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Abstract

We present a continuous-time portfolio selection problem faced by an agent with S-shaped

preference who maximizes the utilities derived from the portfolio’s periodic performance over

an infinite horizon. The periodic reward structure creates subtle incentive distortion. In

some cases, local risk aversion is induced which discourages the agent from risk taking in

the extreme bad states of the world. In some other cases, eventual ruin of the portfolio is

inevitable and the agent underinvests in the good states of the world to manipulate the basis

of subsequent performance evaluations. We outline several important elements of incentive

design to contain the long-term portfolio risk.
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1 Introduction

Since the seminal work of Merton (1969, 1971), two popular problem formulations have emerged

to understand dynamic portfolio decision made by individuals: an infinite horizon intertemporal

consumption problem where one jointly chooses investment and consumption strategy to max-

imize the discounted expected utility generated by a perpetual consumption stream; or a finite
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horizon problem where one finds an investment strategy to maximize the expected utility of

the terminal portfolio value on a given maturity date. Despite the prevalence of such objective

functions in the literature, they are not necessarily realistic to all types of economic agents.

Consider a scenario where an agent is making investment decision on behalf of a principal.

Examples include an asset manager overseeing a client’s portfolio, a trader working for a hedge

fund, or an investment officer deciding how a firm’s capital should be allocated across various

risky projects. There may not exist a realistic way for those agents to directly “consume” the

underlying portfolio because it is not their personal wealth. Their economic incentives are also

not tied to the portfolio value in the distant future, but rather its periodic performance driven

by many corporate practices in real life. For instance, a firm typically announces its financial

results quarterly with extensive media coverage. Staff appraisal happens regularly within many

companies to review how well an employee has been doing in a given period, and the outcome

plays a huge role for the decision of one’s salary increment and career progression. Interim

periodic performance can be economically crucial and it is important to take this into the account

when developing a portfolio selection model.

Behavioral economics literature also supports the idea that investors do not necessarily eval-

uate an investment prospect solely based on their final wealth at a single time point. Prospect

Theory of Kahneman and Tversky (1979) and Tversky and Kahneman (1992), arguably the

most prominent alternative to the expected utility paradigm, suggests that individuals care

about changes in their wealth level relative to some reference point. Kahneman and Sugden

(2005) advocate the relevance of “experienced utility” in policy evaluation tasks where the entire

portfolio path matters (Loosely speaking, experienced utility can be viewed as an integral of

instantaneous satisfaction over the entire period of the experience. See Read (2007) and Kahne-

man and Sugden (2005) for a detailed discussion). Periodic evaluations at an individual investor

level can arise as a manifestation of the above behavioral notions in conjunction with mental ac-

counting (Thaler (1999) and Benartzi and Thaler (1995)). For example, filing taxes can prompt

an investor to review the portfolio annual performance and hence one year can be a natural cycle

of his mental account. The mental evaluation then results in a burst of experienced utility linked

to the portfolio paper gain-and-loss during each tax season.

The first contribution of this paper is that we consider a portfolio selection problem which

objective function has not received much attention to date. In the model, trading decision can be
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adjusted continuously while the portfolio performance is evaluated on a sequence of deterministic

dates. The agent derives utility on each evaluation date based on the change in the portfolio

value in the prevailing period relative to a performance benchmark parameter. The goal of the

agent is to maximize the expected total discounted utilities over an infinite horizon. The utilities

can be interpreted in many different ways. They can include monetary remunerations (salary

and bonus), intangible payoffs (gain/loss of professional reputation and client base) and mental

benefits (pleasure/disappointment from public recognition). The utility function of our choice is

S-shaped. On the one hand, this specification can capture the robust behavioral biases reported

by Kahneman and Tversky (1979) under which an individual tends to be risk averse over positive

outcomes but risk seeking over negative outcomes. On the other hand, local convexity encoded

within an S-shaped utility function can also reflect distortion brought by convex incentive schemes

such as option-based compensation and limited-liability protection.

In terms of economic contributions, consideration of periodic reward structure has meaningful

consequences and it unravels new phenomena that have not been documented in the literature.

In a standard finite horizon portfolio optimization problem with S-shaped utility function, the

optimal portfolio delivers a random payoff of unbounded upside in the good states of the world

but suffers from a total loss in the bad states of the world. This is not necessarily true under

a periodic reward structure. If the trading opportunity is favorable, the agent is not willing to

take extreme downside risk anymore because otherwise a bad realization of the economy in a

given period will then wipe out the entire portfolio, leaving the agent nothing to be earned in

the subsequent periods. In this case, it is optimal for the agent to deleverage under a distressed

market to ensure the portfolio is strictly solvent at all time, and we will show that the optimal

proportion of wealth invested in the risky asset indeed converges to the Merton ratio in both

very good and very bad states of the world.

However, the trading opportunity may be less valuable under some setups (e.g. there is a

demanding performance target or the agent is highly loss averse). The agent may thus put more

weight on the very short-term reward at the end of the current period over the potential benefits

in the future. He is happy with taking extreme downside risk again which will result in eventual

portfolio ruin with certainty in the long run. Moreover, the agent may also intentionally limit

the portfolio growth by a gain-exit strategy to avoid setting up a high basis for performance

evaluation in the future periods since he anticipates it is difficult to consistently outperform the
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benchmark under a tougher trading environment.

The theoretical predictions of our model carry important policy implications in relationship

to incentive design, agency problems and portfolio risk. From a delegated portfolio management

perspective, excessive risk taking and in particular the possibility of inevitable ruin in the long run

under some cases reveal a devastating misalignment of the agent’s short-term, periodic incentives

against the principal’s long-term investment goal. Our results shed lights on how this agency

problem can be circumvented via proper design of incentive or “nudging”. Possible measures

include adoption of cliquet-style option in place of traditional long-dated vanilla option as an

incentive scheme, imposing a more lenient performance target and moderation of the agent’s

effective loss aversion level via reducing the emphasis on penalizing an underperforming agent

for example.

On the technical front, our dynamic optimization problem is interesting because it cannot

be directly tackled by the Hamilton-Jacobi-Bellman (HJB) equation nor martingale duality ap-

proach. The elements of path-dependency, periodicity as well as non-concave utility function

lead to a non-standard HJB equation with periodic boundary conditions depending on the so-

lution itself, and the optimal investment strategy cannot be easily pinned down by a simple

first-order condition due to the non-concave utility function. Meanwhile, the martingale duality

method is not suitable to handle an infinite horizon, path-dependent problem. In view of the

above difficulties, our technical contribution is to provide a complete solution to the problem

under the specialization to a Black-Scholes economy with the Tversky and Kahneman (1992)

piecewise power utility function. The main idea is to consider a family of finite horizon problems

where each of them can be individually solved by martingale duality. Then the required solution

can be identified by the fixed-point of a “Bellman-style” operator associated with this family of

optimization problems.

We close the introduction by discussing how our work is related to the literature of behavioral

portfolio selection, managerial risk taking incentives and more generally non-concave utility

maximization. There are a few papers incorporating one or several features of the Prospect

Theory framework of Tversky and Kahneman (1992) within a continuous-time portfolio selection

model. Berkelaar et al. (2004) study a finite horizon problem with a piecewise power S-shaped

utility function. Their work is extended in multiple directions such as inclusion of probability

weighting, incorporation of risk and trading constraints, applications to insurance and pension
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management, etc (see, for example, Jin and Zhou (2008), Dong and Zheng (2020, 2019), Chen

et al. (2017) and the references therein). All of these models consider a finite horizon objective

function and omit interim rewards. In parallel, there is also a vast literature on discrete-time

portfolio selection with behavioral preferences. See Benartzi and Thaler (1995), Levy and Levy

(2004), He and Zhou (2011), De Giorgi and Legg (2012) and Shi et al. (2015), among others.

Some of these models are static in nature and are able to include other important behavioral

elements like probability weighting. Since the main interest of our paper is to investigate the

impact of periodic evaluations, a continuous-time model is a more convenient framework for our

purpose which captures a key feature that evaluations can occur much less frequently than the

trading activities.

Our work is conceptually close to the realization utility models studied by Barberis and

Xiong (2012), Ingersoll and Jin (2013) and He and Yang (2019). In this type of models, an

agent repeatedly purchases and sells a series of statistically identical assets and a utility burst

(generated by an S-shaped function over gain/loss) is realized upon completion of each round-trip

transaction. Although both their models and ours feature episodicity, there are several important

differences. First, the periodic structure of our model is exogenously given (e.g. it depends on

the given corporate or mental accounting cycle) while the trading episodes are created via the

agent’s choice in a realization utility model. Second, utilities in our model can be brought by

paper gains-and-losses in form of experienced utility, whereas those in a realization utility model

are originating from realized gains-and-losses. Finally, models based on realization utility focus

on the purchase/liquidation decision of indivisible asset while our model considers portfolio effect.

Away from behavioral considerations, our work is also broadly related to dynamic models

of managerial risk taking under convex incentives such as Carpenter (2000), Kouwenberg and

Ziemba (2007), Basak et al. (2007) and Buraschi et al. (2014). We do not explicitly model the

contractual payoff to the agent but rather take the utility function as exogenously given. But,

as we will show in Section 2, one special case of our setup reflects option-based compensation.

Theoretical literature in this area mostly focuses on how managers’ risk seeking incentives are

influenced by the compensation structure itself evaluated at a single terminal time. Papers that

emphasize repeated payouts/evaluations include Panageas and Westerfield (2009) and Hodder

and Jackwerth (2007). In a model with continuously updated high-water mark, Panageas and

Westerfield (2009) highlight that excessive risk taking due to convex incentive schemes relies on
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the setting of a finite number of performance fee payment dates. Our work offers an alterna-

tive perspective on how the periodic payout structure may drastically change one’s risk taking

behaviors relative to a finite horizon benchmark. Part of our findings also echo Hodder and

Jackwerth (2007), who give numerical evidence that extreme risk taking can be dampened when

performance is evaluated annually instead of at a single terminal time. However, our analysis

shows that the risk seeking moderation effect depends subtly on the parameters of the reward

structure, and this yields important implications to managerial incentive design in terms of how

a suitably chosen performance target together with periodic payouts can avoid excessive risk

taking and underinvestment.

Martingale duality is the primary solution method to study a finite horizon non-concave

utility maximization problem. The idea can date back to Pliska (1986), Karatzas et al. (1987)

and Cox and Huang (1989). The problem is analyzed under a very general setup for concave

utility function by Kramkov and Schachermayer (1999), and is extended to non-concave utility

functions by Kouwenberg and Ziemba (2007), Reichlin (2013) and Bichuch and Sturm (2014), etc.

Nonetheless, there has not been unified result yet on solving a non-concave utility maximization

problem with infinite horizon and path-dependency.

The rest of the paper is organized as follows. Section 2 introduces our modeling framework.

We heuristically outline in Section 3 how the periodic portfolio selection problem shall be solved.

The main results of this paper are collected and discussed in Section 4. Several empirical and

policy implications of our results are further explored in Section 5. Section 6 concludes. Technical

materials, proofs and extensions are deferred to the internet appendix (e-companion).

2 Modeling setup

Let (Ω,F , {Ft}t≥0,P) be a standard filtered probability space supporting a one-dimensional

Brownian motion B = (Bt)t≥0. Consider a Black-Scholes economy with one risky asset and one

riskfree money market instrument. The price process of the risky asset S = (St)t≥0 is a geometric

Brownian motion such that
dSt

St
= µdt+ σdBt

with µ and σ > 0 being the drift and volatility of the asset respectively. The money market

instrument has a constant interest rate r and its price process D = (Dt)t≥0 is given by Dt = ert.
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Write θ := µ−r
σ as the Sharpe ratio of the asset. The Black-Scholes economy is complete with a

unique pricing kernel Z = (Zt)t≥0 given by

Zt = exp

(
−θBt −

(
r +

θ2

2

)
t

)
. (1)

We assume θ ̸= 0 throughout this paper to ensure Z is a non-degenerate stochastic process. The

corner case of θ = 0 can still be analyzed thoroughly, but this would require us to interpret

our main results somewhat differently. For a discussion of the special features of a non-concave

utility maximization problem when θ = 0, see Section 3.2 of Bichuch and Sturm (2014).

A trading strategy ϕ = (ϕ
(S)
t , ϕ

(D)
t )t≥0 is a predictable process representing the holding of

ϕ
(S)
t units of the risky asset and ϕ

(D)
t units of the money market instrument at time t. ϕ and the

resulting portfolio value process X = (Xt)t≥0 is said to be self-financing if

Xt := ϕ
(S)
t St + ϕ

(D)
t Dt = X0 +

∫ t

0
ϕ(S)
u dSu +

∫ t

0
ϕ(D)
u dDu

for all t ≥ 0. Define the set of admissible portfolio processes as

At(x) :=

{
X : Xs = x+

∫ s

t
ϕ(S)
u dSu +

∫ s

t
ϕ(D)
u dDu ≥ 0 ∀s ≥ t for predictable and self-financing ϕ

}
for x > 0 and t ≥ 0, which refers to the collection of all non-negative self-financing portfolios

that can be generated by a starting capital of x at time t.

The portfolio value is observed periodically on a sequence of deterministic dates {Ti}i=0,1,2,...

with T0 := 0. For simplicity, we assume Ti = iτ for i ∈ {0, 1, 2...} with some τ > 0 such that

the portfolio is evaluated every τ unit of time (e.g. monthly or annually). On the ith evaluation

date, the portfolio performance in the period (Ti−1, Ti] is computed as

XTi − γXTi−1 (2)

for some parameter γ ≥ 0 which we will refer to as the “performance target”. If γ = 1, the

expression in (2) is simply the profit-and-loss of the portfolio in the ith period. The parameter

γ captures the required gross return per period as the agent’s performance target. If (2) is

positive (negative), then the agent is overperforming (underperforming) relative to the target

benchmark in the ith period. We assume the agent derives utility from the portfolio performance

in each accounting period, but not from the portfolio value at any arbitrary terminal time

point. As discussed in the introduction, this criterion is reasonable especially in the context of

delegated portfolio management. The agent is not concerned about the long-term prospect of
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the underlying portfolio, but instead their incentives are tied to short-term economic rewards

based on how good or bad they have been doing over different accounting periods.

We adopt the Tversky and Kahneman (1992) Prospect Theory piecewise power utility func-

tion

U(x) :=


xα, x ≥ 0;

−k|x|α, x < 0.

(3)

Here α ∈ (0, 1) is the coefficient of risk aversion/seeking over the domain of gains/losses re-

spectively, and k ≥ 0 is an asymmetry parameter. Tversky and Kahneman (1992) report the

estimates of α = 0.88 and k = 2.25. The function U is concave on the positive domain and

convex on the negative domain, and thus the agent is risk averse over gains but risk seeking over

losses. If k > 1, then U is asymmetric near the origin in that |U(−1)| > |U(1)|. The phenomenon

is known as loss aversion reflecting the larger psychological impact from a loss in comparison to

a gain of the same size.

The goal of the agent with an initial capital x > 0 is to maximize the total discounted

expected utilities derived from his trading performance over an infinite number of periods, i.e.

to find the optimal portfolio value process which solves

V (x) := sup
X∈A0(x)

E

[ ∞∑
i=1

e−βTiU(XTi − γXTi−1)

]
, (4)

where β > 0 is the agent’s subjective discount factor. In Appendix E, we also consider an

extension of the model featuring a random terminal horizon and utility from terminal wealth.

The formulation in (4) is similar to that of Shi et al. (2015), who study a finite horizon

discrete-time portfolio selection problem with periodic utilities criterion. They consider a more

general adaptive reference point structure but focus on a piecewise linear utility function, and

they implicitly assume that the performance evaluation frequency is the same as the agent’s

trading frequency.

It is important to highlight that (4) is a criterion of “broad framing” or “portfolio-level fram-

ing” where utilities are derived from the performance of the aggregate portfolio (see Section 3.5

of Guo and He (2021), Section 8 of He and Zhou (2014) and Section IIIG of Barberis and Huang

(2008b)). In contrast, behavioral economics literature also commonly considers models of “nar-

row framing” where utilities come from the gains-and-losses of an individual risky asset (Barberis

et al. (2006), Barberis and Huang (2008a), De Giorgi and Legg (2012), among others). A model
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featuring broad framing is perhaps better suited to describe the trading behaviors of a more

sophisticated agent who exhibits weaker narrow framing (Liu et al. (2010)). Moreover, adoption

of a broad framing perspective also enables a meaningful and non-behavioral interpretation of

(4) from a delegated portfolio management viewpoint.

As an example, consider a risk-neutral agent whose periodic remuneration is a combination

of a base salary b > 0 plus a bonus depending on the positive part of the portfolio’s after-tax

profit in the period. The total salary he receives in period i is

Wi := b+ Λ(a(XTi −XTi−1)
+),

where a > 0 is a profit-sharing parameter and Λ(·) is a concave function reflecting the convex

tax schedule. We assume that Wi is not directly paid out from the underlying portfolio such

that Xt will not be reduced by an amount of Wi at t = Ti. This assumption makes sense for

example when the agent is one of the many traders in a large investment firm with his own

portfolio, and salaries are paid out centrally from a separate pool of corporate resources. Due

to the affine structure of the payoff, optimizing the net present value of the salaries can be

described by problem (4) upon the approximation of Λ(x) ∝ xα and letting k = 0 and γ = 1

(It is a common practice in the tax literature to use a concave power function to model after-

tax income. See, for example, Wen and Gordon (2014) and Benabou (2000)). In general, the

function U can be understood as the composite of the agent’s individual utility function, the

payout function of the incentive scheme and other various market frictions. We opt to omit to

the precise modeling details and simply approximate U by a piecewise power utility function.

This specification nonetheless is still flexible enough to qualitatively capture some important

features of an incentive scheme. In particular, the case of k = 0 can describe limited-liability

protection or option-based compensation, and the flexibility in choosing γ in (4) allows us to

consider convex incentive schemes of different aggressiveness levels.

An interesting special case is γ = 0 such that the objective function in (4) reflects the

expected experienced utility criterion where the agent derives utilities from his wealth level at

different time points. In the context of delegated portfolio management, γ = 0 corresponds to

a management fee scheme where the manager periodically receives a fraction of the asset under

management (AUM). As we will see in Corollary 1, specialization of γ = 0 greatly simplifies the

mathematical analysis since the convex regime of U is no longer relevant.

We briefly summarize how the various model interpretations above can translate to the choices
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of the parameters. From a behavioral portfolio selection viewpoint, we expect k to be a value

in excess of one to capture loss aversion and γ should be somewhat close to one since the

starting wealth (of a period) is a natural choice of the reference point. In a delegated portfolio

management application, k can be much smaller than one or even zero if the utilities entirely

represent monetary outcomes and the manager has limited-liability protection, while γ can vary

a lot from zero (a management fee system linked to AUM) to a high value (an aggressive incentive

scheme with high performance benchmark). Under either model interpretation, α is the most

difficult to be estimated. It depends heavily on the agent’s diminishing sensitivity to gains/losses

and the experimental literature reports a wide range of values from 0.22 to 1 (Booij et al. (2010)).

To close this section, we present below the standing assumption of this paper which is a

sufficient condition to ensure problem (4) is well-posed.

Assumption 1. The model parameters are such that

β > h := rα+
αθ2

2(1− α)
. (5)

An estimate of the value function is given in the proposition below.

Proposition 1. If (5) holds, then

e−βτU(erτ − γ)

1− e−(β−rα)τ
xα ≤ V (x) ≤ e−(β−h)τ

1− e−(β−h)τ
xα, (6)

where V (x) is the value function of problem (4). In particular, problem (4) is well-posed such

that V (x) is finite for any x ≥ 0.

Note that (5) is a sufficient (but not necessary in general) condition of well-posedness, which

does not depend on k or γ. Nonetheless, this sufficient condition is not restrictive, and it is

precisely the condition under which an infinite horizon Merton consumption-investment problem

with utility function u(c) = cα is well-posed (p.20, Rogers (2013)). Hence the assumption

required in our setup is exactly the same as the one required in the standard literature of portfolio

selection: we only need the discount factor to be sufficiently strong relative to the preference

parameter and the quality of the risky asset measured in terms of the Sharpe ratio. Indeed,

the upper bound of V (x) in (6) is precisely the value function of the problem when γ = 0. See

Corollary 1.
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3 The solution approach: a preliminary discussion

When solving a dynamic optimization problem, there are two main methods in general: the

primal HJB equation formulation and the martingale duality approach. Our general problem (4)

has a few specific features which make neither of these two methods directly applicable.

The HJB approach involves solving for the optimal trading strategy and value function di-

rectly via the dynamic programming principle. If we write πt :=
ϕ
(s)
t St

Xt
which represents the

proportion of capital invested in the risky asset, then the dynamics of X = Xπ can be rewritten

as

dXt = πtXt
dSt

St
+ (1− πt)Xt

dDt

Dt
= [r + (µ− r)πt]Xtdt+ σπtXtdBt. (7)

The time-t version of the value function in (4) can be defined as

V (t, x, ℓ) := sup
π:Xπ≥0

E

 ∞∑
i=⌊t/τ⌋+1

e−β(Ti−t)U(XTi − γLTi)
∣∣∣Xt = x, Lt = ℓ

 ,

where the process L defined via L0 := 0 and Lt := XTi−1 on Ti−1 < t ≤ Ti for each i represents

the lagged portfolio value as the basis of performance valuation. The HJB equation associated

with this problem is then
supπ

{
∂V
∂t + rx∂V

∂x + (µ− r)πx∂V
∂x + σ2

2 x2π2 ∂2V
∂x2 − βV

}
= 0, ∀t /∈ {Ti : i ∈ N};

V (Ti−, x, ℓ) = V (Ti, x, x) + U(x− γℓ), i ∈ N.
(8)

It is hard to make analytical progress with equation (8) because of a few reasons. First, the

state space of the problem involves time, current wealth and the starting wealth of the current

period, which is more complicated than that of a standard infinite horizon portfolio selection

problem. Second, the utility function U is S-shaped and hence the value function is unlikely

to be a concave function. Then it is not straightforward to characterize the optimal strategy

π without a simple first-order condition. Third, the periodic boundary condition at t = Ti−

not only depends on the utility function U but also the value function itself at t = Ti which

has to be solved as a part of the problem. The lack of an explicit boundary condition makes

the problem hard to be solved even numerically. Finally, to show that the solution to the HJB

equation is coinciding with the value function of the optimization problem, one typically needs to

rigorously establish a verification theorem and/or invoke the machineries of viscosity solutions.
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These often require careful study of the regularities of the candidate value function which can

be mathematically difficult.

The second key approach is the martingale duality. For a finite horizon problem in form of

supX∈A0(x) E[G(XT )] in a complete market, the insight is that one can directly take the random

variable representing the terminal portfolio value XT as a decision variable and convert the

problem into a static optimization problem

sup
X∈F+

T

E[G(X)] subject to E[ZTX] ≤ X0 = x, (9)

where F+
T is the set of non-negative FT -measurable random variables, and ZT is the time-T value

of the pricing kernel. With the optimal terminal random variable X∗, the whole optimal portfolio

value process can be recovered via Xt = Z−1
t E[ZTX

∗|Ft], and, if required, the associated trading

strategies can be characterized by the martingale representation theorem. The main advantage

of this duality approach is that it can work well with non-concave payoff function G. Moreover,

one does not have to rely on dynamic programming principle which in turn bypasses the need

of establishing a verification theorem. Indeed, most finite horizon problems (with non-concave

G) in the literature are solved by such an argument. However, our general problem (4) is an

infinite horizon problem which depends on infinite number of random variables (XTi)i∈N and the

objective function exhibits path-dependency. Thus it is not immediately obvious how martingale

duality can be applied here.

Our solution strategy relies on a novel hybrid approach which combines the primal dynamic

programming principle and the martingale duality. Starting from (4), using the dynamic pro-

gramming principle and the recursive structure of the problem, we heuristically expect

V (x) = sup
X∈A0(x)

E
[
e−βT1U(XT1 − γx) + e−βT1V (XT1)

]
. (10)

The right hand side of (10) has the form of a finite horizon portfolio optimization problem with

maturity T1 = τ . However, the difficulty is that the “payoff function” of this problem involves

V which is the solution that we want to determine in the first place. To proceed, (10) can be

thought as a fixed-point iteration problem. Define a “Bellman-style” operator G via

Gf(x) = sup
X∈A0(x)

E
[
e−βτU(Xτ − γx) + e−βτf(Xτ )

]
. (11)

If we can show that the map G is a contraction (on some suitably chosen complete metric space),
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then the Banach contraction theorem can be invoked such that V can be characterized by the

unique fixed-point of G.

Using the scaling property of the utility function U(y) = yαU(1) (on y > 0), we conjecture

that our value function should have the form V (x) = A∗xα for all x > 0 and some constant A∗.

If we substitute this form of V in (10) and divide both side by xα, we obtain

A∗ = sup
X∈A0(x)

E
[
e−βT1U

(
XT1

x
− γ

)
+ e−βT1A∗

(
XT1

x

)α]
= sup

Y ∈A0(1)
E
[
e−βτU (Yτ − γ) + e−βτA∗Y α

τ

]
. (12)

Hence the characterization of V now simplifies to the characterization of the unknown constant

A∗, and it is given by the fixed-point of a simpler operator defined on a one-dimensional Euclidean

space. Define a function Ga : R+ → R via

Ga(y) := U(y − γ) + ayα, (13)

where a ∈ R is a parameter of Ga. Consider a family of optimization problems

F (a) := sup
Y ∈F+

τ

E [Ga(Y )] subject to E(ZτY ) ≤ 1, (14)

where Z is defined in (1) and F+
τ represents the set of non-negative Fτ -measurable random

variables. Using the idea of martingale duality, (12) can now be restated as

A∗ = e−βτF (A∗). (15)

The key solution idea is to show that the map a → e−βτF (a) is a contraction such that there

indeed exists a unique A∗ solving equation (15). Then one can formally prove that A∗xα coincides

with the value function via a verification theorem. See Appendix A and B for the full theoretical

details.

4 The solution to the periodic portfolio selection problem

4.1 The main theoretical results

Theorem 1. The value function of problem (4) is given by V (x) = A∗xα, where A∗ is the unique

fixed-point of the map a → e−βτF (a). The optimal portfolio value process X∗ at time Ti is given

by

X∗
Ti

= X∗
Ti−1

y∗A∗

(
λ∗ ZTi

ZTi−1

)
, i = 1, 2, ......, (16)
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with X∗
T0

= x. F (·) is defined in (14) and the function y∗A∗(·) is defined in Proposition 3 of

Appendix A. The support of the random variable y∗A∗

(
λ∗ ZTi

ZTi−1

)
is

supp

(
y∗A∗

(
λ∗ ZTi

ZTi−1

))
=



(0, c1γ) ∪ (c2γ,∞), A∗ > 0 (Case 1);

{0} ∪ (c3γ,∞), −1 ≤ A∗ ≤ 0 (Case 2a);

{0} ∪ (c3γ,
γ

1−|A∗|−1/(1−α) ), −(k
1

1−α + 1)1−α < A∗ < −1 (Case 2b);

{0}, A∗ ≤ −(k
1

1−α + 1)1−α (Case 3),

for some constants 0 < c1 < 1 < c2 and c3 > 1 depending on A∗. In Case 1, 2a and 2b, λ∗ > 0

is the unique solution to the equation E[Zτy
∗
A∗(λ∗Zτ )] = 1.

V (x) = A∗xα is the value function at time zero which has a very simple form (concave

increasing if A∗ ≥ 0 or convex decreasing if A∗ ≤ 0). Note that Theorem 1 does not directly tell us

anything about the form of the value function at an arbitrary time point, which we expect will be

more complicated with completely different analytical behaviors (see the discussion in Section 3).

Nonetheless, the characterization of the optimal portfolio under our current martingale duality

approach does not require us to solve for the value function at all time points. At the first sight,

it is perhaps surprising to see that the value function can be decreasing. The rationale is that

the argument x of the time-zero value function defined in (4) reflects both the starting wealth

as well as the benchmark to be used in the first evaluation period. They have opposite effects

on the agent’s welfare and hence the net impact on V (x) is non-trivial. The roles of the sign of

A∗ will be further discussed in Section 4.2.

Theorem 1 suggests the agent will trade in a way such that the gross portfolio return in each

period,
X∗

Tn+1

X∗
Tn

, is given by a random variable y∗A∗

(
λ∗ZTn+1

ZTn

)
. The target returns from different

periods are independent and identically distributed since Z is a stationary process. The infinite

horizon problem (relative to the one-period version such as Berkelaar et al. (2004)) has a rich

and complicated solution structure. The optimal portfolio and the associated trading strategies

crucially depend on the value of A∗, which can be interpreted as the certainty equivalent of the

trading opportunity per unit capital under management.

Corollary 1. Suppose γ = 0. Then A∗ = e−(β−h)τ

1−e−(β−h)τ > 0. The optimal X∗ = (X∗
t )t≥0 is given
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by the Merton portfolio

X∗
t = x exp

[
− α

1− α

(
r +

θ2

2(1− α)

)
t

]
Z

− 1
1−α

t = x exp

[(
r + (µ− r)π∗ − σ2(π∗)2

2

)
t+ σπ∗Bt

]
,

(17)

where π∗ := µ−r
(1−α)σ2 is the Merton ratio. X∗ can be constructed by investing a constant fraction

π∗ of the current wealth in the risky asset.

As discussed in Section 2, γ = 0 corresponds to an expected experienced utility criterion or

an AUM-based compensation structure, where the periodic utilities/rewards received are simply

linked to the portfolio values (rather than the profits-and-losses) on the evaluation dates. The

optimal investment level in the risk asset is precisely given by the constant Merton ratio π∗.

The loss aversion parameter k does not enter the picture since all outcomes are framed as gains

under γ = 0. Notice that the optimal portfolio (17) is always strictly solvent, i.e. X∗
t > 0 for all

t almost surely.

The form of the optimal portfolio is more complicated away from the special case of γ = 0.

Theorem 1 shows that in general there are four possible cases with the optimal solution as A∗

varies. We do not know the value of A∗ ex-ante even though it can be conveniently computed by

iterative method. Then a natural question is whether all the four solution regimes can indeed

arise under some combinations of the underlying model parameters. The following proposition

gives a positive answer to this question.

Proposition 2. Let A∗(γ, k) be the value of A∗ as a function of the model parameters γ and k

(while all other parameters are held fixed). Then:

1. Suppose k is fixed. A∗(γ, k) is decreasing in γ, and A∗(γ, k) > 0 on γ ≤ erτ . If k > 0, then

limγ→+∞A∗(γ, k) = −∞.

2. Suppose γ is fixed. A∗(γ, k) is decreasing in k and A∗(γ, k = 0) > 0. If γ > erτ , then

limk→+∞A∗(γ, k) = −∞.

Proposition 2 shows that changes in the underlying model parameters lead to variation in A∗.

In Figure 1, we plot the values of A∗ as γ changes and mark the corresponding critical levels that

differentiate the four regimes of the solution structure. When γ increases, A∗ decreases and cuts

through all the three critical levels. The transition of solution behavior happens in the order of
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Figure 1: The value of A∗ as γ varies while all other model parameters are fixed. Base parameters

used are α = 0.5, k = 2.25, µ = 0.1, σ = 0.2, r = 0.005, β = 0.3 and τ = 1. The three horizontal

dotted lines indicate the level of 0, −1 and −(k
1

1−α + 1)1−α respectively.

Case 1, 2a, 2b and 3 as described by Theorem 1. Further numerical experiments reveal that Case

1 and Case 2a tend to occur under reasonable choices of economic parameters. If γ is interpreted

as a performance benchmark to beat and τ = 1 (i.e. annual evaluation), then we expect it should

not exceed two in practice such that the order of magnitude of γ−1 is comparable to that of µ.

The gross riskfree rate erτ is an important benchmark of γ. From part (1) of Proposition 2,

any value of γ below or equal to erτ will ensure A∗ > 0. In contrary, part (2) of Proposition 2

suggests if γ is strictly above erτ , then there must exist some model parameters (e.g. large k)

such that A∗ < 0. In summary, the gross riskfree rate is the highest performance benchmark one

can impose on an agent if A∗ > 0 is required. The strict positivity of A∗ has some important

implications related to risk taking behaviors, as we will elaborate in Section 4.2 and 5.3.

4.2 Discussion of the optimal strategies under different cases

Now we proceed to discuss the economic intuitions of the optimal strategies in each case. The

optimal target periodic gross return and the optimal proportion of wealth invested in the risky

asset (the latter can be computed using Proposition 5 in Appendix C) are numerically illustrated

in Figure 2 and 3.

It is useful to recall the dynamic programming equation again:

V (x) = sup
X∈A0(x)

E
[
e−βT1U(XT1 − γx) + e−βT1V (XT1)

]
. (18)

In the one-period problem of Berkelaar et al. (2004), the agent does not care whether the portfolio
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(c) Case 2b.
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Figure 2: The optimal target gross return random variable as a function of ZTn+1/ZTn under all

the four possible cases described by Theorem 1. Base parameters used are α = 0.5, k = 2.25,

µ = 0.1, σ = 0.2, r = 0.005, β = 0.3 and τ = 1. The four cases are generated by γ = 1, γ = 1.45,

γ = 1.7 and γ = 2.5 respectively.
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(b) Case 2a with A∗ ̸= −1.
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(c) Case 2a with A∗ = −1.
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Figure 3: The optimal proportion of wealth invested in the risky asset as a function of ln(St/STn)

at a fixed time t = Tn+1 − 0.5τ under various values of γ. The results are collected in different

sub-figures according to the value of A∗. The two horizontal dotted lines mark the Merton ratio

(µ − r)/((1 − α)σ2) and the constant (µ − r)/((2 − α)σ2) respectively. Base parameters used

are α = 0.5, k = 2.25, µ = 0.1, σ = 0.2, r = 0.005, β = 0.3 and τ = 1. Under the choice of

γ = 1.545, the numerical value of A∗ is approximately −1 (accurate up to three decimal places).
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goes bust or not at the terminal time because he does not have any future incomes or utilities tied

to the residual portfolio value, i.e. the term V (XT1) is absent in (18) for a one-period problem.

In a multi-period setup, however, the agent must take into the account how the residual portfolio

value in the current period affects his position in the next trading round. For example, a very

aggressive trading strategy like the one in the one-period problem will lead to zero portfolio value

at the end of the first period if the bet goes wrong. This will leave no money on the table for

the agent to invest in the subsequent periods, and the utilities will become zero thereafter since

no more trading is possible.

Mathematically, (18) is demonstrating the trade-off between maximizing the reward from

the current period U(XT1 − γx) and the continuation value at the beginning of the next period

summarized by V (XT1). It is known in our setup that V (XT1) = A∗Xα
T1
. Larger the value of A∗,

more valuable it is for the agent to stay in the trading business. Then we expect that the agent

should prioritize preserving the portfolio value at a high level when A∗ is large, and vice versa.

Suppose A∗ > 0, which for example occurs under a delegated portfolio management applica-

tion with the utilties entirely representing monetary compensation and managers are protected

under limited-liability such that k = 0. Then Case 1 of Theorem 1 suggests that the support of

the optimal gross return random variable
X∗

Tn+1

X∗
Tn

is (0, c1γ)∪(c2γ,∞) which does not include {0}.

See Figure 2a. Hence the optimal portfolio is strictly solvent almost surely, which is drastically

different from the one-period optimal strategy such as Berkelaar et al. (2004) where the ruin

probability is strictly positive. Indeed, if we view the right hand side of (18) as a payoff function

in XT1 , then we can see that V (XT1) = A∗Xα
T1

is introducing a local concavity near XT1 = 0 un-

der A∗ > 0. Such moderation effect is graphically illustrated in Figure 6a of Appendix A, where

the function GA∗(y) := U(y − γ) + A∗yα can be interpreted as the “effective payoff function”.

This reveals a very interesting implication regarding the agent’s preference: although his utility

function U is S-shaped, the repeated-game nature of the problem creates incentive distortion.

For the case of A∗ > 0, local risk aversion is introduced near zero and this discourages the agent

from exposing the portfolio to potential maximal loss. Proposition 5 in Appendix C further tells

us that the optimal proportion of wealth invested in the risky asset is approaching the Merton

ratio in both very good and very bad states of the world, as shown in Figure 3a.

However, a caveat is that the trading experience is not necessarily a favorable one in that

A∗ can be negative. As in Proposition 2, this can occur for example when either k or γ is too
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high. These conditions for instance are relevant in a behavioral context where the agent has high

aspiration (reference point) and loss aversion level, or a delegated portfolio management context

where the utilities also reflect other intangible losses of underperformance (such as reputational

damage) in a competitive industry with a high performance benchmark. If the continuation value

is negative, then there is no longer local risk aversion introduced near zero and risk aggression

dominates again due to the shape of U . When A∗ is mildly negative as described by Case 2a of

Theorem 1, the gross return random variable for each period has an atom with strictly positive

probability measure at zero and a continuous distribution on (c3γ,∞) as illustrated in Figure 2b.

This is qualitatively very similar to the one-period optimal solution where the agent is taking

excessive downside risk and there is a strictly positive chance that the portfolio value will hit

zero at the end of the period. Although Figure 3a and 3b may look indistinguishable in the bad

states where the optimal portfolio gross return is very close to zero in Case 1 and is exactly zero

in Case 2a, the risk taking behaviors are drastically different. In Case 2a, the portfolio weight

in the risky asset still approaches the Merton ratio in the good states but explodes in the bad

states. Such excessive risk taking results in a sizable chance of bankruptcy which is around 20%

in the numerical example of Figure 3b. Meanwhile, the optimal portfolio in Case 1 is always

strictly solvent even though it can experience a massive drawdown.

A∗ = −1 is an interesting corner case from a theoretical perspective. The optimal portfolio

weight in the risky asset now converges to another steady positive value (µ − r)/((2 − α)σ2)

in the extremely good states of the world. This number is strictly below the Merton ratio in

magnitude. See Figure 3c. The agent now exhibits behaviors of underinvestment when his

portfolio is performing well. This corner case arises due to the fact that, when A∗ = −1, the

effective payoff function GA∗(y) is saturating for large value of y and in turn the optimal target

return function yA∗(q) in Theorem 1 has different asymptotic behaviors near q = 0.

As A∗ becomes further negative such that we are in Case 2b of Theorem 1 (e.g. due to an

even higher loss aversion level of a behavioral agent, or a more demanding performance target

imposed on a portfolio manager), the support of the gross return random variable now becomes

{0} ∪ (c3γ,
γ

1−|A∗|−1/(1−α) ). See Figure 2c. Similar to Case 2a, the portfolio may suffer from total

loss. If we look at the threshold of ZTn+1/ZTn above which the portfolio gross return becomes

zero, the level of Case 2b is smaller than that of Case 2a. It suggests the ruin probability in Case

2b is larger than that of Case 2a, i.e. a larger downside risk in Case 2b. The agent now also
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severely underinvests in the good states of the economy such that the gross return variable has

an upper bound of γ
1−|A∗|−1/(1−α) . To see why this upper bound exists, recall that the utilities of

the agent are derived from the periodic performance XTi−γXTi−1 which scales with the portfolio

size. Hence if the performance target or the loss aversion level is too high (which results in large

negative value of A∗ due to Proposition 2), the agent will cautiously limit the growth of the

portfolio value to avoid setting up a high basis of performance evaluation in the next period.

Otherwise, if the bar is set too high then underperformance is likely to occur in the future under a

demanding profit target which will be emotionally or economically painful to a loss-averse agent.

This idea is also mathematically demonstrated in Figure 6c that the effective payoff function

GA∗(y) is actually decreasing in the regime of large portfolio return, and hence the agent has

an incentive to suppress the portfolio growth to avoid entering the regime on which GA∗(y) is

decreasing. The underinvestment behavior is more intuitively shown in Figure 3d, where, away

from the corner case of A∗ = −1, the agent will adopt a gain-exit style strategy and offload his

entire risky asset holding as its price increases.

Finally, when A∗ becomes extremely negative as in Case 3 of Theorem 1, the optimal portfo-

lio value process has an atom of unity at zero. In this case, the value of the trading opportunity

is very unfavorable to the agent (i.e. low level of agent’s value function). This can be due to an

unprofitable trading environment, extreme preference parameters of the agent or an unrealistic

performance goal. The agent hence just wants to walk away as soon as possible by intentionally

depleting all the available capital (the portfolio budget constraint E[ZTnX
∗
Tn
] ≤ x is not bind-

ing in, and only in, this case). Then there is no more portfolio to be managed in the future

and the agent does not need to face any possible disappointment or penalty from poor trading

performance. This prediction, while mathematically possible, is rather extreme. Numerically,

it requires a very high performance target parameter γ for this case to occur (e.g. more than

200% per year in the example we gave in Figure 2). It arises in our model because we implicitly

assume the agent does not have any exit option and the only way for the agent to get out of the

trading business is to purposely get fired by losing everything. In Appendix D, we consider a

variation of our model where an agent can choose to early retire at the beginning of each period.
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5 Empirical and policy implications

5.1 Risk taking behaviors and performance target

Proposition 2 shows that A∗ is decreasing in the performance target γ. If an increase in γ

reduces A∗ which in turn triggers a change of the solution regime, we know from the discussion

in Section 4.2 that risk taking intensifies in the bad states of the world (when Case 1 transits

to Case 2a) and underinvestment occurs in the good states of the world (when Case 2a transits

to Case 2b). How do risk taking behaviors change if there is a small increase in γ which does

not result in a shift of the solution regime? While there is no clear monotonicity, Figure 3a, 3b

and 3d demonstrate numerically that an increase in γ tends to increase (decrease) investment in

the risky asset in the bad (good) states. Combining all the theoretical and numerical findings,

we conclude that an increased performance target results in more (less) risk taking in the bad

(good) states.

The empirical findings of Kouwenberg and Ziemba (2007) show a positive relationship between

hedge funds downside risk and incentive fee level. Our model offers a complementary empirical

hypothesis, where we expect investment funds downside (upside) risk to be positively (negatively)

related to the portfolio managers’ performance target.

5.2 Risk taking behaviors under option-based compensation

As discussed in Section 2, the portfolio selection problem faced by an agent with limited-liability

protection or option-based compensation can be described by the special case of zero loss asym-

metry parameter k = 0. Then the periodic reward in period i, U(XTi − γXTi−1), is always

non-negative. From Proposition 2, k = 0 implies A∗ is strictly positive. The optimal portfolio

strategy pursued by such an agent is hence always described by Case 1 of Theorem 1, as shown

in Figure 2a and 3a.

It is useful to compare this finding against standard results in the literature of risk taking

incentive under option-based compensation such as Carpenter (2000). In a model featuring a

manager endowed with a call option with fixed maturity on the managed portfolio, Carpenter

(2000) shows that the optimal portfolio weight in the risky asset grows to infinity when the

portfolio value declines and approaches the Merton ratio as the value goes up. Figure 3a reveals

a new phenomenon that under periodic evaluation, the risk taking behavior changes significantly
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where the optimal portfolio weight now also converges to the Merton ratio when the portfolio is

performing poorly. The agent avoids taking excessive risk during market downturns to ensure

strict solvency, which in turn enable him to stay in the trading business and harvest future re-

wards beyond the current period. While the ideas about the relevance of multi-period evaluation

relative to risk taking behavior are not entirely new (see, for example, Hodder and Jackwerth

(2007) and Footnote 1 of Carpenter (2000)), we have provided analytical evidence to support

these intuitions. In particular, the agent is taking risk in accordance to the Merton ratio as well

even when the option granted for the current period is deeply out-of-money.

One natural implementation of option-based compensation with periodic payout is the cli-

quet option, under which the agent will receive a series of forward-start options with payoff

(XTi − γXTi−1)
+ on each fixing date Ti. Our performance benchmark parameter γ can then be

interpreted as the forward strike level of this product. Our result yields an important policy

implication which favors the use of cliquet option over the traditional long-dated employee call

option expiring on a fixed terminal date from the perspective of managerial risk taking (A related

idea can be found in Ruß and Schelling (2018), who demonstrate via Monte Carlo simulation

that the demand for cliquet-style products can be explained by a multi-period extension of Cu-

mulative Prospect Theory (CPT) evaluation framework but not the static expected utility nor

CPT criterion). Panageas and Westerfield (2009) show that excessive risk taking can also be

moderated by a contract which pays out a proportional fee whenever a high-water mark has been

reached. Nonetheless, cliquet option does not require continuous monitoring for payoff compu-

tation and thus it should be easier to implement such compensation structure in practice. This

idea also yields an interesting and potentially testable empirical hypothesis, where we conjecture

that managers who are granted cliquet options as compensation will take less risk (e.g. reflected

by leverage ratio or other risk measures) during market downturns compared to those who are

given long-dated call options.

5.3 Long-term portfolio risk and incentive design

From a risk management point of view, an important feature of the optimal trading strategy is

the potential maximum portfolio loss. From Theorem 1, if A∗ ≤ 0 then the periodic gross return

random variable has a strictly positive probability to be zero which represents a total loss. Since

the gross returns from different periods are independent and identically distributed, in the long
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run the portfolio value must reach zero in finite time whenever A∗ ≤ 0 as a simple consequence

of Borel-Cantelli lemma. We hence arrive at the following corollary.

Corollary 2. The optimal portfolio is ruined in finite time almost surely, i.e.

P (There exists s such that X∗
t = 0 for all t ≥ s) = 1,

if and only if A∗ ≤ 0.

Our model focuses on the portfolio decision made by an agent who derives utilities based on

the periodic performance in form of monetary incomes, changes in career prospects like promotion

and demotion, gain/loss of professional reputation, subjective well-being from public recognition

at the end of a financial quarter, etc. Their economic objectives are relatively short-sighted,

which can be very different from the goal of his principal who might be looking for a long-term

portfolio growth. Corollary 2 reveals a severe agency problem if the agent’s incentive is not

properly managed: if the model parameters are such that A∗ ≤ 0, then the agent takes excessive

risk in a way that the portfolio will eventually suffer a 100% loss.

If the utility function U purely represents monetary payouts, then limited-liability protection

(i.e. k = 0) alone is sufficient to ensure A∗ > 0 as per Proposition 2 to avoid the long-term

ruin risk, regardless of the value of γ. Otherwise if k > 0 (e.g. under the behavioral context

with loss aversion or the interpretation that U captures other intangible negative payouts after

underperformance), then γ should be determined carefully to avoid the inevitable ruin. By

Proposition 2, we can find γ̂ such that A∗ = A∗(γ̂, k) = 0. Then γ̂ represents the critical value

of the performance target below which the long-term solvency of the portfolio is guaranteed. We

plot the values of γ̂ = γ̂(k) in Figure 4 for different values of k. The critical performance target

levels are somewhat reasonable for moderately loss-averse agents (e.g a performance target below

1.25 can ensure A∗ > 0 for agents with k below 2.25). γ̂(k) is decreasing in k, which suggests

that avoidance of an overly ambitious performance target is especially important when k is large.

In parallel, it is also useful to consider measures that could help reduce the value of k if

A∗ > 0 is desired. Under a delegated portfolio management interpretation of the model, an

underperforming trader may be punished which creates negative utilities (say in form of emotional

impact or worsened career prospect). It is thus reasonable to expect that k is linked to the severity

of punishment, and we conjecture that avoiding excessive punishment against underperformance

may help reduce k. Under a behavioral interpretation that k is the agent’s loss aversion level,
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Figure 4: The value of γ̂ as k varies. Each γ̂ = γ̂(k) represents the value of γ such that

A∗ = A∗(γ, k) = 0. Base parameters used are α = 0.5, µ = 0.1, σ = 0.2, r = 0.005, β = 0.3 and

τ = 1.

psychology literature also hints a few possible behavioral engineering (“nudging”) approaches

to moderate one’s loss aversion. Examples include enforcing the accountability of the agents

(Vieider (2009)), promoting reappraisal of the investment process (Sokol-Hessner et al. (2009)),

assisting the agents to acquire experience and knowledge (List (2003), Mrkva et al. (2020)), etc.

5.4 Evaluation horizon, demand for risky assets and equity premium

In their seminal work, Benartzi and Thaler (1995) consider a portfolio selection problem faced by

a myopic, loss-averse agent who evaluates his portfolio regularly according to a mental accounting

schedule. They find that a shorter evaluation horizon (i.e. more frequent evaluations) results in a

lower wealth allocation to risky stocks (see also He and Zhou (2014)). Benartzi and Thaler (1995)

conclude this feature offers an explanation to the equity premium puzzle because a myopic agent

with short evaluation horizon finds it unattractive to hold stocks and hence demands a higher

equity return in equilibrium. Our model is quite different from that of Benartzi and Thaler

(1995), as we do not assume the agent is myopic but instead he is able to take the subsequent

rewards beyond the first evaluation period into account. Since the evaluation horizon is a crucial

quantity which forms the basis of Benartzi and Thaler’s argument, it is useful to examine how

the optimal investment is influenced by τ in our model. Figure 5 shows the optimal fraction of

wealth invested in the risky asset at the beginning of each period under several values of τ . We

fix γ = 1, which is consistent with the definition of gain-and-loss in Benartzi and Thaler (1995).

An increase in τ generally leads to higher leverage (i.e. stock becomes more attractive) in the
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Figure 5: The optimal proportion of wealth invested in the risky asset as a function of ln(St/STn)

at t = Tn+ under several values of τ . The two horizontal dotted lines mark the Merton ratio

(µ− r)/((1−α)σ2) and the constant (µ− r)/((2−α)σ2) respectively. Base parameters used are

α = 0.5, k = 2.25, µ = 0.1, σ = 0.2, r = 0.005 and β = 0.3.

mildly good states (when ln St
STn

is between 0% and 15%) or extremely bad states (when ln St
STn

is less than -70%). But the relationship is reversed in the moderately bad states. The results are

perhaps not too surprising: if the agent begins in the bad states of the world and the evaluation

date is fast approaching (τ decreases), the convexity of U over losses encourages the agent to

gamble more aggressively to get out from the bad states. However, as the market reaches an

extremely poor state, the agent will be reluctant to take more risk even when τ drops because

he has to ensure the long-term solvency of the portfolio as per Case 1 of our solution regime.

While Benartzi and Thaler (1995) suggest that increasing the evaluation horizon makes risky

investment more appealing (and vice versa), our result highlights that the explanatory power of

evaluation horizon on demand for stocks interacts with the states of the world in a subtle way.

It is highly non-trivial to conclude how the asset allocation in our model changes on average

across the realized stock price paths when the evaluation horizon τ changes. Our findings may

have potential implications which connect τ to the variability of the equity premium with the

business cycle, although this can only be examined in a more carefully crafted equilibrium model

which is beyond the scope of the current paper.
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6 Concluding remarks

We have solved an infinite horizon portfolio selection problem under S-shaped utility function and

periodic evaluation criterion. The non-concave utility function in conjunction with the periodic,

infinite horizon nature make the problem economically and technically interesting. The optimal

trading strategies have a number of possible forms depending on the model parameters, and such

behaviors cannot be observed in a simple one-period, finite horizon model. Risk taking behaviors

in the bad states of the world can be moderated by a favorable periodic reward structure because

the agent wants to ensure solvency of the portfolio to sustain a perpetual income flow. If the

trading environment is challenging, underinvestment might occur in the good states of the world

to alleviate the pressure on the agent to outperform his yesterday’s self. Under loss aversion

and/or the lack of limited-liability protection, the optimal portfolio might be ruined in the long

run. Consideration of cliquet-style compensation, imposing a realistic performance target and

reducing the agent’s loss aversion are examples of crucial features within incentive design and

behavioral engineering to curb the excessive risk taking behaviors of an agent with S-shaped

preference.

Our model focuses on the Tversky-Kahneman utility function with identical risk aversion

and risk seeking parameters. The scaling property of the power function allows us to offer an

economically transparent characterization of the optimal portfolio and the trading strategies.

One tempting extension is to consider a more generic class of utility (payoff) functions such that

the model can be generalized to agents under different preferences or compensation structures, or

the combination of both. The issue, however, is that establishing the existence and uniqueness of

the fixed-point of the Bellman operator as well as identifying the general form of the optimizer to

the auxiliary problem can be very challenging without any restriction on the underlying utility

function.

The modeling framework in this paper can also serve as the foundation of a more sophisticated

principal-agent problem. Our results reveal that under certain model parameters the optimal

strategy pursued by the agent will result in eventual collapse of the portfolio and this is clearly

undesirable to a principal seeking long-term performance. Then a natural follow-up question is

how the periodic contractual payoff (i.e. the utility function) can be optimally structured to align

the short-term periodic interest of the agent and the long-term investment goal of a principal.

Such consideration should prove to be an interesting proposal for future research.
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Appendix

A Solution to the auxiliary problem

In this section, we analyze in details the auxiliary problem (14). It turns out that the function

Ga in (13) can have vastly different shapes depending on the value of a. It is not concave nor

even monotonic in general. As a result, problem (14) is not directly covered by standard results

in the literature for finite horizon non-concave utility maximization such as Reichlin (2013) and

Bichuch and Sturm (2014), where the utility function is required to be strictly increasing. To

solve the auxiliary problem (14), we will adopt the concavification technique where the idea is to

solve a different version of problem (14) upon replacing Ga by Ḡa which is defined as the smallest

concave majorant of Ga. This leads to an upper bound of the value function in (14), and we will

show that the value function of the original and the concavified version of the problem coincide.

The precise mathematical expressions of Ga and Ḡa under different cases are summarized by

the following two lemmas.

Lemma 1. Ga(y) has the following properties:

1. For a > 0, Ga(y) is concave increasing on 0 ≤ y ≤ γ

1+(k/a)1/(2−α) , convex increasing on

γ

1+(k/a)1/(2−α) < y ≤ γ and concave increasing on y > γ.

2. For a = 0, Ga(y) is convex increasing on 0 ≤ y ≤ γ and concave increasing on y > γ.

3. For −1 ≤ a < 0, Ga(y) is convex decreasing on 0 ≤ y ≤ γ
1+(k/|a|)1/(1−α) , convex increasing

on γ
1+(k/|a|)1/(1−α) < y ≤ γ, and concave increasing on y > γ.

4. For a < −1, Ga(y) is convex decreasing on 0 ≤ y ≤ γ
1+(k/|a|)1/(1−α) , convex increasing on

γ
1+(k/|a|)1/(1−α) < y ≤ γ, concave increasing on γ < y ≤ γ

1−|a|−1/(1−α) , concave decreasing on

γ
1−|a|−1/(1−α) < y ≤ γ

1−|a|−1/(2−α) and convex decreasing on y > γ
1−|a|−1/(2−α) . Moreover,

(a) If −(k
1

1−α + 1)1−α < a < −1, Ga(y) attains its global maximum at y = γ
1−|a|−1/(1−α) .

(b) If a < −(k
1

1−α + 1)1−α, Ga(y) attains its global maximum at y = 0.

Proof. Proof of Lemma 1. The results follow from elementary calculus. Differentiation gives

G′
a(y) =


α[(y − γ)α−1 + ayα−1], y ≥ γ;

α[k(γ − y)α−1 + ayα−1], 0 ≤ y < γ,
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and

G′′
a(y) =


−α(1− α)[(y − γ)α−2 + ayα−2], y ≥ γ;

α(1− α)[k(γ − y)α−2 − ayα−2], 0 ≤ y < γ.

If a > 0, then trivially G′
a(y) ≥ 0 for all y. Furthermore, it is easy to verify that G′′

a(y) ≤ 0

on y ≥ γ and 0 ≤ y ≤ γ

1+(k/a)1/(2−α) , and G′′
a(y) ≥ 0 on γ

1+(k/a)1/(2−α) ≤ y ≤ γ. Thus Ga has the

shape described in Case 1.

Case 2 with a = 0 is trivial.

For a < 0 in Case 3, on 0 ≤ y ≤ γ we have G′
a(y) = α[k(γ−y)α−1−|a|yα−1] which is increasing

in y with G′
a(0+) = −∞, G′

a(γ−) = +∞ and G′
a(

γ
1+(k/|a|)1/(1−α) ) = 0 where γ

1+(k/|a|)1/(1−α) < γ.

Moreover, on y ≤ γ we also have G′′
a(y) = α(1 − α)[k(γ − y)α−2 + |a|yα−2] ≥ 0 and the shape

of Ga(y) on 0 ≤ y ≤ γ follows immediately. Furthermore, with −1 ≤ a ≤ 0, on y ≥ γ

one can see that G′
a(y) = α[(y − γ)α−1 − |a|yα−1] ≥ α[(y − γ)α−1 − yα−1] ≥ 0 and G′′

a(y) =

−α(1− α)[(y − γ)α−2 − |a|yα−2] ≤ −α(1− α)[(y − γ)α−2 − yα−2] ≤ 0 so Ga(y) is increasing and

concave on y ≥ γ.

Finally, when a < −1 as in Case 4, on y ≥ γ check that G′
a(y) = α[(y − γ)α−1 − |a|yα−1] =

αyα−1[(1 − γ/y)α−1 − |a|] such that G′
a(y) ≥ 0 on γ ≤ y ≤ γ

1−|a|−1/(1−α) and G′
a(y) ≤ 0 on

y > γ
1−|a|−1/(1−α) with γ < γ

1−|a|−1/(1−α) < ∞, and G′′
a(y) = −α(1 − α)[(y − γ)α−2 − |a|yα−2] =

−α(1 − α)yγ−2[(1 − γ/y)α−2 − |a|] whence G′′
a(a) ≤ 0 on γ ≤ y ≤ γ

1−|a|−1/(2−α) and G′′
a(y) ≥ 0

on y > γ
1−|a|−1/(2−α) with γ < γ

1−|a|−1/(2−α) < ∞. Since y = γ
1−|a|−1/(1−α) is a local maxima, the

global maximum of Ga(y) is given by

max
y≥0

Ga(y) = max

(
Ga(0), Ga

(
γ

1− |a|−1/(1−α)

))
= max(−kγα,−|a|(1− |a|−

1
1−α )1−αγα)

where the ordering is determined by the ordering of |a| versus (k
1

1−α + 1)1−α. Then the results

in Case 4a and 4b follow.

Lemma 2. Ḡa(y), the smallest concave majorant of Ga(y), has the following expression:

1. For a > 0,

Ḡa(y) =


−k(γ − y)α + ayα, 0 ≤ y < c1γ;

−kγα(1− c1)
α + acα1 γ

α +m1(y − c1γ), c1γ ≤ y ≤ c2γ;

(y − γ)α + ayα, y > c2γ,
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where

m1 := γα−1 (c2 − 1)α + acα2 + k(1− c1)
α − acα1

c2 − c1
, (19)

and c1, c2 with 0 < c1 < 1

1+(k/a)1/(2−α) < 1 < c2 < ∞ are the solutions to the system of

equations

(c2 − 1)α + acα2 + k(1− c1)
α − acα1

c2 − c1
= α[(c2 − 1)α−1 + acα−1

2 ] = α[k(1− c1)
α−1 + acα−1

1 ].

(20)

2. For −1 ≤ a ≤ 0,

Ḡa(y) =


−kγα +m2y, 0 ≤ y ≤ c3γ;

(y − γ)α + ayα, y > c3γ,

where

m2 := γα−1 (c3 − 1)α + acα3 + k

c3
, (21)

and c3 > 1 is the solution to the equation

(c3 − 1)α + acα3 + k

c3
= α[(c3 − 1)α−1 + acα−1

3 ]. (22)

3. For −(k
1

1−α + 1)1−α < a < −1,

Ḡa(y) =


−kγα +m2y, 0 ≤ y ≤ c3γ;

(y − γ)α + ayα, c3γ < y < γ
1−|a|−1/(1−α) ;

−γα|a|(1− |a|−
1

1−α )1−α, y ≥ γ
1−|a|−1/(1−α)

where again m2 is defined in (21) and c3 is the solution to equation (22).

4. For a ≤ −(k
1

1−α + 1)1−α, Ḡa(y) = −kγα.

Proof. Proof of Lemma 2. The results follow from the various shapes of Ga derived in Lemma 1.

In Case 1, Ḡa coincides with Ga for small and large value of y, and for intermediate value of

y it is a straight tangent line touching Ga at some y1 and y2 where y1 <
γ

1+(k/a)1/(2−α) < γ < y2.
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See Figure 6a. By equating the slope of this tangent and the first order derivatives of Ga at y1

and y2, we have

Ga(y2)−Ga(y1)

y2 − y1
= G′

a(y1) = G′
a(y2)

and we arrive at (20) upon setting y1 = c1γ and y2 = c2γ for some 0 < c1 < 1 < c2.

In Case 2, Ḡa coincides with Ga for large value of y only, and it is a straight tangent line

passing through (0, Ga(0)) which touches Ga(y) at some y3 > γ. The point of contact y3 satisfies

the condition Ga(y3)−Ga(0)
y3

= G′
a(y3) leading to (22) after setting y3 = c3γ for some c3 > 1. See

Figure 6b.

In Case 3, Ga(y) attains its global maximum at y = γ
1−|a|−1/(1−α) and is monotonically de-

creasing afterwards with G′′
a(y) > 0 for large y and limy→∞G′

a(y) = 0. Hence Ḡa(y) must be

a flat horizon line with level Ga

(
γ

1−|a|−1/(1−α)

)
= −γα|a|(1 − |a|−

1
1−α )1−α for y ≥ γ

1−|a|−1/(1−α) .

Meanwhile, for small value of y, Ḡa is a tangent line passing through (0, Ga(0)) which touches

Ga(y) at some y3 > γ, and for y3 ≤ y ≤ γ
1−|a|−1/(1−α) Ḡa is coinciding with Ga. Here y3 again

satisfies Ga(y3)−Ga(0)
y3

= G′
a(y3) which is identical to the condition in Case 2. See Figure 6c.

Finally in Case 4 where the global maximum is attained at y = 0, Ḡa(y) must simply

be a flat horizon line with level Ga(0) = −kγα since Ga is convex for large value of y with

limy→∞G′
a(y) = 0. See Figure 6d.

The possible shapes of Ga and Ḡa are displayed in Figure 6. When a > 0, Ga(y) is increasing

and locally concave for small and large value of y, and is convex elsewhere. The function is hence

concavified by replacing the intermediate region of the function by a linear chord touching the

function itself at two different points (Figure 6a). If −1 ≤ a ≤ 0, Ga is not monotonic in general

except when a = 0. It is convex (resp. concave) for small (resp. large) value of y, and thus

the concavification is given by a straight line passing through (0, Ga(0)) which touches Ga at

some critical point (Figure 6b). For −(k
1

1−α + 1)1−α < a < −1, Ga(y) attains an interior global

maximum at some ymax and the function is now convex decreasing for very large y with vanishing

slope. Hence another concavification has to be applied by drawing a flat horizon line truncating

Ga(y) on y > ymax (Figure 6c). Finally, when a ≤ −(k
1

1−α +1)1−α, the function attains its global

maximum at y = 0. The concavification turns out to simply be a flat horizontal line with level

Ga(0) for all y ≥ 0.

The solution to the auxiliary problem (14) is as follows.
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y

Ga(y)
Ḡa(y)

(a) a > 0.

y

Ga(y)
Ḡa(y)

(b) −1 ≤ a ≤ 0.

y

Ga(y)
Ḡa(y)

(c) −(k
1

1−α + 1)1−α < a < −1.

y

Ga(y)
Ḡa(y)

(d) a ≤ −(k
1

1−α + 1)1−α.

Figure 6: Stylized plots of the objective function of the auxiliary problem Ga(y) and its smallest

concave majorant Ḡa(y) under different values of a.
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Proposition 3. The optimizer to problem (14) is given by Y ∗ = y∗a(λ
∗Zτ ), where:

1. If a > 0, then

y∗a(q) =


I2(q), 0 < q ≤ m1;

I1(q), q > m1,

where I1 = I1(q) : (m1,∞) → (0, c1γ) is the solution to the equation α[k(γ − y)α−1 +

ayα−1] = q on y ∈ (0, c1γ) and I2 = I2(q) : (0,m1] → [c2γ,∞) is the solution to the

equation α[(y − γ)α−1 + ayα−1] = q on y ∈ [c2γ,∞).

2. If −1 ≤ a ≤ 0, or −(k
1

1−α + 1)1−α < a < −1 and |a|−
1

1−α > 1− γe−rτ , then

y∗a(q) =


I2(q), 0 < q ≤ m2;

0, q > m2,

where I2 = I2(q) is the solution to the equation α[(y − γ)α−1 + ayα−1] = q on y ≥ c3γ for

q ∈ (0,m2]. Furthermore:

(a) If −1 ≤ a ≤ 0, I2(q) : (0,m2] → [c3γ,∞).

(b) If −(k
1

1−α+1)1−α < a < −1 and |a|−
1

1−α > 1−γe−rτ , I2(q) : (0,m2] → [c3γ,
γ

1−|a|−1/(1−α) ).

3. If a ≤ −(k
1

1−α + 1)1−α, then y∗a(·) is a constant function equal to 0.

4. If −(k
1

1−α + 1)1−α < a < −1 and |a|−
1

1−α ≤ 1 − γe−rτ , then y∗a(·) is a constant function

equal to γ
1−|a|−1/(1−α) .

In the above definitions, m1 > 0, m2 > 0, 0 < c1 < 1 < c2 and c3 > 1 are constants depending

on a which are defined in Lemma 2. In Case 1, 2a and 2b, λ∗ is given by the unique λ > 0 such

that E[Zτy
∗
a(λZτ )] = 1.

Proof. Proof of Proposition 3. We first prove the results for Case 3 and 4. In Case 4 where

−(k
1

1−α + 1)1−α < a < −1, Ga(y) attains its global maximum at γ
1−|a|−1/(1−α) and as such

E[G(Y )] ≤ G
(

γ
1−|a|−1/(1−α)

)
with

E
[
Zτ

γ

1− |a|−1/(1−α)

]
=

γ

1− |a|−1/(1−α)
E[Zτ ] =

γe−rτ

1− |a|−1/(1−α)
≤ 1

under the additional condition |a|−
1

1−α ≤ 1 − γe−rτ . Hence Y ∗ = γ
1−|a|−1/(1−α) is feasible to

problem (14) and in turn optimal. Case 3 can be handled similarly.
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Now we consider Case 1, 2a and 2b. The Legendre-Fenchel transformation of a function f is

defined as

Jf (q) := sup
y≥0

(f(y)− qy), q > 0.

Provided that f is continuous and concave with f ′(∞) = 0, the maximizer to the above supremum

always exists (although not necessarily unique) and we write y∗f (q) := argmaxy≥0(f(y)−qy) such

that

Jf (q) = f(y∗f (q))− qy∗f (q).

Then for any λ > 0 and Y ∈ F+
τ with E[ZτY ] ≤ 1,

E[Ga(Y )− λ(ZτY )] ≤ E[Ḡa(Y )− λ(ZτY )] ≤ E[JḠa
(λZτ )] = E[Ḡa(y

∗
Ḡa

(λZτ ))− λZτy
∗
Ḡa

(λZτ )]

and in turn

E[Ga(Y )] ≤ E[Ḡa(y
∗
Ḡa

(λZτ ))− λZτy
∗
Ḡa

(λZτ )] + λE(ZτY )

≤ E[Ḡa(y
∗
Ḡa

(λZτ ))]− λ(E(Zτy
∗
Ḡa

(λZτ ))− 1).

If there exists λ∗ > 0 such that E(Zτy
∗
Ḡa

(λ∗Zτ )) = 1, then we have E[Ga(Y )] ≤ E[Ḡa(y
∗
Ḡa

(λ∗Zτ ))]

and hence

F (a) := sup
Y ∈L0,τ (1)

E[Ga(Y )] ≤ E[Ḡa(y
∗
Ḡa

(λ∗Zτ ))].

where we write

Ls,t(x) :=

{
Y ∈ F+

t : E
[
Zt

Zs
Y
∣∣∣Fs

]
≤ x

}
, s ≤ t. (23)

Moreover, if we can show that the support of the random variable y∗
Ḡa

(λ∗Zτ )) is a subset of

{y ≥ 0 : Ga(y) = Ḡa(y)}. Then we can conclude E[Ga(y
∗
Ḡa

(λ∗Zτ ))] = E[Ḡa(y
∗
Ḡa

(λ∗Zτ ))] and

hence Y ∗ := y∗
Ḡa

(λ∗Zτ ) must be an optimizer to problem (14).

Write y∗a(·) = y∗
Ḡa

(·) for brevity. We now identify the form of y∗a(·) for each case. If a > 0

(Case 1), we have

Ḡ′
a(y) =


α[k(γ − y)α−1 + ayα−1] =: q1(y), 0 ≤ y < c1γ;

γα−1 (c2−1)α+acα2+k(1−c1)α−acα1
c2−c1

=: m1, c1γ ≤ y ≤ c2γ;

α[(y − γ)α−1 + ayα−1] =: q2(y), y > c2γ.
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By considering the first order condition, y∗a(q) is the solution to q1(y) = q on y ∈ (0, c1γ) when

q > m1, the solution to q2(y) = q on y ∈ (c2γ,∞) when q < m1, and any value in [c1γ, c2γ] will

attain the maximum when q = m1. Hence an optimizer is

y∗a(q) =


I2(q), 0 < q ≤ m1;

I1(q), q > m1.

From the above it is also easy to see that y∗a(q) is decreasing, y∗a(0+) = +∞ and y∗a(+∞) = 0.

Since Zτ is atomless, ζ(λ) := E(Zτy
∗
a(λZτ )) is a continuous decreasing function with ζ(0+) = +∞

and ζ(+∞) = 0 by monotone convergence theorem. There must exist a unique λ∗ > 0 such that

ζ(λ∗) = 1. The optimal random variable is Y ∗
a = y∗a(λ

∗Zτ ) with support (0, c1γ) ∪ (c2γ,∞),

which is exactly the set on which Ga(y) = Ḡa(y).

Case 2a is omitted since the analysis is largely similar to that of Case 1. For Case 2b where

−(k
1

1−α + 1)1−α < a < −1, we have

Ḡ′
a(y) =


γα−1 (c3−1)α+acα3+k

c3
=: m2, 0 ≤ y ≤ c3γ;

α[(y − γ)α−1 + ayα−1] = q2(y), c3γ < y < γ
1−|a|−1/(1−α) ;

0, y ≥ γ
1−|a|−1/(1−α) ,

from which we can deduce from the first order condition that

y∗a(q) =


I2(q), 0 < q ≤ m2;

0, q > m2,

with I2(q) being the solution to q2(y) = q on y ∈ [c3γ,
γ

1−|a|−1/(1−α) ) when q ∈ (0,m2]. Thus

ζ(λ) = E(Zτy
∗
a(λZτ )) is a continuous, bounded and decreasing function with ζ(0+) = γ

1−|a|−1/(1−α)E(Zτ ) =

γe−rτ

1−|a|−1/(1−α) and ζ(+∞) = 0. Hence provided that γe−rτ

1−|a|−1/(1−α) > 1 ⇐⇒ |a|−
1

1−α > 1 − γe−rτ ,

there exists λ∗ > 0 such that ζ(λ∗) = 1. The optimal random variable Y ∗ = y∗a(λ
∗Zτ ) has

support {0} ∪ (c3γ,
γ

1−|a|−1/(1−α) ) coinciding {y ≥ 0 : Ga(y) = Ḡa(y)}.

An important technical result is given below which will help characterize our value function

as a fixed-point.

Proposition 4. Define the function

Φ(a) := e−βτF (a) (24)
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where F (a) is the solution to problem (14). Then Φ is a contraction on the metric space (R, | · |)

where |·| is the Euclidean norm. In turn, Φ admits a unique fixed-point A∗ such that A∗ = Φ(A∗).

Proof. Proof of Proposition 4. Consider any arbitrary a1, a2 ∈ R. From Proposition 3 there

exists an optimizer Y ∗
1 such that

Φ(a1) = e−βτF (a1) = sup
Y ∈L0,τ (1)

E
[
e−βτU(Y − γ) + a1e

−βτY α
]
= E

[
e−βτU(Y ∗

1 − γ) + a1e
−βτ (Y ∗

1 )
α
]

and hence

Φ(a1)− Φ(a2) = E
[
e−βτU(Y ∗

1 − γ) + a1e
−βτ (Y ∗

1 )
α
]
− sup

Y ∈L0,τ (1)
E
[
e−βT1U(Y − γ) + a2e

−βτY α
]

≤ E
[
e−βτU(Y ∗

1 − γ) + a1e
−βτ (Y ∗

1 )
α
]
− E

[
e−βτU(Y ∗

1 − γ) + a2e
−βτ (Y ∗

1 )
α
]

= (a1 − a2)e
−βτE [(Y ∗

1 )
α] .

Then

|Φ(a1)− Φ(a2)| ≤ |a1 − a2|e−βτ

[
sup

Y ∈L0,τ (1)
E [Y α]

]
= |a1 − a2|e−(β−h)τ < |a1 − a2|

using the fact that the supremum above is equal to ehτ since it is simply the value function

of a standard finite horizon Merton problem with utility function u(w) = wα, maturity τ and

unit initial wealth. The last inequality is due to our standing assumption that β > h. The

existence and uniqueness of the fixed-point A∗ of Φ immediately follow from Banach contraction

theorem.

As a by-product of the proposition, A∗ can be computed numerically by an iterative method

in form of An+1 = Φ(An) for any initial guess A0 ∈ R. Each step of iteration can be performed

by solving the auxiliary problem (14) using the results in Proposition 3.

Finally, we offer few additional technical results related to Φ(a) and A∗ which will be used

in some of the subsequent proofs.

Lemma 3. Recall the definition of Φ in (24).

1. For all a ∈ R,

max(e−βτU(erτ − γ) + ae−(β−αr)τ ,−kγαe−βτ ) ≤ Φ(a) ≤ e−(β−h)τ (a+ + 1).
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2. A∗ the unique fixed-point of Φ(·) satisfies

e−βτU(erτ − γ)

1− e−(β−rα)τ
≤ A∗ ≤ e−(β−h)τ

1− e−(β−h)τ
.

3. A∗ ≤ 0 if and only if Φ(0) ≤ 0.

Proof. Proof of Lemma 3. For part (1), the lower bound can be derived by noticing that both

Y = erτ and Y = 0 are admissible to problem (14). Meanwhile,

Φ(a) = sup
Y ∈L0,τ (1)

E
[
e−βτU(Y − γ) + ae−βτY α

]
≤ sup

Y ∈L0,τ (1)
E
[
e−βτU(Y − γ)

]
+ a+ sup

Y ∈L0,τ (1)
E
[
e−βτY α

]
≤ sup

Y ∈L0,τ (1)
E
[
e−βτU(Y )

]
+ a+ sup

Y ∈L0,τ (1)
E
[
e−βτY α

]
= (a+ + 1)e−βτ sup

Y ∈L0,τ (1)
E [Y α]

where we have used the fact that U is increasing and γ > 0. But again the supremum in

the last term is ehτ the value function of a standard finite horizon Merton problem and hence

Φ(a) ≤ (a+ + 1)e−(β−h)τ .

For part (2), the lower bound of A∗ can be obtained using part (1) of the lemma that

A∗ = Φ(A∗) ≥ e−βτU(erτ − γ) + A∗e−(β−αr)τ . For the upper bound, notice that the map

a → e−(β−h)τ (a++1) crosses the identity function a → a exactly once on a > 0 at â := e−(β−h)τ

1−e−(β−h)τ .

Then we must have A∗ ≤ â since Φ(·) is dominated by e−(β−h)τ (a+ + 1) and A∗ is given by the

unique crossing point between Φ and the identity function.

Finally, since Φ is continuous and admits a unique fixed-point, the function f(a) := Φ(a)− a

should change sign exactly once at a = A∗. Using part (1) of the lemma, Φ is bounded from

below by a constant and hence lima→−∞ f(a) = +∞. Thus if Φ(0) ≤ 0 then f(0) = Φ(0)−0 ≤ 0

and we must have A∗ ≤ 0 since f is continuous. Similarly, if A∗ ≤ 0 then we must have f(a) ≤ 0

for a ≥ 0 ≥ A∗. Then Φ(0)− 0 = f(0) ≤ 0. This establishes the claim in part (3).

B Proofs of the main results

Proof. Proof of Proposition 1. The lower bound of V (x) can be obtained by the fact that

Xt = xert is an admissible portfolio in A0(x).
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To establish the upper bound, since U is increasing and γ > 0, we have for any X ∈ A0(x)

and n ≥ 1 that

n∑
i=1

E
[
e−βTiU(XTi − γXTi−1)

]
≤

n∑
i=1

E
[
e−βTiU(XTi)

]
≤

n∑
i=1

e−βTi sup
X∈A0(x)

E [U(XTi)]

=

n∑
i=1

e−βTi sup
X∈A0(x)

E
[
Xα

Ti

]
.

But supX∈A0(x) E
[
Xα

Ti

]
is simply the value function of a finite horizon Merton investment problem

with power utility function, maturity Ti and initial wealth of x. The solution is known as

sup
X∈A0(x)

E
[
Xα

Ti

]
= xα exp

[(
rα+

(µ− r)2

2σ2

α

1− α

)
Ti

]
= xαeiτh.

Hence

n∑
i=1

E
[
e−βTiU(XTi − γXTi−1)

]
≤ xα

n∑
i=1

e−(β−h)iτ ≤ e−(β−h)τ

1− e−(β−h)τ
xα

provided that β > h. We deduce

e−(β−h)τ

1− e−(β−h)τ
xα ≥

∞∑
i=1

E
[
e−βTiU(XTi − γXTi−1)

]
= E

[ ∞∑
i=1

e−βTiU(XTi − γXTi−1)

]
. (25)

Here the last equality is justified by Fubini’s theorem where it is easy to see that both
∑∞

i=1 E[e−βTi(U(XTi−

γXTi−1))
+] and

∑∞
i=1 E[e−βTi(U(XTi−γXTi−1))

−] are convergent. The result follows after taking

supremum over X ∈ A0(x) in (25).

Proof. Proof of Theorem 1. For any admissible process X ∈ A0(x), define a discrete-time

stochastic process M = (Mn)n=0,1,2,... via

Mn :=

n∑
i=1

e−βTiU(XTi − γXTi−1) +A∗e−βTnXα
Tn
.

Then

Mn+1 = Mn + e−βTn+1U(XTn+1 − γXTn)−A∗e−βTnXα
Tn

+A∗e−βTn+1Xα
Tn+1

= Mn + e−βTn

[
e−βτ

(
U(XTn+1 − γXTn) +A∗Xα

Tn+1

)
−A∗Xα

Tn

]
and hence

E(Mn+1|FTn) = Mn + e−βTnXα
Tn

[
e−βτE

[
U

(
XTn+1

XTn

− γ

)
+A∗

(
XTn+1

XTn

)α ∣∣∣FTn

]
−A∗

]
.
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Since X ∈ A0(x), ZX is a supermartingale and hence E
[
ZTn+1XTn+1

∣∣∣FTn

]
≤ ZTnXTn . Then

E
[
ZTn+1

ZTn

XTn+1

XTn

∣∣∣FTn

]
≤ 1 and

E
[
U

(
XTn+1

XTn

− γ

)
+A∗

(
XTn+1

XTn

)α ∣∣∣FTn

]
≤ sup

Y ∈LTn,Tn+1
(1)

E
[
U (Y − γ) +A∗Y α

∣∣∣FTn

]
= F (A∗).

(26)

Using the fact that A∗ is the fixed-point of the function Φ(A) = e−βτF (a) such that e−βτF (A∗) =

A∗, we have

E(Mn+1|FTn) ≤ Mn + e−βTnXα
Tn
[e−βτF (A∗)−A∗] = Mn. (27)

Thus M is a {Gn}-supermartingale where Gn := FTn . Then

A∗xα = M0 ≥ E[MTn ] = E

[
n∑

i=1

e−βTiU(XTi − γXTi−1) +A∗e−βTnXα
Tn

]

and hence

E

[
n∑

i=1

e−βTiU(XTi − γXTi−1)

]
≤ A∗xα −A∗E

[
e−βTnXα

Tn

]
≤ A∗xα + e−βTn |A∗| sup

X∈A0(x)
E
[
Xα

Tn

]
= A∗xα + e−(β−h)Tn |A∗|xα.

Here we have used again the fact that supX∈A0(x) E
[
Xα

Tn

]
= xαehTn is the solution to a finite

horizon Merton problem. With β > h, taking limit n → ∞ in conjunction with Fubini’s theorem

leads to

E

[ ∞∑
i=1

e−βTiU(XTi − γXTi−1)

]
≤ A∗xα

and therefore

V (x) = sup
X∈A0(x)

E

[ ∞∑
i=1

e−βTiU(XTi − γXTi−1)

]
≤ A∗xα.

To show the reverse inequality, it is sufficient to demonstrate the existence of some admissible

process X̂ such that E
[∑∞

i=1 e
−βTiU(X̂Ti − γX̂Ti−1)

]
= A∗xα. Note that equality holds in (26)

and in turn (27) under the choice of
XTn+1

XTn
= y∗A∗

(
λ∗
n
ZTn+1

ZTn

)
due to Proposition 3. If A∗ has

value given by Case 1, 2a or 2b in Proposition 3, then λ∗
n is given by the unique solution to the

equation

E
[
ZTn+1

ZTn
y∗A∗

(
λ∗
n

ZTn+1

ZTn

) ∣∣∣FTn

]
= 1.
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But since Z has the form given by (1), the stationary increment property of Brownian motion

implies that

E
[
ZTn+1

ZTn
y∗A∗

(
λ∗
n

ZTn+1

ZTn

) ∣∣∣FTn

]
= E

[
ZT1

ZT0

y∗A∗

(
λ∗
n

ZT1

ZT0

) ∣∣∣FT0

]
= E[Zτy

∗
A∗(λ∗Zτ )]

for all n and λ∗
n = λ∗

1 =: λ∗ where E[Zτy
∗
A∗(λ∗Zτ )] = 1.

Now, define a sequence of random variables recursively as follows:

Hn := Hn−1y
∗
A∗

(
λ∗ ZTn

ZTn−1

)
, n = 1, 2, 3, ...,

with H0 := x. By construction of y∗A∗(·) and λ∗, Hn ∈ F+
Tn

and E[ZTn+1Hn+1|FTn ] ≤ ZTnHn.

Using standard arguments of martingale representation theorem, there exists X̂ ∈ A0(x) such

that X̂Tn = Hn for all n (Note that in Case 3 where y∗A∗(·) ≡ 0, the optimal portfolio value

process is a strict supermartingale which hits zero at time T1 almost surely. Such portfolio can

be replicated by a “doubling down” style strategy where the notional invested in the risky asset

at time t scales inversely with
√
T1 − t. See p.103-104 of Duffie (2001)). Let

M̂n :=
n∑

i=1

e−βTiU(X̂Ti − γX̂Ti−1) +A∗e−βTnX̂α
Tn
.

Using the same arguments leading to (27), we can conclude that

E(M̂n+1|FTn) = M̂n + e−βTnX̂α
Tn
[e−βτF (A∗)−A∗] = M̂n

and hence M̂ is a {Gn}-martingale. Then

E

[
n∑

i=1

e−βTiU(X̂Ti − γX̂Ti−1)

]
= A∗xα −A∗E

[
e−βTnX̂α

Tn

]
from which we can eventually conclude

E

[ ∞∑
i=1

e−βTiU(X̂Ti − γX̂Ti−1)

]
= A∗xα.

Finally, we show that it is impossible to observe −(k
1

1−α +1)1−α < A∗ < −1 and |A∗|−
1

1−α ≤

1−γe−rτ such that y∗A∗(·) cannot have the form given by Case 4 of Proposition 3. Obviously when

γ ≥ erτ there does not exist A∗ compatible with the second condition. But if γ < erτ , then part

(2) of Lemma 3 suggests that A∗ ≥ e−βτU(erτ−γ)

1−e−(β−rα)τ > 0 contradicting the first condition.
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Proof. Proof of Corollary 1. If γ = 0, equation (12) simplifies to

A∗ = e−βτ sup
Y ∈A0(1)

E [(A∗ + 1)Y α
τ ] .

The right hand side of the above expression can be written as e−(β−h)τ (A∗+1)+ since supY ∈A0(1) E [Y α
τ ] =

ehτ is the solution to a finite horizon Merton problem. Hence A∗ = e−(β−h)τ

1−e−(β−h)τ > 0 is the unique

solution to (12) and the corresponding optimizer (the optimal periodic gross return random

variable) Y ∗ has its distribution coinciding with the time-τ value of a Merton portfolio with

unit initial wealth. Using similar arguments in the proof of Theorem 1, one can verify that the

candidate value function V C(x) := e−(β−h)τ

1−e−(β−h)τ x
α is indeed the value function and this can be

attained by the Merton portfolio which is given by (17).

Proof. Proof of Proposition 2. For brevity, in this proof we will write A∗(γ) = A∗(γ, k) if k is

considered as fixed, and A∗(k) = A∗(γ, k) if γ is considered as fixed. For the first part of the

proposition, from Theorem 1,

A∗(γ) = V (1; γ) = sup
X∈A0(1)

E

[ ∞∑
i=1

e−βTiU(XTi − γXTi−1)

]

is decreasing in γ since U is increasing. From part (2) of Lemma 3, if γ ≤ erτ then A∗(γ) ≥
e−βτU(erτ−γ)

1−e−(β−rα)τ ≥ 0 where the last inequality is strict when γ < erτ . To conclude A∗(γ) > 0 for all

γ ≤ erτ , it is sufficient to show A∗(γ = erτ ) > 0. Suppose on contrary that A∗(γ = erτ ) = 0

instead, then by (12) we must have

sup
Y ∈A0(1)

E [U(Yτ − erτ )] = 0.

The left hand side of the above expression is a finite horizon portfolio optimization problem with

S-shaped utility function which is studied in Berkelaar et al. (2004). Write f(y) := U(y − erτ )

and let f̄(y) be the concave majorant of f(y) on y ≥ 0. Then

0 = sup
Y ∈A0(1)

E [f(Yτ )] = sup
Y ∈A0(1)

E
[
f̄(Yτ )

]
≥ f̄(erτ ) > f(erτ ) = 0,

resulting in a contradiction. In the above, the second equality is due to the standard concavi-

fication argument for S-shaped utility maximization problem, the first inequality is due to the

fact that Y = (ert)t≥0 is an admissible portfolio, and the last inequality can be verified easily

using the form of f̄ . Hence A∗(γ = erτ ) > 0 and in turn A∗(γ) > 0 for all γ ≤ erτ .
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It remains to show that A∗(γ) → −∞ as γ → +∞ under k > 0. Using simple calculus, one

can show that for any ξ satisfying ξ > 1 and ξ(1− ξ−
1

1−α )1−α > k, we have ξyα−kγα ≥ U(y−γ)

for all y ≥ 0. Using the definition that A∗ is the fixed-point of Φ(a) = e−βτF (a) where F is

defined in (14), we have

A∗(γ) = Φ(A∗(γ)) = sup
Y ∈L0,τ (1)

e−βτE[U(Y − γ) +A∗(γ)Y α]

≤ e−βτ

[
sup

Y ∈L0,τ (1)
E[U(Y − γ)] + sup

Y ∈L0,τ (1)
E[A∗(γ)Y α]

]

≤ e−βτ

[
sup

Y ∈L0,τ (1)
E[ξY α − kγα] + |A∗(γ)| sup

Y ∈L0,τ (1)
E[Y α]

]
= e−βτ (|A∗(γ)|+ ξ) sup

Y ∈L0,τ (1)
E [Y α]− e−βτkγα

≤ e−βτ

(
e−(β−h)τ

1− e−(β−h)τ
+ ξ

)
ehτ − e−βτkγα → −∞

as γ ↑ +∞ if k > 0, where in the last line we have used part (1) of Lemma 3 and the fact that

supY ∈L0,τ (1) E [Y α] = ehτ is the solution of a finite horizon Merton problem.

Now we prove the second part of the proposition. Similar to part (1), U is decreasing in

k and thus A∗(k) = V (1; k) is decreasing in k. If k = 0, then U is non-negative and as such

A∗(k = 0) ≥ 0. The inequality is indeed straight since X̂ ∈ A0(1) for

X̂t := exp

[(
µ− σ2

2

)
t+ σBt

]

and P(U(X̂Tn − γX̂Tn−1) > 0) = P(X̂Tn − γX̂Tn−1 > 0) = N

(
−

ln γ−
(
µ−σ2

2

)
τ

σ
√
τ

)
> 0 where N(·) is

the cumulative distribution function of a normal random variable.

Suppose γ > erτ . Consider a new utility function Ū defined via

Ū(x) := 1(x≥0)x
α − k|x|α1(−ϵ≤x<0) − kϵα1(x<−ϵ) = U(x)1(x≥−ϵ) − kϵα1(x<−ϵ)

for some 0 < ϵ < γ − erτ . Then Ū ≥ U . Hence

A∗(k) = Φ(A∗(k)) = sup
Y ∈L0,τ (1)

e−βτE[U(Y − γ) +A∗(k)Y α] (28)

≤ sup
Y ∈L0,τ (1)

e−βτE[Ū(Y − γ) +A∗(k)Y α]

= sup
Y ∈L0,τ (1)

e−βτ
(
E[U(Y − γ)1(Y≥γ−ϵ) +A∗(k)Y α]− kϵαP(Y < γ − ϵ)

)
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≤ e−βτ (1 + |A∗(k)|) sup
Y ∈L0,τ (1)

E [Y α]− ke−βτ ϵα inf
Y ∈L0,τ (1)

P(Y < γ − ϵ)

= e−(β−h)τ

(
1 +

e−(β−h)τ

1− e−(β−h)τ

)
− ke−βτ ϵα inf

Y ∈L0,τ (1)
P(Y < γ − ϵ) (29)

where we have used part (2) of Lemma 3 and the fact that supY ∈L0,τ (1) E [Y α] = ehτ . Finally,

the infimum in (29) is equal to 1− supY ∈L0,τ (1) P(Y ≥ γ − ϵ) = 1− supY ∈L0,τ (1) E[1(Y≥γ−ϵ)]. It

can be computed explicitly via martingale duality which involves solving the static optimization

problem supy≥0

(
1(y≥γ−ϵ) − λZτy

)
. The optimizer is given by Y ∗ = (γ − ϵ)1(Zτ<1/(λ(γ−ϵ))) for

some Lagrangian multiplier λ ≥ 0. Note that

g(λ) := E[ZτY
∗] = (γ−ϵ)E[Zτ1(Zτ<1/(λ∗(γ−ϵ)))] = (γ−ϵ)

∫ 1
λ(γ−ϵ)

0

1

|θ|
√
τ
ϕ

 ln v +
(
r + θ2

2

)
τ

|θ|
√
τ

 dv,

where ϕ(·) is the probability density function of a standard normal random variable. Thus g(λ)

is decreasing with g(∞) = 0 and g(0) = (y− ϵ)e−rτ > 1. Hence there exists a unique λ∗ ∈ (0,∞)

such that the budget constraint 1 = E[ZτY
∗] = g(λ∗) is satisfied. Then

inf
Y ∈L0,τ (1)

P(Y < γ − ϵ) = P(Y ∗ < γ − ϵ) = P
(
Zτ ≥ 1

λ∗(γ − ϵ)

)
> 0

and the value does not depend on k. The result follows after sending k → ∞ in (29).

C Optimal portfolio strategy as fraction of wealth invested in

risky asset

In this section, we characterize the optimal portfolio via the fraction of wealth invested in the

risky asset.

Proposition 5. Suppose the optimal solution to problem (4) has the form given by Case 1, 2a

or 2b of Theorem 1, then the optimal proportion of wealth invested in the risky asset at time t,

denoted by π∗
t , is given by

π∗
t = π∗

(
Tn+1 − t,

Zt

ZTn

)
:= −µ− r

σ2

Zt

ZTn

ϑz

(
Tn+1 − t, Zt

ZTn

)
ϑ
(
Tn+1 − t, Zt

ZTn

) , Tn ≤ t < Tn+1, (30)

with

ϑ(s, z) :=

∫ ∞

0
y∗A∗ (λ∗zv)

1

|θ|
√
s
ϕ

 ln v +
(
r + θ2

2

)
s

|θ|
√
s

 dv,
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where y∗A∗(·) and λ∗ are defined in Theorem 1, ϑz(s, z) := ∂
∂zϑ(s, z) and ϕ(·) is the probability

density function of a standard normal random variable. Moreover:

1. If A∗ > 0, π∗(s, z) → µ−r
(1−α)σ2 as z → 0 or z → ∞.

2. If −1 < A∗ ≤ 0, π∗(s, z) → µ−r
(1−α)σ2 as z → 0 and |π∗(s, z)| → +∞ as z → ∞.

3. If A∗ = −1, π∗(s, z) → µ−r
(2−α)σ2 as z → 0 and |π∗(s, z)| → +∞ as z → ∞.

4. −(k
1

1−α + 1)1−α < A∗ < −1, π∗(s, z) → 0 as z → 0 and |π∗(s, z)| → +∞ as z → ∞.

Proof. Proof of Proposition 5. From Theorem 1, the optimal portfolio value process in Case 1,

2a or 2b is given by

X∗
t = Z−1

t E
[
ZTn+1X

∗
Tn
y∗A∗

(
λ∗ZTn+1

ZTn

) ∣∣∣Ft

]
, Tn ≤ t < Tn+1. (31)

Then since Z is an exponential Brownian motion,
ZTn+1

Zt

dist.
= ZTn+1−t which is a log-normal ran-

dom variable independent of Ft with probability density function f(v) = 1

|θ|v
√

Tn+1−t
ϕ

(
ln v+

(
r+ θ2

2

)
(Tn+1−t)

|θ|
√

Tn+1−t

)
.

In turn,

X∗
t = X∗

Tn
E
[
ZTn+1

Zt
y∗A∗

(
λ∗ Zt

ZTn

ZTn+1

Zt

) ∣∣∣Ft

]
= X∗

Tn
E
[
ZTn+1−ty

∗
A∗

(
λ∗ Zt

ZTn

ZTn+1−t

)]
= X∗

Tn
ϑ

(
Tn+1 − t,

Zt

ZTn

)
.

Write ϑ̇(s, z) := ∂
∂sϑ(s, z), ϑz(s, z) :=

∂
∂zϑ(s, z) and ϑzz(s, z) :=

∂2

∂z2
ϑ(s, z). Application of Ito’s

lemma to X∗
Tn
ϑ(Tn+1 − t, Zt

ZTn
) on Tn ≤ t < Tn+1 gives

X∗
t = X∗

Tn
+X∗

Tn

∫ t

Tn

[
−ϑ̇

(
Tn+1 − u,

Zu

ZTn

)
− r

Zu

ZTn

ϑz

(
Tn+1 − u,

Zu

ZTn

)
+

θ2

2

(
Zu

ZTn

)2

ϑzz

(
Tn+1 − u,

Zu

ZTn

)]
du−X∗

Tn

∫ t

Tn

[
θ
Zu

ZTn

ϑz

(
Tn+1 − u,

Zu

ZTn

)]
dBu.

(32)

On the other hand, we can parameterize the self-financing strategy ϕ associated with X∗

via ϕ
(S)
t = πtX

∗
t /St and ϕ

(D)
t = (1 − πt)X

∗
t /Dt for some process π = (πt)t≥0. This leads to the

dynamics

X∗
t = X∗

Tn
+

∫ t

Tn

(r + (µ− r)πu)X
∗
udu+

∫ t

Tn

σπuX
∗
udBu. (33)
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To equate the Brownian motion terms in (33) and (32), we choose

πt = −X∗
Tn

θ

σ

Zt

ZTn

ϑz

(
Tn+1 − t, Zt

ZTn

)
X∗

t

= −µ− r

σ2

Zt

ZTn

ϑz

(
Tn+1 − t, Zt

ZTn

)
ϑ
(
Tn+1 − t, Zt

ZTn

)
on Tn ≤ t < Tn+1.

By definition,

E
[
ZTn+1y

∗
A∗

(
λ∗ZTn+1

ZTn

) ∣∣∣Ft

]
= Ztϑ

(
Tn+1 − t,

Zt

ZTn

)
=: Ψ(t, Zt)

and hence the process on the right hand side must be a martingale. Apply Ito’s lemma to

Ψ(t, Zt) and set the drift term to zero, we get (where the arguments in Ψ and ϑ are suppressed

for brevity)

0 = Ψ̇− rZtΨz +
θ2

2
Z2
t Ψzz = −Ztϑ̇− rZt

(
ϑ+

Zt

ZTn

ϑz

)
+

θ2

2
Z2
t

(
2

ZTn

ϑz +
Zt

Z2
Tn

ϑzz

)

= Zt

[
−ϑ̇− rϑ+

(
θ2

Zt

ZTn

− r
Zt

ZTn

)
ϑz +

θ2

2

Z2
t

Z2
Tn

ϑzz

]
and therefore

−ϑ̇− r
Zt

ZTn

ϑz +
θ2

2

(
Zt

ZTn

)2

ϑzz = rϑ− θ2
Zt

ZTn

ϑz = (r + (µ− r)πt)
X∗

t

X∗
Tn

.

The above expression allows us to conclude that the drift terms of (33) and (32) are identical

under our choice of πt.

Now we prove the asymptotic results of π(s, z). Suppose we are in Case 1 (A∗ > 0) such that

y∗A∗(q) =


I2(q), 0 < q ≤ m1;

I1(q), q > m1,

as per Theorem 1. Recall that I2 = I2(q) : (0,m1] → [c2γ,∞) is the inverse to G′
A∗(y) =

α[(y − γ)α−1 + A∗yα−1] on y ∈ [c2γ,∞), and I1 = I1(q) : (m1,∞) → (0, c1γ) is the inverse to

G′
A∗(y) = α[k(γ − y)α−1 + ayα−1] = q on y ∈ (0, c1γ). It is easy to verify that

lim
q→0

[
G′

A∗(I2(q))−G′
A∗([α(A∗ + 1)]

1
1−α q−

1
1−α )

]
= lim

q→0

[
q −G′

A∗([α(A∗ + 1)]
1

1−α q−
1

1−α )
]
= 0

from which we deduce limq→0 q
1

1−α I2(q) = [α(A∗ + 1)]
1

1−α using the continuity of G′
A∗(y) on

y ≥ c2γ. This in turn gives

lim
q→0

G′′
A∗(I2(q))

q
2−α
1−α

= lim
q→0

α(α− 1)[(I2(q)− γ)α−2 +A∗I2(q)
α−2]

q
2−α
1−α
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= lim
q→0

α(α− 1)[(q
1

1−α I2(q)− γq
1

1−α )α−2 +A∗(q
1

1−α I2(q))
α−2]

= (α− 1)[α(A∗ + 1)]−
1

1−α

such that

lim
q→0

q
2−α
1−α I ′2(q) = lim

q→0

(
G′′

A∗(I2(q))

q
2−α
1−α

)−1

=
[α(A∗ + 1)]

1
1−α

α− 1
.

Likewise, we can deduce

lim
q→∞

q
1

1−α I1(q) = (αA∗)
1

1−α , lim
q→∞

q
2−α
1−α I ′1(q) =

(αA∗)
1

1−α

α− 1
.

Now,

lim
z→0

(λ∗z)
1

1−αϑ(s, z) = lim
z→0

(λ∗z)
1

1−αE[Zs

(
I2 (λ

∗Zsz)1(λ∗Zsz≤m1) + I1 (λ
∗Zsz)1(λ∗Zsz>m1)

)
]

= lim
z→0

E[Z
− α

1−α
s (λ∗Zsz)

1
1−α I2 (λ

∗Zsz))1(λ∗Zsz≤m1)]

+ lim
z→0

E[Z
− α

1−α
s (λ∗Zsz)

1
1−α I1 (λ

∗Zsz))1(λ∗Zsz>m1)]

= E[Z
− α

1−α
s lim

z→0
(λ∗Zsz)

1
1−α I2 (λ

∗Zsz)] + 0

= [α(A∗ + 1)]
1

1−αE[Z
− α

1−α
s ]

by dominated convergence theorem. Meanwhile,

ϑz(s, z) =
∂

∂z

{∫ m1
λ∗z

0
vI2(λ

∗zv)f(v)dv +

∫ ∞

m1
λ∗z

vI1(λ
∗zv)f(v)dv

}

with f(v) := 1
|θ|v

√
s
ϕ

(
ln v+

(
r+ θ2

2

)
s

|θ|
√
s

)
being the probability density function of Zs. Note that

∫ m1
λ∗z

0
vI2(λ

∗zv)f(v)dv =

∫ m1

0

q

(λ∗z)2
I2(q)f

( q

λ∗z

)
dq

and hence Fubini’s theorem gives

∂

∂z

[∫ m1
λ∗z

0
vI2(λ

∗zv)f(v)dv

]

= − 1

z(λ∗z)2

{
2

∫ m1

0
qI2(q)f

( q

λ∗z

)
dq +

∫ m1

0

q2I2(q)

λ∗z
f ′
( q

λ∗z

)
dq

}
= − 1

z(λ∗z)2

{
m2

1I2(m1)f
(m1

λ∗z

)
− lim

q→0
q2I2(q)f

( q

λ∗z

)
−
∫ m1

0
q2I ′2(q)f

( q

λ∗z

)
dq

}
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where we have used integration by part, and the second term vanishes using the fact that I2(q) ∝

q−1/(1−α) for small q. Then

(λ∗z)
1

1−α z
∂

∂z

[∫ m1
λ∗z

0
vI2(λ

∗zv)f(v)dv

]

= −m1(λ
∗z)

α
1−α

m1

λ∗z
f
(m1

λ∗z

)
I2(m1) + (λ∗z)

1
1−α

−2
∫ m1

0
q2I ′2(q)f

( q

λ∗z

)
dq

= −m1(λ
∗z)

α
1−α

m1

λ∗z
f
(m1

λ∗z

)
I2(m1) +

∫ m1
λ∗z

0
v−

α
1−α (λ∗zv)

2−α
1−α I ′2(λ

∗zv)f(v)dv.

The first term converges to zero as z → 0. Recall limq→0 q
2−α
1−α I ′2(q) = [α(A∗+1)]

1
1−α

α−1 . For any

ϵ > 0, there exits δ > 0 arbitrarily small such that |q
2−α
1−α I ′2(q) −

[α(A∗+1)]
1

1−α

α−1 | < ϵ for q < δ. If

we choose δ < m1, then∫ m1
λ∗z

0
v−

α
1−α (λ∗zv)

2−α
1−α I ′2(λ

∗zv)f(v)dv

≤

(
[α(A∗ + 1)]

1
1−α

α− 1
+ ϵ

)∫ δ
λ∗z

0
v−

α
1−α f(v)dv + (λ∗z)

1
1−α

−2
∫ m1

δ
q2I ′2(q)f

( q

λ∗z

)
dq

=

(
[α(A∗ + 1)]

1
1−α

α− 1
+ ϵ

)∫ δ
λ∗z

0
v−

α
1−α f(v)dv + (λ∗z)

α
1−α

∫ m1

δ

qI ′2(q)

|θ|
√
s
ϕ

 ln q
λ∗z +

(
r + θ2

2

)
s

|θ|
√
s

 dq

→

(
[α(A∗ + 1)]

1
1−α

α− 1
+ ϵ

)∫ ∞

0
v−

α
1−α f(v)dv

as z → 0 since the second term vanishes due to dominated convergence theorem. Following the

same derivation, we can also show that

lim
z→0

∫ m1
λ∗z

0
v−

α
1−α (λ∗zv)

2−α
1−α I ′2(λ

∗zv)f(v)dv ≥

(
[α(A∗ + 1)]

1
1−α

α− 1
− ϵ

)∫ ∞

0
v−

α
1−α f(v)dv.

As ϵ is arbitrary, we conclude

lim
z→0

(λ∗z)
1

1−α z
∂

∂z

[∫ m1
λ∗z

0
vI2(λ

∗zv)f(v)dv

]
=

[α(A∗ + 1)]
1

1−α

α− 1

∫ ∞

0
v−

α
1−α f(v)dv

=
[α(A∗ + 1)]

1
1−α

α− 1
E[Z

− α
1−α

s ].

Similarly, we can deduce

(λ∗z)
1

1−α z
∂

∂z

[∫ ∞

m1
λ∗z

vI1(λ
∗zv)f(v)dv

]

= m1(λ
∗z)

α
1−α

m1

λ∗z
f
(m1

λ∗z

)
I1(m1) +

∫ ∞

m1
λ∗z

v−
α

1−α (λ∗zv)
2−α
1−α I ′1(λ

∗zv)f(v)dv → 0
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as z → 0 using the fact that limq→∞ q
2−α
1−α I ′1(q) =

(αA∗)
1

1−α

α−1 . Therefore,

π∗(s, z) = −µ− r

σ2

zϑz(s, z)

ϑ(s, z)
= −µ− r

σ2

(λ∗z)
1

1−α zϑz(s, z)

(λ∗z)
1

1−αϑ(s, z)
→ µ− r

(1− α)σ2

as z → 0. The result for z → ∞ can be obtained similarly.

For Case 2a, suppose for now A∗ ̸= −1. Then the limiting result for z → 0 follows from the

same argument in Case 1. To show the result for z → ∞, by following a similar derivation in

Case 1 we can write

zϑz(s, z)

ϑ(s, z)
=

(λ∗z)
1

1−α zϑz(s, z)

(λ∗z)
1

1−αϑ(s, z)

=
−m2(λ

∗z)
α

1−α m2
λ∗zf

(
m2
λ∗z

)
I2(m2) +

∫ m2
λ∗z
0 v−

α
1−α (λ∗zv)

2−α
1−α I ′2(λ

∗zv)f(v)dv∫ m2
λ∗z
0 v−

α
1−α (λ∗zv)

1
1−α I2(λ∗zv)f(v)dv

= −
m2(λ

∗z)
α

1−α m2
λ∗zf

(
m2
λ∗z

)
I2(m2)∫ m2

λ∗z
0 v−

α
1−α (λ∗zv)

1
1−α I2(λ∗zv)f(v)dv

+

∫ m2
λ∗z
0 v−

α
1−α (λ∗zv)

2−α
1−α I ′2(λ

∗zv)f(v)dv∫ m2
λ∗z
0 v−

α
1−α (λ∗zv)

1
1−α I2(λ∗zv)f(v)dv

.

The second term converges to 1/(α− 1) as z → ∞ due to the fact that q1/(1−α)I2(q) → α(A∗ +

1)
1

1−α and q
2−α
1−α I ′2(q) →

[α(A∗+1)]
1

1−α

α−1 for small q. To show that the first term is diverging to −∞

when z → ∞, it is sufficient to show

(λ∗z)
α

1−α m2
λ∗zf

(
m2
λ∗z

)
∫ m2

λ∗z
0 v−

α
1−α f(v)dv

=

(λ∗z)
α

1−αϕ

(
ln

m2
λ∗z+

(
r+ θ2

2

)
s

|θ|
√
s

)
∫ m2

λ∗z
0 v−

1
1−αϕ

(
ln v+

(
r+ θ2

2

)
s

|θ|
√
s

)
dv

diverges to +∞. This can be verified by an application of L’Hôpital’s rule. In the corner case of

A∗ = −1, I2(q) and I ′2(q) have slightly different asymptotic behaviors near q = 0 given by

lim
q→0

q
1

2−α I2(q) = [αγ(1− α)]
1

2−α , lim
q→0

q
3−α
2−α I ′2(q) =

[αγ(1− α)]
1

2−α

α− 2
.

The limiting result for z → 0 can be computed by following the same procedure in Case 1, but

the answer is different now since the ratio of the above two values becomes α−2 instead of α−1.

Finally, in Case 2b we have

y∗a(q) =


I2(q), 0 < q ≤ m2;

0, q > m2,
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where I2 = I2(q) : (0,m2] → [c3γ,
γ

1−|A∗|−1/(1−α) ) is the inverse to G′
A∗(y) = α[(y − γ)α−1 +

A∗yα−1] = q on y ∈ [c3γ,
γ

1−|A∗|−1/(1−α) ). Then both I2(q) and I ′2(q) = 1/G′′
A∗(I2(q)) are bounded

on 0 < q ≤ m2, and in particular I2 is bounded away from zero. We thus have

ϑ(s, z) = E[ZsI2(λ
∗Zsz)1(λ∗Zsz≤m2)] →

γE(Zs)

1− |A∗|−1/(1−α)
> 0

and

zϑz(s, z) = − 1

(λ∗z)2

{
m2

2I2(m2)f
(m2

λ∗z

)
−
∫ m2

0
q2I ′2(q)f

( q

λ∗z

)
dq

}
= − 1

(λ∗z)2
m2

2I2(m2)f
(m2

λ∗z

)
+ λ∗z

∫ m2
λ∗z

0
v2I ′2(λ

∗zv)f(v)dv → 0

as z → 0 using dominated convergence theorem, and hence limz→0 π(s, z) = 0. For the diverging

result with z → ∞, note that

zϑz(s, z)

ϑ(s, z)
=

− 1
(λ∗z)2m

2
2I2(m2)f

(
m2
λ∗z

)
+ λ∗z

∫ m2
λ∗z
0 v2I ′2(λ

∗zv)f(v)dv∫ m2
λ∗z
0 vI2(λ∗zv)f(v)dv

.

The boundedness of I2 and I ′2 implies

zϑz(s, z)

ϑ(s, z)
≥ −K1

(
m2
λ∗z

)2
f
(
m2
λ∗z

)
∫ m2

λ∗z
0 vf(v)dv

+K2λ
∗z

∫ m2
λ∗z
0 v2f(v)dv∫ m2
λ∗z
0 vf(v)dv

= −K1

(
m2
λ∗z

)
ϕ

(
ln

m2
λ∗z+

(
r+ θ2

2

)
s

|θ|
√
s

)
∫ m2

λ∗z
0 ϕ

(
ln v+

(
r+ θ2

2

)
s

|θ|
√
s

)
dv

+K2λ
∗z

∫ m2
λ∗z
0 vϕ

(
ln v+

(
r+ θ2

2

)
s

|θ|
√
s

)
dv

∫ m2
λ∗z
0 ϕ

(
ln v+

(
r+ θ2

2

)
s

|θ|
√
s

)
dv

for some positive constants K1 and K2 independent of z. The result follows from L’Hôpital’s

rule that the first term diverges to −∞ and the second term converges to some constant as

z → ∞.

Under the Black-Scholes economy, there is a one-to-one correspondence between the price

of the risky asset and the pricing kernel Z because both variables depend on the underlying

Brownian motion B in a one-to-one manner. It is therefore also possible to express the optimal

portfolio weight in Proposition 5 as a function of time and ln(St/STn) the running log-return of

the risky asset measured in the current the evaluation period, as we did in Figure 3 and 5.

53



D Variant of the model with an option to early retire

To capture the possibility of early retirement, we now consider a variation of the model that the

agent can choose to quit trading at the beginning of each accounting period after receiving the

reward from the previous period. The flow of utilities will stop after the declaration of retirement.

Let T be the set of FTn-stopping times valued in {0, 1, 2, ...} ∪ {+∞}. A choice of O ∈ T

where {O ≤ n} ∈ FTn means that the agent opts to retire at the end of the Oth period. The

special case of O = 0 refers to the decision that the agent does not take the trading job from the

outset. The optimization problem with the retirement option can be stated as

V R(x) := sup
X∈A0(x),O∈T

E

[
O∑
i=1

e−βTiU(XTi − γXTi−1)

]
. (34)

Theorem 2. For problem (34), the value function is given by

V R(x) = max(A∗xα, 0),

where A∗ is the fixed-point of Φ(·). Furthermore:

1. If A∗ ≤ 0, then O = 0 is optimal, i.e. the agent will not take the trading job right from the

beginning.

2. If A∗ ≥ 0, then O = ∞ is optimal where the agent will take the job and never retire. The

optimal portfolio value process is given by either Case 1 (when A∗ > 0) or Case 2a (when

A∗ = 0) of Theorem 1.

In the corner case of A∗ = 0, the agent is indifferent between the above two strategies.

The proof is presented at the end of this section. If the agent strictly prefers participation

in trading from the beginning (i.e. A∗ > 0), then he must be trading according to Case 1

of Theorem 1 under which the periodic gross return random variable is strictly positive. This

in turn completely eliminates the long-term portfolio ruin risk described by Corollary 2. The

retirement option serves as a self-screening tool where an agent who finds himself unsuitable

for trading (for example, due to his loss aversion or lack of confidence to meet the performance

target) can opt to quit the job, rather than forcing himself to take excessive risk to meet the

investment goal which eventually is detrimental to both the agent and the principal.

One further extension to the model with early retirement is to assume the agent will receive

some outside reservation value R at the time of retirement which can be positive (e.g. the present
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value of jobseeker’s allowance) or negative (e.g. the loss of employee’s perks or the psychological

displeasure from leaving a professional sector). The optimization problem can then be stated as

sup
X∈A0(x),O∈T

E

[
O∑
i=1

e−βTiU(XTi − γXTi−1) +Re−βTO

]
. (35)

It is challenging to solve (35) completely and the optimal retirement and portfolio strategy can

no longer be inferred from Theorem 1 since the retirement decision should now depend on the

current portfolio value. Nonetheless, it is clear that the degenerate strategy of intentionally

depleting the portfolio value to zero in the first period (Case 3 of Theorem 1) will not occur

provided that R ≥ 0 since it is strictly dominated by the strategy of retiring at time zero.

Proof. Proof of Theorem 2. Denote by V C(x) := max(A∗xα, 0) the candidate value function of

problem (34). Our goal is to show that V R(x) = V C(x).

For any admissible process X ∈ A0(x), define M = (Mn)n=0,1,2,... as

Mn :=

n∑
i=1

e−βTiU(XTi − γXTi−1) + e−βTnV C(XTn),

and for any O ∈ T define Q = (Qn)n=0,1,2 via Qn := Mmin(n,O). Here Q is referring the process

M stopped at the stopping time O.

Now,

Qn+1 −Qn = 1(O≥n+1)[Mn+1 −Mn]

= 1(O≥n+1)

[
e−βTn+1U(XTn+1 − γXTn)− e−βTnV C(XTn) + e−βTn+1V C(XTn+1)

]
= 1(O≥n+1)

{
e−βTn

[
e−βτ

(
U(XTn+1 − γXTn) + V C(XTn+1)

)
− V C(XTn)

]}
and, by using similar arguments in the proof of Theorem 1, we have

E[Qn+1|FTn ]−Qn

= 1(O≥n+1)E
{
e−βTn

[
e−βτ

(
U(XTn+1 − γXTn) + max(A∗, 0)Xα

Tn+1

)
−max(A∗, 0)Xα

Tn

] ∣∣∣FTn

}
= 1(O≥n+1)

{
e−βTnXα

Tn

[
e−βτE

[
U

(
XTn+1

XTn

− γ

)
+max(A∗, 0)

(
XTn+1

XTn

)α ∣∣∣FTn

]
−max(A∗, 0)

]}
≤ 1(O≥n+1)

{
e−βTnXα

Tn

[
e−βτ sup

Y ∈LTn,Tn+1
(1)

E
[
U (Y − γ) + max(A∗, 0)Y α

∣∣∣FTn

]
−max(A∗, 0)

]}

= 1(O≥n+1)e
−βTnXα

Tn
[Φ(max(A∗, 0))−max(A∗, 0)].
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If A∗ > 0, then Φ(max(A∗, 0))−max(A∗, 0) = A∗−A∗ = 0. If A∗ ≤ 0, then Φ(max(A∗, 0))−

max(A∗, 0) = Φ(0) ≤ 0 using part (3) of Lemma 3. We conclude Φ(max(A∗, 0))−max(A∗, 0) ≤ 0

and as such E[Qn+1|FTn ]−Qn ≤ 0. Hence Q is a {Gn}-supermartingale where Gn := FTn . Then

V C(x) = Q0 ≥ E[Qn] = E

min(n,O)∑
i=1

e−βTiU(XTi − γXTi−1) + e−βTmin(n,O)V C(XTmin(n,O)
)

 .

We deduce

E

min(n,O)∑
i=1

e−βTiU(XTi − γXTi−1)

 ≤ V C(x)− E
[
e−βTmin(n,O)V C(XTmin(n,O)

)
]
≤ V C(x) (36)

since V C is non-negative. The random variable |
∑min(n,O)

i=1 e−βTiU(XTi − γXTi−1)| is dominated

by
∑∞

i=1 e
−βTi |U(XTi − γXTi−1)| and it is easy to show that the latter is integrable using similar

arguments in the proof of Proposition 1. Sending n ↑ ∞ under dominated convergence theorem

and then taking supremum over X ∈ A0(x) and O ∈ T in (36) gives

V R(x) = sup
X∈A(x),O∈T

E

[
O∑
i=1

e−βTiU(XTi − γXTi−1)

]
≤ V C(x).

V R(x) ≥ V C(x) will hold if we can demonstrate the existence of admissible O and X such

that E
[∑O

i=1 e
−βTiU(XTi − γXTi−1)

]
= max(A∗, 0)xα. If A∗ ≤ 0, then the choice of O∗ = 0

clearly attains the above equality. Else if A∗ ≥ 0, we can choose O∗ = ∞ and X∗ according to

the strategy in Theorem 1 where the attained value function is A∗xα.

E Extended model with random horizon and terminal utility

There is a strand of behavioral models which assume the agent derives utilities not only from

the gains-and-losses but also from the terminal wealth (e.g. Kőszegi and Rabin (2006)). This

can be incorporated within our model by modifying (4) as

Ṽ (x) := sup
X∈A0(x)

E

[
N∑
i=1

e−βTiU(XTi − γXTi−1) + e−βTNUB(XTN
)

]
, (37)

where N > 0 represents the terminal horizon (in terms of number of periods) and UB(·) is a

utility function associated with the terminal wealth. Practically, the bequest term in (37) can

capture the severance pay to the agent upon termination of his job. Our baseline framework (4)

is recovered upon setting N → +∞ and UB(·) = 0. Although it is more challenging to study
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(37) due to the finite horizon nature of the problem, analytical progress can still be made under

a particular specification.

Suppose UB(y) = ωU(y) = ωyα on y ≥ 0, where ω ≥ 0 is a constant representing the

weight attached to the bequest term. We further assume N is an independent geometric random

variable with parameter p ∈ (0, 1) such that P(N = i) = p(1 − p)i and P(N ≥ i) = (1 − p)i for

i ∈ {0, 1, 2, ...}. p reflects the probability that the agent is dismissed at the beginning of each

period. The objective function can be written as

J̃(x) := E

[
N∑
i=1

e−βTiU(XTi − γXTi−1) + ωe−βTNU(XTN
)

]

= E

{ ∞∑
i=1

e−βTi
[
(U(XTi − γXTi−1)1(N≥i) + ωU(XTi)1(N=i)

]}

= E

{ ∞∑
i=1

e−βiτ
[
(U(XTi − γXTi−1)(1− p)i + ωU(XTi)p(1− p)i

]}

= E

{ ∞∑
i=1

e−(β+ν)iτ
[
(U(XTi − γXTi−1) + pωU(XTi)

]}
,

where we have used the assumption thatN is independent of the underlying Brownian motion and

we have set ν := 1
τ ln

1
1−p . Following the same intuitions in Section 3, the dynamic programming

equation (10) now becomes

Ṽ (x) = sup
X∈A0(x)

E
[
e−(β+ν)T1 [U(XT1 − γx) + pωU(XT1)] + e−(β+ν)T1 Ṽ (XT1)

]
. (38)

We expect the scaling property still holds such that Ṽ (x) = Ãxα for some constant Ã to be

identified. Then the equation for Ã becomes

Ã = sup
Y ∈A0(1)

E
[
e−(β+ν)τ [U(Yτ − γ) + pωY α

τ ] + ÃY α
τ

]
= e−(β+ν)τ sup

Y ∈A0(1)
E
[
U(Yτ − γ) + (pω + Ã)Y α

τ

]
. (39)

The unknown Ã can now be solved from (39) by using a similar idea of fixed-point iteration as

in our baseline problem. Consider a family of optimization problems

F̃ (a) := F (a+ pω) = sup
Y ∈F+

τ

E [Ga+pω(Y )] subject to E(ZτY ) ≤ 1, (40)

where G and F are defined in (13) and (14) respectively. We can show that the map a →

e−(β+ν)τ F̃ (a) =: Φ̃(a) is a contraction based on a trivial extension of Proposition 4. Then Φ̃
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admits a unique fixed-point which characterizes Ã. The optimality of the value function can be

justified by a verification theorem using similar arguments in the proof of Theorem 1.

Once Ã is characterized, the optimal portfolio gross return random variable Ỹ ∗ can be iden-

tified by studying the maximizer in (39). The range of Ã+ pω distinguishes the form of Ỹ ∗ as in

Theorem 1 and Proposition 3. The results are summarized by the following theorem where the

full proof is omitted.

Theorem 3. Consider problem (37) under UB(y) = ωyα for ω ≥ 0, and N has a probability

mass function of P(N = i) = p(1− p)i with p ∈ (0, 1) for i ∈ {0, 1, 2, ...} which is independent of

the underlying Brownian motion. The corresponding value function is Ṽ (x) = Ãxα where Ã is

the unique fixed-point of a → e−(β+ν)τ F̃ (a) with ν := 1
τ ln

1
1−p and F̃ (·) is defined in (40). The

optimal portfolio value process X̃∗ at time Ti is given by

X̃∗
Ti

= X̃∗
Ti−1

y∗
Ã+pω

(
λ̃∗ ZTi

ZTi−1

)
, i = 1, 2, ......,

with X̃∗
T0

= x, and the function y∗a(·) is given by Proposition 3. y∗
Ã+pω

(·) has four possible forms

depending on the value of Ã + pω as per Case 1, 2a, 2b and 3 of Proposition 3 (Case 4 cannot

occur). In Case 1, 2a and 2b, λ̃∗ > 0 is the unique solution to the equation E[Zτy
∗
Ã+pω

(λ̃∗Zτ )] =

1.

An interesting question is how the presence of the terminal utility term affects the optimal

portfolio. The following lemma sheds some lights in this direction.

Lemma 4. Let Ã(ω) be the value of Ã in Theorem 3 as a function of ω while all other model

parameters are fixed. Then Ã(ω) is increasing in ω.

Proof. Proof of Lemma 4. It is not hard to see that Φ̃(a) is bounded from below by a constant.

Thus Φ̃(a) must cross the identity function only once from the above at a = Ã. As p > 0,

Φ̃(a) = F (a+ pω) is increasing in ω and hence Ã = Ã(ω) is increasing in ω as well.

For ω2 > ω1 > 0, Lemma 4 suggests that Ã(ω2) ≥ Ã(ω1) ≥ Ã(0) = A∗ and in turn Ã(ω2) +

pω2 > Ã(ω1) + pω1 > A∗. As in the discussion of Section 4.2, the solution behavior transits in

the order of Case 1, 2a, 2b and 3 as Ã + pω gradually decreases. Hence an increase in ω will

push the solution regime towards Case 1. Informally speaking, the inclusion of a bequest term

helps reduce excessive risk taking in the bad states of the world and discourage underinvestment
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in the good states of the world. This is not too surprising as the presence of the terminal utility

makes the agent behave more in line with the predictions of a neoclassical model.
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