→∞ is 1
2
. In practice

of course α is often tuned to be a lot smaller than 1
2

in which case (4.31) is

lower-bounded by α itself for all α ≤ n−1
2n

. Nevertheless it is perhaps surprising

that the cost of sharing can approach 1
2

while the cost of projecting remains

zero, especially given that the ℓ1-diameter of the simplex is 2.

4.5 A Geometrically-Decaying Mixing Scheme

for MPP

In this section we look more closely at Share-θ. We show that it is in fact a

new type of decaying MPP mixing scheme which corresponds to the circadian

specialist algorithm with Markov prior.

Recall that the previous best known mixing scheme for MPP is the decaying

scheme (4.6). Observe that in (4.6) the decay (with the “distance” to the current

trial t) follows a power-law, and that computing (4.6) exactly takes O(nt) time

per trial. We now derive an explicit MPP mixing scheme from the updates (4.15)

and (4.16) of Share-θ. Observe that if we define ẇ0 := 1
n
, then an iterative

expansion of (4.16) on any trial t gives vt =
∑t−1

q=0 θ
[q ̸=0](1− θ)t−q−1ẇq, from
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q

γt+1
q

Figure 4.4: An illustration of the geometrically-decaying mixing scheme (4.32) which
corresponds to the circadian specialists algorithm with Markov prior.

which (4.15) implies wt+1 = (1− α)ẇt + αvt =
∑t

q=0 γ
t+1
q ẇq, where

γt+1
q =


1− α q = t

θ(1− θ)t−q−1α 1 ≤ q < t

(1− θ)t−1α q = 0 .

. (4.32)

Note that (4.32) is a valid mixing scheme since for all t,
∑t

q=0 γ
t+1
q = 1. The

Share-θ update is therefore a new kind of decaying mixing scheme. In this

new scheme the decay is geometric, and can therefore be computed efficiently,

requiring only O(n) time and space per trial as we have shown. Furthermore we

have shown that with this scheme MPP has the improved regret bound (4.17).

Another interesting difference between the decaying schemes (4.32)

and (4.6) is that when θ is small then (4.32) keeps γt+1
0 relatively large initially

and slowly decays this value as t increases. Intuitively by heavily weighting the

initial uniform vector ẇ0 on each trial early on, the algorithm can “pick up”

the weights of new experts easily (see Figure 4.4 for an illustration). Finally as

in the case of PoDS-θ, if m = k + 1, then with the optimal tuning of θ = 0,

this update reduces to the Fixed-Share update (4.2).

4.5.1 Revisiting Circadian Specialists

We now turn our attention to the previous best known result for tracking experts

with memory (the circadian specialists algorithm with a Markov prior [2]).
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For sleep/wake patterns (χ1 . . . χT ) the Markov prior is a Markov chain

on states {w, s}, defined by the initial distribution π=(πw, πs) and transition

probabilities Pij :=P (χt+1=j|χt= i) for i, j ∈ {w, s}. The algorithm with these

inputs efficiently collapses one weight per specialist down to two weights per

expert. These two weight vectors, which we denote at and st, represent the

total weight of all awake and sleeping specialists associated with each expert,

respectively. Note that the vectors at and st are not in ∆n, but rather the

vector (at, st) ∈ ∆2n and the “awake vector” at gets normalized upon prediction.

The weights are initialized by setting a1 = πw
1
n
, and s1 = πs

1
n
. The update4 of

these weights after receiving the true label yt is given by

at+1
i = Pww

atie
−ηℓti(

∑n
j=1 a

t
j)∑n

j=1 a
t
je

−ηℓtj
+ Psws

t
i (4.33)

and

st+1
i = Pws

atie
−ηℓti(

∑n
j=1 a

t
j)∑n

j=1 a
t
je

−ηℓtj
+ Psss

t
i (4.34)

for i = 1, . . . , n. Recall that the authors of [2] proved that an MPP mixing

scheme implicitly induces a prior over circadian specialists. The following states

that the Markov prior is induced by (4.32).

Proposition 24. Let 0 < α < 1, and 0 < θ < 1. Then the circadian specialists

algorithm with Markov prior parameterized with Psw = θ, Pws = α, πw = θ
α+θ

,

and πs = α
α+θ

is equivalent to Share-θ parameterized with α and θ.

Proof. It suffices to show that

ati∑n
j=1 a

t
j

= wt
i , (4.35)

and
sti∑n
j=1 s

t
j

= vti (4.36)

for all t. Since the initial distribution, π, of the Markov chain prior is taken to
4In [2] the algorithm is presented in terms of probabilities with the log loss. Here we give

the update generalized to (c, η)-realizable losses.
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be the stationary distribution, the detailed balance equation, Pwsπw = Pswπs,

holds for all trials.

It is therefore straightforward to show that
∑n

i=1 a
t
i = πw and

∑n
i=1 s

t
i = πs

for all t. Letting α = Pws, and θ = Psw, we proceed to prove that (4.35)

and (4.36) hold simultaneously for all t by induction. The case for t = 1 is

trivial. Then by induction on t for t ≥ 1,

at+1
i

πw
= Pww

atie
−ηℓti∑n

j=1 a
t
je

−ηℓtj
+
Psw

πw
sti

= Pww
atie

−ηℓti∑n
j=1 a

t
je

−ηℓtj
+
Pws

πs
sti

= Pwwẇ
t
i + Pwsv

t
i (induction)

= (1− α)ẇt
i + αvti

= wt+1
i ,

and similarly

st+1
i

πs
=
Pwsπw
πs

atie
−ηℓti∑n

j=1 a
t
je

−ηℓtj
+ Pss

sti
πs

= Psw
atie

−ηℓti∑n
j=1 a

t
je

−ηℓtj
+ Pss

sti
πs

= Pswẇ
t
i + Pssv

t
i (induction)

= θẇt
i + (1− θ)vti

= vt+1
i .

We therefore conclude by the inductive argument that (4.35) and (4.36) hold

for all t ≥ 1.

The proof amounts to showing for all t that at

πw
= wt and st

πs
= vt. The

Markov prior on circadian specialists therefore corresponds to a geometrically-

decaying MPP mixing scheme! Note however that we have proved a slightly

tighter regret bound for this algorithm in Theorem 15.
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Figure 4.5: The “mixing scheme” of Share-θ introduced by setting α = θ = 1. Note
that this corresponds to the setting where m = 2, and k = T − 1. That
is, we switch back and forth on every trial between two good experts.

We have shown the association between Share-θ and the circadian special-

ists algorithm with Markov prior [2]. We showed that α corresponds to the

parameter Pws and θ corresponds to Psw. We derived a different tuning from

that of [2] however, with θ = k−m+1
(m−1)(T−2)

. There is an intuitive, yet perhaps

surprising scenario worth considering with this tuning. Consider the case that

both α and θ are set to 1. In this case our update becomes

wt+1 = (1− α)ẇt + αvt

= (1− α)ẇt + α
(
(1− θ)vt−1 + θẇt−1

)
= ẇt−1 . (4.37)

At first the idea of setting wt = ẇt−2 seems strange, as the choice of weights on

even-numbered trials ignores data from all previous odd-numbered trials and

vice versa (see Figure 4.5). However, if we recall the optimal tuning of α and

θ in terms of k, m, and T , then this update becomes intuitive. Indeed, since

α = k
T−1

then this implies that k = T − 1, that is, we switch on every trial.

Additionally, θ = k−m+1
(m−1)(T−2)

with k = T − 1 implies that m = 2. Therefore, the

sequence for which setting α = θ = 1 is optimal is the sequence where only two

experts perform well, and we switch back and forth between them on every trial.

If we had prior information about this “two good experts” learning problem,

then the update (4.37) and ignoring “odd” trials on “even” trials makes sense.



Chapter 5

Adaptive Long-Term Memory

5.1 Introduction to the Chapter

In this chapter we extend the model of non-stationary online learning with

memory. In this model we study the problem of learning a switching sequence

with localized periods of “memory.” We will present our results in the adversarial

contextual bandits setting, but our methods and results will be inspired by

and directly applicable to the methods studied in Chapter 4 in the experts

setting. We briefly introduced contextual bandits in Section 2.4 as a natural

extension to the problem of prediction with expert advice. Recall that in this

setting the learner is placed in an environment such that on each trial nature

presents a context vector to the learner who has access to a number of policies

which, given this context vector, output distributions over the available actions.

In this case, the policies directly correspond to experts. Indeed, as in the

prediction with expert advice framework, the learner selects an action based

on the advice of these policies, before receiving feedback from nature. This

feedback could be in the full-information setting, where the learner receives

the losses of all actions on each trial, or the partial-information (bandit) setting,

where the learner only receives the loss of its chosen action. We cover both

cases in our presented algorithm and regret bound, but focus primarily on

the partial-information setting in our discussion and in the experiments in

Section 5.7.



5.1. Introduction to the Chapter 100

We extend the model of switching with memory by presenting a two-layer

long-term memory (LTM) strategy to efficiently remember previously good

policies in both the short- and long-term. The set of policies may be very

large and highly redundant, so we may expect that only a few policies will be

relevant over the entire learning problem. In contrast with previous results on

switching with memory, the novel switching model that we introduce is the

assumption that the sequence of trials may be segmented into “epochs,” where

within each epoch is an even (possibly much) smaller set of relevant policies.

Consider, for example, an advertiser who manages a popular news website

on which adverts will be displayed to users. Over time a sequence of users

will visit the website, drawn primarily by the current trending news. The

advertiser’s available actions correspond to a set of possible adverts to be

displayed to users. If the user clicks on the advert, then the loss incurred will

be zero, and one otherwise. Of course, the advertiser wishes to display an

advert that will be clicked on more often.

In order to aid the advertiser in their decision, they have access to a set of

recommended selections from a prescribed set of policy functions. Each policy

function makes its recommendation based on the received context vector, which

could, for example, correspond to demographic information about the user,

past behavior of the user, and so on. The policy functions themselves could

be trained machine learning models on past data from previous advertising

campaigns, and one may expect that some sets of policies are more suitable for

some particular demographics of users.

As the topic of the current headline news may change relatively frequently

over time (perhaps daily or weekly) then the type of user drawn to that website,

and thus the relevant policy, may also change over time. Due to the changing

nature of the news cycles, where updates or breaking news on a particular

story may dominate temporarily, our assumption is not that there will be a

unique “best” policy for the lifetime of the website’s advertising campaign, but

rather there will be a small set of “good” policies that will be relevant during
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the campaign.

A further temporal element of this problem assumes that this small set

of good policies will itself change over time. That is, we expect new stories of

interest to emerge gradually, drawing different types of visitors corresponding

to different policies. Indeed, on this longer time scale, as different news stories

emerge, they may be of public interest for several days or weeks, interspersed

with updates of other ongoing new stories, corresponding to different policies

entering our pool of relevant policies (perhaps after many weeks/months of

not being relevant) within which we are switching, before becoming irrelevant

again.

The standard model of switching with memory corresponds to an assump-

tion that previously relevant policies will once again be relevant in the future,

forming a fixed, small pool of relevant policies. We studied this memory model

in Chapter 4 in the context of prediction with expert advice. In this chapter,

we refine the memory model such that this pool of relevant policies itself evolves

over time. We thus have two layers of memory - in the outer layer there is the

set of global relevant policies, and in the inner layer there is the “local” pool

of relevant policies, which is a subset of this global pool. We call this model

adaptive LTM.

5.1.1 Notation

We first introduce some notation specific to this chapter. The symmetric

difference of sets A and B is denoted as A △ B. Given an n-dimensional vector

x = (x1, x2, . . . , xn) and m ≤ n we define x|m to be the prefix of x consisting

of the first m elements (x1, x2, . . . , xm). We denote vector-valued functions by

bold letters. Given a vector-valued function f and some x in its domain, we

denote the ith component of f(x) as fi(x). For some integer A ∈ N we let

[A] := {1, 2, . . . , A}.
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Protocol 5 The Contextual Protocol (Full and Partial Information)
for t← 1 to T do

Nature reveals context xt ∈ X
Learner observes policy advice h(xt) for h ∈ H
Learner selects action at ∈ [A]

▷ Full Information

Nature reveals losses ℓt ∈ [0, 1]A

▷ Partial Information

Nature reveals loss ℓtat ∈ [0, 1]

Learner incurs ℓt = ℓtat
end for

5.2 Background and Related Work

In this chapter we will consider the problem of adaptive LTM in both the

full-information and the partial-information (bandit) setting.

Our model is described in Protocol 5. On any given trial t ∈ [T ] nature

announces a context vector xt ∈ X . The learner then chooses an action at

from A possible actions based on advice generated by the set of policies H. We

let N := |H|. A policy h : X → ∆A is a mapping from a context vector to a

distribution over actions. In the full-information setting the learner observes

the loss vector ℓt ∈ [0, 1]A, and in the partial-information case the learner

observes only the loss ℓtat ∈ [0, 1]. In both cases the learner incurs ℓtat , the loss

of its chosen action. Our discussion and experiments will primarily focus on

the partial-information case.

In proving our regret bound in this setting, we will assume that nature

is a deterministic oblivious adversary (see e.g., [84, Section 5.1]). That is, we

assume that nature selects xt and ℓt for t ∈ T before learning begins and that

these are, of course, unknown to the learner. Given a comparison vector of

policies h ∈ HT we define the regret with respect to that vector as

R(h) := E

[
T∑
t=1

ℓtat

]
− E

bt∼ht(xt)

[
T∑
t=1

ℓtbt

]
, (5.1)
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where the first expectation is with respect to the possible randomization of the

learner’s algorithm.

In this chapter we will prove bounds of the following form:

R(h) ≤ O
(√

C(h)T
)

(5.2)

in the full-information setting and

R(h) ≤ O
(√

AC(h)T
)

(5.3)

in the partial-information setting. The quantity C(h) acts as an information-

theoretic complexity measure of the comparison vector h. Our discussion on

regret bounds will therefore focus on the quantity C(h).

The simplest bandit problem is the (non-contextual) multi-armed bandit

(MAB) problem, where regret is measured with respect to a sequence of actions.

This (non-switching) problem was pioneered, in the adversarial case, by the

Exp3 algorithm of [85]. This paper also used the mechanics of Fixed Share [30]

to develop a switching MAB algorithm: Exp3.S. A special case of the Gaba

algorithms of [86] was to incorporate memory into MABs. However, observe

that since regret bounds in this setting are of the form R(h) ≤ O(
√
AC(h)T ),

the leading factor of A in the square root means that memory results for MABs

are, in general, much less impactful than those for full-information.

The paper [57] managed to get impactful results for MABs by restricting

itself to sparse problems. This paper also gave memory algorithms for the

full-information case but with weaker regret bounds than [2]. In this work, we

get impactful results for LTM in the partial-information setting by considering

policy-based contextual bandits, pioneered by the Exp4 algorithm of [85]. In

this setting, as we have seen, the regret is measured with respect to a sequence

of policies rather than actions. Note that while we present our algorithm and

regret bound in the contextual bandits setting, it is straightforward to derive

the corresponding regret bounds in the prediction with expert advice setting
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with for example (c, η)-realizable losses as we considered in Chapter 4.

In [85] the seminal contextual bandit algorithm Exp4 was given, which

considered the case that the policy vector is constant over time, that is, h =

(h, h, . . . , h) ∈ HT for some policy h ∈ H. In this setting the Exp4 algorithm

obtains

C(h) = logN .

In the non-stationary setting, the policy vector has a richer structure.

We first review the case of (non-memory) switching, and then introduce our

two-layer memory model that allows the learner to adapt more quickly to a

new policy performing well if it has been observed before, even a very long

time ago.

We define K(h) :=
∑T−1

t=1 Jht ̸= ht+1K to be the number of switches in the

policy vector. It is straightforward to show that an adaptation of the algorithm

EXP3.s of [85] for the contextual bandit setting gives an algorithm with

C(h) = K(h) log

(
T

K(h)

)
+K(h) logN , (5.4)

which is analogous to the Fixed Share bound discussed in previous chapters.

Given this regret bound of R(h) ≤ O(
√
AC(h)T ), observe that when the

policies in this vector do not change too often, i.e., C(h) ≤ o(T ), the regret

bound is non-vacuous.

Similarly, in the switching with memory setting, as studied in Chapter 4 in

the experts setting, if we define M(h) := | ∪T
t=1 {ht}| to be the size of the small

pool, then bounds of the form R(h) ≤ O(
√
AC(h)T ) are achievable with

C(h) =M(h) log

(
N

M(h)

)
+K(h) log

(
M(h)T

K(h)

)
(5.5)

with adaptations of the algorithms of [1, 2] and the methods studied in Chapter 4

to the contextual bandit setting.

Recall that for the problem of switching with memory, the salient feature

of the regret bound is that we pay less per switch (compared to the non-memory
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switching problem) by assuming that the comparator sequence is made of only

a small pool of experts (policies). As discussed, in this work we go even further

by allowing this pool of experts to change over time, hence “adaptive LTM”.

An observed obstacle to the contextual bandit setting is that in some

applications, the set of policies required may be enormous. In such cases,

algorithms such as Exp4 and its extensions discussed above (whose computation

time scales linearly with the number of policies) are not practical. An active

area of research in contextual bandits is developing oracle-efficient algorithms,

which assume access to an offline oracle for a specific associated optimization

problem (see e.g., [87, 88, 89, 90]) to avoid computation time being linear in

the number of policies. The first oracle-efficient result with sub-linear regret

for the adversarial contextual bandits setting was [89], which also considered

the switching (without memory) setting. While sub-linear, the regret bounds

of oracle-efficient algorithms for adversarial contextual bandits are generally

worse than that of, e.g., Exp4 and its extensions. In [90], however, an improved

oracle-efficient method was given for the switching (without memory) setting

with a bound that is very close to (5.4) for the switching variant of EXP4. As

far as we know, the problem of switching with memory has yet to be addressed

for oracle-efficient adversarial contextual bandit algorithms, let alone our new,

significantly more complex adaptive LTM model.

For our algorithm, we will aim to have a per-trial time complexity of

O(N). Conceptually, given our adaptive LTM model’s complexity (across

time), a time complexity that does not grow with time is a surprising result.

Therefore, we will leave the question of whether our methods can be applied

in an oracle-efficient manner as an open question. We also point out that our

results improve over the state of the art in the full-information setting and

that in the experts setting our time-complexity matches that of the algorithms

and methods studied in Chapter 4 for either switching without memory or

switching with (non-adaptive) memory.
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5.3 Adaptive Long-Term Memory

We now formally introduce our model of adaptive LTM. This model can be

viewed as a two-layered memory model, stratified into a “local” working memory,

and a “global” long-term memory. The global long-term memory corresponds

to a pool of policies P ⊆ H. The sequence of trials t = 1, . . . , T can be

partitioned into epochs, and for epoch i the “working memory” corresponds

to a set of policies denoted P i ⊆ P. We thus assume that this epoch’s pool,

P i, corresponds to a “localized” working memory problem, analogous to the

setting studied in Chapter 4. The top layer of memory across epochs ties

these working memories together. This is reflected in our regret bound. The

concept of epochs is introduced only to characterize the trial sequence and in

the analysis of our algorithm to derive our regret bound. Our regret bound will

hold for any partitioning of the trial sequence into epochs, and the learner

does not know when one epoch ends and another begins.

Note that the bounds considered in Section 5.2 all scale with C(h). In our

stratified model, however, our bound will additionally depend on the chosen

partitioning, E , of h into epochs. We therefore first introduce the notation

(and give an illustration in Figure 5.1) required to derive the quantity C(h, E)

on which our bound will depend.

We define a partitioning of T trials into epochs, E , as follows. A partitioning

E consists of E epochs defined as E := (e1, . . . , eE) ⊆ [T ] where 1 = e1 < e2 <

. . . < eE ≤ T and conventionally we have eE+1 := T + 1. Given such notation

for a partitioning into epochs, we now define the derived quantities on which

C(h, E) will depend.

Definition 25. Given a policy vector h ∈ HT and a partition E into epochs

the derived quantities are:

derive(h, E) :=(P ,M,P1, . . . ,PE,M1, . . . ,ME,Φ,

T 1, . . . , TE, K1, . . . , KE) . (5.6)
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H =
P =
P1 = P2 = P3 = P4 = P5 =

Figure 5.1: A toy example trial sequence of our adaptive LTM model. We show
some of the derived quantities of (h, E). The policy vector h ∈ H50

is divided into E = 5 epochs. The epoch structure E is shown by
the black overlaid lines. Example derived quantities include: T = 50,
|H| = N = 16, M = 6, M2 = 2, M3 = 3, E = (1, 11, 22, 33, 42), Φ = 13.

The quantities derived from (h, E) are defined at both the local epoch

level and the global level. At the epoch level, we have the following. For epoch

i we have:

• P i :=
⋃

t∈[ei,ei+1)

{ht} - the set of distinct policies in the epoch (“working

memory”).

• M i := |P i| - the cardinality of the epoch set.

• Ki := 1+
∑

t∈[ei,ei+1)

Jht ̸= ht+1K - the number of policy switches (+1) in the

epoch.

• T i := ei+1 − ei - the length of the epoch.

At the global level, we have the global pool P := ∪i∈[E]P i, its car-

dinality M := |P|, the total number of trials T =
∑

i∈[E] T
i, and finally

Φ :=
∑

i∈[E−1]

|P i △ P i+1|, the number of new policies added or removed across

epochs. See Figure 5.1 for an illustration and example of these quantities.

5.3.1 The AdaptLTM Regret Bound

Before we develop our algorithm for the problem of Adaptive LTM, which we

will call AdaptLTM, we first give its regret bound in the following theorem.

The bound is given for both the full-information and partial-information cases.

Theorem 26. Algorithm AdaptLTM with policy set H ⊆ ∆X
A , N := |H| has

for any policy vector h ∈ HT and any partition E into epochs with the derived
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quantities (P , . . . , KE) = derive(h, E) (per Definition 25), with

C =M ln

(
N

M

)
+ Φ ln

(
MT

Φ

)
+
∑
i∈[E]

Ki ln

(
M iT i

Ki

)
(5.7)

the following regret bounds:

R(h) ≤ O(
√
ACT )

in the partial-information case and

R(h) ≤ O(
√
CT )

in the full-information case, which are obtained by setting η =
√

2C
AT

and

η =
√

2C
T

respectively.

The proof of Theorem 26 is deferred to Appendix B, as it depends on

many properties developed in the remaining sections of this chapter.

Note that we can decompose C as C =M ln (N/M) + C†, where

C† := Φ ln

(
MT

Φ

)
+
∑
i∈[E]

Ki ln

(
M iT i

Ki

)
.

Informally M ln (N/M) can be seen as the cost of learning the global pool P ,

whilst C† can be seen as the cost of learning the policy sequence {ht | t ∈ [T ]}

given the pool P .

We will compare our bound to (5.5), which is the bound achieved for

existing algorithms for switching with (non-adaptive) memory. Let this value

be denoted Ĉ =M ln (N/M)+K ln (MT/K). Crucially then, we must compare

C† to K ln (MT/K). Observe that when the trial sequence has a single epoch

then these terms are equal, and our bound reduces to the single epoch case (up

to constant factors).

We now show how our bound improves over Ĉ when we have multiple

epochs. In Ĉ each switch costs us the sum of two terms. Firstly ln (M),
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which is informally the cost of learning the new policy from P, and secondly

ln (T/K), which is informally the cost of learning when the switch occurs. We

observe that this second quantity is the logarithm of the inverse of the average

switching rate. C† improves both of these terms. Firstly, we pay an overhead

of Φ ln (MT/Φ), then for each switch in epoch i we pay ln (M i) instead of

ln (M). The improvement here is clear since typically M i ≪M . Secondly, we

pay ln (T i/Ki) instead of ln (T/K). This term, of course, corresponds to the

logarithm of the inverse of the average switching rate of that epoch. Thus in

a sense we adapt to the possibly different switching rates of each epoch. The

improvement is quite interesting since for epochs with higher switching rates

(than the global average) we pay a lot less (relatively) than paying the global

average per switch, and for epochs with lower switching rates (relative to the

global average) we do not pay much more. The stronger improvement, however,

is in paying ln (M i) rather than ln (M).

5.4 Policy Specialists

In the following sections we will develop our algorithm for the problem of

adaptive LTM. As in previous works on switching with memory [2, 12], our

algorithm is an efficient implementation of a circadian specialist algorithm.

Indeed our method is an extension of the circadian specialist algorithm of [2],

which we studied in Chapter 4. Recall that in our setting the specialist

predictions are probability vectors (policies) over the set of actions, requiring

a slightly more generalized specialist algorithm than previous works. This

generalized specialist algorithm is given in Algorithm 6, which we call Policy

Specialists. This algorithm will form the basis of our main algorithm, which

we will call AdaptLTM.

Recall that the defining characteristic of these specialist algorithms is the

notion of a circadian pattern of awake/asleep states, which we denote by a

vector γ ∈ {0, 1}T . In this case we have γt = 1 corresponding to a specialist

being awake on trial t and γt = 0 corresponding to a specialist being asleep
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Algorithm 6 Policy Specialists
Input: η > 0; w1 ∈ ∆|S|

1: for t = 1, . . .,T do
2: receive xt ∈ X
3: for h ∈ H do
4: ϵth←

∑
γ∈{0,1}T Jγt = 1Kwt

(h,γ)

5: end for
6: zt←

∑
h∈H ϵ

t
h

7: for a ∈ [A] do
8: pta←

∑
h∈H

ϵthh(x
t)a

zt

9: end for
10: select at ∼ pt

▷ Full Information

11: receive ℓt ∈ [0, 1]A

12: for h ∈ H do
13: ℓ̂th←

∑
a∈[A] ℓ

t
ah(x

t)a
14: end for
▷ Partial Information

11: receive ℓtat ∈ [0, 1]
12: for h ∈ H do
13: ℓ̂th←

ℓt
at
h(xt)at

pt
at

14: end for

15: ẑt←
∑

h∈H ϵ
t
he

−ηℓ̂th

16: for h ∈ H do
17: ψt

h← zte−ηℓ̂th

ẑt

18: end for
19: for (h,γ) ∈ E do

20: wt+1
(h,γ)←

{
wt

(h,γ) γt = 0

ψt
hw

t
(h,γ) γt = 1

21: end for
22: end for

and abstaining from predicting. Our specialist set, which in this chapter we

denote S, will be the set of all policy-circadian pairs thus S = H× {0, 1}T . A

non-abstaining specialist predicts in accordance with its prescribed policy, h.

We will index a circadian specialist by the tuple (h,γ). Although we describe

our algorithm as if we had prior knowledge of the number of trials, T , we will

see that the algorithm does not need this knowledge a-priori.

Policy Specialists takes as input a learning rate, η, and prior weight
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w1 ∈ ∆|S|. On each trial, t = 1, . . . , T , the weighted average of the predictions

of the non-abstaining specialists is computed (lines 3-9), with the sum of the

awake weights taken on line 4. An action, at, is then drawn from the resulting

probability distribution (line 10). Upon receiving information on the loss of that

trial, the weights of the non-abstaining specialists are updated, re-normalizing

such that our total weight is unchanged (lines 15-21). In the partial-information

case we employ the standard trick of using inverse-propensity scoring to weight

the loss of the chosen action (line 13) such that the quantity ℓ̂th is an unbiased

estimator, i.e.,

E[ℓ̂th] =
∑
a∈[A]

P(a = at)
ℓtah(x

t)a
pta

=
∑
a∈[A]

ℓtah(x
t)a .

This method, introduced in [85] in the Exp4 algorithm, essentially allows for a

reduction to the (full-information) Hedge setting [91], from the “exponential-

weight” family of algorithms. For each policy h ∈ H, we define the quantity ψt
h

which combines the loss term and normalization factor, greatly simplifying our

presentation and analysis. Observe that only the weights of awake specialists

are updated (line 20).

As discussed, the set of specialists used in this algorithm is the set of

circadian-policy (expert) pairs, which was the method introduced in [2] for the

circadian specialists algorithm with simple Markov prior, which we studied in

Chapter 4. Our algorithm, however, differs from that of [2] in two distinct ways.

Firstly, as discussed, Policy Specialists is a generalization in that each

specialist predicts with a distribution. That is, on each trial the specialist (h,γ)

predicts h(xt) ∈ ∆A if γt = 1 and abstains otherwise (h(xt) = □). Secondly,

and more importantly, we will show that our algorithm is more suited to the

problem of adaptive LTM due to having a different “prior” weight over this set

of specialists.

In the next section we will derive the generalized regret bound for Policy

Specialists for any choice of prior weight w1. In the following sections we
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will then show how w1 can be chosen such that Policy Specialists has a

good regret bound (given in Theorem 26) for the problem of adaptive LTM,

and can be implemented efficiently.

5.4.1 The Policy Specialists Regret Bound

To prove a regret bound for Policy Specialists it will be useful to describe

the policy specialists of interest relative to the policy sequence h ∈ HT chosen

by nature. That is, given h, for every policy h ∈ H we define the circadian

ch ∈ {0, 1}T such that for all t ∈ [T ] we have

cht := Jht = hK . (5.8)

Note that ch is a function of h, and simply corresponds to the circadian pattern

γ ∈ {0, 1}T of the particular specialist (h,γ) required to predict in accordance

with policy h on trials where ht = h. This can be seen visually in Figure 4.1

from the previous chapter, as well as in Figure 5.3.

Given a policy sequence h ∈ HT we define the distribution w∗ ∈ ∆|S| to

be such that:

w∗
(h,γ) :=


1
M

h ∈ P and γ = ch

0 otherwise .

For all t ∈ [T ] the relative entropy between w∗ and wt can then be written as

D(w∗,wt) =
∑

(h,γ)∈S

w∗
(h,γ) ln

(
w∗

(h,γ)

wt
(h,γ)

)

=
∑
h∈P

1

M
ln

(
1

Mwt
(h,ch)

)
.

We denote MD(w∗,w1) by C̄. That is,

C̄ :=
∑
h∈P

ln

(
1

Mw1
(h,ch)

)
. (5.9)

Note that on each trial t ∈ [T ] there is only one specialist from the set of
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specialists {(h, ch) | h ∈ P} that is awake. Thus,

wt+1
(h,ch)

wt
(h,ch)

= Jcht = 0K + Jcht = 1Kψt
h

= Jht ̸= hK + Jht = hKψt
h ,

so

D(w∗,wt)−D(w∗,wt+1) =
∑
h∈P

1

M
ln

(
wt+1

(h,ch)

wt
(h,ch)

)

=
1

M
ln (ψt

ht
) ,

and hence due to the non-negativity of the relative entropy,

C̄ =MD(w∗,w1)

≥M
(
D(w∗,w1)−D(w∗,wT+1)

)
=M

(
T∑
t=1

D(w∗,wt)−D(w∗,wt+1)

)

=
T∑
t=1

ln (ψt
ht
) .

Since C̄ is a fixed quantity and this holds for any sequence of losses, it holds in

the expected case. Thus we have

T∑
t=1

E[ln (ψt
ht
)] ≤ C̄ . (5.10)

To prove a bound for Policy Specialists we must bound E[ln (ψt
ht
)] for all

t ∈ [T ] in both the full-information and partial-information case. Note first

that by definition

E
[
ln (ψt

ht
)
]
= −ηE

[
ℓ̂tht

]
+ E

[
ln

(
zt

ẑt

)]
, (5.11)

so we shall now bound both terms on the right-hand side. First we have, in
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the partial-information case, that for all h ∈ H

E[ℓ̂th] =
∑
a∈[A]

P(a = at)
ℓtah(x

t)a
pta

=
∑
a∈[A]

ℓtah(x
t)a (5.12)

so indeed, in both cases we have

E[ℓ̂tht
] = ht(x

t) · ℓt . (5.13)

We now turn to bounding E[ln (zt/ẑt)]. Observe that we have

ẑt

zt
=
∑
h∈H

ϵth
zt
e−ηℓ̂th .

Using the inequality e−u ≤ 1− u+ u2/2 for u ≥ 0 we then have

ẑt

zt
≤
∑
h∈H

ϵth
zt

(
1− ηℓ̂th +

η2(ℓ̂th)
2

2

)

= 1− η
∑
h∈H

ϵth
zt
ℓ̂th +

η2

2

∑
h∈H

ϵth
zt
(ℓ̂th)

2 .

Taking logarithms, noting that ln (1 + u) ≤ u for all u ∈ R, and then taking

expectations gives us

E
[
ln

(
zt

ẑt

)]
≥ η

∑
h∈H

ϵth
zt
E
[
ℓ̂th

]
− η2

2

∑
h∈H

ϵth
zt
E
[
(ℓ̂th)

2
]
. (5.14)

We now bound the two sums on the right-hand side of (5.14). Note first that

from (5.12) we have, in both the full-information and the partial-information

case, that

∑
h∈H

ϵth
zt
E
[
ℓ̂th

]
=
∑
h∈H

ϵth
zt

∑
a∈[A]

ℓtah(x
t)a

=
∑
a∈[A]

ℓtap
t
a

= pt · ℓt . (5.15)
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For the second sum, let us first define A† := 1 in the full-information case and

A† := A in the partial information case. First, note that in the full-information

case since ℓ̂th ∈ [0, 1] we then have

∑
h∈H

ϵth
zt
E
[
(ℓ̂th)

2
]
≤
∑
h∈H

ϵth
zt

= 1 = A† , (5.16)

and similarly in the partial-information case since ℓta ∈ [0, 1] and h(xt)a ∈ [0, 1]

we have

E
[
(ℓ̂th)

2
]
=
∑
a∈[A]

P(a = at)

(
ℓtah(x

t)a
pta

)2

=
∑
a∈[A]

(ℓtah(x
t)a)

2

pta

≤
∑
a∈[A]

h(xt)a
pta

and thus

∑
h∈H

ϵth
zt
E
[
(ℓ̂th)

2
]
≤
∑
a∈[A]

1

pta

∑
h∈H

ϵth
zt
h(xt)a

=
∑
a∈[A]

pta
pta

= A

= A† . (5.17)

Substituting (5.15), (5.16), and (5.17) into (5.14) and then substituting that

and (5.13) into (5.11) gives

E[ln (ψt
ht
)] ≥ η

(
pt · ℓt − ht(xt) · ℓt

)
− η2A†

2
.
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Summing over all trials and rearranging then gives

R(h) =
T∑
t=1

(
pt · ℓt − ht(xt) · ℓt

)
≤ 1

η

T∑
t=1

E[ln (ψt
ht
)] +

ηA†T

2
,

which combined with (5.10) gives

R(h) ≤ C̄

η
+
ηA†T

2
.

Thus the regret bound depends entirely on C̄ =MD(w∗,w1), and there-

fore our choice of w1. With an optimal tuning of η =
√

2C̄/A†T this gives a

regret bound of R(h) ≤ O(
√
A†C̄T ).

5.4.2 Initial Weighting

We have shown that the regret bound depends entirely on our choice of w1 ∈

∆|S|. We will specify w1 by defining a function f : {0, 1}T → [0, 1] such that∑
γ∈{0,1}T f(γ) = 1. Intuitively this function is just a prior distribution on

circadian patterns.

Given this choice of f(γ) we then, for all policy/circadian pairs (h,γ) ∈ S

define

w1
(h,γ) :=

1

N
f(γ) . (5.18)

Note that by definition, we have

∑
(h,γ)∈S

w1
(h,γ) =

∑
h∈H

1

N

∑
γ∈{0,1}T

f(γ) =
∑
h∈H

1

N
= 1 ,

and thus (5.18) is a valid prior probability distribution on the set of circadian

specialists. Indeed, probabilistically (5.18) just corresponds to an assumption

of independence between policies and circadian patterns.

For h ∈ P we then have w1
(h,ch)

= f(ch)/N which when substituted
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into (5.9) gives

C̄ =M ln
N

M
+
∑
h∈P

− ln
(
f(ch)

)
. (5.19)

Our bound now depends entirely on our choice of prior, f(γ), over circadian

patterns, γ ∈ {0, 1}T . In the following sections, we will therefore focus on two

elements of our problem. The first will be on choosing a suitable prior over

circadian patterns for the problem of adaptive LTM, such that we achieve a

good regret bound. The second will be on how our choice can be combined

with Algorithm 6 to give an efficient algorithm.

5.4.3 Implementing Policy Specialists

Before we make explicit the chosen functional form of f(γ) that will determine

our initial weighting function w1, we will begin to consider how Policy

Specialists can be implemented with the definition of w1 given in (5.18).

For simplicity, for each policy h ∈ H and circadian γ ∈ {0, 1}T we introduce

the weight vth(γ) for t ∈ [T ] defined as follows. For t = 1 we set v1h := f(γ), for

all t ∈ [T ] we have

vt+1
h (γ) :=

v
t
h(γ) γt = 0,

ψt
hv

t
h(γ) γt = 1.

It is trivial to show that for all t ∈ [T ],

wt
(h,γ) =

1

N
vth(γ) , (5.20)

for all (h,γ) ∈ S. The introduction of vth(γ) is for the sake of clarity as we

will focus on the “weight” of a circadian pattern (for a given policy h ∈ H) in

isolation rather than the weight wt
(h,γ).

For all trials t ∈ [T ] and policies h ∈ H we now define

σt
h :=

∑
γ∈{0,1}T

Jγt = 1Kvth(γ) ,
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Algorithm 7 Policy Specialists with Sub-Routines
Input: η > 0

1: for h ∈ H do
2: initialize(h)
3: end for
4: for t = 1, . . .,T do
5: receive xt ∈ X
6: for h ∈ H do
7: (σt

h, σ̃
t
h)←get(t, h)

8: ϵth← 1
N
σt
h

9: end for
10: zt←

∑
h∈H ϵ

t
h

11: for a ∈ [A] do
12: pta←

∑
h∈H

ϵthh(x
t)a

zt
13: end for
14: select at ∼ pt

▷ Full Information

15: receive ℓt ∈ [0, 1]A

16: for h ∈ H do
17: ℓ̂th←

∑
a∈[A] ℓ

t
ah(x

t)a
18: end for
▷ Partial Information

15: receive ℓtat ∈ [0, 1]
16: for h ∈ H do
17: ℓ̂th←

ℓt
at
h(xt)at

pt
at

18: end for

19: ẑt←
∑

h∈H ϵ
t
he

−ηℓ̂th

20: for h ∈ H do
21: ψt

h← zte
−ηℓ̂th

ẑt

22: update(t, h)
23: end for
24: end for

and

σ̃t
h :=

∑
γ∈{0,1}T

Jγt = 0Kvth(γ) .

Note now that we have

ϵth =
∑

γ∈{0,1}T
Jγt = 1Kwt

(h,γ) =
1

N
σt
h ,
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Routine 1 initialize(h)

1: for γ ∈ {0, 1}T do
2: v1h(γ)←f(γ)
3: end for

Routine 2 get(t, h)

1: return (
∑
γ∈{0,1}T

Jγt = 1Kvth(γ),
∑
γ∈{0,1}T

Jγt = 0Kvth(γ))

Routine 3 update(t, h)

1: for γ ∈ {0, 1}T do

2: vt+1
h (γ)←

{
vth(γ), γt = 0

ψt
hv

t
h(γ), γt = 1

3: end for

and thus on each trial, knowledge of σt
h is all that is required to compute ϵth,

which is needed in Algorithm 6 (line 4). Later, our algorithm will also require

σ̃t
h, and so we will now re-write Algorithm 6 by introducing three sub-routines,

as given in Algorithm 7. We name these routines initialize, get, and update,

which are called in Algorithm 7 on lines 2, 7, and 22 respectively. The get

method returns both σt
h and σ̃t

h. The algorithm now only takes as input the

learning rate, η (and implicitly a choice of prior f(γ)). The abstraction of these

routines allows us to assume (for the time being) the existence of an oracle

which we can call on each trial for any particular choice of f(γ), simplifying

our presentation and analysis. We will then explicitly define these routines for

our particular choice of f(γ) in Section 5.6.2, removing the need for such an

oracle.

In their current form, the required methods of initialize, get, and update

are shown in routines 1, 2, and 3 respectively. Observe that Algorithm 7 with

these routines recovers Algorithm 6 exactly. Note that all three of these routines

apply to a unique policy, h, independently of all other policies. Of course, to

compute these routines explicitly would require a per-trial time complexity of

O(2T ) per policy. In the next section we introduce our method of choosing
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yỹ r(y, y)

r(y, ỹ)

r(ỹ, ỹ)

r(ỹ, y)

Figure 5.2: The CGMC of [2] for the problem of switching with (non-adaptive)
memory. Observe that there are only two states - one awake and one
asleep, i.e., W = {y} and W̃ = {ỹ}. Furthermore, the transition
function rt(u, y) for u, y ∈ Y is constant for all t ∈ N.

a prior weight, f(γ), over circadian patterns, generalising the method of [2],

which used a simple Markov chain.

5.5 Circadian-Generating Markov Chains

We have shown that Algorithm 6 (or equivalently Algorithm 7 with routines 1, 2,

and 3) has a regret bound R(h) ≤ O(
√
A†C̄T ), with C̄ given in (5.19). We

have seen, however, that implementing such a specialist algorithm explicitly

requires exponential time and space per trial. Our goal now, then, is to choose

a prior function f(γ) over circadian patterns for our problem of adaptive LTM

that will lead to a good regret bound, and a set of routines for Algorithm 7

that can be implemented efficiently. In the following sections we show why

our choice of initial weighting is well-suited to our problem and develop these

three routines. Recall that although we develop our algorithm as if we had

prior knowledge of the number of trials, T , the algorithm does not need this

knowledge a-priori.

Our method primarily extends the work of [2, 12], which both use simple

Markov chain priors over circadian specialists to achieve bounds for switching

with memory. We generalize this idea by introducing the concept of a circadian-

generating Markov chain (CGMC).

A CGMC is a quadruple (Y ,W , ι, r), where Y is a countable set of “states.”

We describe the subset W ⊆ Y of states as awake states, and the complement

of this set, W̃ := Y \W as the set of asleep states. We define ι : Y → [0, 1] as
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the “initial state function” such that

∑
y∈Y

ι(y) = 1 , (5.21)

and finally r : Y × Y → [0, 1]∞ is a transition function such that for all

(u, t) ∈ Y × N, ∑
y∈Y

rt(u, y) = 1 . (5.22)

Note that r is a vector-valued function whose range is infinite-dimensional, and

rt(u, y) denotes the transition probability from state u to y on trial t.

The novelty of this definition of a CGMC over previous works is two-fold.

First, note that we allow for multiple states to be “awake” (|W| ≥ 1) or “asleep”

(|W̃| ≥ 1), whereas, for example, the Markov chain in [2] has only single awake

and asleep states (see Figure 5.2). Secondly, our transition function r is not

static; instead, the transition probability between states is allowed to vary over

time.

We will briefly consider the required behavior of our CGMC for the problem

of adaptive LTM, comparing it to the simple CGMC given in Figure 5.2, and

why our generalized notion of a CGMC is necessary. For the problem of adaptive

LTM, our inductive bias will be to favor shorter periods of waking/sleeping

relative to the length of the entire trial sequence, as well as (more importantly)

long periods of being asleep. For a given policy h ∈ H and epoch i, if h ∈ P i

then during that epoch we expect h to be the relevant policy for some segments

in that epoch, and irrelevant for other segments, this intuitively corresponds to

a circadian pattern waking up and falling asleep frequently during that epoch,

relative to the entire trial sequence. If h /∈ P i then this requires a circadian

which is asleep for the entire epoch duration (see Figure 5.3). Thus the circadian

patterns of interest are those that have periods of waking up/falling asleep

frequently, followed by long periods of “deep sleep.” Our CGMC will allow

us to capture this notion of deep sleep by having multiple awake states and

multiple asleep states.
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ch

Figure 5.3: Our toy example trial sequence from Figure 5.1, with the circadian
γ = ch for the “red” policy h shown above. A filled square implies γt = 1
and an empty square impiles γt = 0. Observe that in the adaptive
LTM model the circadian patterns of interest have periods of waking
up/falling asleep frequently, followed by long periods of “deep sleep.”

We now consider the simple Markov prior induced by the CGMC in

Figure 5.2 and how it is ill-suited to the problem of adaptive LTM. Observe

that the constant transition probabilities of that CGMC mean that regardless

of how long the Markov chain has been in the sleep state, it always has the

same probability of waking up (and vice versa). In our model, however, the

longer the Markov chain is in an asleep state, the less probability it should have

of waking up, as intuitively this corresponds to a policy being less likely to be

in the current small pool P i, and irrelevant for possibly a long time, as shown

in Figure 5.3. Indeed, comparing Figure 5.3 with Figure 4.1, the difference in

the characteristics of the desired circadian patterns becomes clear. The same

behavior is also true with the reversed notions of awake and asleep. Our CGMC

will achieve this behavior by encouraging periods of waking up/falling asleep

relatively frequently and, additionally, periods of prolonged sleep as required.

Practically, this will be achieved by having multiple awake (and asleep) states

in our CGMC being associated with different levels of “wakefulness.” Intuitively,

our transition probabilities will be designed such that the more “wide awake”

or “deeply asleep” a given state is, the harder it will be to fall asleep or wake

up respectively.

Given a CGMC (Y ,W , ι, r), our prior function f(γ) over circadian patterns

is defined as follows. For all T ∈ N and z ∈ YT let

ŵ(z) := ι(z1)
T−1∏
t=1

rt(zt, zt+1) , (5.23)



5.5. Circadian-Generating Markov Chains 123

be the probability of the sequence z. For any T ∈ N and γ ∈ {0, 1}T , we define

Γ(γ) := {z ∈ YT | ∀t ∈ [T ], γt = Jzt ∈ WK} (5.24)

to be the set of sequences of states z of length T which correspond to a

circadian pattern γ. Observe that since we now have multiple distinct states

which are considered awake or asleep, then different sequences of states z ∈ YT

may “agree” on the same circadian pattern γ ∈ {0, 1}T . We finally define the

function f(γ) by

f(γ) :=
∑

z∈Γ(γ)

ŵ(z) (5.25)

for all γ ∈ {0, 1}T .

In the following Proposition we show that f(γ) is a valid distribution on

circadian patterns.

Proposition 27. The function f(γ) defined in (5.25) is such that

∑
γ∈{0,1}T

f(γ) = 1 .

Proof. Note that for all t ∈ [T ] and z ∈ Y t, it follows from (5.23) and (5.22)

that

∑
u∈Yt+1:u|t=z

ŵ(u) =
∑

u∈Yt+1:u|t=z

ι(u1)
t∏

s=1

rs(us, us+1)

= ι(z1)

(
t−1∏
s=1

rs(zs, zs+1)

) ∑
ut+1∈Y

rt(zt, ut+1)

= ŵ(z) ,

which, by reverse induction on t gives, for all t ∈ [T ] and z ∈ Y t,

ŵ(z) =
∑

u∈YT :u|t=z

ŵ(u) . (5.26)
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Noting that {Γ(γ) | γ ∈ {0, 1}T} partitions YT we then have

∑
γ∈{0,1}T

f(γ) =
∑

γ∈{0,1}T

∑
z∈Γ(γ)

ŵ(z) =
∑
z∈YT

ŵ(z) ,

which when combined with (5.21) and (5.26) gives

∑
γ∈{0,1}T

f(γ) =
∑
u∈YT

ŵ(u)

=
∑
z∈Y1

∑
u∈YT :u1=z1

ŵ(u)

=
∑
z∈Y1

ŵ(z)

=
∑
z∈Y

ι(z)

= 1 ,

as required.

5.5.1 Implementing a CGMC

Before we explore CGMCs further and define our own for the problem of

adaptive LTM, we will consider how we might implement the three required

routines for Algorithm 7 now that f(γ) is defined as in (5.25).

Firstly for convenience, for all t ∈ [T ] and x ∈ {0, 1} let

ψ̂t
h(x) :=

1 x = 0,

ψt
h x = 1,

such that for all t ∈ [T ] and γ ∈ {0, 1}T we have

vth(γ) = f(γ)
t−1∏
s=1

ψ̂s
h(γs) . (5.27)
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For all h ∈ H, for all t ∈ [T ] and z ∈ Y t we also define

ζ(h, z) := ŵ(z)
t−1∏
s=1

ψ̂s
h(Jzs ∈ WK) .

This quantity is analogous to (5.27), but we are now considering the more

general state sequences z ∈ YT rather than circadian patterns γ ∈ {0, 1}T .

Indeed, we now show how we can compute σt
h =

∑
γ∈{0,1}T Jγt = 1Kvth(γ) in

terms of ζ(h, z).

Note that for all t ∈ [T ] and δ ∈ {0, 1}t we have

⋃
{Γ(γ) | γ ∈ {0, 1}T ∧ γ |t = δ} =

⋃
{{u ∈ YT | u|t = z} | z ∈ Γ(δ)} ,

so

∑
γ∈{0,1}T :γ|t=δ

f(γ) =
∑

γ∈{0,1}T :γ|t=δ

 ∑
z∈Γ(γ)

ŵ(z)


=
∑

z∈Γ(δ)

 ∑
u∈YT :u|t=z

ŵ(u)

 ,

which by (5.26) is equal to
∑

z∈Γ(δ) ŵ(z). Hence by (5.27), we have

∑
γ∈{0,1}T :γ|t=δ

vth(γ) =
∑

γ∈{0,1}T :γ|t=δ

f(γ)
t−1∏
s=1

ψ̂s
h(δs)

=
∑

z∈Γ(δ)

ŵ(z)
t−1∏
s=1

ψ̂s
h(δs) . (5.28)

Recalling that σt
h =

∑
γ∈{0,1}T Jγt = 1Kvth(γ), note that

∑
γ∈{0,1}T

Jγt = 1Kvth(γ) =
∑

δ∈{0,1}t:δt=1

 ∑
γ∈{0,1}T :γ|t=δ

vth(γ)

 .
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Combining this with (5.28) then gives

σt
h =

∑
γ∈{0,1}T

Jγt = 1Kvth(γ)

=
∑

δ∈{0,1}t:δt=1

 ∑
γ∈{0,1}T :γ|t=δ

vth(γ)


=

∑
δ∈{0,1}t:δt=1

 ∑
z∈Γ(δ)

ŵ(z)
t−1∏
s=1

ψ̂s
h(δs)


=

∑
δ∈{0,1}t:δt=1

 ∑
z∈Γ(δ)

ζ(h, z)


=
∑
z∈Yt

Jzt ∈ WKζ(h, z) . (5.29)

A similar argument can be used to show that

σ̃t
h =

∑
z∈Yt

Jzt ∈ W̃Kζ(h, z) .

We have thus expressed the quantities σt
h and σ̃t

h as sums over sequences of

states z ∈ YT rather than sums over circadian patterns γ ∈ {0, 1}T . Intuitively,

the set of circadian patterns defining our set of specialists now correspond to a

(possibly larger) set of sequences of states in Y rather than sequences made of

elements of {0, 1} directly. Recall that these “state sequences”, however, get

mapped to a circadian pattern of awake/asleep states.

We now define, for u ∈ Y ,

µt
h(u) :=

∑
z∈Yt:zt=u

ζ(h, z) ,

which can be seen as the weight of all “state-sequences” (associated with policy

h) on trial t whose tth state is u. This then gives

σt
h =

∑
u∈W

µt
h(u) and σ̃t

h =
∑
u∈W̃

µt
h(u) , (5.30)
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for the quantities required by our get method.

Note that this reduces the computation of the quantities σt
h and σ̃t

h to

sums over states u ∈ W and u ∈ W̃ only, although we have not yet shown how

we incrementally update µt
h on each trial. We will do that now. Note that we

initialize with

µ1
h(y) = ŵ(y) = ι(y) , (5.31)

for all y ∈ Y and h ∈ H.

In order to update µt
h, first note that for all t ∈ [T ], and z ∈ Y t+1 we have

ζ(h, z) =

(
ι(z1)

t∏
s=1

rs(zs, zs+1)

)(
t∏

s=1

ψ̂s
h(Jzs ∈ WK)

)

= ι(z1)
t∏

s=1

rs(zs, zs+1)ψ̂
s
h(Jzs ∈ WK)

= ζ(h, z|t)ψ̂t
h(Jzt ∈ WK)rt(zt, zt+1)

and hence for all u, u′ ∈ Y we have

∑
z∈Yt+1:(zt=u)∧(zt+1=u′)

ζ(h, z) =
∑

z∈Yt:zt=u

ζ(h, z)ψ̂t
h(Ju ∈ WK)rt(u, u′),

so for all u′ ∈ Y we have

µt+1
h (u′) =

∑
z∈Yt+1:zt+1=u′

ζ(h, z)

=
∑
u∈Y

 ∑
z∈Yt+1:(zt=u)∧(zt+1=u′)

ζ(h, z)


=
∑
u∈Y

µt
h(u)ψ̂

t
h(Ju ∈ WK)rt(u, u′)

= ψt
h

∑
u∈W

µt
h(u)rt(u, u

′) +
∑
u∈W̃

µt
h(u)rt(u, u

′) , (5.32)

as required. With this update our three routines, initialize, get, and update

can now be expressed in the form given in routines 4, 5, and 6 respectively.



5.5. Circadian-Generating Markov Chains 128

Routine 4 initialize(h)
1: for u ∈ Y do
2: µ1

h(u)← ι(u)
3: end for

Routine 5 get(t, h)

1: return

( ∑
u∈W

µt
h(u),

∑
u∈W̃

µt
h(u)

)

Routine 6 update(t, h)
1: for u′ ∈ Y do
2: µt+1

h (u′)←ψt
h

∑
u∈W

µt
h(u)rt(u, u

′) +
∑
u∈W̃

µt
h(u)rt(u, u

′)

3: end for

So far we have reduced the computation of σt
h and σ̃t

h from a sum over

γ ∈ {0, 1}T requiring O(2T ) time per trial, to a sum over u ∈ Y . Additionally

our update method now requires for each state u′ ∈ Y , a sum over all states

u ∈ Y , requiring O(|Y|2) time per trial (per policy).

Recall the previous work [2] (the circadian specialists algorithm with the

simple Markov chain prior generated by the CGMC shown in Figure 5.2) which

we studied in Chapter 4, where W = {a} and W̃ = {s}). We can now see that

with this CGMC, routine 6 gives the update of that algorithm with

µt+1
h (a) = ψt

h

∑
u∈W

µt
h(u)rt(u, a) +

∑
u∈W̃

µt
h(u)rt(u, a)

= ψt
hµ

t
h(a)rt(a, a) + µt

h(s)rt(s, a) ,

and

µt+1
h (s) = ψt

h

∑
u∈W

µt
h(u)rt(u, s) +

∑
u∈W̃

µt
h(u)rt(u, s)

= ψt
hµ

t
h(a)rt(a, s) + µt

h(s)rt(s, s) ,

which correspond with the updates (4.33) and (4.34) respectively.
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This update is efficient for a two-state Markov chain (as in Figure 5.2).

In our model, however, we have an extended set of states, Y, and the time

complexity of our update scales with O(|Y|2). Thus in order to reduce the

time complexity of this update further, we will require some structure to our

transition function r which can be exploited. In the next section we consider

such a structure.

5.5.2 A CGMC for Adaptive LTM - Intuition

In this section we briefly sketch out the form of our approach and develop the

intuition behind it. We do this by first describing a more simple (although

inefficient) approach, and then describe how our algorithm corresponds, in a

rough sense, to an efficient implementation of this approach. The subsequent

sections then develop the algorithm.

We first sketch how our approach will lead to the regret bound stated

in Theorem 26. Observe that (5.19) shows that our regret bound depends

entirely on our choice of prior distribution, f(γ), over circadian patterns. We

now sketch our chosen distribution over circadian patterns for the problem of

adaptive LTM. Note that a distribution over infinite sequences {0, 1}∗ can be

specified by the lengths, λ, of its contiguous segments of zeroes and ones

00 . . . 0︸ ︷︷ ︸
λ̃1

11 . . . 1︸ ︷︷ ︸
λ1

00 . . . 0︸ ︷︷ ︸
λ̃2

11 . . . 1︸ ︷︷ ︸
λ2

. . . . . .

such that any length-T prefix γ ∈ {0, 1}T of an infinite sequence may always

be described by the set of length-pairs Jγ := {(λ̃1, λ1), . . . , (λ̃J , λJ)} where

for notational convenience we may define λ̃1 := 0 and/or λJ := 0 (if γ1 = 1

and/or γT = 0, respectively) as necessary such that γ consists of 2J contiguous

segments. To achieve a good regret bound we will observe that we will require

that the length of each contiguous segment in γ is independent of the previous

segments and that these lengths follow a quadratic power law such that the



5.5. Circadian-Generating Markov Chains 130

following is satisfied:

f(γ) ≥ 1

2(λ̃1 + 1)2(λ1 + 1)2 . . . (λ̃J + 1)2(λJ + 1)2

=
1

2

∏
(λ̃j ,λj)∈Jγ

1

(λ̃j + 1)2(λj + 1)2
. (5.33)

Substituting (5.33) into (5.19) then gives a regret bound of R(h) ≤ O(
√
A†CT )

with

C :=M ln

(
N

M

)
+
∑
h∈P

∑
(λ̃j ,λj)∈Jch

(
ln (λ̃j) + ln (λj)

)
, (5.34)

and thus in our bound we would pay (up to constant factors) the logarithm

of the length of each sleep/wake segment of γ for each of our M specialists

required to predict in accordance with the sequence h.

We now sketch how the bound (5.34) obtains the bound given in The-

orem 26 in terms of our adaptive LTM model. Without loss of generality,

assume that each epoch starts on a switch. For some epoch i ∈ [E] let

J i
ch

:= {(λ̃k, λk), . . . , (λ̃k+Ji−1, λk+Ji−1)} for some k ≥ 1 be the set of J i length-

pairs of contiguous segments in γ fully contained within epoch i. Observe that

we have the following

∑
h∈Pi

∑
(λ̃j ,λj)∈J i

ch

(λ̃j + λj) ≤ T i + (M i − 1)T i =M iT i . (5.35)

Since there are at most 2Ki +M i terms being summed on the left-hand side

of (5.35), then using Jensen’s inequality gives1

∑
h∈Pi

∑
(λ̃j ,λj)∈J i

ch

(
ln (λ̃j) + ln (λj)

)
≤ (2Ki +M i) ln

(
M iT i

2Ki +M i

)

∈ O
(
Ki ln

(
M iT i

Ki

))
,

since Ki ≥ M i. For the remaining “long sleeping” segments of our circadian

1That for a set {xi | i ∈ [k]} ⊆ N, we have
∑

i∈[k] lnxi ≤ k ln (
∑

i∈[k] xi/k).
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y0 y1 y2 y3 y4 y5

ỹ0 ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

rt(y0, y1) rt(y1, y2) rt(y2, y3) rt(y3, y4) rt(y4, y5)

rt(y1, ỹ0) rt(y2, ỹ0) rt(y3, ỹ0) rt(y4, ỹ0) rt(y5, ỹ0)

rt(y0, ỹ0)

rt(ỹ0, ỹ1) rt(ỹ1, ỹ2) rt(ỹ2, ỹ3) rt(ỹ3, ỹ4) rt(ỹ4, ỹ5)

rt(ỹ1, y0) rt(ỹ2, y0) rt(ỹ3, y0) rt(ỹ4, y0) rt(ỹ5, y0)

rt(ỹ0, y0)

Figure 5.4: A finite example of a simple (but “inefficient”) circadian-generating
Markov chain,MA, for adaptive LTM.

patterns not fully contained within a given epoch (i.e., those corresponding to

h ∈ P such that h /∈ P i for some epoch i ∈ [E]) we have O(Φ) such segments

across the entire trial sequence whose summed lengths is no more than MT .

A similar application of Jensen’s inequality and summing across all epochs

therefore gives

∑
h∈P

∑
(λ̃j ,λj)∈Jch

(
ln (λ̃j) + ln (λj)

)
∈O

(
E∑
i=1

Ki ln

(
M iT i

Ki

)
+ Φ ln

(
MT

Φ

))
.

We now describe a simple Markov chain which induces a distribution f(γ)

over circadian patterns which satisfies (5.33) and thus when “implemented”

achieves the regret bound of Theorem 26. This Markov chain, which we

denote MA := (Y ,W , ι, r) is simple in that the transition probabilities are

time-homogenous, that is r is fixed and is not required to be a vector-valued

function.

We denote our set of awake states, W, by W := {yq | q ∈ N ∪ {0}} and

our set of asleep states, W̃ , by W̃ := {ỹq | q ∈ N∪ {0}}. We can thus interpret

the different states y0, y1, . . . in W as different levels of “wakefulness,” where

state yq+1 is interpreted as being more wide awake than state yq. Similarly

state ỹq+1 is interpreted as being more deeply asleep than state ỹq. Intuitively,

being more awake (or more asleep) will mean that it is harder (less likely) to

fall asleep (or wake up).
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The graphical structure ofMA is shown in Fig. 5.4. Observe that waking

up (falling asleep) corresponds to transitioning to state y0 (ỹ0), and that staying

awake (staying asleep) corresponds to transitioning from some state yq to yq+1

(ỹq to ỹq+1) respectively for some q ∈ N ∪ {0}. The transition probabilities of

MA are as follows. We have ι(y0) = ι(ỹ0) = 1/2 and for q ∈ N ∪ {0},

r(yq, ỹ0) := r(ỹq, y0) :=
1

q + 2
, r(yq, yq+1) := r(ỹq, ỹq+1) := 1− 1

q + 2
.

Observe that our different levels of wakefulness are reflected in the fact that

r(ỹq+1, y0) < r(ỹq, y0), and thus the longer a specialist is asleep, the more deeply

asleep it is and waking up is less probable.

A sequence u ∈ YT is associated with a circadian pattern γ ∈ {0, 1}T

with the mapping γt := Jut ∈ WK. Observe that a specialist sleeping

for λ ≥ 1 trials before waking up now corresponds to the sequence of

states (ỹ0, . . . , ỹλ−1, y0) in MA, and such a sequence occurs with probability

(
∏λ−2

q=0 r(ỹq, ỹq+1))r(ỹλ−1, y0) = (
∏λ−2

q=0
q+1
q+2

) 1
λ+1

= 1
λ(λ+1)

> 1
(λ+1)2

. Thus condi-

tion (5.33) is satisfied and the regret bound of Theorem 26 holds. Note that

somewhat astonishinglyMA achieves this while being completely (switching)

parameter-free.

Observe that given the graphical structure ofMA, then computing rou-

tines 5 and 6 would unfortunately require O(t) time on trial t (per policy). In

the following sections we therefore introduce a modification to the structure

ofMA which will give us an alternative Markov chain that also achieves the

same regret bound while reducing our computation time drastically. This

modification has two components, the first is a modification to the graphical

structure ofMA by allowing a particle following a trajectory through the chain

to remain on a given state for multiple trials. The second is to introduce a

time-dependence to the transition probabilities such that the majority of the

quantities summed in routines 5 and 6 may be cached, reducing our compu-

tation time to O(1) time per trial per policy. This is made clear in the next

sections.
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5.5.3 Transition Mass

To see how we can exploit any structure in our CGMC to reduce the computation

times of routines 5 and 6, we will require the following definitions for convenience.

We first define for all t ∈ [T ] and h ∈ H,

πt
h :=

t−1∏
s=1

ψs
h .

Then for all u ∈ Y and h ∈ H we define

µ̂t
h(u) :=

µ
t
h(u) u ∈ W̃

µt
h(u)

πt
h

u ∈ W ,

and the function r̂th : Y × Y → R+ by

r̂th(u, u
′) = µ̂t

h(u)rt(u, u
′) .

We will call r̂th(u, u′) the “transition mass” from state u to state u′ at time t.

We now show how the quantity µ̂t
h can be updated from trial t to trial t+ 1

using this transition mass r̂th. Note that from (5.32) we have

µt+1
h (u′) = ψt

h

∑
u∈W

µt
h(u)rt(u, u

′) +
∑
u∈W̃

µt
h(u)rt(u, u

′)

= ψt
h

∑
u∈W

πt
hµ̂

t
h(u)rt(u, u

′) +
∑
u∈W̃

µ̂t
h(u)rt(u, u

′)

= πt+1
h

∑
u∈W

µ̂t
h(u)rt(u, u

′) +
∑
u∈W̃

µ̂t
h(u)rt(u, u

′)

= πt+1
h

∑
u∈W

r̂th(u, u
′) +

∑
u∈W̃

r̂th(u, u
′) ,

and hence if u′ ∈ W then

µ̂t+1
h (u′) =

µt+1
h (u′)

πt+1
h

=
∑
u∈W

r̂th(u, u
′) +

1

πt+1
h

∑
u∈W̃

r̂th(u, u
′) , (5.36)
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and if u′ ∈ W̃ then

µ̂t+1
h (u′) = µt+1

h (u′) = πt+1
h

∑
u∈W

r̂th(u, u
′) +

∑
u∈W̃

r̂th(u, u
′) . (5.37)

We will now show how we can update the quantities σt
h and σ̃t

h incrementally

using the transition mass. Observe that for all u ∈ Y ,

∑
u′∈W

µt
h(u)rt(u, u

′) = µt
h(u)

∑
u′∈Y

rt(u, u
′)− µt

h(u)
∑
u′∈W̃

rt(u, u
′)

= µt
h(u)− µt

h(u)
∑
u′∈W̃

rt(u, u
′) , (5.38)

which when combined with (5.32) gives

σt+1
h =

∑
u′∈W

µt+1
h (u′)

= ψt
h

∑
u∈W

∑
u′∈W

µt
h(u)rt(u, u

′) +
∑
u∈W̃

∑
u′∈W

µt
h(u)rt(u, u

′)

= ψt
h

∑
u∈W

µt
h(u)− µt

h(u)
∑
u′∈W̃

rt(u, u
′)

+
∑
u∈W̃

∑
u′∈W

µt
h(u)rt(u, u

′)

= ψt
hσ

t
h − ψt

h

∑
u∈W

∑
u′∈W̃

µt
h(u)rt(u, u

′) +
∑
u∈W̃

∑
u′∈W

µt
h(u)rt(u, u

′)

= ψt
hσ

t
h − ψt

h

∑
u∈W

∑
u′∈W̃

πt
hµ̂

t
h(u)rt(u, u

′) +
∑
u∈W̃

∑
u′∈W

µ̂t
h(u)rt(u, u

′)

= ψt
hσ

t
h − πt+1

h

∑
u∈W

∑
u′∈W̃

r̂th(u, u
′) +

∑
u∈W̃

∑
u′∈W

r̂th(u, u
′) . (5.39)

The same argument can be used to show that

σ̃t+1
h = σ̃t

h −
∑
u∈W̃

∑
u′∈W

r̂th(u, u
′) + πt+1

h

∑
u∈W

∑
u′∈W̃

r̂th(u, u
′) . (5.40)

We now define ξth :=
∑

(u,u′)∈W×W̃
r̂th(u, u

′) and ξ̃th :=
∑

(u,u′)∈W̃×W
r̂th(u, u

′).

Substituting these quantities into (5.39) and (5.40) then gives the following
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updates:

σt+1
h = ψt

hσ
t
h − πt+1

h ξth + ξ̃th ,

and

σ̃t+1
h = σ̃t

h − ξ̃th + πt+1
h ξth .

All that remains is the computation of ξt+1
h and ξ̃t+1

h . For this, we introduce

the sets Ct(h) and C̃t(h), where

Ct(h) := {(u, u′) ∈ W × W̃ | r̂t+1
h (u, u′) ̸= r̂th(u, u

′)} ,

and

C̃t(h) := {(u, u′) ∈ W̃ ×W | r̂t+1
h (u, u′) ̸= r̂th(u, u

′)} .

We will call these the “change sets.” Now observe that

ξt+1
h =

∑
(u,u′)∈W×W̃

r̂t+1
h (u, u′)

=
∑

(u,u′)∈W×W̃

r̂th(u, u
′) +

∑
(u,u′)∈Ct(h)

(
r̂t+1
h (u, u′)− r̂th(u, u′)

)
= ξth +

∑
(u,u′)∈Ct(h)

(
r̂t+1
h (u, u′)− r̂th(u, u′)

)
. (5.41)

The same argument can be used to show that

ξ̃t+1
h = ξ̃th +

∑
(u,u′)∈C̃t(h)

(
r̂t+1
h (u, u′)− r̂th(u, u′)

)
. (5.42)

This suggests that the key to designing fast methods lies in choosing a CGMC

in which r̂t+1
h (u, u′) = r̂th(u, u

′) for almost all (u, u′) ∈ W × W̃ and almost all

(u, u′) ∈ W̃ ×W . That is, the change sets Ct(h) and C̃t(h) have low cardinality.

Given the ability to compute the change sets {Ct(h), C̃t(h) | t ∈ [T ], h ∈ H}

and transition masses {r̂th | t ∈ [T ], h ∈ H}, or given an oracle which returns

these quantities, our three routines can be expressed as shown in routines 7, 8,
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Routine 7 initialize(h)

1: π1
h←1

2: σ1
h←

∑
u∈W ι(u)

3: σ̃1
h←

∑
u∈W̃ ι(u)

4: ξ1h←
∑

(u,u′)∈W×W̃ r̂1h(u, u
′)

5: ξ̃1h←
∑

(u,u′)∈W̃×W r̂1h(u, u
′)

Routine 8 get(t, h)

1: return (σt
h, σ̃

t
h)

Routine 9 update(t, h)

1: πt+1
h ←ψt

hπ
t
h

2: σt+1
h ←ψt

hσ
t
h − πt+1

h ξth + ξ̃th
3: σ̃t+1

h ← σ̃t
h − ξ̃th + πt+1

h ξth
4: ξt+1

h ←ξth +
∑

(u,u′)∈Ct(h)(r̂
t+1
h (u, u′)− r̂th(u, u′))

5: ξ̃t+1
h ← ξ̃th +

∑
(u,u′)∈C̃t(h)(r̂

t+1
h (u, u′)− r̂th(u, u′))

and 9.

If we assume the existence of such an oracle, then note that this now

requires a time of O(|Ct(h)|+ |C̃t(h)|) per trial (per policy). In the next section,

we will formally define our CGMC and show how to compute these quantities,

removing the need for such an oracle.

5.6 AdaptLTM - A CGMC for Adaptive LTM

In this section we introduce our chosen CGMC for the problem of adaptive

LTM, and the resulting algorithm, which we call AdaptLTM. This CGMC

can be seen as a modified version of MA, described in Section 5.5.2. Recall

that this algorithm will correspond to Algorithm 7 with the three routines

initialize, get, and update defined appropriately.

We describe the graphical structure of our CGMC using the function

A : Y → 2Y defined by

A(u) := {u′ ∈ Y | ∃t ∈ N : rt(u, u
′) ̸= 0} ,
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y0 y1 y2 y3 y4 y5

ỹ0 ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

rt(y0, y0) rt(y1, y1) rt(y2, y2) rt(y3, y3) rt(y4, y4) rt(y5, y5)

rt(y0, y1) rt(y1, y2) rt(y2, y3) rt(y3, y4) rt(y4, y5)

rt(y1, ỹ0) rt(y2, ỹ0) rt(y3, ỹ0) rt(y4, ỹ0) rt(y5, ỹ0)

rt(y0, ỹ0)

rt(ỹ0, ỹ0) rt(ỹ1, ỹ1) rt(ỹ2, ỹ2) rt(ỹ3, ỹ3) rt(ỹ4, ỹ4) rt(ỹ5, ỹ5)

rt(ỹ0, ỹ1) rt(ỹ1, ỹ2) rt(ỹ2, ỹ3) rt(ỹ3, ỹ4) rt(ỹ4, ỹ5)

rt(ỹ1, y0) rt(ỹ2, y0) rt(ỹ3, y0) rt(ỹ4, y0) rt(ỹ5, y0)

rt(ỹ0, y0)

Figure 5.5: A finite example of our circadian-generating Markov chain for q ∈
{0, . . . , 5}. For each state yq we have A(yq) = {yq, yq+1, ỹ0}, and
similarly for each state ỹq we have A(ỹq) := {ỹq, ỹq+1, y0}, where
A(u) := {u′ ∈ Y | ∃t ∈ N : rt(u, u

′) ̸= 0}.

for all u ∈ Y . Just as inMA, we denote our set of awake states, W , by W :=

{yq | q ∈ N∪ {0}} and our set of asleep states, W̃ , by W̃ := {ỹq | q ∈ N∪ {0}}.

We can thus interpret the different states y0, y1, . . . in W as different levels of

“wakefulness,” where state yq+1 is interpreted as being more wide awake than

state yq. Similarly state ỹq+1 is interpreted as being more deeply asleep than

state ỹq. Intuitively, being more awake (or more asleep) will mean that it is

harder (less likely) to fall asleep (or wake up).

The graphical structure of our CGMC is given by A(yq) := {yq, yq+1, ỹ0},

and A(ỹq) := {ỹq, ỹq+1, y0}, for all q ∈ N ∪ {0}. Note that our graphical

structure is sparse; if the Markov chain is currently in an awake state yq it can

either:

1. Stay in the current level of wakefulness (remain in state yq).

2. Become more wide awake (transition to state yq+1).

3. Fall asleep (transition to state ỹ0).

The converse is true for being in state ỹq with a reversal of the notions of asleep

and awake (see Figure 5.5 for an illustration). The sparsity of our CGMC will

be crucial to the change sets Ct(h) and C̃t(h) being of low cardinality and our
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t

qt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

1

2

3

4

Figure 5.6: A plot of the tree-height function for t = 0, . . . , 30.

algorithm being computationally efficient.

5.6.1 The Transition Function

We now define our transition function, r, for our CGMC. The transition function

is chosen to achieve a good regret bound, and has a complex form to ensure

that the change sets Ct(h) and C̃t(h) have low cardinality. We show how this is

done in Section 5.6.2.

For our transition function, we will require a parameter α ∈ (0, 1). Note

that apart from the learning rate, η, this is the only parameter that our

algorithm will require. Furthermore, we suggest a tuning of α = 1/4, which

gives a good regret bound and performs reasonably well in our experiments.

For all t ∈ N ∪ {0} we define the tree-height function as

tree-height(t) := max{q ∈ N ∪ {0} | ∃m ∈ N : t+ 1 = m2q} ,

and for simplicity we denote qt := tree-height(t). The quantity qt is the largest

integer q such that t + 1 is a multiple of 2q. See Figure 5.6 for a visual

representation of this function. Intuitively the tree-height function gives the

height of a node of a binary tree “across time,” where tree-height(t) is the height

of the tth node when counting nodes “from left to right.” We also define for all

q ∈ N,

kt,q := t−max {s ∈ [t] | qs−1 = q − 1} .

Note that every trial t ∈ N will have a corresponding “tree height” (qt) which
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will be used by our algorithm. Thus intuitively, for a given “level” q, on a given

trial t, kt,q is the number of trials since the last time that the “tree height” was

q − 1 (see Figure 5.7).

We finally combine these quantities to define

ωt,q :=
α

2q − αkt,q
, (5.43)

which we will discuss later.

Our transition function is then defined as follows. For y ∈ Y our initial

state function is defined as

ι(y) :=


α y = y0 ,

1− α y = ỹ1 ,

0 otherwise .

Our transition function is then defined such that for all t ∈ N we have:

• rt(y0, ỹ0) := rt(ỹ0, y0) := α.

• rt(y0, y0) := rt(ỹ0, ỹ0) := Jqt ̸= 0K(1− α).

• rt(y0, y1) := rt(ỹ0, ỹ1) := Jqt = 0K(1− α).

Additionally for all q ∈ N we have:

• rt(yq, ỹ0) := rt(ỹq, y0) := ωt,q.

• rt(yq, yq) := rt(ỹq, ỹq) := Jqt ̸= qK(1− ωt,q).

• rt(yq, yq+1) := rt(ỹq, ỹq+1) := Jqt = qK(1− ωt,q).

This transition function has the following properties. We describe these

properties by considering a particle’s trajectory through the Markov chain. We

refer to the depth of a given state given by the subscript q, where the state

yq+1 is considered deeper than yq and so on (see Figure 5.5).



5.6. AdaptLTM - A CGMC for Adaptive LTM 140

t

q

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

1

2

3

4

0 1

0

0

1

1

2

0

0

3

1

1

0

2

0

1

3

1

2

4

0

0

3

5

1

1

0

6

2

0

1

7

3

1

2

0

4

0

3

1

5

1

0

2

6

0

1

3

7

1

2

4

8

0

3

5

9

1

0

6

10

0

1

7

11

1

2

0

12

0

3

1

13

1

0

2

14

0

1

3

15

1

2

4

0

0

3

5

1

1

0

6

2

0

1

7

3

1

2

0

4

0

3

1

5

1

0

2

6

Figure 5.7: At coordinates (t, q) the value of kt,q is shown. The tree-height function
is additionally shown (gray circles).
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y0 y1 y2 y3 y4 y5

ỹ0 ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

1 − α 1 − ω1,2 1 − ω1,3 1 − ω1,4 1 − ω1,5

1 − ω1,1

ω1,1 ω1,2 ω1,3 ω1,4 ω1,5

α

1 − α 1 − ω1,2 1 − ω1,3 1 − ω1,4 1 − ω1,5

1 − ω1,1

ω1,1 ω1,2 ω1,3 ω1,4 ω1,5

α

(a) t = 1, qt = 1.

y0 y1 y2 y3 y4 y5

ỹ0 ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

1 − ω2,1 1 − ω2,2 1 − ω2,3 1 − ω2,4 1 − ω2,5

1 − α

ω2,1 ω2,2 ω2,3 ω2,4 ω2,5

α

1 − ω2,1 1 − ω2,2 1 − ω2,3 1 − ω2,4 1 − ω2,5

1 − α

ω2,1 ω2,2 ω2,3 ω2,4 ω2,5

α

(b) t = 2, qt = 0.

y0 y1 y2 y3 y4 y5

ỹ0 ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

1 − α 1 − ω3,1 1 − ω3,3 1 − ω3,4 1 − ω3,5

1 − ω3,2

ω3,1 ω3,2 ω3,3 ω3,4 ω3,5

α

1 − α 1 − ω3,1 1 − ω3,3 1 − ω3,4 1 − ω3,5

1 − ω3,2

ω3,1 ω3,2 ω3,3 ω3,4 ω3,5

α

(c) t = 3, qt = 2.

y0 y1 y2 y3 y4 y5

ỹ0 ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

1 − ω4,1 1 − ω4,2 1 − ω4,3 1 − ω4,4 1 − ω4,5

1 − α

ω4,1 ω4,2 ω4,3 ω4,4 ω4,5

α

1 − ω4,1 1 − ω4,2 1 − ω4,3 1 − ω4,4 1 − ω4,5

1 − α

ω4,1 ω4,2 ω4,3 ω4,4 ω4,5

α

(d) t = 4, qt = 0.

Figure 5.8: Graphical representations of our transition function for t = 1, . . . , 4 and
the corresponding tree-height qt on each trial.
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Firstly, as discussed, observe that the particle can only “fall asleep” (that

is, transition from a state y ∈ W to a state ỹ ∈ W̃) by transitioning to ỹ0. The

converse is true for “waking up” which is only possible by transitioning from a

state ỹ ∈ W̃ to y0. Secondly, consider a particle’s trajectory as it remains awake

(or equivalently stays asleep). Assume therefore that a particle is in state y0,

and it is to reach state yq∗ for some q∗ > 1 without falling asleep (transitioning

to ỹ0). Observe that rt(yq, yq+1) ̸= 0 only if qt = q. Thus the particle may only

transition from yq to a deeper state yq+1 when qt = q. Furthermore, observe

that if qt = q then rt(yq, yq) = 0, and the particle must transition deeper (given

that it does not fall asleep). The tree-height, qt, therefore determines on trial

t the depth at which a transition to a deeper state can occur. The binary

tree-like structure of the tree-height function means that the particle must

spend either 2q−1 trials or 2q + 2q−1 trials in the state yq before transitioning

to state yq+1. It therefore takes an exponential amount of time for the particle

to reach state yq∗ . See Figure 5.8 for an illustration of this behavior.

We now turn our attention to the quantity ωt,q used to define our transition

probabilities. Recall that our goal in designing a computationally efficient

CGMC is to ensure that the change sets Ct(h) and C̃t(h) have low cardinality.

That is, ensuring that r̂t+1
h (u, u′) = r̂th(u, u

′) for almost all (u, u′) ∈ W × W̃

and almost all (u, u′) ∈ W̃ ×W . Given the graphical structure of our CGMC,

this means that we require r̂t+1
h (u, ỹ0) = r̂th(u, ỹ0) for almost all u ∈ W and

r̂t+1
h (ũ, y0) = r̂th(ũ, y0) for almost all ũ ∈ W̃ (see Figure 5.5).

Recall that each trial t has a corresponding tree-height, qt. For a given

level q ∈ N in our CGMC, there will be three events we must consider: when

q = qt, when q = qt + 1, and when q /∈ {qt, qt + 1}. Note that when q = qt

we have r̂th(yq, yq) = 0, and when q = qt + 1 we have r̂th(yq−1, yq) ̸= 0. In the

next section we will see that it is on these trials (i.e., when q ∈ {qt, qt + 1})

that we have (yq, ỹ0) ∈ Ct(h) and (ỹq, y0) ∈ C̃t(h). We first consider the third

case (q /∈ {qt, qt + 1}). Observe that for a given level q, such trials occur in

contiguous segments. We will now show that for segments of trials [s, s′] where



5.6. AdaptLTM - A CGMC for Adaptive LTM 143

q /∈ {qt, qt + 1} for t ∈ [s, s′] that (yq, ỹ0) /∈ Ct(h) and (ỹq, y0) /∈ C̃t(h).

Let [s, s′] be such a segment. Note that for all q ∈ N we have rt(yq, ỹ0) =

ωt,q, and thus our transition mass is given by

r̂th(yq, ỹ0) = µ̂t
h(yq)rt(yq, ỹ0)

= µ̂t
h(yq)ωt,q ,

and note that for all q ∈ N such that q ̸= qt we have rt(yq, yq) = 1− ωt,q, which

implies that for t ∈ [s, s′] we have

µ̂t+1
h (yq) =

µt+1
h (yq)

πt+1
h

=
ψt
hµ

t
h(yq)rt(yq, yq)

πt+1
h

=
ψt
hπ

t
hµ̂

t
h(yq)rt(yq, yq)

πt+1
h

= µ̂t
h(yq)rt(yq, yq)

= µ̂t
h(yq)(1− ωt,q) .

Thus r̂th(yq, ỹ0) = r̂t+1
h (yq, ỹ0) if µ̂t

h(yq)ωt,q = µ̂t+1
h (yq)ωt+1,q, which means that

we require

µ̂t
h(yq)ωt,q = µ̂t

h(yq)(1− ωt,q)ωt+1,q .

In other words, our transition mass from state yq to state ỹ0 on trial t is

a proportion (ωt,q) of our original “mass” µ̂t
h(yq). On the next trial, our

transition mass from yq to ỹ0 is then a proportion (ωt+1,q) of the remaining

mass µ̂t
h(yq)(1 − ωt,q). Thus for these quantities to be equal during these

segments of trials, we require that on each trial t, the mass µ̂t
h(yq) decrease

by a multiplicative factor, ωt,q, such that the amount transitioned is constant

on each trial t. The quantity ωt,q is designed to achieve such behavior. As an

illustration, consider a unit of mass that is reduced by 1/4 to 0.75, then reduced

by 1/3 to 0.5, then finally reduced by 1/2 to 0.25. On each step we lose 0.25 of

mass. This is exactly the principle behind the choice of ωt,q. Indeed, with α = 1
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and q = 2 for example, on trials t = 6, 7, 8 we have kt,q = 0, 1, 2 respectively

and we recover exactly these factors (ωt,q = 1/2q, 1/(2q − 1), 1/(2q − 2)). Note

however that α ∈ {0, 1} is not a valid choice for our algorithm given the initial

state function ι(y).2

The form of ωt,q also means that for any t, q ∈ N, ωt,q ≤ ωt,q+1. This means

that the deeper the particle is in our CGMC, the harder it is to fall asleep

(or wake up). Furthermore, the effect of decreasing α is that the quantity

ωt,q of each level q (and thus the transition mass) decreases, further making

it harder to fall asleep (or wake up) for more wide awake (or deeply asleep)

states. Intuitively, the graphical structure of our CGMC and the functional

form of ωt,q is how our inductive bias of favoring circadian patterns consisting

of periods of sleeping/waking frequently (and long periods of deep sleep) is

introduced in our prior.

In the next section, we further consider the mechanics behind ωt,q and

how we exploit this to obtain an efficient implementation of our algorithm

AdaptLTM.

5.6.2 Implementing AdaptLTM

Recall that in Section 5.4.3 we assumed the existence of an oracle to give

the change sets {Ct(h), C̃t(h) | t ∈ [T ], h ∈ H} and the transition masses

{r̂th | t ∈ [T ], h ∈ H}. Now that our CGMC has been defined in Section 5.6.1,

our goal is to derive the computation of these quantities explicitly, and thus

re-write routines 7, 8, and 9 for AdaptLTM.

For all t, q ∈ N we first define

l(t, q) := max {s ∈ [t] | qs−1 ∈ {q − 1, q}} .

2We point out, however, that with an initial state function of, for example, ι(y0) = ι(ỹ0) =
1/2, and ι(yq) = ι(ỹq) = 0 for q ∈ N, then α = 1 is a valid choice. Furthermore, note that this
would put a non-zero prior probability on “oscillating” circadian patterns γ = (0, 1, 0, 1, . . .),
and γ = (1, 0, 1, 0, . . .) only, and this corresponds exactly with the “2-expert constant-
switching” learning problem we considered briefly at the end of Chapter 4 (that is, it is
identical to Share-θ with α = θ = 1). Interestingly, this is achieved in our algorithm with a
single parameter. Our given choice of the initial state function for AdaptLTM was made
for convenience in proving the regret bound.
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Figure 5.9: At coordinates (t, q) the value of l(t, q) is shown. The tree-height
function is additionally shown (gray circles).

Intuitively for a given depth, q, in our Markov chain, on trial t the quantity

l(t, q) is the most recent trial before which either a “deepening” transition from

yq to yq+1 could have occurred, or a deepening transition from yq−1 to yq could

have occured (see Figure 5.9).

For h ∈ H we then define the quantities:

βt
q,h :=

µ̂
l(t,q)
h (yq)

2q

and

β̃t
q,h :=

µ̂
l(t,q)
h (ỹq)

2q
.

We also define βt
0,h := µ̂t

h(y0) and β̃t
0,h = µ̂t

h(ỹ0). We now fix some arbitrary

q ∈ N and show how we compute the transition mass r̂th(yq, u) for t ∈ N and

u ∈ Y for a given policy h ∈ H. First, note that they are only ever non-zero

for u ∈ A(yq) = {yq, yq+1, ỹ0}. From (5.36) and the fact that yq ∈ A(u) if and

only if u ∈ {yq−1, yq}, we have

µ̂t+1
h (yq) =

∑
u∈W

r̂th(u, yq)

= r̂th(yq−1, yq) + r̂th(yq, yq)

= rt(yq−1, yq)µ̂
t
h(yq−1) + rt(yq, yq)µ̂

t
h(yq) . (5.44)

We now require the following Proposition, which we will use in deriving
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the update of our algorithm.

Proposition 28. Given some fixed value q ∈ N and any arbitrary t ∈ N such

that qt = q − 1, then for all s ∈ [2q],

µ̂t+s
h (yq) = (2q − (s− 1)α)βt+s

q,h , (5.45)

for all h ∈ H.

Proof. Given some arbitrary t ∈ N such that qt = q − 1, note that we have

two cases: either q(t+2q−1) ̸= q, or q(t+2q−1) = q. We consider these two cases

separately.

Case 1: (q(t+2q−1) ≠ q). In this case, we use a proof by induction, taking the

inductive hypothesis that (5.45) holds for all s ∈ [2q]. Note that this is true

for s = 1 since l(t+ 1, q) = t+ 1, which implies that βt+1
q,h = µ̂t+1

h (yq)/2
q. Now

suppose it holds for some s ∈ [2q − 1]. Note that since q(t+2q−1) ≠ q then qt+s /∈

{q − 1, q} which implies that rt+s(yq−1, yq) = 0 and rt+s(yq, yq) = 1 − ω(t+s),q.

Substituting this into (5.44) and substituting that into our inductive hypothesis

gives

µ̂t+s+1
h (yq) = rt+s(yq, yq)µ̂

t+s
h (yq)

= (1− ωt+s,q)µ̂
t+s
h (yq)

= (1− ωt+s,q)(2
q − (s− 1)α)βt+s

q,h

=

(
1− α

2q − αkt+s,q

)
(2q − (s− 1)α)βt+s

q,h

=

(
1− α

2q − (s− 1)α

)
(2q − (s− 1)α)βt+s

q,h

= (2q − sα)βt+s
q,h , .

Where we have used the fact that kt+s,q = (t+ s)− (t+ 1) = s− 1 for s ∈ [2q]

when qt = q − 1. Now by noting that l(t+ s+ 1, q) = t + 1 = l(t+ s, q) for

s ∈ [2q] then this implies that βt+s+1
q,h = βt+s

q,h , and we have therefore shown that

the inductive hypothesis holds for s+ 1, and hence holds for all s ∈ [2q]. This
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proves that (5.45) holds for case 1.

Case 2: (q(t+2q−1) = q). Firstly, in the case that q(t+2q−1) = q, the same

argument as Case 1 can be used to show that (5.45) holds for s ∈ [2q−1].

However, since q(t+2q−1) = q then this implies that r̂t+2q−1

h (yq−1, yq) = 0 and

r̂t+2q−1

h (yq, yq) = 0. From (5.44) this implies that

µ̂t+2q−1+1
h (yq) = 0 . (5.46)

Additionally note that for all s′ ∈ [2q−1 + 1, 2q − 1] we have qt+s′ ̸= q − 1 which

implies that r̂t+s′

h (yq−1, yq) = 0, and hence, using (5.46) and (5.44), a simple

inductive argument on s gives

µ̂t+s
h (yq) = 0 (5.47)

for all s ∈ [2q−1 + 1, 2q]. For all such s we have l(t+ s, q) = t + 2q−1 + 1, so

by (5.46) we have

βt+s
q,h =

µ̂t+2q−1+1
h (yq)

2q
= 0 ,

which using (5.47) gives µ̂t+s
h (yq) = 0 = (2q − (s− 1)α)βt+s

q,h as desired.

Using Proposition 28 and the definition of r̂t, we therefore have for all

t ∈ N with qt = q − 1, for all s ∈ [2q] that

r̂t+s
h (yq, ỹ0) = rt+s(yq, ỹ0)µ̂

t+s
h (yq)

= ωt,q(2
q − (s− 1)α)βt+s

q,h

=
α

2q − αkt+s,q

(2q − (s− 1)α)βt+s
q,h

=
α

2q − α(s− 1)
(2q − (s− 1)α)βt+s

q,h

= αβt+s
q,h ,

where we have again used the fact that kt+s,q = (t+ s)− (t+ 1) = s− 1. The

same argument for state ỹq also gives r̂t+s
h (ỹq, y0) = αβ̃t+s

q,h . We therefore have,
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for all t ∈ N that

r̂th(yq, ỹ0) = αβt
q,h , (5.48)

and

r̂th(ỹq, y0) = αβ̃t
q,h . (5.49)

Now note that since βt′+1
q,h = βt′

q,h for all t′ ∈ N with qt′ /∈ {q − 1, q}, this

implies that for all t ∈ N we have (yq, ỹ0) ∈ Ct(h) if and only if qt ∈ {q − 1, q}.

Similarly, we have (ỹq, y0) ∈ C̃t(h) if and only if qt ∈ {q − 1, q}. Recall that

our CGMC is defined such that falling asleep (or waking up) is only possible

by transitioning to ỹ0 (or y0, respectively). That is, for all t′, q′ ∈ N we have

r̂t
′

h (yq, ỹq′) = 0 and hence (yq, ỹq′) /∈ Ct(h), and similarly (ỹq, yq′) /∈ C̃t(h). We

conclude that

Ct(h) = {(y0, ỹ0), (yqt , ỹ0), (yqt+1, ỹ0)} , (5.50)

and

C̃t(h) = {(ỹ0, y0), (ỹqt , y0), (ỹqt+1, y0)} . (5.51)

We can now finally express the updates (5.41) and (5.42) in terms of the

quantities {βt
q,h, β̃

t
q,h | t ∈ N, q ∈ N∪{0}} using (5.48), (5.49), (5.50), and (5.51).

Thus for all t ∈ N we have

ξt+1
h = ξth +

∑
(u,u′)∈Ct(h)

(
r̂t+1
h (u, u′)− r̂th(u, u′)

)
= ξth +

∑
q∈{0,qt,qt+1}

α
(
βt+1
q,h − β

t
q,h

)
, (5.52)

and

ξ̃t+1
h = ξ̃th +

∑
(u,u′)∈C̃t(h)

(
r̂t+1
h (u, u′)− r̂th(u, u′)

)
= ξ̃th +

∑
q∈{0,qt,qt+1}

α
(
β̃t+1
q,h − β̃

t
q,h

)
, (5.53)

where duplicate elements in the set {0, qt, qt+1} are only counted once.
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5.6.2.1 Updating βt
q,h and β̃t

q,h

All that remains in our implementation is the update of the variables βt
q,h and

β̃t
q,h for all t ∈ N and q ∈ N ∪ {0}. We first fix some t, q ∈ N (we address the

case that q = 0 later). Recall that if qt /∈ {q − 1, q} we simply have βt+1
q,h = βt

q,h.

We therefore consider the cases where qt ∈ {q − 1, q}, noting that in both of

these cases we have l(t+ 1, q) = t+ 1.

Case 1: (qt = q). In the case that qt = q we have r̂th(yq−1, yq) = 0, and

r̂th(yq, yq) = 0, and thus straightforwardly we have

βt+1
q,h =

µ̂
l(t+1,q)
h (yq)

2q
=
µ̂t+1
h (yq)

2q
= 0 .

Case 2: (qt = q − 1). The case that qt = q − 1 is slightly more complicated.

First, note that

r̂th(yq−1, yq) = µ̂t
h(yq−1)rt(yq−1, yq)

= Jq = 1K(1− α)µ̂t
h(yq−1) + Jq > 1K(1− ωt,q−1)µ̂

t
h(yq−1) . (5.54)

This gives us two further cases to consider: when q = 1 and when q > 1. In the

case that q = 1 we have µ̂t
h(yq−1) = µ̂t

h(y0) = βt
0,h, and so by (5.54) we have

r̂th(yq−1, yq) = r̂th(y0, y1) = (1− α)βt
0,h . (5.55)

In the case that q > 1, note that since qt = q − 1 we have that t+ 1 is a

multiple of 2q−1 so t + 1 − 2q−2 is a multiple of 2q−2, but not 2q−1. In other

words we have t = s′ + 2q−2 for some s′ with qs′ = q − 2. Fix such an s′, from

Proposition 28 we have for all s ∈ [2q−1] that µ̂s′+s
h (yq−1) = (2q−1−(s−1)α)βs′+s

q−1,h

and thus by plugging in s = 2q−2 we have

µ̂t
h(yq−1) =

(
2q−1 − (2q−2 − 1)α

)
βt
q−1,h .
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Substituting this into (5.54), and noting that

kt,q−1 = t−max {s ∈ [t] | qs−1 = q − 2}

= t− (s′ + 1)

= 2q−2 − 1

then gives

r̂th(yq−1, yq) = (1− ωt,q−1)(2
q−1 − (2q−2 − 1)α)βt

q−1,h

=

(
1− α

2q−1 − αkt,q−1

)
(2q−1 − (2q−2 − 1)α)βt

q−1,h

=

(
1− α

2q−1 − (2q−2 − 1)α

)
(2q−1 − (2q−2 − 1)α)βt

q−1,h

=

(
2q−1 − α2q−2

2q−1 − (2q−2 − 1)α

)
(2q−1 − (2q−2 − 1)α)βt

q−1,h

= 2q−1
(
1− α

2

)
βt
q−1,h . (5.56)

Now that we have shown how to compute r̂th(yq−1, yq) in terms of βt
q−1,h,

we turn our attention to computing r̂th(yq, yq) in terms of βt
q,h. Recall that

since qt = q − 1, then t is equal to s+ 2q for some s < t such that qs = q − 1.

Additionally, we have kt,q = 2q − 1. From Proposition 28 we then have

µ̂t
h(yq) = (2q − (2q − 1)α)βt

q,h and therefore

r̂th(yq, yq) = rt(yq, yq)µ̂
t
h(yq)

= (1− ωt,q)µ̂
t
h(yq)

= (1− ωt,q)(2
q − (2q − 1)α)βt

q,h

=

(
1− α

2q − αkt,q

)
(2q − (2q − 1)α)βt

q,h

=

(
1− α

2q − (2q − 1)α

)
(2q − (2q − 1)α)βt

q,h

=

(
(1− α)2q

2q − (2q − 1)α

)
(2q − (2q − 1)α)βt

q,h

= 2q(1− α)βt
q,h . (5.57)
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Having expressed r̂th(yq−1, yq) and r̂th(yq, yq) in terms of βt
q−1,h and βt

q,h

respectively, we now combine (5.44), (5.56), and (5.57) to give

βt+1
q,h =

µ̂
l(t+1,q)
h (yq)

2q

=
µ̂t
h(yq)

2q

=
r̂th(yq−1, yq)

2q
+
r̂th(yq, yq)

2q

= Jq = 1K
(
1− α
2

)
βt
q−1,h + Jq > 1K

(
2− α
4

)
βt
q−1,h + (1− α)βt

q,h .

In summary, our update for βt+1
q,h and β̃t+1

q,h for q ∈ N∪{0} is as follows. For

q /∈ {0, qt, qt + 1} we have βt+1
q,h = βt

q,h and β̃t+1
q,h = β̃t

q,h. For q ∈ {0, qt, qt + 1}

we have the following. When q = qt + 1, we have on trial t

βt+1
qt+1,h =


(
2−α
4

)
βt
qt,h

+ (1− α)βt
qt+1,h , qt > 0(

1−α
2

)
βt
qt,h

+ (1− α)βt
qt+1,h , qt = 0 ,

and similarly for β̃t+1
qt+1,h we have

β̃t+1
qt+1,h =


(
2−α
4

)
β̃t
qt,h

+ (1− α)β̃t
qt+1,h , qt > 0(

1−α
2

)
β̃t
qt,h

+ (1− α)β̃t
qt+1,h , qt = 0 .

For q = qt we have βt+1
qt,h

= 0 and β̃t+1
qt,h

= 0 if qt > 0. All that remains is

the update for βt+1
q,h and β̃t+1

q,h when q = 0, which can either correspond to the

case that q = qt = 0, or when q ̸= qt > 0. For these two cases, observe that

y0 ∈ A(u) only for u = y0 and u ∈ {ỹq | q ∈ N ∪ {0}}. From (5.36) we then
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have

µ̂t+1
h (y0) = r̂th(y0, y0) +

1

πt+1
h

∑
q∈N∪{0}

r̂th(ỹq, y0)

= r̂th(y0, y0) +
1

πt+1
h

∑
(u,u′)∈W̃×W

r̂th(u, u
′)

= r̂th(y0, y0) +
ξ̃th
πt+1
h

= rt(y0, y0)µ̂
t
h(y0) +

ξ̃th
πt+1
h

= rt(y0, y0)β
t
0,h +

ξ̃th
πt+1
h

= Jqt > 0K(1− α)βt
0,h +

ξ̃th
πt+1
h

.

A similar argument can be used to show that

µ̂t+1
h (ỹ0) = Jqt > 0K(1− α)β̃t

0,h + ξthπ
t+1
h .

We therefore have for our update:

βt+1
0,h =


(1− α)βt

0,h +
ξ̃th

πt+1
h

, qt > 0

ξ̃th
πt+1
h

, qt = 0 ,

and similarly for β̃t+1
0,h we have

β̃t+1
0,h =

(1− α)β̃t
0,h + ξthπ

t+1
h , qt > 0

ξthπ
t+1
h , qt = 0 .

At last we can write the three routines, initialize, get, and update re-

quired by Algorithm 7 for our CGMC. These are given in routines 10, 11, and 12,

respectively. Algorithm 7 with these three routines gives the AdaptLTM al-

gorithm. Note that the first line of routine 12 is included in this routine for

convenience, rather than re-writing Algorithm 7. We can, of course, compute
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the tree height once per trial and cache this value. In Appendix D we give an

algorithm to compute the tree-height function online in O(1) time per trial.

With this algorithm for computing qt, note that routines 10, 11, and 12 each

require O(1) time per trial (per policy). The AdaptLTM algorithm therefore,

somewhat remarkably, has a per-trial time complexity of O(N), which matches

the time complexity of the algorithm of [2], and Algorithm 3 of Chapter 4,

for the problem of non-adaptive LTM in the experts setting. Together with

Algorithm 8 given in Appendix D to compute the tree height online, the space

complexity of AdaptLTM is O(N log t) on trial t.

In the next section, we present results from simulated experiments. When

performing our experiments we found AdaptLTM to suffer from numerical

instability, primarily from the quantity πt
h =

∏t−1
s=1 ψ

s
h quickly becoming very

small for some policies. In Appendix C we give an alternative implementation

that avoids having to compute this quantity, at the cost of a worse per-trial

time complexity of O(N log t) on trial t.

5.7 Experiments

In this section we present a comparison of AdaptLTM against several of the

adaptive online algorithms considered in this thesis adapted to the setting of

contextual bandits. These algorithms include the Fixed Share algorithm [30],

the circadian specialist algorithm with simple Markov prior [2] (which we now

refer to as “PBTS”), the projection analogue of Fixed Share, which we studied in

Chapter 4 (“Proj FS”) and the PoDS-θ algorithm of Chapter 4, which we showed

is the projection analogue of PBTS. These algorithms are all adapted in the

usual way to the contextual bandits setting. We also include the non-adaptive

Exp4 algorithm.

We present the results of simulated experiments on synthetic data, where

we simulate contextual bandits in the following manner. We set A = 16, and

on each trial one action is good while the others are bad. The loss of the good

action is drawn uniformly from [0, 0.025], giving an expected loss of 0.0125
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Routine 10 initialize(h)

1: π1
h←1

2: σ1
h←α

3: σ̃1
h←1− α

4: ξ1h←α2

5: ξ̃1h←
α(1−α)

2

6: for q ∈ N ∪ {0} do
7: β1

q,h := 0

8: β̃1
q,h := 0

9: end for
10: β1

0,h←α

11: β̃1
1,h← 1−α

2

Routine 11 get(t, h)

1: return (σt
h, σ̃

t
h)

Routine 12 update(t, h)

1: qt←tree-height(t)
2: πt+1

h ←ψt
hπ

t
h

3: σt+1
h ←ψt

hσ
t
h − πt+1

h ξth + ξ̃th
4: σ̃t+1

h ← σ̃t
h − ξ̃th + πt+1

h ξth
5: if qt = 0 then
6: βt+1

0,h ← ξ̃th/π
t+1
h

7: β̃t+1
0,h ←ξthπ

t+1
h

8: βt+1
1,h ←(1− α)βt

1,h +
(1−α)

2
βt
0,h

9: β̃t+1
1,h ←(1− α)β̃t

1,h +
(1−α)

2
β̃t
0,h

10: else
11: βt+1

0,h ←(1− α)βt
0,h + ξ̃th/π

t+1
h

12: β̃t+1
0,h ←(1− α)β̃t

0,h + ξthπ
t+1
h

13: βt+1
qt,h
←0

14: β̃t+1
qt,h
←0

15: βt+1
(qt+1),h←(1− α)βt

(qt+1),h +
(2−α)

4
βt
qt,h

16: β̃t+1
(qt+1),h←(1− α)β̃t

(qt+1),h +
(2−α)

4
β̃t
qt,h

17: end if
18: for q ∈ N \ {qt, qt + 1} do
19: βt+1

q,h := βt
q,h

20: β̃t+1
q,h := β̃t

q,h

21: end for
22: ξt+1

h ←ξth + α
∑

q∈{0,qt,qt+1}
(βt+1

q,h − βt
q,h)

23: ξ̃t+1
h ← ξ̃th + α

∑
q∈{0,qt,qt+1}

(β̃t+1
q,h − β̃t

q,h)
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per trial, while the loss of any other action is drawn uniformly from [0, 0.5],

giving an expected loss of 0.25 per trial. On each trial, we generate N = 1024

policies, with one policy being good, and the remaining bad. The distribution

of the good policy is parameterized by ϵ, and is concentrated with probability

mass 1 − ϵ on the current good action, and with mass ϵ
A−1

uniformly on all

other actions (we set ϵ = 0.1). The distributions of all other policies are drawn

uniformly from ∆A on each trial.

We select a global pool of size M = 24 good policies uniformly at random

and have T = 21600 trials. The sequence of trials is divided into E = 18 epochs,

with each epoch being divided into 12 segments. For ease of visualization all

epochs are of equal length, and all segments are of equal length. A good policy

is then assigned to a given segment in the following manner. For each epoch

i we uniformly sample M i = |P i| = 3 policies from P. Each segment of the

epoch is then assigned one of these policies uniformly at random. Thus in

epoch i we have Ki ≤ 12 and M i ≤ 3. See Figure 5.10 for an example of such

a trial sequence.

On each trial, the expert policies are revealed to the algorithms. After

announcing its decision, each algorithm receives only the corresponding loss

of the chosen action. For each algorithm, the learning rate η was tuned

by selecting the optimal value from a line search over a range of values, as

this gave universally better performance for all algorithms over using the

theoretically optimal learning rates. The values of η for each algorithm are

given in Appendix E. All other parameters were set to the optimal tuning

suggested by the regret bounds of the algorithms with respect to the sequence

designed in the experiments (see Table E.1 in Appendix E for these values, where

it should be noted that for each algorithm we adopt the respective notation

of the cited paper). Note that exact optimal values could not necessarily

be given when these parameters depended specifically on characteristics of

the sequence which were random variables due to the randomization of our

experiments. In this case we used an upper bound on these characteristics. For
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Figure 5.10: (Top) An example of an assignment of good policies (colors) across the
trial sequence in our experiments. (Bottom) The per-trial (cumula-
tive) regret of each algorithm with respect to the optimal sequence in
hindsight over 21600 trials is shown. Error bands represent one stan-
dard deviation after 500 iterations. Light gray dashed lines represent
segment borders. Dark gray dashed lines represent epoch borders. We
observe adaptation on both the segment-level, as well as the epoch
level.

example, if a parameter depended on the number of switches in the sequence,

we used an upper bound on the maximum possible number of switches observed

(in this case we have up to 12 segments per epoch, for 18 epochs, giving

K := (
∑

i∈[E]K
i)− 1 = 215 switches). For AdaptLTM we set α = 1

4
.

We also considered alternative tunings based on their empirical performance

for the two circadian specialist algorithms (PBTS and AdaptLTM). For PBTS,

we tried several tunings. We first tried both the original tuning suggested in [2],

as well as the tuning suggested in our analysis in Chapter 4 (Theorem 15 and

Proposition 24), keeping the tuning that performed better (in this case, the

original tuning performed marginally better). We also considered setting “M ”

to 3, that is, the pool size in a single epoch, rather than M = 24, the global

pool size. This tuning is denoted PBTS* in our experiments and is included

as it showed significant improvement. For AdaptLTM, we also tried several
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Table 5.1: Summary statistics of the total loss of each algorithm from our experi-
ments, as well as the optimal sequence in hindsight. Mean total losses ±
one standard deviation over 500 iterations are given.

Algorithm Mean Total Loss (±σ)

EXP4 4624.64± 92.44
Fixed Share 1446.79± 16.58
PBTS 1311.4± 14.86
PBTS* 1263.56± 16.07
Proj FS 1215.72± 17.13
AdaptLTM 1179.12± 16.66
PoDS-θ 1100.47± 14.63
AdaptLTM* 1066.80± 15.73
Optimal Sequence 783.29± 12.18

tunings of α other than 1/4, and include an example using α = 0.01 as it also

showed significant improvement. This tuning is denoted AdaptLTM*.

The average (cumulative) per-trial regret of the algorithms with respect

to the optimal sequence in hindsight is shown in Figure 5.10. There are several

interesting observations to be made. We first discuss the non-projection-based

algorithms. Unsurprisingly, EXP4 performs the worst as it quickly overfits

to the first well-performing policies in our sequence and cannot adapt to the

changing sequence. Fixed Share is the worst-performing adaptive algorithm as

it fails to exploit the reappearance of policies over time. The PBTS algorithm

exploits reappearances over time, improving over Fixed Share, but does not

adapt quickly across epochs. A significant improvement is observed with the

alternate tuning (PBTS*). Conversely, AdaptLTM performs well across

epochs compared to PBTS/PBTS*. On a local segment level we observe

the adaptive behavior of the algorithms in the average per-trial regret as the

algorithms learn the best policies. Similarly, on the global (epoch) level we

see “shocks” to the average per-trial regret, exhibiting the adaptive behavior of

the algorithms at the boundaries between epochs. This is most pronounced in

PBTS, PoDS-θ, and AdaptLTM*, as they are forced to adapt to the change

from pool P i to P i+1. We see AdaptLTM* “recovering” quickly at these

points, as these shocks are small.
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Perhaps the most surprising observation is the strength of the performance

of the projection-based algorithms, Proj FS and PoDS-θ. We observe that even

PBTS* fails to improve over Proj FS, and AdaptLTM* only outperforms

PoDS-θ with α = 0.01, not the suggested α = 1/4. We believe this is due to

the nature of the projection-based updates (as discussed in Chapter 4) being

much more conservative than the weight-sharing-styled updates of PBTS and

AdaptLTM. Indeed, in Figure 5.10 we see that by the end of the first segment

of the first epoch, both Proj FS and PoDS-θ are performing significantly better

than the other algorithms. This can be explained by the algorithms’ “adaptive

updates” (projections) only ever changing weights when these weights are

very small, unlike their weight-sharing counterparts (recall Theorem 20 from

Chapter 4 where a guarantee is given due to such behavior). Thus in practice,

if these updates change weights only rarely, then during the first segment the

algorithms can learn the first policy much more quickly and “get ahead” of the

other algorithms. During the first epoch, we see PoDS-θ and Proj FS “diverge”

as PoDS-θ starts to outperform Proj FS by exploiting the reappearance of

policies in the sequence. It is also during the first epoch that AdaptLTM*’s

per-trial regret approaches that of PoDS-θ, and eventually we see AdaptLTM*

outperforming PoDS-θ during the second and third epoch.

Overall this is very surprising to observe and raises the natural question: Is

there a projection equivalent of AdaptLTM, just as PoDS-θ is the projection-

equivalent of PBTS? As we have seen in Chapter 4, this question may be

answered in the affirmative if there exists an MPP [1] mixing scheme which

corresponds to the prior over circadian specialists introduced by our CGMC.

We conjecture that such an MPP mixing scheme does exist, but deriving it

seems particularly challenging, and we leave it as an interesting open problem.



Chapter 6

Conclusion

This thesis has studied the problem of adaptive online learning in several

settings. In Chapter 3 we studied the problem of learning a sequence of binary

graph labelings. Our primary result was an algorithm for predicting switching

graph labelings with a per-trial prediction time of O(log n) and a mistake

bound that smoothly tracks changes to the graph labeling over time. From

a technical perspective, the most intriguing open problem is to eliminate the

log log T term from our bounds. The natural approach to this would be to

replace the conservative fixed-share update with a variable-share update [30];

in our efforts, however, we found many technical problems with this approach.

On both the more practical and speculative side, we observe that the specialists

sets Bn, and Fn were chosen to “prove bounds”. In practice we can use any

hierarchical graph clustering algorithm to produce a complete specialist set and

furthermore, multiple such clusterings may be pooled. Such a pooled set of

subgraph “motifs” could be then be used for example in a multi-task setting

(see for example, [2]).

In Chapter 4 we considered the problem of switching within a small pool

in the setting of prediction with expert advice. We gave an efficient projection-

based algorithm for this problem, for which we proved the best known regret

bound. We also gave an algorithm to compute relative entropy projection onto

the simplex with non-uniform (lower) box constraints exactly in O(n) time,

which may be of independent interest. We showed that the weight-sharing
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equivalent of our projection-based algorithm is in fact a geometrically-decaying

mixing scheme for Mixing Past Posteriors [1]. Furthermore, we showed that this

mixing scheme corresponds exactly to the specialists algorithm with Markov

prior [2] for this problem. We also proved a guarantee favoring projection

updates over weight-sharing when updating weights may incur costs, such as

in online portfolio selection with proportional transaction costs. Note that the

work of [2] gave a Bayesian interpretation to MPP, however this is lost when

one uses the projection update of PoDS. A natural question is whether there is

also a Bayesian interpretation to these projection-based updates. We leave this

as an interesting open problem.

Finally in Chapter 5 we introduced a refined model of switching with

memory in which the trial sequence is divided into epochs, and the small pool

changes between epochs. We presented results in both the full-information

and partial-information settings, focusing on contextual bandits. We developed

the algorithm AdaptLTM for this problem and proved a regret bound which

essentially pays on a per-epoch basis rather than an average over all epochs.

Our algorithm is computationally very efficient, having a time complexity of

only O(N) per trial, which matches the speed of the existing algorithms for

the much simpler problem of (non-adaptive) long-term memory. A current

limitation of our approach in the contextual bandits setting is that the policies

must be known in advance. An interesting future research direction would

be to learn the policies online. Another future research direction is to extend

the results in Chapter 4, in which we showed that the circadian specialists

algorithm with simple Markov prior of [2] corresponded to MPP of [1] with

a geometrically-decaying mixing scheme. Here we ask: what does the mixing

scheme look like for AdaptLTM? This is a difficult question that we leave as

an open problem. We note that solving this may also allow us to develop the

projection-analogue of AdaptLTM, further extending the work of Chapter 4

and the PoDS methodology.
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Proof of Theorem 14

We prove Theorem 14 by first proving a bound for the Kernel-Perceptron in an

arbitrary Hilbert space before applying it to the Hilbert space described in the

theorem. Given a semi-Hilbert space, H, the kernel, M , which describes this

space induces the semi-norm ∥w∥2M = ⟨w,w⟩M = w⊤M+w. We define the

coordinate spanning set VM = {vi := Mei : i = 1, . . . , n}, where ei are the

canonical basis vectors. For w ∈ span(VM ) we have

wi = e⊤
i MM+w = v⊤

i M
+w = ⟨vi,w⟩M , (A.1)

which is simply the reproducing kernel property for kernel M .

Recall that for the projection step of the algorithm we let the convex region

Γ be the ball centered at the origin of radius γ as measured by the metric of

the given Hilbert space.

We now present the following three lemmas, omitting the subscript ∥ · ∥M
when confusion does not arise. We assume there exists a sequence of target

vectors µ1, . . .µT such that yt⟨µt,xt⟩M ≥ 1, ∀t ∈ [T ].

Lemma 29. On all trials t = 1, . . . , T ,

∥µt −wt∥2 − ∥µt − ẇt∥2 ≥ Jŷt ̸=ytK
max

t
∥xt∥2

. (A.2)

Proof. The case where ŷt = yt is trivial, since no update is performed in this
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case. For the case where ŷt ̸=yt, we include a learning rate parameter, ηt, to

the Perceptron update rule such that ẇt = wt + ηty
txt. We then have that

∥µt −wt∥2 − ∥µt − ẇt∥2 = ∥µt −wt∥2 − ∥µt −wt − ηtytxt∥2

= 2ηty
t⟨µt −wt,xt⟩ − η2t (yt)2∥xt∥2 .

Since we assume that yt⟨µt,xt⟩ ≥ 1 for all t, and it is clear that yt⟨wt,xt⟩ ≤ 0

when the algorithm makes a mistake, the first term can be lower bounded by

2ηt, and since (yt)2 = 1 we have that

∥µt −wt∥2 − ∥µt − ẇt∥2 ≥ 2ηt − η2t ∥xt∥2 .

Setting ηt = 1
∥xt∥2 which maximizes the right-hand side completes the proof.

Lemma 30. On all trials t = 1, . . . , T − 1,

∥µt − ẇt∥2 − ∥µt −wt+1∥2 ≥ 0 . (A.3)

Proof. This is an instance of the generalized Pythagorean Theorem for pro-

jection onto a convex set, since wt+1 is the projection of ẇt onto the set Γ.

The proof is well known and we do not include it here (see e.g. [37, Theorem

2]).

Lemma 31. On all trials t = 1, .., T − 1,

∥µt −wt+1∥2 − ∥µt+1 −wt+1∥2 ≥ ∥µt∥2 − ∥µt+1∥2 − 2γ∥µt − µt+1∥ . (A.4)

Proof. The case where µt = µt+1 is trivial. For the case where µt ≠ µt+1, we

have from the Cauchy-Schwarz inequality

∥µt −wt+1∥2 − ∥µt+1 −wt+1∥2 = ∥µt∥2 − ∥µt+1∥2 − 2⟨µt − µt+1,wt+1⟩

≥ ∥µt∥2 − ∥µt+1∥2 − 2∥µt − µt+1∥∥wt+1∥ .
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Finally the projection step of our algorithm necessarily upper-bounds ∥wt+1∥

by γ, which completes the proof.

Theorem 32. For a Hilbert space H with norm induced by the kernel M , let

x1, . . . ,xT ∈ H be a data sequence with max
t∈[T ]
∥xt∥2M =: RM . Assume that there

exists a sequence of vectors u1, . . . ,uT ∈ H such that yt⟨ut,xt⟩M ≥ 1, for all

t ∈ [T ], then the total number of mistakes for the switching Perceptron over T

trials with |K| − 1 switches is upper-bounded by

MP ≤ RM

∥uk|K|∥2M + 2γ

|K|−1∑
i=1

∥uki − uki+1∥M

 , (A.5)

with K defined as in Theorem 4.

Proof. Summing equations (A.2), (A.3), and (A.4) for a given trial t leaves

∥µt −wt∥2 − ∥µt+1 −wt+1∥2 ≥ Jŷt ̸=ytK
RM

+ ∥µt∥2 − ∥µt+1∥2 − 2γ∥µt −µt+1∥ .

(A.6)

By summing over trials t = 1, . . . , T , the telescopic sums on both sides leave

only

∥µ1−w1∥2−∥µT+1−wT+1∥2 ≥ MP

RM

+∥µ1∥2−∥µT+1∥2−2γ
|K|−1∑
i=1

∥µki−µki+1∥ ,

(A.7)

where MP =
∑T

t=1Jŷ
t ̸=ytK. Taking w1 = 0, and then re-arranging and

dropping the negative squared terms then completes the proof.

We now prove Theorem 14.

Proof. The proof follows straightforwardly from Theorem 32 with kernel K =

L+
G + RL11

⊤, using the fact that RK = 2RL ≤ 2RG, and for µ ∈ {−1, 1}n,

∥µ∥2K ≤ 4ΦG(µ) +
1
RL

. This gives

γ = max
k∈K
∥µk∥K ≤

√
4Φ̂ +

1

RL

, (A.8)
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and

∥µki − µki+1∥2K = ∥µki∥2K + ∥µki+1∥2K − 2⟨µki ,µki+1⟩K

≤ ∥µki∥2K + ∥µki+1∥2K + 2|⟨µki ,µki+1⟩K |

≤ ∥µki∥2K + ∥µki+1∥2K + 2∥µki∥K∥µki+1∥K

= 4Φki + 4Φki+1 +
2

RL

+ 2

√
4Φki +

1

RL

√
4Φki+1 +

1

RL

≤ 4Φki + 4Φki+1 +
2

RL

+ 2

(
4max {Φki ,Φki+1}+ 1

RL

)
≤ 16max {Φki ,Φki+1}+ 4

RL

,

where the second inequality uses the Cauchy-Schwarz Inequality. Thus

∥µki − µki+1∥K ≤ 2

√
4max {Φki ,Φki+1}+ 1

RL

. (A.9)

Substituting these terms into (A.5) gives the following bound

MP ≤ 8RLΦ
k|K| + 8

√
4RLΦ̂ + 1

|K|−1∑
i=1

√
4RLmax {Φki ,Φki+1}+ 1 .

Using the fact that RL ≤ RG, as well as Φk|K| ≤
√

Φk|K|Φ̂, and∑|K|−1
i=1

√
max {Φki ,Φki+1} ≤

∑|K|
i=1

√
2Φki then gives

MP ≤ O

RG

|K|∑
i=1

√
Φ̂Φki

 ,

as required.
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Proof of Theorem 26

Proof. We introduce several quantities which allow us to describe the following

characterisation of a circadian pattern γ ∈ {0, 1}T . For convenience, given γ

we extend this vector by defining γ0 = γT+1 = 0. We then define

κ(γ) :=
T∑
t=1

Jγt = 1 ∧ γt−1 = 0K , (B.1)

which is the number of segments of “all ones” in γ. We define ν̃0(γ) := 0, and

for all j ∈ [κ(γ)] we recursively define:

νj(γ) := min {t ∈ [T ] | t > ν̃j−1(γ) ∧ γt = 1} , (B.2)

which is simply the trial on which the jth “all ones” segment starts, and similarly

ν̃j(γ) := min {t ∈ [T + 1] | t > νj(γ) ∧ γt = 0} ,

which is the trial on which the “all zeros” segment following the jth all-ones

segment starts. We will also require the length of each segment. For j ∈ [κ(γ)],

let

φj(γ) := ν̃j(γ)− νj(γ)

denote the lengths of the “all-ones” segments, and let

φ̃j(γ) := νj(γ)− ν̃j−1(γ)
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denote the lengths of the “all-zeros” segments. We finally define φ̃κ(γ)+1(γ) :=

T + 2− ν̃κ(γ)(γ) which is the length of the last segment of “all zeros”.

The proof requires us to bound − ln (f(ch)) for h ∈ P. We thus bound

the value of − ln f(γ) for any arbitrary γ ∈ {0, 1}T , where f(γ) is defined

in (5.25).

Given some γ ∈ {0, 1}T , we define the sequence q̂ := (q̂0, q̂1, . . . , q̂T+1)

recursively as follows. Let q̂0 := 0, then for all t ∈ [T ] ∪ {0} we define q̂t+1 as

follows:

q̂t+1 :=


0 γt+1 ̸= γt

q̂t γt+1 = γt and qt ̸= q̂t

q̂t + 1 γt+1 = γt and qt = q̂t .

Observe that since a change (γt+1 ̸= γt) corresponds to a particle in our CGMC

transitioning to y0 or ỹ0 (i.e., waking up or falling asleep), and when qt = q we

have rt(yq, yq) = 0 and rt(yq, yq+1) ̸= 0, then the sequence q̂ simply keeps track

of the “depth” of a particle as it traverses our CGMC as defined in Section 5.6.1.

Given γ and its corresponding sequence q̂, we now define the sequence

u = (u0, u1, . . . , uT ) ∈ YT+1, where

ut :=

ỹq̂t γt = 0 ,

yq̂t γt = 1 .

That is, u is the sequence of states the particle is in during its trajectory.

Clearly ut ∈ W if and only if γt = 1 and therefore (ignoring the components u0

and uT+1) we have u ∈ Γ(γ). By (5.23) and (5.25) we then have

f(γ) =
∑

z∈Γ(γ)

ŵ(z) ≥ ŵ(u) = ι(u1)
T−1∏
t=1

rt(ut, ut+1) . (B.3)

Now for simplicity we extend our transition function by defining

r0(ỹ0, y0) := α



167

and

r0(ỹ0, ỹ1) := Jq0 = 0K(1− α) .

Now since q0 = 0 by definition then we have r0(ỹ0, ỹ1) = 1− α, and therefore

ι(u1) = r0(u0, u1)) which when substituted into (B.3) gives

f(γ) ≥
T−1∏
t=0

rt(ut, ut+1) .

We will now split this product up into several terms, firstly for j ∈ [κ(γ)]

we define

fj :=

ν̃j(γ)−1∏
t=νj(γ)

rt(ut, ut+1)

for the “all-ones” segments. Similarly we define

f̃j :=

νj(γ)−1∏
t=ν̃j−1(γ)

rt(ut, ut+1)

for the “all-zeros” segments. We finally define

f̃κ(γ)+1 :=
T−1∏

t=ν̃κ(γ)(γ)

rt(ut, ut+1) .

Substituting these terms into (B.3) and taking logarithms gives

− ln f(γ) ≤ −
∑

j∈[κ(γ)]

ln (fj)−
∑

j∈[κ(γ)+1]

ln (f̃j) . (B.4)

We now bound − ln (fj) for some fixed j ∈ [κ(γ)]. First, let q∗ := q̂ν̃j(γ)−1

be the maximum depth reached in the CGMC during that segment. Then for

all q ∈ [q∗] ∪ {0} define

mq := min {s ∈ [νj(γ), ν̃j(γ)− 1] | q̂s = q} ,

be the first trial of the segment that our particle reached state yq. Since for all
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s ∈ [νj(γ), ν̃j(γ)− 1] we have γs = 1, then q̂νj(γ)+s−1 is monotonic increasing

over s ∈ [φj(γ)]. This implies that the sequence (m0,m1, . . . ,mq∗) is monotonic

increasing.

Note that we have

fj =

ν̃j(γ)−1∏
t=νj(γ)

rt(ut, ut+1) =

q∗−1∏
q=0

mq+1−1∏
s=mq

rs(us, us+1)

 ν̃j(γ)−1∏
t=mq∗

rt(ut, ut+1) ,

and thus we now bound each of these products individually. We start with∏m1−1
s=m0

rs(us, us+1).

Note that since qt = 0 whenever t is even, we have m1 −m0 ≤ 2. We then

have two cases.

Case 1: (m1 = m0 +1) This case implies that qm0 = 0 and so rm0(um0 , um1) =

rm0(y0, y1) = 1− α.

Case 2: (m1 = m0 + 2) If m1 = m0 + 2, then qm0 ̸= 0, so rm0(y0, y0) = 1− α

and qm0+1 = 0 so rm0+1(y0, y1) = 1− α.

In either case we have

m1−1∏
s=m0

rs(us, us+1) ≥ (1− α)2 . (B.5)

We now bound the term
∏mq+1−1

s=mq
rs(us, us+1) for q ∈ [q∗ − 1]. Observe

that we have two cases, either mq+1 = mq + 2q−1 or mq+1 = mq + 2q + 2q−1.

Case 1: (mq+1 = mq+2q−1) For this case we will take the inductive hypothesis

that for all s ∈ [2q−1] ∪ {0} we have

mq+s−1∏
t=mq

rt(ut, ut+1) = 1− αs

2q
.

First, note that this holds for s = 0, since the product over all elements of the

empty set is equal to unity. Now suppose it holds for some s ∈ [2q−1 − 1]∪ {0}.
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Note that we have

k(mq+s),q := mq + s−max {t ∈ [mq + s] | qt−1 = q − 1}

= mq + s−mq

= s , (B.6)

and by the inductive hypothesis we have

mq+s∏
t=mq

rt(ut, ut+1) = rmq+s(umq+s, umq+s+1)
(
1− αs

2q

)
. (B.7)

For all such s we have q̂mq+s = q (and thus umq+s = yq). Indeed, observe that

when s < 2q−1 − 1 we have q̂mq+s = q and q̂mq+s+1 = q, and when s = 2q−1 − 1

we have qmq+s = q and q̂mq+s+1 = q + 1 (and thus umq+s+1 = yq+1). In either

case we have, by (B.6) that

rmq+s(umq+s, umq+s+1) = 1− ω(mq+s),q

= 1− α

2q − αk(mq+s),q

= 1− α

2q − αs
.

Substituting this into (B.7) gives

mq+(s+1)−1∏
t=mq

rt(ut, ut+1) =

(
1− α

2q − αs

)(
1− αs

2q

)
=

(
2q − α(s+ 1)

2q − αs

)(
2q − αs

2q

)
= 1− α(s+ 1)

2q
,
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so the inductive hypothesis holds for s+1 and hence holds for all s ∈ [2q−1]∪{0}.

Specifically it holds for s = 2q−1 which gives

mq+1−1∏
t=mq

rt(ut, ut+1) =

mq+2q−1−1∏
t=mq

rt(ut, ut+1)

= 1− α2q−1

2q

= 1− α

2
.

Case 2: (mq+1 = mq + 2q + 2q−1) Using the same argument as in Case 1, it

can be shown that for this case we have

mq+2q−1∏
t=mq

rt(ut, ut+1) = 1− α2q

2q
= 1− α ,

and
mq+2q+2q−1−1∏

t=mq+2q

rt(ut, ut+1) = 1− α2q−1

2q
= 1− α

2
,

so

mq+1−1∏
t=mq

rt(ut, ut+1) =

mq+2q−1∏
t=mq

rt(ut, ut+1)

mq+2q+2q−1−1∏
t=mq+2q

rt(ut, ut+1)


= (1− α)

(
1− α

2

)
.

In either case we have

mq+1−1∏
t=mq

rt(ut, ut+1) ≥ (1− α)
(
1− α

2

)
. (B.8)

The same argument can be used to show that

ν̃j(γ)−2∏
t=mq∗

rt(ut, ut+1) ≥ (1− α)
(
1− α

2

)
. (B.9)
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Now, since u(ν̃j(γ)−1) = yq∗ and uν̃j(γ) = ỹ0 we have

r(ν̃j(γ)−1)(u(ν̃j(γ)−1), uν̃j(γ)) = r(ν̃j(γ)−1)(yq∗ , ỹ0)

= ω(ν̃j(γ)−1),q∗

=
α

2q∗ − αk(ν̃j(γ)−1),q∗

≥ α

2q∗
. (B.10)

Combining (B.5), (B.8), and (B.9), and (B.10) then gives

fj =

ν̃j(γ)−1∏
t=νj(γ)

rt(ut, ut+1)

= r(ν̃j(γ)−1)(u(ν̃j(γ)−1), uν̃j(γ))

ν̃j(γ)−2∏
t=νj(γ)

rt(ut, ut+1)

= r(ν̃j(γ)−1)(u(ν̃j(γ)−1), uν̃j(γ))

q∗−1∏
q=0

mq+1−1∏
s=mq

rs(us, us+1)

 ν̃j(γ)−2∏
t=mq∗

rt(ut, ut+1)

≥ α

2q∗
(1− α)2

(
(1− α)

(
1− α

2

))q∗
,

and therefore

ln (fj) ≥ ln (α) + 2 ln (1− α) + q∗
(
ln (1− α) + ln

(
1− α

2

)
− ln (2)

)
. (B.11)

Since (ln (1− α) + ln (1− α/2)− ln (2)) is negative for α ∈ [0, 1], in order

to lower bound ln (fj) we now upper bound q∗ in terms of φj(γ), the length of

the segment. Assume without loss of generality that q∗ > 0. Recall that for all

q ∈ [q∗ − 1] we have qmq−1 = q − 1 and qmq+1−1 = q, and hence

mq+1 −mq ∈ {2q−1, 2q + 2q−1} .

Similarly we have

m1 − νj(γ) = m1 −m0 ∈ {1, 2} ,
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and

ν̃j(γ)−mq∗ ∈ [1, 2q
∗
+ 2q

∗−1] .

We therefore have

φj(γ) = ν̃j(γ)− νj(γ) ≥ 1 +
∑

q∈[q∗−1]

2q−1 + 1 = 2 + (2q
∗ − 1) > 2q

∗
,

so

q∗ ≤ log2 (φj(γ)) =
ln (φj(γ))

ln (2)
,

which, when substituted into (B.11) gives

ln (fj) ≥ ln (α) + 2 ln (1− α) +
ln (1− α) + ln

(
1− α

2

)
− ln (2)

ln (2)
ln (φj(γ)) .

When α = 1/4 we have

− ln (α)− 2 ln (1− α) < 2 ,

and

−
ln (1− α) + ln

(
1− α

2

)
− ln (2)

ln (2)
< 2 ,

so

− ln (fj) ≤ 2 ln (eφj(γ)) . (B.12)

The same argument can be used to show that similarly

− ln (f̃j) ≤ 2 ln (eφ̃j(γ)) . (B.13)

and

− ln (f̃κ(γ)+1) ≤ 2 ln (eφ̃κ(γ)+1(γ)) . (B.14)

We now substitute (B.12), (B.13), and (B.14) into (B.4) gives

− ln (f(γ)) ≤
∑

j∈[κ(γ)]

2 ln (eφj(γ)) +
∑

j∈[κ(γ)+1]

2 ln (eφ̃j(γ)) . (B.15)
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We now turn our attention to bounding C̄ from (5.19) using (B.15). We

first introduce the following definitions. Let the set of trials on which a switch

occurs be denoted as

Z := {t ∈ [2, T ] | ht−1 ̸= ht} ∪ {1} .

For each switching point t ∈ Z we define

gt := min {s ∈ [T ] | s > t ∧ hs ̸= ht} − t ,

which is the length of that segment. Here we define the minimiser of the empty

set to be equal to T + 1. We similarly define

g̃t := t−max {s ∈ [T ] | s < t ∧ hs−1 = ht} ,

that is, the number of trials since the last time ht was the relevant policy. Here

we define the maximiser of the empty set to be equal to zero. Finally for all

h ∈ P we define

ĝ(h) := T + 1−max {s ∈ [T ] | hs = h} ,

that is, the number of trials which occur after the last time policy h is observed

in the sequence h.

Recall the definition of ch given in (5.8): that for given policy sequence

h ∈ HT , for all t ∈ [T ] we have cht := Jht = hK. For convenience we define

ch0 := 0 such that for all t ∈ [T ] we have Jcht = 1 ∧ cht−1 = 0K = Jt ∈ Z ∧ ht = hK.

Note that from (B.1) this means that

κ(ch) =
T∑
t=1

Jcht = 1 ∧ cht−1 = 0K =
∑
t∈Z

Jht = hK ,
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and from (B.2) that

{t ∈ Z | ht = h} = {νj(ch) | j ∈ [κ(ch)]} . (B.16)

Note that for all j ∈ [κ(ch)] we have, by definition of ν̃j−1(c
h) and (5.8) that

ν̃j−1(c
h) = max {t ∈ [T ] | t < νj(c

h) ∧ cht−1 = 1}

= max {t ∈ [T ] | t < νj(c
h) ∧ ht−1 = h} ,

and that, by definition of ν̃j(ch) and (5.8) that

ν̃j(c
h) = min {t ∈ [T + 1] | t > νj(c

h) ∧ cht = 0}

= min {t ∈ [T + 1] | t > νj(c
h) ∧ ht ̸= h} .

These two equations give for all j ∈ [κ(ch)],

φ̃j(c
h) = νj(c

h)− ν̃j−1(c
h) = g̃νj(c

h) , (B.17)

and

φj(c
h) = ν̃j(c

h)− νj(ch) = gνj(c
h) , (B.18)

and finally

φ̃κ(ch)+1(c
h) = T + 2− ν̃κ(ch)(ch)

= T + 1−max {s ∈ [T ] | hs = h}

= ĝ(h) . (B.19)

Substituting (B.17), (B.18), and (B.19) into (B.15) gives

− ln (f(ch)) ≤
∑

j∈[κ(ch)]

2 ln (egνj(c
h)) +

∑
j∈[κ(ch)]

2 ln (eg̃νj(c
h)) + 2 ln (eĝ(h)) ,
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and it then follows from (B.16) that

∑
h∈P

− ln (f(ch)) ≤ 2
∑
t∈Z

(
ln (egt) + ln (eg̃t)

)
+ 2

∑
h∈P

ln (eĝ(h)) . (B.20)

We now bound C̄ using (B.20) in terms of our adaptive LTM model. Recall

that the model is defined by a partitioning of the trial sequence into E epochs

E := (e1, . . . , eE) ⊆ [T ] where 1 = e1 < e2 < . . . < eE ≤ T and conventionally

we have eE+1 := T + 1.

For all i ∈ [E] the ith epoch corresponds to the segment of trials Qi :=

[ei, ei+1 − 1], noting that the set {Qi | i ∈ [E]} partitions [T ]. For all i ∈ [E]

recall that T i := ei+1 − ei, P i := {h ∈ P | ∃t ∈ Qi : ht = h}, and M i := |P i|.

We also define the set of switching points for epoch i as

Z i := {t ∈ Qi | ht−1 ̸= ht} ∪ {ei} ,

such that Ki = |Z i|.

For convenience we also define P0 := P and PE+1 := P, and for all

i ∈ [E + 1] we define Ψi := P i \ P i−1, and

Φ :=
∑

i∈[E−1]

|P i △ P i+1| =
∑

i∈[E−1]

(
|P i+1 \ P i|+ |P i \ P i+1|

)
.

For i ∈ [E + 1] we now define three quantities, dti, d̃ti, and d̂i(h). These

quantities are analogous to the quantities gt, g̃t, and ĝ(h), but are defined with

respect to a given epoch, rather than the global trial sequence. Specifically,

given i ∈ [E] and t ∈ Z i we define

dti := min {s ∈ Qi | s > t ∧ hs ̸= ht} − t

to be the length of the policy’s segment in the epoch. Note that here we define
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the minimiser of the empty set is defined to be equal to ei+1. We define

d̃ti := t−max {s ∈ Qi | s < t ∧ hs−1 = ht} ,

to be the number of trials since the last time ht was the relevant policy in that

epoch, where the maximiser of the empty set is defined to be equal to ei − 1.

Finally, for all h ∈ P i we define

d̂i(h) := ei+1 −max {s ∈ Qi | hs−1 = h} ,

to be the number of trials remaining in epoch i after the last switch from policy

h. Additionally, for all i ∈ [E + 1] and h ∈ P i we define

a(h, i) := max {i′ ∈ [i− 1] ∪ {0} | h ∈ P i′} ,

to be the index of the most recent epoch before ei in which h was relevant. We

then define b(h, i) := ei − e(a(h,i)+1).

For now let us assume, without loss of generality, that an epoch starts

on a switch. That is, for all i ∈ [E] we have ei ∈ Z. Let us fix some h ∈ H

and i ∈ [E] with h ∈ P i. Let t′ := min {s ∈ Z i | hs = h} denote the first

trial that the policy h occurs in epoch i. We have two possible cases: either

h /∈ Ψi (meaning h ∈ P i−1, the pool of our previous epoch) or h ∈ Ψi (meaning

h /∈ P i−1 and h has therefore entered our pool in this epoch).

Case 1: (h /∈ Ψi) This implies that h ∈ P i−1. In this case we have

d̃t
′

i + d̂a(h,i)(h) = d̃t
′

i + d̂(i−1)(h) ≥ g̃t
′
,

and since both terms on the left-hand side are greater than or equal to one, we

therefore have

ln (eg̃t
′
) ≤ ln (ed̃t

′

i ) + ln (ed̂a(h,i)(h)) . (B.21)
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Case 2: (h ∈ Ψi) This implies that h /∈ P i−1. In this case we have

d̃t
′

i + b(h, i) + d̂a(h,i)(h) ≥ g̃t
′
,

and since both terms on the left-hand side are greater than or equal to one, we

therefore have

ln (eg̃t
′
) ≤ ln (ed̃t

′

i ) + ln (eb(h, i)) + ln (ed̂a(h,i)(h)) . (B.22)

For all t ∈ Z i \ {t′} such that ht = h we have d̃ti = g̃t, and thus at these

switching points we have

ln (eg̃t) = ln (ed̃ti). (B.23)

Now let

ñi(h) :=
∑

t∈Zi:ht=h

ln (ed̃ti) .

From (B.21), (B.22), and (B.23) we then have

∑
t∈Zi:ht=h

ln (eg̃t) = ñi(h) + ln (ed̂a(h,i)(h)) + Jh ∈ ΨiK ln (eb(h, i)) . (B.24)

Note that if h /∈ ΨE+1, then (since this implies h ∈ PE) we have ĝ(h) = d̂E(h),

and if h ∈ ΨE+1 then ĝ(h) = b(h,E + 1) + d̂a(h,E+1)(h). Thus in either case we

have

ln (eĝ(h)) = ln (ed̂a(h,E+1)(h)) + Jh ∈ ΨE+1K ln (eb(h, (E + 1))) . (B.25)

Now let

n̂(h) :=
∑

i∈[E+1]:h∈Pi

Jh ∈ ΨiK ln (eb(h, i))

Summing (B.24) over all i ∈ [E] with h ∈ P i and adding (B.25) gives

ln (eĝ(h)) +
∑

t∈Z:ht=h

ln (eg̃t) =
∑

i∈[E]:h∈Pi

(
ñi(h) + ln (ed̂i(h))

)
+ n̂(h) . (B.26)
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Finally let

ni(h) :=
∑

t∈Zi:ht=h

ln (egt) .

Since the start of each epoch coincides with a switch we have, for all i ∈ [E]

and t ∈ Z i with ht = h that dti = gt, thus ln (egt) = ln (edti), and

∑
t∈Z:ht=h

ln (egt) =
∑

i∈[E]:h∈Pi

ni(h) .

Combining this with (B.26) and summing over all h ∈ P gives us, by (B.20)

that

C̄ =M ln
N

M
+
∑
h∈P

− ln
(
f(ch)

)
≤M ln

N

M
+ 2

∑
t∈Z

(
ln (egt) + ln (eg̃t)

)
+ 2

∑
h∈P

ln (eĝ(h))

≤M ln
N

M
+ 2

∑
i∈[E]

∑
h∈Pi

(
ni(h) + ñi(h) + ln (ed̂i(h))

)
+ 2

∑
h∈P

n̂(h) . (B.27)

We now bound the right-hand side of (B.27) using Jensen’s inequality and

the concavity of the logarithm function, such that for a given k ∈ N, and a set

{ui | i ∈ [k]} ⊆ N we have

∑
i∈[k]

ln (eui) ≤ k ln

(
e
∑

i∈[k] ui

k

)
. (B.28)

First let us fix some epoch i ∈ [E]. We note first that for all h ∈ P i we

have

d̂i(h) +
∑

t∈Zi:ht=h

(dti + d̃ti) = T i ,

so summing over h ∈ P i gives

∑
h∈Pi

d̂i(h) +
∑
t∈Zi

(dti + d̃ti) =M iT i .
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Noting also that ∑
t∈Zi

dti = T i , (B.29)

we then have ∑
h∈Pi

d̂i(h) +
∑
t∈Zi

d̃ti = (M i − 1)T i . (B.30)

The left-hand side of (B.29) has Ki terms that are summed and the left-

hand side of (B.30) has M i + Ki terms that are summed. Thus combining

these with (B.28) gives

∑
t∈Zi

ln (edti) ≤ Ki ln

(
eT i

Ki

)
, (B.31)

and

∑
h∈Pi

ln (ed̂i(h)) +
∑
t∈Zi

ln (ed̃ti) ≤ (M i +Ki) ln

(
eM iT i

M i +Ki

)
, (B.32)

respectively. Summing (B.31) and (B.32) then gives

∑
h∈Pi

(
ni(h) + ñi(h) + ln (ed̂i(h))

)
≤ Ki ln

(
eT i

Ki

)
+(M i+Ki) ln

(
eM iT i

M i +Ki

)
.

Since M i ≤ Ki this implies

∑
h∈Pi

(
ni(h) + ñi(h) + ln (ed̂i(h))

)
∈ O

(
Ki ln

(
M iT i

Ki

))
. (B.33)

All that remains is to bound
∑

h∈P n̂(h). Note first that for all h ∈ P we

have ∑
i∈[E+1]:h∈Pi

Jh ∈ ΨiKb(h, i) ≤ T ,

and thus ∑
h∈P

∑
i∈[E+1]:h∈Pi

Jh ∈ ΨiKb(h, i) ≤MT .

Since for all h ∈ P , the above sum does not include h if h ∈ P i for all i ∈ [E],
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the number of terms summed in the left-hand side of this equation is in O(Φ),

and hence by (B.28) again we have

∑
h∈P

n̂(h) =
∑
h∈P

∑
i∈[E+1]:h∈Pi

Jh ∈ ΨiK ln (eb(h, i)) ∈ O
(
Φ ln

(
MT

Φ

))
. (B.34)

Substituting (B.33) and (B.34) into (B.27) gives

C̄ ∈ O

(
M ln

N

M
+
∑
i∈Ei

Ki ln

(
M iT i

Ki

)
+ Φ ln

(
MT

Φ

))
,

which completes the proof.



Appendix C

A Slow Implementation of

AdaptLTM

In this section we give an alternative implementation of AdaptLTM, with a

slightly worse computational per-trial time complexity of O(N log t)-time on

trial t.

This implementation does not store πt
h =

∏t−1
s=1 ψ

s
h, in order to compute

σt+1
h = ψt

hσ
t
h − πt+1

h ξth + ξ̃th

and

σ̃t+1
h = σ̃t

h − ξ̃th + πt+1
h ξth

on each trial. Instead, on each trial we require a sum over βt
q,h for all q ∈ N∪{0},

and βt
q,h is updated for all q ∈ N ∪ {0}. Since βt

q,h is only non-zero for

q ≤ maxs∈[t] qs + 1. This takes O(log t) time on trial t per policy.
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Routine 13 initialize(h)

1: for q ∈ N ∪ {0} do
2: β1

q,h := 0

3: β̃1
q,h := 0

4: i1q := 0
5: end for
6: β1

0,h←α

7: β̃1
1,h← 1−α

2

Routine 14 get(t, h)

1: return

( ∑
q∈N∪{0}

(
2q − αitq

)
βt
q,h,

∑
q∈N∪{0}

(
2q − αitq

)
β̃t
q,h

)

Routine 15 update(t, h)

1: qt←tree-height(t)
2: ξth←αψt

h

∑
q∈N∪{0} β

t
q,h

3: ξ̃th←α
∑

q∈N∪{0} β̃
t
q,h

4: if qt = 0 then
5: βt+1

0,h ← ξ̃th
6: β̃t+1

0,h ←ξth
7: βt+1

1,h ←(1− α)ψt
hβ

t
1,h +

(1−α)
2
ψt
hβ

t
0,h

8: β̃t+1
1,h ←(1− α)β̃t

1,h +
(1−α)

2
β̃t
0,h

9: else
10: βt+1

0,h ←(1− α)ψt
hβ

t
0,h + ξ̃th

11: β̃t+1
0,h ←(1− α)β̃t

0,h + ξth
12: βt+1

qt,h
←0

13: β̃t+1
qt,h
←0

14: βt+1
(qt+1),h←(1−α)ψt

hβ
t
(qt+1),h+

(2−α)
4
ψt
hβ

t
qt,h

15: β̃t+1
(qt+1),h←(1− α)β̃t

(qt+1),h +
(2−α)

4
β̃t
qt,h

16: end if
17: it+1

0 ←0
18: it+1

qt ←0

19: it+1
qt+1←0

20: for q ∈ N \ {qt, qt + 1} do
21: βt+1

q,h ←ψt
hβ

t
q,h

22: β̃t+1
q,h := β̃t

q,h

23: it+1
q ← itq + 1

24: end for



Appendix D

Computing the tree-height Function

In this section, we show how the tree-height function can be computed online

in O(1) time per trial. The computation requires a data structure based on

the quantities {π̂t
q | t, q ∈ N ∪ {0}} defined as follows. Given t, q ∈ N ∪ {0}, we

first define

ϵ̂t,q := min {s ∈ N ∪ {0} | s ≥ t ∧ ∃m ∈ N : s+ 1 = m2q} ,

which for a given q is the smallest integer no smaller than t such that s+ 1 is a

multiple of 2q. Intuitively for a given trial t, and level q, ϵ̂t,q is the closest trial

(including or after t) which has a tree-height of at least q (see Figure D.1a).

Given some ϵ̂t,q ∈ N ∪ {0}, we then define

π̂t
q := tree-height(ϵ̂t,q)

to be the tree height of that quantity (see Figure D.1b). Note that π̂t
q has the

following properties for all t ∈ N ∪ {0}:

1. π̂t
0 = qt .

2. π̂t+1
qt = π̂t

qt+1 .

3. For all q < qt we have π̂t+1
q = q .

4. For all q > qt we have π̂t+1
q = π̂t

q .
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Figure D.1: (a) At coordinates (t, q) the value of ϵ̂t,q is shown. (b) At coordinates
(t, q) the value of π̂t

q is shown. In gray circles the tree-height function
is shown. In red circles are the values of π̂t

q maintained by Algorithm 8
(on each trial).

Our algorithm requires a data structure that stores, on trial t, the set

ω̂t := {q ∈ N ∪ {0} | (π̂t
q ̸= q) ∧ (π̂t

q′ ≤ q ,∀q′ < q)} ,

and for all q ∈ ω̂t, our data structure stores the value π̂t
q. This can be done

using a hashmap or a simple look-up table, which we denote π̂t in our algorithm.

Since for all q ∈ N∪{0} we have π̂0
q = q, the set is initialized with ω̂1 = {0},

and π̂1 has π̂1
0 = 1 stored. On each trial, the algorithm retrieves qt which is

either 0 on even trials (and we have 0 /∈ ω̂t), or we have qt = π̂t
0 (from property

1), which is stored in π̂t when 0 ∈ ω̂t. After retrieving qt, our algorithm updates

ω̂t and π̂t by removing qt + 1 from ω̂t (if qt + 1 ∈ ω̂t), and removing the value

of π̂t
qt+1 from π̂t (if qt + 1 ∈ ω̂t), due to property 3 and the fact that this value

is now equal to π̂t
qt (property 2) and is stored in π̂t. If qt + 1 /∈ ω̂t, then we add

π̂t
qt to π̂t (which is equal to qt + 1 from properties 2 and 4). See Figure D.1b



185

Algorithm 8 Computing qt = tree-height(t) in O(1) time

1: init: ω̂1←{0}; π̂1←hashMap(key, value)
2: π̂1.put(0, 1)
3: for t = 1, . . . , T do
4: if 0 /∈ ω̂t then
5: qt←0
6: else
7: qt← π̂t.get(0)
8: ω̂t← ω̂t \ {0}
9: end if

10: if qt /∈ ω̂t then
11: ω̂t← ω̂t ∪ {qt}
12: end if
13: if qt + 1 /∈ ω̂t then
14: π̂t.put(qt, qt + 1)
15: else
16: π̂t.put(qt, π̂t.get(qt + 1))
17: π̂t.remove(qt + 1)
18: ω̂t← ω̂t \ {qt + 1}
19: end if
20: ω̂t+1← ω̂t

21: π̂t+1← π̂t

22: end for

for an illustration of the values stored by our algorithm).

Our update for this method, for t ∈ N, is given in Algorithm 8. This

algorithm requires O(1) time per trial and O(log t) space.



Appendix E

Adaptive Long-Term Memory

Experiments

In this section we give the values of the parameters used in our experiments in

Chapter 5.
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Table E.1: Values of parameters of the algorithms included in our experiments. For
each algorithm we adopt the notation of the cited paper in naming the
parameter.

Algorithm Parameter Value

EXP4 [85] η 0.63

Fixed Share [30] η 8.90
α K

T−1
= 215

21599

PBTS [2]

η 8.07
θ(w|s) K

(M−1)(T−1)
= 215

23×21599

θ(s|w) K
T−1

= 215
21599

θ(w) 1
M

= 1
24

PBTS* [2]

η 11.83
θ(w|s) K

(M̃−1)(T−1)
= 215

2×21599

θ(s|w) K
T−1

= 215
21599

θ(w) 1
M̃

= 1
3

Proj FS [37] η 8.28
α K

T−1
= 215

21599

PoDS-θ
η 7.66
α K

T−1
= 215

21599

θ K−M+1
(M−1)(T−2)

= 192
23×21598

AdaptLTM
η 7.62
α 1

4

AdaptLTM* η 10.62
α 0.01
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