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I. INTRODUCTION

Soft robots are built with soft materials, with low Young’s
modulus, or with materials that are not soft per se, but are
arranged in highly deformable geometries [1]. Soft robots
exist today over a wide range of morphologies (arms, fingers,
legs, fins, ...), scales (from few mm to few m), abilities
(reaching, grasping, walking, morphing, growing, swimming,
jumping, crawling, digging, ...) and intended applications
(in the biomedical field, underwater, in industry, ...). For
the sake of clarity, we may focus here on the common case
of soft robot arms (see Figure [T as a reference), despite our
description is intended to be completely general. Soft robot
actuators have to deform the soft body, often in a continuum
way. Similarly, sensors for soft robots are distributed in the
soft structure and detect deformations induced by external
forces, as well as those generated by robot actuators. Smart
materials are used in soft robotics, like EAPs and SMAs, as
well as fluidic actuation and other custom technologies. Soft
robots are deformed by external forces, and this is designed
to help their intended movements, according to the embodied
intelligence paradigm, by which adaptive behaviour emerges
from the physical interaction of the body with the environ-
ment. Control is delegated in part to the physical body, that
performs morphological computation [2]. In other words, a
very short control loop is closed at the mechanical level, on
the motor system, through a mechanical feedback. Building
robots that can accept such mechanical feedback from the
environment is the main motivation for soft robotics. Centrel
variables:

Soft robots present extremely interesting control prob-
lems, which may benefit from learning-based approaches.
Learning-based approaches are especially helpful when an-
alytical models are hard to obtain, due to the complexity of
robot bedieskinematics and dynamics and their presence in
unstructured environments, as in the case of soft robotics.
Figure P] reports data on publications in soft robotics, soft
robot control and the use of learning in soft robot control,
starting from 2005, when first papers on learning-based
control of soft robots appeared. A general increase is visible,
at different paces, though. Figure 3] shows the relative trends.
The use of learning in soft robot control is growing, with
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Fig. 1. EvelutionofDeFs-with-therobotstruetareAn example of soft robot
arm, on the right, with reference to other categories of robot arms, classified
by their number of degrees of freedom (DOFs) (reprinted with permission
from [3]).

a trend which is almost stable with respect to the general
growth of the soft robotics field. The trend is similar to the
use of learning in robot control, in general. We can also
see a slight increase of attention of the control community
to the control of soft robots, but with respect to the fast
growth of soft robotics, soft robot control is not keeping pace,
outlining important opportunities for the control community
in this field. A clear growing trend instead is visible in the
use of learning in soft robot control, within the control of
soft robots (data from Scopus, 22/02/2022, with searches
in Article Title, Abstract, Keywords; search keys reported
in figure legends). The reason why more learning-based
controllers have been applied in soft robotics may be due
to both the availability of more powerful learning models
and the difficulty of providing analytical models for such
kinds of robots. shews—how—in—the-recentfew—years—there
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In fact, learning has been used in robot control for years
and we are recalling the basics of learning-based control
in robotics in the next section. We then analyse the con-
trol challenges in soft robotics and the methods used for
soft robot modeling, before presenting the achievements in
learning-based control of soft robots. We do not have the
ambition of providing a thorough picture of the state of this
field, but we aim at going through the main achievements,
seen as milestones in the progress of the field, as in the
authors’ experience. This is going to project us into the
next challenges, with the aim of outlining the opportunities
for research on control theory and systems applied to soft
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Fig. 2. The number of publicationsiaterest in soft robotics control have
steadily risen over the years. A part of them addresses control problems in
soft robotics. In this context, learning-approaches control strategies seem
to be gaining popularity, in the last few years. —with—a—relatively—even
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Fig. 3. Relative growth of publications. While an almost stable trend is
visible in learning-based control within soft robotics, similar to the use of
learning in robot control, a more significant growth is visible in the use
of learning for soft robot control, among soft robot control publications.
Margins for growth exist within the robot control community for addressing
soft robotics challenges.

robotics.

II. MACHINE LEARNING FOR ROBOT CONTROL

A. Rationale

Classical robotic controllers rely on analytical models
that are based on geometric and physical insights. Machine
Learning (ML) approaches represent a valid alternative to
manual and pre-programmed behaviours-based-on analytical
models. With ML, the models are estimated through expe-
rience, while the robot is interacting with the environment
[4]. The basic idea is that the information can be extracted
from sensory data acquired by the robot and used to build
models. Non-linearities can be directly taken into account.
More specifically, ML algorithms build a model based on
sample data, known as “training data”, allowing to make
predictions without being explicitly programmed to do so.
These predictions are used in robotics to estimate different
models of the robot body or the environment.

First approaches to the use of ML in robot control focused
on adaptive self-tuning control that consists of methods
where epen the parameters to set in an analytical model
are derived with learning mechanisms. Hewever Since it is
not always possible to derive optimal parameters from data,
controllers were then proposed, which embed model learning
without any analytical definition. The idea is that, to derive
the system behaviour, i.e. what is the effect of actions, infor-
mation about states and actions are used. ML methods are
used because these information can be accessible/available
only partially, so it is needed to derive them from experience
and provide predictions of missing information to generate
appropriate actions (control policies).

ML techniques have shown to be effective in a variety of
applications in robot control, such as tuning analytical model
parameters, building inverse dynamics models [S] or inverse
kinematics models [6], modelling the actuation of grippers
for robot manipulation control [7], finding the relations
between leg movements and locomotion [8], navigation [9]
and disturbance rejection [10], as they enable straightforward
model approximation.

B. Meachine—Learning—for—robot—control Learning tasks in

robot control

Learning-based controllers for robots usually approximate
two kinds of models: (1) the forward model that estimates
the next state of a dynamic system based on current state
and inputs and (i2) the inverse model that predicts the
inputs needed to move from the current state to the next
desired state [11].

1) Forward models: Forward models represent the causal
relation between system state and inputs [12]. Such a model
would aim to mimic or represent the normal behaviour of
the motor system in response to outgoing motor commands.
For example, a forward model of the arm‘s dynamics might
have as input a current state (e.g. join angles and velocities)
and motor commands being issued by the controller and
produce as output an estimation of the new state. However
the state may or may not be accurately known by the
controller and so one needs to separate the state variables
from the sensed variables. Such a sensory output model
would therefore have as input the current state and as output
the predicted sensory feedback. By cascading a forward
dynamics and a forward sensory output model, an estimation
of the sensory consequences of a motor command can be
achieved (feedforward model) [13].

Several examples in literature rely on supervised (including
neural networks or standard regression) or unsupervised
approaches to estimate the forward model. The first
application of forward models for control is the Smith
predictor [14], where the forward model is used to reject
the effects of delays resulting from the feedback loop.
Later, forward models found a wide application in Model
Predictive Control (MPC) [15]. MPC computes optimal
actions by minimizing a given cost function over a certain
prediction horizon in the future. These predictions are



generated by using the forward model.

2) Inverse models: Inverse models invert the causal flow

of the motor system. These models therefore also encapsulate
knowledge about the behaviour of the motor system by
predicting the actions required to move the systems from
the current state to a desired future state. Learning inverse
models may not be always possible when data space are not
convex. For control, applications of inverse models can be
traditionally found in computed torque robot control, where
the inverse dynamics model is used to predict the torques
needed to follow a trajectory in the joint space [5].
More complex models can be also learned and are used in
complex tasks, like control of humanoid robots, where a task-
space inverse dynamic model is needed to stabilize the center
of mass of the robot [16].

C. From robotics to soft robotics

For rigid robots, the models discussed so far are based
on the transformation from actuation space to joint space
(and viceversa), which is easily obtained through the use
of sensors (e.g. encoders mounted on electric motors), and
on the trasformation from joint space to task space (and
viceversa). In soft robotics, each of these transformations
is more complex. Since soft robots are ideally continuum
robots, actuators generate a deformation that in turn modifies
the position in task space. An additional space (the configu-
ration space) is introduced to describe the deformation, e.g.
the arc parameters. The continuum robot kinematics can be
decomposed into two submappings. One is between actuator
space and configuration space, while the other is between
this configuration space and task space (i.e. position and
pose of the end-effector) [3]. Learning models are often
used for directly estimating the mapping between actuation
space and task space, but they can also replace intermediate
transformations, e.g. between task space and configuration
space.

III. SOFT ROBOT AS A CONTROL PROBLEM

Due to their flexible, deformable, and adaptive charac-
teristics [17], soft robots have complex and unpredictable
behaviors that affect modeling and control by introducing
non-linearities and hysteresis [18]. Since soft robots are
made of continuously deformable materials, their full state
is governed by continuum mechanics rather than rigid-body
dynamics. This results in systems with infinite degrees of
freedom (DOFs) (see Figure EI) and their dynamics is often
highly nonlinear. They do not have an infinity of actuators
to control each of the DOFs, though. Thus, from a control
point of view, soft robots are considered to be under-actuated
systems. The goal is to use a determined finite number of
actuators to control continnum—segments—of—these—type—of
robeots infinite DOFs of the soft robot. Frem-a—centrel-point
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Thus, a soft robot with infinite DOFs is said to be an input-
output (I/O) system in the sense of control theory, when it
is possible to distinguish a causal relationship between finite
controllable inputs and measurable or observable outputs.
The physical quantities of inputs, outputs and disturbances
are finite and can describe the voltage, current, pressure,
position, speed, external forces, or other actuation inputs.
We can distinguish:
* direct actions, called control time inputs, deneted-E{4);
* indirect actions, called disturbances,~denoted—dr{#);

* consequences of direct and indirect actions, called outputs..

These variables alone are not sufficient to characterize the
time evolution of the soft robot, where it is necessary to add
the state variables [19]. These describe the internal memory
variables of the soft robot system [20]. An efficient control
of a continuum soft robot allows not only tracking desired
targets like in conventional rigid robots, but also controlling
optimally its shape in order to reproduce the desired behavior
with a minimum energy consumption. For this purpose a
Reduced Order Model (ROM) of the soft robot is suggested
to reconstruct the optimal shapes using parametric curves
modeling [21] with their advantages regarding boundaries
and energy minimization. Thus, a shape control with a finite
number of control points of the representative curve of the
soft robot shape can be applied [22] with respect to time
costs and accuracy performances.

Figure [] depicts an example of a closed-loop control for
a soft continuum manipulator, made up of 6 tubes of 16
vertebrae each, made from polyamide material. Each vertebra
has 3 DOFs. To control such a robot, we have 6 electro-
pneumatic actuator inputs and 6 measurable outputs corre-
sponding to the lengths of tubes. The objective is to control
the position of the tip of the soft manipulator. For this, it
is possible to design a closed-loop control by deducing the
elongations of the tubes from the Cartesian coordinates of the
tip from the inverse kinematic model of the robot, then by
converting the elongations into pressure, in order to control
the pressures at low level from piezoelectric valves. The
image of the tube lengths of the robot in voltage is cal-
culated from the potentiometer wires. Finally, the Cartesian
coordinates of the tip are calculated from the direct kinematic
model for the position control. It is possible to reconstruct
the shape of the soft continuum manipulator using a motion
tracker system, which is an external set of cameras able to
track markers placed along the robot.

IV. MODELS FOR SOFT ROBOT SYSTEMS

The synthesis of a control law for a soft robot re-
quires a models—of, derived from the causal relations
diseussedbetween the input-output (I/O) of the system, which
describes the robot behavier. We are discussing such models
in general terms, assuming an arm-like soft robot, made
of soft materials and actuated by cables, fluidic chambers,
or similar bending actuators, well aware that the modeling
approaches may vary for different designs of soft robots,



Desired pressure \!
{P1,..,P6}

Desired positions Estimated lengths
X, e, 24 {L1,..L6}

Measured positions
X YmZm}

Control pressure ]
{P1*,.., P6*} I

A Vision

Soft arm

Piezo-electric

Inverse

Controller kinematic
model
(IKMm)

Pressure

Valves

Length ((((lf

&
to ((\\*\“ L

Estimated positions
X, Y, 2}

Forward
kinematic
model

(FKM)

Voltage
to
Length

Measured voltage of the
Estimated lengths length wire potentiometer
{L1%,..,67} {v1,.., v6}

Fig. 4. Example of closed-loop Cartesian position control of a soft continuum manipulator

especially if we consider fabrics and/or smart materials. The
relation that we model can be kinematic or dynamic. The infi-
nite number of DOFs makes it complex to model a soft robot,
without being able to achieve reductions and simplificationsit
witheut-considering-assumptions—per—task. So, it is possible
to limit the number of DOFs but keeping the soft robot be-
haviour approaching a hyper-redundant structure. Fhe-search
for-a-mathematicalModel of a soft robot system is described
in literature according to three approaches. The first is called
quantitative modeling approaches and consists in formulating
mathematically a relationship between the causes and effects
by using kinematic and dynamic fundamental equations.
They usually suffer from several assumptions which yield
inaccurate models, and one generally faces time-consuming
or mathematical intractable issues to deduce the Inverse
Kinematic Model (IKM) directly from the Forward Kine-
matic Model (FKM). These models are said “knowledge”
models. This Fhe-first-one-assumes that it is possible to ob-
tain an almost perfect description of the behavior of the soft
robot system in kinematics [23] and dynamics [24] and [25].
This i . : . Hinof

said%o%e—kﬁow%edgeﬁ Con51der1ng the infinite dimension
of the DOFs of the soft robot, the model equations often
remain complex to solve numerically. One of the possible
solutions consists in reducing the size of this model while
preserving the desired inputs and outputs (I/O) behavior.
Thus, computational mechanics modeling has been used,
based on the Finite Element Method (FEM), with a technique
for the approximation of differential equations with boundary
conditions. FEM has been used to discretize the theoretical
infinite number of DOFs of soft robots [26] The second
approach 315tS

and-the-number-of-tests—earried-out{23}-is called qualitative
modeling approaches or data-learning based approaches,
consist in dividing the parameter space of the model into
several classes according to the well-known operating modes,
and then determining by learning the mathematical relations
between the effects (sensor measurements of Cartesian or
joint positions), and causes (inputs of voltage, pressure,....
Generally, these approaches are suffering from the explosion
of the learning data-set which increases with the number of
DOFs; and it is often difficult to establish well-structured
control laws [27]. TheseThis models are said “black box”
models. Depending on the number of DOFs of a soft robot,
the learning phase that can build a relationship between
inputs and outputs can be costly in computing time, ranging
from hours to days, without forgetting the fatigue of the
material of the soft robot. However, when the learning phase
leads to a perfect reconstruction of the I/O behavior, the real-
time implementation of the model remains efficient. The third
approacheombines-the-two-previous-approaches:-the-behavier
resolution-of-the-Jatteris-done-by-approximation-of-black-box
models—This—type—of-medel is called “hybrid’medel{24}-
and combines the advantages of quantitative and qualitative
approaches. The idea is to build a mathematical model of the
soft robot and to improve the model accuracy by identifying
certain non-linearities using a qualitative approach. The main
advantage of the hybrid approach is the ability to generate
the learning data-set directly from the mathematical model.
Also, it can reconstruct the robot shape in real-time [28].

In this context, ROM techniques are used to describe the
state space reduction of continuous and bounded soft robots



with high dimensions. The discretization of their kinematic
chain is needed to simplify the solving of their representative
differential equations, thanks to a low dimensional space. To
design a ROM based controller of soft robot, the reduction
of the state space are required to adapt the control to a
specific mode. For that, several modal-based approaches
for control have been developed, such as the eigenvalues-
based technique for linearized systems [29], power expansion
series approximation [28], space parametrization for shape
control [30] and dynamical feedback controller to stabilize a
desired trajectory in the curvature space [31]. From the other
side, Model-Order-Reduction (MOR) has been introduced
to simplify the complexity of the soft robot in terms of
dimension and computational cost [32]. In this case, MOR
techniques are used to reduce the state space dimension of
existing soft robot Finite Element Method (FEM) model.
MOR, unlike ROM, is not a modeling technique but a com-
putational method. It can be used to represent the full-order
dynamics model by using a linearized FEM model around an
equilibrium point [33]. This has enabled the formulation of a
stable observer and controller for the reduced and linearized
system.

V. ACHIEVEMENTS IN LEARNING-BASED APPROACHES
FOR SOFT ROBOT CONTROL

Efforts for the control of soft robots based on machine
learning ML have addressed different levels of encoding
of robot models that, in turn, produced different control
strategies. These can be classified according to the operating
space:

1) Low level: actuation/joint space (e.g. cable length,
pneumatic chamber control, others)

2) High-Level: task/configuration space (e.g. end effector
control)

a) Static (kinematic) model
b) Dynamic model

robets: High-level control strategies can include the learning
of either the static (kinematic) model or the dynamic model
of the robot. A static model is time invariant and relies on the
steady-state assumption: under force equilibrium the config-
uration of the manipulator has a lower dimension. Dynamic
models, instead, are time-dependent and consider task space
variable velocities. Learning mechanism are used to learn
the mapping between the actuation/joint space and the task
space both in static and dynamic conditions. These learning
models are mainly based on supervised and reinforcement
learning techniques (see sidebar I). Supervised learning is
used when the behavior is observable: this means that data
can be labelled. A typical way to use supervised learning is

to let the robot explore the workspace (statically, by relying
on the steady state assumption, or dynamically considering
task space variable velocities) by using random movements
(motor babbling) and save data that link actuation to task
space. With these data, batch models (e.g. feed forward
neural networks or recurrent neural networks) are trained
to learn the forward or inverse mapping to be embedded in
controllers. Reinforcement learning does not need to have
labelled data. It allows to discover and learn the control
policy thanks to the exploration capability that is not a feature
of supervised learning. This makes reinforcement learning
suitable for for complex tasks, that involve interaction with
the environment.

Several important milestones have been achieved in the
last 10 years in the control of soft robots. Figure —{see
Fig-P}- gives a qualitative view of the growth of knowledge
along these two mainstreams. We argue that they have similar
trends, translated in time, and that we can expect a growth for
dynamic control soon. A more detailed analysis of current
approaches for controlling soft manipulators and a survey of
current achievements are reported in [3].

A. Kinematic controllers

A first step in exploring a model-free approach to a static
controller was proposed in [34]. This approach consists in
learning the inverse static model of a non-redundant soft
robot based on a feed-forward neural network. An important
achievement for showing how the neural control system can
take into account the variability of the arm with no effect
on the performance was given by its experimental validation
in comparison to the performance of an inverse Jacobian
approach [35]. Further progress of this approach consists of
the adoption of further learning techniques, like learning the
inverse kinematics model by using local mappings of the
differential inverse kinematics [36]. This model embedded
in a feedback controller, allowed for redundancy resolution
and adaptation to external disturbances. Lee and colleagues
[37] took a step forward, by presenting a closed-loop inverse
kinematic controller capable of online learning. It is based
on locally weighted projection regression (LWPR) algorithm
that allows to maintain control accuracy under external
dynamic disturbance. However, all the above mentioned
works learn a fixed solution to the IK problem, among all
the infinite possbile redundant configurations. This restricts
their use to just reaching tasks without the ability to plan
trajectories in the configuration space. An evolution on the
same line is the use of a reinforcement learning framework to
solve the inverse kinematics problem, leading to a controller
able to reach valuable results with high level of accuracy
[38]. Building on that, a controller based on a reinforcement
learning approach was built, capable of optimizing multiple
objectives to learn deterministic stationary policies for posi-
tion and stiffness control of a soft robot arm [39]. This work
relies on a discrete state-space model and a straightforward
extension would be extend the approach to a continuous
space.
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Fig. 5.

Milestones of learning-based soft robot control, in kinematics and dynamics. The evolution of kinematics learning-based control systems started

earlier and grew at a fast pace, but it is reaching a steady state. Learning-based dynamic controllers are having a recent progress, but they show a similar
trend, just translated in time, outlining—with perspectives for steep growth in the near future, by addressing the open challenges described in Section V.

The first visual servoing application for soft robots came
one year later, from Fang and colleagues [40]. The proposed
controller is able to learn the inverse mapping from collected
camera images and refine this mapping online by using the
Local Gaussian process regression algorithm. More recently,
further progress is going in the direction of using deep

learnmg [41] flihe—ﬁfst—weﬂeeeimsts—ef’—d—ehﬁalr—leafmﬁg

mamp&}&tef ThlS Work learns the inverse static model of a
soft manipulator using Deep Deterministic Policy Gradient
(DDPG) for end effector path tracking. The latest few works
in the field of kinematic control studies the use of differ-
entiable learned models [42] and real-time adaptive models
[43]. Differentiable models can reduce the computational
effort for estimating control solutions, but is yet to be
extended to a more complex system or for fully dynamic
control. Online estimation of IK parameters are well suited
for robotic systems that have a variable morphology, but
reling solely on online data increases the control time and
adds futher restrictions on the sensory system. Combining
offline and online models is an alternate research direction
yet to be investigated.

B. Dynamic controllers

Dynamic controllers have been recently proposed based
on model-free methods. In 2017, Zhang and colleagues
[44] presented the first dynamic model with application to
locomotion. In the same year, Thuruthel and colleagues
[45] used a recurrent neural network for the learning of
the forward dynamic model in conjunction with trajectory
optimization for a soft manipulator. The proposed controller
was able to follow predefined trajectories with high speed
and accuracy. However, the controller was still open-loop
because of the computational time required to solve the
optimization problem. This challenge was addressed in [46]
albeit on a single soft joint. To overcome limitations due
to open loop control, a model-based policy learning method
for the closed-loop dynamic control of a soft robotic ma-

nipulator using was proposed [47]. The-representation-of-the



VI. CHALLENGES AND OPPORTUNITIES

As outlined, soft robotics offers interesting challenges and
opportunities for progress in control theory. The problem
of controlling soft robots is complex enough to stimulate
research and wide enough to offer diverse perspectives
and diverse approaches to explore. Control theory scientists
can greatly contribute to the field, both by deepening the
theoretical questions involved, and by integrating learning-
based components into control systems. The progress of
learning-based soft robot control still needs fundamental
achievements. Among them, the field is lacking studies on
motion planning and its closely related problem of shape
planning and control, on the intractability of learning-based
control in higher-dimensional continuous dynamical systems,
on impedance control and feedback control, especially with
intrinsic sensors. Table [shows some relevant state-of-the-art
articles and their straightforward extensions. The next few
sub-sections list research problems that are unique to the
field of soft robotics and that are yet to be investigated in
depth, either using learning-based techniques or model-based
approaches. For each of the problems listed, we outline the
challenges for learning-based methods.

A. The dynamics of the soft body is strongly coupled to the
environment

One of the inherent challenges of soft robot control lies
in the fact that dynamics of soft deformable structures are
strongly dependent on the environment. When soft actuators
generate forces, for example, the reaction forces are trans-
mitted throughout the soft deformable structures all the way
to the contact surfaces to the environment. Conversely, the
forces imposed from the environment could also give various
influences to the deformation of soft robot structures, which
make it difficult to estimate the system own states as well as
the consequence of actuation.

Many soft robots make use of soft-rigid hybrid body
structures, that is not all of the body structures are composed
of the materials with the same stiffness, but stiffness is delib-
erately varied across body structure in heterogeneous ways
[53]. On the one hand, such anisotropic stiffness profiles are
essential for producing directionality in deformation, which
facilitate motion control problem. For example every soft
pneumatic actuators are made of combined softer chamber
attached to more stiff structures such that the actuator can
be stretched or bent in a certain direction.

The system-environment interactions of soft-body robots
are highly diverse for these reasons. Postures and dynamics
of soft body are always dependent on their environmental
conditions, and motions of the robots are very different
consequently. Such unique dynamics can be taken advantage
of for the simplified robot motion control as exemplified by
the muscle synergies [54] and the environmental conditioning
[55], [53].

C. Controllability and observability of soft robotic systems

Controllability and observability are two important mathe-
matical measures used for linear system analysis [56]. How-
ever, equivalent analytical tests for non-linear systems are
not well developed [57]. There have been recent progress in
data-driven approaches that have been used for linear systems
[58] and nonlinear systems [59]. Such empirical metrics can
help further understand the capabilities and limitations of a
given soft bodied system.

D. Feedback control with embedded sensors

Feedback control with embedded sensors can provide
additional-behavioral-ranges—teimprove the control of soft
robotic systems, in terms of accuracy and richness of motor
behaviors. Although there have been considerable develop-
ments in soft sensing technologies and reasonable progress in
their modelling, the development of closed-loop controllers
with rich tactile information is scarce. One of the challenges
here is the need for fast, accurate, and robust models of these
sensors, with a higher emphasis on the speed of the model.
Another challenge is the difficulty in learning and acquiring
higher level skills and exploration strategies. Developments
from traditional robotics have immense potential to be trans-
ferred to soft robotic technologies, especially considering the
fact that soft bodies provide safer and smoother tactile inter-
actions. Some of the relevant works that can be directly trans-
lated to soft robotic sensors include unsupervised acquisition
of tactile skills [60], direct learning of control policies using
tactile states [61], [62], dimensionality reduction techniques
using autoencoders [63] and multi-modal fusion [64].

E. Physics-based modelling in soft robotics

A clear drawback of learning-based models is its inability
to be parameterized to design and control variables making



Reference | Research Problem Achievements Challanges Year

[37] Adaptive kinematic controllers Task space control with external disturbances Extension to learning of redundant configurations 2017
and inclusion of trajectory planning

[36] Kinematic redundancy resolution with feedback Task space control including orientation with Extension to learning of redundant configurations 2017
control disturbance rejection and inclusion of trajectory planning

[40] Visual servoing with adaptive kinematic controllers | Task space control based on visual inputs Extension to learning of redundant configurations 2019
and inclusion of trajectory planning

[42] Control-oriented quasi-static modelling Tracking of open loop trajectories in the task space Extension to high-dimensional system 2020

[43] Adaptation to morphological changes Tip position and orientation control of a growing robot Inclusion of offline models for control 2021

[39] Multi-objective force and position control Task space control with stiffness optimization Extension to continuous action space 2017

[45] Task-space dynamic control Tracking high dynamics trajectory in the task space Inclusion of feedback for closed-loop control 2017

[46] Task-space model predictive control Model predictive control with a one degree of freedom Extension to high-dimensional system 2018

soft robot

[47] Task-space dynamic control with feedback Closed-loop dynamic control for point reaching tasks Extension to tracking tasks 2019

[48] Control-oriented modelling for MPC MPC controller for low dynamics trajectory tracking Extension to high dynamics tracking tasks 2020

[49] Distributed RNNs for data efficiency Real-time dynamic predictive model of a soft manipulator | Extension to high-dimensional systems 2021

[50] Hybrid models for data efficiency Model-based optimal control of a soft continuum joint Extension to dynamical high-dimensional systems 2021

[51] Ensemble reinforcement learning for data efficiency | Dynamical controller for point reaching tasks in soft arm Extension to trajectory tracking tasks 2021

[44] Dynamic control for locomotion Policy generation of gaits with variation in environmental | Extension to faithful simulation environment 2017

conditions
[52] Feedback Control with embedded sensors Robust grasping and identification of objects Extension to high-dimensional feedback information | 2019

TABLE 1
RELEVANT STATE-OF-THE-ART LEARNING-BASED CONTROLLERS PRESENTING THEIR NOVELTY AND FUTURE SCOPE SORTED BASED ON KINEMATIC

CONTROLLERS(RED), MULTI-OBJECTIVE CONTROLLERS(YELLOW), DYNAMICS CONTROLLERS(GREEN), AND CONTROLLERS BASED ON EMBEDDED
SENSORS(BLUE).

them unsuitable for design and control optimization. Recent
developments in integrating physics-based modeling Wwith
machinetearningML techniques could be a potential solution
to alleviate this drawback [65], [66], [67]. The main idea
behind these approaches is to use real-world data with
machinetearningML tools to generate governing dynamical
equations. This can lead to explainable and parameterizable
data-driven models that can also be faster to train. Such
models can also lead to better theoretical understanding of
complex soft robotic systems that are otherwise very difficult
to analytically model. A recent example of such a method
using Koopman operator theory for a soft robotic system can
be found in reference [48] and using first principle models
can be found in [50].

FE. Transferability and adaptation of learned controllers

A future direction of research when it comes to learned
soft robotic controllers is the problem of efficient transfer
of learned models across ‘similar’ robotic systems. Along
similar lines, the question of adaptation of learned controllers
to changes in the body structure, either due to damages
or intentional rearrangement is of relevance. Recent de-
velopments in generative adversarial networks seem to be
promising in this direction [68], [69]. Although, most of the
these works are limited to visual tasks [70], there have been
recent attempts to uses GANs for transferring knowledge
from simulated systems to real-world cases [71].

G. Benchmarking of learned-controllers

Benchmarking is an important tool in robotics research.
It provides a method to quantitatively analyze different
approaches that are developed with the same objective in
mind [72], [73], [74]. It is difficult to develop benchmarking
tasks for soft robotic devices and technologies due to large
variety of problems that each techology is trying to ad-
dress. Competition tasks can act as a general benchmarking
task that allows us to evaluate an integrated system [75].

Benchmarking control algorithms is, however, easier and
be done on simulated soft robotic models. As such there
is an increasing need to develop benchmarking simulation
platforms to evalaute learning-based control strategies in soft
robotic devices and this can go a long way in accelerating
the state of the current research landscape.

VII. CONCLUSIONS

The field of soft robotics and machinetearningML has had
rapid advancements in the last few decades. Soft robotics
on one hand uses complex physical systems to solve hard
physical problems, while machinelearningML uses com-
plex mathematical structures to solve hard computational
problems. In tandem, they provide numerous advantages
and capabilities, as evident in the recent achievements in
the field. Owing to their relatively high damping, intrinsic
safety, attractor dynamics and partial observability, machine
learningML techniques are particularly well-suited for soft
robotic systems. Relatively high damping, intrinsic safety and
the dense attractor dynamics makes real-world exploration
and sampling easier to obtain and learn. This is one of the key
drawbacks of rigid robots, where damages to the system and
chaotic dynamics reduces the applicability of ML techniques.
Data-driven approaches are more accommodating to increas-
ing complexity and non-linearity in the system, a trend that
the field of soft robotics is driving towards, particularly with
the concept of morphological computation. Yet, there are still
numerous challenges and opportunities in this budding field
that requires an interdisciplinary solution. Note that there are
tasks where a simple open-loop controller would suffice (eg.
[76], [77]) and we should strive to design our soft robots to
this aim, if possible.

Primary challenges in the field include expanding the hori-
zon of control problems from traditional end-effector control
to more general shape control, impedance and stiffness
control. This introduces sub-problems like motion planning,
sensor placement, state estimation, etc. that have been very



well studied in the literature. Further down the line, the more
complex problem of design optimization and the coupling be-
tween the body dynamics and environment is to be addressed
as we look towards more application-oriented research. A
large body of control theory fundamentals like stability and
robustness analysis, controllability and observability of soft
systems are yet to deeply studied in the field. Data-driven
methods can in fact be applied to do so and could help bridge
the gap between theory and practise. Another interesting
challenge in the field is the modelling of sensors itself, which
is usually a simple linear calibration phase in traditional
systems. Feedback control with these embedded soft sensors
is a large topic with immense commercial applications.
Finally, in order to make ML techniques more accessible
and tractable for real-world applications, we need to look
into physically explainable models and transferable models,
which has the potential to reduce learning time and stability
of learning. Throughout all these topics we can see that
traditional modelling techniques, control architectures and
control fundamentals can and need to be incorporated into
existing learning modules for novel advancements in the
field.

VIII. SIDEBARS

2. Learning methods in soft robot control

Learning-based  methods involve the empirical
approximation of an unknown model of the soft robot
that is embedded in the control solution. This process

usually relies on the use of neural networks, but recently
also deep neural networks or other data-driven approaches
(e.g. Gaussian models) have been proposed. Figure [6] shows
the learning approaches used for the control of soft robots,
considering the three main learning classes.:—supervised
learning—unsupervisedlearning-and-reinforecementlearning:
Supervised learning uses labeled datasets to train algorithms
for classifying data or predicting outcomes accurately
through regression. Collected data compose the training set,
that is divided in input for the model and desired output.
As input data are given to the supervised method, it adjusts
its weights based on the desired output until the model
to classify/predict has been fitted appropriately, which
occurs as part of a cross validation process [78]. Supervised
learning is used in soft robotics for learning different types
of models including inverse kinematics or forward/inverse
dynamics of soft manipulators. These models are then
embedded in controllers.

In unsupervised learning, the algorithm is not provided with
any label for the training data. As a result, unsupervised
learning algorithms find occurring patterns in that training

data set Gefﬂmeﬂ—eﬂmp}es—me}&d&e}uﬁefmg—whefe—the

dfseﬂmmafe%etwee&dfffefeﬂt—&aﬂﬂﬁge%amp}e& Th%eﬂlry
}eafm&gf&ebjeet—feeegmﬂe&feﬁgfaﬁ%ﬂg So tar the only

application of unsupervised learning is for object recognition
[52], but it has not used for control.

Reinforcement Learning consists in a procedure where
the agent performs an action, at each state, receiving an
assessment—in—a—form—of—a rewards from the environment.
The agent derive the effectiveness of the state-action pairs
until a policy is learned. [79] This process involves two

steps: exploration that—refers—to—the—possible—ways—it—can
use—to—accomplish-—the—task that refers to visiting unknown
states or taking actions not taken yet and exploitation,
which is—the—preecess—of—using relies on the previously
gained available information gained to receive a large
reward at a given state. Rebeties—tasks—can—-be—seen—as—a

example-reeurrentneuralnetworks): Reinforcement Learning

tasks can be classified into model-based and model-free
approaches and on-policy and off-policy approaches. On-
policy algorithms evaluate and improve the same policy
which is being used to select actions. This means that the
policy used for generating the behaviour and interacting
with the environment is the one that it is trying to learn.
In off-policy algorithms, these two policies are different



using-policies-of-other-agents [79] In model- based learning,
the agent exploits a previously learned model to make
predictions about the task, whereas in model-free learning,
the agent simply relies on some trial-and-error experience
for action selection. Reinforcement learning is used in soft
robotics to learn dynamic and kinematic models and, it can
be used to directly learn the controller.

3. Bioinspiration

Bioinspiration is the extraction of principles, from
the observation of living beings, to adopt in building
human-made products. Soft robotics is deeply grounded
in bioinspiration. We may say it is bioinspired per se,
as most animals are soft fully (if they are small or live
underwater or underground) or partly (if they have to
compensate gravity). Bieinspiration—is—not—just—copying
living-organisms-but-extracting-the-prineiples—ofinterest-for
engineering;roboties;-or-otherfields: Embodied intelligence

is one of them principles that we can learn from nature
and motivates the need for compliant bodies, soft tissue

and deformable structures in robotics. A—new—wide—range

defefma&eﬁtmde%ﬂefma%epefaﬂﬁﬁ The underlylng 1dea is

that motor behaviour is not only controlled by computation,
but emerges in part from the interaction of the physical
body with the environment. Soft robots undergoing large
deformations under external interactions can teuse principles
of embodied intelligence and morphological computation to

it the gof . . | s 1
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and-highly-dexterousachieve effective motion in unstructured

environments. Control strategies applied on these artifacts
try to exploit the aforementioned body properties to exploit
morphological computation and simplify complex tasks.

4. State estimation in Soft Robotics:

State estimation in soft robotics is a challenging field;
firstly because of the abstract definition of the state-space and
secondly forthe developing nature of sensing technologies.
Amongst them, embedded soft sensors are appearing that
can be usedimpertant-emerging-toels for proprioception, for
exteroception and for developing feedback controllers [81],
[18]. However, there are key challenges in modelling these
sensors, as nonlinear time variant dynamic systems, which is
further aggravated by intrinsic variability’s introduced by the
fabrication process [82]. Hence, learning-based approaches
have been ubiquitously preferred for modelling soft sensory
systems [83], [84], [85]. However, so far, these works have
been limited to the development of task independent low-

level models and not yet been applied for feedback control.
This can be achieved by the use of a higher level controller
over the learned lower level models or by directly learning
an end-to-end controller.
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