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ABSTRACT 

Physical therapy improves upper limb rehabilitation after stroke, however access to high-

dose training is often limited. Innovation is greatly needed to increase efficiency and 

accessibility of post-stroke rehabilitation. Transcranial direct current stimulation (tDCS) is a 

candidate tool to support neuroplasticity for rehabilitation. Exciting developments and 

potentially clinically relevant applications of tDCS are however subject to high outcome 

variability across studies, suggesting a need for further improvement of the technique. The 

work presented in this thesis aims to identify and minimise sources of tDCS outcome 

variability when applied in stroke.   

Advances in current flow modelling (CFM) software now allow greater control over where, 

and in what manner exogenous fields encounter neuronal populations of interest, and 

improved mechanistic understanding of tDCS-induced excitability changes allows 

researchers to consider the potential neurophysiological impact of DC fields. However, 

increased control of tDCS application has not yet translated to improved outcomes. While 

modulation of motor evoked potential (MEP) amplitude by tDCS has been reported, the 

magnitude of the effect has steadily decreased since the turn of the century (Horvath et al., 

2015), and optimal study conditions remain unknown. Here, a candidate computationally 

individualised tDCS protocol is described, including in-depth discussion of its methodological 

rationale and potential barriers to optimisation. This protocol was not found to significantly 

alter cortical excitability, probed using transcranial magnetic stimulation (TMS), in stroke 

survivors and neurotypical participants. 

Meanwhile, reduced intra-cortical inhibition is here reported in sub-acute stroke survivors 

compared to neurotypical participants, and persistently increased variability in TMS-

assessed excitability is reported in survivors up to 12 months post-stroke. The known state-

dependent properties of tDCS suggest that individualised application may be required to 

further optimise the intervention in the heterogenous stroke population. Finally, a large 

computational study demonstrates the significant impact of stroke lesions on simulated 

tDCS electric field (E-field) delivered to the hand representation of the primary motor 

cortex, compared to neurotypical controls. This suggests that stroke-induced changes to 
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brain anatomy may significantly impact E-field properties at a cortical target, which has 

recently been shown to correlate with neurophysiological outcomes.  

Taken together, heterogeneity in cortical anatomy and function in stroke survivors may 

contribute to variable tDCS outcomes and explain why computational approaches have not 

yet translated into larger effect sizes. Consequently, an individualised approach to protocol 

design is recommended to innovate tDCS application in stroke.   
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IMPACT STATEMENT 

This work will impact progress within and outside the academic sphere. It has been reported 

that a 240% increase in training dose would be required to improve stroke outcomes 

(Schneider et al., 2016), and the majority of research into motor rehabilitation after stroke, 

the topic of interest in this thesis, has focussed on one-to-one training with a practitioner 

(Stewart et al., 2017). Under these conditions, an unsustainable increase in time and staff 

would be required to meaningfully improve outcomes for every stroke survivor (Dorsch & 

Elkins, 2020); innovation is greatly needed to increase the efficiency and accessibility of 

post-stroke rehabilitation.  

This thesis therefore focussed on optimising a non-invasive neuromodulation technique, 

tDCS, in the context of stroke. TDCS-induced changes in cortical excitability have promise to 

maximise neuroplastic potential, to improve efficiency of motor rehabilitation. However, 

tDCS outcomes are subject to high variability and vulnerable to differences in underlying 

cortical excitability before stimulation is applied. The findings of this thesis suggest first that 

optimal timing of tDCS after stroke may be best-informed by individual assessment of the 

brain’s functional state. This is contrary to a prevailing hypothesis that tDCS optimisation 

would be partly determined by time since stroke onset, as a hypothesised window of 

enhanced excitability was expected to occur in the sub-acute phase (1 week – 6 months 

post-stroke). I report that predictions of brain state by time post-stroke are too coarse to 

adequately optimise tDCS for a heterogeneous population of stroke survivors. Instead, 

individual assessment of cortical excitability is required to identify survivors best suited to 

benefit from the intervention.  

Second, the findings of this thesis suggest that stroke-induced changes in brain anatomy 

have a significant impact on tDCS-induced electric field (E-field): conductive lesions are 

shown to draw current towards them even if small in size, altering E-field intensity in an ROI 

which may be in- or out-of-line with the path of current flow. Furthermore, network re-

organisation may result in alteration of the optimal cortical target to modulate motor 

function, particularly in cases where the primary motor cortex is occluded by a lesion. 

Optimisation of tDCS in stroke may require individual identification of brain regions 
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supporting movement, instead of targeting the neurotypically-defined primary motor 

cortex.  

Candidate methods to account for stroke-induced changes in brain anatomy and function 

include development of biophysically realistic current flow models (Aberra et al., 2020; 

Bonaiuto et al., 2016; Bonaiuto & Bestmann, 2015; Clusella et al., 2022; Galan-Gadea et al., 

2022; Jansen & Rit, 1995; Lopez-Sola et al., 2022; Sanchez-Todo et al., 2022; Wang et al., 

2018). In the research sphere, development of current flow models is recommended to 

implement advances in the mechanisms of tDCS and the physics of current flow to innovate 

tDCS protocol design. TDCS maintains its promise to improve public service by increasing 

efficiency of motor rehabilitation to improve quality of life after stroke. Further 

development of current flow models paired with research to improve accessibility of 

computational models in clinical settings is likely required for further progress, with a focus 

on minimising the time, expertise and costs required to implement them.   
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KEY TERMS 

Acute phase 1 – 7 days after stroke 

Anatomical brain state Morphology of brain tissue, including stroke lesions 

CFM Current flow modelling / Current flow model 

Chronic phase ≥ 6 months after stroke 

CSE Cortico-spinal excitability 

CSF Cerebrospinal fluid 

CST Cortico-spinal tract 

Early sub-acute phase 1 week – 3 months after stroke 

E-field Electric field 
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ENIGMA Enhancing NeuroImaging Genetics through Meta‐Analysis 

Functional brain state Underlying brain activity, neurochemistry or excitability 
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Hemiparesis weakness or the inability to move on one side of the body 

Hyper-acute phase 0 – 24 hours after stroke 

IO curve Input-output curve 

Late sub-acute phase 3 – 6 months after stroke 

M1 Primary motor cortex 

M1hand Hand representation of the primary motor cortex.  

mA Milliampere, unit of tDCS current injected into scalp electrodes 

MEP Motor evoked potential 
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RMT Resting motor threshold 
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UL Upper limb 

V/m 
Volts per meter, the intensity of electric field in an electro-
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CHAPTER 1. INTRODUCTION 

1.1 The burden of stroke. 

In 2015 approximately 117,600 people experienced a stroke in the United Kingdom (UK), 

bringing the estimated number of stroke survivors to 950,000. By 2035, stroke prevalence is 

expected to rise to 2,119,400, with an estimated societal cost of £75 billion (King et al., 

2020).  

This worsening projection is in part due to an ageing population and advances in acute care 

which have dramatically reduced mortality rates (Lackland et al., 2014); stroke survivors 

now live with chronic symptoms and there is a great need to improve long-term outcomes. 

The work presented in this thesis explores the potential of non-invasive brain stimulation to 

augment rehabilitation of the impaired upper limb after stroke, a symptom experienced by 

up to 80% of survivors (Langhorne et al., 2009). I will first describe current understanding of 

stroke recovery patterns and the neurobiology which might underpin them. I will then 

consider non-invasive brain stimulation methods to support the neuroplasticity required for 

rehabilitation at key time points after stroke.  

1.2 A temporal framework for post-stroke recovery. 

Four distinct epochs are recognised in stroke recovery, informed by preclinical and human 

research (Bernhardt et al., 2017). These distinct phases are identified by time since stroke 

onset: hyper-acute (0–24 hours), acute (1–7 days), early subacute (1 week–3 months) late 

subacute (3–6 months), and chronic (more than 6 months post-stroke) (Bernhardt et al., 

2017). It is hypothesised that functional recovery, modulated by the brain’s capacity for 

plasticity, might be understood within this framework. The work of Bernhardt and 

colleagues (Bernhardt et al., 2017), Joy and Carmichael (Joy & Carmichael, 2020), and 

Krakauer and Carmichael (Krakauer & Carmichael, 2017) comprise excellent summaries of 

post-stroke neurorehabilitative mechanisms which I will also outline here.  

Within minutes of stroke onset, cell death occurs in the infarct core, a brain area 

characterised by extremely low cerebral blood flow (CBF) and metabolic oxygen rate. The 



23 

 

next 24 hours are termed the hyper-acute phase of stroke, characterised by a cascade of 

cellular processes which mediate excitotoxicity. During this time, clinicians aim to rescue 

penumbral tissue adjacent to the stroke core, characterised by reduced blood flow, which 

will progress to infarction without intervention (Fernández-Klett & Priller, 2014; Rosso & 

Samson, 2014). 

The acute phase is defined as the week following stroke, characterised by delayed neuronal 

cell death caused by radial propagation of inflammation extending from the infarct core to 

adjacent and functionally connected regions (Sharp et al., 2000). Spreading inflammation 

causes parts of the penumbra to die; rodent models suggest this will occur within the first 2 

days following stroke (Davis & Donnan, 2014). Human imaging studies have shown that 

extent and temporal trajectory of infarct growth in this stage is subject to high 

heterogeneity regardless of intervention (Moustafa & Baron, 2008). In fact, Rosso and 

Samson (Rosso & Samson, 2014) note that the thrombolysis window may vary between 

patients.  

Within the acute phase, surviving penumbral tissue forms the peri-lesional zone, separated 

from the core by a thin layer of scar tissue (Fernández-Klett & Priller, 2014). During this 

phase, the brain is sensitive to processes that might potentiate further injury, such as 

elevated temperature, infection, altered physical activity levels, or increased cortical 

excitability. The unstable acute phase is not a target for interventions described in this 

thesis (Carmichael, 2012; Clarkson et al., 2011; Dromerick et al., 2009; The AVERT Trial 

Collaboration group, 2015).  

The sub-acute phase occurs between 1 week and 6 months of stroke onset, though the 

period before 3 months, identified as the early sub-acute phase, is of particular interest 

(Bernhardt et al., 2017). During the early sub-acute stroke period, accelerated recovery of 

function relative to gains achieved later in the timeline has been widely reported (Duncan et 

al., 1992; Krakauer et al., 2012; Kwakkel et al., 2003; Nishimura et al., 2007; Ward, 2017). 

Interestingly, these gains often occur irrespective of medical intervention. That is, they 

occur in a period of spontaneous biological recovery (Biernaskie, 2004; Nudo & Milliken, 

1996; Zeiler et al., 2016).  
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1.2.1 Spontaneous biological recovery. 

The concept was explored in a study by Nudo and Milliken (Nudo & Milliken, 1996), which 

demonstrated that squirrel monkeys’ performance on a pellet retrieval task returned to pre-

stroke levels within two months, in the absence of training. In a control group of monkeys 

that did receive training in the subacute phase (commencing from 5 days after stroke), the 

same performance level was reached within one month of induced stroke. This early finding 

highlighted both an endogenous process by which subjects might spontaneously regain 

function in the absence of training, and further demonstrated that at least the speed of this 

process might be modulated by intervention. Krakauer and Carmichael however point out 

some controversy over the description of “spontaneous” recovery, since daily movements 

outside of training sessions were not prohibited (Krakauer & Carmichael, 2017b). 

While spontaneous biological recovery has been shown to result in near-complete 

functional recovery in some cases, others have reported that intervention might not only 

speed up the recovery process (Nudo & Milliken, 1996) but also improve functional 

outcomes (Murata et al., 2008; Ogden & Franz, 1917). Murata and colleagues demonstrated 

that macaques with large lesions encompassing all digit representations in the primary 

motor cortex (M1) were able to recover pre-stroke performance in a precision grip task 

within 1 or 2 months when training was delivered for 1 hour a day, 5 days a week. By 

contrast, monkeys in the spontaneous recovery group (no intervention) did regain the 

ability to flex and extend the thumb and index finger, but not to pre-operative levels 

required to consistently perform on the precision grip task. Taken together, early animal 

models indicated a time window in which recovery from stroke was spontaneously 

heightened, and open to modulation by training. 

1.2.2 A sensitive period for recovery. 

Stroke-induced spontaneous biological recovery and heightened sensitivity to training are 

time-limited. Biernaskie and colleagues (Biernaskie, 2004) for example demonstrated that 

enriched rehabilitation initiated 5 days after focal ischemia in 40 Sprague Dawley rats 

resulted in marked improvement in forearm reaching, narrow beam-walking and ladder 

tasks, and reduced dependence on the unaffected paw. By contrast, intervention delivered 



25 

 

at 14 days resulted in lesser improvement, and training delivered at 30 days resulted in 

functional gains comparable to rats given no training at all.  

One might consider the contribution of loss of peripheral input to Biernaskie and colleagues’ 

findings; perhaps muscle atrophy or preference for compensatory movements had set in 

after a month without intervention. The notion of a sensitive period of heightened 

endogenous plasticity induced by the stroke itself was tested by Zeiler and colleagues (Zeiler 

et al., 2016), who hypothesised that a second stroke might re-open the sensitive window 

and counter-intuitively improve functional outcomes. Mice were first trained in a reach-to-

grasp task before the first stroke was induced. From 7 days post-stroke, mice were either 

trained for 19 days or trained to asymptote on the same task. In the latter group, a second 

stroke was induced and training re-commenced after only 48 hours. Mice in the single-

stroke group experienced only mild performance gains which did not return to pre-stroke 

levels. In contrast, performance initially worsened in mice after a second stroke, before 

dramatically improving to levels comparable to pre-stroke levels. An additional control 

group underwent a second stroke in an area outside the functional network, the occipital 

cortex, which did not result in significant functional improvement. These findings supported 

hypotheses of a stroke-induced, time-limited window of heightened recovery potential in 

animal models of stroke, which has not yet been robustly translated to human stroke 

survivors, though research is ongoing (Dromerick et al., 2015, 2021; Hordacre et al., 2021; 

Rubio Ballester et al., 2018; reviewed in Cramer, 2020).  

While it is recognised that stroke survivors have the capacity for significant functional 

improvement in all stages after stroke, including many years into the chronic phase with 

intensive training (Ward et al., 2019), it is also clear that a period of rapid spontaneous 

functional improvement, which may be open to modulation by intervention, occurs in the 

months following human stroke (Twitchell, 1951), now defined as the “sub-acute” phase of 

recovery (Bernhardt et al., 2017). Notably, this universal timeline may not apply to all 

human stroke survivors; the interaction between spontaneous biological recovery, the 

impact of training, and end-point recovery potential is likely moderated by stroke severity, 

which itself is determined by several factors including lesion size, remaining neural 
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substrates, ability to participate in functional training and comorbidity. I consider the 

difficulties of translation between animal and human models further in the discussion. 

Understanding the molecular and cellular triggers which might open the sensitive period 

after stroke (and indeed, close it) is a focus for therapeutic research: could the critical 

window, during which rapid recovery is observed, be extended or supported non-invasively? 

In the next section, I will consider the brain environment which might support heightened 

sub-acute recovery. 

1.3 Neurophysiological mechanisms of sub-acute stroke recovery. 

Cortical excitability is here defined as the strength of response of cortical neurons to 

afferent input. In the sub-acute phase of stroke, a prevailing hypothesis based on pre-clinical 

work posits that increased sub-acute cortical excitability might underpin accelerated 

functional gains which are also observed in the sub-acute phase of stroke (Bernhardt et al., 

2017; Carmichael, 2006; Cramer, 2008; Joy & Carmichael, 2020).  

Notably, the trajectory of cortical excitatory-inhibitory shift after stroke is not linear. In the 

hyper-acute and acute phases, excitotoxicity prevails, and hyperexcitability is instead 

associated with cell death. Neuromodulatory research is focussed on the sub-acute phase 

not only because the steepest functional gains are observed 1 week to 6 months post-

stroke, but because stroke-induced excitotoxicity occurs in the unstable acute phase which 

is generally not a target for neuromodulatory intervention (Carmichael, 2012; Clarkson et 

al., 2011; Dromerick et al., 2009; The AVERT Trial Collaboration group, 2015), though I note 

recent rodent work investigating the efficacy of tDCS to limit acute infarct expansion (Liu et 

al., 2017; Notturno et al., 2014; Peruzzotti-Jametti et al., 2013; Pruvost-Robieux et al., 2018). 

Briefly, excitotoxicity after stroke is characterised by a positive feedback loop in which 

hypoxia results in neuronal polarisation, followed by glutamate release and binding to N-

methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptors. Subsequent calcium and sodium influx in affected cells results in further 

neuronal depolarisation: an excitotoxic cycle associated with irreversible calcium-mediated 
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cell death (Jayaraj et al., 2019; Krakauer & Carmichael, 2017c; Lai et al., 2014; Shen et al., 

2022). 

Excitotoxic damage is countered by an increase in GABAergic signalling (Clarkson et al., 

2010; Prabhakaran et al., 2008), as GABA accumulates at extrasynaptic GABAA receptors in 

peri-lesional tissue following stroke, via downregulation of the GABA transporter GAT3 

(Clarkson et al., 2010). Increased GABAergic tone results in increased shunt current, which in 

turn increases the action potential threshold of affected neurons; persistent tonic inhibition 

reduces activity of neurons in the stroke-damaged circuit (Carmichael, 2012; Glykys & Mody, 

2007). 

1.3.1 Persisting GABAergic tone impedes functional recovery in sub-acute stroke.  

However, the neuroprotective effect of GABAergic inhibition can be detrimental to stroke 

recovery if GABAergic tone persists into the sub-acute phase of stroke. In a seminal study, 

Clarkson and colleagues (Clarkson et al., 2010), confirmed that disinhibitory intervention, via 

pharmacological reduction of GABA in peri-lesional tissue, improved functional outcomes in 

mice when applied after the excitotoxic window had closed. The same intervention applied 

during the excitotoxic window was associated with poor functional outcomes. Recent work 

corroborates Clarkson and colleagues’ finding that cortical recovery might be supported by 

alleviation of inhibitory signalling in brain regions affected by the stroke (Clarkson et al., 

2010; Lake et al., 2015; Orfila et al., 2019). In humans, GABAA receptor availability has been 

shown to correlate with motor recovery after stroke in a PET study, where elevated GABAA 

receptor availability was recorded up to 1 month before returning to neurotypical group 

levels by 3 months post-stroke (Kim et al., 2014). 

While alleviation of persistent inhibitory signalling is a therapeutic target in the human sub-

acute phase, it is acknowledged that inhibitory systems do not respond uniformly to stroke. 

Enhanced long-term potentiation (LTP) and diminished response to paired-pulse inhibitory 

TMS protocols have also been reported in sub-acute stroke (Buchkremer-Ratzmann & Witte, 

1997; Hagemann et al., 1998; Krakauer & Carmichael, 2017c; Qü et al., 1998; Schiene et al., 

1996), thought to be underpinned by reduced phasic synaptic GABAergic inhibition in peri-

lesional tissue. In fact, enhancement of phasic (instead of tonic) GABA with the agonist 
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zolpidem has been shown to improve functional recovery when applied days to months 

after rodent stroke (Hiu et al., 2016). Therapeutic interventions must therefore target 

selective inhibitory systems (Johnstone et al., 2018; Joy & Carmichael, 2020; Krakauer & 

Carmichael, 2017c). 

1.3.2 Reducing inhibition and increasing excitability promotes sub-acute recovery.  

Taken together, a recovery-promoting profile of excitatory-inhibitory balance after stroke 

may include reduced inhibition and increased excitation in brain areas adjacent to, or 

functionally connected with, remaining substrates in peri-lesional tissue. Though functional 

recovery and responsiveness to training continue in chronic stroke, spontaneous biological 

recovery and a sensitive period for training appear to be temporally coupled with a sub-

acute 6-month window of atypical excitatory-inhibitory balance. This observation has given 

rise to the hypothesis that supporting an excitable brain environment may promote 

recovery after stroke (Carmichael, 2006; Cramer, 2008; Di Pino, Pellegrino, Capone, et al., 

2014; Joy & Carmichael, 2020).  

The temporal framework for post-stroke recovery outlined earlier in this Chapter was 

proposed by The Stroke Roundtable Consortium (Bernhardt et al., 2017), with the aim of 

creating a unified vision in stroke rehabilitation research by streamlining common language 

and definitions used. Four phases of the post-stroke timeline were defined by time since 

stroke onset (hyper-acute: 24 hours, acute: 1 day – 1 week, sub-acute: 1 week – 6 months, 

chronic: > 6 months). The rationale for these temporal divisions was grounded in 

observations that recovery-related processes after stroke are time-dependent (Biernaskie, 

2004; Carmichael, 2016; Dobkin & Carmichael, 2016; Zeiler et al., 2016), and that the 

trajectory of functional recovery, particularly motor recovery, follows a relatively 

homogenous pattern whereby the most significant improvements are observed in the 

weeks and months following stroke, stabilising to chronic deficit by 6 months (Bernhardt et 

al., 2017; Buma et al., 2013; Cramer, 2008; Dobkin & Carmichael, 2016; Kwakkel et al., 2003, 

2004). A hypothesis emerges, that functional gains and neurophysiological changes 

following stroke are temporally coupled. This concept is summarised in Figure 1.1. In 

Chapter 2 of this thesis, I interrogate TMS-assessed longitudinal excitability changes up to 

12 months post-stroke, to determine whether a similar coupled trajectory of functional 
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gains and neurophysiological change occurs in human stroke survivors. Clearer 

characterisation of the human post-stroke timeline may reveal critical windows of time in 

which brain activity maximally supports potentiation of training, or conversely, periods of 

inhibition where neuromodulatory intervention may be best applied to support physical 

therapy. 
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0 

Figure 1.1. Schematic of the hypothesised coupled trajectories of cortical excitability change and functional gains after human stroke. Based on the work of 
Bernhardt and colleagues (Bernhardt et al., 2017). On the y-axis, ‘zero’ simultaneously represents neurotypical cortical excitability and minimum motor function. 
Time post-stroke is shown on the x-axis. Shaded areas represent each phase of stroke recovery (grey = acute, green = early sub-acute, blue = late sub-acute, purple 
= chronic) with labels included above shaded segments. A sub-acute peak in capacity for endogenous neuroplasticity may be underpinned by a stroke-induced 
increase in cortical excitability and disinhibition, giving rise to acceleration of functional gains in sub-acute stroke. In chronic stroke, cortical excitability is 
hypothesised to return to neurotypical levels, coupled with slowing of motor gains. 
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1.3.3 Sub-acute reduction in excitability due to lost connectivity.  

In addition to alleviation of inhibitory signalling, promotion of excitatory activity in regions 

functionally connected with damaged networks is hypothesised to support recovery after 

stroke. Enhanced Brain-Derived Neurotrophic Factor (BDNF) signalling in the peri-lesional 

cortex has been linked with improved motor function after stroke (Clarkson et al., 2011, 

2015), and treatment with AMPAkines has been shown to support binding of glutamate to 

AMPA-type glutamate receptors (AMPARs), leading to increased expression of BNDF and 

enhancement of peri-infarct brain re-organisation in sub-acute stroke (Wang et al., 2018). 

Similarly to the pattern of persisting inhibition limiting recovery described above, decreased 

sub-acute neuronal excitability has been recorded in preclinical and human studies. Lim and 

colleagues (Lim et al., 2014) for example recorded widespread depression of optogenetically 

evoked activity 1 week after stroke. Though activity recovered to pre-stroke levels by 8 

weeks, network strength remained impaired due to loss of key nodes in the functional 

circuit. The authors recommended intervention to support earlier network re-organisation, 

in cases where recovery-promoting excitation is dampened in the months following human 

stroke.  

Reduced neuronal response to sensory stimuli in brain regions within a damaged network 

may be characteristic of an early sub-acute response to stroke (Brown et al., 2009; Di 

Lazzaro et al., 2010; Lim et al., 2014; McDonnell & Stinear, 2017). This is considered a direct 

result of lost connectivity within the network, as dendritic spines become unstable and the 

excitability of neurons adjacent to, or connected with, stroke-damaged neurons is reduced. 

This effect is network-specific: little network activity change is recorded in non-motor 

networks after motor stroke, such as the occipital cortex (Lindau et al., 2014). Alleviating 

reduced network signalling in sub-acute stroke, after the excitotoxic window has closed, is a 

therapeutic target for intervention, particularly in light of work reporting chronic network 

dysfunction after stroke, which may contribute to limited functional outcomes (Grefkes & 

Fink, 2012; Guggisberg et al., 2019; Siegel et al., 2016). 
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1.4 Why does increased cortical excitability support recovery? 

Krakauer and Carmichael (Krakauer & Carmichael, 2017a) assert that motor recovery after 

stroke requires 3 components: (partially) in-tact neural substrates (i.e. remaining structures 

in motor or sensory networks), tissue re-organisation, and physical activity to train newly 

reorganised networks. The former is best addressed by acute stroke care with a focus on 

limiting expansion of the infarction (Rosso & Samson, 2014), and is beyond the scope of this 

thesis. The latter processes are discussed below. 

1.4.1 Cortical excitability supports synaptic plasticity.  

The primary events of tissue reorganisation after stroke include axonal sprouting and 

dendritic spine morphogenesis (Carmichael et al., 2017; Cramer, 2008), as damaged 

networks begin to re-establish connectivity. There is robust evidence for tissue re-

organisation after stroke, though it is not always causally linked with functional recovery. 

Carmichael and colleagues (Carmichael et al., 2017) distinguish between reactive and 

reparative axonal sprouting, the former being part of the early ‘clean up’ response of the 

brain. Reactive axonal sprouting occurs in the peri-infarct zone, and is part of the cell 

turnover necessary for scar formation after infarction. It is not associated with functional 

improvement. Reparative axonal sprouting occurs not only in peri-lesional tissue but in 

distant, functionally connected brain regions. Increased network excitability can support 

recovery via growth of new connections after stroke. For example, optogenetically-

increased synchronous firing of a population of neurons has been linked to improved post-

stroke motor function (Cheng et al., 2014), which in turn is associated with growth of 

dendritic spines (Tennant et al., 2017) and axons (Wahl et al., 2017) in brain areas affected 

by stroke, both in peri-lesional tissue and distant, functionally connected regions (Li et al., 

2010, 2015; Omura et al., 2016; Overman et al., 2012). Meanwhile, increasing excitability in 

non-relevant networks can impair motor recovery (Blomstedt & Hariz, 2006); encouraging 

network-specific excitability is a therapeutic target for stroke recovery.  

1.4.2 Cortical excitability supports restoration of lost connectivity. 

1.4.2.1 Increased cortical excitability supports motor engram formation. 

Re-building damaged functional networks requires co-activation of neurons that are 

excitable enough to fire together. An engram, a term more commonly used in memory 
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neuroscience, is a physical trace of a memory in the brain (Josselyn et al., 2015; Tonegawa 

et al., 2015). The term has been adopted in stroke recovery, where a motor engram might 

be represented by co-activated neurons in the motor cortex which control upper limb 

movement. Allocation of neurons to a motor engram depends on their activity in response 

to a shared stimulus of interest (Biane et al., 2015; Costa et al., 2004; Ohashi et al., 2019). 

Neurons are competitively allocated to an engram based on their state of excitability; a cell 

that is more likely to respond to a given stimulus will be preferentially allocated to a 

network that prioritises efficiency (Tang et al., 2019). Therefore, promoting cortical 

excitability is a candidate method to support restoration of functional networks after stroke 

(Joy & Carmichael, 2020). Evidence has already emerged demonstrating that rehabilitative 

training (Clark et al., 2019) and artificial activation (Roy et al., 2016, 2017) of engram 

neurons strengthens synaptic contacts within the network, by supporting dendritic spine 

plasticity (Frank et al., 2018; Fu et al., 2012; Hayashi-Takagi et al., 2015; Huang, Li, et al., 

2018; Sargin et al., 2013). Later in this thesis I will describe the potential of transcranial 

direct current stimulation (tDCS), a non-invasive technique and candidate method to 

artificially activate neurons in a target network.  

1.4.2.2 Increased cortical excitability supports Creb induction. 

Enhancement of neuronal activity following stroke is also moderated by the transcription 

factor CAMP response element binding protein (Creb). Creb enhances neuronal excitability 

and facilitates LTP (Wu et al., 2007) by altering the action potential threshold of affected 

neurons (Dong et al., 2006; Kim et al., 2013). Creb is powerfully induced in a very small 

number of motor cortical neurons following stroke (Gouty-Colomer et al., 2016; Han et al., 

2007; Zhou et al., 2009). Notably, the number of Creb-induced neurons is similar to the 

number of neurons that are allocated to motor engrams described in the previous 

paragraph (Caracciolo et al., 2018; Joy & Carmichael, 2020). Animal studies have shown that 

induction of Creb in motor and premotor neurons facilitates full motor recovery following 

stroke, while blocking Creb signaling prevented recovery (Caracciolo et al., 2018). Indeed, 

Creb is suggested to have the capacity to turn stroke recovery “on and off” (Joy & 

Carmichael, 2020, p.9; Krakauer & Carmichael, 2017, p.149). Enhancement of neuronal 

activity via Creb induction is a therapeutic target in stroke, and the intervention of interest 

in this thesis, tDCS, has been associated with Creb induction (see section 1.5.2) via 
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modulation of intracellular calcium concentration (Kornhauser et al., 2002; Podda et al., 

2016).  

1.5 Non-invasive brain stimulation alters cortical excitability. 

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique 

that modulates neuronal activity via sustained low-intensity direct current (DC). The 

practical use and mechanisms of tDCS are described in the following sections, and a 

comprehensive commentary can be found in the work of Bikson and colleagues (Bikson et 

al., 2019). Briefly, the appeal of tDCS lies in its status as a cheap, portable, effective, and 

easy-to-use non-invasive neuromodulation technique which is well-tolerated by human 

participants (Chhatbar et al., 2017; Minhas et al., 2010; Pilloni et al., 2022; Reckow et al., 

2018). In the context of stroke, tDCS is considered a promising tool with the potential to 

augment rehabilitation, under the hypothesis that exogenous electrical current may boost 

neuronal excitability, and in turn support potentiation of post-stroke training (Joy & 

Carmichael, 2020; Krakauer et al., 2012; Kronberg et al., 2017, 2019; Ward, 2016, 2017). 

However, evidence has accumulated to show high tDCS outcome variability, a barrier to its 

adoption in clinical settings. A core aim of this thesis is to identify and reduce sources of 

tDCS outcome variability particularly in the context of stroke, and to investigate whether 

optimised tDCS might reliably alter human cortical excitability to support recovery.  

1.5.1 TDCS mechanisms of action.  

During tDCS application, low-intensity electric field (E-field) is directed into the body via at 

least one anode electrode, and exits the body through at least one cathode electrode 

(herein referred to simply as “anode” and “cathode”). When applied to the head, the 

majority of electrical current is shunted across scalp and cerebrospinal fluid (CSF) tissue 

(Ciechanski et al., 2018; Kessler et al., 2013; Opitz et al., 2015), while a low dose of E-field 

penetrates to stimulate the brain; peak tDCS E-field in the brain is typically ~0.3 V/m when 1 

mA tDCS is applied (Datta et al., 2009; Huang et al., 2017). 

The physiological mechanisms by which tDCS modulates neuronal activity are not yet fully 

determined, though extensive research indicates that application of DC E-field over a 

timescale of minutes will result in polarisation of neuronal membranes (reviewed in Bikson 



35 

 

et al., 2019; Jackson et al., 2016; Stagg et al., 2018). Altered membrane potential can change 

neuronal excitability (Bindman et al., 1964) via tDCS-induced alteration of responsiveness to 

synaptic input (Rahman et al., 2013), modulation of individual neuron firing rate (Miranda et 

al., 2006; Wagner et al., 2007), and altered cellular (Huang et al., 2017b) and network (Reato 

et al., 2013) processing of information. Importantly, tDCS does not induce action potentials 

but modulates sub-threshold neuronal activity in a polarity-specific manner (Bikson et al., 

2004; Chan et al., 1988).  

In the seminal work which gave rise to contemporary tDCS use at the turn of the 21st 

century (Nitsche et al., 2003; Nitsche & Paulus, 2000; Priori et al., 1998), a motor-targeting 

bipolar tDCS montage was used whereby an anode was placed on the scalp above the motor 

cortex, and a cathode over the contralateral supra-orbital ridge (M1-SO, herein referred to 

as the “conventional montage”) to modulate the amplitude of motor evoked potentials 

(MEPs) induced by transcranial magnetic stimulation (TMS; see section 1.8.2). This classic 

tDCS protocol did contribute to a seminal jump to contemporary low-intensity non-invasive 

brain stimulation use, and included important concepts such as the polarity-specific effects 

of stimulation (detailed in section 1.5.1.2). However, the emergence of current flow 

modelling (CFM) software (Dannhauer et al., 2012; Dmochowski et al., 2011, 2012, 2013; 

Huang, Datta, et al., 2018; Lee et al., 2017; Ruffini et al., 2014; Saturnino et al., 2015; 

Thielscher et al., 2015) and progress in pre-clinical work (Bikson et al., 2004; Jackson et al., 

2016; Lafon et al., 2017; Radman et al., 2007, 2009b; Rahman et al., 2013) now enables 

researchers to consider the pattern of exogenous current in the human brain in detail. In 

the following, I will consider potential sources of the high variability associated with tDCS 

from the perspective of proposed mechanisms of action.  

1.5.1.1 TDCS outcomes are variable. 

Neurophysiological and behavioural outcomes associated with tDCS are subject to 

persistent high variability, which has been attributed to a number of factors including inter-

individual differences in anatomical brain state, defined broadly as the morphology of brain 

tissue including stroke lesions; functional brain state, defined as underlying brain activity, 

neurochemistry or excitability; genetic neurotransmitter expression; sex; and age (Chew et 

al., 2015; Laakso et al., 2015; Polanía et al., 2018; Vergallito et al., 2022; Wiethoff et al., 
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2014; Wörsching et al., 2016). Lack of protocol standardisation is also striking, limiting the 

reproducibility of findings. This has stunted progress in the field, and there is a great need to 

resolve confounding sources of variability to realise the therapeutic potential of the 

technique.  

Wiethoff and colleagues (Wiethoff et al., 2014) investigated tDCS outcome variability in a 

group of 53 adults, who underwent 10 minutes of 2 milliamp (mA) motor-targeted tDCS 

with a conventional bipolar montage (electrodes positioned over the TMS-identified motor 

hotspot and the contralateral supra-orbital ridge). The authors reported that when “anodal” 

tDCS was applied, a 75:25 ratio of facilitation:inhibition was recorded across participants, 

while a 60:40 ratio was reported after the electrode positions were reversed (“cathodal” 

tDCS). A two-step cluster analysis identified ‘responders’ who demonstrated a significant 

motor evoked potential (MEP, see section 1.8.2) amplitude change following tDCS, and 

‘non-responders’, who showed no mean overall effect.  

Findings such as these do not suggest subsequent research should always stratify subjects 

into ‘responder’ and ‘non-responder’ groups. Rather, this is evidence of outcome variability, 

and is it important to consider what might underly it. Research has also emerged showing 

significant intra-individual variability in tDCS outcomes between tDCS sessions in the same 

subjects, spaced 6 to 12 months apart (Chew et al., 2015; López-Alonso et al., 2015). There 

is an urgent need for mechanistically-informed tDCS protocol development, because 

optimised tDCS has promise to support recovery in a number of disorders including stroke.  

TDCS has already been applied in the stroke population, with mixed results. A recent 

Cochrane review for example reported very low efficacy of tDCS used as an adjunct to post-

stroke therapy (Elsner et al., 2020) while another meta-analysis found a positive impact of 

tDCS (Shen et al., 2022). I note that meta-analyses of tDCS studies are at present 

problematic because un-standardised stimulation protocols and outcome measures, 

recorded at different time points (e.g. during or post-tDCS) do not allow for robust 

comparison of findings between studies. In the next section, I consider the mechanisms 

underlying neuromodulation by tDCS and discuss recent developments in mechanistically-

informed stimulation protocol. I then consider the generalisability of tDCS optimisation 

methods to the stroke population.  
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1.5.1.2 Direction of current flow dictates neuronal membrane polarisation.  

Maximal membrane polarisation of pyramidal neurons by DC fields occurs when current 

flows parallel to the somato-dendritic axis. The strength of somatic polarisation by 

exogenous current is related to the morphology of the cell (Radman et al., 2009; Svirskis et 

al., 1997); large layer 5 pyramidal neurons are particularly sensitive to DC stimulation 

(Radman et al., 2009). Pyramidal cells are typically oriented with apical dendrites pointing 

towards the cortical surface, and so current flowing radial-inward with respect to the 

surface of the cortex predominantly flows parallel to pyramidal neurons towards the 

somatic compartment of the cell (Figure 1.2). Radial-inward current flow relative to the 

cortical surface is associated with somatic depolarisation of pyramidal neurons, while radial-

outward current flow towards apical dendrites is associated with somatic hyper-polarsation. 

Current flowing along the cortical surface, predominantly tangential to pyramidal cell 

somato-dendritic axes, does not significantly polarise the somatic compartment of 

pyramidal neurons (Berzhanskaya et al., 2013; Bikson et al., 2004; Chan et al., 1988; 

Farahani et al., 2021; Radman et al., 2009; Rahman et al., 2013). Due to cortical folding, 

tDCS will produce mixed somatic polarisation of cells underneath and between electrodes 

(Lafon et al., 2017; Rahman et al., 2013; Figure 1.2), and inter-individual morphological 

differences result in varied E-field direction produced in a cortical target between 

participants (Evans et al., 2022). In this way, the predominant direction of E-field in a cortical 

region of interest (ROI) significantly differs between subjects when the same stimulation 

protocol is used (Evans et al., 2022). It appeals to intuition that variable E-field delivery may 

contribute to variability in behavioural outcomes of stimulation. 

Importantly, this description of the determinant effect of tDCS current direction on neuronal 

polarisation includes only the somatic compartment of the cell. The so-called ‘somatic 

doctrine’ focuses on the impact of E-field on the soma because of its critical contribution in 

eliciting action potentials, and in turn its determinant effect on excitability changes caused 

by DC fields (Bikson et al., 2004; Bindman et al., 1964; Purpura & McMurtry, 1965; Radman 

et al., 2007). However, increased understanding of the mechanisms of tDCS highlights the 

impact of exogenous E-field on all cellular compartments including dendrites and axons 

(Kabakov et al., 2012; Kronberg et al., 2017; Rahman et al., 2013), for example, radial-

inward current will result in both hyperpolarisation of apical dendrites and depolarisation of 
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the somatic compartment of the same cell (Figure 1.2; Bikson et al., 2004; Chan et al., 1988; 

Radman et al., 2009). Meanwhile, CA1 pyramidal neurons are oppositely polarised to layer 

II/IV and layer 5 pyramidal neurons due to their inverted orientation (Kronberg et al., 2017), 

and a significant impact of DC field on inter-neuronal excitability has been shown in animal 

work (Purpura & McMurtry, 1965). Taken together, the impact of transcranial DC field in 

humans has not yet been fully elucidated, and may explain difficulties in predicting 

outcomes in human studies even when the direction of current flow is controlled (Hannah 

et al., 2019; Rawji et al., 2018). 

Achieving radial-inward current relative to the cortical surface in a target ROI remains a key 

aim in tDCS optimisation, and is prioritised in the work presented in Chapter 3. However, I 

note that this approach does not account for complexities of the impact of exogeneous E-

field in the brain beyond the ‘somatic doctrine’; for example tangential current flow may 

have a greater impact on tDCS outcomes than previously thought (Rahman et al., 2013). In 

section 1.6.2, I discuss how current flow modelling (CFM) software is utilised to control the 

direction of tDCS current flow within the bounds of current understanding and modelling 

capabilities. Optimising direction of current flow may be important to reduce variability in 

tDCS outcomes, which in turn may improve the efficacy of tDCS in the context of stroke 

rehabilitation.  
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Figure 1.2. Polarisation of cortical pyramidal neurons by exogenous DC fields. Cells are predominantly oriented with apical dendrites pointing to the cortical 
surface. Radial-inward current flow relative to the surface of the cortex is associated with somatic de-polarisation (D, depicted in red). Radial-outward current 
flow is associated with somatic hyper-polarisation (H, in blue), and tangential current flow causes little to no polarisation effect of the somatic compartment of 
layer II/IV and layer 5 pyramidal neurons. Figure from Lee and colleagues (2021), under creative commons.  
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1.5.1.3 The intensity of tDCS required for behaviourally significant neuromodulation is 

unknown. 

Computational models of tDCS-induced fields in the human head have estimated that peak 

E-field intensity achieved in grey matter is ~0.3 V/m when 1 mA tDCS is applied to scalp 

electrodes (Datta et al., 2009; Huang et al., 2017). However, the optimal intensity of 

stimulation required for behaviourally meaningful modulation of neuronal activity is 

unknown. In vitro work has demonstrated a statistically significant change in neuronal spike 

timing when ~0.5 V/m uniform DC field was applied to rodent hippocampal slices (Radman 

et al., 2007). Importantly, translation from in vitro animal work to predicting outcomes in 

human transcranial stimulation studies is not straightforward for two primary reasons, 

detailed in the paragraphs below.  

1.5.1.3.1 The extent of neuronal polarisation by DC fields is moderated by cellular 

morphology. 

First, the relationship between somatic polarisation and extra-cellular DC fields is 

moderated by neuronal morphology, which differs between humans and the animals 

involved in reported studies (Bikson et al., 2004; Chan et al., 1988; Jefferys, 1981; Joucla & 

Yvert, 2009; Reato et al., 2013). The impact of neuronal morphology on sensitivity to 

extracellular E-field is described mathematically by the coupling constant (units: mm), which 

is used to describe the change in somatic voltage (in mV) of a cell per V/M of applied E-field, 

giving the formula:  

∆𝑉 = 𝑐𝐸(𝑀)𝐸 

Where ΔV (in mV) denotes change in somatic voltage, cE represents the coupling constant, 

derived from a complex function for neuronal morphology (M), and E denotes the intensity 

of uniform DC E-field oriented parallel to the somato-dendritic axis (Bikson et al., 2004; 

Chan et al., 1988; Jefferys, 1981). Bikson and colleagues (Bikson et al., 2004) estimated a 

coupling constant of 0.1–0.2 mV/V/m for rodent pyramidal cortical neurons, a value later 

confirmed by an in vitro study in ferret slices (Fröhlich & McCormick, 2010) and in CA3 

pyramidal neurons in the rodent hippocampus (Deans et al., 2007). In humans, neuronal 

length is typically longer (Joucla & Yvert, 2009). Reato and colleagues (Reato et al., 2019) 

point out that this difference in neuronal morphology may produce a higher coupling 
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constant for humans compared to rodents, suggesting that greater somatic polarisation 

might be achieved per V/m of applied current, though this has not been directly confirmed.  

1.5.1.3.2 The dose-response relationship of tDCS is non-monotonic. 

A second key reason why translation of findings from in vitro animal research to predict the 

dose-response relationship in humans is not straightforward, is because a linear relationship 

between applied current and somatic polarisation does not translate to a linear brain-wide 

response to increasing E-field. In fact, the dose-response relationship for tDCS in humans is 

likely non-monotonic (Esmaeilpour et al., 2018). This is because DC field delivered to the 

brain will impact not only isolated neurons but wider active networks. Network response to 

E-field will likely depend on the profile of endogenous activity, i.e. the functional state of the 

brain before stimulation is applied (Reato et al., 2013; Schmidt et al., 2014), and on the 

modulatory effects of distributed current in structures which are functionally connected to 

an ROI, though spatially distinct (Nitsche et al., 2005). 

1.5.1.3.3 Sub-threshold tDCS modulates on-going network activity. 

As discussed above, extracellular E-field will modulate membrane potential of single 

neurons directly during tDCS. An indirect impact of applied DC field is however also likely, as 

a tDCS-induced change in neuronal activity elsewhere in the network impacts the whole 

population (Reato et al., 2010). To add complexity, the polarity of direct and indirect effects 

may differ. The network impact of DC field acting on non-quiescent cells does however 

explain how sub-threshold modulation of neuronal activity might produce a detectable 

physiological change in brain activity. While the action potential (AP) threshold for a neuron 

is typically 10-20 mV above resting potential, E-fields produced by tDCS are expected to 

alter membrane potential by only 0.2 – 0.5 mV (Opitz et al., 2016; Radman et al., 2009). 

TDCS is therefore expected to have maximal impact on already-active neurons (Terzuolo & 

Bullock, 1956), as membrane potential is brought closer-to or further-from AP threshold. In 

the context of network activity, a feed-forward impact of DC field may also apply, whereby 

neurons pushed over AP threshold by tDCS may in turn trigger activity elsewhere in the 

neuronal population (Polanía et al., 2010; Reato et al., 2010). Taken together, DC fields 

applied trans-cranially to the human cortex produce direct and indirect modulation of 

single-cell and network activity; the complex relationship between the intensity of current 
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applied to scalp electrodes, E-field magnitude at cortical ROIs, and behavioural response to 

stimulation has not yet been elucidated.  

1.5.1.3.4 Reverse-calculation is used to probe tDCS dose-response relationship. 

Retrospective investigation into tDCS E-field intensities associated with a measurable 

change in cortico-spinal excitability (CSE) has been conducted to identify contributing 

factors to the dose-response relationship in human tDCS studies. While the optimal tDCS 

dose remains unknown, Evans and colleagues (Evans et al., 2020) demonstrated that 

average E-field intensity in an M1 ROI was ~ 0.185 V/m in a group of 50 healthy adults when 

a 1 mA conventional tDCS montage was simulated. The dose-response relationship of tDCS 

was also probed in the work of Laakso and collgeagues (Laakso et al., 2018, 2019) which 

reported a significant relationship between estimated E-field intensity in M1 and MEP size in 

response to transcranial magnetic stimulation (TMS; see section 1.8.2). Opposite changes in 

MEP-assessed excitability were found in participants with the lowest and highest modelled 

E-field in M1 (Laakso et al., 2019). Furthermore, a significant association has been reported 

between GABA concentration in ipsilesional M1 and behavioural gains following tDCS in 

stroke survivors (O’Shea et al., 2014). Finally, the mechanisms underlying neuromodulation 

by tDCS were probed in a recent study which reported a significant negative correlation 

between intra-cortical E-field intensity and tDCS-induced GABA concentration in MRS data 

from 5 human participants (Nandi et al., 2022). Though these findings offer insight into the 

neurophysiological effects of tDCS in humans, significant correlation does not imply 

causality.  

1.5.1.4 TDCS is inherently non-focal. 

In addition to the direction- and intensity-dependent nature of tDCS effects, the impact of E-

field focality, or lack thereof, must be considered when planning or interpreting studies. 

Conventional tDCS application can produce current flow across 30-70% of the brain (DaSilva 

et al., 2012), far beyond common anatomical targets such as the hand representation of the 

motor cortex (M1hand, anatomical characteristics described in Caulo et al., 2007; Dechent & 

Frahm, 2003; Yousry, 1997). The potential effects of neuromodulation beyond an ROI 

cannot be ignored, and are likely subject to inter-individual variability due to anatomical 

differences and varied endogenous activity of affected networks. However, by virtue of 
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modulating only sub-threshold neuronal activity, inherent focality may be achieved with 

tDCS where functionally active networks are maximally affected by DC fields despite a lack 

of spatial specificity – a concept referred to as “functional selectivity” (Bestmann et al., 

2015; Bikson & Rahman, 2013; Ranieri et al., 2012). In keeping with Ohm’s law, a core 

assumption on which the physics of tDCS current flow is based (Miranda, 2013), increasing 

tDCS stimulator output will result in a linear increase in spatial distribution of E-field above a 

given value. The impact of distributed fields moderated by endogenous activity is not yet 

fully understood. Multi-electrode montages can be used to improve tDCS focality (Datta et 

al., 2008) though improved focality comes at the cost of E-field intensity, as current is 

increasingly shunted between scalp electrodes instead of penetrating to reach the brain 

(Datta et al., 2008; Mikkonen et al., 2020). At present it is difficult to balance the intensity, 

direction and distribution of current simultaneously during tDCS to optimally stimulate a 

given ROI (see Figure 1.4). Researchers are left with the un-resolved multi-variate dilemma 

of prioritising different E-field properties over others with a ‘best guess’ of the impact on a 

function of interest (Lee et al., 2021) 

1.5.2 Optimised tDCS may increase neuroplastic potential to support stroke recovery. 

As discussed, tDCS mechanisms of action are not yet fully understood despite extensive 

research, and are likely to interact with endogenous activity on a cellular and network scale. 

Nevertheless, the concept of neuronal polarisation by extra-cellular DC field is well-

established (Bikson et al., 2004; Chan et al., 1988; Jefferys, 1981), and reports of variable 

outcomes include evidence for a significant impact of tDCS alongside null effects. The 

factors giving rise to variable tDCS effects have been difficult to identify amongst a lack of 

protocol standardization; even in cases where the conventional montage is applied, 

stimulation duration, intensity, and electrode size have varied, and relatively few studies 

report or individualise estimated E-field intensity, direction, or focality of applied current, 

often due to lack of access to individualised MRI scans required for detailed current flow 

modeling.  

The appeal of tDCS as a tool to support stroke rehabilitation persists because it is grounded 

in research suggesting tDCS may increase potential for neuroplasticity. This includes tDCS-

induced activation of N-methyl-Daspartate (NMDA) receptors and L-type voltage-gated 
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calcium channels (L-VGCC; (Nitsche et al., 2003; Nitsche & Paulus, 2011; Stagg et al., 2011, 

2018) modulating the degree of calcium influx into affected cells. In this way, tDCS may alter 

long-term depression (LTD) and long-term potentiation-like plasticity (LTP), since a low 

increase in intra-cellular calcium concentration has been linked to LTD, high calcium influx is 

associated with LTP, and the intermediary zone is not associated with modulation of plastic 

potential (Lisman, 2001; Stagg et al., 2018). This mechanism for cortical excitability 

modulation by DC field may partly explain the non-linear relationship between applied 

current and neuronal response: in addition to an intermediary zone described above, long 

stimulation duration may be linked to a homeostatic switch from LTP to LTD (Monte-Silva et 

al., 2013).  

TDCS may also impact neuronal activity via alteration of GABAergic activity (Amadi et al., 

2015; Antonenko et al., 2017; Bachtiar et al., 2015; Johnstone et al., 2018; Kim et al., 2014; 

Nandi et al., 2022; O’Shea et al., 2014), which mediates glutamatergic plasticity (Castro-

Alamancos et al., 1995). In the context of stroke, alteration of GABergic activity is also 

suggested as a mechanism underlying sub-acute rehabilitation (Blicher et al., 2015, 2015; 

Clarkson et al., 2010; Hiu et al., 2016; Kim et al., 2014), and so tDCS is a candidate 

intervention to ‘boost’ or extend the brain environment underlying sub-acute accelerated 

recovery (discussed earlier in this Chapter).  

Also of particular relevance to stroke rehabilitation, tDCS has been found to induce the 

transcription factor Creb via modulation of intracellular calcium concentration (Kornhauser 

et al., 2002; Podda et al., 2016). As previously discussed, Creb has been shown to increase 

neuronal excitability and facilitate LTP (Wu et al., 2007; Dong et al., 2006; Kim et al., 2013), 

and was shown to facilitate full motor recovery in animal models of stroke (Caracciolo et al., 

2012). In addition, Podda and colleagues (Podda et al., 2016) found that Creb levels were 

significantly higher in mouse hippocampal slices exposed to tDCS compared to control slices, 

suggesting tDCS-induced epigenetic changes. Caracciolo and colleagues (Caracciolo et al., 

2018) conducted a viral gene delivery study in the rodent stroke model, which showed 

induced Creb in peri-lesional neurons was associated with fewer faults in foot placement 

compared to a neurotypical group of mice without Creb induction. Interestingly, when the 

Creb-activating drug washed out, impairment recordings were worse than baseline, leading 
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to the substantial suggestion that inhibiting or releasing Creb-induced neurons may be akin 

to turning stroke recovery “on and off” (Joy & Carmichael, 2020, p. 9; Krakauer & 

Carmichael, 2017, p.149). Taken together, the potential for tDCS-induced changes in Creb 

induction, glutamatergic plasticity mediated by GABAergic activity, and modulation of 

calcium influx suggest tDCS is a promising candidate to facilitate rehabilitation after stroke 

in humans. However, the technique is currently stunted by high outcome variability and lack 

of protocol standardisation. In the following section I will discuss how CFM software may be 

implemented to quantify and minimise tDCS-induced E-field variability, with the aim of 

improving reliability of tDCS outcomes.   

1.6 Current flow models estimate tDCS E-field in the brain. 

The following text describing CFM applications and considerations has been published in an 

article written by myself and my colleagues, Dr. Carys Evans and Prof. Sven Bestmann (Lee 

et al., 2021). The original open-access article is under a creative commons licence which 

permits unrestricted use, distribution, and reproduction of the work in any medium, 

provided the original work is properly cited. I was not required to obtain permission to 

include content from the article in this thesis. 

1.6.1 Modelling assumptions. 

Lee and colleagues (Lee et al., 2021) describe that CFMs simulate tDCS application and 

provide estimates of the magnitude, distribution, and direction of E-fields that a given 

protocol will deliver to the brain. This is achieved through the classification of different 

tissue types, based on MRI scans (Huang et al., 2013), and the assignment of conductivity 

values to the segmented tissue compartments (e.g., skin, scalp, CSF, grey matter, white 

matter). This allows for predicting the properties of endogenous current flow throughout 

the head (Miranda et al., 2007; Wagner et al., 2004).  

Previously modelled on concentric spheres (Datta et al., 2008; Miranda et al., 2006; Rush & 

Driscoll, 1968) or standard model heads (Dmochowski et al., 2012), CFMs today use 

individual structural MRIs to inform researchers of where and how much current is likely to 

reach different parts of the brain, given a specific electrode montage and stimulation 

intensity (Dannhauer et al., 2012; Dmochowski et al., 2011, 2013; Huang, Thomas, et al., 
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2018; Huang, Datta, et al., 2018; Huang et al., 2019; Lee et al., 2017; Saturnino, Puonti, et 

al., 2019).  

CFMs have now been validated in a range of studies, including comparison with in vivo 

human and non-human primate recordings during application of tDCS (Datta et al., 2009; 

Huang et al., 2017, 2019a; Koessler et al., 2016; Opitz et al., 2016). While nuanced 

differences distinguish between different CFM approaches, they generally provide accurate, 

gyri-precise estimates of E-fields in the brain. CFMs are based on the quasi-uniform 

assumption, which states that the extent of polarisation of a target region is proportional to 

the strength of local E-field, without taking regional differences in functional activity, 

biophysics, or cellular morphology into account (Bikson et al., 2013). Therefore, CFMs are 

inherently agnostic to the physiological impact of exogenous fields and are taken as a 

reasonable first approximation of areas more- or less-exposed to applied fields, without 

predicting the outcomes of stimulation.  

1.6.2 CFM functionality. 

Lee and colleagues (Lee et al., 2021) point out that E-field estimates provided by CFMs 

cannot be obtained non-invasively by other means. The functionality of CFMs is two-fold: to 

estimate current flow induced by a given tDCS montage, or to guide tDCS montage selection 

given a set of criteria, such as desired magnitude or direction of E-field in a cortical region of 

interest. The studies presented in this thesis will utilise the former functionality: estimating 

E-field properties given a user-defined tDCS protocol. The Realistic vOlumetric-Approach-

based Simulator For tDCS (ROAST) current flow modelling package created by Yu (Andy) 

Huang and colleagues (Dmochowski et al., 2013; Huang, Thomas, et al., 2018; Huang, Liu, et 

al., 2018; Huang, Datta, et al., 2018; Huang et al., 2019; available from: 

https://www.parralab.org/roast/) was used for all modelling work presented in this thesis 

(Chapter 3 and Chapter 4). The ROAST current flow modelling pipeline and data extraction 

methods used are detailed in section 1.8.1.  

While CFMs provide estimates of the physical properties of applied current, they do not 

extend to recommending a tDCS protocol which might give rise to a desired physiological 

effect. Researchers are instead able to use CFMs to standardise E-field delivery to an ROI 

across a group of individuals, or to maximise a given property of applied current. For 

https://www.parralab.org/roast/
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example, a researcher may use CFM to ensure maximum E-field intensity is delivered to a 

cortical ROI, though modelling software will not provide suggestions of the optimal profile 

of electrical current: should one prioritise high intensity, or radial-inward direction of 

current flow in an ROI (Lee et al., 2021)? 

1.6.2.1 CFM is used to dose-control tDCS E-field intensity. 

In a recent CFM study, Evans and colleagues (Evans et al., 2020) demonstrated poor 

consistency in E-field intensity in an M1 cortical target when 1mA fixed dose (instead of 

individualised dose) tDCS application was simulated. The authors showed that applying a 

fixed dose to variable sizes of participant samples could contribute to variable tDCS study 

outcomes. In 50 participants (aged 22- 35 years), 1mA tDCS yielded a mean E-field intensity 

in the cortical target of 0.185V/m. In small samples (N=15), 52% of 1000 bootstrapped 

resamples produced an E-field intensity <0.185 V/m in the cortical target. For larger samples 

(N=30), 48% of 1000 resamples produced a mean <0.185 V/m in the cortical target. In the 

sample with the lowest mean, E-field intensity in left M1 was <0.185 V/m for 80% of 

subjects. In samples with the highest mean, the majority of individuals had intensities higher 

than 0.185 V/m. These data demonstrate that application of fixed-dose tDCS, as is the norm 

across tDCS literature to date, can yield vastly different E-field strength delivered to a 

cortical ROI across individuals. Use of CFM to standardise E-field intensity in an ROI across 

individuals holds promise as a method to reduce tDCS outcome variability. Assuming that 

the E-field intensity in the ROI is a determining factor of tDCS on neural processing, tDCS 

optimisation efforts have included adjustment of tDCS dose applied to the scalp to achieve 

low variance in E-field delivered to a cortical ROI between individuals (Caulfield et al., 2020; 

Evans et al., 2020). It appeals to intuition that minimising variance in E-field should also 

reduce variance in physiological effects of stimulation. The work presented in Chapter 3 of 

this thesis investigates the impact of CFM-informed tDCS on physiological outcomes in 

stroke and neurotypical populations.  

Dose-controlled tDCS can be achieved using current flow models, simulated with a fixed 

dose of injected current (e.g. 1mA) to scalp electrodes. By exploiting Ohm’s law, a 

researcher can use the predictions of CFM to adjust stimulator output for each subject such 

that the dose in a cortical target area is matched across all subjects. Individualised dose can 
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be calculated by working backwards from modelled actual E-field achieved in the cortical 

ROI with a fixed dose, using the formula:  

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑜𝑠𝑒 = (
𝑇𝑎𝑟𝑔𝑒𝑡 𝐸-𝐹𝑖𝑒𝑙𝑑 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐸-𝐹𝑖𝑒𝑙𝑑
)  × 𝐹𝑖𝑥𝑒𝑑 𝑑𝑜𝑠𝑒 

In keeping with the methods used by Evans and colleagues (Evans et al., 2020), Target E-

field represents researcher-defined target E-field intensity, Actual E-field is the E-field 

intensity estimated in an ROI in each subject when a fixed dose of tDCS is applied, and Fixed 

Dose is the injected current (in mA) delivered to scalp electrodes in the original model. For 

example, if a modelled 1mA Fixed Dose protocol is found to deliver 0.14 V/m Actual E-Field 

to a cortical target, and the Target E-Field is 0.185V/m, the Individualised Dose of tDCS 

required for the participant would be: (.185V/m/.14V/m) x 1mA) = 1.32mA tDCS stimulator 

output. Note that many tDCS stimulator devices, including the NeuroConn device used in 

the presented studies (DC-Stimulator Plus; NeuroConn, Ilmenau, Germany), are limited by 

parameter constraints of the equipment, for example dosage options increase in increments 

of 0.25mA. In the case described above, the Individualised Dose of 1.32mA would be 

rounded to 1.50mA to meet equipment constraints. Although this re-introduces some 

variance, rounded Individualised Dose was found to produce lower E-field variability in the 

cortical ROI compared to a Fixed Dose protocol (Evans et al., 2020). 

1.6.2.2 Direction of E-field can be controlled by CFM-informed electrode placement. 

In addition to controlling E-field intensity delivered to an ROI, CFMs can be used to measure 

and control the direction of current flow through an ROI. This is of import given the 

direction-dependent impact of extra-cellular fields on neuronal membrane polarisation, 

previously discussed in section 1.5.1.2. Directional control of current flow can be achieved 

by electrode placement (Bikson, Rahman, Datta, et al., 2012; Datta et al., 2008; Evans et al., 

2022; Faria et al., 2009; Galletta et al., 2015; Laakso et al., 2017; Nikolin et al., 2015; Rush & 

Driscoll, 1968; Salvador et al., 2015; Saturnino et al., 2015) and so alteration of electrode 

montage is a candidate method to optimise current direction in tDCS study design.  
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CFM-informed alternatives to the conventional montage have emerged, which might better 

exploit the directional component of applied field. Rawji and colleagues (Rawji et al., 2018) 

for example found more consistent direction of current flow through M1hand when 

electrodes were placed either side of the ROI, compared to directly over it (as with the 

conventional montage). Furthermore, Evans and colleagues (Evans et al., 2022) reported 

that when the anode is positioned posteriorly and the cathode anteriorly to the ROI (a PA-

tDCS montage, Figure 1.3), the most consistent radial-inward E-field was recorded in M1hand, 

and higher E-field intensities were achieved compared to alternative montages. Notably, 

though the PA-tDCS montage is CFM-informed, it can be achieved in the absence of a high-

quality MRI scan and CFM expertise, since the location and orientation of the motor strip 

can be approximated using TMS (Evans et al., 2022). 

 

  

Figure 1.3. Schematic of the PA-tDCS montage. Direction of current flow (black arrow) through M1hand 
is approximated by scalp electrode placement. An anode (red) is placed posteriorly and a cathode 
(blue) anteriorly to M1hand, to produce predominantly radial-inward current flow relative to the cortical 
surface at M1hand. 



50 

 

1.6.2.3 CFMs estimate the spatial distribution of tDCS-induced current.  

Finally, CFMs can be used to control E-field focality. Lee and colleagues (Lee et al., 

2021) point out that the physiological implications of diffuse current are unclear, 

though it appeals to intuition that inter-individual differences in the spatial distribution 

of current may contribute to variability in the physiological outcomes of tDCS. Two 

approaches can be used to limit the spatial extent of E-field throughout the brain. First, 

one can simply reduce stimulator output intensity, resulting in exposure of fewer brain 

regions to current above a certain threshold. Second, the use of multi-electrode tDCS 

montages can constrain diffuse currents (Datta et al., 2009; Dmochowski et al., 2011; 

Edwards et al., 2013; Saturnino et al., 2015). An example of this approach is the so-

called 4x1 montage, also referred to as high-definition (HD) tDCS, where an electrode 

(e.g. an anode) is placed on the scalp over a cortical region of interest and encircled by 

a ring of electrodes (e.g. cathodes). Such a montage constrains the spread of current 

radiating from the central anode to within the electrode ring (Datta et al., 2008, 2009).  

However, controlling for intensity and focality of current simultaneously poses a complex 

optimisation problem that cannot be solved by CFM. The potential benefits of increased 

focality must be balanced against reduced E-field intensity, as increased shunting of current 

occurs between electrodes placed proximally on the scalp and leads to lower penetration of 

E-field to the brain (Dmochowski et al., 2011; Faria et al., 2011). Moreover, Lee and 

colleagues (Lee et al., 2021) note that use of HD-tDCS results in poorer control of E-field 

direction in a cortical ROI compared to bipolar tDCS, as current exits the body via multiple 

electrodes instead of flowing in a relatively uniform direction between anode and cathode. 

In fact, Mikkonen and colleagues (Mikkonen et al., 2020) recently reported that HD-tDCS is 

associated with increased E-field variability compared to a bipolar conventional montage 

with the same stimulator dose. Meanwhile, bipolar montages prioritise E-field direction at 

the cost of focality (Figure 1.4). 

Current understanding suggests a computationally optimised tDCS protocol should account 

for the impact of E-field intensity, focality, and direction on target neuronal populations. 

This multi-variate issue presents a barrier to protocol optimisation: the CFM user must 

decide which parameters to prioritise. This may be possible when sufficient precedence 
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exists in the literature for the expected effects of a given tDCS protocol. However, it is often 

unclear which E-field characteristics should be prioritised to target a given brain region or 

function. Indeed, the importance of focality is yet to be confirmed, the optimal E-field 

intensity required to alter behaviour in humans is unknown, and variable E-field direction 

relative to cellular orientation is expected under and between stimulation electrodes.  
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Figure 1.4. The multi-variate tDCS optimisation problem. Image is taken from Lee et al., 2021, and includes an image taken from Saturnino et al., 2019 (far right). 
(A) CFM estimate of tDCS-induced E-field when the conventional tDCS montage is applied at 1mA to one example subject. Higher E-field intensities are observed at 
the cost of spatial focality of current. (B) Estimated E-field when a HD (4 × 1) electrode montage is simulated. Increased focality is achieved at the cost of E-field 
intensity and direction. (C) Example of exogenous current direction around the central sulcus, which can be controlled by varying electrode montage. 
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1.7 Can current flow models reduce tDCS outcome variability in stroke?  

CFMs have succeeded in describing the properties of tDCS-induced E-field, and researchers 

with access to individual structural MR scans can use them to standardise prioritised tDCS 

parameters across individuals. While the impact of E-field standardisation has not yet been 

fully described, and optimal stimulation parameters remain unknown, CFMs constitute a 

relative leap in progress for tDCS study design, with promise to reduce variability and 

standarise research to promote further progress.  

However, translation of CFM-informed protocol to stroke survivors may not be 

straightforward, as CFMs are not designed to account for the functional or anatomical state 

of the pathological brain. For example, tDCS applied to a stroke survivor with altered 

excitatory-inhibitory balance may produce different neuromodulatory outcomes to a 

neurotypical participant. In Chapter 3 of this thesis, I use CFM to control E-field intensity and 

direction of current flow in M1hand, and compare the physiological response to this 

individualised tDCS protocol in chronic stroke survivors and neurotypical individuals.  

Furthermore, anatomical changes associated with stroke such as brain lesions may impact 

the distribution of induced current such that application of optimal protocols, should they 

emerge, to a stroke population may not result in comparable stimulation to a neurotypical 

group. To add complexity, CFMs at present do not account for pathological tissue 

properties; lesions are often assigned the same conductivity value as cerebrospinal fluid 

(CSF) for example, though histological research suggests lesion conductivity may vary 

substantially from CSF (McCann et al., 2019). In Chapter 4 of this thesis, I use an adapted 

version of ROAST (Johnstone et al., in review) to investigate the impact of stroke lesions on 

tDCS-induced E-field, and compare findings to tDCS simulated in neurotypical participants.  

1.8 Notable techniques. 

Here I outline two techniques of note, which recur in the following Chapters. The first is the 

processing pipeline and data extraction steps required for CFM using ROAST (Huang, Datta, 

et al., 2018). The second section includes the basic principles of transcranial magnetic 

stimulation, which was used to probe brain activity both after stroke and in response to 

tDCS intervention.  
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1.8.1 TDCS modelling and data extraction pipeline. 

ROAST (Dmochowski et al., 2011, 2013; Huang, Thomas, et al., 2018; Huang, Datta, et al., 

2018; Huang et al., 2019, retrieved from: https://www.parralab.org/roast/) is a fully 

automated, open-source tool which runs on MATLAB (MATLAB, 2018). ROAST requires an 

isotropic MR structural image, and estimates current flow by segmenting the MRI into 6 

tissues (grey matter, white matter, CSF, bone, skin, air) using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/), placing virtual electrodes on the scalp, generating a 

finite element model (FEM) mesh using Iso2Mesh (Fang & Boas, 2009), retrieved from 

http://Iso2Mesh.sourceforge.net/cgi-bin/index.cgi) and numerically solving the FEM using 

getDP (Dular et al., 1998, retrieved from: https://getDP.info/). All software packages called 

by ROAST are open-source. Simulations for a given montage complete in approximately 20 

minutes (Huang, Datta, et al., 2018). The ROAST modelling pipeline used in the work 

presented in this thesis is depicted in Figure 1.5. I note that it does not depict all ROAST 

functionalities available.  

Default conductivity values assigned to each tissue type in ROAST are as follows (in S/m): 

air: 2.5x10-14; electrode gel: 0.3; electrode: 5.9x107; skin: 0.465; bone: 0.01; grey matter: 

0.276; white matter: 0.126; CSF: 1.65. ROAST completes automatic touch-up of segmented 

images to remove holes using simple heuristics (for detail see Huang et al., 2013, 2018). 

ROAST produces structural MRI and E-field results images which are here processed in 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) to obtain E-field data in researcher-defined 

regions of interest (ROI) using the MarsBaR toolbox (Brett et al., 2002, retrieved from: 

https://marsbar-toolbox.github.io/).  

Data extraction is achieved by normalising ROAST results images (2x2x2mm resampled) into 

Montreal Neurological Institute (MNI) space, and smoothing to increase signal-to-noise ratio 

with a 4 mm full-width at half-maximum Gaussian kernel. Separate grey and white matter 

tissue masks are then created from the non-binary tissue masks produced by ROAST, with a 

binary inclusion threshold of >0.2 intensity. Binary masks are combined, and subsequent 

extraction of E-field data is limited to voxels in grey and white matter.  

  

https://www.parralab.org/roast/
http://www.fil.ion.ucl.ac.uk/spm/
http://iso2mesh.sourceforge.net/cgi-bin/index.cgi
https://getdp.info/
http://www.fil.ion.ucl.ac.uk/spm/
https://marsbar-toolbox.github.io/
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Figure 1.5. ROAST current flow modelling pipeline. Steps A-D are automated in ROAST and steps E-G are completed by the user during data extraction. A) a 
structural MR image of an individual participant’s head, B) head tissue is segmented into 8  tissue types, calling SPM12, C) simulated tDCS electrodes are applied 
and using Iso2Mesh (Fang & Boas, 2009), D) the FEM is solved using getDP (Dular et al., 1998), E) in SPM12, the MR image is normalised and smoothed, F) A 
binary mask of grey and white matter is created , G) ROAST results data are extracted from the M1hand region of interest using MarsBaR (Brett et al., 2002). 
Image is adapted from Lee et al., 2021.  
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1.8.2 TMS is used to probe CSE.  

In Chapter 2 and Chapter 3 of this thesis, Transcranial Magnetic Stimulation (TMS) is used to 

probe excitatory-inhibitory balance in stroke survivors and neurotypical participants. During 

TMS, electrical currents are induced in the brain via magnetic induction (Faraday, 1832). An 

electrical pulse is sent through copper wiring encased in a TMS coil, in this case shaped in a 

figure-of-eight. The short-duration (<1ms) electrical pulse produces a magnetic field of up to 

2.5 Tesla perpendicular to the centre of the coil, which is placed flush with the scalp directly 

over M1hand, the cortical ROI for all studies presented in this thesis. The magnetic pulse 

passes unimpeded through skull and scalp tissue, and induces electrical current in the brain 

which flows parallel to the TMS coil (Hallett, 2000). Single-pulse TMS is an established 

technique used to probe the human motor system, applied at intensities which evoke action 

potentials in affected neurons to elicit an involuntary muscle twitch in the contra-lateral 

hand (a motor evoked potential, MEP). Depolarisation of neurons by TMS-induced electric 

field can occur directly, through the axon hillock, or indirectly via depolarisation of 

interneurons. The amplitude of the MEP, measured with electromyography (EMG) 

electrodes placed on the skin over the first dorsal interosseous (FDI) muscle, is correlated to 

the number of neurons which responded to stimulation and is subject to change as a 

function of CSE. For example, a TMS pulse of a given intensity may evoke an MEP of larger 

amplitude if the target neuronal population is in a state of relative excitability.  

Importantly, the TMS-evoked MEP does not solely represent cortical excitability, but a 

combination of complex cortico-spinal projections, and is influenced by several physiological 

components including excitability of cortical and spinal circuits (Bestmann & Krakauer, 

2015). The compound nature of the MEP measure gives rise to high trial-to-trial variability 

(Corp et al., 2021), necessitating measurement via average scores taken from a number of 

pulses to reflect excitatory tone. In Chapters 2 and 3 I describe distinct measures which can 

be derived from single-pulse TMS, including the intensity of stimulator output required to 

reliably evoke an MEP of 50 microvolts (μV) in amplitude, and the recruitment curve, which 

reflects gain in the input-output function of a neuronal population as stimulator intensity is 

increased.  
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1.8.3 Linear Mixed Models  

Linear mixed models (LMM) were used throughout this thesis to analyse repeated measures 

data collected from the same participants at different timepoints, or under different 

conditions. They include fixed and random effects; fixed effects reflect the relationship 

between predictor variables and the dependent variable, while random effects account for 

individual differences between participants or other factors known to contribute to 

variability. In this way, LMMs are able to model variability both within and between 

subjects, compared to repeated measures analysis of variance (rm-ANOVA) which only 

accounts for variability within-subjects. LMMs were selected for use in this thesis because 

they provide greater flexibility, model fit, and statistical power compared to rm-ANOVAs, 

though interpretation of the results produced by LMMs in slightly more complex.  

The flexibility of LMMs was also particularly important in cases where study design was 

unbalanced or data was missing. In Chapter 2, for example, data were available at 3 

timepoints for the neurotypical group and 4 timepoints for the stroke survivor group. Here, 

LMMs allowed inclusion of participants with missing data in the analysis, increasing 

statistical power and generalisability of findings compared to the rm-ANOVA. 

LMMs also allow the researcher to account for individual variability via inclusion of random 

effects. For example, inclusion of a random intercept per participant (notation: + 1|PT) 

accounts for inter-individual variability in MEP amplitude (Pitcher et al., 2003) which may 

confound variables of interest. By comparison, the rm-ANOVA assumes the same mean and 

variance for all participants, reducing accuracy of results. Furthermore, LMMs are able to 

account for clustering of data which rm-ANOVA is not equipped to deal with, for example by 

accounting for systematic variations in image quality between MR images collected at 

different data collection sites (notation: 1|site), which may have impacted the quality of 

tissue segmentations required for current flow modelling in Chapter 4. 

Model comparison was carried out using two alternative methods in this thesis. Candidate 

models described in Chapter 2 were compared using the Likelihood ratio test (LRT), which 

compares the likelihood of increasingly complex models to simpler nested models with 

fewer fixed or random effects. In this case, models with and without a variable describing 

lesion size were compared. The LRT compares the -2 log likelihood of two candidate models, 
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where the test statistics follow a chi-squared distribution with degrees of freedom equal to 

the difference in the number of parameters between the models. The chi-squared test was 

then used to determine if the difference in log-likelihoods between models was significant 

(p<.05).  

Later in Chapter 4, the goodness of fit of seventeen viable models of increasing complexity, 

which included a variety of candidate fixed effects to describe the location, position and size 

of a stroke lesion, were compared. First, the variance inflation factor (VIF) was calculated to 

identify colinear predictors. The VIF is a measure of the degree of multicollinearity present 

between predictors in a model. Multicollinearity causes difficulty in determining the 

separate effects of each predictor on the outcome variable, as the variance for the 

estimated coefficient for a given predictor can be inflated. The VIF was calculated using the 

vif function in R’s car package (Fox & Weisberg, 2019), which divides the variance of the 

coefficient in the full model by the variance of the coefficient in a model with only that 

predictor variable (equation: VIF = 1 / (1 - R²), where R² is the coefficient of determination 

obtained from a regression of the predictor of interest on all the other predictors in the 

model. Models including predictors with a VIF value of 5 or higher were excluded from 

model comparison, as this is considered to indicate significant multicollinearity between 

predictors.  

Further research into the optimal method for LMM comparison suggested that Akaike’s 

information criterion (AIC; Akaike, 1974) and the Bayesian information criterion (BIC; 

Schwarz, 1978) were appropriate instead of the LRT method described above when 

comparing both nested and un-nested LMMs (Speekenbrink, 2022), since the LRT evaluates 

model fit without providing a measure of the relative complexity of un-nested models. AIC 

and BIC were therefore used for model comparison in Chapter 4 instead of the LRT method.  

Briefly, the AIC and BIC are both statistical methods used to compare models with the same 

outcome variable. the AIC provides a relative measure of model fit given a set of data and 

the number of parameters used to describe the relationship between predictors and 

outcome variables. The AIC balances model fit with model complexity by adjusting the 

maximised likelihood function of the model for the number of parameters used (equation: 
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AIC = -2log(L) + 2k, where L is the maximised likelihood function of the model, and k is the 

number of parameters).   

Meanwhile, the BIC differs from the AIC because it places a stronger penalty on the number 

of parameters in the model. It is also calculated by adjusting the maximised likelihood 

function for the model, though it differs from the AIC as it solves for the bayes solution, and 

accounts for the size of the sample in the calculation (equation: BIC = -2log(L) + klog(n), 

where L is the maximised likelihood function of the model, k is the number of parameters in 

the model, and n is the sample size). 

AIC and BIC take both accuracy and complexity into account when assessing the quality of 

model fit for a given dataset. BIC penalises models with multiple predictors more heavily 

than the AIC; the AIC tends to select more complex models while the BIC can sacrifice model 

fit for parsimony. AIC is based on information theory and better-suited to smaller sample 

sizes, while the BIC is based on Bayesian statistics and is considered more appropriate for 

larger sample sizes (Burnham & Anderson, 2004). 

AIC and BIC were both calculated and compared for each candidate model in Chapter 4, 

with smaller values indicating better model fit. Where AIC and BIC results conflicted, model 

fit was further interrogated by calculating marginal R2 (R2
LMM(m)) and conditional R2 for each 

model, which describe the proportion of variance explained by the fixed factor(s) in the 

model, or the variance explained by both fixed and random factors respectively (Nakagawa 

& Schielzeth, 2013). This process was favoured compared to the LRT method used in 

Chapter 2 since multiple measures of model fit and comparison allowed for more 

transparent model selection.  

1.9 Thesis overview 

High-dose physical training is a gold standard for rehabilitation in both sub-acute and 

chronic stroke (Lohse et al., 2014; Ward, 2017; Ward et al., 2019) however stroke survivors 

with severe upper limb deficits are less able to access, and show less reliable outcomes 

from, interventions which require a baseline ability to complete repetitive movements 

(Byblow et al., 2015; Wuwei et al., 2015; Buch et al., 2016; Guggisberg et al., 2017). 

Neuromodulation is a candidate method to improve outcomes, to non-invasively “boost” 
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brain activity to get the most out of training sessions where dose or accessibility are sub-

optimal. The over-arching aim of this thesis is to identify and develop methods to minimise 

variability in tDCS outcomes in the context of stroke.  

1.9.1 Study 1: A longitudinal comparison of cortical excitatory-inhibitory balance in stroke 

and neurotypical populations.  

Chapter 2 of this thesis investigates the trajectory of changes to excitatory-inhibitory 

balance over 12 months post-stroke, and compares longitudinal data collected from stroke 

survivors and neurotypical volunteers. The primary aim of this study was to determine 

whether there are distinct windows of time in which neuromodulatory interventions may be 

best applied in stroke survivors. I hypothesised that a heightened neuroplastic potential 

would occur in the sub-acute phase (1 week- 6 months) of human stroke, before returning 

to neurotypical levels in the chronic phase (>6 months), indicating a time window in which 

response to intervention may be maximal in human stroke survivors. In addition, I 

hypothesised that longitudinal changes in excitatory-inhibitory balance would positively 

correlate with functional gains, in keeping with the framework outlined in The Stroke 

Roundtable Consortium (Bernhardt et al., 2017).  

1.9.2 Study 2: Encouraging an excitable brain state after stroke with intensity- and 

direction-controlled tDCS. 

In Chapter 3, I present data from neurotypical participants and chronic stroke survivors who 

underwent CFM-informed tDCS, individualised to ensure a standard E-field intensity and 

current direction was achieved in M1hand. Single-pulse TMS was used to probe cortical 

excitability before, during, and after tDCS application. The primary aim of this study was to 

compare responses to plasticity-promoting tDCS between groups, to ascertain whether an 

optimised tDCS protocol might translate between neurotypical and stroke populations. I 

hypothesised first that TMS-assessed CSE at baseline would be subject to higher variability 

in stroke survivors, in light of reported chronic network dysfunction and variable integrity of 

efferent pathways. Second, I hypothesised that response to tDCS would differ between 

groups, possibly due to stroke-related differences in the functional and anatomical state of 

the brain.  
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1.9.3 Study 3: The impact of stroke lesions on tDCS-induced electric field.  

Finally, in Chapter 4 I investigate the impact of real (as opposed to synthetic) stroke lesions 

on simulated tDCS-induced electric field in a large sample of stroke survivors and 

neurotypical participants, using MR data provided by the ENIGMA Stroke Recovery Working 

Group (Liew et al., 2020; Liew et al., 2018, 2022; 

https://enigma.ini.usc.edu/ongoing/enigma-stroke-recovery/). The primary aim was to 

compare current delivery to M1 in neurotypical participants and stroke survivors when a 

fixed conventional tDCS protocol was simulated. I hypothesised that tDCS-induced E-field 

intensity in M1hand would be more variable in stroke survivors. Second, I hypothesised that 

E-field intensity in M1hand would correlate to lesion size, location, and distance to the ROI, in 

keeping with work previously conducted by our group to investigate the impact of synthetic 

lesions on tDCS-induced fields (Johnstone et al., in review).  

1.9.4 Appendix : Does deviation of TMS coil from hotspot predict MEP amplitude? 

This chapter is presented in appendix A. Data were collected while ethical approval was 

obtained for the empirical work described in Chapter 3. The primary aim of this study was to 

assess variance in MEP amplitude which might be attributed to TMS coil position error. 

MEPs are a hallmark measure of corticospinal excitability used to assess neurophysiological 

outcome in M1-targeted tDCS studies (Bastani & Jaberzadeh, 2012; Horvath et al., 2015). 

However, the peak-to-peak amplitude of MEPs are subject to high trial-to-trial variability 

because the measure results from a combination of cortical and spinal projections of varied 

origin (Bestmann & Krakauer, 2015; Burke et al., 1995; Kukke et al., 2014). Since the focus of 

this thesis was minimisation of tDCS outcome variability, assessment of variance explained 

by the outcome measure, MEPs themselves, was of interest. However, as the work 

progressed the focus shifted to optimising tDCS after stroke, by characterising variability 

which may be associated with stroke-induced anatomical and functional brain state during 

tDCS application. While characterisation of variability associated with TMS remains highly 

relevant, it does not meet the core aim of this thesis: to optimise tDCS application in the 

context of stroke. The study is therefore included in appendices.  

This study found that small movements of the TMS coil away from the hotspot position 

significantly predicted some of the variance in MEP amplitude, though the percentage of 

https://enigma.ini.usc.edu/ongoing/enigma-stroke-recovery/
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variance explained, measured by conditional and marginal R2, was low. Though a significant 

impact of TMS coil position on MEP amplitude was detected, a large proportion of the the 

high trial-to-trial variability of MEPs was not explained by deviation of coil position when 

experienced coil operators applied TMS.  

1.10 Impact of the Coronavirus pandemic  

Data collection was impacted by the coronavirus pandemic. The study described in Chapter 

3 of this thesis, which required close contact with participants to apply non-invasive brain 

stimulation techniques, was paused on 23rd March 2020 and re-commenced in October 

2020. However, a second national lockdown began on the 5th November 2020. In response 

to the uncertainty associated with lockdowns, I explored computational avenues of research 

(Chapter 4), and collaborated with Dr. Brenton Hordacre, who generously provided the data 

presented in Chapter 2.  

Recruitment of patients from hospital wards during the acute and early-subacute phases of 

stroke was particularly affected by the pandemic, as hospital operational changes included 

restricted access and limited contact with patients. Potential participants at all stages after 

stroke, and neurotypical volunteers, expressed concern over attending study sessions on 

hospital premises citing risk of exposure to COVID-19; inclination to take part in research 

decreased. 

Brain Research UK (BRUK, 2017), who funded this project, responded generously to 

pandemic limitations by extending project funding by one year. Mitigation measures 

included remote recruitment (via telephone or email) of chronic stroke patients and 

neurotypical participants during lockdowns. The remote process was limited to carrying out 

screening and providing study information. Eligible participants could then be invited to 

participate once restrictions were lifted. This process was greatly aided by a dedicated study 

recruiter in the research team, Ms. Kirsten Thomas. Project management and data 

collection responsibilities were shared between myself and Dr. Carys Evans. Empirical 

findings are presented in Chapter 3 of this thesis.   



63 

 

CHAPTER 2. A LONGITUDINAL COMPARISON OF CORTICAL 

EXCITABILITY IN STROKE AND NEUROTYPICAL POPULATIONS 

2.1 Data sharing  

The data presented in this Chapter were collected by Dr. Brenton Hordacre and colleagues 

at the Neuromotor Plasticity and Development TMS laboratory at the University of Adelaide 

in Australia, between September 2014 and April 2017. Ethical approval was given by the 

Central Adelaide Local Health Network Human Research Ethics Committee. A partial dataset 

has already been published (Hordacre, Austin, et al., 2021). Here, I present unpublished data 

generously shared by Dr. Hordacre to mitigate the impact of the coronavirus pandemic, 

which limited my own access to data collection facilities. 

2.2 Introduction 

Preclinical work suggests that spontaneous biological recovery observed in sub-acute stroke 

may be accompanied by a sensitive period in which the effects of intervention are 

maximised (Biernaskie, 2004; Zeiler et al., 2016). Both events are thought to be underpinned 

by a brain environment of increased excitability and reduced inhibition in tissue adjacent to 

and functionally connected with the infarct core (Bernhardt et al., 2017; Caracciolo et al., 

2018; Carmichael, 2006; Cheng et al., 2014; Clarkson et al., 2010, 2011, 2015; Cramer, 2008; 

Di Pino, Pellegrino, Assenza, et al., 2014; Gouty-Colomer et al., 2016; Han et al., 2007; Hiu et 

al., 2016; Joy & Carmichael, 2020; Kim et al., 2014; Krakauer & Carmichael, 2017b; Kwakkel 

et al., 2003; Lake et al., 2015; Nishimura et al., 2007; Orfila et al., 2019; Overman et al., 

2012; Schiene et al., 1996; Zhou et al., 2009). In this Chapter, cortico-spinal excitability (CSE) 

and intra-cortical inhibition (ICI) are probed in the 12 months following stroke, using single- 

and paired-pulse TMS protocols respectively. The effects of a neuromodulatory TMS 

intervention, continuous theta burst stimulation (cTBS) are also investigated, to determine 

whether response to a plasticity-altering intervention differed between post-stroke phases. 

The core aim of this work was to determine whether there are distinct windows of time in 

which neuromodulatory interventions, such as tDCS, might be best applied after human 

stroke. 
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As discussed in the introduction (section 1.5), the effects of tDCS likely depend on the 

functional state of the brain before stimulation is applied (Esmaeilpour et al., 2018; Polanía 

et al., 2010; Reato et al., 2010, 2013; Schmidt et al., 2014; Terzuolo & Bullock, 1956). Briefly, 

sub-threshold membrane polarisation by tDCS-induced E-field is thought to give rise to 

detectable neurophysiological change because non-quiescent cells in an active network are 

pushed further towards, or away from, the action potential (AP) threshold (Reato et al., 

2013; Terzuolo & Bullock, 1956). Furthermore, altered activity of structures within a given 

network may have an indirect influence on activity elsewhere (Polanía et al., 2010; Reato et 

al., 2010; Schmidt et al., 2014). In the context of stroke, where preclinical work suggests that 

GABAergic inhibition (Blicher et al., 2015; Clarkson et al., 2010; Hiu et al., 2016; Kim et al., 

2014; Lake et al., 2015; Orfila et al., 2019) and neuronal excitability (Caracciolo et al., 2018; 

Carmichael, 2006; Cheng et al., 2014; Clarkson et al., 2011, 2015; Gouty-Colomer et al., 

2016; Han et al., 2007; Kwakkel et al., 2003; Nishimura et al., 2007; Overman et al., 2012) 

may differ in ‘phases’ defined by time since stroke onset (Bernhardt et al., 2017; Biernaskie, 

2004; Cramer, 2008; Dobkin & Carmichael, 2016; Zeiler et al., 2016), it is hypothesised that 

the effects of tDCS may differ depending on the post-stroke phase in which stimulation is 

applied.  

In the following I describe TMS-assessed changes in excitatory-inhibitory balance and 

capacity for neuromodulation over 1 year post-stroke, and compare findings with data 

collected from a group of neurotypical participants. Longitudinal changes in symptom 

severity are represented by the Action Research Arm Test (ARAT) and Functional 

Independence Measure (FIM), and global impairment on admission to hospital is quantified 

using the National Institute of Health Stroke Scale (NIHSS). These clinical scores are 

correlated with TMS-assessed excitatory-inhibitory balance, to ascertain whether a window 

of spontaneous recovery might align with a window in which the functional state of the brain 

is primed to maximise efficiency of rehabilitative interventions. 

2.2.1 Continuous theta burst stimulation probes LTD-like plasticity. 

CTBS is a repetitive transcranial magnetic stimulation (rTMS) technique used to probe long-

term depression (LTD)-like plasticity in humans (see Corp et al., 2020; Suppa et al., 2016 for 

comprehensive reviews). Theta-burst stimulation (TBS) was originally conceived as a 

neuromodulatory technique because burst discharges within the theta range (3-8 Hz) were 
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recorded from the rat hippocampus during exploratory behaviour (Diamond et al., 1988). 

Subsequently, Theta burst stimulation was used to induce plasticity in animal brain slice 

studies (Capocchi et al., 1992; Larson & Lynch, 1986, 1989). In humans, stimulation 

parameters have been adjusted to meet the capabilities of rTMS equipment, for example in 

the presented study, each cTBS train consisted of 600 pulses delivered in triplets at 50Hz, 

repeated at 5Hz for 40 seconds. In comparison animal work often includes pulses delivered 

at 100Hz repeated at 5Hz (Suppa et al., 2016). While short intermittent bouts of stimulation 

are associated with enhancement of LTP-like plasticity (intermittent theta-burst stimulation, 

iTBS), continuous stimulation has been found to support LTD (Heusler et al., 2000; Larson et 

al., 1986; Takita et al., 1999).  

The proposed mechanism of action for cTBS is repetitive activation of synaptic connections 

in targeted tissue; early synaptic plasticity processes are modulated via activation of NMDA 

receptors (Lenz et al., 2015). This is supported by evidence that inhibitory cTBS effects are 

blocked by NMDAR antagonists (Huang et al., 2007; Wankerl et al., 2010), and voltage-gated 

calcium channel blocker drugs have been shown to modulate cTBS effects in a dose-

dependent manner (Wankerl et al., 2010).  

In the presented study, an inhibitory cTBS protocol was selected not for its promise as a 

potential treatment, but to probe capacity for synaptic plasticity (Hordacre et al., 2021). An 

inhibitory protocol was preferred because data collection began 1 week after stroke when 

excitotoxic processes may still have been active; Hordacre and colleagues avoided use of 

excitatory neuromodulation protocols to account for elevated seizure risk in acute stroke 

(Hordacre, Austin, et al., 2021). The magnitude of response to cTBS is here taken to reflect 

neuroplastic potential at different timepoints after stroke onset. The impact of cTBS is 

quantified as change in single-pulse TMS-MEP amplitude recorded before and after cTBS 

intervention. A greater reduction in MEP amplitude after cTBS intervention would be 

associated with heightened responsiveness to neuromodulation.  

2.2.2 TMS resting motor threshold probes CSE. 

Two TMS measures of functional brain state, resting motor threshold (RMT) and short-

interval intra-cortical inhibition (SICI) were assessed longitudinally in stroke and 

neurotypical groups. According to the International Federation of Clinical Neurophysiology 
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(IFCN), resting motor threshold (RMT) is defined as the intensity of TMS stimulator output 

(in per cent) required to elicit MEPs of a given amplitude in a relaxed target muscle in 5 of 

10 trials (Rossini et al., 1994, 2015). Protocol used in the following studies was based on 

recently updated IFCN guidelines (Groppa et al., 2012). 

Recent work has shown that higher RMT, indicative of reduced CSE, in stroke survivors 

relative to a neurotypical population is associated with greater motor impairment of the 

hand (Veldema et al., 2021). In neurotypical populations, RMT variability is moderate within 

studies (ICC = 0.50) though relatively consistent between studies (CV = 19.67) (Corp et al., 

2021). RMT is reportedly stable in the absence of cortical activity changes, and so changes in 

RMT over time are thought to reflect substantial changes in brain state (Danner et al., 2008; 

Engelhardt et al., 2019, 2019; Kimiskidis et al., 2005; ter Braack et al., 2019). 

Previous work tracking RMT after stroke includes a longitudinal study of patients with 

lesions involving the cortico-spinal tract (CST) (Swayne et al., 2008). Swayne and colleagues 

recorded reduced CSE (higher RMT) in the affected hemisphere compared to the unaffected 

hemisphere and a neurotypical group. This effect was strongest in acute stroke, declining to 

neurotypical levels over 6 months. RMT was also found to correlate with Action Research 

Arm Test (ARAT) scores, a clinical measure of upper limb performance, with the strongest 

association found in acute stroke and correlations growing weaker over 6 months (Swayne 

et al., 2008). Correlation between decreasing ipsilesional RMT and improved hand 

movement has also been reported in recent work (McDonnell & Stinear, 2017; Rosso & 

Lamy, 2018; Stinear et al., 2015). For example, Stinear and colleagues (Stinear et al., 2015) 

demonstrated changes in RMT as a function of both time post-stroke and severity of 

symptoms, whereby the highest RMTs are expected in early, severe stroke, and the lowest 

in mild, chronic stroke. These findings are in keeping with the hypothesis of a coupled 

trajectory of CSE and motor recovery after stroke (Bernhardt et al., 2017).  

2.2.3 Paired-pulse TMS probes GABA-mediated intra-cortical inhibition. 

Lastly, paired-pulse TMS data are presented to interrogate changes to intra-cortical 

inhibition following stroke, in keeping with preclinical work suggesting alleviation of 

GABAergic inhibition promotes stroke recovery particularly in the sub-acute phase (Clarkson 

et al., 2010; Lake et al., 2015; Orfila et al., 2019). 
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Paired-pulse TMS paradigms can be used to measure specific neurochemical systems via a 

sub-threshold conditioning pulse, which stimulates interneurons, and a supra-threshold test 

pulse which generates an action potential in pyramidal neurons with a higher threshold for 

activation (Kujirai et al., 1993; Ziemann, Rothwell, et al., 1996). The influence of inter-

neuronal activity on pyramidal cell output is time-dependent, as the time course of 

signalling with distinct post-synaptic receptors differs (Di Lazzaro et al., 1998, 2006; Kujirai 

et al., 1993). Short interval intra-cortical inhibition (SICI) is a TMS paradigm used here to 

measure GABA-mediated intra-cortical inhibition. 

Sub- and supra-threshold TMS pulses applied with a short inter-stimulus interval (1-5ms) are 

associated with reduced MEP amplitude. SICI is thought to be mediated by GABAA receptor 

activation (Di Lazzaro et al., 2007; Ziemann, Lönnecker, et al., 1996), and so greater MEP 

suppression by a SICI TMS protocol is interpreted as greater GABAergic inhibition in the 

stimulated brain area. The size of test MEPs compared to those elicited with single-pulse 

TMS at the same stimulator output (here, 120% RMT) is proportional to the activity of the 

targeted neurotransmitter system (Di Lazzaro et al., 1998; Kujirai et al., 1993).  

In stroke, functional recovery has been shown to correlate with reduced tonic GABA (Blicher 

et al., 2015; Kim et al., 2014; Krakauer & Carmichael, 2017b), and reversing tonic GABA 

pharmacologically has been linked with improved motor function in mice (Clarkson et al., 

2010; Di Lazzaro et al., 1998; Orfila et al., 2019). Beyond the stroke literature, motor 

learning is associated with reduced GABA in the motor cortex (Kolasinski et al., 2019; 

Sampaio-Baptista et al., 2015; Stagg et al., 2011). Therefore, tracking GABAergic inhibition 

after stroke is a target for research as it may provide insight into the mechanisms underlying 

motor recovery during each post-stroke phase. For example, sub-acute reduction in SICI 

after stroke may be a mechanism supporting cellular reorganisation and recovery (Murphy 

& Corbett, 2009).  

2.2.4 TMS measures of CSE may be impacted by brain anatomy.  

In addition to TMS measuring CSE, it is also noted that lesions may confound findings due to 

stroke-induced damage to efferent motor pathways such as the cortico-spinal tract (CST). It 

is difficult to disentangle the contribution of cortico-spinal tissue damage and excitability of 

cortical regions where motor signals are generated when interpreting RMT measures in 
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particular (Potter-Baker et al., 2016, 2018). Lesion size data were collected for the majority 

of stroke survivors involved in this study, and are included in statistical analyses to 

determine whether lesion characteristics impact TMS measures of excitatory-inhibitory 

balance after stroke.  

2.2.5 Hypotheses.  

Previous findings on RMT- and SICI-probed excitability changes following stroke are neatly 

demonstrated in the meta-analysis by McDonnell and Stinear (McDonnell & Stinear, 2017), 

which showed higher RMT in both early and chronic stroke compared to neurotypical 

participants, and lower SICI in early stroke only, compared to neurotypical participants. 

Here, lesion size data are added to analyses to determine whether the anatomical state of 

the brain after stroke might impact TMS-assessed functional state. First, it is hypothesised 

that longitudinal changes in excitatory-inhibitory balance will positively correlate with 

functional gains, in keeping with the framework outlined in The Stroke Roundtable 

Consortium (Bernhardt et al., 2017). In addition, heightened excitability is expected to occur 

in the sub-acute phase (1 week- 6 months) of human stroke, before returning to 

neurotypical levels in the chronic phase (>6 months). This may indicate a time window in 

which response to intervention could be maximal in human stroke survivors. Finally, lesion 

size is taken to represent one aspect of anatomical brain state, and is here expected to 

interact with TMS-assessments of functional brain state.  

2.3 Methods.  

2.3.1 Participants.  

Thirty-one stroke survivors (mean age = 66.58 ± 17.75, 11 females) and 28 neurotypical 

participants (age = 64.90 ± 11.46, 8 females) took part. Stroke survivors attended 8 

experimental sessions, at 1, 2, and 3 weeks, and 1, 2, 3, 6, and 12 months post-stroke. 

Neurotypical participant data were collected at three time points separated by 6-month 

intervals (i.e., 0, 6, and 12-month time points).  

Four post-stroke time points of interest were selected for analysis. Timepoint 1 (T1) 

describes data collected in the first of 3 sessions attended by neurotypical participants, and 

at 3 weeks post-stroke. Data collected 3 weeks after stroke was inspected because it is 
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within the hypothesised window of sub-acute hyperexcitability in humans (1 week – 6 

months) and also falls within the subacute period defined in animal models, which follows a 

shorter timeline (up to approximately 1 month; Biernaskie, 2004; Zeiler et al., 2016).  

Timepoint 2 (T2) describes data collected 3 months post-stroke, in the stroke survivor group 

only (data were not collected from neurotypical participants at T2). A second timepoint in 

the human sub-acute window was selected to ensure representation of functional brain 

state in both the early and late sub-acute phases of human stroke (1 week – 3 months, and 

3 months – 6 months respectively; Bernhardt et al., 2017). Timepoint 3 (T3) represents the 

second session attended by neurotypical participants, after a 6-month interval. In the stroke 

survivor group, T3 describes data collected 6 months after stroke, at the beginning of the 

chronic phase (≥6 months; Bernhardt et al., 2017). Finally, Timepoint 4 (T4) represents data 

collected during chronic stroke, 12 months after infarction, and the final session attended 

by neurotypical participants after a 6-month interval (Figure 2.1). At each timepoint, 3 TMS 

assessments of corticospinal excitability were collected, namely TMS-assessed response 

cTBS, SICI, and RMT, herein referred to as TMS measures of interest. 
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2.3.2 Inclusion criteria. 

An experienced neuroradiologist confirmed stroke diagnosis using either computed 

tomography (CT) or MRI scans. Participants were recruited if they were >18 years old, had 

experienced first-ever ischemic stroke with upper limb motor impairment, were medically 

stable, and had a recordable MEP amplitude of at least 50 microvolts (µV). Exclusion criteria 

were history of other neurological disease, craniotomy or other neurosurgery, inability to 

give informed consent, taking medication known to modify seizure threshold or other 

contraindications to TMS such as metallic implants in the skull, implanted pacemaker or a 

history of seizures. 

2.3.3 Clinical scores.  

The National Institute of Health Stroke Scale (NIHSS) was used to quantify stroke severity on 

admission, and the Action Research Arm Test (ARAT) and Functional Independence Measure 

(FIM) were recorded at each timepoint in the longitudinal dataset. The NIHSS is a measure 

of stroke-related neurological deficit consisting of 15 items that evaluate consciousness, 

language, visual-field loss, neglect, extra-ocular movement, motor strength, dysarthria, 

ataxia, and sensory loss. Each item is rated out of 4, where a score of 0 reflects normal 

function and higher scores indicate greater impairment. Scores for each element are added 

Figure 2.1. Longitudinal study design. Data from 4 time points were included in analyses. Data in 
Timepoint 1 (T1) were collected 3 weeks post-stroke (early sub-acute phase), and in the first session 
attended by neurotypical participants. Data were not collected from neurotypical participants at 
timepoint 2 (T2). Stroke survivor data at T2 were collected 3 months post-stroke (late sub-acute phase). 
Data in Timepoint 3 (T3) were collected 6 months post-stroke (chronic phase), and six months after the 
first session attended by neurotypical volunteers. Timepoint 4 (T4) data were collected 12 months post-
stroke (chronic phase) and 12 months after the first session attended by neurotypical participants. 
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to give a final NIHSS score out of 42. Symptoms are categorised as mild for scores less than 

5, moderate between 5 and 14, severe between 15 and 24, and scores above 25 reflected 

very severe symptoms.  

The action research arm test (ARAT) was administered at each timepoint of data collection. 

The ARAT is a measure of upper limb function consisting of 19 items divided into 4 

subscales: grasp, grip, pinch, and gross movement. Each item is scored from 0 to 3, where 

higher scores represent arm activity closer to normal performance. Sub-score measures 

were not available in this dataset, and so scores are presented out of a maximum possible 

57. 

The functional independence measure (FIM) was also administered during each session in 

this longitudinal dataset. The FIM is a measure of functional status, based on the level of 

assistance required to complete a task. The assessment consists of 18 items divided into 2 

subscales: motor and cognitive function. Here, sub-scores were not available so motor and 

cognitive data are combined. The total score is presented as a value between 18-126 

(standard practice involves scoring no lower than 1 for each item). A score of 1 is given 

when an observed task requires total assistance or is it not testable due to risk. Maximum 

motor score is 92, and the cognitive subscale is scored out of 35.  

2.3.4 Transcranial magnetic stimulation.  

Single- and paired-pulse TMS were applied to either the ipsilesional (stroke group) or 

dominant (neurotypical group) motor cortex using a 70 mm internal diameter Alpha coil 

(The Magstim Co. Ltd), which was held at approximately 45° relative to the sagittal plane of 

each participant’s head. Coil position was marked on the scalp using a waterproof marker 

pen.  

Skin overlaying the first dorsal interosseous (FDI) muscle of the target hand was prepared 

with alcohol and NuPrep abrasive gel, and a ground strap was placed on the wrist. Surface 

electromyographic (EMG) recordings were taken from the FDI muscle of the hand using Ag–

AgCl electrodes (Ambu, Ballerup, Denmark) in a belly tendon montage. The raw signals were 

sampled at 5 kHz (CED 1401, Cambridge Electronic Design), amplified 1000× (CED 1902, 
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Cambridge Electronic Design, or Digitimer D360), and bandpass filtered (20-1000 Hz), then 

stored for analysis offline (Signal Software, Cambridge Electronic Design). 

Raw data from each MEP trial were processed using a custom MATLAB script, in which a 

100ms window was inspected for muscle contraction preceding TMS pulse onset. Root 

mean square (RMS) of muscle activity up to 100ms preceding the TMS pulse was calculated 

for all trials in a given block, then averaged. Single trials were excluded if RMS muscle 

activity up to 100ms preceding the TMS pulse exceeded average RMS muscle activity plus 2 

standard deviations for the whole block. Trials were also discarded if the MEP was 

indistinguishable from background noise (MEP amplitude ≤ RMS pre-contraction per trial), 

or if the TMS pulse failed to fire (TMS artifact amplitude ≤ RMS pre-contraction per trial, and 

MEP amplitude ≤ RMS pre-contraction per trial). In R Studio, ggstatsplot (Patil, 2021) was 

used to identify and exclude outliers in stroke and neurotypical data separately. Peak-to-

peak MEP amplitude was averaged per block for single-pulse measures (pre- and post-cTBS), 

or per condition in paired-pulse TMS blocks (SICI). 

2.3.4.1 RMT. 

Single-pulse TMS was delivered at 0.2 Hz ± 10% frequency. Optimal coil position was 

identified and marked on the scalp with a water-soluble marker pen, and RMT was 

identified as the minimum TMS stimulus intensity required to evoke a peak-to-peak MEP 

amplitude of 50 μV in 5 of 10 trials in the relaxed FDI muscle of the contralateral hand.  

2.3.4.2 SICI. 

Paired-pulse TMS blocks were delivered using two Magstim 2002 stimulators, which were 

connected to a single coil through a BISTIM module (The Magstim Co. Ltd). Unconditioned 

MEP amplitude elicited by 120% RMT test pulses was compared to conditioned MEP 

amplitude, where test pulses (120% RMT) were preceded by a conditioning pulse, delivered 

at 70% RMT. The inter-stimulus interval (ISI) between conditioning and test pulses was 

either 2ms or 3ms. Each block of SICI comprised 50 pulses, 17 unconditioned trials (120% 

RMT), 16 2ms ISI conditioned trials and 17 3ms ISI conditioned trials (70% RMT). SICI ratio 

was calculated using the equation: (conditioned MEP amplitude / unconditioned MEP 

amplitude) × 100, where a value < 100% represented MEP suppression; smaller values 

reflect greater intra-cortical inhibition.  
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2.3.4.3 CTBS. 

A Magstim Rapid stimulator was used to deliver cTBS with a biphasic pulse waveform to the 

target motor cortex at 70% RMT. Two trains of cTBS were delivered, separated by a 10-

minute break in which participants were asked to keep muscles relaxed. Each cTBS train 

consisted of 600 pulses delivered in triplets at 50Hz, repeated at 5Hz for 40 seconds. Single 

pulse MEPs at 120% RMT were recorded before and after cTBS intervention, delivered at a 

frequency of 0.2 Hz ± 10%. Prior to cTBS, 2 blocks of 20 single-pulse MEPs separated by a 2-

minute interval were recorded to assess baseline CSE. MEP blocks were also recorded 5, 15, 

30, and 45 minutes post-cTBS intervention. Blocks at 5 and 15 minutes only were included in 

analyses, in keeping with the findings of a recent meta-analysis showing cTBS effects outlast 

stimulation for up to 10 minutes (Corp et al., 2020). CTBS response was quantified as 

conditioned MEP amplitude (i.e. recorded after cTBS) normalised to baseline MEP amplitude 

(pre-cTBS): (conditioned MEP amplitude/baseline MEP amplitude) x 100. A value of 100% 

represents no change following cTBS and values <100% reflect suppressed MEP amplitude. 

2.4 Statistical analyses.  

2.4.1 Linear mixed effects models. 

Analyses are presented in sub-sections for 3 TMS measures of interest: cTBS response, SICI, 

and RMT. Linear mixed effects models (LMMs) were used to account for the non-

independence of observations in this repeated measures study design. LMMs achieve this 

by positively correlating observations within each subject, down-weighting repeated 

measures adjusting statistical power downwards for detection trends over time. 

Consequently, timepoint-by-group interactions will be appropriately conservative with a 

significance level of p < 0.05. 

LMMs were also selected for their capacity to cope with unbalanced time points (Cnaan et 

al., 1997), allowing inclusion of four time points in the stroke survivor group and three time 

points in the neurotypical group. In order to account for unbalanced designs, LMMs 

calculate approximate F-statistics and degrees of freedom for fixed effects. Estimation and 

testing are based on restricted maximum likelihood (REML), which can handle unequal 

sample size, and p-values for tests of fixed effects are conservatively adjusted to account for 

unbalanced designs.  
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LMMs were constructed in Rstudio using lme4 (Bates et al., 2020) and the lmertest package 

(Kuznetsova et al., 2017) was used to obtain p-values. Model fit was assessed using marginal 

R2 (R2
LMM(m)), which describes the proportion of variance explained by only the fixed 

factor(s) in the model, and conditional R2 (R2
LMM(c)), which reflects the proportion of variance 

explained by both fixed and random factors (Nakagawa & Schielzeth, 2013). 

Addition of clinical scores, lesion location, and lesion size were considered for each model, 

and the Akaike’s Information Criterion (AIC) and Bayesian information criterion (BIC) were 

calculated for model comparison using the AICcmodavg R package (Mazerolle, 2020). AIC 

and BIC values were compared for candidate models, and those with delta-AIC or delta-BIC 

(difference in AIC scores, or BIC scores between models, respectively) values of more than -2 

were selected as the best available fit for the data. Chi-squared values were also inspected 

to assess significance of differences in model fit. Figures were created using ggplot2 

(Wickham, 2016).  

2.4.1.1 CTBS analysis. 

For cTBS data, separate LMMs for stroke and neurotypical groups were first constructed to 

compare MEP amplitude before and after cTBS application at each timepoint. Block and 

Timepoint were included as fixed effects, and a random intercept per participant was 

included (notation: (1|Participant)) to account for non-independence of repeated measures 

within subjects. If an effect of cTBS was detected, stroke and neurotypical data would be 

combined, and the effect of cTBS between populations over time would be compared using 

a linear mixed model with an added fixed effect of Group, giving the formula:  

𝑀𝐸𝑃 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ~ 𝐵𝑙𝑜𝑐𝑘 × 𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 × 𝐺𝑟𝑜𝑢𝑝 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

2.4.1.2 SICI analysis. 

The same analysis process was followed to interrogate SICI data, whereby separate LMMs 

for each group were first used to assess the efficacy of the technique. First, data from each 

SICI condition (2ms and 3ms ISI) were combined, after confirmation of no statistically 

significant difference between conditions. This is in concurrence with a recent meta-analysis 

that reported no difference in conditioned MEP amplitude under 2ms or 3ms SICI protocols 

in neurotypical participants (Corp et al., 2021). Models were then constructed with fixed 
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effects of Trial Type (conditioned or un-conditioned MEP) and Timepoint, with a random 

intercept per Participant.  

After the efficacy of the paired-pulse TMS protocol was confirmed, SICI ratio was calculated 

((conditioned MEP amplitude / unconditioned MEP amplitude) × 100) and data from both 

groups were combined to compare SICI between groups over time, using an LMM with 

Timepoint and Group as a fixed effects, and participant as a random intercept: 

𝑆𝐼𝐶𝐼 𝑟𝑎𝑡𝑖𝑜 ~ 𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 × 𝐺𝑟𝑜𝑢𝑝 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

2.4.1.3 RMT analysis. 

To compare RMT over time in stroke and neurotypical groups, an LMM was constructed 

with Timepoint and Group as fixed effects, and a random intercept per Participant, giving 

the formula:  

𝑅𝑀𝑇 ~ 𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 × 𝐺𝑟𝑜𝑢𝑝 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

2.4.1.4 Analysing the relationship between TMS-assessed excitability, clinical scores, and 

lesion size. 

Data collected from stroke survivors were then inspected to assess interactions between 

ARAT and FIM scores (collectively referred to as clinical scores of interest) over time on each 

TMS measure of interest. Clinical scores were added as interacting fixed effects to each 

LMM, with the template formula:  

𝑇𝑀𝑆 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 ~ 𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 × 𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

+ (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

Since Lesion volume data were collected at one timepoint only and may impact longitudinal 

measures of interest, lesion volume was converted to a categorical variable. Stratification 

was based on the median lesion volume reported in a larger study, where Sperber and 

Karnath (Sperber & Karnath, 2016) found normalized lesion size was 31.9 cm3 in a sample of 

439 MRI scans (25%-quantile = 9.4 cm3, 75%-quantile = 72.9 cm3). Nineteen participant’s 

lesions in the presented study were smaller than the 25th per centile (9.4cm3) reported by 

Sperber and Karnath (Sperber & Karnath, 2016), 9 were between the 25th and 75th per 

centiles (9.41 -72.9cm3) and just 1 participant’s lesion was larger than the 75th per centile. 
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Stroke survivor data were stratified by Lesion Size smaller or larger than the 25th per centile 

(9.4cm3) and labelled as small or mid-sized. An LMM was constructed to assess the 

interaction between Timepoint and categorical Lesion Size, with the formula:  

𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 ~ 𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 × 𝐿𝑒𝑠𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

2.5 Results. 

2.5.1 Clinical scores reflect mild stroke symptom severity. 

Admission NIHSS reflected mild-moderate stroke symptoms in the group (mean = 6.74, SD = 

4.86, where scores <5 are considered mild, and scores >25 represent very severe 

symptoms). A ceiling effect in ARAT scores was recognised at all time points, as all 

participants received a mild score from the earliest timepoint onwards (mean at 3 weeks = 

55.85, max. possible score = 57, SD = 3.92). Levene’s test showed there was no significant 

change in the variance of ARAT scores between time points, p> .05. 

FIM scores were also at ceiling from the earliest timepoint onwards (mean at 3 weeks = 

121.82 of a possible 126, SD = 5.43). Levene’s test showed no change in variance of FIM 

scores between time points (p>.05). Due to increased likelihood of inflated type 1 error with 

measures involving a ceiling effect (Austin & Brunner, 2003), FIM and ARAT scores were not 

included in subsequent models as planned. Descriptive data are instead displayed in Table 

2.1. 

2.5.2 Lesion characteristics. 

Lesions were identified in 7 vascular territories (Left ACA/MCA, n = 2; Left MCA, n = 11, Left 

PCA, n= 1; Right ACA, n = 1; Right ACA/MCA, n = 1; Right MCA, n = 14; Right PCA, n = 1). 

Median lesion size was 5.16cm3 (range = 0.19-87.65cm3, 25%-quantile = 2.28 cm3, 75%-

quantile = 12.8 cm3). Clinical scores, lesion location, and lesion size information for each 

participant are included in Table 2.1. 
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Table 2.1. Stroke survivors’ individual clinical scores and lesion information. Abbreviations: M, mean; SD, standard deviation; ACA, anterior cerebral 
artery; MCA, middle cerebral artery; PCA, posterior cerebral artery; PICA, posterior inferior cerebellar artery; NIHSS, National Institutes of Health Stroke 
Scale; FIM, Functional Independence Measure; ARAT, Action Research Arm Test. 

ID 
Admission NIHSS 

(normal function = 0) 
FIM (normal 

function = 126) 
ARAT (normal 
function = 57) 

Lesion location 
Lesion 

volume (cm3) 
Lesion Size  

  M SD M SD 
 

  

1 7 123.75 0.46 57.00 0.00 Left MCA 11.83 Mid-sized 

2 2 125.17 0.41 57.00 0.00 Right MCA 5.16 Small 

3 1 125.00 0.76 56.50 0.93 Right MCA 2.92 Small 

4 14 125.00 0.00 42.00 0.00 Left ACA/MCA 9.65 Mid-sized 

5 16 108.25 2.76 57.00 0.00 Right ACA 6.01 Small 

6 3 118.25 1.58 45.00 3.93 Right MCA 4.16 Small 

7 13 120.25 3.58 56.00 0.76 Right MCA 87.65 Large 

8 4 125.00 0.76 57.00 0.00 Left MCA 8.91 Small 

9 3 125.50 0.93 57.00 0.00 Right MCA 2.28 Small 

10 13 110.75 5.47 57.00 0.00 Right MCA 39.87 Mid-sized 

11 13 123.00 1.85 56.75 0.46 Left ACA/MCA 1.36 Small 

12 6 120.50 3.51 56.75 0.46 Left MCA 24.34 Mid-sized 

13 4 113.00 5.90 57.00 0.00 Left MCA 0.74 Small 

14 5 109.00 5.61 56.00 1.85 Left MCA NA NA 

15 13 116.75 2.05 57.00 0.00 Right MCA NA NA 

16 11 123.50 0.58 57.00 0.00 Left MCA 6.15 Small 

17 3 124.00 3.70 56.25 1.39 Right MCA 2.11 Small 

18 4 125.00 0.00 57.00 0.00 Left MCA 24.91 Mid-sized 

19 17 122.33 1.03 57.00 0.00 Right MCA 3.07 Small 

20 2 125.50 0.53 57.00 0.00 Right MCA 7.63 Small 
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21 4 124.75 0.46 57.00 0.00 Right MCA 0.3 Small 

22 3 125.00 0.89 57.00 0.00 Left MCA 2.66 Small 

23 5 124.33 1.03 57.00 0.00 Left PCA 0.91 Small 

24 6 122.86 1.35 57.00 0.00 Left MCA 19.5 Mid-sized 

25 3 121.71 3.90 56.71 0.49 Left MCA 2.67 Small 

26 2 124.75 0.46 57.00 0.00 Right MCA 31.26 Mid-sized 

27 3 123.75 1.75 54.75 2.66 Left MCA 4.83 Small 

28 4 117.86 8.11 47.29 11.27 Right PICA 0.19 Small 

29 4 123.00 1.63 56.71 0.76 Right ACA/MCA 12.85 Mid-sized 

30 14 125.75 0.46 57.00 0.00 Right MCA 29.9 Mid-sized 

31 7 123.20 1.79 57.00 0.00 Right MCA 1.31 Small 

NA = information not available.  
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2.5.3 CTBS did not significantly alter MEP amplitude. 

An unpaired t-test demonstrated no difference in MEP amplitude in blocks collected 5- and 

15- minutes post-cTBS, in the stroke survivor group, t(197) = -.34, p = .74, and the 

neurotypical group(t(145) = .53 , p = .60). Therefore data collected in blocks post-cTBS were 

combined. LMMs were constructed to compare MEP amplitude data in each block (pre- and 

post-cTBS) at each timepoint separately for each group, with the formula: MEP amplitude ~ 

Block×Timepoint+(1|Participant). No difference in MEP amplitude was found between 

blocks in the neurotypical group, F(1,112) = .26, p = .61, and there was no significant 

interaction with timepoint, F(2, 112) = 1.27, p = .20. The same was found in the stroke 

group, with no detectable difference in MEP amplitude detected after cTBS intervention, 

F(1, 177) = .65, p = .42, and no significant interaction with timepoint, F(3, 177) = .18, p = .91. 

Due to ineffectiveness of the cTBS intervention, analyses were not expanded on.  

2.5.4 SICI was significantly suppressed 3 weeks post-stroke, returning to neurotypical levels 

by 6 months. 

Two-way ANOVAs constructed for each group showed no significant difference in SICI ratio 

under 2ms and 3ms ISI protocols at each timepoint (stroke: F(3,42) = 1.70, p = .18; 

neurotypical: F(2,40) = .34, p = .71). SICI data under each ISI were therefore combined to 

increase statistical power. The efficacy of paired-pulse protocol was first assessed using 

LMMs to compare MEP amplitude under each condition (conditioned or unconditioned 

trials) at each timepoint in the stroke survivor and neurotypical groups separately (formula: 

MEP amplitude ~ Timepoint x condition + (1|Participant)). A significant difference in 

conditioned MEP size compared to unconditioned MEP size was detected in the 

neurotypical group (F(1, 120) = 299.22, p<.01) and the stroke survivor group (F(1,172) = 

485.75, p<.01). The efficacy of paired-pulse SICI protocol did not change over time in either 

group (p>.05).  

After the effectiveness of paired-pulse TMS was established, SICI ratio was compared 

between groups over time (formula: SICI ratio ~ Timepoint × Group + (1|Participant)). 

Coefficients of variation (CV) showed high variance in SICI ratio in the stroke (CV = 52.66) 

and neurotypical (CV = 58.71) groups, indicating a poor ratio of standard deviation to the 
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mean. Levene’s test showed no significant difference in variance of SICI ratio between time 

points or groups, or their interaction (p>.05).  

The model converged successfully, with fixed factors alone accounting for 4% variance, and 

65% variance explained by both and fixed and random factors (R2
LLM(m) = .04, R2

LMM(c) = .65). 

A Timepoint×Group interaction revealed a significant difference in SICI ratio between groups 

at T1 only (3 weeks post-stroke), whereby SICI was significantly suppressed (19% lower) in 

the stroke compared to the neurotypical group at T1 (β = -18.91, CI=-36.29—1.53, p = .03). 

Within the stroke group, a significant 13% difference in SICI was detected between T1 and 

T3 (3 weeks and 6 months post-stroke; β = -12.81, CI= -23.73—1.89, p = .02). No difference 

in SICI was detected between the other time points in the stroke group, including no 

significant difference between SICI at T1 and T4 (3 weeks compared to 12 months post-

stroke; β = -3.03, CI= -15.93 – 9.21, p = .60). Addition of categorical Lesion Size improved the 

model, resulting in lower AIC and BIC values, though model comparison with chi-squared 

was non-significant, χ2 (4, N = 29) = 1.7, p > .05. Lesion size did not significantly predict SICI 

ratio, F(1,25) = .01, p = .94, and Lesion Size did not significantly interact with Timepoint, 

F(3,62) = .53, p = .66. Lesion volume was also included as a continuous variable (formula: 

SICI ratio ~ Timepoint × lesion volume + (1|Participant)), and model comparison showed no 

improvement relative to the model without lesion volume included, χ2 (4) = 2.68, p > .05, 

R2
LLM(m) = .03, R2

LMM(c) = .63. Lesion volume did not significantly predict SICI ratio (F(1, 23) = 

.003, p = .95) and did not significantly interact with Timepoint (F(3,60) = .83, p = .48).  

Group comparison revealed a significantly larger difference in SICI ratio between T1 and T3 

in the stroke group, compared to the difference between T1 and T3 in the neurotypical 

group (3 weeks and 6 months post-stroke; β = 16.11, CI=0.75-31.47, p = .04; Figure 2.2). No 

significant difference was found between groups at T3 (6 months; β = -2.8, CI= -20.37 – 

14.77, p = .75) or T4 (12 months; β = -5.88, CI=-24.13 – 12.37, p = .53). Results are 

summarised in Figure 2.2.  

To check whether results were distorted by missing data, group comparisons were repeated 

after omitting T2 (3 months), where neurotypical data were not collected. In concurrence 

with the model including all time points reported above, SICI was significantly suppressed in 
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the stroke group at T1 compared to T3 (β = -13.4, CI=-24.01 - -2.79, p = .01), and a significant 

difference was found between groups at T1 (3 weeks post-stroke), β = -19.87, CI=-36.99 - -

2.76, p = .02. A significant interaction was also in concurrence with the previously reported 

results, showing a significantly larger difference in SICI ratio at T1 and T3 in the stroke 

group, compared to the difference between T1 and T3 in the neurotypical group (β = 16.72, 

CI= 1.86-31.58, p = .03).
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Figure 2.2. Intra-cortical inhibition in stroke survivors and neurotypical participants over 12 months. Stroke survivor data are shown in black, neurotypical data in 
grey. SICI ratio (y-axis) is conditioned MEP amplitude expressed as a per centage of unconditioned MEP amplitude. Time points reflect time post-stroke for stroke 
survivor data (T1 = 3 weeks, T2 = 3 months, T3 = 6 months, T4 = 12 months, while neurotypical data were collected at 6-month intervals (T1, T3, T4; x-axis). Error 
bars show standard deviation. SICI is suppressed (-19%) at T1 in stroke survivors compared to neurotypical participants (β = -18.91, CI=-36.29—1.53, p = .03).  
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2.5.5 Persistently increased variability in RMT after stroke compared to (neurotypical 

participants. 

Significantly higher variance in RMT was detected in the stroke (CV = 21.78) compared to 

neurotypical (CV = 12.70) group (Levene’s test: F(1,174) = 23.06, p<.001). Levene’s test 

showed no significant difference in variance between time points within groups (stroke: 

F(3,111) = .59, p = .62; neurotypical: F(2,58) = .19, p = .83; Figure 2.3).  

A linear mixed effects model with a random intercept per participant was used to assess 

differences in RMT between groups over time, with the formula: RMT ~ Timepoint × Group 

+ (1|Participant). The model converged successfully with 87% variance explained by fixed 

and random effects, and 1% variance explained by fixed effects alone (R2
LMM(c) = .87, R2

LLM(m) 

= .01,). No significant difference in RMT over time was detected in the stroke group (F(3,82) 

= .62, p =.60) or the neurotypical group (F(2,38) = 1.14, p = .33). No significant interaction 

between Group and Timepoint was detected, F(2, 120) = .63, p = .50.  

To investigate the influence of varying lesion size on RMT over time, Lesion Size was added 

to the model as a categorical fixed effect interacting with Timepoint. Addition of Lesion Size 

did not alter model fit (χ2 (4, N = 29) = 8.33, p = .08). The model converged with 11% 

variance explained by the fixed effects alone and 89% variance explained by fixed and 

random effects combined (R2
LLM(m) = .11, R2

LMM(c) = .89). A trend in lesion size predicting RMT 

was detected, F(1,27) = 3.67, p = .07, whereby larger lesions were associated with lower 

RMT. No significant interaction with Timepoint was detected, F(3,73) = 1.44, p = .24 (Figure 

2.3). Lesion volume was also included in the model as a continuous variable (formula: RMT ~ 

Timepoint × lesion volume + (1|Participant)), which significantly improved model fit 

compared to the model without lesion volume included, χ2 (4) =11.37, p > .02, R2
LLM(m) = .22, 

R2
LMM(c) = .89. Results of the model showed that Lesion volume significantly predicted RMT 

(F(1,27) = 8.35, p = .01), whereby with each 1cm3 increase in lesion volume, the expected 

value of RMT decreased by 0.33 on average (β = -.33, CI= -0.54 -0.13, p = .003). Lesion 

volume was not found to significantly interact with Timepoint (F(3,72) = 1.12 , p = .35).  
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Figure 2.3. RMT of stroke survivors and neurotypical participants at time points 1-4. Distribution curves represent RMT per group, per timepoint. Datapoints show 
RMT per participant, at each timepoint. Colours reflect lesion size in the stroke survivor group. Higher variance in RMT was found in stroke survivors compared to 
neurotypical participants across all time points (Levene’s test: F(1,174) = 23.06, p<.001). No change in RMT was detected over time in stroke or neurotypical groups 
(F(2, 120) = .63, p = .50). In the stroke group, a trend was detected whereby larger lesions were associated with lower RMT (F(1,27) = 3.67, p = .07). 
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2.6 Discussion. 

In this Chapter I compared longitudinal data collected from stroke survivors and 

neurotypical volunteers. The primary aim was to determine whether there are distinct 

windows of time in which neuromodulatory interventions may be best applied in stroke 

survivors, in keeping with a temporal framework that suggests heightened cortical 

excitability underpins accelerated recovery in sub-acute stroke (Bernhardt et al., 2017; 

concept in Figure 1.1).  

To interrogate whether the trajectories of functional and neurophysiological change are 

coupled after human stroke (Bernhardt et al., 2017; Buma et al., 2013; Dobkin & Carmichael, 

2016; Kwakkel et al., 2004), I aimed to examine longitudinal changes in TMS-assessed 

cortical excitatory-inhibitory balance and clinical scores (ARAT and FIM) recorded up to 12 

months post-stroke. In concurrence with previous research (Liepert et al., 2000; Manganotti 

et al., 2002; McDonnell & Stinear, 2017; Swayne et al., 2008), I found that intra-cortical 

inhibition was significantly weaker in the early sub-acute phase (3 weeks post-stroke) before 

returning to neurotypical levels in chronic stroke (from 6 months). However, stroke 

symptom severity was at ceiling across all time points, preventing longitudinal comparison 

of functional and neurophysiological change due to inflation of type 1 errors (Austin & 

Brunner, 2003).  

Instead, clinical data here reflect a well-recovered sub-group of the wider stroke survivor 

population, whose functional recovery trajectory was static and at ceiling from the earliest 

timepoint onwards. The finding of decreased intra-cortical inhibition early after stroke in a 

well-recovered cohort is contextualised by evidence that disinhibition of ipsilesional M1 in 

human subacute and chronic stroke (Cicinelli et al., 2003; Hummel et al., 2009; Liepert et al., 

2000), may support functional recovery (Clarkson et al., 2010; Lake et al., 2015; Orfila et al., 

2019; Blicher et al., 2015; Kim et al., 2014). The presented data align with the hypothesis 

that an early reduction in GABA-mediated intra-cortical inhibition may facilitate good motor 

recovery after human stroke. However, they do not evidence a coupled trajectory of 

functional and physiological change; clinical scores remained static while SICI in M1hand 

differed significantly between 3 weeks and 6 months post-stroke.  
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2.6.1 Functional gains are not temporally coupled with neurophysiological change in mild 

stroke. 

The longitudinal relationship between SICI and functional stroke outcomes has been 

investigated previously. In the notable work of Swayne and colleagues (Swayne et al., 2008) 

data from a relatively heterogeneous group of 10 stroke survivors were presented, with 

ARAT scores ranging from 0-100% (Mean = ~60%) within 1 month of stroke. Correlation of 

SICI and ARAT scores was non-significant ≤ 1 month post-stroke, with significance only 

detected at the 3-month timepoint when ARAT scores had reached ceiling. These findings 

remain inconclusive due to ceiling effects producing inflated type 1 errors at the 3-month 

timepoint, and the authors noted reduced power of statistical analysis of data at ≤ 1 month, 

due to high variability of ARAT scores in the relatively small sample.  

In addition, Manganotti and colleagues (Manganotti et al., 2008) reported longitudinal data 

from 13 stroke survivors with varied impairment profiles. Ipsilesional SICI was lower ~1 

week post-stroke compared to 1-month and 3-month time points in all survivors. Between 1 

and 3 months, SICI returned to neurotypical levels in 5 participants with mild impairment 

(defined as Barthel Index score >60 at 1-week post-stroke), and atypical SICI persisted in 8 

survivors with moderate-severe impairment (Barthel Index score <60 at 1-week post-

stroke). Longitudinal comparison of hand and arm functionality (measured by the Lindmark 

scale; Lindmark & Hamrin, 1988) with ipsilesional SICI did not yield significant results. I 

maintain that these studies do not offer reliable evidence of a coupled trajectory of 

functional gains and neurophysiological change after human stroke, as variable findings in 

small samples of participants produce low-powered results.  

More recently, Honaga and colleagues (Honaga et al., 2013) attempted to address bias 

towards mild impairment and small sample size in a study of intra-cortical inhibition in 72 

chronic stroke survivors (average time since stroke onset = 28.2 months, range = 6-104 

months), whom each attended one session in contrast to the longitudinal design of the 

studies described above. Participants were moderately or severely impaired, assessed by 

the upper limb section of the Fugl-Meyer (FM-UL; Fugl-Meyer et al., 1975). Just 24 of 72 

participants had recordable MEPs after TMS was applied to the ipsilesional hemisphere, 
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highlighting the difficulties of using TMS biomarkers to investigate neurophysiology after 

stroke.  

Honaga and colleagues (Honaga et al., 2013) reported greater intra-cortical inhibition in 

participants with less upper limb impairment, in contrast to pre-clinical work which suggests 

reduced inhibition might support recovery (Clarkson et al., 2010; Lake et al., 2015; Orfila et 

al., 2019; Blicher et al., 2015; Kim et al., 2014). In addition SICI was significantly stronger in 

survivors with greater time since stroke onset, and FM-UL did not correlate with time since 

stroke onset. This not only indicates a de-coupling of neurophysiological and recovery 

timelines, but demonstrates changeable excitatory-inhibitory balance persisting into chronic 

stroke in moderately impaired survivors. This contends the hypothesis that brain excitability 

will return to neurotypical levels in chronic stroke, and may point to an opportunity to 

exploit a pro-plastic brain environment beyond the sub-acute phase.  

The mixed findings reported in this Chapter, and in previous work outlined above, describe 

heterogeneity in post-stroke intra-cortical inhibition and functional gains which do not align 

with the homogenous, coupled timelines proposed in The Stroke Roundtable Consortium 

(Bernhardt et al., 2017).  

2.6.2 Functional and neurophysiological trajectories may differ depending on stroke 

severity. 

Lack of representation of stroke survivors with moderate and severe symptoms limits the 

impact of findings from the data presented in this Chapter. One could argue that future 

work with a large sample of survivors and heterogeneous symptom severity may yet 

demonstrate the accuracy of the temporal framework described by The Stroke Roundtable 

Consortium (Bernhardt et al., 2017). However, growing evidence suggests that functional 

recovery does not match the homogenous trajectory proposed; recovery from stroke may 

instead differ depending on symptom severity. Van der Vliet and colleagues (van der Vliet et 

al., 2020) recently reported a longitudinal mixture model of FM-UL scores of 412 stroke 

survivors with motor impairment, collected at a minimum of 2 time points spaced 12 weeks 

apart. I briefly note that the majority of survivors included in the study received 

rehabilitative treatment in keeping with Dutch guidelines (Duncan et al., 2005; Quinn et al., 
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2009), though the intervention is not significantly associated with a change in FM-UL scores 

(Kundert et al., 2019).  

Five sub-groups of survivors were identified with differing speed, trajectory, and outcome of 

motor function by 8 months post-stroke: mildly impaired survivors reached 90% recovery 

potential in the first weeks after stroke, while survivors with moderate impairment regained 

good function over a much longer time frame, an initial indicator of heterogeneous recovery 

trajectories. This was further quantified by an exponential term representing the predicted 

recovery rate for survivors in each sub-group. This value was derived by a time constant 

(units = weeks), which signified the timepoint at which exponential recovery reached 63.2% 

of total recovery. This functional ‘peak’ (though notably lower than maximum outcome) 

occurred ≤ 3 weeks post-stroke in two sub-groups of mildly impaired participants, and at 

~10 weeks post-stroke in 2 sub-groups of moderately impaired survivors. Interestingly, 

severely impaired participants reached 63.2% total recovery ~5 weeks post-stroke, earlier 

than the moderately impaired group, though overall functional outcome was poorer. In 

addition, a recent modeling study implemented advanced Bayesian statistics with FM-UL 

data of 489 stroke survivors (Bonkhoff et al., 2022) and found greater improvement in FM-

UL scores by 3-6 months in survivors with non-severe symptoms and greater initial 

impairment, while severely affected survivors recovered more if their initial impairment was 

lower.  

These findings suggest that temporally-defined, homogenous post-stroke ‘phases’ set out by 

The Stroke Roundtable Consortium (Bernhardt et al., 2017) are an over-simplification of the 

human post-stroke recovery trajectory. Instead, the timeline of functional gains likely differs 

depending on stroke severity, and may or may not be coupled with neurophysiological 

changes in brain activity. While the work presented in this Chapter does not rule out 

coupling of physiology and function in moderate and severely impaired groups of stroke 

survivors, it does indicate that the mechanisms of post-stroke recovery in humans are 

subject to greater complexity than those observed in animal models of stroke. In a recent 

review Grekes and Fink (Grefkes & Fink, 2020) underscore the point, by suggesting that 

recovery-associated processes at 10-and 80-days post-stroke will likely differ substantially 

between human stroke survivors, yet both time points fall in the so-called ‘sub-acute’ phase. 
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Continued use of language such as “sub-acute” and “chronic” stroke to simultaneously 

describe time-since-stroke and neurophysiological capacity for recovery may prevent 

development of optimised rehabilitation interventions tailored to individual stroke survivors 

with heterogeneous recovery trajectories.  

2.6.3 Higher variance in RMT after stroke reflects heterogeneous post-stroke anatomy and 

cortico-spinal excitability.  

In this study, alongside a time-dependent change in SICI after stroke, I found no significant 

change in RMT over time. RMT values were however persistently more variable in stroke 

survivors compared to the neurotypical group. This variability is likely reflective of the 

compound nature of the RMT measure, which is influenced by the excitability of spinal 

motor neurons (Brouwer & Schryburt-Brown, 2006; Groppa et al., 2012) and cortico-cortical 

projections to M1 (Borich et al., 2015) in addition to variations in age (Corp et al., 2021), 

time post-stroke (Rosso & Lamy, 2018; Stinear & Byblow, 2017), variable tone in hand 

muscles producing MEPs (Darling et al., 2006; Kiers et al., 1993), and cortico-spinal tract 

integrity (Kemlin, Moulton, Lamy, et al., 2019; Potter-Baker et al., 2018); the relationship 

between RMT and M1 excitability is non-linear. Meanwhile, consensus has not been 

reached on the relationship between RMT and functional gains after stroke, with some work 

suggesting the two are highly correlated (Kemlin, Moulton, Lamy, et al., 2019; Rosso & 

Lamy, 2018) while no relationship is reported elsewhere (Freundlieb et al., 2015). In this 

study, high variance in RMT data is not reflected in functional scores, though I note again 

the issue is not directly interrogated due to ceiling effects. These data do not provide 

conclusive evidence of the relationship (or lack thereof) been cortical excitability and 

functional recovery trajectory after stroke, though they do evidence greater variability in 

TMS-measures of cortico-spinal excitability in stroke survivors.  

Lesion size was identified as a contributing factor to RMT variability, as lower RMT (i.e. 

higher CSE) was associated with larger lesion volume. However, I note that large lesions 

were not well-represented; just one participant’s lesion volume was higher than the 75th per 

centile of a larger sample of 439 stroke survivors (Sperber & Karnath, 2016). Though 

seemingly counter-intuitive, small, subcortical lesions reportedly have a greater impact on 

efferent motor pathways (Freundlieb et al., 2015), which may be because descending white 
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matter tracts are more densely occluded by sub-cortical lesions than larger cortical ones. In 

this sample of survivors with relatively small lesions, smaller lesions appear to be associated 

with higher RMT, possibly due to greater CST damage (Kemlin, Moulton, Lamy, et al., 2019). 

Due to small sample size and limited lesion information in this study, the potential 

relationship between lesion characteristics and RMT is non-conclusive; a target for further 

investigation which might explain high variability in TMS measures of cortical excitability in 

the stroke population.  

In addition to the possible impact of lesions on RMT variability, secondary stroke-induced 

structural changes including enlarged ventricles and cortical atrophy may impact the 

amplitude of TMS-evoked MEPs (Minjoli et al., 2017; Skriver et al., 1990). In a recent study 

that modelled TMS current flow in 2 stroke survivors (Minjoli et al., 2017) increased atrophy 

and lesioned tissue near the cortical target were associated with a lower volume of grey 

matter affected by TMS-induced E-field. In the context of the findings reported here, I 

suggest that stroke-induced anatomical changes may contribute to the observation of 

higher RMT variability in stroke compared to neurotypical groups. Future work may be 

improved by individualised modelling of TMS E-field, to account for variance in outcome 

measures attributed to pathological anatomy.  

2.6.4 Limitations. 

In this study, I aimed not only to measure changes in the balance of cortical excitation and 

inhibition using RMT and SICI measures, but to also investigate whether stroke survivors’ 

potential for plasticity changed as a function of time since stroke. After all, alterations to 

excitatory-inhibitory balance in the brain are of interest because they may modulate 

neuroplastic potential. To this end, an inhibitory TBS protocol was used to modulate 

excitability in the motor cortex of stroke survivors and neurotypical participants, though it 

was found to be ineffective; no difference in MEP amplitude was found before and after 

cTBS intervention in both the neurotypical and stroke survivor groups. This finding is in 

concurrence with a recent large-scale meta-analysis of data from 430 neurotypical 

participants (mean age = 42) which found that reliability of cTBS response was “almost non-

existent” within studies (Corp et al., 2020, p. 1480). However, increased variability in MEPs 

collected during TBS studies was reported when TMS pulses were delivered at 120% RMT, as 
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they were in this study, compared to an alternative method where the intensity of TMS 

pulse was prescribed by the minimum dose required to evoke 1mV amplitude MEPs (Corp et 

al., 2021). Future work may benefit from this minor protocol alteration.  

In addition to potential sources of variability in TMS measures described above, the 

functional scores reported may not optimally reflect the post-stroke trajectory of motor 

recovery. ARAT scores reflect cognitive, personal, and environmental factors as well as 

motor function (Schepers et al., 2007), while the FIM and NIHSS are generalised measures 

not limited to motor symptoms after stroke. The FM-UL, which quantifies impairment 

instead of function, may be better suited to assess the trajectory of motor recovery after 

stroke, as incremental reductions in motor impairment which may not yet result in 

detectable change in a given function, may produce a more fine-grained assessment of 

recovery which is less susceptible to ceiling effects. To capture the full picture of the post-

stroke recovery timeline, multiple measures of function and impairment should be 

reported. 

Finally, I note that SICI and RMT are indirect measures of excitatory and inhibitory brain 

function which will not fully capture the complex and changeable post-stroke brain 

environment. In fact, Grigoras and colleagues (Grigoras & Stagg, 2021) point out that 

reported change in excitatory-inhibitory balance after stroke tends to differ between 

modalities used. For example, a positron emission tomography (PET) study found increased 

ipsilesional GABAA receptor availability at 1 and 3 months post-stroke in 10 participants, 

while a recent magnetic resonance spectroscopy (MRS) study showed no significant 

difference in ipsilesional GABA between sub-acute stroke survivors and age-matched 

neurotypical participants (Cirillo et al., 2020). Further multi-modal investigation is required 

to elucidate the physiological mechanisms which might underlie individualised motor 

recovery after human stroke. 

2.6.5 Conclusion. 

Here, I investigated whether post-stroke functional gains and TMS-assessed changes in 

excitatory-inhibitory balance follow temporally coupled trajectories. I also considered 

whether the homogenous timeline set out in the Stroke Roundtable Consortium (Bernhardt 

et al., 2017) accurately describes human recovery after stroke. I report that TMS-assessed 
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CSE is persistently more variable in stroke survivors than neurotypical participants, which 

may be due in part to the impact of pathological anatomy on TMS-induced E-fields (Minjoli 

et al., 2017; Scrivener et al., 2012).  

Further, I found that the timeline of motor functional recovery was temporally de-coupled 

from GABA-mediated intra-cortical inhibition in survivors with mild stroke symptoms. In 

light of recent work evidencing varied stroke recovery trajectories in survivors with different 

symptom severity (Bonkhoff et al., 2022; van der Vliet et al., 2020), I suggest that 

temporally-defined, group-wide ‘phases’ of recovery do not adequately describe the human 

post-stroke trajectory. Stroke-induced periods of an enhanced propensity for neuroplasticity 

are well evidenced in the animal literature (Biernaskie, 2004; Zeiler et al., 2016) and may 

well be underpinned by reduced inhibition and enhanced excitation (reviewed in Di Pino et 

al., 2014); I suggest that these periods may occur at different times, and for different 

durations, in stroke survivors with varying symptom severity.  

Though stroke rehabilitation research has already moved beyond the outdated notion that 

significant recovery is not achievable after the sub-acute window has closed (Ward et al., 

2019), the next step should be towards individualised identification of ‘pro-plastic periods’ 

after stroke when interventions may be most effective. Optimal timing of neuromodulatory 

interventions such as tDCS may for example benefit from individual assessment of 

functional brain state, which cannot be accurately predicted by recovery “phase” defined 

time since stroke onset.  
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CHAPTER 3. ENCOURAGING AN EXCITABLE BRAIN STATE 

AFTER STROKE WITH DOSE- AND DIRECTION-CONTROLLED 

TDCS. 

3.1 Introduction  

The work presented in this thesis interrogates how neuromodulation might be best applied to 

augment motor rehabilitation after stroke. In this Chapter, I investigate the impact of dose- and 

direction-controlled tDCS targeting M1hand, in neurotypical participants and stroke survivors in 

the chronic phase of recovery. TMS-MEPs are used to probe neurophysiological changes during- 

and post-tDCS application. While CFM-informed tDCS is hypothesised to increase the reliability 

of stimulation outcomes, I expected to find higher variability in stroke survivors’ response to 

tDCS due to stroke-induced changes in functional and anatomical brain state (discussed 

previously in section 1.5.1).  

3.1.1 Re-opening the sensitive period after stroke. 

The majority of recovery after stroke is observed within the first month in rodent models 

(Biernaskie, 2004; Krakauer et al., 2012; Murphy & Corbett, 2009) and within the first 6 

months following human stroke (Buma et al., 2013; Cramer, 2008; Duncan et al., 1992; 

Hankey et al., 2007; Jorgensen et al., 1999; Kwakkel et al., 2004; Prabhakaran et al., 2008; 

Skilbeck et al., 1983; Ward, 2017). During this time, spontaneous biological recovery is 

observed (Cramer, 2008; Krakauer & Carmichael, 2017b; Nudo & Milliken, 1996) alongside 

heightened responsiveness to training (Biernaskie, 2004; Zeiler et al., 2016). In animal 

models of stroke, a sensitive period is recognised where endogenous recovery and 

heightened responsiveness to training are thought to be underpinned by a time-limited 

window of increased neuroplastic potential, the mechanisms of which are not yet fully 

understood (Zeiler et al., 2016; Zeiler & Krakauer, 2013).  

Identification of a sensitive period after stroke necessitates two interesting lines of research. 

First, to maximise training interventions within the sensitive period: promising avenues of 

research include enriched rehabilitation environments for experience-dependent learning 
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(Aberra et al., 2020; Baroncelli et al., 2010; Bavelier et al., 2010; McDonald et al., 2018; 

Zeiler & Krakauer, 2013), and increased training dose (Birkenmeier et al., 2010; Lohse et al., 

2014; Scrivener et al., 2012; Waddell et al., 2014; Winstein et al., 2019).  

Second, promoting a brain environment that might support the sensitive period is a 

promising therapeutic target. Converging evidence suggests that accelerated sub-acute 

recovery is underpinned by enhanced endogenous plasticity (for reviews, see (Joy & 

Carmichael, 2020; Krakauer & Carmichael, 2017b). Increasing cortical excitability 

pharmacologically (Abe et al., 2019, 2019; Chollet et al., 2011; Clarkson et al., 2010; Liu et 

al., 2021; Liu et al., 2018; Lundström et al., 2021; Mead et al., 2013), or using non-invasive 

brain stimulation (Bai et al., 2022; Cheng et al., 2014; Chhatbar et al., 2016; Dmochowski et 

al., 2013; Elsner et al., 2018; Figlewski et al., 2017; Hamoudi et al., 2018; Hordacre, 

McCambridge, et al., 2021; Hummel & Cohen, 2006; Hummel & Cohen, 2005; Kubis, 2016; 

Levy et al., 2008; Malcolm et al., 2014; Marquez et al., 2015; Stinear et al., 2015; Yoon et al., 

2012) are among candidate therapeutic interventions to promote neuroplasticity after 

stroke, intended for use alongside physical training.  

A key unanswered question is when plasticity-promoting interventions might be best 

applied in humans: during the hypothesised sensitive period or after it? In other words, 

should researchers aim to support, extend or re-open the hypothesised critical window for 

recovery in humans? Notably, since tDCS modulates ongoing neuronal activity (Reato et al., 

2013; Terzuolo & Bullock, 1956) and effects are state-dependent (Esmaeilpour et al., 2018; 

Polanía et al., 2010; Reato et al., 2010, 2013; Schmidt et al., 2014; Terzuolo & Bullock, 1956), 

response to tDCS will likely differ as a function of brain activity changes throughout the 

recovery timeline. In rodents, for example, tDCS applied 5-10 days after stroke has been 

linked to greater functional recovery compared to rats with tDCS administered within 1-5 

days, or not at all after stroke (Yoon et al., 2012).  

In humans, a recent study found improved performance on the Jebsen–Taylor hand function 

test after anodal tDCS was applied in the subacute compared to chronic stages after stroke 

(Pavlova et al., 2020). In a recent review, Lefaucheur and colleagues attempted to 

summarise the impact of tDCS on human motor performance during different post-stroke 

phases (Lefaucheur et al., 2017). The report accurately reflects a literature without 
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consensus; Lefaucher and colleagues describe studies where tDCS application in the sub-

acute (Chang et al., 2015; Khedr et al., 2013) and chronic (Allman et al., 2016) post-stroke 

phases is associated with improved motor performance, while no functional impact of tDCS 

applied in the sub-acute (Hesse et al., 2011) and chronic phases (Geroin et al., 2011; Viana 

et al., 2014) is reported elsewhere. Importantly, meta-analyses such as these do not account 

for variability in tDCS protocols or outcome measures used between studies, reducing the 

power of findings.  

3.1.2 TDCS optimisation. 

Differences in tDCS protocols between studies include varying stimulation intensity, 

duration, electrode montage, and sham condition used. Outcomes also vary within 

protocols however, between individuals in the same study (Laakso et al., 2015; Polanía et 

al., 2018; Vergallito et al., 2022; Wiethoff et al., 2014). The emergence of open-access 

current flow modelling (CFM) software (Dannhauer et al., 2012; Dmochowski et al., 2011, 

2013; Huang, Thomas, et al., 2018; Huang, Datta, et al., 2018; Huang et al., 2019; Lee et al., 

2017; Saturnino, Puonti, et al., 2019) has enabled researchers to interrogate where, and 

how much current is flowing through ROIs in the brain during a simulated tDCS protocol, 

and subsequent work utilising CFMs has shown that E-field intensity in a cortical ROI can 

vary greatly between individuals when an identical protocol is applied (Bikson, Rahman, & 

Datta, 2012; Bikson, Rahman, Datta, et al., 2012; Caulfield et al., 2020; Datta et al., 2012; 

Dmochowski et al., 2011; Evans et al., 2020). Individual differences in E-field delivered to an 

ROI partially explain regional changes in neurotransmitter concentration (Nandi et al., 2022) 

and MEP amplitude change following stimulation (Laakso et al., 2019). Minimising variance 

in E-field delivered to an ROI across participants may in turn reduce variability in outcomes 

and improve tDCS efficacy.  

3.1.2.1 Individualised tDCS dose.  

Previous work undertaken by our group (Evans et al., 2020) utilised ROAST CFM software 

(Huang, Datta, et al., 2018; Huang et al., 2019) to simulate a conventional bipolar motor-

targeted tDCS protocol in 50 structural MRI scans of neurotypical individuals. When simulated 

tDCS stimulator output was fixed at 1mA, the average E-field intensity recorded in the cortical 

target, M1hand, was 0.185V/m. A reverse calculation method was then used to ascertain the 
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tDCS stimulator output required to achieve uniform 0.185 V/m E-field intensity in M1hand in each 

participant, using the formula:  

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑜𝑠𝑒 = (
𝑇𝑎𝑟𝑔𝑒𝑡 𝐸-𝐹𝑖𝑒𝑙𝑑 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐸-𝐹𝑖𝑒𝑙𝑑
)  × 𝐹𝑖𝑥𝑒𝑑 𝑑𝑜𝑠𝑒 

Where Target E-field was the target E-field intensity, set as 0.185V/m to match the group 

average. Actual E-field was the E-field intensity recorded in M1hand in each individual when 

fixed dose 1mA tDCS was simulated, and Fixed Dose was the injected current (1 mA) 

delivered to scalp electrodes in the original model. Methodology for reverse-calculated tDCS 

dose control has also been reported by Caulfield and colleagues (Caulfield et al., 2020), and 

recent iterations of current flow modelling software allow users to specify target E-field at 

coordinates denoting a target cortical ROI (Dmochowski et al., 2011, 2013; Huang, Thomas, 

et al., 2018). Dose-control methods which do not require CFMs are also emerging, a notable 

example being individualised tDCS stimulator output calculated as a function of head 

circumference (Antonenko et al., 2021). In the presented study, the reverse calculation 

method described by Evans and colleagues (Evans et al., 2020) was used to individualise 

stimulator output for each participant.  

3.1.2.2 Optimised tDCS direction. 

The direction of current relative to the somato-denditic axes of pyramidal neurons dictates 

polarisation effects (Bikson et al., 2004; Farahani et al., 2021; Lafon et al., 2017; Rahman et al., 

2013, 2015; Seo & Jun, 2019). As previously discussed, the cortical surface of an ROI is taken as 

a proxy for the predominant orientation of pyramidal neurons in grey matter, typically oriented 

with apical dendrites close to the surface. Current flowing radial-inward relative to the surface 

of the cortex is associated with somatic depolarisation and heightened neuronal excitability, and 

was therefore the target for current direction optimisation in this study. In contrast, current 

flowing radial-outward is associated with somatic hyperpolarisation and decreased excitability, 

and current flow orthogonal to somato-dendritic axes (parallel to the cortical surface) is not 

associated with significant tDCS-induced somatic polarization (Bikson et al., 2004; Chan et al., 

1988). This concept is summarised in Figure 1.2 in Chapter 1 of this thesis. 

In humans, the direction-dependency of tDCS effects has long been evidenced by reports of 

electrode polarity determining outcomes (Nitsche & Paulus, 2000). Recent advances in the field 
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have given rise to CFM-informed montages, including the PA-tDCS montage described in Figure 

1.3, where an anode is placed posteriorly and a cathode anteriorly to the cortical target, M1hand, 

to produce predominantly radial-inward current flow relative to the cortical surface of the ROI. 

Greater consistency in current direction in M1hand has been shown when a PA-tDCS montage 

was used, compared to the conventional tDCS montage where the anode is placed directly 

above an ROI (Datta et al., 2009; Hannah et al., 2019; Rampersad et al., 2014; Rawji et al., 2018). 

Recent work by our group (Evans et al., 2022) confirmed that PA-tDCS produces predominantly 

radial-inward current in M1hand across participants, and the highest estimated E-field intensity in 

M1hand was found using PA-tDCS compared to alternative montages.  

While current direction and E-field intensity are not correlated (Evans et al., 2022), both are 

likely to impact tDCS effects. Here, PA-tDCS is applied with reverse-calculated dose control, to 

minimise variance in tDCS-induced E-field intensity and current direction in M1hand across 

neurotypical participants and stroke survivors.  

3.1.3 TMS recruitment curves quantify neurophysiological response to tDCS  

Single-pulse TMS was used to assess changes in CSE during and post-tDCS application 

compared to baseline. MEPs were recorded from the FDI muscle of the hand when TMS 

pulses of varying intensities were applied to the motor hotspot on the scalp. Typically, 

stronger TMS pulses result in a sigmoidal increase in muscle response: MEP amplitude 

increases with TMS intensity before reaching a plateau (Devanne et al., 1997; Hess et al., 

1987). The sigmoid describing the relationship between TMS intensity and evoked response 

is herein referred to as a recruitment curve (RC), synonymous with “stimulus-response 

curve” or “input-output curve”. It has been suggested that redundancy exists among 

parameters which can be extracted from RCs to measure CSE, for example, the gradient of 

the maximal slope of the sigmoid and the area under the curve tend be positively correlated 

(Kemlin, Moulton, Leder, et al., 2019).  

This study aimed to compare response to a CFM-informed tDCS protocol in neurotypical 

individuals and stroke survivors in the chronic phase of recovery. While cortical excitability is 

hypothesised to return to pre-stroke levels in the chronic phase, approximately 6 months 

post-stroke (Bernhardt et al., 2017), it was hypothesised that TMS-assessed CSE at baseline 

would be more variable in the stroke survivor group, due to stroke-induced changes in 
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functional and anatomical brain state. Chronic network dysfunction (Grefkes & Fink, 2012; 

Guggisberg et al., 2019; Lim et al., 2014; Siegel et al., 2016), variable muscle tone at rest 

(Darling et al., 2006; Kiers et al., 1993), and individual differences in integrity of the cortico-

spinal tract (CST; Potter-Baker et al., 2018) may also result in differing TMS-assessed 

response to optimised-tDCS in stroke survivors compared to neurotypical participants, as 

stroke-induced changes to functional and anatomical brain state may alter the distribution 

of, and response to, tDCS-induced E-fields (this concept is discussed at length in section 

1.5.1). It was therefore hypothesised that dose- and direction-controlled tDCS would 

increase M1hand excitability in neurotypical participants, while greater variability and lower 

predictability of outcomes were expected in the chronic stroke survivor group.  

3.2 Methods.  

3.2.1 Overview. 

Individual structural MRI scans were used for current flow modelling (Figure 3.1A), to 

determine the tDCS stimulator output required to deliver 0.185 V/m E-field to M1hand in each 

participant. Participants then attended two sessions in which real and sham tDCS were applied 

in a pseudo-randomised order. TMS recruitment curves were collected before, during and after 

tDCS intervention, and a wildlife documentary was played throughout sessions to counter 

participant fatigue (Figure 3.1B). The project was approved by the UCL Research Ethics 

Committee (project ID: 18/0441). 
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Figure 3.1. Study design. A) Current flow model simulation pipeline using ROASTV2.7: structural MRI scans (A1) were segmented into 8  tissues (A2) electrodes 
were applied (A3) and the FEM was solved (A4) to simulate current flow during PA-tDCS in each participant. B) Experimental design. TMS recruitment curves were 
collected before, during, and after 20 minutes of real or sham tDCS application. A nature documentary was played throughout the experiment to counter 
participant fatigue. 
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3.2.2 Inclusion criteria. 

Inclusion criteria for stroke survivors were: first-time hemiparetic stroke, upper limb motor 

impairment, presence of voluntary flickers of finger extension on the affected hand, > 18 

years old, no history of neurological disease, no history of craniotomy or other 

neurosurgery, able to give informed consent, no medication known to modify seizure 

threshold or other contraindications to TMS or tDCS such as metallic implants in the skull, 

implanted pacemaker or a history of seizures, no contra-indications to MRI, and able to 

access 2 experimental sessions of approximately 3-hour duration. Pre-pandemic criteria 

included stroke survivors any time since stroke, revised to recruitment of chronic stroke 

survivors only as hospital access was limited by coronavirus safety restrictions. Examples of 

safety screening forms, participant information sheets and consent forms are included in 

Appendices A-D. Stroke survivors were screened over the phone, via email, or in person in 

the Hyper-Acute Stroke Unit (HASU) at the National Hospital for Neurology and 

Neurosurgery (NHNN). 

3.2.3 Participants. 

Four hundred and thirty-three stroke survivors, and 120 neurotypical participants were 

screened for inclusion in this study. Of these, 18 chronic stroke survivors (age = 58.9 ± 8.46, 5 

females) and 21 neurotypical participants (age = 56.2 ± 14.6, 10 females) completed 

participation. The high exclusion rate was due primarily to a previously planned version of 

the study, before access restrictions due to the pandemic, which included recruitment of 

stroke survivors in the acute stage of stroke to facilitate data collection in the sub-acute 

phase. Stroke survivors in the acute stage of stroke were therefore routinely screened and 

approached for consent to take part in the study, with researchers requesting they return 

within months of discharge from hospital to take part. Primary reasons for exclusion in 

these cases were lack of capacity to consent, inaccessibility of the study which required 2 

experimental sessions of approximately 3-hour duration and an MRI scan, and loss of 

contact as patients returned home, were moved to alternative facilities, or ceased 

responding over the pandemic period. Other reasons for exclusion included severity of 

motor deficit (absence of voluntary flickers of finger extension was taken as a predictor of 

MEP-negative status), previous history of stroke, and contraindications to MRI at the 

Wellcome Centre for Human Neuroimaging (WCHN). In the neurotypical group, primary 
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reasons for exclusion included the distance between potential participants’ homes and the 

research facilities located in London, contraindication to MRI, and loss of contact over the 

pandemic period.  

3.2.4 Clinical information.  

Stroke survivors’ motor impairment was measured during one experimental session using 

the Fugl-Meyer assessment of the upper limb (FM-UL; Fugl-Meyer et al., 1975), which was 

administered by researchers. A video of the assessment was recorded, with consent, for 

accurate scoring after study sessions. 

3.2.5 MRI scans 

Individual structural MRI scans were obtained before tDCS was applied. Where possible, existing 

MRI scans are used. Participants who did not already have a 1mm3 resolution T1 or T2-weighted 

MPRAGE MRI scan of sufficient quality for tDCS current flow modelling were scanned at the 

Wellcome Centre for Human Neuroimaging, on a 3T scanner (SIEMENS, Trio) with a 32-channel 

head coil. MRI scans were anonymised by removal of the header using MRIcroN software 

(NITRC: MRIcron: Tool/Resource Info), since anonymisation by defacing would alter tissue 

segmentations necessary for current flow modelling.  

3.2.6 TDCS simulation. 

ROAST v2.7.1 (Huang, Datta, et al., 2018; Huang et al., 2019) was used for tDCS current flow 

modelling. A PA-tDCS montage was simulated on the ipsilesional hemisphere of stroke 

survivors and the dominant hemisphere of neurotypical participants. Disc electrodes (3cm 

diameter, 2mm height) were simulated over 10-10 coordinates CP5/CP6 (anode) and F1/F2 

(cathode), to target M1hand. Thirty voxels of zero-padding were added to ensure tissue did 

not extend beyond image boundaries. Default conductivity values for each tissue type were 

used, defined in ROAST as (in S/m): grey matter: 0.276; white matter: 0.126; CSF: 1.65; 

bone: 0.01; skin: 0.465; air: 2.5 × 1014; gel: 0.3; electrode: 5.9× 107. 

3.2.7 TDCS application. 

Participants attended 2 experimental sessions after obtaining a structural MR scan, in which 

real and sham tDCS are applied in a pseudo-randomised order. During real stimulation, the 

individualised dose of tDCS required to deliver 0.185V/m E-field intensity to M1hand for each 
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participant was applied for 20 minutes with a 15-second ramp-up and -down to minimise 

detectable sensation of stimulation on the skin. Sham stimulation comprised of a 15-second 

ramp up, before stimulation was turned off for the duration of the 20-minute block. MRI 

scans could not be obtained for 2 stroke survivors and two neurotypical participants during 

a period of uncertainty associated with the coronavirus pandemic, where study duration 

was minimised to limit person-to-person contact. In these cases, the group average of 

individualised dose was applied, with tDCS electrodes positioned 7cm anteriorly and 

posteriorly to the TMS-identified motor hotspot, in the orientation of the TMS coil.  

Where MRI scans were available, accurate scalp electrode placement was achieved during 

study sessions by uploading the segmented tissue masks of skin, electrodes and electrode 

gel generated by ROAST to Brainsight® TMS Navigation software (Brainbox Ltd.). Each 

subject’s head was calibrated to its virtual counterpart using the Brainsight® Subject Glasses 

and Pointer in keeping with the manufacturer’s instructions, and the pointer was used to 

locate the centre of each simulated electrode on the participant’s scalp. A chinagraph pencil 

was used to mark anode and cathode positions. Hair was parted in an ‘X’ shape over 

electrode positions and skin was prepped using alcohol and NuPrep abraisive gel to 

minimise impedance, before tDCS electrodes were applied to the scalp. Electrodes were 

adhered using ~2mm of Ten20 EEG conductive and adhesive paste. Impendence was kept 

below 5 kΩ in keeping with practical guidelines (DaSilva et al., 2011). 

3.2.8 Transcranial magnetic stimulation. 

Electromyographic (EMG) Ag/AgCl electrodes were used to record MEPs from the first 

dorsal interosseous (FDI) muscle of the target hand. An active electrode was placed over the 

belly of the FDI muscle, a reference electrode on the proximal inter-phalangeal joint of the 

index finger of the same hand, and a ground electrode on the head of the ulna bone on the 

wrist. Cushions were used for participant comfort and to stabilise the upper limb during 

data collection. EMG signals were amplified (1000x), band-pass filtered (3-2500 Hz; D360, 

Digitimer, Welwyn Garden City, UK), digitised at 5 kHz (CED Power 1401, Cambridge 

Electronic Design Ltd, UK) and viewed online then saved via Signal software (Version 6.0, 

Cambridge Electronic Design Ltd). 
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The hotspot for each participant was determined as the TMS coil position which elicited 50 

microvolt (μV) MEPs in 5 of 10 trials. The TMS stimulator output required to achieve this 

response was recorded as the resting motor threshold (RMT). The hotspot location was 

marked on each participant's head using a Chinagraph Pencil.  

Each TMS block consisted of 48 pulses applied at 6 different TMS stimulator intensities 

ranging from 90 to 140% RMT in increments of 10%. Eight complete recruitment curves 

were obtained per block. One TMS block was applied before, 3 blocks during and 2 blocks 

after stimulation. TMS blocks during stimulation were applied 2, 8 and 14 minutes post-tDCS 

stimulator ramp up, with a 2-minute break between each block. One block of TMS was 

applied immediately post-tDCS, and the final block of TMS was recorded after a 10-minute 

break (Figure 3.1). 

3.3 Analysis.  

3.3.1 Current flow model data extraction.  

Data were extracted from current flow models produced by ROAST using MATLAB (MATLAB, 

2018). First, individualised ROIs were identified using structural MR scans viewed in 

MRIcroN software (Rorden & Brett, 2000, retrieved from: www.nitrc.org/projects/mricron). 

M1hand was visually identified for each participant in keeping with anatomical descriptions in 

the literature (Caulo et al., 2007; Dechent & Frahm, 2003; Yousry, 1997). MRIcroN’s drawing 

tool (www.nitrc.org/projects/mricron) was then used to create a 1cm diameter spherical 

ROI, extending outwards from the voxel identified as the centre of individualised M1hand. 

Next, explicit binary masks of grey and white matter tissue masks produced by ROAST were 

created using SPM12 (0.2 intensity threshold; http://www.fil.ion.ucl.ac.uk/spm/) and 

combined. Each subject’s binary grey and white matter mask was applied to the ROI sphere, 

to create individualised ROIs for M1hand. Finally, E-field data were extracted from 

individualised ROIs using Matlab’s MarsBaR toolbox (Brett et al., 2002, retrieved from: 

https://marsbar-toolbox.github.io/), to derive estimated mean E-field intensity (V/m) in grey 

and white matter of M1hand when fixed-dose (1 mA) PA-tDCS was simulated in each 

participant. Individualised tDCS dose was reverse-calculated using the formula described 

above.  

http://www.nitrc.org/projects/mricron
http://www.nitrc.org/projects/mricron
http://www.fil.ion.ucl.ac.uk/spm/
https://marsbar-toolbox.github.io/
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3.3.2 MEP processing.  

MEP data were pre-processed in MATLAB (MATLAB, 2018). Trials were removed if atypical 

muscle contraction was detected before TMS pulse onset in each trial. Since some stroke 

survivors experienced mild resting muscle tone in the impaired upper limb, a cut-off value 

for muscle activity was not appropriate for use across participants. Instead, the average of 

the root mean square (RMS) of muscle activity up to 100ms before the TMS pulse was 

calculated for all trials in a given block. Single trials were excluded if RMS muscle activity in 

the 100ms preceding the TMS pulse exceeded RMS muscle activity for the whole block plus 

2 standard deviations. Trials were also discarded if the MEP was indistinguishable from 

background noise (MEP amplitude ≤ RMS pre-contraction per trial). Or if the TMS pulse 

failed to fire (TMS artefact amplitude ≤ RMS pre-contraction per trial and MEP amplitude ≤ 

RMS pre-contraction per trial). All trials of EMG data were then overlayed onto two plots 

per participant, one depicting data before pre-processing and one after pre-processing, to 

visually identify unusual inclusion or exclusion of trials. Grubbs’ test (Grubbs, 1969) was 

then used to identify and exclude outliers in stroke and neurotypical data separately.  

3.3.2.1 Recruitment curve construction and data extraction. 

To construct recruitment curves from MEP data, MEP amplitude at each increment of RMT 

(90-140%) was averaged per participant, per block. MATLAB’s curve fitting tool 

(https://www.mathworks.com/products/curvefitting.html) was then used to fit a sigmoidal 

curve to the data. The modified Boltzmann equation (Carroll et al., 2001; Devanne et al., 

1997; Iyer & Madhavan, 2019) was used for sigmoidal fit, with the formula: 

𝑀𝐸𝑃𝑚𝑎𝑥

1 + 𝑒𝑚(𝑆50−𝑠)
 

Where MEPmax is the maximum estimated MEP amplitude, S50 is the stimulus intensity at 

which MEP amplitude is 50% of MEPmax, m is the slope parameter of the function, and s 

represents TMS stimulator output as a per centage of RMT (90-140%).  

In some cases, fitted MEPmax values for sigmoidal recruitment curves extended beyond 

neurophysiologically plausible values. For example, in the data presented in this Chapter, 

fitted MEPmax values exceeded the maximum recorded MEP by ≥1mV in 87 of 467 fitted 

sigmoidal recruitment curves (18.63% TMS blocks), with adjusted R2 values counter-

https://www.mathworks.com/products/curvefitting.html
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intuitively implying good fit in these cases (M = .89, SD = .16). To avoid inclusion of 

misleading fitted values, data were constrained to values which reflected experimental 

conditions (TMS intensities between 90-140% RMT). Linear and exponential curve fits were 

compared to sigmoidal fit, since the sigmoidal pattern commonly used to describe RCs 

(Carroll et al., 2001; Carson et al., 2013; Iyer & Madhavan, 2019) may not have optimally 

represented stroke survivor data constrained to 90-140% RMT in this study (Figure 3.2). 

Recruitment curve outcome measures of interest include the gradient of the curve at half-

maximum of fitted MEP values (RCslope), the area under the curve (RCAUC) and fitted MEP 

amplitude at a fixed per centage of RMT (here, 120% of RMT, denoted as RC120%). RCslope was 

calculated using MATLAB’s gradient function 

(https://uk.mathworks.com/help/matlab/ref/gradient.html) and RCAUC was calculated 

within the range of applied TMS pulses (90-140% RMT) using MATLAB’s trapz function 

(https://uk.mathworks.com/help/matlab/ref/trapz.html), which computes the approximate 

integral of MEP amplitude via the trapezoidal method.  

To account for the potentially misleading value of RCslope where a full sigmoidal curve was 

not represented within 90-100% RMT, RC120% and RCAUC values are reported. RCslope, RCAUC, 

and RC120% are herein collectively referred to as RC measures of interest. Larger values of RC 

measures of interest indicate greater excitability of neural structures stimulated by TMS, as 

they reflect corticomotor output across 90-140% of RMT (Boroojerdi et al., 2001; Carson et 

al., 2013; Devanne et al., 1997; Iyer & Madhavan, 2019; Potter-Baker et al., 2016; Ridding & 

Rothwell, 1997; Siebner et al., 2022).  

 

 

 

https://uk.mathworks.com/help/matlab/ref/gradient.html
https://uk.mathworks.com/help/matlab/ref/trapz.html
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Figure 3.2. Fitted sigmoidal recruitment curve with neurophysiologically plausible values 
(Example 1: A, B) and implausible values (Example 2: C, D). Black data points represent average 
MEP amplitude per TMS intensity for one RC block, and black lines are fitted sigmoidal curves. 
On the left (A, C) are full fitted sigmoids and black data points for examples 1 and 2. On the 
right (B, D) the same curves are shown, constrained to TMS intensities used in experimental 
sessions (90-140% RMT). RCslope is shown in red, reflecting the tangent of the recruitment curve 
slope at half MEPmax within 90-140% RMT range. RCAUC within TMS intensities 90-140% RMT is 
shown in yellow. RC120% is depicted by a blue star. Example 1. A) Averaged MEP values are well-
fitted to the full sigmoidal recruitment curve. Fitted S50 and MEPmax values are 
neurophysiologically plausible. B) Fitted data extracted from A. RCslope is representative of gain 
in the centre of the full sigmoid, fitted RC120% is similar to the recorded value, and RCAUC reflects 
the area under the full recruitment curve. Example 2. C) Averaged MEP values fall at the base 
of the fitted recruitment curve, with implausible S50 and MEPmax fitted values. Fitted TMS 
intensities extend beyond experimental protocol (TMS intensity >140% RMT). D) Fitted data 
extracted from C, constrained to values which reflected experimental protocol (TMS intensities 
between 90-140% RMT). RCslope does not represent the maximum gain of the sigmoid, fitted 
RC120% is similar to the recorded value, and RCAUC reflects the area under available data well, 
but not the area under the full recruitment curve.  
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3.3.3 Statistical analyses. 

First-order polynomial (linear), one-term exponential, and sigmoidal curves were compared 

for fit with recruitment curve data, with the coefficient of determination (R2) provided by 

MATLAB’s fitting function used to measure of goodness of fit (Iyer & Madhavan, 2019).  

Values for RC measures of interest above the 75th, or below the 25th per centile plus three 

times the inter-quartile range were identified as extreme outliers and removed from 

analyses. Separate linear mixed effects models for stroke and neurotypical groups were first 

constructed to compare RC measures of interest collected during- and post-tDCS to baseline, 

to determine whether the tDCS intervention was effective. Block (pre-, during-, and post-

tDCS) and condition (real- or sham-tDCS) were included as fixed effects, with a random 

intercept per participant to account for non-independence of data between sessions, using 

the formula:  

𝑅𝐶 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 ~ 𝐵𝑙𝑜𝑐𝑘 × 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

If an effect of tDCS was detected, data collected during- and post-tDCS was normalised to 
baseline using the following template formula:  
 

100 ×
𝑅𝐶 𝑝𝑜𝑠𝑡-𝑡𝐷𝐶𝑆

𝑅𝐶 𝑝𝑟𝑒-𝑡𝐷𝐶𝑆
 

 
Normalised stroke and neurotypical data would then be combined to compare the impact of 

tDCS between groups and tDCS conditions, using the formula:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑅𝐶 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 ~ 𝐺𝑟𝑜𝑢𝑝 × 𝐵𝑙𝑜𝑐𝑘 × 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

+ (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

3.4 Results. 

3.4.1 Descriptive statistics. 

Slightly higher tDCS individualised dose was required in the stroke group (M = 1.20, SD = 

0.27mA) compared to the neurotypical group (M = 1.08, SD = 0.22 mA), to deliver target E-

field (0.185 V/m) to M1hand. In the stroke survivor group, 12 participants had mildly impaired 

upper limb movement, 2 were moderately impaired and 2 were severely impaired (FM-UL: 

Mean = 60, SD = 13.96). Fugl-Meyer data were not collected for 2 participants due to 
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session time constraints (anecdotal notes taken imply these participants experienced mild 

upper limb impairment, evidenced by a broad range of voluntary movement). Average time 

post-stroke was 49.81 months (Range = 5.62 – 136.60 months, SD = 39.95 months). TDCS 

actual E-field and individualised dose data are presented in Table 3.1, along with FM-UL 

scores and time post-stroke for each participant, where applicable.  
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Table 3.1. CFM and clinical data for stroke survivors (S) and neurotypical (N) participants. Actual E-field 
recorded in M1hand when a fixed-dose tDCS protocol was simulated, individualised dose required to achieve 
target E-field (0.185 V/m) in M1hand, days post-stroke, and FM-UL scores reflecting upper-limb impairment are 
shown where applicable. A FM-UL score of 66 represents no upper limb impairment.  

ID 

TDCS Actual E-field in 

M1hand, pre-

individualisation (V/m) 

TDCS individualised dose 
(mA) 

Days post-stroke 

FM-UL  

(no impairment 
= 66) 

S1 0.18 1.05 984 59 

S2 0.15 1.25 406 55 

S3 0.18 1.05 2361 44 

S4 0.16 1.18 851 60 

S5 0.19 0.98 2038 56 

S6 0.18 1.03 764 31 

S7 0.2 0.9 243 49 

S8 0.17 1.07 363 53 

S9 NA 1.06* 221 NA 

S10 0.09 1.98 3541 43 

S11 NA 1.17* 2508 15 

S12 0.16 1.18 1039 18 

S13 0.11 1.62 2236 57 

S14 0.12 1.55 3135 58 

S15 0.19 0.98 883 30 

S16 0.13 1.4 4155 50 

S17 0.17 1.1 171 47 

S18 0.16 1.18 999 NA 

N1 0.15 1.2 - - 

N2 0.16 1.18 - - 

N3 0.18 1.03 - - 

N4 0.15 1.2 - - 

N5 0.17 1.12 - - 

N6 0.24 0.78 - - 

N7 0.13 1.43 - - 

N8 0.13 1.45 - - 

N9 0.19 0.98 - - 

N10 0.12 1.5 - - 

N11 0.19 0.98 - - 

N12 0.2 0.92 - - 

N13 0.21 0.88 - - 

N14 0.21 0.88 - - 

N15 NA 1.11* - - 

N16 0.14 1.28 - - 

N17 NA 1.12* - - 

N18 0.23 0.83 - - 

N19 0.18 1.03 - - 

N20 0.24 0.78 - - 

N21 0.17 1.12 - - 

* Cumulative group average of tDCS individualised dose was used for participants where MRI scans were 
unavailable. NA = information not available  
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3.4.2 Cortico-spinal excitability pre-tDCS was lower in chronic stroke survivors than 

neurotypical participants. 

3.4.2.1 Recruitment curves were shallower for chronic stroke survivors. 

Sigmoidal fit was optimal for RCs, as demonstrated by grand mean r-squared values for 

stroke survivor data (Sigmoidal fit R2 = .91, SD = .12; linear fit R2 = .85, SD = .13; exponential 

fit R2 = .84, SD = .15), and neurotypical data (Sigmoidal fit R2 = .95, SD = .06; linear fit R2 = 

.88, SD = .07.; exponential fit R2 = .86, SD = .10). Poorly fitting RCs (R2 <.4) were excluded 

from analyses (<2%). 

Baseline RC data for both experimental sessions were combined after no difference was 

detected within groups (two-way ANOVA: RCAUC, F(1,72) = .45, p = .50; RCslope, F(1,71) = .02, 

p =.88; RC120%, F(1,71) = .05, p = .82). Data were non-normally distributed in the stroke 

group (Shapiro’s test: RCAUC = .85, p = .01; RCslope = .76, p <.01; RC120% = .84, p = .01) and the 

neurotypical group except for RCAUC data (Shapiro’s test: RCAUC= .93, p = .15; RCslope= .88, p = 

.01; RC120% = .88, p = .01).  

High variance was detected in both groups for all RC measures of interest (coefficient of 

variation (CV): RCAUC, stroke = 101, neurotypical = 44; RCslope, stroke = 131, neurotypical = 

63.3; RC120%, stroke = 100, neurotypical = 46.6). Though CV values reflected greater variance 

in the stroke survivor group, the difference in variance between groups did not reach 

significance (Levene’s test: RCAUC, F(1,37) = 1.79, p = .10; RCslope, F(1,37) = .92, p = .34; 

RC120%, F(1,37) = .93, p = .34).  

Unpaired two-samples Wilcoxon tests were used to compare non-parametric baseline RC 

measures between groups. Group comparison was statistically significant (RCAUC: z = -2.08, p 

= .02; RCslope: z = -2.11, p = .02, RC120%: z = -2.25, p = .01), whereby significantly lower values 

for all RC measures of interest were detected in the stroke compared to neurotypical group 

pre-tDCS (median: RCAUC, stroke = 21, neurotypical = 47.6; RCslope, stroke = .02, neurotypical 

= .09; RC120%, stroke = .47, neurotypical = 1.00; Figure 3.3A-C). 

3.4.2.2 RMTs were higher and more variable for chronic stroke survivors. 

RMT did not differ significantly between sessions within participants (paired samples t-test: 

stroke, t(18) = .56, p=.58; neurotypical, t(21) = 1.01, p=.32) and so RMT data between 
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sessions were combined for each participant. RMT data were normally distributed in both 

groups (Shapira’s test >.05). A significant difference in RMT variance was detected between 

groups (Levene’s test = F(1,76) =9.24, p<.01), whereby variance was higher in the stroke 

group (CV stroke = 25.99, CV neurotypical = 19.32). RMTs were significantly higher in the 

stroke group compared to the neurotypical group (Welch’s test: t(28) = 2.23, p=.03; Figure 

3.3D).  
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Figure 3.3. TMS-assessed CSE is lower pre-tDCS in stroke survivors than in neurotypical participants. A) RCslope: The gradient of recruitment curves at half MEPmax 
was shallower for stroke survivors than neurotypical participants. Variance did not differ significantly between groups, B) RC120%: MEP amplitude at 120% RMT 
was smaller in stroke survivors than neurotypical participants, Variance did not differ significantly between groups, C) RCAUC: area under the recruitment curve 
between 90-120% RMT was smaller for stroke survivors than neurotypical participants, and variance did not differ significantly between groups, D) RMT: resting 
motor thresholds were significantly higher, and significantly more variable in the stroke survivor group compared to the neurotypical group. 
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3.4.3 Dose- and direction-controlled tDCS did not significantly alter TMS-assessed CSE. 

To interrogate the impact of tDCS, data from stroke and neurotypical groups were first 

analysed separately. Separate one-way ANOVAs were conducted for each RC measure of 

interest (RCAU, RCslope, and RC120%). No significant difference in RC data collected during tDCS 

was found under real or sham conditions (p>.05). Blocks of data from 3 blocks collected 

during tDCS under each condition were therefore combined. 

Separate LMMs were constructed for each RC measure of interest (RCAU, RCslope, and RC120%). 

No significant difference in RC measures recorded in blocks pre-, during-, and post-tDCS 

under both tDCS conditions was found in the neurotypical group (RCAUC, F(3,135) = .52, p = 

.67; RCslope, F(3,133) = .17, p = .91; RC120%, F(3,135) = .72, p = .54) or the stroke survivor 

group, (RCAUC, F(3,111) = 1,13, p = .34; RCslope, F(3,113) = .65, p = .58; RC120%, F(3,107) = .73, p 

= .58; Figure 3.4). No significant interaction was detected between tDCS condition 

(real/sham) or block (pre-, during-, or post-tDCS) in the neurotypical group (RCAUC, F(3,135) = 

.14, p = .94; RCslope, F(3,133) = .19, p = .90; RC120%, F(3,136) = .49, P = .69) or the stroke 

survivor group (RCAUC, F(3,111) = .44, p = .72; RCslope, F(3,113) = 1.28, p = .29; RC120%, F(3,107) 

= .66, p = .58).  

RC120% values were persistently significantly higher in the neurotypical compared to stroke 

survivor group regardless of block or condition, while group comparison was non-significant 

for other RC measures of interest (RCAUC, F(1,37) = 3.62, p = .06; RCslope, F(1,37) = 1.59, p = 

.22; RC120%, F(1,37) = 6.41, p = .02; Figure 3.4A-C). Due to ineffectiveness of the tDCS 

intervention, analyses were not expanded on.  
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Figure 3.4. Recruitment curve measures of interest collected pre-, during, and post-tDCS show no significant impact of dose- and direction-controlled tDCS. Stroke 
survivor data are shown in black, and neurotypical data in grey. Solid lines depict data collected under the real-tDCS condition, dotted lines show sham-tDCS data. 
Error bars show standard error. A) RCslope: no significant difference between blocks in the neurotypical group (F(3,133) = .17, p = .91) or the stroke survivor group, 
(F(3,113) = .65, p = .58). B) RC120%: No significant difference was detected in RC120% between blocks in the neurotypical group (F(3,135) = .72, p = .54) or the stroke 
survivor group, (F(3,107) = .73, p = .58). Fitted MEP amplitude at 120% RMT is persistently lower in the stroke survivor group compared to the neurotypical group 
(F(1,37) = 6.41, p = .02). C) RCAUC, no significant difference between blocks in the neurotypical group (F(3,135) = .52, p = .67) and stroke survivor group (F(3,111) = 
1,13, p = .34). 
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3.5 Discussion. 

In this Chapter, I compared TMS-assessed CSE in M1hand in chronic stroke survivors and 

neurotypical participants, before, during and after dose- and direction controlled tDCS. The 

central aim was to determine when plasticity-promoting interventions might be best applied 

in humans. To this end, tDCS was applied in chronic stroke survivors and neurotypical 

participants to investigate whether outcomes differed as a function of chronic stroke-

induced changes to functional and anatomical brain state. I found lower CSE in chronic 

stroke survivors compared to neurotypical participants at baseline, and found no impact of 

CMF-informed tDCS on CSE in both participant groups. In concurrence with the data 

presented in Chapter 2, I also found higher variability in RMTs recorded in stroke survivors 

compared to neurotypical participants.  

3.5.1 Functional brain state differed in chronic stroke survivors compared to neurotypical 

participants.  

In this study, a difference in functional brain state was detected between groups, whereby 

TMS-assessed CSE at baseline was significantly lower in chronic stroke survivors than 

neurotypical participants. This finding concurs with a recent meta-analysis of data from 112 

stroke survivors and 112 neurotypical participants from 9 studies (McDonnell & Stinear, 

2017), which reported lower MEP amplitude and higher RMT in both sub-acute and chronic 

stroke. This persisting atypical excitatory-inhibitory balance is in contention with the 

temporal framework set out by The Stroke Round table consortium (Bernhardt et al., 2017) 

which posits that brain activity returns to neurotypical levels in the chronic phase of stroke. 

Since tDCS is state-dependent (Reato et al., 2010, 2013; Terzuolo & Bullock, 1956) it was 

hypothesised that application in different post-stroke phases characterised by fluctuations 

in brain state, may produce different effects. The findings presented here suggest that this 

approach is too coarse; categorising survivors into post-stroke “phases” may not adequately 

reflect the endogenous excitability of a target network. As discussed in Chapter 2 for 

example, the trajectory of brain state fluctuations after stroke may be as heterogeneous as 

the motor recovery timeline (Bonkhoff et al., 2022; van der Vliet et al., 2020), and so 

application of tDCS in one post-stroke phase over another may not constitute optimal timing 

of the intervention.  
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Since pre-clinical work converges to suggest that interventions which boost excitability and 

reduce inhibition are beneficial for post-stroke recovery (for reviews, see (Cramer, 2008; Di 

Pino, Pellegrino, Assenza, et al., 2014; Joy & Carmichael, 2020; Krakauer & Carmichael, 

2017b), I suggest that individualised detection of periods of low CSE may be required for 

optimised timing of the tDCS intervention. A state-dependent approach to neuromodulatory 

intervention after stroke may be more effective than pursuing an answer to questions such 

as “in which post-stroke phase is tDCS best applied?”. 

3.5.2 TDCS individualisation does not equate to optimisation. 

Interestingly, a detectable difference in functional brain state between groups did not 

equate to a detectable difference in response to tDCS, which produced no change in TMS-

assessed CSE. I note that while CFMs may have successfully individualised the intensity and 

direction of current flow in M1hand, individualisation does not equate to optimisation. The 

PA-tDCS montage was selected for use in this study because previous work has 

demonstrated the impact of the direction of estimated current flow across M1hand, 

controlled by electrode montage, on MEP amplitude (Evans et al., 2022; Rawji et al., 2018). 

These studies built on preclinical work which demonstrated the determinant effect of E-field 

direction relative to the somato-dendritic axes of affected cells on neuronal membrane 

polarisation (Berzhanskaya et al., 2013; Bikson et al., 2004; Chan et al., 1988; Farahani et al., 

2021; Radman et al., 2009; Rahman et al., 2013). While selection of the PA-montage used 

here is supported by this rationale, comparison of its efficacy relative to conventional tDCS 

(anode positioned on the scalp directly above a cortical target) was not interrogated and is 

recommended for future work. The aim of this study was only to interrogate the efficacy of 

tDCS applied in chronic stroke survivors compared to neurotypical participants.  

Since no significant effect of PA-tDCS was detected in both the neurotypical and stroke 

survivor groups, in the following section I consider the intensity, direction and focality of E-

fields induced with the PA-tDCS montage, and discuss why they did not result in significant 

neuromodulation in either group.  

3.5.2.1 The optimal dose of tDCS remains unknown.  

Despite use of an individualised dose of tDCS to ensure target E-field was achieved in M1hand 

across participants, TMS-assessed CSE was not significantly altered by tDCS. A target E-field 
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intensity of 0.185 V/m was selected because on average, 1 mA conventional tDCS produced 

0.185 V/m E-field in M1hand in simulations previously conducted with MR scans of 50 

neurotypical adults (Evans et al., 2020). However, the optimal E-field intensity required for 

behaviourally meaningful alteration of neuronal activity remains unknown. Importantly, 

there is no minimum tDCS-induced electric field which is inert, by virtue of the linear 

relationship between exogenous fields and transmembrane polarisation (Bikson et al., 

2004). Bikson and colleagues (Bikson et al., 2004, 2019) point out that tightly controlled 

preclinical experiments which suggest fields as low as 0.2 V/m may alter cellular excitability 

(Reato et al., 2010) are easily misinterpreted, as minute yet statistically significant 

differences observed in a controlled experimental system do not represent the lowest E-

field intensity required to meaningfully modulate neuroplasticity. Rather than identifying a 

single E-field intensity such as 0.185 V/m to optimally target an ROI, progress in optimising 

tDCS dose will depend on increased understanding of why applied fields produce a given 

effect, in a given brain environment. Optimal dose may itself require individualisation, 

instead of standardization, in humans. In other words, since more tDCS-induced E-field will 

not produce more neuroplasticity (Esmaeilpour et al., 2018), research efforts are best 

directed to understand why, and to facilitate informed tDCS use to manipulate parameters 

important for modulating plastic potential in each individual.  

CFMs do not yet have the capacity to determine the individualised dose required to 

modulate neuroplasticity, as they are agnostic to the physiological outcomes of stimulation. 

While the intensity of E-field required to modulate activity remains unknown, so too does 

the optimal state of network activation required to alter potentiation of a motor task; 

researchers are not only blind to how much to “put in” to a target neuronal system, but also 

of how much one might hope to “get out”. The multivariate nature of the tDCS optimisation 

problem produces uncertainty when considering factors which might contribute to variable 

outcomes. In this study, for example, optimal current direction may have been achieved in 

M1hand without sufficient field strength to produce a detectable change in MEP amplitude. 

Standardisation of tDCS protocol across the literature is needed to mitigate this problem. In 

the absence of a detailed understanding of the cellular and network mechanisms of tDCS 

and their relationship with human behaviour, progress may be facilitated in the interim by 
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systematic prioritisation of controllable E-field characteristics via CFM use. This goal is 

presently within reach, and the parameter space has not yet been fully explored.  

3.5.2.2 PA-tDCS may not sufficiently optimise current direction in M1hand. 

While the optimal intensity of E-field required for effective neuromodulation is unknown, 

the optimal direction of tDCS-induced E-field has been described. As discussed previously, 

maximal neuronal membrane polarisation by DC field occurs when the direction of current 

flow is parallel to the somato-dendritic axes of target pyramidal cells (Berzhanskaya et al., 

2013; Bikson et al., 2004; Chan et al., 1988; Farahani et al., 2021; Radman et al., 2009; 

Rahman et al., 2013). Since it is impractical to attempt to control the direction of 

transcranially-applied current relative to all pyramidal neurons in M1hand, the cortical 

surface is used as a proxy for the predominant orientation of pyramidal cells in grey matter 

(Lafon et al., 2017; Rahman et al., 2013). Achieving radial-inward current flow with respect 

to the surface of the cortex is expected to produce maximal somatic depolarisation of 

cortical pyramidal neurons, and in turn, shift the balance of the neuronal population 

towards excitability.  

Here, a PA-tDCS montage was used to produce radial-inward current flow in M1hand. In a 

recent study which compared tDCS montages, Evans and colleagues (Evans et al., 2022) 

reported that while PA-tDCS was associated with the most consistent direction of current in 

M1hand compared to other montages, high variability in current direction between 

participants did persist when PA-tDCS was applied. This may be due to individual differences 

in cortical folding; anatomical differences have been shown to cause local fluctuations in the 

path of current flow (Dmochowski et al., 2012; Gomez-Tames et al., 2020; Kashyap et al., 

2022).  

The impact of PA-tDCS on TMS-assessed CSE has been investigated previously. Rawji and 

colleagues (Rawji et al., 2018) not only reported greater consistency in current direction in 

M1hand when PA-tDCS was applied, but also found a consistent reduction in MEP amplitude 

after PA-tDCS application. This finding is contrary to predictions of increased cortical 

excitability associated with radial-inward current in M1hand (Berzhanskaya et al., 2013; 

Bikson et al., 2004; Chan et al., 1988; Farahani et al., 2021; Radman et al., 2009; Rahman et 

al., 2013), which is expected to result in increased MEP amplitude. Elsewhere, performance 
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on learning retention for a ballistic movement task was reportedly not altered by PA-tDCS, 

while AP-tDCS was significantly associated with impaired learning retention (Hannah et al., 

2019). While I note that tDCS-induced E-field intensity was not individualised in either study, 

both support recent findings which suggest that polarity-specific polarisation of the somatic 

compartment of affected cells does not comprise a full description of the effects of DC field 

on neuronal polarisation. Bikson and colleagues (Bikson et al., 2019) point out that the 

“somatic doctrine” (Bikson et al., 2004; Bindman et al., 1964; Purpura & McMurtry, 1965; 

Radman et al., 2007) does not extend to describing the impact of DC fields on non-somatic 

neuronal compartments, other cell types, synaptic efficacy, network activity, or neuroplasticity. 

For example, DC fields have long been known to impact interneuron excitability (Kabakov et al., 

2012; Purpura & McMurtry, 1965), and the network effects of tDCS may have an indirect 

influence on tDCS outcomes measured from a relatively small ROI, such as M1hand (Polanía et al., 

2010; Reato et al., 2010). The macroscopic effects of applied current may explain the counter-

intuitive and varied outcomes associated with PA-tDCS; even if radial-inward current flow is 

achieved in M1hand, it may not reliably increase TMS-assessed CSE as predicted. While further 

research is required to elucidate the varied effects of DC fields in the brain, I note that the 

benefit of an increased understanding of the cellular mechanisms of tDCS is limited by the 

inherent non-focality of the technique. It is for example possible that the somatic doctrine 

optimally explains the impact of tDCS, but that using the cortical surface as a proxy for the 

direction of transcranially-applied current relative to single neurons is not sufficient to optimise 

current direction, to modulate complex human motor control.  

3.5.2.3 The impact of spatially distributed tDCS-induced E-field is not accounted for. 

While CFMs were used to individualise the intensity and direction of tDCS-induced E-field in 

this study, the spatial distribution of E-field was not constrained. The impact of focality on 

tDCS efficacy has not yet been established, and the concept that tDCS will have a maximal 

impact on brain networks which are already active (functional selectivity; Bestmann et al., 

2015; Bikson & Rahman, 2013; Ranieri et al., 2012) implies that controlling for brain state 

may be more effective than controlling the spatial spread of induced fields. However, 

standardising E-field distribution between participants may be desirable to simplify 

interpretation of tDCS outcomes. Again, the multi-variate nature of the optimisation 

problem is highlighted here: in keeping with Ohm’s law, individualisation of tDCS stimulator 
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output to achieve dose-control will exacerbate inter-individual differences in the spatial 

distribution of tDCS-induced E-fields. A higher individualised dose will result in greater 

spread of E-field above a given threshold, and vice versa for participants who require lower 

individualised dose to achieve standardised target E-field in M1hand. 

Furthermore, the neuromodulatory effects of distributed current in structures which are 

functionally connected to an ROI, though spatially distinct, could be non-trivial (Boros et al., 

2008; Kirimoto et al., 2011; Lang et al., 2005). For example, while predominantly radial-

inward current flow is produced in M1hand when a PA-tDCS montage is applied, radial-

outward current flow is simultaneously produced in the primary sensory cortex (S1) 

positioned on the posterior bank of the central sulcus (Evans et al., 2022). M1 and S1 are 

intimately connected nodes within the sensorimotor network, evidenced in studies showing 

that peripheral sensory stimulation can modulate corticomotor excitability and in turn MEP 

size (Kaelin-Lang et al., 2002; Kojima et al., 2019; Ridding et al., 2000; Ridding & Taylor, 

2001). The PA-tDCS montage used in this study may have oppositely polarised neurons in 

M1 and S1, confounding the TMS-assessed response to tDCS. I note however that this has 

not yet been formally investigated, and preclinical work suggests that opposite polarisation 

of neighbouring structures does not ‘cancel out’ stimulation effects, because the excitatory 

effect of radial-inward DC field is more robust than inhibition associated with radial-outward 

current flow (Lafon et al., 2017; Rahman et al., 2013; Reato et al., 2013).  

Taken together, it cannot be ruled out that the inefficacy of tDCS reported in this study may 

be due to sub-optimal control of the intensity, direction, and focality of tDCS-induced fields, 

or variability in endogenous network activity between individuals. Neuron-specific control of 

these parameters is currently beyond the scope of available CFM software, though 

improved understanding of tDCS mechanisms may allow researchers to realise the full 

potential of CFMs, by virtue of informed decision-making when considering the parameter 

space for applied fields.  

3.5.3 Higher tDCS intensity is required for individuals with stroke-induced anatomical 

changes. 

Finally, I note that higher individualised dose of tDCS was required for stroke survivors 

compared to neurotypical participants. According to Ohm’s law, this may produce a 
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systematic difference in the focality of stimulation between groups; as discussed above, 

higher individualised dose will result in greater distribution of fields above a given threshold 

throughout the brain. This is an intuitive example of difficulties associated with translating 

tDCS optimised for the neurotypical brain to clinical populations. 

Differences in anatomical brain state between stroke survivors and neurotypical 

participants, such as the presence of lesions, grey matter atrophy and enlarged ventricles 

(Skriver et al., 1990), may explain the need for higher individualised dose in the stroke 

group. Higher variability in tDCS E-field has been reported in populations with increased CSF 

thickness associated with cortical atrophy (Antonenko et al., 2018; Laakso et al., 2015; 

Mahdavi & Towhidkhah, 2018; McCann & Beltrachini, 2021; Opitz et al., 2015), and 

converging evidence suggests that current can be canalised through brain structures with 

high CSF density, such as stroke lesions and ventricles, and away from grey matter in an ROI 

(Gomez-Tames et al., 2020; Johnstone et al., in review; Kashyap et al., 2022; Minjoli et al., 

2017; Piastra et al., 2021). Diversion of tDCS-induced current flow away from M1hand and 

towards structures with higher CSF density may explain the requirement for higher tDCS 

individualised dose in stroke survivors compared to neurotypical participants. This theory is 

considered in detail in the following Chapter, where the impact of stroke-induced anatomy 

changes on tDCS-induced E-field is investigated. 

3.5.4 Conclusion. 

Previous work addressing variable tDCS outcomes has been limited by a lack of 

computationally-informed, standardised protocol design, which prevented interrogation of 

tDCS-induced E-field produced by a given protocol. Outcome variability in these cases may 

be mirrored, at least in part, by variability in applied current. The inefficacy of the CFM-

informed tDCS protocol used in this Chapter does not negate the promise of the technique 

as a neuromodulatory tool with far-reaching applications. Rather, it constitutes a step 

towards transparent, mechanistically-informed tDCS study design which in turn allows 

better interrogation of factors which may contribute to variable tDCS effects.  

Further preclinical work is needed to better understand the impact of DC fields on varied 

neuronal structures, and detailed reporting of estimated intensity, direction and focality of 
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tDCS-induced fields is needed when available, to bridge the gap between understanding of 

the physics of current flow and its impact on behaviour.  

This work has begun, and research describing a relationship between E-field intensity in a 

cortical target and physiological outcomes suggests that we are on the right track 

(Antonenko et al., 2019; Laakso et al., 2019; Mosayebi-Samani et al., 2021; Nandi et al., 

2022). A target for further research is identifying conditions under which tDCS has been 

effective, including positive results reported after conventional tDCS application, to develop 

methods for reliable replication. In the context of this thesis, this may involve interrogation 

of E-field properties including the intensity and direction of extra-cellular current which 

might give rise to MEP modulation by tDCS in humans. Horvath and colleagues (Horvath et 

al., 2015), for example, reported that MEP amplitude is sensitive to modulation by 

conventional tDCS, and research to understand the induced E-field properties underlying 

this effect is encouraged. However, Horvath and colleagues (Horvath et al., 2015) also noted 

that the effect has been decreasing significantly since the year 2000, and that more reliable 

TMS measures of CSE, believed to be underpinned by similar neural mechanisms (e.g. SICI) 

have shown no significant modulation by tDCS (Horvath et al., 2015). In order to address the 

issue, two lines of investigation are appropriate: interrogation of the E-field properties 

which might explain positive outcomes observed with conventional tDCS. Second, continued 

research into the mechanistic underpinnings of tDCS, and how they might best be 

integrated into innovative protocol design.  

Importantly, it remains unclear how the outcomes of this research will translate to the 

stroke survivor community, where stroke-induced changes to functional and anatomical 

brain state must be directly accounted for, instead of translating neurotypically-informed 

protocol optimisation to the pathological brain.  
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CHAPTER 4. THE IMPACT OF STROKE LESIONS ON TDCS-

INDUCED ELECTRIC FIELD 

4.1 Introduction  

In Chapters 2 and 3 of this thesis I considered how the functional state of the brain after 

stroke, quantified by TMS-assessed ICI and CSE, might be accounted for in tDCS study 

design. Here, I consider the impact of stroke-induced changes in anatomical state may 

impact tDCS-induced fields in the brain. Current flow modelling is used to investigate the 

impact of lesion size, location and distance from M1hand on exogenous E-field, and the 

findings are compared to a large neurotypical sample. The primary aim of this work was to 

consider stroke-specific anatomical factors which might contribute to tDCS outcome 

variability, to better understand how they might be accounted for in an optimised protocol.  

4.1.1 The impact of ‘real’ brain lesions on tDCS-induced current flow is unknown. 

Previous studies investigating the impact of stroke lesions on tDCS current flow have been 

limited by small sample size or the use of simulated lesions which may not reflect realistic 

morphology (Datta et al., 2011; Galletta et al., 2015; Handiru et al., 2021; Johnstone et al., in 

review; Minjoli et al., 2017; Piastra et al., 2021); it is not clear if the findings would 

generalise to the wider stroke survivor population. Simulated lesion work has however 

provided valuable insights into the systematic impact of lesion-like structures on tDCS E-field 

delivered to a cortical ROI. For example, Johnstone and colleagues (Johnstone et al., in 

review) revealed a systematic pattern whereby spherical synthetic lesions positioned in-line 

with the direction of current flow had the greatest impact on E-field intensity in an ROI. The 

sign of change in E-field intensity in the ROI was found to depend on the position of the 

lesion: lesions in the path of current flow between anode and ROI prevented delivery of 

current to the ROI, possibly due to current being drawn towards conductive lesion tissue 

instead. Meanwhile, lesions positioned between the ROI and cathode tended to result in 

increased E-field intensity, as current was drawn through the ROI towards conductive lesion 

tissue. This effect was significantly modulated by lesion size, distance to ROI, and 

conductivity. Overall, the presence of synthetic lesions was found to alter E-field intensity 
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delivered to the ROI by up to 30%, an effect which is not accounted for in CFM based on the 

neurotypical head.  

Elsewhere, modelling work conducted in structural MR scans with real (as opposed to 

synthetic) brain lesions has reported consistently lower estimated E-field intensity in ROIs 

when tDCS is simulated in stroke survivors compared to neurotypical participants (Datta et 

al., 2011; Galletta et al., 2015; Minjoli et al., 2017; Piastra et al., 2021). However, sample size 

in these studies ranged from 1 to 16 participants, and it is unknown if the impact of brain 

lesions could be systematically controlled for in tDCS protocol design across the stroke 

survivor population. In the presented study, CFM was used to estimate the impact of ‘real’ 

stroke lesions in 123 stroke survivors, and findings were compared to simulations conducted 

in 147 neurotypical participants’ MR scans.  

4.1.2 CFMs do not account for lesioned tissue. 

In addition to small sample size, previous work may be limited by the parameters used in 

CFM, which relies on accurate segmentation and assignment of tissue-specific conductivity 

values to different tissue types. Typically, lesions have been assigned the same conductivity 

as CSF (Datta et al., 2011; Dmochowski et al., 2013; Galletta et al., 2015; Minjoli et al., 2017), 

justified by evidence that CSF eventually occupies lesioned space in the brain (Mestre et al., 

2020). However, a magnetic resonance electrical impedance tomography (MREIT) study 

reported lesion conductivity of approximately 1.2 S/m in a single patient, significantly lower 

than the conductivity value assigned to CSF by default in ROAST (1.65 S/m; van Lier et al., 

2012). In addition, a meta-analysis of human head tissue electrical conductivity values 

(McCann et al., 2019) reported significant variation in lesion conductivity, with a weighted 

average of 0.8757 S/m (range = 0.1 – 1.77 S/m) based on data from 14 participants across 3 

studies. This value is higher than the weighted average of grey matter (0.466 S/m) and blood 

conductivity (0.5737 S/m) though significantly lower than the weighted average of CSF (1.71 

S/m). In the absence of consensus over the conductivity value of lesioned tissue, the 

weighted average value reported by McCann and colleagues (0.8757S/m) was applied to 

lesions in the following study. The impact of lesion conductivity on tDCS-induced E-field 

estimates has been directly interrogated elsewhere (Johnstone et al., in review; Piastra et 

al., 2021), with findings suggesting that more conductive lesions have a more exaggerated 
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impact on current flow than those with lower conductivity, though the pattern of findings 

remained unchanged.  

4.1.3 Controlling for stroke-induced anatomical changes may reduce tDCS outcome 

variability. 

TDCS has already been widely applied in stroke survivors, with reportedly high outcome 

variability (for reviews, see Elsner et al., 2018; Lefaucheur et al., 2017; Marquez et al., 2015). 

In these cases, a conventional motor-targeted tDCS protocol is typically applied to patients 

with upper limb impairment, often by research teams with limited or no access to CFM; a 

fixed dose and electrode montage is commonly applied across participants. To interrogate 

E-field characteristics which might contribute to variable tDCS outcomes in these cases, 1mA 

conventional tDCS is here simulated in structural MRIs of >100 stroke survivors with FM-UL 

scores reflecting upper limb impairment without paresis (likely candidates for tDCS 

intervention in clinical settings) and an identical protocol is also simulated in a large sample 

of age-matched neurotypical participants. Structural MRIs and FM-UL data were generously 

provided by the ENIGMA (Enhancing NeuoImaging Genetics through Meta-Analysis) Stroke 

Recovery Working Group (Liew et al., 2020; Liew et al., 2018, 2022), and simulations were 

completed with an adapted version of ROAST (Huang, Datta, et al., 2018; Johnstone et al., in 

review), which assigns lesion-specific conductivity values (McCann et al., 2019) to 

segmented lesion masks. E-field intensity in M1hand was compared in stroke survivor and 

neurotypical scans, and lesion characteristics were correlated with the findings to determine 

whether lesions had a systematic impact on tDCS-induced fields when conventional tDCS 

was applied across participants.  

It is hypothesised first that greater variability in tDCS-induced E-field intensity will be 

detected in M1hand in stroke survivors compared to neurotypical participants. Second, in 

light of the findings of Johnstone and colleagues, (Johnstone et al., in review) it is 

hypothesised that current is drawn towards conductive lesion tissue during tDCS, resulting 

in altered E-field intensity in M1hand. It is unknown if lesion size, distance to M1hand, or 

position will systematically impact tDCS-induced fields in the same way as detected in this 

synthetic lesion work, as ‘real’ lesion morphology differs substantially to computer-

generated spherical structures. If a systematic effect of specific lesion characteristics is 
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detected, heuristics may be formed to inform clinicians of the potential impact of lesions 

which fit a given profile on tDCS fields. Accounting for stroke lesions in tDCS protocol via 

CFM or through heuristics has promise to reduce variability in tDCS-induced fields in the 

context of stroke, which in turn may increase the reliability of outcomes.  

4.2 Methods.  

4.2.1 Inclusion criteria. 

Structural MR scans were provided by The ENIGMA Stroke Recovery Working Group (Liew et 

al., 2020; Liew et al., 2018, 2022) for 1,011 stroke survivors and 167 ageing neurotypical 

participants. Inclusion criteria for stroke survivor scans were: FM-UL score available, >=3 

months post-stroke, presence of upper limb motor weakness with some voluntary 

movement remaining (<66 FM-UL >=28), unilateral cortical or subcortical stroke, manually 

segmented lesion mask available, 1mm isotropic structural MR scan available. The inclusion 

criterion for neurotypical scans was: 1mm isotropic structural MR scan available.  

4.2.2 Participants.  

One hundred and fifty-five stroke survivors satisfied the inclusion criteria. Simulations failed 

to complete for 17 scans (12 due to poor tissue segmentation, 3 due to poor electric field 

estimation, 2 due to mis-placed electrodes). Completed simulations were visually inspected 

for poor tissue segmentation or electrode placement, or unequal resolution across image 

panes, after which simulations for 16 stroke survivors and 13 neurotypical participants were 

discarded. Full analyses were conducted in 123 stroke survivor scans from 16 data collection 

sites and 147 neurotypical scans from 6 sites.  

4.2.3 MR scans. 

T1-weighted MR Scans from 19 contributing sites were included in this study. Of these, 3 

sites provided both stroke and neurotypical data. Three sites used a 3 tesla (3T) Siemens 

Trio scanner, 3 used 3T GE scanners (1 specified GE Signa Excite scanner type), 1 used a 3T 

Siemens MAGNETOMÂ Skyra and 1 site used a 3T Philips Achieva. Scanner brand and type 

were unknown for 4 sites which provided stroke survivor data only, 5 sites which provided 

neurotypical data only, and 3 sites which provided data for both groups. Image resolution 

for included scans was 1mm isotropic, slice dimensions varied per site (range: 139-230 axial 
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slices, 190-256 coronal slices, 194-256 sagittal slices). The ENIGMA dataset included 

manually segmented lesion masks alongside T1-weighted brain MRIs. 

4.2.4 Current flow modelling.  

A custom version of ROAST v2.7 (Huang et al., 2019) previously adapted for modelling tDCS 

with synthetic lesions (Johnstone et al., in review) was adapted here to accept real lesion 

masks provided by ENIGMA. The modified version of ROAST (herein referred to as ‘ROAST-

lesion’; Johnstone et al., in review) differs from the original (Huang et al., 2019) because it 

incorporates lesion masks as a 7th segmented tissue type with a conductivity value of 0.8757 

S/m (McCann et al., 2019). In ROAST-lesion, scans undergo default ROAST processing up to 

the end of the segmentation stage, where the head image is segmented into 8 features 

(white matter, grey matter, CSF, bone, skin, air, electrodes, and electrode gel) via SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/; Figure 4.1A-B). Here, a custom MATLAB function is 

inserted into the ROAST workflow where lesion masks are added as a 9th segment and 

subtracted from previously created masks (Figure 4.1C). Subsequent image processing 

returns to the default ROAST pipeline: virtual electrode placement, volumetric meshing 

from 3D multi-domain images using Iso2Mesh (Fang & Boas, 2009; 

http://Iso2Mesh.sourceforge.net/cgi-bin/index.cg) to generate the finite element model 

(FEM), and numerically solving the FEM using getDP (https://getDP.info/; Figure 4.1D-E). 

Default conductivity values provided by ROAST were used for all segment types except 

lesions (in S/m, white matter: 0.126, grey matter: 0.276, CSF: 1.65, bone: 0.465, skin: 0.126, 

air: 2.5e-14, electrode gel: 0.3, electrodes: 5.9e7; lesions: 0.8757. Other ROAST settings 

were as follows: maximum surface element size for generated meshes was 5, minimum 

angle of surface triangle was set as 20, maximal distance between the centres of the 

element bounding sphere and surface bounding circle was 0.3, target maximal tetrahedral 

element volume was 10, and maximal radius-edge ratio was 3.  

Conventional tDCS was simulated in ROAST-lesion with 1mA current injected to an anode 

placed over the 10-10 EEG coordinate for M1hand (C3/C4) on the ipsilesional hemisphere of 

stroke survivor scans and left hemisphere of neurotypical scans. A cathode (-1mA) was 

placed contralaterally to the anode on the supraorbital ridge (FP2/FP1). Both electrodes 

http://www.fil.ion.ucl.ac.uk/spm/
http://iso2mesh.sourceforge.net/cgi-bin/index.cg
https://getdp.info/
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were disk-shaped (radius 17mm, height 2mm) and 20 voxels of zero-padding were added to 

each MR image to ensure simulated electrodes did not extend beyond image boundaries.  
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Figure 4.1. Current flow modelling pipeline using ROAST-lesion (Huang et al., 2019; Johnstone et al., in review) A) ROAST requires a structural MR image of an 
individual participant’s head, B) in ROAST, head tissue is segmented into 8  tissue types, calling SPM12, C) ROAST-lesion automatically calls segmented lesion 
masks which are added as a 7th tissue type using a custom MATLAB script calling SPM12, D) the default ROAST simulation resumes, simulated tDCS electrodes are 
applied and surfaces are meshed using Iso2Mesh (Fang & Boas, 2009), E) the FEM is solved using getDP (Dular et al., 1998). Image is adapted from Lee et al., 
2021. 
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4.2.5 E-field data extraction. 

After completion of simulations in ROAST-lesion, output E-field images, structural MR scans 

and segmented tissue masks were normalised (resampled to 2x2x2mm voxels) into standard 

space (Montreal Neurological Institute; MNI template) using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/). Scans with right hemisphere lesions were flipped in 

MATLAB using the flip_lr function (Shen, 2022). Normalised grey and white matter tissue 

masks produced by ROAST-lesion were then used to create explicit binary masks using 

SPM12 (0.2 intensity threshold), which were then applied to a 1cm diameter ROI sphere 

centred on MNI coordinates for left M1hand (MNI: −38, −20, 50) based on previous activation 

likelihood estimations (Eickhoff et al., 2009). Individualised grey and white ROIs are herein 

referred to simply as M1hand. Finally, E-field intensity values in grey and white matter voxels 

in the ROI were extracted using a custom MATLAB script including SPM’s spm_get_data 

command (http://www.fil.ion.ucl.ac.uk/spm/) and averaged to produce an estimate of E-

field intensity (in V/m) delivered to M1hand when conventional tDCS protocol is applied.  

4.2.6 Lesion characterisation. 

Lesion size, distance to an ROI, and location have been reported to significantly alter E-field 

delivery to an ROI (Handiru et al., 2021; Johnstone et al., in review; Minjoli et al., 2017; 

Piastra et al., 2021), though a systematic pattern for the impact of ‘real’ lesions on current 

flow has not yet been described. Here, I consider intuitive methods to quantify lesion 

characteristics, with the benefit that recognisable descriptions (for example, “large” or 

“small” lesions) might improve accessibility of tDCS protocols which account for lesions in 

clinical settings. Naturally, this approach comes at the cost of precision; advanced machine 

learning is required to capture the complex characteristics of 3-dimensional (3D) irregularly 

shaped lesions relative to an ROI and electrodes. In the following I describe methods 

employed for relatively coarse lesion characterisation, to determine whether the findings 

reported in controlled synthetic lesion study previously conducted by our group (Johnstone 

et al., in review), might generalise to the stroke survivor population. Since optimal numerical 

or categorical descriptions for lesion characteristics are unknown, a number of candidate 

models were constructed using various parameters to describe key lesion characteristics. 

For example, models including a continuous numerical value representing lesion volume 

were statistically compared with models including a categorical descriptor of lesion size (the 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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model selection process is detailed in section 4.3.2.5) to determine which available variables 

might  best describe the impact of stroke lesions on current flow. In the following I describe 

the data extraction process for descriptors of 3 lesion characteristics of interest: size, 

distance to M1hand and location.  

4.2.6.1 Lesion size. 

Lesion volume was extracted for each subject using individual lesion masks provided by 

ENIGMA (Liew et al., 2020; Liew et al., 2018, 2022), which were normalised to MNI space 

and binarised with an inclusion threshold of >0.2 intensity using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/). Two methods for expressing lesion size in statistical 

models were considered. First, lesion size could be represented as a continuous variable (in 

cm3) denoted as Lesion sizecontinuous, where the number of voxels in binary lesion masks with 

a value greater than zero represented the volume of lesioned tissue in mm3. This value was 

divided by 1000 for conversion to cm3 in keeping with convention in the literature (Sperber 

& Karnath, 2016). Second, lesions were described by a categorical variable stratified by 

lesion per centage of the affected hemisphere, denoted as Lesion sizecategorical. To identify 

lesions in each category, individual brain volume was calculated, in cm3, as the number of 

voxels greater than zero in a combined binary segmentation of normalised grey matter, 

white matter, CSF, and lesioned tissue. Hemisphere volume was approximated by halving 

total normalised brain volume. Lesions occluding ≤1% of hemisphere volume were 

categorised as ‘small’, ‘mid-sized’ lesions were defined as occluding >1% and ≤10% of 

hemisphere volume, and lesions which occluded >10% of the target hemisphere were 

categorised as ‘large’. Categorisation of lesions relative to hemisphere volume was 

conducted because it is unknown if these data are representative of the wider stroke 

survivor population; categories relative to individual heads were therefore preferred over 

comparison with other scans in the cohort.  

4.2.6.2 Lesion distance to M1hand. 

Two parameters were considered to describe lesion proximity to M1hand: the Euclidean 

distance between the centre of M1hand and the centre of the irregularly shaped 3D lesion, or 

the Euclidean distance between M1hand and the nearest voxel of lesioned tissue, denoted as 

Lesion distancecentre and Lesion distancemin respectively (Figure 4.2). A custom MATLAB script 

http://www.fil.ion.ucl.ac.uk/spm/
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was used to calculate vectors extending from the centre of M1hand to each voxel of lesioned 

tissue using the formula: 

3𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑜𝑥𝑒𝑙 𝑖𝑛 𝑙𝑒𝑠𝑖𝑜𝑛 − 3𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑓𝑜𝑟 𝑐𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑀1ℎ𝑎𝑛𝑑  

The average of these vectors was then taken to produce a single vector between the centre 

of M1hand and the centre of the lesion, using the formula:  

[𝑚𝑒𝑎𝑛(𝑉𝑥), 𝑚𝑒𝑎𝑛(𝑉𝑦), 𝑚𝑒𝑎𝑛(𝑉𝑧)] 

Where V are vectors with components x, y, and z. The MATLAB norm function was used to 

calculate the magnitude of the average vector (Lesion distancecentre). The same function was 

used to calculate the distance between M1hand and each voxel of lesioned tissue. The vector 

with minimum magnitude was taken to express the minimum euclidean distance between 

the centre of M1hand and the lesion in 3D space (Lesion distancemin). Instances where the 

lesion occluded M1hand were represented by a Lesion distancemin value of zero. 

4.2.6.3 Lesion location.  

Eleven anatomical descriptors of lesion location were provided in the ENIGMA dataset, for 

example, lesions were identified as occluding the Basal Ganglia, Occipital lobe, or Parietal 

Lobe. In the event that a lesion occupied multiple brain regions, multiple anatomical labels 

were used to describe the lesion’s location, resulting in 50 unique location categories for 

123 subjects. These data were not sufficiently powered to include anatomical lesion location 

in statistical models. Lesion location was therefore expressed in two ways: first, as the per 

centage of the lesion which occupied space anterior to the centre of M1hand, denoted as 

Lesion locationcontinuous. Second, as a categorical variable, describing lesions as anterior, 

medial, or posterior to M1hand. Anterior lesions were identified with ≥60% tissue anterior to 

M1hand, medial lesions were positioned with >40%<60% tissue anterior to M1hand, and 

posterior lesions had ≤40% tissue anterior to M1hand (Figure 4.2). 

Since previous work indicates that lesion location relative to the path of current flow 

predicts E-field intensity in an ROI (Johnstone et al., in review), I note that scalp electrode 

position is a good proxy for the predominant direction of current flow through the brain 

(Evans et al., 2022; Rawji et al., 2018). Here, electrical current entered the body via an 
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anode at 10-10 position C3, and exited the body via a cathode at Fp2 (Figure 4.2C). Note 

that data from scans with right-hemisphere lesions and a C4-FP1 montage were flipped 

during data extraction. The predominant direction of current flow can therefore be 

summarised by the relative position of the cathode to the anode: current is approximated to 

flow right-anterior-inferior (R-A-I) through the brain between scalp electrodes. M1hand is 

positioned directly below the anode, left-medial-superior relative to the rest of the brain. 

Since the majority of brain tissue is positioned right-inferior (R-I) to M1hand, lesions 

positioned anteriorly to M1hand are considered more in-line with the path of R-A-I current 

flow than lesions positioned posteriorly. This coarse descriptor for lesion location relative to 

the approximated path of current flow was included in analyses because it may be 

intuitively applied in clinical settings: in the absence of CFM, one might consider the position 

of a lesion relative to the approximated path of current flow between scalp electrodes.  
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Figure 4.2. Characterisation of lesion location and distance to M1hand. Grey matter is shown as a translucent grey surface, lesioned tissue is in green, and the 1cm 
diameter ROI sphere for M1hand is in red. A) Two parameters were considered to describe the Euclidean distance between lesions and M1hand: in blue, the 
magnitude of a vector extending from the centre of M1hand to the nearest voxel of lesioned tissue (Lesion distancemin ), and in black, the magnitude of a vector 
extending from the centre of M1hand to the centre of lesioned tissue (Lesion distancecentre). B) Lesion location is quantified as the per centage of lesioned tissue 
positioned anteriorly to M1hand, the threshold for anterior position is represented by a blue pane which intersects M1hand along the Y-axis. C) Schematic of the 
conventional electrode montage simulated. An anode (dark red ring) is positioned over M1hand in 10-10 position C3, and a cathode (blue ring) is positioned R-A-I to 
the anode, in 10-10 position Fp2.  
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4.3 Analysis. 

4.3.1 Comparison of stroke survivor and neurotypical data. 

To compare estimated E-field intensity in M1hand in stroke survivor and neurotypical samples 

when conventional tDCS protocol was simulated, an LMM was constructed with the 

outcome variable E-field intensity in M1hand, a fixed effect of Group (stroke or neurotypical), 

and a random intercept to account for homogeneity of variance per data collection site, 

giving the formula:  

𝐸-𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑀1ℎ𝑎𝑛𝑑  ~ 𝐺𝑟𝑜𝑢𝑝 + (1|𝑠𝑖𝑡𝑒)  

To investigate whether lesion size influenced group comparison, stroke survivor data were 

stratified into groups by lesion size relative to hemisphere volume (small: <1% hemisphere, 

mid-sized: >1%≤10% hemisphere, or large: >10% hemisphere). The above model was 

repeated separately to compare Groups (neurotypical participants, or stroke survivors with 

small, mid-sized, or large lesions).  

4.3.2 Do lesion characteristics predict E-field in ROIs? 

4.3.2.1 Outcome variables. 

LMMs were then constructed for stroke survivor data separately, to determine the impact 

of lesion size, location, and distance to M1hand on E-field intensity in 2 ROIs: M1hand or lesion 

tissue. Models interrogating each ROI were constructed separately.  

4.3.2.2 Random effects. 

All models included a random intercept for data collection site to account for lack of 

independence of data collected at each location, for example differences in image quality 

and scanner type between sites may have impacted segmentation quality during current 

flow simulations.  

4.3.2.3 Predictors were standardised for comparison across scales. 

Multiple parameters on differing scales were available to describe 3 predictors of interest: 

lesion location, size, and proximity to M1hand. Continuous predictors and outcome variables 

were standardised by subtracting the mean and dividing by the standard deviation, to allow 

for easier interpretation of regression models, and meaningful comparison of predictors on 
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differing scales. Results are therefore interpretable as standard deviations instead of raw 

values. 

4.3.2.4 Model exclusion. 

To investigate whether lesion size, distance, or location predicted E-field intensity in each 

ROI, a series of LMMs were constructed using all viable predictor combinations and a 

random intercept per data collection site. The variance inflation factor (VIF) was calculated 

using the vif function in the R stats package (R Core Team, 2021) to estimate how much 

variance in regression coefficients was inflated due to multicollinearity between predictors.  

Models with continuous predictors were excluded from further analyses if VIF values for 1 

or more predictors exceeded 5 (James et al., 2013). Models with categorical predictors were 

assessed for collinearity using generalised VIF (GVIF) values produced by the vif function (R 

Core Team, 2021). GVIF values were taken to the power of 1/(2*degrees of freedom) (DF), 

to produce a value analogous to the square root of the VIF. The DVIF1/(2*DF) value was 

therefore squared and the usual VIF threshold of 5 was applied to assess collinearity 

between categorical predictors (Fox & Monette, 1992). Combinations of predictors which 

did not violate the multicollinearity assumption are listed in Table 4.1.  

4.3.2.5 Model comparison. 

To interrogate whether lesions were associated with altered E-field intensity in M1hand when 

conventional tDCS was simulated, models were constructed to interrogate 3 secondary 

hypotheses: first, that lesion characteristics such as size, distance to M1hand and location 

predict E-field intensity in M1hand (hypothesis A). Second, that lesion characteristics predict 

average E-field intensity in lesion tissue (hypothesis B), and third, that E-field intensity in 

M1hand is correlated with E-field intensity in lesioned tissue, modulated by lesion 

characteristics such as size, distance to M1hand and location (hypothesis C). Only models 

addressing the same hypothesis were compared with each other (Figure 4.3). 

Akaike’s Information Criterion (AIC) and Bayesian information criterion (BIC) were calculated 

for model comparison using the AICcmodavg R package (Mazerolle, 2020). Lower AIC and 

BIC values reflected better model fit. Delta-AIC and delta-BIC were calculated to quantify the 

difference in fit of candidate models, where a delta value of more than -2 was considered to 
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reflect a significantly better fit of one model compared to another. A model with a delta 

statistic of zero, for example, is considered the best-fit for available data relative to other 

candidate models (Figure 4.3). In cases where AIC and BIC values did not converge to 

suggest the same winning model, conditional R2 (R2
LMM(c)) and marginal R2 (R2

LLM(m)) values 

were inspected to compare the winning models. Marginal R2 describes the proportion of 

variance explained by fixed factor(s) in the LMM alone, while conditional R2 reflects the 

proportion of variance explained by both fixed and random factors (Nakagawa & Schielzeth, 

2013). AIC and BIC values for each candidate model in Table 4.1 are displayed in Figure 4.3. 

The winning model used to interrogate each secondary hypothesis (A, B, and C) is 

highlighted and starred in Table 4.1.  

4.3.2.6 Hypothesis A: lesion characteristics predict E-field intensity in M1hand. 

Secondary hypothesis A states that lesion characteristics such as size, distance to M1hand, 

and location predict E-field intensity in M1hand. AIC and BIC model comparison did not 

converge on a winning model, with the lowest delta AIC value associated with Mod15, and 

the lowest delta BIC value found for Mod5. Inspection of conditional R2 values for each 

model showed a better fit for Mod15 (R2
LMM(c): Mod15 = .22; Mod5 = .12), herein referred to 

as model A. Model A was used to investigate hypothesis A, with the formula: 

𝐸-𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑀1ℎ𝑎𝑛𝑑 ~ 𝐿𝑒𝑠𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚 × 𝐿𝑒𝑠𝑖𝑜𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙

+ (1|𝑠𝑖𝑡𝑒) 

4.3.2.7 Hypothesis B: lesion characteristics predict E-field intensity in lesions. 

Secondary hypothesis B states that lesion characteristics such as size, distance to M1hand, 

and location predict E-field intensity in lesions. Delta AIC indicated the best fit for Mod6, 

while delta BIC suggested Mod9. Conditional R2 revealed a better fit for Mod9 ((R2
LMM(c): 

Mod6 = .32; Mod9 = .36), herein referred to as Model B, which was used to interrogate 

hypothesis B with the formula: 

𝐸-𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑙𝑒𝑠𝑖𝑜𝑛 ~ 𝐿𝑒𝑠𝑖𝑜𝑛 𝑠𝑖𝑧𝑒𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 × 𝐿𝑒𝑠𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑒𝑛𝑡𝑟𝑒 + (1|𝑠𝑖𝑡𝑒) 
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4.3.2.8 Hypothesis C: E-field intensity in lesions predicts E-field intensity in M1hand, 

modulated by lesion characteristics. 

Finally, to investigate whether the findings of synthetic lesion work translate to data with 

‘real’ stroke lesions, a series of models were constructed to interrogate whether E-field may 

be re-directed to lesions instead of to M1hand, depending on lesion size, distance to M1hand, 

and location. Delta AIC indicated ModD as the winning model, and delta BIC suggested 

ModF. Conditional R2 values were comparable between models (R2
LMM(c): ModD = .29; ModF 

= .30), while marginal R2 indicated better predictive power of fixed effects in ModD 

(R2
LMM(m): ModD = .26; ModF = .21). ModD was selected as the winning model, herein 

referred to as Model C as it was used to interrogate hypothesis C. The formula for Model C 

is: 

𝐸-𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑀1ℎ𝑎𝑛𝑑 ~ 𝐸𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑙𝑒𝑠𝑖𝑜𝑛 × 𝐿𝑒𝑠𝑖𝑜𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙

+ (1|𝑠𝑖𝑡𝑒) 
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Table 4.1. Summary of predictor variables in candidate LMMs used to interrogate secondary hypotheses A, B, and C. The outcome variable for hypotheses A 
and C was E-field intensity in M1hand. The outcome variable for models addressing hypothesis B was E-field intensity in lesion tissue. Candidate model names 
(column 1) correspond to AIC and BIC values shown in figure 4.3. Fixed and random effects for each model are listed in column 2. The winning model used to 
interrogate each hypothesis is shaded and labelled (Models A-C) to correspond to the hypothesis it is used to assess (columns 3-5). All models included a 
random effect for data collection site (notation: (1|site)). Models addressing different hypotheses were not compared with each other. Candidate models 
which violated the multicollinearity assumption (VIF > 5) are not included in the table.  

Candidate 
model 

Predictor variables for models predicting E-field intensity in M1hand. 
Hypothesis 

A B C 

Mod1 Lesion sizecontinuous + (1|site)    

Mod2 Lesion sizecategorical + (1|site)    

Mod3 Lesion locationcontinuous + (1|site)    

Mod4 Lesion locationcategorical + (1|site)    

Mod5 Lesion distancemin + (1|site)    

Mod6 Lesion distancecentre + (1|site)    

Mod7 Lesion sizecontinuous × Lesion locationcontinuous + (1|site)    

Mod8 Lesion sizecontinuous × Lesion locationcategorical + (1|site)    

Mod9 Lesion sizecontinuous × Lesion distancecentre + (1|site)  Model B  

Mod10 Lesion sizecategorical × Lesion locationcontinuous + (1|site)    

Mod11 Lesion sizecategorical × Lesion distancemin + (1|site)    

Mod12 Lesion sizecategorical × Lesion distancecentre + (1|site)    

Mod13 Lesion locationcontinuous × Lesion distancemin + (1|site)    

Mod14 Lesion locationcontinuous × Lesion distancecentre + (1|site)    

Mod15 Lesion locationcategorical × Lesion distancemin + (1|site)  Model A   

Mod16 Lesion locationcategorical × Lesion distancecentre + (1|site)    

Mod17 Lesion sizecontinuous × Lesion locationcontinuous × Lesion distancecentre + (1|site)    

 Predictor variable for models predicting E-field intensity in lesion.    

ModA Lesion sizecontinuous × E-field intensity in Lesion + (1 | site)    
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ModB Lesion sizecategorical × E-field intensity in Lesion + (1 | site)    

ModC Lesion locationcontinuous × E-field intensity in Lesion + (1 | site)    

ModD Lesion locationcategorical × E-field intensity in Lesion + (1 | site)   Model C 

ModE Lesion distancemin × E-field intensity in Lesion + (1 | site)    

ModF Lesion distancecentre × E-field intensity in Lesion + (1 | site)    

ModG Lesion sizecontinuous × Lesion locationcontinuous × E-field intensity in Lesion + (1 | site)    

ModH Lesion sizecontinuous × Lesion locationcategorical × E-field intensity in Lesion + (1 | site)    

ModI Lesion sizecontinuous × Lesion distancemin × E-field intensity in Lesion + (1 | site)    

ModJ Lesion sizecontinuous × Lesion distancecentre × E-field intensity in Lesion + (1 | site)    

ModK Lesion sizecategorical × Lesion locationcontinuous × E-field intensity in Lesion + (1 | site)    

ModL Lesion sizecategorical × Lesion locationcategorical × E-field intensity in Lesion + (1 | site)    

ModM Lesion sizecategorical × Lesion distancemin × E-field intensity in Lesion + (1 | site)    

ModN Lesion sizecategorical × Lesion distancecentre × E-field intensity in Lesion + (1 | site)    

ModO Lesion locationcontinuous × Lesion locationcategorical × E-field intensity in Lesion + (1 | site)    

ModP Lesion locationcontinuous × Lesion distancecentre × E-field intensity in Lesion + (1 | site)    

ModQ Lesion locationcategorical × Lesion distancemin × E-field intensity in Lesion + (1 | site)    

ModR Lesion locationcategorical × Lesion distancecentre × E-field intensity in Lesion + (1 | site)    

ModS Lesion distancemin × Lesion distancecentre × E-field intensity in Lesion + (1 | site)    
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Figure 4.3. Summary of model comparisons. X-axis: model names correspond to candidate models detailed in table 4.1. The y-axis simultaneously shows delta 
AIC (red) and delta BIC (blue) values for each model, referred to collectively as “delta statistic”. Lower delta statistics reflect better model fit. Where AIC and BIC 
values did converge on the same model, conditional R2 values were compared to determine the winning model. A) Delta AIC and delta BIC values for models used 
to interrogate hypothesis A. Mod15 was selected after inspection of conditional R2 values for Mod5 and Mod15. B) Delta AIC and delta BIC values for models 
used to interrogate hypothesis B. Mod9 was selected after consulting Conditional R2 values for Mod6 and Mod9. C) Delta AIC and delta BIC values for models 
used to interrogate hypothesis C. ModD was selected after comparison of conditional and marginal R2 values for ModD and ModF. 
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4.4 Results. 

4.4.1 Participant demographics.   

Data from 123 stroke survivors (age = 59.88 ± 11.72, age unknown = 1, female = 50, sex 

unknown = 8) and 147 neurotypical participants (age = 50.18 ± 16.38, age unknown = 43, 

female = 55, sex unknown = 51) were included in analyses. Stroke survivors were included if 

they were at least 3 months post-stroke (days post-stroke = 1337.07 ± 1148.66) and had a 

FM-UL score indicating upper limb impairment without hemiparesis (FM-UL = 46.1 ± 11.47). 

Participant demographics are summarised in Table 4.2.  

Table 4.2. Demographic information for stroke survivors and neurotypical participants whose data were 
included in final analyses.  

4.4.2 Lesion characteristics.  

4.4.2.1 Lesion size. 

Median lesion volume in this sample was 14.24 cm3 (25%-quantile = 1.78 cm3; 75%-quantile 

= 48.73 cm3). Forty-eight small lesions covered less than 1% of the affected hemisphere, 45 

mid-sized lesions occluded between 1 and 10% of the affected hemisphere, and 30 large 

lesions occluded more than 10%. Lesion size was smaller in this sample compared to values 

previously reported in the literature, for example, in a larger sample of 439 human scans, 

average normalized lesion size was 31.9 cm3 (25%-quantile = 9.4 cm3, 75%-quantile = 72.9 

cm3; Sperber & Karnath, 2016). Lesion information is summarised in Table 4.3.  

4.4.2.2 Lesion location.  

Anatomical lesion location categories included in the ENIGMA database (Liew et al., 2020; 

Liew et al., 2018, 2022) are summarised in Figure 4.4; 50 unique anatomical tags described 

lesion location in 123 stroke survivors. After stratification by lesion locationcategorical, 85 

Group N 
Age (years) Sex Days post-stroke FM-UL 

   (max = 66) 

    
Mean 
(SD) 

NA F NA 
Mean 
(SD) 

Range 
Mean 
(SD) 

Range 

Stroke 123 
59.88 

(11.72) 
1 50 8 

1337.07 
(1148.66) 

106-5345 
46.1 

(11.47) 
28-64 

Neurotypical 147 
50.18 

(16.38) 
43 55 51 NA NA NA NA 

NA = information not available; FM-UL = Fugl-Meyer assessment of upper limb impairment, where a 
score of 66 reflects no impairment; SD = standard deviation.  
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lesions (70% of the sample) were identified as anterior, 12 as medial (9.5%), and 25 as 

posterior (20.5%) to M1hand. Thirty-one lesions partially occluded M1hand (small = 1, mid-

sized = 13, large = 19). Of these, the per centage of M1hand occluded ranged from 0.32% to 

99.25% (M = 40.32%, SD = 37.24%). One large medial lesion (volume = 96.51cm3, 17% of 

hemisphere) and 1 large posterior lesion (volume = 254.52cm3, 56% of hemisphere) entirely 

occluded M1hand and were excluded from analyses of E-field intensity in M1hand (hypotheses 

A and C). Lesion information is summarised in Table 4.3. 

4.4.2.3 Lesion distance to M1hand. 

 Average lesion distancemin was 17.7mm (SD = 14.2), and average Lesion distancecentre was 

36.5mm (SD = 13.9). On average, small lesions were positioned further from M1hand 

(distancemin = 31.2 mm, distancecentre = 42.6 mm), while mid-sized lesions (distancemin = 11.3 

mm, distancecentre = 31.6 mm) and large lesions (distancemin = 5.46 mm, distancecentre = 33.6 

mm) were more proximal. Lesion information is summarised in Table 4.3. 

Table 4.3. Summary of lesion characteristics, quantified as lesion size, location, and distance from M1hand. 

 

 

 

Lesion 
sizecategorical  
(% of 
hemisphere) 

N 
Lesion 

sizecontinuous 
(cm3) 

Lesion locationcategorical 
N (% of size group) 

Lesion 
distancemin 

(mm) 

Lesion 
distancecentre 

(mm) 

  Mean SD A M P Mean SD Mean SD 

Small (<1%) 48 1.86 1.42 
43 

(89%) 
3 (7%) 2 (4%) 31.16 11.17 42.64 10.21 

Mid-sized 
(>1<10%) 

44 26.45 15.67 
27 

(62%) 
5 

(11%) 
12 

(27%) 
11.34 7.68 31.65 13.22 

Large (>10%) 30 101.7 51.58 
15 

(50%) 
4 

(13%) 
11 

(37%) 
5.46 5.67 33.61 16.32 

A = anterior to M1hand, M = medial to M1hand, P = posterior to M1hand; SD = standard deviation. 
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Figure 4.4. Summary of anatomical lesion location descriptors included in the ENIGMA database (Liew 
et al., 2020; Liew et al., 2018, 2022). Y-axis: list of 50 unique lesion location tags. X-axis, frequency of 
stroke survivors (total = 123) with small (≤1% hemisphere, white), mid-sized (>1% ≤10% hemisphere, 
grey) or large (>10% hemisphere) lesions in each anatomical location. 
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4.4.3 Lower E-field intensity in M1hand for stroke survivors with small lesions compared to 

neurotypical participants, when conventional tDCS was simulated. 

The model selection process is detailed in section 4.3.1. An LMM was selected to compare 

estimated E-field intensity in M1hand between groups (stroke and neurotypical) when 

conventional tDCS protocol was simulated (formula: E-field intensity in M1hand ~ Group + 

(1|site)). Neurotypical data were normally distributed while stroke survivor data were not 

(Shapiro’s test: Neurotypical, p > .05, Stroke, p < .01). Levene’s test detected no significant 

difference in variance between groups (F(1,226) =.01,p = .93) though variance was high in 

both groups; E-field intensity in M1hand varied by 390% across participants in the stroke 

survivor group (CV = 30.89) and by 310% in the neurotypical group (CV = 25.37).  

No significant difference in average E-field intensity in M1hand was detected when all stroke 

survivors were compared to all neurotypical participants F(1,55) = 2.82, p = .10 

(Neurotypical: Mean = .14 ± .04 V/m, range = .06-.24; Stroke: Mean = .13 ± .04 V/m, range = 

.06-.31 V/m). After stratification by lesion size, significantly lower E-field intensity in M1hand 

was found in the ‘small lesion’ subset of the stroke group compared to the neurotypical 

group, t(98) = 3.78, p < .01. No significant difference was found in E-field intensity in M1hand 

in survivors with mid-sized- and large-lesions compared to the neurotypical group (p>.05; 

Figure 4.5).  

Data were further stratified by lesion occlusion of M1hand. No significant difference in E-field 

intensity in M1hand was found between the neurotypical group and stroke survivors with and 

without M1hand occlusion, F(2,172) = .61, p=.54. Within the stroke survivor group only, no 

significant difference in E-field intensity in M1hand was found in subjects with and without 

partial M1hand occlusion, in each lesion size group (p>.05). Ninety per cent of lesions 

categorised as ‘small’ were positioned anteriorly to M1hand (89.6%), and 70.8% of small 

lesions were located in the basil ganglia or thalamus. Group comparison of E-field intensity 

in M1hand is summarised in Figure 4.5. 
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Figure 4.5. Comparison of E-field intensity in M1hand in neurotypical participants and stroke survivors when 1mA conventional tDCS is simulated. X-axis: mean 
estimated E-field intensity in M1hand. Y-axis: data are stratified into 4 groups: neurotypical participants, and stroke survivors with small (≤1% hemisphere), mid-
sized (>1% ≤10% hemisphere) or large (>10% hemisphere) lesions. Stroke survivor data are also stratified by those with lesions which partially occluded (white) or 
did not occlude (grey) M1hand. Neurotypical data are shown in black. Shaded areas depict the distribution of data in each group, box plots show 25th, 50th and 75th 
quartiles, and data points show estimated E-field intensity in M1hand per participant. Estimated E-field intensity in M1hand was significantly lower in stroke survivors 
with small lesions compared to the neurotypical group (t(98) = 3.78, p < .01). No significant difference was found between stroke survivors with mid-sized or large 
lesions and the neurotypical group (p > .05). 
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4.4.4 Model A: lesion distance and location predict E-field intensity in M1hand. 

The model selection process is described in section 4.3.2.6. Secondary hypothesis A states 

that lesion characteristics predict E-field intensity in M1hand. The winning LMM formula was: 

E-field intensity in M1hand ~ lesion distancemin × lesion locationcategorical + (1|site). A significant 

interaction was found between lesion distancemin and lesion locationcategorical, F(2,114) = 4.69, 

p = 0.01, R2
LLM(m) = .15, R2

LMM(c) = .22. (Figure 4.6A, D), whereby the effect of a 1 SD increase 

in lesion distancemin resulted in a .89 SD difference in E-field intensity in M1hand for anterior 

compared to posterior lesions, β = -0.89, CI = -1.46 – -0.31, p<0.01. No significant difference 

was found in the effect of lesion distancemin for anterior compared to medial lesions, β = 

0.06, CI = -0.78 – 0.67, p = 0.88, and a trend was detected towards increased distance 

associated with increased E-field intensity in M1hand for posterior compared to medial 

lesions, β = 0.83, CI = -0.04 – -1.70, p = 0.06. Lesion distancemin alone was significantly 

negatively correlated with E-field intensity in M1hand for participants with anterior lesions 

only (β = -0.43, CI = -0.64 – -0.22, p < 0.001). The effect of lesion distancemin alone was non-

significant for medial and posterior lesion locations (Medial, β = -0.38, CI = -1.06 – 0.31, p = 

0.28; Posterior, β = 0.46, CI = -0.08 – 0.99, p = 0.09).  

4.4.5 Model B: lesion distance and lesion size predict E-field intensity in lesions, and the 

effect is more pronounced in small lesions.  

Secondary hypothesis B states that lesion characteristics predict E-field intensity in lesions 

when a conventional 1mA tDCS is simulated. Model selection has been detailed in section 

4.3.2.7, giving the winning LMM formula: E-field intensity in lesions ~ lesion sizecontinuous × 

lesion distancecentre + (1|site). A significant interaction was found between lesion 

distancecentre and lesion sizecontinous predicting E-field intensity in lesioned tissue (F(1,117) = 

15.16, p <.001, R2
LLM(m) = .32, R2

LMM(c) = .36) and a significant main effect of Lesion 

distancecentre was detected, F(1,116) = 49.51, p <.001 (Figure 4.6B, E). Inspection of beta 

estimates showed that a 1 SD increase in lesion distancecentre was associated with a 0.54 SD 

decrease in E-field in lesioned tissue (β = 0.28, CI = 0.09 – 0.48, p = 0.01). The extent of E-

field intensity change significantly interacted with lesion sizecontinuous, whereby increased 

distance was associated with a greater decrease in E-field intensity in smaller lesions 

compared to larger ones, β = 0.31, CI = 0.15 – 0.47, p<0.001 Figure 4.6B, E). 
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4.4.6 Model C: E-Field intensity in M1hand is correlated with E-field in lesioned tissue only 

when lesions are in the path of current flow. 

Hypothesis C states that the relationship between E-field intensity in M1hand and lesions will 

depend on lesion characteristics such as size, location, and distance to M1hand. The model 

selection process is described in section 4.3.2.8. The winning LMM to describe the 

relationship between E-field intensity in M1hand and lesioned tissue was: E-field intensity in 

M1hand ~ E-field intensity in lesion × Lesion locationcategorical + (1|site). A significant positive 

correlation was found between mean estimated E-field intensity in lesioned tissue and mean 

E-field intensity in M1hand (F(1,114) = 21.11, p <.001, R2
LLM(m) = .18, R2

LMM(c) = .22) and a 

significant interaction was detected whereby the impact of E-field intensity in lesioned tissue 

on E-field intensity in M1hand depended on Lesion locationcategorical (F(2,113) = 5.96, p <.001).  

Beta estimates showed that a 1 SD increase in mean E-field intensity in lesioned tissue was 

associated with 0.54 SD less change in E-field intensity in M1hand for posterior lesions 

compared to anterior lesions (β = -0.56, CI = -.90 - -.24, p < 0.01), while no difference was 

detected for medial compared to anterior lesions (β = -.01, CI = -.55 - .54, p = 0.96; Figure 

4.6C, F).  
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Figure 4.6. The impact of lesions on E-field intensity in M1hand (A, C, D, F) and E-field intensity in lesioned tissue (B, E) when a 1mA conventional tDCS protocol is 
simulated in ROAST-lesion (Huang et al., 2019; Johnstone et al., in review). Descriptive figures A-C show lesion characteristics (size, distance to M1hand, location), 
while figures D-F show the results of statistical analyses. Figures A-C. Each point represents a lesion. Lesion locationcategorical is depicted by colour (red = anterior, 
green = medial, blue = posterior to M1hand), and point size reflects the lesion sizecontinuous (cm3). Axes in figures A-C match the figures representing statistical results 
directly below them, in figures D-F. Figures D-F. Datapoints represent data for individual participants, shaded areas represent 90% confidence intervals, and lines 
represent linear relationships between predictors. Data describing the impact of lesion distancemin is shown in black, and data describing the impact of lesion 
distancecentre is in blue. D) Lesion distancemin is significantly negatively correlated with E-field intensity in M1hand for anterior lesions, significantly different to the 
relationship with posterior lesions where E-field intensity in M1hand tended to increase with further lesion distancemin (F(2,114) = 4.69, p = 0.01, R2

LMM(c) = .22). E) E-field 
intensity in lesions decreases with greater distance from M1hand, and the effect is significantly more dramatic for smaller lesions (F(1,117) = 15.16, p <.001, R2

LMM(c) = 
.36). F) E-field intensity in anterior lesions is significantly positively correlated with E-field intensity in M1hand, significantly different to the relationship with posterior 
lesions where increasing E-field intensity in the lesion was not associated with a change in E-field intensity in M1hand (F(2,113) = 5.96, p <.001, R2

LMM(c) = .22). 
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4.4.7 Case studies. 
Lastly, I consider 6 case studies selected from this heterogeneous sample of stroke 
survivors. The results of Models A and C reported above revealed a significant relationship 
between lesion characteristics and tDCS-induced E-field intensity in M1hand. Model A 
indicated that lesion distancemin is negatively correlated with E-field intensity in M1hand for 
anterior lesions, significantly different to the relationship with posterior lesions where E-
field intensity in M1hand tended to increase with increasing lesion distancemin (Model A, 

Figure 4.6D). Meanwhile, Model C indicated that E-field intensity in anterior lesions is 

significantly positively correlated with E-field intensity in M1hand, significantly different to the 
relationship with posterior lesions where increasing E-field intensity in the lesion was not 

associated with a change in E-field intensity in M1hand (Model C, Figure 4.6F). Here I consider 

whether these relationships could translate to useful heuristics which might apply in clinical 
settings, to predict the impact of lesions on E-field intensity in M1hand in individual cases. A 
summary of the information described below can also be found in  

 

 

Table 4.4 and Figure 4.7. 

Participant A is a stroke survivor with a small subcortical lesion occluding part of the basal 

ganglia and thalamus. The lesion covers less than 1% of the affected hemisphere (volume = 

0.91cm3, 0.2% hemisphere) and is relatively distant from M1hand (Lesion distancemin = 47.52 

mm; Lesion distancecentre = 56.49 mm). Seventy-three per cent of the lesion is anterior to 

M1hand, and E-field intensity in lesioned tissue is 1.44 SD below the group average. The 

results of Model A suggested that distant lesions positioned anteriorly to M1hand are 

associated with lower E-field intensity in M1hand (Figure 4.6D), while Model C indicated that 

anterior lesions with relatively low E-field intensity in lesioned tissue are associated with 

relatively low E-field intensity in M1hand (Figure 4.6F). In this case study, E-field intensity in 

M1hand is indeed .05 SD below the group average.  

Participant B has a small cortical lesion occluding part of the frontal and parietal lobes. The 

lesion covers less than 1% of the affected hemisphere (volume = 4.44cm3, 0.66% 

hemisphere) and is proximal to M1hand (Lesion distancemin = 1.73 mm; Lesion distancecentre = 
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11.33 mm). Forty-three per cent of the lesion is anterior to M1hand, and mean E-field 

intensity in lesioned tissue is 1.66 SD above the group average. The findings of Model A 

suggested that decreasing lesion distancemin was not significantly associated with a change 

in E-field intensity in M1hand for medially-positioned lesions (Model A, Figure 4.6D), while 

Model C also reported no significant relationship between E-field intensity in lesioned tissue 

and E-field intensity in M1hand for medial lesions (Model C, Figure 4.6F). Estimated E-field 

intensity in M1hand is 1.80 SD above the group average in participant B, an outcome which 

aligns more with the findings associated with anterior lesions than posterior ones, but is not 

directly predicted by the models detailed in the results section.  

Participant C has a mid-sized sub-cortical lesion occluding part of the basal ganglia, caudate 

and Insula. The lesion covers between 1 and 10% of the affected hemisphere (volume = 

30.65cm3, 4.69% hemisphere) and is of middling distance relative to M1hand (Lesion 

distancemin = 12.81mm, Lesion distancecentre = 36.77 mm). The majority of the lesion is 

anterior to M1hand (76% anterior) though it extends both anteriorly and posteriorly in the 

brain. Mean E-field intensity in lesioned tissue is .3 SD below the average for the group. The 

findings of Model A suggested that lesions positioned anteriorly to M1hand at a middling 

distance are associated with lower E-field intensity in M1hand (Figure 4.6D), while the 

findings of Model C indicated that anterior lesions with relatively low E-field intensity in 

lesioned tissue are associated with relatively low E-field intensity in M1hand (Figure 4.6F). E-

field intensity in M1hand for participant C is indeed .24 SD below the group average. 

Participant D has a large cortical lesion occluding part of the Occipital, Parietal and 

Temporal lobes. The lesion covers more than 10% of the affected hemisphere (volume = 

95.78cm3, 19% hemisphere) and is proximal to M1hand (Lesion distancemin = 3.61 mm; Lesion 

distancecentre = 35.81mm). The lesion is located posteriorly to M1hand (6% anterior), and 

average E-field intensity in lesioned tissue is .9 SD below the average for the group. The 

findings of Model A suggest that proximal lesions positioned posteriorly to M1hand are 

associated with lower E-field intensity in M1hand, compared to anterior lesions where higher 

E-field intensity in M1hand is predicted (Figure 4.6D). Model C indicates that posterior lesions 

with relatively low E-field intensity in lesioned tissue are associated with a shallower 
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increase in E-field intensity in M1hand compared to anterior and medial lesions (Figure 4.6F). 

E-field intensity in M1hand is indeed 1.24 SD below the group mean for participant D.  

Participant E has a large cortical lesion occluding part of the Frontal and Parietal lobes, and 

the Insula. The lesion covers more than 10% of the affected hemisphere (volume = 

46.91cm3, 11% hemisphere) and is proximal to M1hand (Lesion distancemin = 5.39mm; Lesion 

distancecentre = 31.97 mm). Eighty-seven per cent of this lesion is anterior to M1hand, and 

mean E-field intensity in lesioned tissue is 2.24 SD above the average for the group. The 

findings of Model A suggest that proximal lesions positioned anteriorly to M1hand are 

associated with relatively high E-field intensity in M1hand (Model A, Figure 4.6D), while Model 

C indicates that anterior lesions with relatively high E-field intensity in lesioned tissue are 

associated with relatively high E-field intensity in M1hand (Model C, Figure 4.6F). Indeed, E-

field intensity in M1hand is 4.19 SD above the group average for participant E.  

Finally, participant F has a large cortical lesion extending into the Temporal, Frontal, Parietal 

and Occipital lobes. The lesion covers more than 10% of the affected hemisphere (volume = 

228.99cm3, 39.88% hemisphere) and is proximal to M1hand (Lesion distancemin = 5.10mm; 

Lesion distancecentre = 17.99 mm). This lesion is located medially to M1hand (57% anterior), 

and average E-field intensity in lesioned tissue is .92 SD below the average for the group. 

The results of Model A suggest that decreasing lesion distancemin was not significantly 

associated with a change in E-field intensity in M1hand for medially-positioned lesions (Figure 

4.6D), while Model C also reported no significant relationship between E-field intensity in 

lesioned tissue and E-field intensity in M1hand for medial lesions (Figure 4.6F). Estimated E-

field intensity in M1hand is .73 SD below the group mean for participant F, an effect which is 

not easily predicted by heuristics which might be deduced from quantitative analyses 

reported above. 



153 

 

 

 

 

Table 4.4. Lesion characteristics and CFM data for case study participants A-F. Lesion characteristics (size, location, distance to M1hand) are quantified for each 
participant, along with mean E-field in M1hand and lesioned tissue estimated by ROAST-lesion (Huang et al., 2019; Johnstone et al., in review). Participant ID matches 
labels included in figure 4.7. 

Participant 
Lesion 

size 
category 

Primary lesion 
location 

Lesion 
(sub-) 

cortical 

Lesion 
Volume 

(cm3) 

Lesion % of 
hemisphere  

Lesion 
minimum 
distance 

(mm) 

Lesion 
centre 

distance 
(mm) 

Per cent 
lesion 

anterior to 

M1hand 

Per cent 

M1hand 

occluded 
by lesion 

Mean E-
field 

intensity in 

M1hand 

(V/m) 

Mean E-
field 

intensity in 
lesion 
(V/m) 

A Small 
Basal Ganglia, 

Thalamus 
sub-

cortical 
0.91 0.20 47.52 56.49 73.40 0.00 0.14 0.06 

B Small 
Frontal Lobe, 
Parietal Lobe 

cortical 4.44 0.66 1.73 11.33 42.98 18.15 0.21 0.14 

C 
Mid-
sized 

Basal Ganglia, 
Caudate, 

Insula 

sub-
cortical 

30.65 4.69 12.81 36.77 76.67 0.00 0.12 0.09 

D Large 
Occipital Lobe, 
Parietal Lobe, 

Temporal Lobe 
cortical 95.78 18.59 3.61 35.81 5.98 14.29 0.08 0.07 

E Large 
Frontal Lobe, 

Insula, Parietal 
Lobe 

cortical 46.91 11.12 5.39 31.97 86.68 1.29 0.31 0.16 

F Large 

Temporal 
Lobe, Frontal 
Lobe, Parietal 
Lobe, Occipital 

Lobe 

cortical 228.99 39.88 5.10 17.99 57.33 0.97 0.10 0.07 



154 

 

Figure 4.7. Case studies: relationship between lesion characteristics and E-field intensity in M1hand in 6 stroke survivors. Participant IDs correspond to information 
summarised in table 4.4. Each data point represents a stroke lesion in 1 case study. Lesion locationcategorical is depicted by colour (red = anterior, green = medial, 
blue = posterior to M1hand) and point size reflects the lesion sizecontinuous (cm3). Dashed lines show mean E-field intensity in M1hand across participants. Circles show 
the relationship between variables included in Model A, and triangles show the relationship between variables included in Model C. i) Structural MRIs of 6 stroke 
survivors (case studies A-F). Grey matter is shown in grey, M1hand in red and lesions in green. ii) Relationship between lesion characteristics and E-field intensity in 
M1hand (Model A) when a 1mA conventional tDCS protocol is simulated. Quantitative analyses suggest increasing lesion distancemin is associated with lower E-field 
intensity in M1hand for anterior lesions, significantly different to the relationship with posterior lesions where E-field intensity in M1hand tended to increase with 
further lesion distancemin. iii) Relationship between E-field intensity in lesions and E-field intensity in M1hand (Model C) when 1mA conventional tDCS is simulated. 
Quantitative analyses suggest higher E-field intensity in anterior lesions is significantly positively correlated with higher E-field intensity in M1hand, significantly 
different to the relationship with posterior lesions where increasing E-field intensity in the lesion is not associated with a change in E-field intensity in M1hand. 
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4.5 Discussion. 

This study aimed to compare tDCS-induced E-field intensity in M1hand in stroke survivors and 

neurotypical participants, and to investigate the impact of real (instead of synthetic) stroke 

lesions on simulated current flow in a large sample of MR scans (Liew et al., 2020; Liew et 

al., 2018, 2022). Customised current flow models (Huang, Datta, et al., 2018; Johnstone et 

al., in review) were used to estimate the intensity of E-field delivered to M1hand, a cortical 

region of interest (ROI) located under an anode electrode. To further probe the mechanisms 

by which lesions might impact tDCS current delivery, E-field intensity in lesioned tissue was 

examined to determine how exogenous DC fields might interact with conductive lesioned 

tissue positioned in different locations relative to M1hand.  

4.5.1 E-field intensity in M1hand varied by over 300% in both groups. 

First, the intensity of E-field in M1hand did not differ on average between neurotypical and 

stroke survivor groups. Inter-individual variability in M1hand E-field intensity was very high in 

both groups, varying by over 300%. By comparison, Evans and colleagues reported ~100% 

inter-individual E-field variability in a group of younger adults (N = 50, age 22-35 years; 

Evans et al., 2020) when a similar tDCS montage was simulated. Antonenko and colleagues 

(Antonenko et al., 2018) however reported higher variability and lower tDCS E-field intensity 

in cortical ROIs in ageing participants compared to younger adults, possibly due to reduced 

grey matter volume and increased CSF thickness associated with healthy ageing (Laakso et 

al., 2015; Mahdavi & Towhidkhah, 2018; McCann & Beltrachini, 2021; Opitz et al., 2015). 

The impact of age on DC fields is not trivial for the stroke survivor population, where 

approximately 84% of strokes occur in adults over 49 years of age (Feigin et al., 2022). The 

optimisation problem for tDCS in stroke therefore requires consideration for anatomical 

differences due to ageing, as well as the significant impact of lesions on current flow. 

Without CFM-informed individualisation, high variability in tDCS E-field delivery to an ROI 

has likely contributed to variability in reported findings of clinical trials investigating the 

efficacy of tDCS in the stroke population (reviewed recently in Lefaucheur, 2016; Shen et al., 

2022; Vergallito et al., 2022). 
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4.5.2 Low E-field estimated in M1hand for stroke survivors with small lesions.  

Further analysis with stroke survivor data stratified by lesion size showed lower E-field 

intensity in M1hand for stroke survivors with small lesions (<1% of the affected hemisphere) 

than the neurotypical group. A possible explanation for this can be found in recent work by 

Kashyap and colleagues (Kashyap et al., 2022), who reported that pockets of tissue with high 

CSF concentration (i.e. similar to conductive lesions) tend to drag current towards them, 

altering the pattern of current between anode and cathode electrodes (Datta et al., 2009; 

Holdefer et al., 2006). Higher current density was reported in the ROI when high CSF pockets 

were located close to the ROI in the path of current flow, while lower current density was 

recorded in the ROI when high CSF pockets in the path of current flow were located further 

from it (Kashyap et al., 2022). Here, the relative locations of scalp electrodes were taken as 

a proxy for the path of current flow (Evans et al., 2022): due R-A-I between anode and 

cathode electrodes. Meanwhile, anatomical descriptors provided in the ENIGMA database 

(Liew et al., 2020; Liew et al., 2018, 2022) showed that the majority of small lesions were 

located in the basal ganglia, a sub-cortical region which is distant and positioned due R-A-I 

relative to M1hand. Small subcortical lesions may be acting similarly to the pockets of 

conductive tissue described by Kashyap and colleagues (Kashyap et al., 2022): carrying 

current away from M1hand towards the cathode, resulting in low E-field intensity in M1hand 

compared to the neurotypical population. These novel finding suggests that small, sub-

cortical lesions may have a larger impact on tDCS E-field delivery than previously thought, if 

they are positioned in-line with the path of current flow between electrodes. 

4.5.3 The impact of lesions on tDCS-induced E-field in M1hand depends on lesion position 

and proximity to M1hand. 

Stroke survivor data were also analysed separately, to interrogate the relationship between 

lesion characteristics and tDCS-induced fields. The findings of Model A suggested that 

anterior lesions were associated with higher E-field intensity in M1hand if the lesion was 

proximal to the ROI. Meanwhile, the relationship between lesion proximity and E-field 

intensity in M1hand differed significantly for posteriorly positioned lesions, where proximal 

lesions are associated with lower E-field intensity in M1hand. The results of Model C and the 

work of Kashyap and colleagues, described above (Kashyap et al., 2022), hint at the 

mechanism behind this effect, as results showed E-field intensity in lesions was significantly 
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positively correlated with E-field intensity in M1hand when lesions were positioned anteriorly 

(i.e. in-line with the path of current flow) compared to those positioned posteriorly 

(relatively out-of-line with the path of current flow). This finding supports the theory that 

lesions draw current towards M1hand if they are in the path of current flow and close to the 

target (Kashyap et al., 2022), while posterior lesions, out-of-line with the path of current 

flow, may draw current away from the target. In this way, findings from synthetic lesion 

work (Johnstone et al., in review) partially generalise to the stroke survivor population, as 

the impact of lesions on E-field intensity in an ROI depended on the lesion’s proximity to 

target, and its position relative to the path of current flow. In later paragraphs however, I 

discuss where the findings of this Chapter and synthetic lesion studies diverge.  

4.5.4 Lesions act as carriers for tDCS-induced E-field. 

Previous work supports the theory that lesions might act as carriers of E-field in the brain. 

For example, current flow modelling studies have shown that wide pockets of CSF (similar to 

lesions) are associated with clustering of E-field intensities in sites across the brain (Datta et 

al., 2009). Furthermore, consistent sub-cortical areas of high current density distant from 

the intended target have been found even in absence of brain lesions, as current is drawn to 

conductive structures such as the ventricles (reviewed in Bikson & Dmochowski, 2020). 

Elsewhere, it has been shown that electric currents are canalised through brain structures 

with high CSF density, such as the longitudinal fissure, facilitating E-field delivery to deep 

brain regions (Gomez-Tames et al., 2020). The implications of tDCS current directed away 

from an ROI via conductive tissue are of particular relevance to the stroke survivor 

population, where conductive lesions may re-direct current to non-target regions. In 

contrast to a neurotypical group, prediction of the destination and pattern of re-directed 

current is confounded by heterogeneity in the size, shape, and location of conductive tissue 

between stroke survivors. The necessity of individualisation of tDCS protocol particularly in 

clinical populations is again highlighted to account for the impact of pathological anatomy 

on tDCS current flow.  
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4.5.5 Changes in E-field intensity in M1hand do not fully capture the impact of lesions on 

tDCS-induced fields. 

The impact of lesions on E-field in an ROI may not only be limited to altered E-field intensity, 

as the direction of current flow in a cortical target may also be altered by lesions. Briefly, the 

direction of current flow through an ROI is of interest because membrane polarisation by 

endogenous current depends on the direction of current flow relative to the somato-

dendritic axes of affected cells (Berzhanskaya et al., 2013; Bikson et al., 2004; Chan et al., 

1988; Farahani et al., 2021; Radman et al., 2009; Rahman et al., 2013; detailed in section 

1.5.1.2). If current is drawn through conductive lesioned tissue during tDCS, the direction of 

current flow in surrounding grey matter may shift. This finding demonstrates the potential 

for increased variability in current direction in lesioned compared to neurotypical brains, 

which could in turn impact the behavioural effects of tDCS. Furthermore, evidence that 

lesions might carry current to distributed brain regions (Datta et al., 2009; Gomez-Tames et 

al., 2020; Kashyap et al., 2022) suggests that the focality of tDCS-induced fields may be 

impacted by lesions. Individualising electrode montages to counter changes in current 

direction and to increase focality is a candidate solution for these effects. However, as with 

a neurotypical population, informed decision-making will be required to prioritise E-field 

intensity, direction or focality (Lee et al., 2021). While the relative import of each of these 

parameters remains unknown in the neurotypical literature, the findings of this Chapter 

suggest brain lesions add complexity to the already vexed issue of tDCS optimisation. 

4.5.6 Limitations 

4.5.6.1 Lesions are not accurately characterised. 

The results of Models A-C describe the impact of lesions on simulated current flow, given 

the data available. The minimum distance between the centre of M1hand and lesioned tissue 

(lesion distancemin) may not, for example, accurately describe the proximity of a unique, 

irregularly shaped 3D lesion to a cortical ROI. In addition, larger lesions in this sample of 

stroke survivors differ to those of comparable size in synthetic studies, where lesions are 

often represented by spheres (Johnstone et al., in review). By contrast, ‘real’ lesions are 

irregularly shaped three-dimensional structures which can extend across the length of the 

brain, simultaneously in- and out- of line with the path of current flow, proximal and distant 

from M1hand. Indeed, the profile of lesions described by the same vascular territory location 
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can vary widely (Kim et al., 2019). However, detailed characterisation of lesions was also not 

possible with this dataset via machine learning, as the sample size was too small to test and 

train a lesion characterisation algorithm. While I note that the lesion characterisation 

methods used here have the benefit of intuitive interpretation, it is also recognised that the 

descriptors used are subject to more limitations than when used to describe regularly 

shaped synthetic lesions.  

Current flow models used in this study were customised to recognise lesions as a 7th tissue 

type (Johnstone et al., in review), with a conductivity value lower than CSF but higher than 

grey matter (McCann et al., 2019). This approach is limited as a way to accurately represent 

stroke lesions in current flow models for two primary reasons. First, that lesions are not 

comprised of homogenous tissue, but rather include a gradient of tissue spanning maximally 

conductive CSF to partially damaged perilesional tissue, scar tissue and healthy tissue (Rekik 

et al., 2012) all with varying conductivity properties (McCann et al., 2019). Second, lesion 

composition is likely to vary with time post-stroke, evidenced in diffusion MRI metrics which 

have shown changes in perilesional tissue conductivity between acute and chronic stages 

(Beaulieu et al., 1999; Thiel et al., 2004; van der Zijden et al., 2008). Inclusion criteria 

included a minimum cut-off of 3 months to counter this issue, while maintaining a realistic 

cohort of survivors likely to be selected for tDCS intervention. To ascertain the true impact 

of lesions on tDCS-E-field, further work is required to minimise variability in estimates of the 

head tissue conductivity (McCann et al., 2019) including lesions at varying time points after 

stroke.  

4.5.6.2 The interaction of E-field with smaller lesions was better characterised than for large 

lesions.  

Secondary hypothesis B stated that lesion characteristics such as size, distance to M1hand, 

and location would predict E-field intensity in lesions. In this study, E-field intensity in 

lesioned tissue was subject to greater change with increasing distance of smaller lesions 

compared to larger ones. This may not, however, be interpreted as a greater impact of 

smaller lesions on current flow, but as better characterisation of smaller lesions by the 

information available. For example, the measure of mean E-field in lesioned tissue may have 

accurately characterised E-field intensity across tissue in small lesions, while in large lesions 
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E-field intensity may vary across the structure possibly with higher values found in lesioned 

tissue positioned more closely to the anode than more distant tissue, within the same 

lesion. 

This issue extends to the findings of Models A and C. Consider, for example the case study of 

participant F, a stroke survivor with a very large lesion extending across cortical and sub-

cortical regions, characterised only as proximal and medially-positioned relative to M1hand in 

the winning model used to describe the impact of lesions on E-field in M1hand (Model A). 

Similarly, participant B had a medial lesion positioned proximally to M1hand, though model A 

did not capture the difference in lesion size between participants: E-field intensity in M1hand 

was above the group average in participant B and below it in participant F. Here, predictions 

of the impact of lesions on current flow during tDCS deduced from Model A do not translate 

to individual cases. This may also be the case for the generalisability of work suggesting that 

conductive structures in the path of current flow may have a systematic impact on current 

delivery to an ROI (Johnstone et al., in review; Kashyap et al., 2022): it is unknown if these 

findings extend beyond structures similar to small- or mid-sized lesions, to large lesions 

which may have an unpredictable impact on the distribution of current through the brain. 

Rather than pursuing heuristics which might be used to optimise tDCS delivery, these 

findings further underscore the need for individualised tDCS protocol design particularly in 

the context of stroke, and a move away from group-level application which might be 

confounded by high heterogeneity in the anatomical brain state of stroke survivors. 

4.5.7 Accounting for lesions in current flow models does not solve the optimisation 

problem of tDCS in stroke.  

If current flow models evolve to accurately account for individual stroke lesion size, shape, 

conductivity, location and proximity to target, the optimisation problem for tDCS use in 

stroke will remain unsolved. This is first because anatomical changes following stroke are 

not limited to lesions; recent animal work has reported pervasive stroke-related 

degeneration of cortical tissue and white matter tracts extending up to 48 weeks post-

stroke (Syeda et al., 2022), with implications for the impact of altered CSF thickness and 

tissue density on the distribution of tDCS current flow (Antonenko et al., 2018; Laakso et al., 

2015; Mahdavi & Towhidkhah, 2018; McCann & Beltrachini, 2021; Opitz et al., 2015). 
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Second, because differences between neurotypical and pathological brains are not limited 

to anatomy. The neurochemical state of the brain before tDCS is applied is known to impact 

capacity for tES-induced cortical plasticity (Bradley et al., 2022; Paulus & Rothwell, 2016; 

Pellegrini et al., 2021; Polanía et al., 2010; Reato et al., 2010; Stagg et al., 2018), and cortical 

excitability may be subject to significant change after stroke (Bernhardt et al., 2017; Buma 

et al., 2013; Cramer, 2008; Di Pino, Pellegrino, Assenza, et al., 2014; Krakauer & Carmichael, 

2017b; Kwakkel et al., 2004). The expectation that the effects of tDCS in stroke survivors can 

be predicted from the effects observed in healthy individuals receiving the same 

intervention is fraught with logical problems (Lee et al., 2021) which cannot be solved by 

accounting for pathological anatomy alone.  

4.5.8 Conclusion.  

In this study, a customised current flow modelling pipeline was used to investigate the 

impact of lesion location, size and distance to target on tDCS-induced E-field intensity in 

M1hand in over 200 stroke survivors and neurotypical participants, when a commonly used 

1mA conventional tDCS protocol was simulated. Some findings from synthetic lesion studies 

were found to generalise to the stroke survivor population, namely that the impact of 

lesions on tDCS E-field intensity in an ROI depends on the position of a lesion (in- or out- of 

line with the path of current flow), and on the distance between a lesion and an ROI. 

However, a novel finding is described where larger, proximal lesions are not systematically 

associated with increased E-field intensity in an ROI as previously reported (Johnstone et al., 

in review; Minjoli et al., 2017; Piastra et al., 2021). Rather, large, irregularly shaped ‘real’ 

lesions are poorly quantified by the measures available, and the findings of synthetic lesion 

work or studies with low sample size may not generalise to survivors with large lesions. 

Meanwhile, small lesions in the path of current flow can have a larger influence on E-field 

than previously thought.  

Though a systematic pattern of the impact of lesions on tDCS-induced fields could not be 

described across the heterogeneous stroke population, a significant impact of lesions on 

current flow is reported. Protocol individualisation is necessary to optimise tDCS application 

in individual cases, as the impact of lesions may not only result in altered E-field intensity in 

an ROI, but in altered spatial focality and direction of current flow (Gomez-Tames et al., 
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2020; Kashyap et al., 2022). Lesions acting as carriers of electric current could produce 

hotspots of relatively high E-field intensity in regions distant from the intended target, 

resulting in collateral neuromodulation of non-target regions. Taken together, lesions may 

contribute significantly to variability in tDCS-induced fields in stroke survivors, possibly 

contributing to high variability observed in behavioural outcomes. Implementation of CFM-

informed multi-electrode montages may counter some of the issues raised, though this will 

require detailed current flow modelling and multi-electrode hardware, a potential barrier to 

optimised protocol application in clinical settings. Nevertheless, the findings reported here 

may explain the high variability observed in tDCS outcomes in stroke; the promise of tDCS in 

motor rehabilitation may yet be realised with protocol individualisation.   
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CHAPTER 5. GENERAL DISCUSSION  

Physical therapy improves upper limb rehabilitation after stroke (Biernaskie, 2004; Krakauer 

& Carmichael, 2017c; Ward et al., 2019; Zeiler & Krakauer, 2013) and it is well-established 

that increased training dose (quantified as the number of repetitions of an intervention; 

Dorsch & Elkins, 2020) is positively correlated with improved outcomes (Blennerhassett & 

Dite, 2004; French et al., 2009; Kwakkel et al., 1997; Lohse et al., 2014; Scrivener et al., 

2012). Schneider and colleagues (Schneider et al., 2016) however reported that a 240% 

increase in training dose was required to improve stroke outcomes, and a recent meta-

analysis highlighted that the majority of research into the dose-response relationship for 

stroke rehabilitation focusses on one-to-one training with a practitioner (Stewart et al., 

2017). Under these conditions, an unsustainable increase in time and staff would be 

required to achieve a meaningful increase in treatment dose for every stroke survivor 

(Dorsch & Elkins, 2020); innovation is greatly needed to increase efficiency and accessibility 

of post-stroke rehabilitation.  

The focus of this thesis has been on optimising methods for non-invasive maximisation of 

neuroplastic potential, for increased efficiency of stroke rehabilitation. Two candidate 

methods were explored: exploitation of an endogenous sensitive period following human 

stroke, which was hypothesised to occur in the sub-acute phase of recovery (Chapter 2), and 

application of optimised tDCS to encourage an excitable brain state hypothesised to support 

potentiation (Chapters 3 and 4).  

5.1 Heterogeneity in trajectories of motor recovery and cortical excitability after 

stroke. 

5.1.1 Decoupled timelines of post-stroke motor recovery and cortical excitability.  

In Chapter 2, I found that intra-cortical inhibition in M1hand was weaker at 3 weeks post-

stroke compared to neurotypical participants, and that it had returned to neurotypical levels 

by 6 months. This finding is in concurrence with previous research into human post-stroke 

CSE (Liepert et al., 2000; Manganotti et al., 2002; McDonnell & Stinear, 2017; Swayne et al., 

2008). In the context of preclinical work showing that persistently increased GABAergic tone 
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impedes post-stroke recovery and disinhibitory intervention improves function (Clarkson et 

al., 2010; Lake et al., 2015; Orfila et al., 2019), the sub-acute endogenous disinhibition 

observed in mildly impaired participants in Chapter 2 suggests a similar mechanism could 

underlie stroke recovery in humans, though the findings are limited by relatively small 

sample size and lack of representation of survivors with more severe symptom severity. 

A prevailing hypothesis in stroke rehabilitation literature is summarised in the report of The 

Stroke Roundtable Consortium (Bernhardt et al., 2017). It posits that accelerated gains often 

observed in the ‘sub-acute’ phase of human stroke, followed by relative stability of chronic 

deficit from approximately 6 months, are underpinned by time-dependent changes in 

excitatory and inhibitory brain activity which mediate the brain’s capacity for 

neuroplasticity. In Chapter 2Chapter 1, I found that the trajectories of motor recovery 

(measured by the ARAT and FIM) and change in GABA-mediated intra-cortical inhibition 

(measured by SICI ratio) were not tightly temporally coupled; motor scores reached ceiling 

very early in mildly impaired stroke survivors while intra-cortical inhibition continued to 

change over 6 months.  

This finding supports the concept that a 6-month pro-plastic brain environment occurs 

during the sub-acute phase of stroke, but contends with the hypothesis that it is temporally 

coupled with motor recovery (Figure 5.1). Further work is needed to assess whether this 6-

month window of disinhibited brain activity also occurs in stroke survivors with moderate 

and severe impairment who tend to experience different trajectories of motor recovery. For 

example, the trajectories of motor recovery and cortical disinhibition may be temporally 

coupled in moderate and severe stroke, but not mild stroke. Alternatively, a homogenous 6-

month window of endogenous disinhibition may occur in all stroke survivors regardless of 

recovery trajectory, or this 6-month window could occur with varying magnitude 

moderating strength of recovery. A fourth possibility could be that impactful changes in 

excitatory-inhibitory balance occur in brain regions distant from M1hand in moderate-severe 

stroke, in functionally connected areas which escaped infarction and were not captured by 

stimulation targeting M1hand. These hypotheses are speculative and are not exhaustive. They 

demonstrate the great need for further research; without direct investigation with more 

severely impaired survivors, the mechanisms underlying human post-stroke recovery and 
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the generalisability of pre-clinical findings to survivors with heterogeneous recovery profiles 

remain unknown.  

Given evidence that TMS-assessed changes in excitatory-inhibitory balance were not tightly 

temporally coupled in mildly impaired human stroke survivors (Chapter 2Chapter 1), one 

must consider why. Two viable explanations arise: first, since physiology causes behaviour, 

one might propose that motor recovery observed after stroke is not in fact underpinned by 

increased excitability and reduced inhibition as preclinical work suggests. Second, one must 

consider that there are methodological limitations to the use of TMS to measure 

longitudinal changes in brain activity after stroke. Both explanations are discussed below. 

Extensive reorganisation of disrupted networks occurs after stroke (Carmichael et al., 2017; 

Cramer, 2008), a process thought to require increased cortical excitability to promote 

functional and structural plasticity (Cheng et al., 2014; Li et al., 2010; Omura et al., 2016; 

Overman et al., 2012; Tennant et al., 2017; Wahl et al., 2017). However Krakauer and 

Carmichael (Krakauer & Carmichael, 2017c) point out that the majority of cortical 

reorganisation processes have not been directly linked to functional gains: they are reactive, 

not reparative. Branscheidt and colleagues (Branscheidt et al., 2019) highlight the 

distinction between reactive and reparative processes as a possible explanation for reported 

decoupling of the trajectories of motor gains and network reorganisation after stroke. Here, 

I suggest the logic might also apply: in the group of mildly impaired stroke survivors studied 

in Chapter 2, TMS-assessment of brain activity may have captured a reactive alteration to 

intra-cortical inhibition which by definition is not coupled with motor gains. Reparative 

processes underpinned by excitability changes may yet have occurred without being 

captured, as hypothetically coupled brain activity would have ceased as motor gains 

reached ceiling by the earliest timepoint examined (3 weeks). This theory is in keeping with 

the hypothesis that the findings of Chapter 2 may not extend to survivors with more severe 

impairment, where reparative processes may persist at a greater magnitude for a longer 

duration (I note however that this contends with the homogenous timeline described by the 

Stroke Round Table Consortium (Bernhardt et al., 2017)). It also highlights one of the 

methodological limitations of using TMS to measure functional brain state after stroke: 

where an effect is detected, it can be difficult to describe the complex neural processes 

which gave rise to it.  
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Each TMS-MEP recorded reflects transcortical, intracortical, and spinal projections; a 

biomarker of CSE rather than a direct measure of brain activity (Bestmann & Krakauer, 

2015; Di Lazzaro & Ziemann, 2013; Rusu et al., 2014). MEPs are vulnerable to stroke-induced 

confounds such as differences in cortico-spinal tract integrity (Kemlin, Moulton, Lamy, et al., 

2019; Potter-Baker et al., 2018), variable resting tone in hand muscles (Darling et al., 2006; 

Kiers et al., 1993), and changes to brain anatomy associated with decreased and more 

variable TMS-induced E-field in grey matter volumes of interest (Mantell et al., 2021; Minjoli 

et al., 2017). Increased variability in RMT detected in stroke survivors compared to 

neurotypical participants in Chapters 2 and 3, for example, could reflect differences in 

integrity of descending projections in stroke survivors, instead of greater variability in brain 

activity. Since significantly heightened variance was not also detected in recruitment curve 

data in Chapter 3, it appears that some TMS measures of CSE are more vulnerable to 

confounds than others.  

Furthermore, the finding of a sub-acute reduction in inhibitory signalling does not capture 

the full profile of changes in excitatory-inhibitory balance in the post-stroke brain. SICI 

indexes the operation of transiently activated, cortical GABA interneurons (Ziemann et al., 

1996, Ziemann et al., 1996); reduced SICI is thought to be underpinned by reduced ‘phasic’ 

synaptic GABAergic inhibition. Classic preclinical work suggested that reduced ‘tonic’ GABA 

was linked to functional recovery after stroke (Blicher et al., 2015; Kim et al., 2014; Krakauer 

& Carmichael, 2017b; Clarkson et al., 2010; Di Lazzaro et al., 1998; Orfila et al., 2019), while 

more recently enhancement of ‘phasic’ GABA inhibition has been identified as a therapeutic 

target (Hiu et al., 2016). While the latter suggests some reparative impact of altered SICI 

could be captured by TMS, specific probing of different inhibitory systems will be required 

to describe the functional state of the post-stroke brain in humans and inform optimal 

timing of interventions, a task which may be beyond the scope of TMS alone. As Grigoras 

and Stagg (Grigoras & Stagg, 2021) point out, regulation of excitatory-inhibitory balance 

after stroke may not relate to TMS-assessed inhibitory changes in a straightforward way. 

The complexity of the balance shift after stroke, including mechanisms underlying 

reparative and reactive processes, is exemplified in the finding that measures of inhibitory 

activity differ depending on the modality used; MRS-assessed GABA concentration, for 

example, does not appear to be correlated with TMS-assessed (~3ms SICI) synaptic 
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inhibition (Dyke et al., 2017; Mooney et al., 2017; Tremblay et al., 2013). While TMS offers 

valuable insight into the post-stroke brain environment by non-invasive means, multi-modal 

work is required to interrogate the interplay between various excitatory and inhibitory 

systems which may be important for optimising the timing of neuromodulatory 

intervention.  

5.1.2 Trajectories of motor recovery after stroke vary with symptom severity. 

As discussed in section 2.6, the ARAT and FIM scores described in Chapter 2 may not have 

captured the full profile of upper limb recovery after stroke. However, a recent longitudinal 

study of 412 stroke survivors (van der Vliet et al., 2020) reported that individuals with mild 

impairment (measured with the FM-UL) reached 90% of total recovery within weeks of 

stroke, in concurrence with the trajectory of ARAT and FIM scores reported in Chapter 2. 

Furthermore, van der Vliet and colleagues (van der Vliet et al., 2020) identified 5 sub-groups 

of stroke survivors, stratified by symptom severity, with distinct trajectories of motor 

recovery. While all sub-groups reached a peak in impairment reduction within the time 

window defined as ‘sub-acute’ (1 week – 6 months; Bernhardt et al., 2017) significant 

differences were found in the temporal profile of recovery within the sub-acute phase: 

moderately impaired individuals experienced a shallower trajectory of reducing impairment 

over 6 months, while both mildly and severely impaired survivors tended to reach a ‘peak’ in 

recovery (relative to final outcome) within weeks of stroke (Figure 5.1). Emerging work 

concurs with the notion that motor recovery trajectories after stroke are heterogeneous. 

For example, Bonkhoff and colleagues (Bonkhoff et al., 2022) described a distinct recovery 

profile in severely impaired survivors compared to those with moderate or mild symptoms, 

while elsewhere, some survivors with initially severe impairment have been reported to 

recover within 10 days of stroke (Grefkes & Fink, 2014). 

Heterogeneity within the sub-acute stroke timeline was also acknowledged in The Stroke 

Roundtable Consortium report (Bernhardt et al., 2017). The authors pointed out that 

functional gains occur for many survivors within 1-week to 1-month post-stroke, and 

describe some uncertainty over how early training could be applied (Bernhardt et al., 2006; 

Dromerick et al., 2009; The AVERT Trial Collaboration group, 2015). The work described 

above (Bonkhoff et al., 2022; van der Vliet et al., 2020) has since made progress in 
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characterising heterogeneity in functional recovery trajectories after human stroke, and 

development of methods to predict stroke outcomes is also progressing quickly (Fleury et 

al., 2022; Hope et al., 2013, 2019; Quinlan et al., 2015; Selles et al., 2021; Stinear & Byblow, 

2017; Walford et al., 2021). 

Taken together, improved understanding of human stroke recovery may necessitate a shift 

away from broad, temporally-defined phases such as “sub-acute” and “chronic”, in light of 

emerging evidence that the timeline of recovery (and the neural processes which underpin 

it) is likely subject to high inter-individual variability. Furthermore, there is presently a 

cavernous gap between the specificity of non-invasive measures of brain activity changes 

after stroke (e.g. TMS-assessed excitability) and the specificity required for state-dependent 

neuromodulation by tDCS. A shift is needed towards individualisation of interventions which 

may benefit some survivors more than others, at different time points after stroke.  



169 

 

Figure 5.1. A revised schematic of the trajectories of cortical excitability change and functional gains after human stroke, based on the work of van der Vliet and 
colleagues (van der Vliet et al., 2020) and the findings of Chapters 2 and 3 of this thesis. The timing and magnitude of sub-acute peaks in capacity for endogenous 
neuroplasticity are moderated by stroke symptom severity, and functional recovery may not be temporally coupled with changes in TMS-assessed cortical 
excitability. On the y-axis, zero simultaneously represents neurotypical cortical excitability and minimum motor function. Time post-stroke is shown on the x-axis. 
Coloured lines depict the motor recovery trajectories of sub-groups of survivors with mild (green), moderate (orange) and severe (red) motor impairment. The 
black line depicts TMS-assessed changes in excitatory-inhibitory balance recorded in mildly impaired stroke survivors in Chapters 2 and 3 of this thesis: a peak in 
plastic potential is shown at ~3 weeks post-stroke, returning to neurotypical levels by ~6 months (Chapter 2), and a decrease in plastic potential is shown after 6 
months (Chapter 3). It is not known if this profile of cortical excitability generalises to stroke survivors with moderate and severe symptom severity. 
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5.1.3 Optimisation requires identification of individuals best suited to neuromodulation.  

The findings of Chapter 2 suggest that excitability-boosting interventions such as tDCS may 

be redundant in mildly impaired survivors whose motor scores reached ceiling relatively 

soon after infarction without neuromodulatory intervention. It is not yet known if 

moderately and severely impaired survivors experience the same 6-month period of 

reduced synaptic inhibition, or whether this shift in functional brain state might contribute 

to reparative processes, or simply be reactionary. As mentioned above, heterogeneous 

trajectories of motor recovery could instead be underpinned by heterogeneous trajectories 

of cortical excitability, or varying magnitude of neurophysiological change, possibly 

mediated by symptom severity (Figure 5.1). Further work is needed to understand which 

mechanisms could be viable and interrogate how they may be best supported.  

If varying trajectories of cortical excitability are detected in a large cohort of stroke 

survivors, and neurophysiological shifts in excitatory balance are found to correlate with 

symptom trajectory, interventions such as tDCS maintain their promise. Those with atypical 

functional recovery profiles (‘non-fitters’) may for example benefit from intervention to shift 

brain activity towards a typical profile via neuromodulation; reinstatement of brain function 

comparable to the neurotypical population in chronic stroke has for example been linked to 

better motor outcomes (Calautti & Baron, 2003).  

As discussed throughout this thesis, and in previous work which also considers tDCS use to 

target non-motor functions (Crinion, 2016; Holland & Crinion, 2012), optimisation will 

require identification of survivors who might maximally benefit. For example, the timing of 

tDCS-supported training may be optimal during an individually-assessed period of decreased 

cortical excitability coupled with sub-optimal reduction of symptom severity, in a survivor 

who is MEP positive (Stinear et al., 2012), has sufficient cortical structures remaining (not 

limited to M1) to support network re-organisation (Aswendt et al., 2021; Nouri & Cramer, 

2011; van der Cruijsen et al., 2022), and has <63% injury to the CST (Quinlan et al., 2015). I 

note that the potential for tDCS-assisted intervention is not limitless, as outcomes will 

depend on the severity of comorbid symptoms such as cognitive deficit (Sanchez-Bezanilla 

et al., 2021; Verstraeten et al., 2020), reduced upper limb strength (de Sousa et al., 2018), or 

chronic network dysfunction (Guggisberg et al., 2019). The question here is whether an 

additional target for intervention is viable or not: is shifting excitatory-inhibitory balance 
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correlated with neural repair and improvement of symptoms? Could excitatory intervention 

promote greater recovery in some stroke survivors? The efficacy of tDCS in stroke will 

depend not only on optimisation of the technique, but careful identification of individuals 

who may benefit from it.  

5.1.4 Optimal timing of neuromodulatory intervention depends on individual functional 

brain state, not recovery phase. 

In addition to ‘boosting’ cortical excitability which is hypothesised to be heightened in sub-

acute stroke, tDCS has been suggested as a means to “re-open” a pro-plastic period of 

increased excitability in survivors in the chronic phase of recovery. In Chapter 3, I found that 

TMS-assessed CSE was lower in chronic stroke survivors with mild-moderate impairment, 

compared to neurotypical participants (Figure 5.1). Meanwhile in Chapter 2, I showed that 

intra-cortical inhibition was comparable to neurotypical levels after ~6 months. These 

findings are not conclusive due to relatively small sample size, though they do illustrate 

heterogeneity in the post-stroke timeline during a temporal “phase” when brain activity is 

hypothesised to have stabilised to neurotypical levels (Bernhardt et al., 2017). They also 

contribute to existing evidence (described in section 1.3.2) that excitatory and inhibitory 

systems do not respond uniformly to stroke. As evidence such as this continues to emerge in 

the human stroke literature, the applicability of homogenous frameworks for post-stroke 

neurophysiological changes and their relationship with functional recovery decreases 

(Figure 5.1). 

Pre-clinical work has evidenced the benefit of ‘re-opening’ a post-stroke period, most 

notably in the work of Zeiler and colleagues (Zeiler et al., 2016) who reported significantly 

improved motor outcomes after induction of a second stroke, compared to mice who 

experienced one stroke. TDCS is a candidate tool to non-invasively induce an excitable brain 

environment after stroke in humans, to re-instate a brain environment thought to modulate 

functional recovery. However, in addition to the high variability observed in stroke 

outcomes, a number of barriers prevent translation of preclinical findings to non-invasive 

intervention in humans. First, the rodent post-stroke timeline occurs on a very different 

temporal scale to that observed in humans. For example the so-called sensitive period 

occurs much earlier, and lasts for less time: training initiated 1 day after rodent stroke has 

been shown to mediate recovery, while no effect is observed if training is delayed by 1 week 
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(Ng et al., 2015; Zeiler et al., 2013). Findings such as these suggest the rodent sensitive 

period gives way to a period similar to a “chronic” phase 1 week to 1 month post-stroke (the 

beginning of the temporally defined “sub-acute” phase in humans). Since the stroke 

recovery timeline does not translate to the observed duration of functional gains in human 

stroke survivors, and recent work suggests that (sub-groups of) survivors may enter a period 

of stabilised chronic deficit at different times (Bonkhoff et al., 2022; Fleury et al., 2022; 

Selles et al., 2021; van der Vliet et al., 2020; Figure 5.1), a robust method may be required to 

identify when an endogenous sensitive window occurs and excitability-boosting 

interventions such as tDCS may be best applied. Since the timeline for a critical period for 

stroke recovery may be subject to heterogeneity, interventions intended to target survivors 

in a homogeneously defined “chronic” time window may contribute to variable outcomes.  

In addition, to my knowledge pre-clinical work does not provide a robust model for human 

stroke survivors in a late chronic phase, for example 10 years post-stroke. While in theory, 

concepts such as “re-opening” the post-stroke sensitive period may apply to an individual 

any time after stroke, chronic changes such as network re-organisation may mediate the 

impact of a tDCS-induced sensitive period: increasing motor cortical excitability may not 

benefit a survivor whose primary motor control processes occur in brain regions distant to 

neurotypical M1hand. Mechanistic understanding of optimal tDCS application, and of the 

trajectory of post-stroke neurophysiology, will be required to translate ideas such as re-

opening the critical period to a human stroke population.  

In the context of evidence that heightened excitability and decreased inhibition support 

recovery after stroke, one might argue that tDCS would be beneficial regardless of its 

excitatory profile before stimulation is applied. This approach is likely sub-optimal because 

tDCS is state-dependent (Lisman, 2001; Monte-Silva et al., 2013; Pellegrini et al., 2021; Stagg 

et al., 2018), and has a non-linear or even non-monotonic impact on CSE (Esmaeilpour et al., 

2018). Applying the same tDCS protocol across a group of neurotypical participants may 

produce both excitation and inhibition due to differences in functional and anatomical brain 

state, and the effect may be exacerbated in stroke where pathological, time-dependent 

alterations in excitatory-inhibitory balance and anatomy are expected. Heterogeneity in 

human post-stroke excitability is evident in the work presented in this thesis, for example, 

as chronic stroke survivors’ CSE was comparable to neurotypical participants in Chapter 
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2,Chapter 1 and significantly lower than the neurotypical group in Chapter 3. Since small 

variations in brain state may alter tDCS effects, the use of post-stroke “phase” to predict the 

cortical excitability profile of an individual survivor does not allow for effective 

individualisation of tDCS. Use of temporally-defined eligibility criteria is a sub-optimal 

method to select patients who may benefit most from tDCS intervention. Development of 

robust biomarkers to track individual progression of brain activity after stroke is a 

therapeutic target of high importance (Boyd et al., 2017), and is required to facilitate a shift 

towards individualised intervention.  

5.2 TDCS optimisation.  

5.2.1 CFMs are agnostic to the physiological impact of stimulation. 

A reliable method to account for neurophysiological ‘state’ in tDCS application has not yet 

been developed for neurotypical individuals or stroke survivors. However, recent advances 

in current flow models (employed in Chapters 3 and 4) have progressed to provide gyri-

precise, validated (Datta et al., 2009; Huang et al., 2017b, 2019a; Opitz et al., 2016) 

estimates of E-field delivered to the brain during non-invasive stimulation. These models 

allow researchers to control the intensity, direction, and focality of applied fields 

(functionality is detailed in section 1.6.2), but do not extend to predicting the impact of tDCS 

on human behaviour. While it is now possible to use CFM to prescribe a chosen E-field 

intensity in a cortical ROI for example (Dmochowski et al., 2011, 2013; Huang, Thomas, et 

al., 2018; Saturnino, Siebner, et al., 2019), the optimal ‘dose’ of E-field required to 

meaningfully alter potentiation of a skill remains unknown and is likely subject to individual 

differences in cellular morphology, brain state at the time of stimulation, and cumulative 

effects summed across a functional network (Bikson et al., 2004; Chan et al., 1988; 

Esmaeilpour et al., 2018; Jefferys, 1981; Joucla & Yvert, 2009; Polanía et al., 2010; Reato et 

al., 2010, 2013). 

In the context of stroke, where atypical neuronal activity is hypothesised to promote 

functional recovery, the dilemma of defining an optimal ‘dose’ for an individual is 

exacerbated. In Chapter 2, I found a ~20% decrease in intra-cortical inhibition at 3 weeks 

post-stroke in survivors who experienced good clinical outcomes after relatively mild initial 

symptoms. While a hypothesis persists for the benefits of enhanced excitation and reduced 
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inhibition in stroke rehabilitation (Bernhardt et al., 2017; Carmichael, 2012; Clarkson et al., 

2010, 2011, 2015; Di Pino, Pellegrino, Capone, et al., 2014; Fujiwara, 2020; Glykys & Mody, 

2007; Hiu et al., 2016; Johnstone et al., 2018; Joy & Carmichael, 2020; Kim et al., 2014; 

Krakauer & Carmichael, 2017b; Wang et al., 2018), no precedence exists to suggest how 

much disinhibition is optimal. When considering the dose-response relationship of tDCS in 

human stroke, two primary targets for investigation emerge: what is the relationship 

between exogenous E-field and cell- and network-specific brain activity? Second, what is the 

optimal magnitude of change in brain activity required to modulate potentiation of a given 

skill?  

Without answers to these questions, tDCS will continue to be applied in a trial-and-error 

fashion. Effective methods may still be found, allowing for reverse-calculation to satisfy 

curiosity. A pattern has for example begun to emerge where PA-tDCS is associated with 

decreases in neurophysiological markers of cortical excitability (Laakso et al., 2019; Rawji et 

al., 2018) and behaviour (Hannah et al., 2019). The direction of this effect at first appears 

counter-intuitive, as PA-tDCS is associated with radial-inward (supposedly excitatory) 

current flow in M1hand (Evans et al., 2022; Farahani et al., 2021; Laakso et al., 2017; Lafon et 

al., 2017; Radman et al., 2009; Rahman et al., 2013). Evans and colleagues (Evans et al., 

2022) postulate however that the direction of PA-tDCS effects may not only reflect the 

impact of DC fields in M1hand, but interplay with functionally connected regions also affected 

by DC field. Activity in the primary sensory cortex, positioned in the posterior bank of the 

central sulcus, or the dorsal pre-motor cortex positioned in the anterior crown may explain 

the relatively consistent yet counter-intuitive effects of PA-tDCS (Evans et al., 2022; Siebner, 

2020). Further research is required to elucidate the mechanisms of DC field acting on varied 

nodes in a target network, to improve understanding of the tDCS dose-response relationship 

and in turn to support innovation in the field.  

5.2.2 MEPs contribute to tDCS outcome variability. 

TMS-tDCS studies are as much an interrogation of TMS variability as tDCS effects. There is a 

great need to assess the impact of tDCS not only on MEPs and individual neurons, but on 

more complex network activity which might modulate LTP, the primary therapeutic target in 

tDCS-augmented stroke rehabilitation. Greater understanding of the impact of tDCS on 
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relatively small populations of cells (Bikson et al., 2004; Lafon et al., 2017; Radman et al., 

2007, 2009b; Rahman et al., 2013; Reato et al., 2010, 2013) has not yet reliably translated to 

improved predictability of transcranial stimulation outcomes (see Chapter 3). While 

mechanistically-informed protocol development remains a primary goal of tDCS research, 

recent findings suggest that tDCS-induced changes in MEP amplitude do not transfer to 

other neurophysiological measures (Hannah et al., 2019; Horvath et al., 2015). In fact, a 

comparable increase in MEP amplitude has been recorded with opposite motor behaviours 

(Bagce et al., 2013), and a recent systematic review concluded that MEP amplitude may not 

align with changes in motor performance (Ryan et al., 2023). The relationship between 

MEPs, which probe the state of pre-synaptic intracortical processes and post-synaptic 

cortical excitability, and motor learning is not straightforward (Bagce et al., 2013; Gelli et al., 

2007; McDonnell & Ridding, 2006; Muellbacher et al., 2000; Todd et al., 2009).  

That is, if a measurable change in MEP amplitude was reliably reported after application of a 

given tDCS protocol (Horvath et al., 2015; Laakso et al., 2015), it may have no causal 

relevance to motor behaviour (Bestmann & Krakauer, 2015). Rather than providing clear 

evidence of target engagement by DC fields, MEPs may offer no more insight than a colour 

map of tDCS-induced E-field distribution throughout the brain, providing confirmation that 

current has reached M1hand without describing what this means for behavioural outcomes. 

The circular argument completes here when one considers measuring the impact of tDCS on 

potentiation of a complex task regardless of confirmation of target engagement, to satisfy 

the question: “does this work” before: “how does this work?”. 

5.2.3 Bridging the gap between physics and physiology. 

The advent of CFMs propelled tDCS use toward informed design and away from justification 

by precedence in the literature. Once again, CFM may here offer some resolution to the 

target engagement problem described above, as development of biophysically accurate 

models has potential to bridge the gap between the physics of current flow and the 

physiological effects of stimulation.  

A neural twin is a compressed computational rendition of a specific patient’s brain. It is 

comprised of multi-scale models which aim to link the impact of exogenous field on cellular 

activity, including polarisation of specific cellular compartments (Aberra et al., 2020; 
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Bonaiuto et al., 2016; Galan-Gadea et al., 2022; Wang et al., 2018) with neural mass models 

which describe the dynamics of populations of neurons, for example by modelling network 

amplification associated with the direct and indirect effects of tDCS across the brain 

(Clusella et al., 2022; Jansen & Rit, 1995). Recent work has extended to computationally 

reproduce electrical activity recorded during epileptic seizures, in a first step towards linking 

electrical field modelling to physiological outcomes (Sanchez-Todo et al., 2022). 

Biophysically-accurate models may shape the future of tDCS, as dual computational- and 

empirical-validation methods could allow for tighter control and detailed interrogation of 

the distribution and impact of transcranially-applied electrical fields. In the next section 

however, I discuss the unresolved problem of translating neurotypically-informed models to 

pathological populations.  

5.2.4 TDCS optimisation methods must be stroke-specific. 

Progress in CFM-informed tDCS is likely to first occur with models of the neurotypical 

human brain. In Chapter 4 I considered how one aspect of pathological anatomy, stroke 

lesions, may alter the distribution of exogenous electrical fields. Candidate methods to 

account for this effect include adjustment of electrode montage or stimulator output in 

stroke-specific tDCS protocol (Johnstone et al., in review; Minjoli et al., 2017; Piastra et al., 

2021), though accounting for the physical properties of DC fields does not address other 

stroke-induced features which might impact tDCS efficacy. For example, stroke is 

characterised by abnormalities in several neurotransmitter systems, and the notion that the 

effects of stimulation in patients can be predicted from the effects observed in healthy 

individuals receiving the same intervention is fraught with logical problems (Lee et al., 

2021). 

In addition to a relatively limited understanding of the neurophysiological response to DC 

fields in the pathological brain, stroke-induced network re-organisation will likely require 

revision of commonly accepted targets for stimulation in the context of stroke. Van der 

Cruijsen and colleagues (van der Cruijsen et al., 2022) recently distinguished between 

‘anatomical’ and ‘functional’ targets for motor tDCS application, using EEG recordings 

collected during a robotic wrist-manipulator task to identify the primary brain region 

involved in active motor engagement. In neurotypical participants, the authors reported 
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functional targets located ipsilaterally to anatomically-defined dominant M1hand. In contrast, 

functional motor targets were located ipsilesionally in 11 of 20 stroke survivors, and 

contralesionally in 9 survivors. Functional targets in the stroke survivor population included 

the premotor cortex, Wernicke’s area, intermediate frontal cortex, pars opercularis, primary 

somatosensory cortex, and the supramarginal gyrus, in addition to the primary motor 

cortex. Similarly to the data reported in Chapter 4, M1hand was entirely occluded in 2 stroke 

survivors. Findings such as these underscore the dilemma of translating tDCS protocols 

designed for a neurotypical population to stroke survivors. In addition to the previously-

discussed need to individualise tDCS depending on brain ‘state’, future work will require 

individualised identification of cortical targets in participants with network disruption. This 

may be of particular relevance for chronic stroke survivors, where functional gains could 

depend more on supporting alternative network activity than on recovery of function of the 

classic motor control network (Swayne et al., 2008).  

Functional tDCS targeting recommendations are not novel; Nouri and colleagues suggested 

that confirmation of the integrity of the biological target might be included in tDCS eligibility 

criteria a decade ago (Nouri & Cramer, 2011), and by extension recognised the difficulties of 

translating neurotypically-defined stimulation targets to a stroke survivor population. The 

impact of lesions on tDCS-induced E-field may therefore extend across the parameter space 

for stroke-specific protocol design: E-field intensity in an ROI can be altered by lesions 

(Datta et al., 2011; Galletta et al., 2015; Handiru et al., 2021; Johnstone et al., in review; 

Minjoli et al., 2017; Piastra et al., 2021; Chapter 4), E-field direction in an ROI may be 

modulated by lesion location and proximity (Johnstone et al., in review; Kashyap et al., 

2022), canalising of electric currents through conductive structures such as lesions may 

result in reduced, and less predictable focality of applied fields (Bikson & Dmochowski, 

2020; Gomez-Tames et al., 2020), and ROIs themselves may change if neurotypical targets 

such as M1hand are no longer involved in primary motor behaviour (van der Cruijsen et al., 

2022).  

The feasibility of accounting for the impact of stroke-induced changes in functional and 

anatomical state in tDCS study protocol is at present limited by the additional time, funding, 

and expertise required particularly in clinical settings. This is an example of the cognitive 

dissonance which may have curbed innovation in the tDCS field: the original appeal of tDCS 
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as a cheap, accessible tool for non-invasive neuromodulation contrasts some evidence 

suggesting that a more complex approach to implementation may be required for effective 

neuromodulation of the pathological brain. 

5.2.4.1 Bayesian statistics may allow for nuanced interpretation of tDCS study outcomes. 

The complexity of the multi-variate tDCS optimisation problem may be better approached 

by Bayesian statistics. For example, the frequentist statistical approach employed in Chapter 

3 suggested that the null hypothesis (that PA-tDCS does not significantly alter TMS-assessed 

CSE) could be accepted based on a p-value threshold (α = .05). In Bayesian statistics 

however, a more flexible and nuanced interpretation of null results is possible; probabilities 

are assigned to both the null and alternative hypotheses based on prior knowledge, and the 

collected data is used to update them (Dienes, 2014; Kruschke, 2018). For example, future 

work is recommended to directly address the following hypothesis: conventional tDCS has a 

stronger impact on MEP amplitude than an individualised protocol or sham-tDCS. A 

Bayesian approach could here be used to quantify the degree of evidence for and against 

the hypothesis, instead of using a p-value threshold to reject or accept the null hypothesis in 

a binary fashion. Importantly, the Bayesian approach provides information for the relative 

strength of evidence for competing hypotheses, allowing for more nuanced interpretation 

of the findings and perhaps clearer direction when designing follow-up studies, particularly 

when multiple plausible hypotheses exist in the multi-faceted tDCS parameter space. In 

practice, Bayesian Linear Mixed-Effects Models can be implemented in RStudio using the 

blme package (Chung et al., 2013), an extension of the lme4 package (Bates et al., 2020) 

used in this thesis.  

5.2.5 Individualised- and optimised-tDCS maintains promise as an adjunct tool for motor 

rehabilitation after stroke. 

While conventional tDCS has been used to great effect (Hashemirad et al., 2016; Horvath et 

al., 2015; Orrù et al., 2020; O’Shea et al., 2014; Wang et al., 2021), outcome variability 

remains an issue (Chew et al., 2015; Laakso et al., 2015; Polanía et al., 2018; Vergallito et al., 

2022; Wiethoff et al., 2014; Wörsching et al., 2016). Increasingly sophisticated functionality 

of CFMs (Dannhauer et al., 2012; Dmochowski et al., 2011, 2013; Huang, Thomas, et al., 

2018; Huang, Datta, et al., 2018; Huang et al., 2019; Lee et al., 2017; Saturnino, Puonti, et 
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al., 2019) and increased understanding of the mechanisms of DC fields impacting neuronal 

excitability (Berzhanskaya et al., 2013; Bikson et al., 2004; Farahani et al., 2021; Radman et 

al., 2007, 2009b; Rahman et al., 2013b) offer an opportunity to identify and minimise 

sources of tDCS outcome variability. 

In the context of this thesis, further investigation into the E-field properties associated with 

positive tDCS outcomes is recommended: how might positive changes in motor 

performance be reproduced reliably by non-invasively applied current? For example, a 

positive correlation has recently been reported between tDCS-induced E-field intensity and 

MRS-assessed GABA concentration (Nandi et al., 2022), and MEP amplitude change (Laakso 

et al., 2018), indicating that individual response to tDCS may depend on individual 

differences in applied fields. That such a relationship would exist seems highly plausible, but 

it remains to be seen whether CFMs can be employed to reduce variability sufficiently to 

warrant the additional effort and resources. 

In chapter 3, the PA-tDCS montage was selected because previous work demonstrated the 

impact of the direction of current flow across M1hand on MEP amplitude (Evans et al., 2022; 

Rawji et al., 2018) and on neuronal membrane polarisation (Berzhanskaya et al., 2013; 

Bikson et al., 2004; Chan et al., 1988; Farahani et al., 2021; Radman et al., 2009; Rahman et 

al., 2013). PA-tDCS was found not to significantly alter MEP amplitude in this thesis, 

contributing to the on-going exploration of the tDCS parameter space in a field where high 

outcome variability persists (Chew et al., 2015; Laakso et al., 2015; Polanía et al., 2018; 

Vergallito et al., 2022; Wiethoff et al., 2014; Wörsching et al., 2016). Further work is 

recommended to deduce which aspects of tDCS study protocols are associated with positive 

outcomes, to inform standardised, effective use of tDCS especially in clinical populations. 

For example, neuronal structures beyond the somatic compartment of pyramidal cells in 

grey matter M1hand may have a greater impact on neuromodulatory outcomes than the 

somatic doctrine suggests (Kabakov et al., 2012; Polanía et al., 2010; Purpura & McMurtry, 

1965; Reato et al., 2010), and protocol adjustments may be possible to maximise 

stimulation of non-somatic targets.  

To support innovation in future, I suggest revision of the language used to describe tDCS 

protocol, to encourage mechanistically informed study design and promote transparency in 
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protocol selection choices. For example, conventional “anodal tDCS” might instead be 

described as “M1A-SOC tDCS”, where subscript letters are used to indicate electrode polarity 

(A = anode; C = cathode). I suggest this is necessary because it acknowledges both inward 

and outward current flow relative to the folded cortical surface between electrodes (Evans 

et al., 2022; Galletta et al., 2015; Lafon et al., 2017; Rahman et al., 2013b; Salvador et al., 

2015). This is relevant because inward and outward current flow is associated with neuronal 

de- and hyper-polarisation of pyramidal neurons, respectively (Berzhanskaya et al., 2013; 

Bikson et al., 2004; Chan et al., 1988; Farahani et al., 2021; Radman et al., 2009; Rahman et 

al., 2013). 

Innovation may also be supported by pre-registration of research design, hypotheses, and 

methods before conducting a study. This process helps to increase the transparency, 

reproducibility, and credibility of the scientific research, and may reduce confirmatory bias 

by ensuring that the results are not influenced by researchers’ personal beliefs and 

preferences. Moreover, pre-registration allows reviewers to evaluate the research design 

(and its mechanistic justification) before the study is conducted, which can help to identify 

any potential flaws or limitations. Using data to inform future power calculations may also 

improve the reliability and reproducibility of tDCS findings, as the sample size needed to 

ensure adequate power for a planned study can be determined, preventing Type II errors 

and avoiding unnecessary recruitment of participants. In practice, the simr package (Green 

& MacLeod, 2016) can be used in R to simulate data and estimate power for models 

constructed using the lme4 package (Bates et al., 2020).  

5.3 Concluding remarks 

The presented work does not extend to suggest reliable methods through which variability 

might be reduced, for example in the context of tDCS-augmented motor rehabilitation 

outcomes in stroke. Given the high heterogeneity reported in excitatory-inhibitory balance 

at varying time points after stroke and in survivors with varying symptom severity profiles 

(Chapter 2) and the heterogeneity in stroke-induced anatomical changes and their impact 

on tDCS-induced E-field (Chapter 4), it is reasonable to suggest that  the future for tDCS may 

lie in individualisation to improve the reliability of outcomes where high variability persists, 

even when CFM-informed tDCS is applied in neurotypical and stroke populations (Chapter 
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3). In fact, careful selection of stroke survivors who might be suitable for tDCS intervention 

may be required, alongside careful design of individualised stimulation protocol. This may 

first be achieved via multi-modal study design, combining neuroimaging and CFM to 

ascertain why tDCS works under some conditions, in some participants, but not others. 

Research showing a relationship between E-field intensity in a cortical target and 

physiological outcomes (Antonenko et al., 2019; Laakso et al., 2019; Mosayebi-Samani et al., 

2021; Nandi et al., 2022) suggests that accounting for subject-specific E-field characteristics 

could go some way to control for the physiological effects of stimulation, and development 

of biophysically and morphologically realistic current flow models holds promise as part of 

the future of optimised tDCS application in health and disease (Aberra et al., 2020; Bonaiuto 

et al., 2016; Bonaiuto & Bestmann, 2015; Clusella et al., 2022; Galan-Gadea et al., 2022; 

Jansen & Rit, 1995; Lopez-Sola et al., 2022; Sanchez-Todo et al., 2022; Wang et al., 2018). As 

models improve, more complex tDCS application techniques are likely to become available 

which may compete with the conventional tDCS methods hailed as cheap, accessible, and 

ready-to-use. If computationally optimised tDCS is achieved, development of accessible 

modelling software is encouraged to ensure its effective use in clinical settings.  
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APPENDICES 

A. Does deviation of TMS coil from hotspot predict MEP amplitude? 

Rationale.  

Motor evoked potentials (MEPs) elicited in a peripheral muscle by transcranial magnetic 

stimulation (TMS) are routinely used to quantify corticospinal excitability (Bestmann & 

Krakauer, 2015). In the context of tDCS studies, TMS-MEPs are often used as a read-out of 

excitability alterations, for example by measurement of MEP size before and after tDCS is 

applied. However, the peak-to-peak amplitude of an MEP is inherently variable because it is 

the result of a combination of cortical and spinal projections of varied origin (Bestmann & 

Krakauer, 2015; Burke et al., 1995; Kukke et al., 2014). Some variability in trial-to-trial MEP 

amplitude is therefore expected in TMS studies, but variance which may instead be 

attributed to deviation in TMS coil position within a range expected when TMS is delivered 

by trained coil operators has not yet been assessed.  

‘Hotspotting’ is the name given to the process of identifying the optimal TMS coil position 

on a participant’s scalp to elicit an MEP, which is itself measured by electromyography 

(EMG) electrodes applied to the skin above the target muscle. When targeting M1 to elicit 

an MEP in the FDI muscle, as is the case for the following study, the hotspot is taken as the 

cortical target from which a TMS pulse elicits an MEP of a given amplitude in 5 of 10 trials 

(approximately position C3 to target left M1). Once found, the coil’s target position should 

remain constant throughout a session.  

Protocol for TMS application varies between studies. In order to maintain the TMS coil’s 

hotspot position throughout a session, researchers rely on techniques including manually 

tracing the coil’s position onto a participant’s scalp with a marker (MTMS), or using neuro-

navigation software, which provides online coil positioning feedback (NNTMS). Neuro-

navigation software has been shown to improve the accuracy of TMS targeting (Ayache et 

al., 2016; Bashir et al., 2011; Fitzgerald et al., 2009; Sack et al., 2008), though it does not 

eliminate error and is not used universally, due to added equipment costs and protocol 

complexity.  
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It is not yet known if deviation of the TMS coil from the hotspot position, during a typical 

study session where experienced coil operators endeavour to minimise coil movement, 

contributes to the variability seen in MEP measures. In tDCS studies, where the physiological 

effects of motor-cortical stimulation are quantified by MEP size, it is important to 

disentangle systematic sources of variability in stimulation outcome measures. The 

advantages of having a non-invasive marker of excitability may outweigh the cost of known 

intrinsic variability in the measure. However, there is a need to investigate if systematic 

variability associated with methodological error is present in TMS recordings, to guide 

future study design.  

In the following study, we used Brainsight® TMS Navigation (Brainbox Ltd.) to monitor TMS 

coil position throughout a session. Brainsight® tracks the position of the coil relative to the 

target via infrared sensors attached to both the TMS coil and the participant’s head (figure 

7). Online feedback of TMS coil position error is provided on-screen, whereby deviation of 

the TMS coil from the target position is given as four error types: Distance to target (in mm) 

describes the Euclidean distance between the coil’s centre and the target coil position; 

angular error (in degrees, °) represents the difference in tilt between the coil’s position and 

the target angle; twist error (in degrees, °) is the coil’s rotation within in the plane 

perpendicular to the target coil trajectory. The fourth coil error type: target error is a 

compound measure, which represents the shortest distance between the hotspot and the 

vector projecting into the head from the centre of the coil.  

An example of the on-line feedback used by coil operators is given in Figure A.1. Distance to 

target is visually represented as an empty red circle, angular error is shown as a filled red 

circle, and twist error is visually depicted as a small red line extending from the target circle, 

which can be compared to the large green crosshairs, of which the y-axis extending towards 

the top of the screen depicts the coil’s twist when in hotspot position.  
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Given the intrinsic variability already present in MEPs, it is important to account for and 

minimise variance which may instead be attributed to TMS coil error. The following study 

will investigate how much variance in MEP size can in fact be attributed to deviations in TMS 

coil position.  

Key Questions.  

Does deviation of TMS coil from hotspot position predict MEP amplitude?  

Methods.   

Participants. 5 healthy participants (age M = 29.80, SD = 9.98; 3 females; 4 right-handed, 1 

left-handed) attended 2 sessions of identical protocol. The participants were all members of 

the same research group and had experience conducting TMS research; they were familiar 

with their surroundings and study protocol. Of the 4 coil operators in this study, 3 were 

participants. The fourth coil operator did not participate because they did not meet the 

eligibility criteria for TMS.  

Protocol. Motor evoked potentials were recorded using electromyography (EMG) electrodes 

placed on the belly of the First dorsal interosseous (FDI) musle of the right hand, with a 

Figure A.1. Example schematic of visual feedback in Brainsight® TMS Navigation (Brainbox Ltd.). Coil 
position error is broken down into 3 types: Distance from target position is represented by an empty 
red circle, angular error is shown as a filled red circle, and twist error is depicted as a small red line 
extending from the target circle. 
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reference and ground electrodes placed on the proximal interphalangeal joint of index 

finger of the same hand, and on the head of the ulna bone on the wrist.  

The position of the TMS coil was monitored throughout the experiment using Brainsight®. 

Infrared sensors were attached to the TMS coil and to the participant’s head with an 

elasticated strap, and calibration to an MNI example head was carried out by a researcher 

sampling the position of the nasion, nose tip, nose base, and the Left and Right Pre-Auricular 

(LPA and RPA) points of each participant.   

Four different researchers operated the TMS coil in this study. In each session, 3 of the 

possible 4 coil operators applied TMS. This design was chosen to reflect a realistic range of 

deviation from hotspot position by researchers in the field. The order of coil operators was 

randomised and the first coil operator in each session carried out hotspotting protocol. 

During hotspotting, the operator identified the TMS coil position on the scalp and stimulator 

intensity which elicited 1.0 millivolt (mV) MEPs when 5 out of 10 TMS pulses were applied. 

This stimulator intensity was recorded as the participant’s resting motor threshold (rMT). 

Once found, the hotspot was sampled and saved using Brainsight®, and the coil position was 

also manually drawn on the participant’s scalp using a chinagraph pencil.  

Single-pulse TMS was delivered at rMT intensity using The Magstim® 200² (The Magstim Co. 

Ltd, Whitland, UK), with a figure-of-eight alpha coil (70 mm) positioned over the dominant 

primary motor cortex (M1) of each participant. The experiment consisted of 12 blocks of 37 

TMS pulses, delivered at a frequency of ~0.25 Hz with a 10% jitter. Three coil operators 

delivered 4 blocks of TMS pulses each. Two of these blocks were applied using Brainsight® 

on-line feedback of coil error (TMSNN), and two blocks were applied manually without on-

line feedback: the coil operator relied on pencil markings on the scalp to maintain coil 

position (TMSM). In the TMSM condition, the NeuroNavigation software continued recording 

coil position, but the monitor display was turned off. Between blocks, operators returned 

the coil to its holder and then re-applied it to the head, taking care to match the hotspot 

position as accurately as possible. The protocol is summarised in Figure A.2. 
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Results. 

Average MEP amplitude was comparable between TMS methods, despite higher coil errors 

recorded when TMS was applied manually (Table A.1).  

Table A.1. Descriptive statistics, session 1.  

Method MEP (mV)  Distance to Target (mm)  Angular Error (°) Twist Error (°) 

Manual 0.76 (0.73) 5.91 (3.82) 6.17 (3.56) 3.47 (2.78) 

Neuro-navigated 0.76 (0.88) 1.63 (1.22) 3.51 (2.27) 3.16 (2.56) 

Mean and standard deviation (SD, in brackets) of MEP amplitude and coil errors recorded when manual and 
neuro-navigated TMS were applied.  

 

R version 4.0.2 (https://www.R-project.org) was used to assess the relationship between the 

coil errors and MEP size. The twist error predictor included negative values representing 

leftward, as opposed to rightward, direction of twist. Since the extent of error and not its 

direction is of interest for this study, absolute values for twist error were used in analyses.  

Collinearity checks were carried out using the the olsrr R package (Hebbali, 2017) to 

calculate the variance inflation factor (VIF) for each coil error, which represents the 

proportion of variance in each predictor that is accounted for by others in the model. 

Distance to target and target error were shown to be highly correlated (Target Error: VIF = 

14.45; Distance to target: VIF = 14.84), and so target error was discarded from the model. 

VIF was re-calculated for the revised model which confirmed very low correlation between 

remaining predictors (VIF ≤ 1.43).  

This dataset is characterised by a low participant number and a high volume of samples 

resulting in high degrees of freedom. Preliminary analysis also showed clustering of 

datapoints for two of the three coil errors under the NNTMS condition (see Figure A.3). 

Clustering was addressed by discarding NNTMS blocks from the analysis. In order to reduce 

degrees of freedom further, data from sessions 1 and 2 were analysed as separate 

replication datasets.    

Figure A.2. protocol outline. In black: hotspotting was carried out by the first coil operator for each 
session. Purple, blue and yellow arrows represent TMS blocks carried out by the 3 different operators. 
Opaque arrows represent neuro-navigated TMS blocks (TMSNS) and translucent arrows represent 
manual TMS blocks, where pencil marking on the head were used to guide coil positioning (TMSM). 

https://www.r-project.org/
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A linear regression was first conducted using the stats package in R (R Core Team, 2017). 

Preliminary inspection of the model revealed violation of the multivariate normality 

assumption, demonstrated by Quantile-Quantile Plots using the qqnorm function (R Core 

Team, 2017). This was remedied by log transformation of the dependent variable, MEP size, 

and qqplots confirmed normal distribution of residuals for the revised model. 

To address the main question for this study: does deviation of TMS coil from hotspot predict 

MEP amplitude? Models of increasing complexity were built around a core linear regression 

model which included the three coil errors and their interaction predicting log transformed 

MEP size:  

 

log(𝑀𝐸𝑃 𝑠𝑖𝑧𝑒)~𝐶𝑜𝑖𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑐𝑜𝑖𝑙 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑒𝑟𝑟𝑜𝑟 ∗ 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑖𝑙 𝑡𝑤𝑖𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 

 

Model selection. We then calculated Akaike's Information Criterion (AIC) to distinguish 

between possible models describing the relationship between the 3 remaining coil errors 

and log-transformed MEP size in sessions 1 and 2. 

Potential models included simple linear regressions and linear mixed-effects models (LMMs) 

which were built using the lme4 package in R (Bates et al., 2015, p. 4). LMMs were 

considered because they are able to account for non-independence of observations within 

participants by incorporating this error into the total for the model. The three coil errors and 

Figure A.3. Density plots representing frequency of MEP datapoints collected during MTMS blocks 
(purple) and NNTMS  blocks (yellow) at varying TMS coil position errors. A: angular error, B: coil 
distance to target, C: twist error. 
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their interactions were built into the LMMs as fixed effects and participant as included as a 

random effect (therein creating the ‘mixed effects’ model).  

For both session 1 and 2, models which incorporated a random slope for participant failed 

to converge due to the limited model complexity supported by the small datasets and were 

therefore removed from model comparisons.  

Results of the AIC for each session are summarised in Table A.2. The mean (M), standard 

deviation (SD) and range for MEP amplitude and each level of coil error are summarised in 

Table A.3; values were comparable between sessions. The best-fitting model for both 

sessions was an LMM which included a random effect of participant impacting intercept, 

and fixed effects for the three coil errors: distance to target, angular error, twist error and 

their interactions: 

log  (𝑀𝐸𝑃 𝑠𝑖𝑧𝑒)~𝐶𝑜𝑖𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝐶𝑜𝑖𝑙 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑒𝑟𝑟𝑜𝑟 ∗ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑖𝑙 𝑡𝑤𝑖𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

Table A.2. Results of AIC model comparison for sessions 1 and 2. 

 

Table A.3. Descriptive statistics, sessions 1 and 2. Mean and standard deviation (SD, in brackets) of MEP 
amplitude and coil errors. 

  

  Model dAIC df 

Session 1    

 Distance to target*Angular error*Twist error + (1|participant) 0 10 
 Distance to target*Angular error*Twist error  10.9 9 

Session 2    

 Distance to target*Angular error*Twist error + (1|participant) 0 10 

  Distance to target*Angular error*Twist error  20.4 9 

dAIC = delta AIC, representing the difference in AIC score between the given and best-fitting models.  
df = degrees of freedom. 

  MEP (mV) Distance to Target (mm) Angular Error (°) Twist Error (°) 

Session 1   
Mean (SD) 0.73 (0.78) 6.66 (4.80) 6.43 (3.55) 4.07 (3.28) 

Range 0.01-5.13 0.28-19.88 0.13-16.97 0.01-16.13 

Session 2   
Mean (SD) 0.78 (0.68) 5.18 (2.32) 5.91 (3.56) 2.88 (2.03) 

Range 0.01-4.73 0.22-12.18 0.30-15.03 0.01-10.27 



234 

 

Session 1: results 

MEPs were inspected on a trial-to-trial basis. Outliers were identified using Grubbs’ Test 

(Grubbs, 1969). 58 trials were discarded in total due to outliers, the presence of a peak-to-

peak pre-contraction MEP size exceeding the root mean square for the 37-trial block, or due 

to missing coil error information.  

 The jtools R package (Long, 2021) was used to obtain p-values for each model and the 

significance threshold for null-hypothesis testing was set as p < 0.05. The proportion of 

variance explained by fixed factors in the model alone was R2
LMM(m) = .05, p = .12. The 

proportion of variance explained by both the fixed and random factors was R2
LMM(c) = .31, p 

=.12. Table A.4.a  provides results of the fixed effects of the model and random effects are 

summarised in Table A.4.b. Participant accounted for 27% of total variance.  

Table A.4.a, Results summary: impact of coil error on MEPs. Fixed effects, session 1. 

  β  CI (2.5%-97.5%) p 

 

 (Intercept) 0.05 -0.79 0.91 0.91 
 

Distance to target -0.12 -0.21 -0.03 0.01 ** 

Angular error -0.04 -0.11 0.03 0.24 
 

Absolute twist error -0.12 -0.22 -0.01 0.03 * 

Distance to target*Angular error 0.01 0.00 0.01 0.12 
 

Distance to target*Absolute twist error 0.01 0.00 0.02 0.07 
 

Angular error* Absolute twist error 0.00 -0.02 0.01 0.99 
 

Distance to target*Angular error* Absolute twist error 0.00 0.00 0.00 0.41 
 

β = beta; CI = confidence interval; Significance codes: ‘***’ <.001, '**’  0.01, '*’  0.05 

 
Table A.4.b. Results summary: impact of coil error on MEPs, random effects, session 1.   

Model statistic    
AIC 3426.76  
SD 0.72  
ICC 0.27  
groups 5  
observations 1053  

AIC: Akaike information criterion for quality of model fit.  
SD: standard deviation of the random intercept. 
ICC: Intraclass correlation describing resemblence of datapoints within  participant groups 
 



235 

 

Analysis of the fixed effects showed that distance to target (β = -.12, p = .01; M = 6.66, SD = 

4.80) and absolute twist error (β = -.12, p = .03; M = 4.07, SD = 3.28) significantly predicted 

MEP size when clustering of MEP values with participants was accounted for. To account for 

the log-transformed dependent variable, Beta coefficients were transformed back to raw 

units by exponentiating the coefficient, subtracting 1 and multiplying by 100 (Ford, 2018). 

This showed that when all other predictors were held constant, MEP size decreased by 

11.43% when distance to target increased by 1mm, and MEP size decreased by 11.12% 

when twist error increased by 1 degree (Figure A.4). All other main effects and interactions 

were found to be non-significant. 

Session 2: results 

The same model selection and data-cleaning steps were repeated for session 2 data, and 

the same linear mixed-effects model was recommended: 

log 𝑀𝐸𝑃 𝑠𝑖𝑧𝑒 ~𝐶𝑜𝑖𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑐𝑜𝑖𝑙 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑒𝑟𝑟𝑜𝑟 ∗ 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑖𝑙 𝑡𝑤𝑖𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)   

The proportion of variance explained by fixed factors in the model alone was R2
LMM(m) = .05, 

p = .14. The proportion of variance explained by both the fixed and random factors was 

R2
LMM(c) = .17, p =.14. Table A.5.a provides results of the fixed effects of the model and 

Figure A.4. TMS coil error predicts MEP amplitude, session 1. A: MEPs (mV) decrease by 11.43% when TMS 
coil distance to target increases by 1mm, when all other coil errors are held constant. B: MEPs (mV) 
decrease by 11.12% when TMS coil twist error increases by 1°, when all other coil errors are held constant. 
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random effects are summarised in Table A.5.b. Participant accounted for 13% of variance in 

session 2.  

Table A.5.a Results summary: impact of coil error on MEPs, Fixed effects, session 2. 

  β (%) CI (2.5-97.5%) p 
 

 (Intercept) 0.12 -0.49 0.74 0.70 
 

Distance to target -0.09 -0.19 0.01 0.08  

Angular error -0.10 -0.20 -0.01 0.03 * 

Absolute twist error -0.33 -0.52 -0.15 <.001 *** 

Distance to target*Angular error 0.02 0.00 0.03 0.03 * 

Distance to target*Absolute twist error 0.03 0 0.05 0.06  
Angular error* Absolute twist error 0.06 0.02 0.09 <.001 *** 

Distance to target*Angular error*Absolute twist error -0.01 -0.01 0 0.01 ** 

β = beta; CI = confidence interval; Significance codes: ‘***’ <.001, '**’  0.01, '*’  0.05 

 

Table A.5.b. Results summary: impact of coil error on MEPs, random effects, session 2.  

Model statistic    
AIC 2938.66  
SD 0.35  

ICC 0.13  
groups 5  

observations 1079  
AIC: Akaike information criterion for quality of model fit.  
SD: standard deviation of the random intercept. 
ICC: Intraclass correlation describing resemblence of datapoints within a participant groups 

 

Main effects  

Angular error  

The model showed a significant main effect of angular error (β = -.10, p = .03; M = 5.91, SD = 

3.56). When beta coefficients were transformed to account for log transformation of the 

dependent variable, the model showed that when angular error increased by 1mm MEP size 

decreased by -9.52% when all other predictors are held constant (~.07mV; Figure A.5.A). 

Twist error 

There was a highly significant main effect of twist error on MEP size (β = -.33, p <.001; M = 

2.89, SD = 2.03). Transformation of the coefficient showed that when twist error increased 

by 1 degree, MEP size decreased by 28.11%. 28.11% of mean MEP size is 0.21mV (Figure 

A.5.B). 
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Two-way interactions  

Distance to target*Angular error. A significant two-way interaction between the TMS coil’s 

distance to target and angular error was detected (β = .02, p = .03). Angular error 

significantly predicted MEP size, and this effect was modulated by the coil’s distance to 

target: when the distance to target was held constant at its mean value (M = 5.18mm, SD = 

2.32), MEP size increased (β = .04, p <.001) when angular error increased by 1 degree. 

Transformation of the beta coefficient showed that this equated to a 4% (~0.03mV) increase 

in MEP size when angular error increased by 1 degree when distance to target was average.  

This effect diminished as the coil’s distance to target increased (β = .04, p = .02) and was 

exacerbated as distance to target decreased (β = .05, p <.001). We used the interactions R 

package (Long, 2020) to visualise this interaction effect (Figure A.6). Conversely, we found 

that changes in the coil’s distance to target did not significantly predict MEP amplitude 

when modulated by angular error (Figure A.6). 

 

 

 

Figure A.5. TMS coil error predicts MEP amplitude, session 2. A: MEPs (mV) increased by 9.52% when TMS 
coil angular error increased by 1°, when all other coil errors are held constant. B: MEPs (mV) decreased by 
28.11% when TMS coil twist error increased by 1°, when all other coil errors are held constant. 
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Angular error*Twist error 

There was a significant two-way interaction between angular and twist error in session 2 (β 

= .02, p < .001). Both angular error and twist error significantly predicted MEP size, and each 

significantly modulated the effects of the other. MEP amplitude increased with greater 

angular error (β = .04, p < .001), and this effect was exaggerated when twist error increased 

above the mean (β = .09, p < .001), whereby MEP amplitude increased by ~9% for every 

degree of increase in angular error, when twist error was also high (Figure A.7).  

Twist error also predicted MEP amplitude, though the effect was only found to be significant 

when angular error was at or below its mean (M = 5.91, SD = 3.56; β = -.06, p<.001). 

Transformation of the coefficient shows this is equivalent to a 5.82% (0.05mV) decrease in 

MEP size when twist error increases by 1 degree and angular error is at or below average. 

(see Figure A.7).  

Figure A.6. interaction between angular error and coil distance to target, session 2. A: Angular error 
significantly predicts MEP amplitude, and this effect is modulated by the TMS coil’s distance to target. B: 
Distance to target does not significantly predict MEP size.  
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3-way interaction 

Distance to target*Angular error*Absolute twist error 

A significant 3-way interaction was found between the three coil error types (β = -0.01; -

0.64%; ~0.005Mv, p = 0.01). Distance to target was found to significantly negatively predict 

MEP size, only when angular error (M = 5.91°, SD = 3.56) and twist error (M = 2.88°, SD = 

2.03) were high (β = -.10, p<.001), this translates to a 9.52% (~.07mV) decrease in MEP size 

with increased distance to target.  

 

Twist error was found to negatively predict MEP amplitude when angular error and distance 

to target were at or below their average values. However, this effect was found to reverse 

when angular error increased above its mean, whereby twist error predicted an increase in 

MEP amplitude when angular error was high and distance to target was small (β = .09, p < 

.05). The greatest moderating effect of angular error on twist error was seen when distance 

to target was low. In this case, low angular error negatively predicted MEP amplitude, such 

that MEPs decreased by 18% (~0.14mV) when twist error increased by 1° (β = -.17, p < .001). 

Conversely, high angular error positively predicted MEP size when distance to target was 

low, showing that MEPs increased by 9% (.07mV) when twist error increased by 1° (β = .09, 

p = .05). 

 

Figure A.7. Interaction between angular error and twist error, session 2. A: Angular error positively 
predicts MEP amplitude, and this effect is exaggerated by when twist error is high. B: Twist error 
negatively predicts MEP amplitude when angular error is low. 
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Angular error positively predicted MEP size when distance to target was -1 standard 

deviation below the mean, and twist error was average (β =.05, p<.001) or +1 standard 

deviation above mean twist error (β =.12, p<.001). This effect was maintained at distance to 

target increased. For example, when distance to target was 1 standard deviation above the 

mean, and angular error positively predicted MEP amplitude when twist error was at (β 

=.04, p=.02) or above (β =.05, p<.001) average (Figure A.8). 

 

 

Discussion 

We found that TMS coil deviation is a source of variability in TMS studies. Small movements 

away from the hotspot position account for some of the variance in MEP amplitude, in 

addition to the intrinsic variability of the MEP measure (Bestmann & Krakauer, 2015). Tools 

available to reduce TMS coil movement during study sessions include neuro-navigation 

software (Ruohonen & Karhu, 2010), which itself can be optimised by the use of individual 

structural MRIs,  and/or the use of a mechanic coil holder (Ginhoux et al., 2013; Zorn et al., 

2012). Both have been shown to improve accuracy of TMS targeting (Rossi et al., 2021), 

though the extent to which coil error must be minimised to avoid confounding effects is yet 

Figure A.8.  Example of the 3-way interaction between coil errors in session 2. A:  Twist error 
significantly predicts MEP size. The direction of this effect is moderated by angular error; when angular 
error and distance to target are low, twist error negatively predicts MEP size, but when angular error is 
high the relationship between twist error and MEP size is positive. As distance to target increases, this 
effect diminishes, and twist error significantly negatively predicts MEP size. B: Angular error 
significantly positively predicts MEP size such that an increase in angular error is systematically 
associated with larger MEPs. When distance to target is low this effect still holds; negative correlations 
depicted in figure B are non-significant (p>.05). 
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to be quantified. Unfortunately, these methods rely on access to specialist equipment only 

available to well-funded projects and add a considerable amount of time and complexity to 

testing sessions. 

Main effects for each coil error type and their interactions were not consistent between 

sessions; we did not identify a systematic effect of coil deviation on MEP amplitude across 

datasets. This is to be expected, since coil deviation will differ within and between subjects 

between sessions. Given three parameters of potential coil deviation, one single coil 

parameter could not be singled out, though the results show that collectively, distance to 

target, twist error, and angular error produce deviance in the coil’s position which 

contributes to variance in MEP amplitude. Future studies may benefit from collection of 

neuro-navigation data to detect the presence of confounding coil error; if one can quantify 

variance explained by coil error on a case-by-case basis, it may be accounted for statistically 

post-hoc.  

We found that a 1 mm or 1 degree change in the coil’s position could predicted MEP 

amplitude in both sessions, though the spatial resolution of TMS is relatively large: 

approximately 0.5-1cm (Jp et al., 1992; Ravazzani et al., 1996; Thielscher & Kammer, 2002; 

Toschi et al., 2008). The effects of coil deviation on MEP amplitude are dependent on 

accurate identification of the hotspot position. In this study, the hotspot was identified by 

experienced coil operators, who employ heuristics such as angling the coil at approximately 

45° relative to the medial-sagittal plane of the participant’s head  (Brasil-Neto et al., 1992; 

Mills et al., 1992). While this estimation is appropriate in the absence of computational 

modelling of TMS application, recent work has demonstrated that the optimal angle for a 

TMS coil is subject-specific, and can vary within a 45° degree window of perpendicularity to 

the central sulcus (Balslev et al., 2007). 

Data from session 2 revealed a positive relationship between increased angular error and 

MEP size. Due to the manual hotspotting protocol used in this study, it is not possible to 

conclude if this effect, or any of those reported above, demonstrate inaccurate hotspot 

identification during study set-up, or more specific conclusions such as change in the coil’s 

angle throughout a session is associated with increased MEP size. Further optimised 

investigation is needed to resolve the issue.  
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The findings of this study indicate that some variance in tDCS study outcomes might be 

attributed to variance in the chosen measure of physiological excitability changes: TMS-

MEPs. Further investigation is needed to quantify if there is a threshold at which coil 

deviation affects MEP amplitude. In the meantime, and in the absence of affordable and 

accessible solutions to reduce TMS coil deviation, careful training of TMS coil operators 

should include emphasis on the importance of stable coil positioning not only concerning 

the coil’s distance to the target, but the angle and twist of the hand-held device. A need for 

economically accessible accessory equipment is clear, since existing neuro-navigation and 

coil holding accessories are known to reduce error. 

References linked to citations in this section can be found in the main References section 

of the thesis. 
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B. Example eligibility screening form 

ReCAPS STUDY – PARTICIPANT SCREENING QUESTIONNAIRE (FULL) 

Please note the following before completing the questionnaire. 

This questionnaire: 

• Contains questions about your medical history and other personal information that 

may be sensitive.  

• The questions are necessary to make sure you are suitable for the study. 

Demographic information 

Name: 

 

 

Date of Birth:  

 

Sex: Male ☐  Female ☐  Other ☐ 

Handedness (before stroke): Left ☐  Right ☐  Both ☐ 

Contact Information 

Telephone:

  

Address: 

 Email: 

  

GP details 

GP Telephone:

  Address: 

 

Email: 

  

Information about your stroke 
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Date of stroke: 

 First stroke? Yes ☐  No ☐ 

 Only stroke? Yes ☐  No ☐ 

Type of stroke: (If you do not know, please leave blank) 

Ischemic (clot/blockage) ☐ (thrombolised? Yes ☐  No ☐)   Haemorrhagic (bleed) 

☐ 

Where in the brain was your stroke? (Please provide as much detail as possible) 

 

Information about your motor weakness 

Which arm/hand was affected by the stroke?  Left ☐  Right ☐  Bilateral ☐ 

Is your arm/hand still weak?     Yes ☐  No ☐ 

Are you able to extend your fingers outwards with no assistance? (e.g. without using the 

unaffected hand or a surface, such as a table top, to help you) 

Not at all☐  Only very slightly☐  Somewhat☐  Yes, but with slight difficulty☐  As easily as with my 

other hand☐ 

Can you grasp objects with no assistance? (e.g. cup or pen) 

Yes ☐  No ☐ 

MRI Scan 

Have you previously had an MRI scan?  Yes ☐  No ☐ 

If Yes, have you had an MRI for a research study?  Yes ☐ (please name the study / researcher 

involved)  No ☐ 

 

 

Would you be willing to have an MRI scan for this study? Yes ☐ (please complete MRI safety 

form)     No ☐ 
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TMS/tDCS Screening Questionnaire  

Please answer the following questions Yes No 

1. Are you younger than 18 years? ☐ ☐ 

2. Are you pregnant or do you think you are? ☐ ☐ 

3. Have you ever had severe head trauma associated with loss of 
consciousness? 

☐ ☐ 

4. Have you ever had brain surgery or surgical procedures to your 
spinal cord? 

☐ ☐ 

5. Do you have metal in the brain, skull or elsewhere in your 
body? If so, please specify the type of metal and location: 

 

☐ ☐ 

6. Do you have a cardiac pacemaker or intracardiac lines? ☐ ☐ 

7. Do you have an implanted neurostimulator (e.g. DBS, VNS) ☐ ☐ 

8. Do you have a medication infusion device implant? ☐ ☐ 

9. Do you have a skin disease or skin allergy? If so please specify:  
 

☐ ☐ 

10. Do you have cochlear implants? ☐ ☐ 

11. Are you taking or did you take within the last two weeks any 
prescribed medications as part of treatment or research 
(excluding contraceptives)? If so, please specify:  

☐ ☐ 

12. Have you ever had a fainting spell or syncope? If so, please 
specify the occasion(s): 

 

☐ ☐ 

13. Do you or a close family member suffer from migraines?  ☐ ☐ 

14. Do you suffer from any neurological or psychiatric disease? If 
so, please specify: 

 

☐ ☐ 

15. Do you have epilepsy or have you ever had a convulsion or a 
seizure? 

☐ ☐ 

16. Do you have any hearing issues (e.g. tinnitus)? 

☐ 

 

☐ 
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 NEUROIMAGING: VOLUNTEER SAFETY QUESTIONNAIRE 

 
TO BE COMPLETED IN ALL MODALITIES OF NEUROIMAGING 

The handling, processing, storage and destruction of data will be conducted in accordance with the Data Protection  

Act (1998). 

 

I. The absolute contra-indications for MRI scanning are listed below. If you answer yes to 
any of the following we will not be able to scan you: 

 Yes No 

Do you have a cardiac pacemaker or artificial heart valves? ☐ ☐ 

Do you have cerebral aneurysm clips? ☐ ☐ 

Have you undergone permanent eyelining as a cosmetic procedure? ☐ ☐ 

Have you any cochlear implants (ear implants)? ☐ ☐ 

 

II. Before entering the MRI scan room please inform us if any of the following apply: 

 Yes No Unsure 

Are you claustrophobic? ☐ ☐ ☐ 

Have you had any surgery? ☐ ☐ ☐ 

Are any artificial devices implanted into your body (e.g. joint 

replacements, coils, implants or clips)? 

☐ ☐ ☐ 

Have you ever had a job in the metal-working industry or have 

you ever been exposed to metal dust or splinters? 

☐ ☐ ☐ 

Have you ever had an injury to your eyes involving metal at 

high speed? 

☐ ☐ ☐ 

Do you wear a hearing aid or have dentures, bridges, braces, 

dental or breast implants? 

☐ ☐ ☐ 

Do you wear a false limb, caliper, brace, or have any artificial 

devices attached to your body (e. g clips or rings)? 

☐ ☐ ☐ 

Have you had any neurosurgery including the insertion of clips 

or plates? 

☐ ☐ ☐ 
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Do you have any shrapnel from a war injury or explosion? ☐ ☐ ☐ 

Do you have an infusion pump or Hickman line? ☐ ☐ ☐ 

Are you diabetic, epileptic or ever had a seizure? ☐ ☐ ☐ 

Are you wearing Nicotine patches? ☐ ☐ ☐ 

Do you have one or more tattoos? ☐ ☐ ☐ 

Have you removed all loose metal objects, wallets, watches, 

bra and jewellery from your person? 

☐ ☐ ☐ 

 

For female volunteers only: 

 Yes No 

Could you be pregnant? ☐ ☐ 

Are you wearing a diaphragm / Interuterine Device (Coil) or any other 

contraceptive device? 

☐ ☐ 

Are you wearing any hormone replacement contraceptive patches? ☐ ☐ 

 

If you have answered Yes/Unsure to any of the previous questions, please can you provide further 

information that you feel may be helpful: 

(e.g. if you answered yes to having surgery, please indicate what surgery you had) 
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C. Example participant information sheet 

 ReCAPS STUDY -  INFORMATION SHEET (PATIENT)  

  

Scientific Title of Research: Re-opening the critical period for plasticity after stroke with 
dose controlled non-invasive brain stimulation  

Department:  Department of Clinical and Movement Neurosciences  

Name and Contact Details of the Researchers:    

Dr Carys Evans (_______________) Tel: _______________ 

Jenny Lee (_______________) Tel: _______________ 

  

Name and Contact Details of the Chief and Principal Investigators:  

Prof Nick Ward (_______________). Tel: _______________ 

Prof Sven Bestmann (_______________). Tel: _______________ 

  

YOU WILL BE GIVEN A COPY OF THIS INFORMATION SHEET  

INTRODUCTION  

We would like to invite you to take part in our research study. This study is part of a charity 
funded research project and will also be conducted in part fulfilment of a PhD. Before you 
decide whether to take part, it is important that you understand why the research is being 
carried out and what it will involve.  

Please read and consider this information carefully. You may wish to discuss it with others. If 
there is anything you do not understand, or if you would like more information, please ask 
us. Take time to decide whether you would like to take part.  

There are two parts to this information sheet:  

Section 1  

1.1. Study Details: describes the ReCAPS study and what will happen if you take part.  

1.2. Study Techniques: describes what techniques we will be using.  

Section 2  

2.1. Study Impact: describes benefits and risks of taking part, and your rights to withdraw.  

2.2. Data Protection: outlines how the data is used and issues of confidentiality.  

You should read both sections before you make a decision.  

Thank you.  
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Section 1  

1.1. Study Details  

What is the purpose of the ReCAPS study?  

This study is exploring how improvements in your arm and hand after stroke are associated 
with changes in brain activity. We also want to see whether we can modify these changes 
using brain stimulation.  

We know that the responsiveness, or “excitability”, of the brain changes after a stroke. 
These changes are believed to be related to how the brain reorganises itself after a stroke, 
which is an important part of re-learning and rehabilitation. In the first weeks and months 
after a stroke the brain is very excitable, but over time this state returns back to normal 
levels. We want to map how excitability changes over time and explore whether brain 
stimulation is an effective tool to make the brain more excitable. If you decide to participate 
in this study it will not have an impact on your recovery, but we hope that it will increase 
our understanding of the post-stroke brain so that new, effective therapies can be 
developed in the future.  

Why have I been invited?  

We are approaching you because you have had a stroke a) within the last 8 weeks or b) at 
least 6 months ago.  

Do I have to take part?  

No. If you decide to take part you will be given this information sheet to keep and be asked 
to sign a consent form, which you will also be given to keep. Your participation in this study 
is entirely voluntary. Even if you decide to take part you are still free to withdraw at any 
time and without giving a reason. A decision to withdraw at any time, or a decision not to 
take part, will not affect the standard of care you receive.  

Will I be paid for my participation?  

Participation in this study is voluntary. However, if you are traveling from within the M25 we 
will be able to reimburse you for study related travel expenses.  

    

What will the study involve?  

The following flow diagram is designed to give you a quick summary of what to expect if you 
decide to take part. The rest of this document includes more detailed information about 
each aspect of the study.  
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How many study sessions will I be asked to attend? (Ticked below)  

Structural MRI Experiment, 1 session: 1 hour.        12 Queen Square  

Combined tDCS-TMS Experiment, 1 session: 1.5 hours.    33 Queen Square  

Combined tDCS-TMS Experiment, 2 sessions: 2 x 1.5 hours.    33 Queen Square  

If you decide to take part, you will be asked to attend one or two study sessions at the 
Department of Clinical and Movement Neurosciences, located at 33 Queen Square, 4th 
Floor, London WC1N 3BG. Each session will last up to 2.5 hours and will be scheduled 
approximately two weeks apart.  

Before you take part in the study, we may request that you attend an additional session if 
you have not already had an MRI scan of satisfactory quality for the study. If this is the case, 
you maybe asked to attend three sessions in total. If you are requested to have an MRI scan, 
this will take place at the Wellcome Trust Centre for Human Neuroimaging, located at 12 
Queen Square, London WC1N 3AR and will take approximately 1 hour.  

What will happen during each study session?  

At the start of each session we will carry out simple physical tests, including some arm and 
hand movements, in order to measure how well recovered you are. We will then measure 
the electrical activity transmitted between your brain and the finger muscles of your 
affected hand. This will be measured by applying transcranial magnetic stimulation (TMS) to 
the head. The electrical activity generated by TMS will be recorded using small electrodes 
attached to your fingers.  
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During each session we will also apply transcranial direct current stimulation (tDCS) to the 
head to assess whether tDCS can change the electrical activity in the brain. Any changes in 
activity are temporary and you will not be able to detect them. Two electrodes will be 
applied to the head and a weak current will run between them for up to 20 minutes.  

If you are asked to attend two study sessions, they will be scheduled about 2 weeks apart. 
The procedure will be the same in each session. In one session you may receive “real” tDCS 
(the current will run for up to 20 minutes) and in the other session you may receive “sham” 
tDCS (the current will run for only 30 seconds). The stimulation you receive (real or sham) in 
each session will be chosen at random. This means that some participants will receive real 
tDCS first, then sham tDCS in the second session and vice versa. The order in which 
participants receive real or sham stimulation will be decided at random. You will not be told 
which stimulation you are receiving until the end of the study, when you can be informed if 
you wish.  

The different techniques are explained in more detail below in section 1.2.  

At the end of the study, if you are interested in being contacted about future research we 
can add you to the departmental participant database. With your consent, we will include 
your contact details, demographic data, and some scores from the tasks included in this 
study on the database.  

1.2. Study Techniques  

Assessment of Upper Limb impairment  

During this study, we will assess the movement of your affected arm and hand. This will 
involve asking you to perform a range of movements, such as extending your arm or 
rotating your shoulder, to the best of your ability. It will take approximately 15 minutes and 
will be performed by a trained researcher or physiotherapist. A researcher may record a 
video of this assessment, so that the score given can be reviewed by a second trained 
researcher or physiotherapist after the day of testing.    

Transcranial Magnetic Stimulation (TMS)  

TMS will be used to measure the electrical activity 
transmitted between your brain and the finger 
muscles of your affected hand. You will be seated in 
a comfortable chair with your arm resting on a 
pillow in front of you. A TMS coil will be held 
against your head by the experimenter and brief 
pulses of stimulation will be applied (see picture). 
Small electrodes attached to your fingers with 
sticky tape will measure the effects of the 
stimulation.  

We will aassess your brain excitability by stimulating the region of the brain that controls 
your fingers. Each magnetic pulse will feel like a tap on your head. This study includes both 
single-pulse TMS, and repetitive TMS (rTMS). rTMS involves pulses being delivered very 
quickly, while singlepulse TMS includes a distinct pause between each TMS pulse.  
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At high stimulation intensities there may be some incidental stimulation of the muscles in 
your face, which you may experience as a jaw twitch or eye blink. Similarly, the magnetic 
pulse in the coil makes a loud clicking noise and this becomes louder at high intensities. 
Earplugs are available if you would like to minimise any discomfort from noise. If you find 
these unpleasant, you should ask the experimenter to stop the experiment.  

Transcranial direct current stimulation (tDCS)  

We will be assessing whether tDCS can be used to influence brain excitability. During tDCS 
you will have two small electrodes applied to the head using conductive paste. This will be 
connected to a small box, which can produce small amounts of electricity. During ‘real’ 
stimulation, you will receive very small currents via the electrodes for up to 20 minutes. 
During ‘sham’ stimulation, the tDCS stimulator will be turned off after 30 seconds, once the 
target intensity has been reached. Participants can expect to feel a slight tingling sensation 
during the first few seconds of stimulation.   

MRI Scan  

(only required if you do not already have an MRI image of satisfactory quality)  

Magnetic resonance imaging (MRI) provides 
pictures of the brain (as well as other parts of the 
body). It is a painless and safe technique. During 
the scan you will be asked to lie on a comfortable 
padded table inside a large tube that comprises 
the imaging magnet (see picture). You will be 
asked to remain still during this time. The 
scanner is loud while it is working and you will be 
given protective earplugs. You may also ask for 
an eye mask. Due to the powerful magnetic field 
involved, you must not bring any metal into the  

scanner room. If you have any non-removable metal in or on your body, then you cannot 
have an MRI scan. If you have any questions about what is allowed, we can help you to 
determine whether you are eligible. Some of the exclusion criteria include the presence of: 
cardiac pacemaker, aneurysm clip, cochlear implants, tattoos, pregnancy, shrapnel, 
history of metal fragments in eyes, or neurostimulators. Once you are inside the MRI 
scanner, we will ask you to stay inside for up to 30 minutes. If you suffer from 
claustrophobia, then being inside the tube of the magnet may be uncomfortable for you and 
it may not be possible for you to participate. Please discuss this with us if you are concerned 
about it. In the event of an unexpected finding on your scan, a radiologist will review it and 
contact your GP directly if further tests are advised.  

Section 2  

2.1. Study Impact  

What happens to the results of the research project?  

Once the study is complete, a summary report of the main findings will be prepared. You 
will be provided a copy of this report by email or post. The results will also be presented 
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within a PhD thesis and submitted to peer-reviewed journals. You will be able to receive a 
copy of any published journal articles if you wish. You will not be identified personally in any 
publication.  

What are the possible benefits of taking part?  

This study will not directly benefit your recovery, but we hope that the information obtained 
will improve our understanding of the relationship between brain activity and recovery, and 
guide future developments of treatment after a stroke.  

What are the possible disadvantages and risks of taking part?  

TMS uses very short magnetic fields. Therefore, they can be harmful to people who have a 
pacemaker, an implanted medication pump, a metal plate in the skull or metal objects 
inside the eye or skull (for example after brain surgery or an accident). Please inform the 
investigators if you think this might apply to you.  

With TMS, it is possible to cause seizures (fits) in susceptible individuals using high intensity 
pulses. With the lower strength pulses that we use, following agreed safety guidelines, 
seizures have not occurred. In the unlikely event of a seizure, you will be given appropriate 
medical treatment. The DVLA have indicated that this would be regarded as a provoked 
seizure and would not affect the standard period of 1 month following a stroke during which 
driving is not permitted. The only other known side effect of TMS is headache, which goes 
away with simple painkillers. No long-term side effects of TMS have been described. Please 
tell the investigators if you have ever had a seizure, fit or epilepsy.  

tDCS uses very low intensity currents to stimulate the brain. During the procedure 
participants will feel a slight tingling sensation at the site of stimulation. When used for 
prolonged periods of time there is a slight risk of burns. However, in the current protocol, 
low intensities for short periods of times will be used. Therefore, the risks are very minimal.  

MRI uses a large imaging magnet to generate pictures of the brain. It is a painless and safe 
technique. At present, MRI carries no known risks of injury or discomfort in participants who 
answer NO to a set of specified criteria.  

Will the findings affect me personally?  

The tests used in this study are currently research tools only and of uncertain significance. 
They would therefore not affect you as an individual participant. We do hope the 
information obtained will guide future developments of treatment after a stroke.  

In the event of an unexpected finding, a researcher will contact a radiologist who will review 
your scan and decide if further imaging is advisable. If further tests are required, the 
radiologist will contact yourGP to talk to them directly, who will in turn contact you to 
arrange an appointment. Please note that the scans used for this study are not diagnostic 
scans, and there is not a guarantee that they will pick up all pathology.  

What happens if I no longer want to carry on with the research?  

You can withdraw at any time without giving a reason and without it affecting any benefits 
that you are entitled to. If you decide to withdraw, no further data will be collected and you 



254 

 

will not be required to take part in any further research procedures. Any identifiable data 
already collected with consent will be retained and used in the study. To safeguard your 
rights, we will use the minimum personally-identifiable information possible.  

What happens if something goes wrong?  

If you have a concern about any aspect of this study, you should ask to speak to the 
researchers who will do their best to answer your questions. Contact details are provided at 
the top of this information sheet.  

If you remain unhappy and wish to complain formally, please contact the chief investigator, 
Prof Nick Ward (_______________ / _______________). All communication will be dealt in 
strict confidence.  

If you wish to talk to someone independent of the study, please feel free to contact the 
Patient Advice and Liaison Service by email (PALS@uclh.nhs.uk) or post:  

PALS  
Ground Floor Atrium  
University College Hospital  
235 Euston Road  
London NW1 2BU  

PALS  
Box 25  
National Hospital for Neurology and 
Neurosurgery  
Queen Square  
London WC1N 3BG  

2.2. Data Protection  

Who will have access to my data?  

University College London (UCL) is the sponsor for this study based in the United Kingdom. 
We will be using information from you and your medical records in order to undertake this 
study and will act as the data controller for this study. This means that we are responsible 
for looking after your information and using it properly. UCL will keep identifiable 
information about you until project completion.  

Your rights to access, change or move your information are limited, as we need to manage 
your information in specific ways in order for the research to be reliable and accurate. If you 
withdraw from the study, we will keep the information about you that we have already 
obtained. To safeguard your rights, we will use the minimum personally-identifiable 
information possible.  

You can find out more about how we use your information by contacting the researchers on 
the project or by contacting UCL’s Data Protections Office at data-protection@ucl.ac.uk.  

 

What happens to the information collected in this study?  

UCL will collect information about you for this research study from you and/or your medical 
records if you are still based at a clinic/rehabilitation unit. This information will include your 
name, NHS number, contact details and health information, which is regarded as a special 
category of information. We will use this information to confirm your eligibility to take part 
in the study and to contact you about the study. UCL will also make sure that relevant 
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information about the study is recorded for your care, and to oversee the quality of the 
study.  

Individuals from UCL and regulatory organisations may look at your medical and research 
records to check the accuracy of the research study. The only people in UCL who will have 
access to information that identifies you will be people who need to contact you to about 
taking part in the study or audit the data collection process. The people who analyse the 
information will not be able to identify you and will not be able to find out your name, NHS 
number or contact details.  

UCL will keep identifiable information about you from this study until project completion. 
Data will be kept in a secured accommodation and on secured computers in the Department 
of Clinical and Movement Neurosciences at UCL. The data will be used only for the purpose 
of informing the research questions in this study, and only accessible by the authenticated 
researchers on the project. After the research study has finished, all personal identifiable 
data will be destroyed. Data directly related to the study questions will be retained securely 
at UCL for 10 years in accordance with UCL Records retention schedule, and may be 
accessed by the research teams for comparison with future data.  

Will my taking part in the study be kept confidential?  

All information about your participation in this study will be kept strictly confidential, 
anonymised, and will be collected and stored in accordance with the General Data 
Protection Regulation, 2018. You will be assigned a number so that your data will be made 
anonymous at the point of data collection and it will not be possible to identify you from 
your results.  

With your permission, your GP will be informed that you are taking part in this research 
study. The researchers may also contact your GP to request health-related information, such 
as details of medical procedures, scans or medications. This will only be required if the 
information cannot be obtained from you directly, and is necessary to confirm your 
eligibility to participate. All correspondence between the researcher team and your GP will 
be strictly confidential.   

If your condition changes during the course of the study, such that you are unable to 
continue with the study, you will be withdrawn from the study. However, information 
collected up until that point may still be used.  

Limits to confidentiality  

Please note that assurances on confidentiality will be strictly adhered to unless evidence of 
wrongdoing or potential harm is uncovered. In such cases the University may be obliged to 
contact relevant statutory bodies/agencies.  

Please note that confidentiality will be maintained as far as it is possible, unless during our 
conversation I hear anything which makes me worried that someone might be in danger of 
harm, I might have to inform relevant agencies of this.  

Confidentiality will be respected subject to legal constraints and professional guidelines. 
Confidentiality will be respected unless there are compelling and legitimate reasons for this 
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to be breached. If this were the case we would inform you of any decisions that might limit 
your confidentiality.  

Data Protection Privacy Notice  

All information that is collected during the course of the research will be stored in 
accordance with the General Data Protection legislation – GDPR.  

Notice:  

The data controller for this project will be UCL. The UCL Data Protection Office provides 
oversight of UCL activities involving the processing of personal data, and can be contacted at 
data-protection@ucl.ac.uk. UCL’s Data Protection Officer is Lee Shailer and he can also be 
contacted at data-protection@ucl.ac.uk.  

Your personal data will be processed for the purposes outlined in this notice. The legal basis 
used to process your personal data will be performance of a task in the public interest. You 
can provide your consent for the use of your personal data in this project by completing the 
consent form that has been provided to you.  

Your personal data will be processed and will be retained until the end of the study. After 
this date, all data will be anonymised and may be accessed by the research teams for 
comparison with future data. We will endeavour to minimise the processing of personal 
data wherever possible.  

If you are concerned about how your personal data is being processed, please contact UCL 
in the first instance at data-protection@ucl.ac.uk. If you remain unsatisfied, you may wish to 
contact the Information Commissioner’s Office (ICO). Contact details, and details of data 
subject rights, are available on the ICO website at: https://ico.org.uk/for-
organisations/dataprotection-reform/overview-of-the-gdpr/individuals-rights/   

Who is organising and funding the research?  

This observational study is being organised by the researchers and chief investigators 
aforementioned in this form and is sponsored by UCL. The costs of the research are being 
paid for by Brain Research, UK. All research studies are reviewed by an independent group 
of people, called a research ethics committee to protect your safety, rights, well-being and 
dignity.  

Who has reviewed the research?  

This research project has been reviewed and approved by the XXX Research Ethics 
Committee. It has also been reviewed by the Health Research Authority.  

Thank you for reading this information sheet and for considering taking part 
in this research study.  

  

https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/
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https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/
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https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/
https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/
https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/
https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/
https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr/individuals-rights/
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D. Example “what to expect” information sheet 

ReCAPS Study - What to Expect 

This document provides a short summary of what to expect if you agree to take part in the 
ReCAPS study. More detail is provided in the Information Sheet. Please do not hesitate to 
ask us questions if something is unclear, or if you would like us to explain something further.  

  

MRI Scan (Location: 12 Queen Square, UCL / Duration: 1 hour)  

Not everyone will need to have an MRI scan.  

If you are unsure whether you need one, please confirm with one of the researchers.  

 If we ask you to have a scan, it will involve lying in an MRI scanner for up to 30 minutes. 
MRI scans are painless, but some people find them claustrophobic. Please let us know if this 
might affect you. You will also be given headphones to wear because the scanner can be 
loud.  

  

The main study (Location: 33 Queen Square, UCL)  

If you choose to take part in the full experiment, you will be asked to attend 1-2 sessions 
that will take place approximately 2 weeks apart.  

Each session will be identical apart from the application of real or sham tDCS stimulation. 
For example:  

Session 1: “real” stimulation   

Session 2: “sham” stimulation     

Transport can be requested for all sessions  

Sessions (Duration: 1.5 hours each)  

We will ask you to complete a series of movements while sitting on a chair. This is to assess 
the level of impairment in the arm and hand affected by the stroke. Duration: 15 minutes.   

A researcher will then measure signals travelling between your brain and your hand using 
TMS (transcranial magnetic stimulation). These signals will be measured several times 
throughout the session.  

During the session, we will also apply a stimulation technique called tDCS (transcranial 
direct current stimulation). This causes a warm, tingling sensation under the electrodes, 
which will be placed on your head. Duration: 20 minutes.  

You will have the opportunity to take breaks throughout the session, and you can stop the 
session at any time.  

ReCAPS Study – What to Expect, IRAS: 248229, Version 1.0 (30/11/2018).   

These sessions will happen in a random order and you will not 
be able to tell which session is real and which one is sham. 
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E. Example consent form 

ReCAPS STUDY - CONSENT FORM (patients) 

Scientific Title of 

Research: 

Re-opening the critical period for plasticity after stroke with 

dose-controlled non-invasive brain stimulation. 

Department Department of Clinical and Movement Neurosciences. 

 

Please complete this form after you have read the Information Sheet and/or listened to 

an explanation about the research. 

You will be given a copy of this Consent Form to keep and refer to at any time.  

Please tick: 

1. I confirm that I have read the information sheet dated 20/12/18 
(Version 3.0) for the above study. I have had the opportunity to 
consider the information, ask questions and have had these 
answered satisfactorily. 

 

☐ 

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time without giving any reason, without my legal 
rights being affected. 
 

☐ 

3. I understand that relevant sections of my medical notes and data 
collected during the study, may be looked at by individuals from 
UCL, from regulatory authorities or from the NHS Trust, where it is 
relevant to my taking part in this research. I give permission for 
these individuals to have access to my records. 
 

☐ 

4. I consent to members of the central research team for this study to 
have access to my radiological datasets and any relevant clinical 
information needed to confirm I meet the inclusion criteria to take 
part in the study.  
 

☐ 

5. I understand that the information collected about me will be used 
to support other research in the future, and may be shared 
anonymously with other researchers. 
 

☐ 

6. I agree to my General Practitioner being informed of my 
participation in the study, and exchanging any relevant clinical 
information needed to confirm I meet the inclusion criteria to take 
part in the study. 
 

☐ 

7. I agree to take part in the above study. 
 ☐ 
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Participant Database (optional) 

If you would like your contact details to be retained so that you can be contacted in the 

future by UCL researchers who would like to invite you to participate in follow up studies to 

this project, or in future studies of a similar nature, please tick the appropriate box below. 

 

Contact for further information: 

Researchers:   

Dr Carys Evans Email: _______________. Tel: _______________ 

Ms. Jenny Lee Email: _______________ Tel: _______________ 

Chief and Principal Investigators:  

Prof Nick Ward Email: _______________. Tel: _______________ 

Prof Sven Bestmann Email: _______________. Tel: _______________ 

 

-1 copy to be kept by Participant  

-1 copy to be kept as part of the study documentation 

 

Yes, I would be happy to be contacted in this way 
☐ 

 

No, I would not like to be 

 

☐ 

 
Name of participant 

 
Date 

 
 

Signature 

 

 
Researcher 

 

 
Date 

 

Signature 
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