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Abstract 
Deformations of the great vessels during the cardiac cycle are characterised by 

simultaneous dilatation and elongation. Congenital conditions, vascular diseases or natural 

ageing often affect the great vessels, and stents and stent-graft devices are required to 

restore the proper cardiovascular function. However, these devices are generally highly stiff 

and not designed to replicate the physiological dynamics of healthy vessels.  

This PhD project aims at investigating the properties of auxetic structures to design stents 

that can mimic the great vessels’ physiological deformations. These structures differ from 

standard materials and provide unusual mechanical properties thanks to their negative 

Poisson’s ratios.  

The project focused on three different auxetic cellular configurations that are suitable for 

adaptation to tubular cellular structures and are reported to exhibit highly negative Poisson’s 

ratios: re-entrant hexagonal honeycomb, double-arrowhead shape and hexachiral shape. 

This has required the derivation and validation of new analytical models, filling the gaps in 

the current description. The effect of the possible changes in the characteristic geometric 

parameters defining each auxetic configuration over the mechanical response of the tubular 

structure to circumferential expansion, axial tension and twisting was analysed analytically 

and by finite element modelling. The different ranges of Poisson’s ratios, Young’s moduli and 

shear moduli for all three configurations are presented in a consistent unified nomenclature. 

This allows a direct comparison between the available options, simplifying the selection on 

the most suitable auxetic structure. Comparison to clinical data confirms that auxetic 

configurations can be leveraged to mimic the range of physiological dynamics of the great 

vessels. In the context of stents and stent-grafts, this may contribute to enhance their 

physiological behaviour and long-term outcomes, by restoring more natural vessel dynamics 

and reducing late complications. 
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1. Introduction  

1.1 Introduction 

Biomedical engineering is a rapidly growing field where new technologies are constantly 

developing to answer challenges in modern medicine. One of these big challenges is 

cardiovascular disease, the leading cause of mortality and morbidity globally [1]. Ageing, 

congenital conditions and vascular disease resulting in decreased cardiac capacity and 

health complications affect large proportions of the population, and the cardiovascular 

burden is likely to increase further in the future. Widely used devices to treat the most 

common cardiovascular diseases are stents, metallic wire-meshes that act like scaffolds to 

maintain the vessels open. Despite their several applications, stents are generally not 

designed to restore the dynamic patterns of the vessels, which in normal healthy conditions 

can exhibit quite large motions with simultaneous elongation and circumferential expansion, 

especially in the case of the great vessels. Most common materials and structures do not 

replicate this behaviour; instead, elongation in one direction causes contraction in the other. 

Auxetic materials and structures have emerged over the last few decades as a novel 

material class that exhibits the unusual property of simultaneous elongation in two or more 

orthogonal directions when stretched along one of the directions. Attempts at designing 

stents that leverage auxetic structures have been made, but the gap of knowledge in 

auxetics structure behaviour for cardiovascular applications remains wide. To help bridge 

this gap, this PhD project provides guidance on auxetics structures from the stent design 

perspective, whilst enhancing our knowledge on the general mechanical behaviour of these 

structures. It has so far resulted in one publication, “Elastic Properties of 2D Auxetic 

Honeycomb Structures—A Review” in Applied Materials Today from Chapter 3, and one 

further in process with the working title “Models for the elastic deformation of auxetic double 

arrowhead honeycombs for planar and tubular structures” from Chapter 4, as well as the 

potential of a publication covering the membrane investigation in Chapter 9. It has also 

resulted in two presentations on the topics so far, one at the 10th International Conference 

Auxetics and other materials and models with “negative” characteristics and 15th 

International Workshop Auxetics and related systems, September 2019 in Poznan, titled 

“Using auxetic structures for stents”, and one at the 9th World Congress of Biomechanics, 

July 2022 Taipei, titled “Auxetic structural properties for use in cardiovascular stents”.  

1.2 Scope of PhD, research question, aims, 
The aim of this thesis is to explore the use of auxetic structures in cardiovascular stent 

design. These structures could be used to improve the dynamic performance of 
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cardiovascular stents, resulting in better hemodynamics and long-term outcomes to the 

benefit of the patients.  

The main objectives of this project can be summarised as follows: 

- To review the literature and identify which auxetic structures may be 

suitable for use in the design of cardiovascular stents  

Among previously described auxetic structures, to identify those theoretical elastic 

properties warranting further investigation for their behaviour in tubular, stent-like 

configurations.  

- To develop analytical expressions to investigate the elastic mechanical 

behaviour of auxetic structures of interest that lack current comprehensive 

equations 

In particular, the double arrowhead structure has no derived expressions for shear 

modulus that can be readily found in the literature.  

- To undertake a numerical analysis of the effect of the geometric 

parameters on the main auxetic structures in order to compare their features in 

the context of tubular structures for practical applications 

To test different configurations and assess the resulting elastic properties in order to 

increase the information available for stent design applications.  

- To identify exemplar practical applications and suggestions for the 

development of a stent design, by leveraging suitable auxetic structures.   

 

1.3 Outline of this thesis 
 

Here in Chapter 1: Introduction, we present the remainder of this thesis which is organised 

as follows:  

Chapter 2: Clinical Background, provides a general overview of the project 

background, from the clinical perspective, by introducing cardiovascular disease, and the 

anatomy, physiology and common pathologies of the heart, with focus on relevant 

mechanisms. Further insight into available types of treatment and in particular stents is 

provided. Finally stent design is discussed to provide a framework for the following chapters. 

Chapter 3: Introduction to Auxetics, provides an introduction to auxetics, together 

with an in-depth analysis of available auxetic configurations and the selection of those that 

may find potential use in cardiovascular stent design, to be further studied.  

Chapter 4: New analytical model, introduces the development of a new analytical 

method for examining the elastic mechanical behaviour of the double-arrowhead structure, 

presenting expressions for the Poisson’s ratio, Young’s moduli and shear modulus.  
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Chapter 5: Analytical Method, introduces the analytical method used for analysis of 

tubular structures, comparing three selected auxetic structures, implemented from literature 

or developed in the previous chapter and converted for tubular structures.  

Chapter 6: Numerical Method, introduces the numerical method used for analysis 

of the tubular structures of Chapter 5, discussing finite element modelling, boundary 

conditions and deformation mechanisms.  

Chapter 7: Results, shows the results obtained from the analysis of the tubular 

structures, both from the analytical and numerical investigations. 

Chapter 8: Discussion, discusses the results obtained above and analyses the 

limitations of the study: both the differences between analytical and numerical results, and 

the limitations to consider when trying to implement this in practical device design are 

examined. 

Chapter 9: Comments on Practical Stent Design, relates to the intended clinical 

applications, and how the knowledge obtained can result in stent designs using auxetic 

structures, demonstrating the implementation of the acquired knowledge. 

Chapter 10: Conclusion, summarises the work done in this thesis and outlines 

interesting research avenues for the future.  

 



19 
 

2. Background: Clinical Problem 

Cardiovascular disease is one of the leading causes of death in the modern world [1], and, 

together with a decrease in life expectancy, is often the cause for a reduction in the quality of 

life for patients affected by this disease and their family, bearing important social costs. The 

source of cardiovascular disease ranges from congenital malformations to lifestyle related 

diseases and ageing, with a multitude of other different possible factors and triggers. With 

the increase in medical knowledge and technology available to the health care system, 

conditions that previously were fatal can now be treated. This means that people now live 

with an increasing range of diseases for a longer time and improving their quality of life is 

imperative to advancing modern health care. In the U.K. alone, 7.6 million people are living 

with heart and circulatory diseases [2]. Globally, it is estimated that 550 million people 

worldwide are living with heart and circulatory diseases, and 34% of global death can be 

attributed to these [3]. 16% of the world’s total deaths are related with ischaemic, or 

coronary, heart disease [4]. Stroke or cerebrovascular disease is the second most common 

cause for death worldwide, with 11% of total deaths, followed by chronic pulmonary disease 

with approximately 6% [4]. In the U.K. an average of 13 babies per day are diagnosed with a 

congenital heart defect [2], and globally an average of 3 300 per day, causing at least 

220 000 deaths globally each year, the majority before the first birthday [3]. Cardiovascular 

disease is also associated with highly increased risk of vascular cognitive impairment and 

vascular dementia, caused by ischaemic damage to the blood vessels of the brain, with 

people with a family history of coronary disease significantly more likely to develop vascular 

dementia [2]. This manifests differently depending on the region where the damage is 

located and its severity. In the U.K., vascular dementia is recognised to be the second most 

common type of dementia after Alzheimer’s, reported in up to 1 in 5 cases, and it is also 

suspected to be underdiagnosed due to difficulties diagnosing its different forms [2]. 

2.1 Heart and great vessels  

The heart,  

Figure 1, can be divided into the right and left side, where the right side collects the de-

oxygenized blood from the body via the superior and inferior vena cava in the right atrium. It 

is then transported via the tricuspid valve into the right ventricle where it is pumped through 

the pulmonary valve and through the pulmonary artery to the lungs. The oxygenated blood 

from the lungs is then collected through the pulmonary veins in the left atrium and then let 

through the bicuspid, or mitral, valve into the left ventricle where it pumped out through the 

aortic valve to the aorta and the rest of the body. The heart beats approximately 72 beats 
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per minute for an average human, resulting in the heart and the large vessels experiencing 

about 40 million cycles per year [5]. 

 

Figure 1: Anatomy of the heart [6]  

The cardiac cycle can be divided into systole, or contraction of the heart muscles, where the 

contraction of the ventricles pushes the blood into the arteries (the pulmonary and aorta), 

and diastole, the relaxation of the heart muscles, which allows the ventricles to fill up again 

with blood from the atriums.  

The heart pumping function is regulated by four valves: the atrioventricular valves (tricuspid 

and mitral valve), and the semilunar valves (pulmonary and aortic valve) located between 

the ventricles and the great vessels (aorta and pulmonary artery).  

The aorta, Figure 2, delivers oxygenated blood to the entire body. It is made of the aortic 

root, the ascending aorta, the aortic arch and the descending aorta, going further down into 

the abdominal aorta [7]. The ascending aorta is commonly measured from the sinotubular 

junction to the first artery of the aortic arch, the innominate or brachiocephalic artery. The 

dynamics of the ascending aorta during the cardiac cycle has been studied and, during 

systole, longitudinal extension with a downwards displacement of the aortic root has been 

noted together with partially simultaneous dilation of the diameter[8]. The aortic movement is 

mostly passive and is due to the combination of the movement of the heart muscle and the 

aortic blood flow. During the ventricular systole, the ventricle contracts to eject the blood 
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from the heart and push it into the aorta, pulling down the annulus attached to the aortic root. 

As a result, the aorta is forced to stretch axially, while expanding circumferentially due to the 

blood volume ejected from the ventricle. The motion of the aortic root makes it difficult to 

measure the diameters along the length of the aortic root and ascending aorta, as they do 

not remain in the same plane [9]–[11]. However, diameter measurements over the cardiac 

cycle are linked to cardiovascular disease, both when aortic stiffening has led to a reduction 

in the motion of the heart and when aortic elongation precedes aortic dissection [11], [12].  

 

Figure 2: The aorta subdivided into the main parts. [7] 

The downward displacement of the aortic root during systole in on average 8.9 mm axial 

downward motion and six degrees clockwise axial twist. [13] Cardiac patients with aortic 

insufficiency are likely to experience enhanced longitudinal stress in the ascending aorta due 

to increased aortic root movement. [13] Patients with aortic insufficiency and large aortic root 

displacement may be at considerable risk of mechanical damage to their aorta through acute 

(rupture) or chronic (fatigue related) events [13]. The role of aortic motion has been further 

linked to reducing the wall stress of the vessel [14]. The longitudinal strains of the ascending 

aorta have been suggested to be around 6.7-8.5% and the circumferential strains 7.9-8.1% 

[15], suggesting approximately equal elongation and dilation during the cardiac cycle.  

Both the inner diameter and wall thickness of the aorta vary along the vessel and changes 

during the cardiac cycle [16], [17]. The aortic wall consists of three layers, the adventitia, the 

media and the intima, which cannot be distinguished by normal echocardiography [18], [19].  
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The adventitia is the thin, outermost layer and is composed mainly of collagen. It has the 

greatest tensile strength of the three layers. In aortic dissection it becomes separated from 

the intimal layer and in aneurysms it expands in diameter [18]. The media is the thick middle 

layer which accounts for up to 80% of the wall thickness. It consists of intertwining sheets of 

elastic tissue and muscle fibres [18]. The intima is the thin inner layer of the aorta, that 

consist of a membrane lined with endothelial cells in direct contact with the blood. It is the 

layer which is the most susceptible to injury and the site for atherosclerosis and calcification 

becoming thickened, calcified, or ulcerated. [18] 

There have been attempts to analyse the elastic properties of each individual layer and their 

combination, but due to the varied nature of the three and their interactions with each other 

this have been difficult [20]–[22] 

The aortic wall has been found to exhibit a nonlinear behaviour over finite strains [21], [23] 

which in part can be attributed to the interaction between the collagen and elastin in the 

walls [24]. This further complicates ex-vivo testing conditions, as the degradation of the 

organic components after extraction affects the mechanical response [24].  

Studies on bovine aortas have found that the collagen fibre orientation changes in the 

media, where the fibre orientation is predominantly axial near the intima but changes to a 

largely circumferential orientation towards the adventitia [25]. The preferred fibre angle also 

differs depending on the direction and type of deformation applied to the specimen, when 

subjected to ex-vivo testing; with indications that the fibres tend to realign in the direction of 

the strain [25]. There have been suggestions that the thin inner layer of the median closer to 

the intima is arranged to support loads in the axial direction, like the axial wall shear stresses 

arising from blood flow, while the thicker part with circumferentially arranges fibres deeper in 

the vascular wall bear the load of the pulse pressure waves during the cardiac cycle [25]. For 

axial and biaxial loading tension load, the wall thickness decreases, but during 

circumferential loading the wall has been reported to becomes thicker, indicating a possible 

auxetic behaviour [25]. Another study found the resulting axial stress from the axial 

extension of the artery to be shared between the elastic fibres in the media and the axial and 

diagonal collagen fibres in the adventitia [22].  

Uniaxial tensile testing of healthy human aortic tissue confirmed higher circumferential 

strength in comparison to longitudinal strength for the abdominal aorta [26]. There are also 

reports of different properties for different regions of the aorta, with the ascending aorta 

found to be more compliant than the aortic sinuses, and with biaxial tests indicating a 

roughly equal stiffness for the ascending aorta for the circumferential and longitudinal 

directions [27]. 
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There have been promising attempts to compare findings from in vivo speckle tracking 

echocardiography and ex-vivo tissue measurement findings for aortic stiffness [28]. 

The pulmonary artery, Figure 3, is the vessel transporting the blood from the right ventricle to 

the lungs. The pulmonary valve is situated proximal to the heart, between plane A and B in 

Figure 3. The pulmonary trunk from plane B branches out at plane C into the right and left 

pulmonary artery, and then further out into smaller branching into the lungs. [29]. The normal 

reference values for the pulmonary trunk diameters have been suggested for healthy 

subjects to be around 27 mm for females and 29 mm for males [30]. The dynamics of the 

pulmonary artery during the cardiac cycle has been noted to change considerably the 

location of the planes relative to both their initial placement and each other [29]. The 

diameters along the trunk also vary during the cardiac cycle, and the pulmonary annulus was 

found in many cases to be not circular but elliptical in shape. Looking at patients having 

pulmonary valve repair, not only the diameters differ between the subjects, but the entire 

shape of the pulmonary artery varies greatly [29], [31].  

For all blood vessels, an abnormal dilation of the vessel is referred to as an aneurysm, which 

if left untreated can result in rupture, a life-threatening event requiring immediate medical 

attention. There are several different causes that may lead to abnormal vessel dilation, from 

connective tissue disorders to loss of vessel wall elasticity due to infections or ageing. An 

abnormal narrowing of a blood vessel is referred to as a stenosis. Stenosis can also refer to 

Figure 3: Left: Pulmonary Artery with the planes indicating A. sub-valve: through the 3 hinge points of 
the valve in the RVOT; B. supra-valve: through the 3 commissural points at the end of the valvular 
sinuses; C. pre-bifurcation: below the bifurcation with only 1 point of intersection with plane R and with 
plane L; D. mid-valve: at the mid-point between the sub-valve and the supra-valve planes; E. mid-
trunk: at the mid-point between the supra-valve and pre-bifurcation planes; R. orthogonal to the right 
pulmonary artery centreline, 1 mm above the bifurcation; L. orthogonal to the left pulmonary artery 
centreline, 1 mm above the bifurcation; Right: Movement of plane E (and pulmonary trunk) during the 
cardiac cycle [29]  
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valves that cannot open fully, usually due to calcification. This can lead to insufficient blood 

flow through the stenotic vessel, or even complete blockage, which can be life-threatening. 

There can be several different causes for stenosis; when of congenital nature, it often 

demands corrective surgery soon after birth, whilst most cases are due to aging and the 

development of calcifications. Age is also related to stiffening of the vessels and can hamper 

the dynamics of the heart and of the ascending aorta [32]–[34].  

2.2 Treatments for cardiovascular diseases: Open heart surgery vs 

transcatheter 
 Open heart surgery remains the standard of care for most cardiovascular diseases, still 

superior to other approaches when it comes to versatility and precision. However, the 

trauma it causes to the body and the longer intensive care and hospital stays associated 

with it, makes it unviable in some cases, especially for patients who have an overall fragile 

state of health for example due to age or those suffering from more than one severe 

condition [35], as well as those who have congenital conditions that forces them to undergo 

repeated procedures with regular intervals for many years.  Recent advancements in treating 

cardiovascular disease rely on the development of minimally invasive procedures that aim to 

decrease the risks associated with open heart surgery. 

Minimally invasive procedures rely on the use of new technologies and techniques based on 

catheters / balloons and stents. Balloon angioplasty was the first of such techniques to be 

widely employed in cardiovascular treatments. A balloon is inserted with a catheter though a 

larger peripheral vessel and then guided to the correct position in the cardiovascular system 

where it is inflated to widen a stenotic vessel or valve in the case of balloon valvuloplasty. 

The intention of this is to improve blood flow through the vessel or valve. Balloons have been 

subsequently used as a delivery method for stents, stent grafts or even replacement heart 

valves for more permanent solutions.   

2.3 Stents: Different types, materials and design considerations 
Stents are metallic scaffolds designed to restore the lumen of vessels, usually created from 

biocompatible materials such as stainless steel, cobalt-chromium, platinum iridium, nitinol, 

etc. They can be covered by fabric (commonly polyethylene terephthalate (PET) or 

polytetrafluoroethylene (PTFE)), called stent-grafts, or used as an anchoring system for 

transcatheter heart valve replacement. 

The most common example of this application is coronary stents, used to widen the coronary 

arteries affected by stenosis, allowing blood to flow to pass unobstructed, Figure 4.  
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(i)          (ii)          (ii)          (iv)  

Figure 4: The different steps of inserting a coronary stent with a balloon catheter: i) The insertion of 
catheter guiding wire, (ii) The positioning of collapsed stent and balloon, (iii) the placement and 
expansion of stent by expansion of balloon, (iv) the removal of the balloon and catheter, with the 
expanded stent left in place [36] 

An example of large stent grafts is aortic stent grafts, used to repair aneurysms in the 

descending aorta, as an alternative to open heart surgery.  

During open-heart surgery for aortic aneurysm, the 

diseased part of the aorta is fully removed, and a 

sleeve is stitched in place instead. When a stent-graft 

is used, instead, the native vessel is preserved, but 

the blood flows through the stent-graft, see Figure 5, 

avoiding further stresses in the diseased part of the 

vessel. This approach also reduces the disruption in 

the blood flow in the treated region. [37] 

Aortic stent grafts are usually made of nitinol self-

expandable stent structures. Nitinol is an alloy of 

nickel and titanium which exhibits super-elastic 

behaviour, allowing recoverable strains of the order of 

7-9% (about 20 times larger than for stainless steel) 

[38]–[40]. Hence, the prosthesis is collapsed into a 

sheath, delivered through the vasculature to the anatomical region, and then unsheathed to 

allow its elastic (or pseudo-elastic as it involves a phase transformation), re-expansion.   

A final example of stent use is Transcatheter Aortic Valve Replacement (TAVR), also known 

as Transcatheter Aortic Valve Implantation (TAVI), see Figure 6. Balloon expandable TAVR 

valves like the original SAPIEN (Edwards Lifesciences, Irvine, CA, U.S.A.) family have a 

frame made from cobalt-chromium alloy or stainless steel, and are balloon expanded, 

providing high radial strength. Self-expandable valves like the CoreValve (Medtronic Inc., 

Minneapolis, MN, U.S.A) are made from nitinol and conform to the native annulus in the 

attempt to recover their unstressed expanded configuration [41]. Studies suggest that there 

is no significant difference in post-procedure mortality between self-expandable or balloon-

Figure 5: Aortic aneurism repair with 
open heart surgery versus with a non-
invasively placed stent [37] 
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expandable valves; however other factors might act as an indication to which might be the 

preferred option [42], [43].  

 

Figure 6: Examples of different Transcatheter Aortic Valve Replacements [43] 

2.3.1 The importance of stent-design: 

Structure of existing stents, stent-grafts and 

percutaneous pulmonary valve implantation 

(PPVI)  
There are a wide range of different stent and 

strent-graft designs available, see Figure 7, and it 

is well accepted that the stent design strongly 

influences its mechanical behaviour and 

biomedical performance [44]. For coronary stents 

for example, there are several studies looking at 

the impact of the geometrical features of the 

different stent designs as well as the metallic 

composition of them. [45].  

Stent designs are categorised in different ways, 

with further differences in the designs and 

properties between stents and stent grafts, based 

on the analysis of cell design, like open or closed 

cell structure, z-rings (like Zenit) or oval (like 

Anaconda) rigid part of the stent, and the number of and type of connection between the 

rings, which for stent grafts can be just fabric coating. 

Figure 7: Examples of different commercially 
available stent-grafts [44] 



27 
 

There is a trade-off between several geometrical and mechanical requirements in stent 

design. For example, stents with less connections in the axial direction provide higher 

flexibility but lower scaffolding compared to tubular stents with a more uniform distribution of 

struts on the stent design. Stents with more connections tend to foreshorten more during 

radial expansion than their flexible counterparts, whilst more open structures can have more 

protrusion of intimal tissue into the vessel lumen. The shortening of stents can be an issue 

both in placement and for cases where the length of the stent is critical [46]. Intimal tissue 

protrusion can be a problem not only for bare stents, but also in stent-grafts where the lack 

of axial connections can make them more prone to kinking at the curvature of the vessel 

[44].   

One way to approach these contradictory requirements and try to minimise the trade-offs 

between flexibility and scaffolding support could be the use of auxetic structures, especially 

when it comes to shortening of the stents as auxetic structures, by nature, do the opposite. 

This property could also allow for more control of the dynamic behaviour of the stents, as 

well as a means to mimic the natural dynamics of healthy vessels that during systole dilate 

and elongate simultaneously.   

There are both theoretical auxetic stent designs and more well investigated patented 

systems available in literature, however few of these delve into their design selection criteria.  

There are several types of auxetic structures and materials in use in medical engineering 

[47], and for stents there are several different auxetic designs explored. There have also 

been studies of more general character of auxetics in tubular structures and more specific 

for intended use in stents [48]–[51], using chiral structures[52]–[55], rotating plates/holes, 

and specific proposed designs such as the origami TiNi alloy stent graft [56] and, for non-

cardiovascular applications, oesophageal stents[57] and tracheal stents[55]. Stents 

specifically designed for cardiovascular use, like coronary stents [58] and more advanced 

potentially biodegradable shape memory polymer vascular stents [59], [60] have also been 

explored, no extensive rationale is provided on the selected auxetic configuration. This 

makes difficult to assess the soundness of the design and transfer the knowledge to other 

medical applications.  

2.4 Summary and Conclusion  
The dynamics of the great vessels has been well documented and changes in the natural 

dynamics have been linked to cardiovascular disease. For example, in the ascending aorta, 

the specific dynamic behaviour is important in allowing correct function and reduce stress on 

the vessel wall. The longitudinal strains of the ascending aorta have been reported to be 

around 6.7-8.5% and the circumferential strains 7.9-8.1% [15], suggesting approximately 
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equal elongation and dilation during the cardiac cycle. However, current stent designs used 

to treat cardiovascular diseases do not take this dynamic behaviour into account. It would be 

desirable to have a solution to integrate these considerations in the design of appropriate 

cardiovascular devices to attempt to restore the natural motion in diseased vessels.  

3. Auxetic structures and materials – background, review and 

selection 
The behaviour of conventional materials and structures is that they oppose any change in 

volume, so they respond to an elongation in one direction by contracting in the other, and 

when compressed in one direction they expand in the other. Regarding stent design, this 

implies issues with increase in length and shortening when they are loaded into the delivery 

system and then expanded during implantation [61]–[63]. This also becomes a problem if the 

tubular structure should allow simultaneously elongation and diametrical expansion, as each 

of these forms of deformation opposes the other. Auxetic structures can overcome these 

limitations and have therefore been proposed for applications in cardiovascular stenting [49]. 

However, although the understanding and modelling of their mechanical properties is 

relatively mature for planar structures, with exception of few potentially relevant typologies, 

these applications require a readaptation of the current knowledge to tubular configurations.  

This chapter aims to describes the auxetic structures that have currently been identified and 

designed, identifying the different approaches utilised to define their mechanical behaviour 

and analysing their structural properties, limitations, and potential field of application. In 

particular, the focus lies on the major works within the field, discussing their limitations and 

addressing works done to complement them.  

3.1 Introduction to auxetics 
Auxetics are defined as materials or structures with the elastic property of negative 

Poisson’s ratio (NPR): when the material is stretched in one direction, it expands in one or 

more transverse directions as well. This differs from most materials and structures which, 

when stretched in one direction, typically react to the resulting increase of size in that 

direction by contracting transversally, see Figure 8. Hence the term auxetic, first suggested 

by Evans et al in 1991 [64],  from the Greek word ‘auxetos’ meaning ‘what tends to 

increase’.  
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Figure 8: The behaviour of (left) regular positive Poisson's ratio materials and (right) auxetic negative 
Poisson's ratio materials and structures under deformation, with the original shape in dark and the 
deformed shape in lighter grey, under uniaxial loading in the direction of the arrows. 

This behaviour emerges at the level of the internal structure of the material or stems from the 

structural micro and macro architecture. In the case of auxetic ‘materials’, the phenomenon 

typically depends on the molecular patterns that, when subjected to a negative stress, can 

occupy the intrinsic free volume between them to contract also in the lateral direction by 

allowing a substantial increase in the material density [64]. Another example of auxetic 

mechanisms is behind molecular structures like the rigid ‘free’ molecules described by 

Wojciechowski [65]. Similar mechanisms can be exploited configuring structures at micro 

scale and macro scale levels, like in the case of polymeric foams [66] or mainly macro scale 

like sandwich panels or stents [49], [67]. For many auxetic structures, the auxetic behaviour 

derives from the geometry and deformation mechanisms of an auxetic unit cell, and is scaled 

up by repetition cells [68]. Cellular structures can be divided into two categories – 2D 

structures, usually referred to as honeycomb structures (or ‘honeycombs’) and 3D structures 

referred to as foams [69].  

Auxetic materials and structures have received strong attention as they exhibit properties, 

such as higher indentation resistance, thermal impact resistance, higher shear moduli as 

well as higher fracture toughness [64], [70], [71] that can be leveraged in a number of 

applications. Their acoustic properties are very interesting as the Poisson’s ratio influences 

the speed of wave propagation in materials [72]. Another advantage of auxetic materials is 

the ability to assume a synclastic or dome-shaped curvature under out-of-plane bending − 

conversely to regular materials which assume an anti-clastic or saddle shaped curvature 

[67], [70] − a useful feature when manufacturing doubly curved sandwich panels, as 

explained by Evans [67]. When an auxetic sandwich panel is bent out-of-plane, on the 

compressed side, the auxetic behaviour results in a contraction also in the other in-plane 

direction. Conversely, on the tension side, it results in expansion also in the other in-plane 

direction. Overall, one side of the panel expands in both directions and the other contracts in 

both directions, turning the panel into a dome shape as an effect of the negative Poisson’s 

ratio. Moreover, auxetic cellular macrostructures maintain the same advantage as ordinary 
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cellular material, with a lower density, making them highly appropriate for the aerospace 

industry among others [70].  Other applications where auxetic materials are becoming more 

and more popular include packaging, filters, piezo-electric composite sensors and sound 

insulation [71], with fields where they provide improved performance are the textile [73], [74], 

medical devices [48] and sport equipment industries [75].  

To select the most appropriate structures for further study, the review of auxetic structures 

will focus on the mechanical properties of 2D auxetic cellular structures, so called auxetic 

honeycombs. These can be easily adapted to a large range of different applications where a 

change of the micro / macro structure is the basis for the auxetic behaviour as well as the 

basis for many of the 3D adaptations. In fact, 2D honeycombs provide a simplified model 

that can be extended to 3D cellular structures, [68]. 

In our case, the 2D structures can easily be adapted into tubular stenting structures by 

wrapping the plane like a sheet being wrapped into a hollow tube.  

The auxetic honeycombs will be presented into three main groups, depending on the main 

mechanism controlling deformation:  

- re-entrant honeycomb structures;  

- chiral structures; and  

- rotating plate structures.  

For each group, the most typical structures and their common variations will be reviewed.  

Focus will be on the mechanical properties of the structures, without details of other 

properties associated with auxetic materials [76].  In particular, together with the Poisson’s 

ratio, the nominal Young’s modulus and shear modulus will be examined, and a unified and 

consistent formulation will be provided for all the different structures examined in this review, 

thus allowing direct comparison to help select the best options to proceed for cardiovascular 

stent designs. 

To allow for direct comparison, the equations are rewritten adopting the same nomenclature 

and dimensional parameters between the different models, namely the horizontal and 

vertical cell dimensions (  and  respectively) or in case of circular unit cells like the 

hexachiral the unit diameter , the cell wall thickness , and the depth of the cell structure .  

The horizontal in-plane direction of orthotropy was indicated as direction 1, the vertical as 

direction 2 of orthotropy, and the out-of-plane direction as direction 3.  The derived equations 

estimate, for the two in-plane directions of orthotropy, the Poisson’s ratios  and , the 

elastic moduli  and  and, where available, the shear modulus , with the subscripts 

defined as in the usual notation adopted for orthotropic materials. 
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A comparison of the responses predicted from the different equations summarised for the 

most investigated cases is represented graphically. These were derived assuming a unit cell 

of dimensions  unit lengths or  unit length, with a uniform wall thickness 

 unit lengths, wall depth  unit lengths and Poisson’s ratio of the wall material 

.   

By narrowing the scope of this review to 2D auxetic structures and their mechanical 

properties, the result does not only provide an in-depth overview of the different methods 

that have been reported in the literature to evaluate the auxetic behaviours, but also facilitate 

comparison between different structures. The standardised nomenclature can guide the 

choice on the most suitable auxetic structure for each different application, according to the 

required elastic behaviour, range of Poisson’s ratio and sensitivity to realistic manufacturing 

challenges.   

3.2 Re-entrant structures 
One of the earliest re-entrant structures identified for its auxetic behaviour and intentionally 

exploited in a structural design by Gibson et al in 1982 [77] is the re-entrant hexagonal 

honeycomb structure. This is also one of the first auxetic structures where a 3D adaptation 

of the 2D structure was first attempted in the configuration proposed by Almgren in 1985 that 

offered a Poisson’s ratio of -1 in all three dimensions [78].  Later, other re-entrant systems 

were identified and introduced, such as the double arrowhead shape [79] and the STAR-

systems [80], [81].  

The auxetic behaviour of re-entrant structures mostly depends on the angles between the 

ribs defining the cells, which change with the cells’ deformation. Thus, the Poisson’s ratio 

generally varies non-linearly with the nominal strain [72].  However, Grima et al investigated 

different ways to achieve linear negative compressibility through constrained angle 

stretching instead of the more commonly studied modes of deformation like flexure and 

hinging [82], though stretching has previously been studied without exploring compressibility 

by Masters and Evans [83]. 

3.2.1 Inverted or re-entrant hexagonal honeycomb 

The most extensively investigated auxetic re-entrant structure is the inverted hexagonal 

honeycomb, represented in Figure 9.  
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Figure 9: Example of re-entrant hexagonal honeycomb before (left) and after (right) uniaxial 
compressive deformation. 

The structure exhibits orthotropic behaviour, and both the in-plane and out-of-plane 

properties have been studied extensively using different analytical approaches, as well as 

numerically and experimentally. The first systematic study on this class of materials was 

published by Gibson et al [77] in 1982 and analysed the mechanical response of two-

dimensional cellular materials, including re-entrant hexagonal honeycombs, proposing basic 

equations for the prediction of their behaviour, validated by experimental models.  Later, 

Gibson and Ashby dedicated a chapter in their book ‘Cellular Solids’ [68] to the analytical 

study of honeycombs, particularly the hexagonal honeycomb structure including the auxetic 

variation. This work investigated both the elastic in-plane and out-of-plane deformations of 

honeycomb structures, as well as their failure mechanisms.  The approach proposed by 

Gibson and Ashby identifies an initial response of honeycomb structures to in-plane 

compression led by bending of the cell walls. This is analysed by applying the conventional 

beam theory to determine expressions of the nominal in-plane Poisson’s ratios, Young’s 

moduli and shear modulus.  Hence, the mechanical response is assumed linear elastic up to 

the cell collapse, which, depending on the dimensions and material of the structure, occur by 

elastic failure (i.e., buckling of compressed walls), ductile failure (i.e., plastic collapse due to 

plastic hinge formation) or brittle failure (fracture).  Compressive collapse is associated with 

a plateau in the nominal stress level, eventually lost when the material densification caused 

by the phenomenon results in a substantial increase in the stiffness of the structure (see 

Figure 10).   
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Figure 10: Schematic nominal stress – nominal strain diagram for cellular hexagonal structures 
subjected to in-plane compressive load. 

The expression of the shear modulus from the model proposed by Gibson and Ashby 

appears to underestimate the value observed experimentally [68], [84].  Moreover, it 

becomes inaccurate for configurations characterised by slanted walls about orthogonal to 

the longitudinal walls, for which unacceptable values of the nominal Poisson’s ratios and 

Young’s moduli tending to infinity may be determined.  This problem was addressed by an 

expanded version of the model proposed by Masters and Evans [83] that includes the 

description of other modes of elastic deformation of the honeycomb beyond bending such as 

hinging and stretching.  The latter takes over as principal mode of deformation when the 

angle between the longitudinal and slanted walls tends to 90 ° when the force is in the 

vertical direction.  Despite being accurate for modelling honeycombs with a smaller 

thickness compared to the wall lengths, in the case of the model by Gibson and Ashby up to 

 [68], these models do not take into account the effect of the shape of the 

ligaments and the mode of connection on the deformation, which becomes significant as the 

ratio of the wall thickness to the wall in-plane lengths increases.  In order to address this 

limitation, Grima, Gatt, Ellul and Attard (2011) [85] have recently proposed a set of adjusted 

equations using the results from numerical analyses.  A number of other studies include 

further details in the modelling of the connections between the walls.  However, they are 

limited to periodic hexagonal honeycomb structures, and do not investigate their reliability in 

the case of re-entrant auxetic configurations.  These include the work from Balawi and Abot 

(2008) [86] that takes into account the curved intersections of the honeycomb walls 

commonly present in commercially manufactured honeycombs [87] (although Gibson and 

Ashby had already introduced a model with double wall thickness in the vertical direction 

[68], this model neglected the deformation in the vertical walls). Also, compared to the 

description from Masters and Evans, this model introduces the presence of curvature in the 

call walls beyond the hinging region.  This allows better description of the reduction in in-

plane nominal moduli observed numerically as the radius of curvature at the wall joints 

increases.  Another study worth mentioning, although validated only for regular hexagonal 
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honeycombs, was recently published by Malek and Gibson (2015) [84]: the authors 

introduce a beam model taking into account the effective bending length of the cell walls, 

which provides better alignment with both numerical and experimental results found in earlier 

works by Gibson at high relative densities [88].  

The studies described above model the mechanical response of honeycombs by applying 

beam theory, but other approaches have been used as well, based on homogenisation to 

analyse the structure as an equivalent continuum, or on energy methods [89].  

Gonella and Ruzzene (2008) [89] derived equations equivalent to those determined by 

Gibson and Ashby [77], but obtained through partial differential equations associated with 

the homogenised continuum models of the hexagonal and re-entrant hexagonal honeycomb 

lattices.  Their model was also developed further to study the wave propagation in the 

structure analytically.   

Berinskii (2018) [90] also used homogenisation to derive analytically the Poisson’s ratios and 

elastic constants for the re-entrant honeycomb structure. This model takes into account the 

elastic deformation of the ribs, including deformation from flexure, stretching and shearing.  

Although the derived equations are relatively simple, the model leads to a behaviour very 

similar to that predicted by Masters and Evans [83].  Berinskii also established a framework 

to extend the same approach to the estimation of the elastic constants for a few different 

auxetic structures, although he did not provide in-depth validation in the manuscript.  

An alternative approach to model the mechanical response of honeycombs, based on 

empirical models using dummy atoms (EMUDA), was proposed by Grima et al (2005) [91].  

This force-field based molecular mechanics approach was specifically applied to re-entrant 

hexagonal honeycomb structures due to the broad availability of data suitable for validation. 

The equations derived by the various research groups to describe the in-plane mechanical 

behaviour of hexagonal honeycombs are summarised in Table 1. Using the standardized 

nomenclature defined above, adding the angle  between vertical and inclined struts.  The 

plane of the common wall of the neighbouring cells was aligned vertically and defined as 

direction 2 of orthotropy. The horizontal in-plane direction of orthotropy was indicated as 

direction 1. 

Diagrams are represented in Figure 11 for a range of the angle  between vertical and 

inclined struts changing from  to , thus covering the case of conventional ( ) 

and auxetic honeycombs ( ).  The diagrams confirm that all models provide close 

predictions of the Poisson’s ratio  for angles between vertical and inclined struts far from 

.  When  approaches this value, the model proposed by Gibson and Ashby [68] leads to 
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unacceptable values of  (indeterminate for configurations characterised by slanted walls 

about orthogonal to the longitudinal walls, for which unacceptable values of the nominal 

Poisson’s ratios and Young’s moduli tending to infinity may be determined). 
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Table 1:  Equations derived by the different research groups for the determination of the Poisson’s 
ratios, elastic moduli and, where available, shear modulus, in the two in-plane directions of orthotropy 
of hexagonal honeycombs. 

HEXAGONAL HONEYCOMB 

 

Dimensions: 

: length of vertical wall (aligned with direction 2) 

: length of inclined wall 

: angle between vertical and inclined walls 

: cell wall thickness 

: depth of cell structure 

: horizontal dimension of unit cell (along direction 1) 

vertical dimension of unit cell (along direction 2) 

Material Properties of cell wall material: 

: Young’s modulus 

: Poisson’s ratio 

: Shear modulus (for isotropic materials ) 

: density 

Relative density:  

Gibson & Ashby (confirmed by Gonella & Ruzzene) [68], [69][89] 
Poisson’s ratios: 

  

Young’s moduli: 

  

Shear modulus: 

 

Notes: Based on beam bending deformation. Validated experimentally: inaccurate when φ → 0 (which leads to  and  → ∞) 

Masters & Evans [83] 

Poisson’s ratios: 

  

Young’s moduli: 

  

Shear Modulus: 

 

Notes:   Includes tension and hinging deformations in previous model. Validated experimentally with data from Gibson & Ashby.  

Grima et al. [85] 

Poisson’s ratios: 

 

 

 

 

φ 
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Young’s moduli: 

 

 

Shear Modulus: Not calculated 

Notes: Beam analysis modelling bending, tension and hinging deformations (more suitable when wall thickness is relevant). Validated numerically.  

Berinskii [90] 

Poisson’s ratios: 

  

Young’s moduli: 

  

Shear Modulus: Not calculated 

Notes: Homogenisation model of simple formulation, providing similar results to previous models. 
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Figure 11: Comparison of the in-plane Poisson’s ratios, Young’s moduli and shear modulus 
determined with the different models proposed for the analysis of hexagonal honeycombs (see  Table 
1) in conventional and auxetic configurations. The parameters used as defined above is , 

 and  unit lengths, resulting in  and 
. 

φ 

φ 

φ 

φ 

φ 
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Although the studies described above assume, for simplicity, uniformity of the walls defining 

the hexagonal honeycomb, different models have been developed to deal with variations, 

such as the use of ribs with different mechanical properties [82].  Also, a number of re-

entrant hexagonal honeycomb structures based on rounded walls has been investigated 

[92].   

A main limitation of the described analytical models is their inability to correctly predict the 

non-linear behaviour associated with potentially large deformations.  An analytical attempt to 

address this issue was proposed by Wan et al. (2003)  [93].  Another important aspect to 

consider when adopting these models to predict the behaviour of real cases, or when 

validating them versus experimental data and numerical simulations, is the fact that they do 

not account for the effect of the size of specimen nor, in most cases, of its depth [94].  In 

reality, due to the presence of stress-free cut cell edges at borders of the surface of a 

specimen, as well as constraints applied at the boundaries, the behaviour of physical 

specimens is expected to depart from that described by analytical models, that are derived 

for single cells or infinite size specimens.  However, as the size of the sample increases, a 

plateau is typically observed, and the properties of the specimen converge to those of an 

infinite specimen.  In the case where numerical models are used for validation, implementing 

periodic boundary conditions has been suggested as a possible approach to model the 

properties of infinite plates [95]. 

The out-of-plane properties have been generally studied less than the in-plane properties for 

the re-entrant hexagonal honeycomb.  Main studies include the work from Gibson and Ashby 

[68] and Zhang and Ashby [96], that provide some description of the out-of-plane behaviour 

of the honeycomb lattices and the associated failure mechanisms, essentially consisting of 

linear buckling and fracture [96].  Smith et al (2002) [76] and Scarpa et al (2003) [97] report 

increased out-of-plane elastic and shear moduli and larger collapse stresses for auxetic 

configurations, when compared with analogous hexagonal honeycombs with the same 

relative density. 

3.2.2 Double arrowhead 

Another common auxetic structure based on the unfolding of re-entrant cells was first 

identified by Larsen et al (1997) [79], and is represented in Figure 12.  This can be found in 

literature under different names, such as double-headed arrow [73], double arrow [98] or 

double arrowhead structure [90], here preferred because more commonly used.  
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Figure 12: Example of double arrowhead structure before (left) and after (right) uniaxial compressive 
deformation. 

Although the double arrowhead configurations can be adapted to a number of practical 

applications, such as knitted fabrics [74], their mechanical properties have been investigated 

far less than the re-entrant hexagonal honeycomb structure.  The analytical continuum 

model proposed by Berinskii [90], derived as a part of a generalised study for comparison 

with other auxetic structures, provides one of the most complete analytical predictions of the 

in-plane mechanical response of double arrowhead structures.  As described in the previous 

section, this model uses homogenisation and takes into account the elastic deformation of 

the ribs, including deformation from flexure, stretching and shearing.  The resulting 

equations are summarised in Table 2, using the standardized nomenclature defined above, 

adding the angles  and  between the direction 1 of orthotropy and the short and long 

walls, respectively.  Direction 1 of orthotropy is defined as the in-plane direction orthogonal 

to the in-plane axis of symmetry of the cells, which is the direction 2 of orthotropy.  Diagrams 

are represented in Figure 13 for the possible range of the angle  between the direction of 

orthotropy 1 and the short walls.  The angle  between the direction 1 of orthotropy and the 

long walls is univocally defined from the previous parameters, as . 
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Table 2: Equations of the in-plane Poisson’s ratios and elastic moduli for double arrowhead 
structures. 

DOUBLE ARROWHEAD HONEYCOMB 

 

Dimensions: 

: length of short wall 

: angle between direction 1 and short wall 

: angle between direction 1 and long wall 

: cell wall thickness 

: depth of cell structure 

: horizontal dimension of unit cell (along direction 1) 

vertical dimension of unit cell (along direction 2) 

Length of long wall can be calculated as  

Material Properties of cell wall material: 

: Young’s modulus 

: Poisson’s ratio 

: Shear modulus (for isotropic materials ) 

: density 

Relative density:  

Berinskii [90] 

Poisson’s ratios: 

 

 

Young’s moduli: 

 

 

Shear Modulus: Not calculated 

Notes: Homogenisation model of simple formulation, providing similar results to previous models. 
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Figure 13: Diagrams of the in-plane Poisson’s ratios and Young’s moduli determined with the 
equations for the analysis of double arrowhead structures (see Table 2) in conventional and auxetic 
configurations. The parameters used as defined above is ,  and  unit 
lengths, resulting in . As defined above, 

. 
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3.2.3 Other re-entrant shapes 

3.2.3.1 Star-shapes 

Star configurations were identified as potentially auxetic by Theocaris et al. in 1997 [81], and 

more recently described and expanded in terms of configurations by Grima et al. (2005) [80].  

As in the inverted honeycomb and double arrowhead structures, their main principle of 

deformation consists in the unfolding of re-entrant cells.  Grima et al. [80] applied empirical 

modelling using dummy atoms (EMUDA) to investigate the mechanical response of STAR-3, 

STAR-4 and STAR-6 configurations (these are described in Figure 14).  Their analysis 

indicates that the STAR-3 configuration displays auxetic behaviour only for a few 

combinations of hinging force constants, while the STAR-4 and STAR-6 configurations are 

auxetic for most of them.  The STAR-4 configurations are generally characterised by higher 

negative Poisson’s ratios than STAR-6 (for corresponding values of the hinging force 

constants) [80], but still present less auxetic behaviour than re-entrant hexagonal 

honeycombs.  The STAR-4 configuration was also studied numerically by Theocaris et al, 

using homogenisation, examining it as a beam structure as well as star shaped inclusions in 

a continuum [81].  The use of star-shaped pores to achieve auxetic behaviour was further 

investigated by Mizzi et al [99]. 

Other variations of the connected star configurations were analytically analysed by Ai and 

Gao [100] using Castigliano’s theorem. 

   

(a) (b) (c) 

Figure 14: Common STAR-n systems labelled as (a) STAR-3, (b) STAR-4 and (c) STAR-6 
configurations. 

Another auxetic structure investigated in the literature and based on the unfolding 

deformation mechanism with similarities to the double arrowhead configuration, is the Milton 

lattice [101] represented in Figure 15. This was developed to explain the mechanism of a 

laminate showing a negative Poisson’s ratio.  
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Figure 15: Schematic representation of a Milton lattice and description of the identified mechanism 
providing internally auxetic behaviour. 

 

3.3 Chiral structures 
A different approach to achieve structural auxetic behaviour consists of enforcing the 

wrapping and unwrapping of ligaments around specific nodes.  Structures exploiting this 

principle are called auxetic chiral structures, referring to the chiral property of their 

asymmetry - that their structure and their mirror image are not superimposable, and are 

classified based on the number of ligaments (e.g., trichiral, tetrachiral, hexachiral, etc. as 

shown in Figure 16) and on the way each ligament wraps around the nodes at its ends.  In 

particular, if ligaments are fastened on the same side of both nodes at their ends, thus 

forcing these to rotate in opposite orientations during the deformation, anti-chiral 

configurations are obtained, as shown in Figure 17 (denoted by the prefix ‘anti-‘).  

The use of chiral configurations as potential auxetic structures was first suggested by Lakes 

in 1991 [102], [103], who described a hexachiral configuration.  These structures exhibit 

hexagonal symmetry, which results in mechanical in-plane isotropy [103], and are reported 

to offer high shear rigidity and a deformation mechanism which allows high strains in the 

elastic range of the wall material [104]. 

Numerical and experimental investigations of the hexachiral configuration suggested by 

Lakes, as well as of tetrachiral, anti-tetrachiral, trichiral and anti-trichiral configurations 

presented by Alderson et al [105] indicate that the in-plane deformation of chiral and anti-

chiral structures is predominantly led by cylinder rotation and ligament bending.  The 

Poisson’s ratio is close to -1 for the analysed hexachiral, tetrachiral and anti-tetrachiral 

configurations, and does not appear to be affected by ligament length.  However, the auxetic 

behaviour decreases with the increasing ligament thickness, especially for the hexachiral 

model.  On the contrary, the anti-trichiral model displays negative Poisson’s ratios only for 

shorter ligaments, and the trichiral model does not show auxetic behaviour.  This was 
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explained by the presence of competing deformation mechanisms, between the bending of 

the ligaments due to the rotation of the nodes and the direct bending of off-axis ligaments.   

Hexachiral and tetrachiral models exhibit higher Young’s moduli than the trichiral models, 

and chiral models has a higher in-plane compressive modulus than the anti-chiral 

equivalents, for any given number of ligaments.  This was realistically attributed to the fact 

that ligaments of chiral structures bend producing two buckles, with a change of curvature at 

their midspan, while in anti-chiral structures they deform in a single buckle. This appears 

clearer when comparing the deformed configurations in Figure 16 and Figure 17.  To 

correctly interpret the results described by Alderson et al. [105], we need to consider the fact 

that they applied 1-2% compressive strain to their specimen, which also had much thicker 

walls than those previously tested by Prall and Lakes.  
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(a) 

 

 
(b) 

 

 
(c) 

Figure 16: Trichiral (a), tetrachiral (b) and hexachiral (c) structures, and description of the mechanism 
responsible for the auxetic behaviour. 
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(a) 

 

 
(b) 

Figure 17: Anti-Trichiral (a) and anti-tetrachiral (b) structures, and description of the mechanism 
responsible for the auxetic behaviour. 

The majority of analytical studies of the elastic constants for chiral configurations focuses on 

hexachiral configurations.  The first attempt to describe their in-plane elastic properties was 

presented by Prall and Lakes, who applied the beam theory and an energy approach to 

predict a constant in-plane Poisson’s ratio of -1 [103].  This approach, similarly to Gibson 

and Ashby’s analysis on the re-entrant hexagonal honeycomb, assumes that deformations 

are small, the main deformation mode is bending of the cell walls, and axial deformation and 

shear within the ligaments can be neglected.  The bending of the cell walls and the equal 

rotation of all cell nodes were confirmed and validated with experimental tests, although the 

node wall thickness in the physical specimens was larger than the ligament thickness, 

contributing to the validity of a rigid node model.  Tests also confirmed that the structures 

maintained the predicted Poisson’s ratio of about -1 up to 25% of nominal strain [103].   
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However, this analytical approach is reported to be valid only for slender beams with a 

reference value of the relative density of the structure below 0.29 [68], [103].  Moreover, the 

predicted Poisson’s ratio, which is constant for any change in geometric parameters and 

equal to -1, results in a structure with a theoretically infinite shear modulus [103], [106], 

[107].  In an attempt to remove this indeterminacy, Spadoni and Ruzzene [106] used 

micropolar continuum methods with both rigid and deformable nodes to calculate the elastic 

constants of a hexachiral auxetic structure.  The rigid node model leads to a Poisson’s ratio 

dependent on the ligament thickness, and equal to -1 only for the ideal and unattainable 

condition that the ligament thickness is zero.  The deformable node analysis relies on 

numerical simulations by means of finite element analysis.  Comparison of the rigid node 

analytical model with the deformable node numerical model shows substantial discrepancies 

in the estimated Youngs’s modulus.  Importantly, with the analytical approach suggested by 

Spadoni and Ruzzene, the estimated shear modulus, indeterminate (infinite) in Prall and 

Lakes model, becomes finite and determinable.  Their analysis indicates that the shear 

modulus is equivalent to that of a lattice consisting of regular triangles, and much lower if the 

contribution of deformable rings is considered. In parallel, Liu et al [108] applied a similar 

approach, still based on the micropolar theory through a continuum theory model with 

reinterpretation of in-plane isotropic tensors.  Their results matched the exact solution of 

corresponding discrete models.  

A more recent study presented by Bacigalupo and Gambarotta [109] applies a micropolar 

homogenisation derived from Spadoni and Ruzzene [106] and Liu et al. [108], while 

introducing an additional parameter defining the deformable portion of the ligaments. In the 

same work, they propose a second approach based on a second gradient homogenisation 

developed to study periodic cells consisting of deformable portions like the ligaments, nodes, 

and eventual filling material in between the ligaments and in the nodes. Interestingly, the 

study indicates that the presence of filling material between the walls of the auxetic structure 

(even if very soft) strongly reduces and eventually reverses the auxetic behaviour [109]. 

The equations derived by the various research groups to describe the in-plane mechanical 

behaviour of hexachiral honeycombs are summarised in Table 3. The standardized 

nomenclature presented above is used, with the addition of the angle  between radial 

direction and the inclined struts.   

The responses predicted from the different equations summarised in Table 3 is represented 

in  

 

Figure 18 according to the standardized unit diameters presented above.  Diagrams are 
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represented for the theoretical range of the angle  between , corresponding to the case 

where the circles at the nodes degenerate into points and the structure becomes made of 

triangles, and , where the circles at the nodes occupy the entire cell diameter and the 

structure become made of circles.  The diagrams confirm that the Poisson’s ratio of -1 

predicted by Prall and Lakes is a theoretical limit practically unattainable and approached for 

an angle .  In fact, the auxetic behaviour reduces at smaller and larger angles, 

reverting at angles close to  and .  All three models based on micropolar 

homogenisation predict a similar behaviour, with the descriptions of Spadoni and Ruzzene 

[106] and Liu et al. [108] providing practically identical results for both Poisson’s ratio and 

Young’s modulus.  All models fail to give realistic estimates of the structure moduli at large 

values of , as the models assumed them to tend to infinity while in literature the extreme 

case of a lattice of connected circles have been evaluated to finite values [110]. 
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Table 3: Equations derived by the different research groups for the determination of the in-plane 
Poisson’s ratio, elastic modulus and, where available, shear modulus, for hexachiral honeycombs. 

HEXACHIRAL HONEYCOMB 

 

Dimensions: 

: half length of ligaments 

: angle between radial direction and ligaments 

: ligament wall thickness 

: depth of cell structure 

: radius of circle at node 

: width of unit cell  

Material Properties of cell wall material: 

: Young’s modulus 

: Poisson’s ratio 

: Shear modulus (for isotropic materials ) 

: density 

Relative density:  

Prall & Lakes [103] 

Poisson’s ratios: 

 

Young’s moduli: 

 

Shear modulus: 

 

Notes: Based on beam bending deformation. Inaccurate when  → 0 (which leads to  → ∞) and for the calculation of   

Spadoni & Ruzzene [106] 

Poisson’s ratios: 

 

Young’s moduli: 

 

Shear Modulus: 

 

Notes: Micropolar continuum model, removing the indeterminant of , with the assumption of ridgid rings 

Liu  et al. [108] 

Poisson’s ratios: 

 

Young’s moduli: 

 

Shear Modulus: Not calculated 

Notes: Based on micropolar continuum method. Verified by comparison to the exact solution of the corresponding discrete models. 



51 
 

Bacigalupo & Gambarotta [109] 

Poisson’s ratios: 

 

Young’s moduli: 

 

Shear Modulus: 

   

Notes: Based on micropolar continuum method introducing the concept of effective beam length for the ligaments, where  is the ratio between 

effective length and actual length .  

 

   
 

   
 

  
 
Figure 18: Comparison of the in-plane Poisson’s ratio, Young’s modulus and shear modulus 
determined with the different models proposed for the analysis of hexachiral honeycombs 
(see Table 3). The parameters used are as defined above unit length,  and 

. For Bacigalupo & Gambarotta, .  
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Other chiral configurations have received less attention in terms of analytical description.  

Recently, Mousanezhad et al. [111] applied energy-methods based on Castigliano’s second 

theorem to derive analytical expressions for the in-plane mechanical response of tetrachiral, 

anti-tetrachiral, trichiral and anti-trichiral configurations.  Since the tetrachiral and anti-

tetrachiral systems are stretching dominated, both the stretching and the bending terms of 

Castigliano’s theorem were included, whilst, in the case of trichiral and anti-trichiral, 

structures were assumed to deform in a bending dominated manner, their study only 

included the bending terms.   

Comparison of the analytical predictions with numerical solutions revealed a number of 

discrepancies. In particular, the tetrachiral and trichiral configurations did not exhibit a 

negative Poisson’s ratio in the computational models.  This behaviour, in the case of 

tetrachiral model, is in contrast with that described by Alderson et al [105], and is attributed 

by Mousanezhad et al. to the different boundary conditions imposed in the two analyses.  In 

the case of trichiral configuration, the different behaviour between the analytical and 

numerical predictions is attributed by the authors to the fact that, in the numerical case, the 

major form of deformation shifted from the ligaments to the nodes, assumed rigid in the 

equations. This also justifies the Young’s modulus estimated analytically. 

The equations derived by Mousanezhad et al. for the different configurations are 

summarised in Table 4, using the notations reported in the figures represented in the table.  

The responses predicted for the different configurations in Table 4 are represented in Figure 

19.  All geometric parameters and the Poisson’s ratio of the wall material are kept consistent 

with previous studies.  Diagrams are represented for ratios between the radius of the node 

and the dimension  of the unit cell ranging from zero (ligaments only) to 1 (node circles 

only).  The diagrams confirm that the trichiral and anti-trichiral structures can exhibit auxetic 

behaviour only for a limited range of geometrical configurations. 
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Table 4: Equations derived by Mousanezhad et al. [111] for the determination of the in-plane Poisson’s ratio, 
elastic modulus and, where available, shear modulus, for tetrachiral, anti-tetrachiral, trichiral and anti-trichiral 
honeycombs. 

Tetrachiral 

 

Poisson’s ratios: 

* 

 

Young’s moduli: 

 

 

Shear modulus: 

 

* in Mousanezhad et al. [111] the Poisson’s ratio is indicated as equal to zero, 

but it is here assumed that it was a typographical error. 

Anti-Tetrachiral 

 

Poisson’s ratios: 

 

Young’s moduli: 

 

Shear Modulus: 

 

Trichiral 

 

Poisson’s ratios: 

 

Young’s moduli: 

 

Shear Modulus: Not reported 

Anti-Trichiral 

 

Poisson’s ratios: 

 

Young’s moduli: 

 

Shear Modulus: Not reported 
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Figure 19: Comparison of the in-plane Poisson’s ratio and Young’s modulus determined for the 
different chiral and anti-chiral configurations summarised in Table 4. For all t=0.05, D=1 (in case H=B, 

H=B=D=1), and . For the tetra-, tri- and anti-trichiral, , and for the anti-

tetrachiral .   

As described above, one of the main features of chiral structures is their ability to offer the 

same mechanical characteristics in the different in-plane directions. However, chiral 

configurations can be readapted to provide orthotropic responses. In particular, the anti-

tetrachiral structure is the most suitable for this application, and a range of variations on this 

structure have been suggested and analysed, that differentiate the responses in the two 

directions of orthotropy by allowing for different length of the ligaments (Chen et al., 2013) 

[56]; for different length and thickness of the ligaments (Gatt et al., 2013) [57]; for different 

length of the ligaments and elliptical nodes (Wu et al., 2017) [52]. Also, hybrid tetrachiral – 

anti-tetrachiral structures with rectangular nodes have been suggested and analysed (Grima 

et al., 2008) [114].  Recently, attempts have been made to adapt similar approaches to 

hexachiral structures, by introducing irregularities [115]. 

The anti-tetrachiral orthotropic configurations described above and the analytical 

expressions of the derived mechanical properties are summarised in Table 5 
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Table 5: Schematic representation of different orthotropic anti-tetrachiral configurations and equations derived by 

different groups for the determination of the Poisson’s ratios and, where available, elastic moduli for the two in-

plane directions of orthotropy. 

Chen et al. [112] 

 

Poisson’s ratios: 

 

 

 

Young’s moduli: 

 

 

Shear modulus: Not reported 

Gatt et al. [113] 

 

Poisson’s ratios: 

 

Young’s moduli: 

 

 

Shear modulus: Not reported 

Wu et al. [52] 

 

Poisson’s ratios: 

 
Young’s moduli: 

 

 
Shear Modulus: Not reported 

Grima et al. [114] 

 

Poisson’s ratios: 

 

 

 

Young’s moduli: Not reported 

 

Shear Modulus: Not reported 
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The out-of-plane behaviour of chiral structures has been analysed for hexachiral 

honeycombs by Spadoni et al. [104], who studied the problem with analytical approaches 

based on linear buckling for thin plates, as well as shells and bifurcation numerical 

simulations by means of finite element analysis.  This article identifies the geometric 

parameters defining the structure that can be altered to increase the flat-wise buckling 

response, such as diameter to length ratio for the cylinder nodes or the wall thickness, which 

increases the global and local buckling loads.  On the contrary, the ratio between the 

ligament’s length and the cylinder nodes diameter (or the angle between the radial direction 

and the ligaments), defining the level of chirality, decreases the buckling load even when 

normalised for relative density.  Scarpa et al. [116] studied the same configuration by means 

of finite element analyses and experimental tests.  Flat-wise buckling and the anelastic 

buckling behaviour of the hexachiral structure was further explored by Miller et al. [117], by 

means of numerical and experimental approaches, and expanded to tetrachiral and anti-

tetrachiral structures. Lorato et al [118] studied the out-of-plane properties of the hexachiral, 

tetrachiral, anti-tetrachiral, trichiral and anti-tetrachiral configurations applying analytical, 

numerical and experimental approaches.  Both the transverse Young’s modulus and the 

transverse shear modulus were studied: the transversal nominal Young’s modulus was 

reported to increase when moving from the trichiral to the anti-trichiral, to the tetrachiral, to 

the anti-tetrachiral and finally to the hexachiral configurations, although some minor changes 

in this order were observed in experiments with thicker ligaments. 

Another interesting configuration, proposed in 2000 by Smith et al. [119] to describe the 

behaviour of auxetic foams, is represented by the missing rib model.  This is based on a 

lozenge grid with missing rib portions, which results in a configuration which shares the 

features of both tetrachiral and re-entrant structures (see Figure 20.a).  In fact, the 

deformation of missing rib models is associated with rotations of the hub of crossed-

ligaments, as well as hinging at the ligaments joints.  As for the chiral configurations 

previously described, anti-chiral missing rib arrangements can also be designed (see Figure 

20.b), which would still retain auxetic behaviour [120]. 

       

Figure 20: Deformation mechanism of chiral (a) and anti-chiral (b) missing rib structure. 
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Analytical models of this type of structures are still highly simplified, and mostly referred to 

chiral missing rib configurations.  The equations derived by Smith et al. (2000) [119] to 

describe the in-plane mechanical behaviour of these structures are summarised in Table 6.  

The reference dimensions used in the equations are described in the figure in the table, and 

the joints with angle  are spring hinges, with spring constant equal to . 

Table 6. Equations derived for the determination of the in-plane Poisson’s ratio and elastic modulus 
for missing rib structures 

Chiral Missing Rib [119] 

 

Poisson’s ratios: 

 

 

Young’s moduli: 

 

 

 

Shear Modulus: 

Not reported 

 

3.4 Rotating plates 
At the beginning of the new millennium, various research groups identified auxetic behaviour 

in the rotational degree of freedom of plates or crystals, interconnected through hinges at 

their vertices in such a way that, when they are compressed / expanded in one direction, 

they rotate the plates so that they compress / expand in the other direction as well, thus 

producing a negative Poisson’s ratio. An example of this mechanism is described in Figure 

21. 

 

Figure 21: Deformation mechanism of rotating plates. 
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Grima and Evans investigated the auxetic behaviour of rigid rotating squares and triangular 

plates, showing that in idealised settings with rigid components, their Poisson’s ratio is equal 

to -1 [121].  They later expanded their investigation into rotating triangles [122], rectangles 

with different connectivity [123], [124], rhombi [125], [126], parallelograms [126] and non-

regular plates.  As these rigid models, being highly idealised structures, typically 

overestimate the auxeticity of the systems [127], semi-rigid and stretching connected plates 

were also investigated [128].  The same main deformation mechanism was shown to be 

applicable to crystal structures [129], [130] and justify the natural negative Poison’s observed 

in materials such as some silicates like α-cristobalite [131], [132] and zeolites like natrolite 

[133]. 

3.4.1 Rotating quadrangular plates 
The idealised structure of rotating rigid squares has been found isotropic and to have a 

Poisson’s ratio of -1 [121], independently of the strain level, for any angle characterising the 

configuration [127].  The Young’s modulus is dependent on the stiffness of the hinges and 

on the strain, approaching infinity when the structure becomes fully closed and open [128] 

(given the assumption of perfectly rigid squares and hinges).  Similarly, the shear modulus is 

constant and equal to infinite for any configuration.  In reality, the Poisson’s ratio would be 

dependent on whether hinging or deformation of the plates would be the dominant type of 

deformation; hence, it would be dependent on the relative rigidity of the squares with respect 

to the rigidity of the hinges [123].   

When considering real semi-rigid structures, the Poisson’s ratio is expected to be less 

negative than the ideal value of -1 estimated for rigid units, with some further reduction also 

deriving from misalignment of deformation with the major axes of the plane.  The nominal 

shear modulus also becomes finite, an effect of the hinges, compliance and the material 

shear modulus, which also results in shape changes in the single plates, that depart from the 

perfectly square shape to become rhombohedral, rectangular or parallelogram shapes.  To 

account for these changes, a model was introduced by Grima et al. [127] allowing the 

diagonals of the squares to deform independently.  This, together with the expected increase 

in Poisson’s ratio compared to theoretical ideal value of -1, shows a loss of the properties of 

isotropy, independency on the scale and on the nominal strain.  Similarly, the Young’s and 

shear moduli return finite (although the latter still appears to approach infinity when the 

structure is fully open). 

When using rectangular plates, two alternative connectivity arrangements can be achieved, 

usually indicated as Type I, which defines two orthogonal axes of symmetry (resulting in 

rhombic empty shapes), and Type II, where symmetry is lost (and the empty shapes appear 

as parallelograms).  These are described in Figure 22. 
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Rectangular Type I configurations exhibit anisotropic mechanical behaviour and Poisson’s 

ratios variable with the level of strain, controlled by the proportions of the sides of the plates.  

Otherwise, Type II configurations are characterised by isotropy, with a constant Poisson’s 

ratio of -1, similar to the rotating squares system [124]. 

           
Type I       Type II 

(a)       (b) 

Figure 22: Deformation mechanism of rotating rectangular plates, connected with Type I (a) and Type 
II (b) arrangements. 

 

Rotating rhombohedral plate configurations were presented as an alternative to rotating 

squares and as a way to generalise the model further, see Figure 23.  Similarly to 

rectangular plates, two different connecting arrangements can be used, usually indicated as 

Type α, where the obtuse angle of one rhombus is connected to the acute angle of its 

adjacent plate, and Type β, where the connecting angles of the rhombi at the same 

connection are the same.  Type α is a space filling means to connect the rhombi, while Type 

β leaves gaps even when fully compressed.  The mechanical behaviour of the two 

arrangements is substantially different, with Type α being highly anisotropic and exhibiting 

both positive and negative Poisson’s ratios, depending on the shape of the rhombi and on 

the strain (it is dependent on the angles between the plates).  Type β configurations, instead, 

are isotropic with a constant Poisson’s ratio of -1, independently of the strain, and cannot 

shear [125]. 

           
Type α       Type β 

(a)       (b) 

Figure 23: Deformation mechanism of rotating rhombohedral plates, connected with Type α (a) and 
Type β (b) arrangements. 
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These concepts can be further generalised by expanding into parallelograms, which can 

combine the connection arrangements described for rhombohedral and rectangular plates, 

resulting into four potential configurations Type I α, Type II α, Type I β and Type II β, as 

described in Figure 24 [126]. 

Type II α configuration has been studied in depth by Grima et al. [126], who found that the 

Poisson’s ratio varies with the nominal strain level and can be either positive or negative.  

Interestingly, this behaviour is very different from that observed for Type II rectangular plates 

(that exhibits a constant negative Poisson’s ratio equal to -1), of which Type II α can be 

regarded as a generalisation.  Instead, the variation of the Poisson’s ratio with the nominal 

strain is actually very close to that observed in Type I rectangular plate systems and Type α 

rhombohedral plates. 

 

  

Type I α       Type II α 

(a)       (b) 

      

Type I β       Type II β 

(c)       (d) 

Figure 24: Deformation mechanism of rotating parallelograms, connected with Type I α (a), Type II α 
(b), Type I β (c) and Type II β (d) arrangements. 

The equations derived by Grima and collaborators [121], [123]–[126] to describe the in-plane 

mechanical behaviour of different quadrangular rigid plate configurations are summarised in 

Table 7.  A figure describing the reference dimensions used in the equations is included on 

the left side of each set of equations.   

For all cases,  is the stiffness constant of the hinges.  The notation adopted for the 

directions of orthotropy, the Poisson’s ratios, the elastic moduli and, where available, the 

shear modulus, are the same as in previous tables. 



61 
 

A comparison of the responses predicted from the different equations summarised in Table 7 

is represented in Figure 25.  These were derived assuming plates of area  

square unit lengths for the square and rhombohedral configurations,  

square unit lengths for the rectangular and parallelogram plates, and an angle  for 

the rhombohedral and parallelogram plates.  Diagrams are represented for a range of the 

angle  changing from  to .  For the unit stiffness constant,   was used.  

The diagrams confirm the mentioned similarity between the behaviour of Type I rectangular, 

Type α rhombohedral and Type II α parallelepiped plate systems.  In particular, equations 

provide equivalent values for Type α rhombohedral and Type II α parallelepiped plate 

systems, while the similarity is only qualitative for the case of Type I rectangular plates. 
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Table 7. Equations derived for the determination of the in-plane Poisson’s ratio, elastic modulus and, 
where available, shear modulus, for different quadrangular plate configurations described in the 
literature. 

Rotating Square Plates [121] 

 

Poisson’s ratios: 

 
 

Young’s moduli: 

 
 

Shear modulus: 

 

Rotating Rectangular Plates [123], [124]  

Type I 

 

Poisson’s ratios: 

 
Young’s moduli: 

 

 

 

Shear Modulus:  

 
Type II 

 

Poisson’s ratios: 

 
 

Young’s moduli: 

 

Shear modulus: 

 

Rotating Rhombohedral Plates [125], [126] 

Type α 

 

Poisson’s ratios: 

 

Young’s moduli*: 

 

 
 

Shear modulus: 

 
 

Type β 

Poisson’s ratios: 

 

Young’s moduli*: 
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Shear modulus: 

 

Rotating Parallelograms [126]  

Type II α 

 

Poisson’s ratios: 

 
 

Young’s moduli*: 

 

 
 

Shear Modulus:  

 
 

* In the original equations of these Young’s moduli, the denominators are multiplied by the plate depth, here removed for units’ consistency. 
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Figure 25: Diagrams of the in-plane Poisson’s ratios and Young’s moduli determined with the 
equations for the analysis of rotating quadrangular rigid plates (see Table 7) in conventional and 
auxetic configurations, the parameters used as defined above , ,  unit length, 

 and  unit force. 
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3.4.2 Rotating triangular plates 

The first proposed rotating triangular plate system was based on equilateral triangles which 

are connected and deform as described in Figure 26.a.  For an ideal structure with perfectly 

rigid plates and hinges, where all deformations are due to rotation of the triangles, the 

system is isotropic with constant negative Poisson’s equal to -1.  The Young’s modulus 

approaches infinity when the structure is fully collapsed and fully expanded, and the shear 

modulus is infinite for any configuration [122]. 

Pairs of irregular triangles have also been studies for applications in rotating plate auxetic 

structures (see  Figure 26.b).  In this case, the system highlights behaviours that are closer 

to those observed in honeycomb auxetic systems, which exhibit anisotropy and Poisson’s 

ratios depending on the nominal strain, that can be negative at small strains, but return 

positive at larger deformations [134].  

       

(a)      (b) 

Figure 26: Deformation mechanism of equilateral (a) and irregular (b) rotating triangular plates. 

The equations derived by Grima et al [122], [134] to describe the in-plane mechanical 

behaviour of equilateral and irregular triangular rotating rigid plate configurations are 

summarised in Table 8.  A figure describing the reference dimensions used in the equations 

is included on the left side of each set of equations. 
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Table 8. Equations derived for the determination of the in-plane Poisson’s ratio, elastic modulus shear 
modulus, for triangular plate configurations. 

Rotating Triangular Plates [122] 

Equilateral 

 

Poisson’s ratios: 

 
 

 

Young’s moduli: 

 
 

 

 

Shear modulus: 

 

Pairs of Irregular Triangles[134] 

 

 

Geometric Parameters: 

 

 

 

 

 

Poisson’s ratios: 

 

 

Young’s moduli: 

 

 

Shear Modulus: 
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3.5 Others 

The configurations above describe the most common basic structures analysed in the 

literature.  A number of hybrid structures, based on combinations of different auxetic 

configurations, are also possible and have been proposed, such as hybrids between re-

entrant and chiral structures [135], [136] (see Figure 27.a).  Additionally, hybrid 

configurations based on hierarchical structures, where the auxetic pattern is ‘layered’, have 

been presented [52], [137], as the multi-level hierarchical rotating squares structure 

described in Figure 27.b. This allows for further tailoring of properties, either to combine 

advantages for two type of structures, reinforcing one with advantages from another or 

circumvent a drawback of the primary structure used – like the re-entrant trichiral structure 

adding the out-of-plane reinforcements of the cylinders of the chiral structures to the higher 

auxeticity and synclastic out of plane behaviour of the re-entrant hexagonal structure [135], 

or enhance the possibilities for a specific use like the two-level hierarchical structure in 

Figure 27.b could be used in a filter for filtering two different particle sizes.  

  

(a)      (b) 

Figure 27: Example of a re-entrant trichiral honeycomb structure (a) and of a two-level hierarchical 
rotating squares structure (b) 

 

3.6 Summary/Discussion: Options and Suitability for cardiovascular stents 
There is a large number of two-dimensional auxetic structures that can provide a range of 

different auxetic behaviours. Several of these structures have been investigated thoroughly 

in the literature, providing indications on the elastic behaviours, ranges of Poisson’s ratio 
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theoretically achievable with each of the designs, as well as the sensitivity to more realistic 

manufacturing and usage circumstances.  However, no clear comparisons have been made 

that provides a more direct indication on which structures would be more suited to each 

specific practical application. There are a few papers that mention the implications of 

exploiting auxetic configurations, stressing the fact that auxetic solutions require design 

considerations that may not be present in more conventional manufacturing approaches. For 

example, Ren et al [138] report [109] a practical investigation of designing and testing a nail 

using auxetic structures. Comparison with normal nails showed several unexpected 

limitations with the auxetic configuration, such as the need for more specific requirements for 

the nail’s surface roughness (stemming from the surface holes of the auxetic pattern) on the 

push-in and pull-out performance. Although some of the problems encountered by Ren et al 

in creating an auxetic might not be as prominent for cases that already use cellular 

structures, it is worth to remember that most of the studies published on the topic have been 

mainly theoretical or involve models.  

The unification of nomenclature, as far as possible, and partial evaluation with standardised 

parameters provided here, is intended to offer guidance on which elastic behaviours to 

expect for each auxetic configuration in comparison to others. For example, if a stable 

Poisson’s ratio is required over large deformations, the hexachiral is shown to retain it for 

deformations up to 25%, in comparison to the rapidly changing Poisson’s ratio for the re-

entrant structures where the structure angles change largely with deformation. Some of the 

structures suitable for cases where a larger NPR would be desirable would be the double 

arrowhead or the re-entrant hexagonal.  

For isotropic continuous materials, the Poisson’s ratio is equal in all directions and is limited 

to the range -1 < ν < 0.5 (expanded to -1 < ν < 1 for two-dimensional isotropic systems [123], 

[139]) while for anisotropic structures no such limits exist [64]. Therefore, isotropic systems 

like the hexachiral system and some of the rotating plates have a limit on maximum NPR 

achievable in any direction. For anisotropic systems like some of the re-entrant systems it 

can be observed that although they can achieve higher NPR’s in one direction, this is 

counterbalanced by a lower NPR in the other in-plane direction. So even though re-entrant 

systems like the re-entrant hexagonal or double arrowhead systems can achieve quite high 

NPR in one direction, there is a trade-off in the other.   

For the purpose of this project, the comparative study of the auxetic structures available in 

literature has been essential to identify the most suitable options for cardiovascular stenting.  
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3.7 Conclusion: Choice of which auxetic structures to study further in this 

specific study 
 

As observed in the clinical background, for the major vessels the healthy deformations are 

large and of the same sign in both the longitudinal and circumferential directions (For the 

ascending aorta, around 6.7-8.5% and 7.9-8.1% respectively [15]), and it would be optimal to 

have structures that could restore that motion in a controlled way.   

Rotating plates, despite being able to offer the required Poisson’s ratios, are not ideal for 

these applications, due to the need to introduce hinges of controlled properties. These may 

be obtained by including frictional components, or by exploiting the material elasticity at the 

joints between the rotating plates. In both cases, as large vessels experience about 40 

million cycles per year [5] , wearing or crack propagation would represent a major potential 

risk. Hence, cellular wall structures, similar to those already successfully employed in 

common angioplasty stents were preferred. Three candidate configurations were selected, 

characterised by the three largest ranges of negative Poisson’s ratio:  

- The re-entrant hexagonal, has a large potential range for the negative Poisson’s ratio and 

has been studied extensively, so it is easy to evaluate with the information from the literature 

and can provide a good benchmark.  

- The double arrowhead, which is indicated to have possibly the largest range of achievable 

negative Poisson’s ratios, but it has not been sufficiently analysed in the literature, so it 

requires further investigation to be evaluated in the light of cardiovascular stenting for the 

major vessels.  

-The hexachiral, which is different to the two above as it depends on a different deformation 

mechanism and is not re-entrant. It offers isotropic behaviour over a larger range of strain. It 

is well compared with anti-tetrachiral structures, which are the other interesting chiral 

structure for these types of applications and is widely studied in the literature with well-

developed modelling.  
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4. Development of analytical method for Double Arrowhead 
 

4.1 Introduction to analytical method  
The double arrowhead (DAH) structure, first introduced by Larsen et al. in 1997 [79], is a 

very interesting configuration, due to its potential to produce a highly anisotropic behaviour 

with much higher NPRs than the majority of the other auxetic shapes. However, its 

application is partially limited by the lack of comprehensive analytical equations predicting 

the effect of its geometric parameters on the achieved mechanical behaviour. In fact, due to 

the highly anisotropic behaviour of the cellular structure, direct derivation of the shear 

modulus expression from the Poisson’s ratio and Young’s modulus is inapplicable. Thus, the 

aim of this study is to provide an analytical framework for the DAH structure consistent with 

previous studies on the re-entrant honeycomb, deriving simple equations for the Poisson’s 

ratios, Young’s moduli and for the shear modulus, easy to apply to biaxial and tubular 

structures. 

Multiple analytical expressions have been derived to describe the deformation behaviour of 

the double arrowhead. Brighenti et al. [98] started from a kinematic analysis and then 

adopted a statically indeterminate structural scheme, which accounts for the deformation of 

the unit cell; Berinskii [90] used a homogenisation method to find the components of the 

stiffness tensor of the effective continuum analytically, Qiao et al. [140] used a beam 

approach but only considered the deformation in one direction and Li et al. [141] used strain 

energy for a representative volume element to derive both the Poisson’s ratio and the 

Young’s modulus. However, all these studies provide only partial analyses, and a 

comprehensive model, including for example the prediction of the shear modulus is still 

missing in the literature for the double arrowhead configuration. 

For the analytical study, the two-dimensional double arrowhead cell shown in Figure 28 a is 

considered. To standardise the analytical expressions to current literature, a similar 

approach to that of Gibson & Ashby [69], and Masters & Evans [83] for the first elastic 

models of the re-entrant hexagonal honeycomb was adopted.  

Expressions for the Poisson’s ratio, Young’s modulus and shear modulus are derived 

considering the deformation of the beams by flexural and stretching mechanisms.  

For flexure, the bending of the cell walls follows the approach proposed by Gibson & Ashby 

[68], [77], [88], and later built on by Masters & Evans [83], that considers a cell wall of length 

as a cantilever beam fixed at one end and guided at the other [68], [83], [142], resulting in 

the relationship for the deformation [143]:  
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 (4.1) 

where  is the moment applied to the guided end,  is the Young’s modulus of the 

cell wall material, and  is the second moment of area of the cell wall. 

In the case of shearing, after initially using the flexural analytical approach to shear, it was 

discovered that stretching becomes the dominant deformation mechanism, requiring some 

changes in the analytical approach, which is presented below as the stretching approach to 

shear. This is evident when comparing the equations obtained by applying the flexural and 

stretching modes with the results from the numerical models for both planar and tubular 

structures, as further seen in the results in Chapter 7. The stretching model appears far 

more appropriate for the prediction of the shearing of the structure. For completion, 

stretching equations of the normal deformation in 1- and 2-direction are also included in the 

Appendix. The model is based on the same approach proposed by Masters & Evans for the 

complementary analysis of the re-entrant hexagonal structure [83] while the shear approach 

is different to avoid the resulting infinite shear stiffness when using the rigid angles in 

Masters & Evans, both where the extension of the cell wall of length  due to the axial force 

is calculated using standard beam theory  

  (4.2)  

with A = area of the cell wall cross-section and Es = Young’s modulus of the cell wall 

material. The stretching approach used to analyse shearing could be applied to the normal 

deformation in 1- and 2-direction, but it would result in a basic slider-crank mechanism, with 

stretching only acting for the two extreme cases (when the shorter beam becomes 

horizontal, for horizontal tensile loads; and when both beams – the longer and the shorter – 

align vertically, for vertical tensile loads). 
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4.2 Flexure model 
The model is based on a similar approach to that of Gibson & Ashby’s [69] uniaxial bending 

model for the regular and re-entrant hexagonal honeycombs.  

4.2.1 Uniaxial loading of double arrowhead cell in the 1-direction 

 

 

When the double arrowhead cell is subjected to uniaxial loading by a far field nominal stress 

 (Figure 28 a), the force in the direction of 1 can be expressed as  

  (4.3) 

where  and  are the lengths of the longer and shorter beam respectively;  and  the 

angles between the longer and shorter beams to the horizontal direction, respectively; and  

is the out of plane width of the beams. 

To maintain equilibrium, . 

For the longer beam (Figure 28 b), the moment can be calculated as 

  (4.4) 

And the displacement  as 

  (4.5) 

Where the component of deformation along the 1-axis is 

  (4.6) 

Figure 28: a) Uniaxial loading in 1-direction and resulting b) long beam and c) short beam free body 
diagram, respectively. 
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And the component of deformation along the 2-axis is  

  (4.7) 

For the shorter beam (Figure 28 c), the moment  can be calculated as 

  (4.8) 

And the displacement  as 

   (4.9) 

Where the component of deformation along the 1-axis is 

  (4.10) 

And the component of deformation along the 2-axis is  

 (4.11) 

Due to the geometry constrain, , the relation between  and  can be 

determined as 

 

 

Since:  

 

  (4.12) 

   (4.13) 
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4.2.2 Uniaxial loading of double arrowhead cell in direction 2 

When the double arrow cell is subjected to uniaxial loading by a far field nominal stress  

(Figure 29 a), the force  in the direction of the stress can be expressed as   

 

 

 

 

 

 

 

 

Figure 29: a) Uniaxial loading in 2-direction and resulting b) long beam and c) short beam free body 
diagram, respectively. 

 

 (4.14) 

For the longer beam (Figure 29 b), the moment can be calculated as 

  (4.15) 

And the displacement  as 

  (4.16) 

Where the component of deformation along the 1-axis is 

   (4.17) 

And the component of deformation along the 2-axis is 

   (4.18) 

For the shorter beam (Figure 29 c), the moment  can be calculated as 

  (4.19) 

And the displacement  as 
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   (4.20) 

Where the component of deformation along the 1-axis is  

   (4.21) 

And the component of deformation along the 2-axis is  

  (4.22) 

Due to the geometrical constraint , an expression for  can be developed 

 

  (4.23) 

 

4.2.3 Flexural response of double arrowhead cell in shear loading 

When the double arrow cell is subjected to shear loading by a far field nominal stress  

(Figure 30), the forces on the beams can be expressed as   

 

Figure 30: Flexural response of double arrowhead cell subjected to shearing



 

To maintain equilibrium,  and  . 

It is also: 

  (4.24) 

with: 

  (4.25) 

Then, 

  (4.26) 

Similarly, 

  (4.27) 

  (4.28) 

Where   is the far field nominal shear stress and  the out of plane width of the beams. 

To calculate the deformation of beam  (Figure 31):  

 

Figure 31: Free body diagram of the left-side longer beam of length , referred to as beam Al 

For the left-side longer beam with the length , the moment  can be calculated as 

 

  (4.29) 

And the displacement  as 

  (4.30) 

Where the component of deformation along the X1 axis is  

  (4.31) 
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And the component of deformation along the X2 axis is 

  (4.32) 

 

 To calculate the deformation of beam  (Figure 32): 

For the right-side longer beam with the length , the moment can be calculated as 

  (4.33) 

And the displacement  as 

  (4.34) 

Where the component of deformation along the 1-axis is  

  (4.35) 

And the component of deformation along the 2-axis is 

  (4.36) 

 

Figure 32: Free body diagram of the right-side longer beam of length la, referred to as beam Ar 
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To calculate the deformation of beam  (Figure 33): 

 

Figure 33: Free body diagram of the left-side shorter beam of length , referred to as beam Bl 

For the left-side shorter beam with the length , the moment  can be calculated as 

  (4.37) 

And the displacement  as 

  (4.38) 

Where the component of deformation along the 1-axis is  

  (4.39) 

And the component of deformation along the 2-axis is 

  (4.40) 

 

To calculate the deformation of beam  (Figure 34): 

 

For the right-side shorter beam with the length , the moment can be calculated as 

  (4.41) 

Figure 34: Free body diagram of the right-side longer beam of length , referred to as beam Br 
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And the displacement as 

  (4.42) 

Where the component of deformation along the 1-axis is  

  (4.43) 

And the component of deformation along the 2-axis is 

  (4.44) 

Due to geometry,  (same as/resulting in that  and ) 

 

 

 

Since   

Then: 

 

  (4.45) 

and 

  (4.46) 

 

For equilibrium, ΣM = 0 about the node O  

 

 

Since  

 

 

hence 

  (4.47) 
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Combining with the above expression for  (see eq. 4.45) 

 

 

   (4.48) 

Since  

   (4.49) 

 

Defining the shear deflection  (Figure 35) as 

 

  (4.50) 

   (4.51) 

 

  (4.52) 

  (4.53) 

 

Figure 35: Shear deflection us as a combination of the deformation of the individual beams 
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4.2.4 Calculating the elastic properties for pure flexure deformation 
For expansion in 1-direction 

  (4.54) 

 

   (4.55) 

   (4.56) 

   (4.57) 

For expansion in 2-direction 

  (4.58) 

 

  (4.59) 

 

 (4.60) 

   (4.61) 

For shear 

 (4.62) 

 

  (4.63) 
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 (4.64) 

 

4.2.5 Rewritten in the format  and   

  (4.65) 

   (4.66) 

 

   (4.67) 

 

 (4.68) 

 

  (4.69) 
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4.3 Stretching model 
The idea to use a stretching model used is based on Master and Evans’ [83] work on the re-

entrant hexagonal structure:  

4.3.1 Shear 

 

 

Figure 36: Shear stretching model of double arrowhead cell 
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To calculate the stretching response under shear loading, the angles were not constrained 

as in Masters and Evans due to the resulting infinite shear stress, instead the resultant force 

 of the two normal forces of the long beams  was used (Figure 36).  

For the long beam  

  (4.70) 

  (4.71) 

   (4.72) 

For the short beam  

 (4.73) 

 (4.74) 

  (4.75) 

 

Angular deformation 

  (4.76) 

Shear stress 

  (4.77) 

 

Shear modulus 

 (4.78) 

 

4.3.2 Rewritten in the format  and  

 

  (4.79) 
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4.4 Combining flexure and stretching to a complete shear model 
 

 (see 4.62) 

  (see 4.63) 

   (see 4.79) 

 

  (4.80) 

 

 (4.81) 

 

4.4.1 Rewritten in the format  and   

 

   (4.82) 

 

4.5 Conclusion 
The double arrowhead configuration is highly anisotropic in most cases, but there are a few 

combinations of geometric parameters that can create an on-axis isotropic behaviour for 

small strains. The analytical models only take small strains into account. Up to which point 

the current model is accurate and beyond what point a large strain model would be 

necessary, needs to be investigated further.  

Resulting equations above provides the equivalent level of information for the double 

arrowhead as can be found in the literature for the other structures that will be investigated, 

but the equations for all three will need to be converted into tubular structures. 
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5. Analytical Method 

5.1 Re-entrant Hexagonal: Selection of analytical model, conversion to tubes 
For the re-entrant hexagonal honeycomb, the model created by Gibson & Ashby in Cellular 

solids- Structure and properties [69], [144] has been widely used for several studies, where 

the configuration was investigated using beam theory, with flexure as the principal form of 

deformation. As discussed in the literature review, this leads to a problem with extreme 

angles. Masters & Evans[83] expanded on this, incorporating stretching and hinging as 

additional modes of deformation. They however concluded that in most cases, flexure is the 

largest contributor to deformation, followed by stretching and then hinging, allowing for the 

use of only the Gibson & Ashby flexure model when not approaching the extreme angles 

[83]. Other methods have been explored in the literature, like micropolar homogenization as 

seen in Table 1, but for this study a combination of the approaches by Gibson & Ashby and 

Masters & Evans were used as a foundation for the rewritten equations adapted for tubular 

instead of plane structures. Tubular structures have been investigated in a similar way 

before for the re-entrant hexagonal honeycomb, by Karnessi & Burriesci [49], but were 

included in the scope of this study due to a slightly different approach to the numerical 

investigation. Both Gibson & Ashby and Masters & Evans use a beam with a moment of 

inertia for rectangular cross-sections  to calculate the equations for the elastic 

deformation of hexagonal honeycombs. Since in this case a circular cross-section is used in 

the numerical models, this has been replaced with the moment of inertia of for 

the following re-adaptations of the equations. 

The Gibson & Ashby model was chosen as a framework to calculate the parameters for the 

axial elongation of the structure, the  and the , as well as the shear modulus, , of 

the model. For the parameters stemming from the circumferential expansion of the structure, 

the Young’s modulus  and the Poisson’s ratio , the model by Masters & Evans was 

used as the angles would most likely approach the extreme cases where the Gibson & 

Ashby model have been proven to be less reliable. 
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Starting with relating the unit cell dimensions to the dimensions for the tubular structure, with 

 being the tube diameter and  the number of unit cells making up the tubular structure in 

the circumferential direction, for the orientation of the unit cell with regards to the tube as 

pictured in Figure 37. 

  (5.1) from [49] 

The relative density,  where  is the density of the solid, of the re-entrant hexagonal 

honeycomb, is calculated by 

  (5.2) 

where  is the in-plane thickness of the rib.  

For the case of linear elastic deformation from uniaxial loading, the equations for the 

Poisson’s ratios for the tube are: 

  (5.3) from [49] 

and 

 (5.4) from [49] 

D 

H 

Figure 37: Schematic of geometric parameters for the re-entrant hexagonal unit cell and the tube 
used in the equations below, where  
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The Young’s modulus for the two directions in-plane: 

 (5.5) [49] 

and  

  (5.6) [49] 

 

The equations for shear: 

(5.7) [49] 

 

 

5.2 Double arrowhead: Development of analytical model, conversion to tubes 
 

For the double-arrowhead honeycomb, very few studies were found in literature that focused 

solely on this. One study focused solely on the double-arrowhead, or double arrow as they 

denote it, was done by Brighenti et al [98] where the analytical derivation start from a 

kinematic analysis and then adopts a statically indeterminate structural scheme which 

accounts for the deformation of the unit cell. A few used homogenizations along with 

investigating other configurations like Berinskii [90]. However, for consistency with the re-

entrant hexagonal honeycomb, as both structures auxeticity stems from the same 

deformation mechanisms of the unfolding of re-entrant cells, for this study it was chosen to 

specifically derive new equations for the double-arrowhead unit cell by using a similar 

approach to the one chosen by Gibson & Ashby and Masters & Evans [68], [83]. As this 

approach has not been used in the previous literature for the double-arrowhead, the 

guidance of the above models was not always applicable. Still, they provided a good 

framework. As they are usually the standard analytical solution used in literature for the 

REH, this comparable framework for the DAH structure might be useful for creating a similar 

standard option for the double-arrowhead structure. 

All derivations of the equations below for the double arrowhead cell can be found above in 

chapter 4. The geometric parameters used to derive the equations for the cell can be seen in 

Figure 38. 
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Again, starting with relating the cell dimensions to the dimensions for the tubular structure, 

with  being the tube diameter and  the number of cells making up the tubular structure in 

the circumferential direction, for the orientation of the cell with regards to the tube as pictured 

in Figure 38. 

 (5.8) 

For the relative density of the structure 

  (5.9) 

For the Poisson’s ratio, this equals eq. 4.66 and 4.68 

(5.10) 

and 

(5.11) 

For the Young’s modulus this is derived from eq. 4.67 and 4.69 

   (5.12) 

D 

H 
 

Figure 38: Schematic of geometric parameters for the double arrowhead unit cell and the tube used in 
the equations below 
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 and 

 (5.13) 

For the Shear Modulus, the pure stretching equation is derived from 4.78 

     (5.14) 

 

5.3 Hexachiral: Selection of analytical model, conversion to tubes 
For the hexachiral configuration, Figure 39, Prall & Lakes [103] used a similar approach of 

beam bending and energy to derive the equations for the elastic properties of the hexachiral 

structure as the Gibson & Ashby model for the re-entrant hexagonal honeycomb. However, 

since it was concluded that the hexachiral configuration exhibits a constant Poisson’s ratio of 

-1, it becomes difficult to look at the shear modulus of the structure since the isotropic nature 

of the hexachiral configuration a Poisson’s ratio of -1 gives an infinite shear modulus. This is 

also stated by Spadoni & Ruzzene [106], who instead developed a method using micropolar 

homogenization. A similar model was developed by Bacigalupo & Gambarotta [109], but this 

time adding effective beam length as a factor. Since they do not include a model for 

calculating the effective beam length, Spadoni & Ruzzene’s model was used here as a basis 

D 

H 

Figure 39: Schematic of the geometric parameters of the hexachiral configuration in relation to the 
tube. Node distance R, node radius r, ligament length L, ligament thickness t and angle of chirality . 
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for the equations for the analytical analysis of tubular structures constructed of hexachiral 

honeycombs, with the geometric parameters marked in Figure 39.  

The angle for the ligament spacing, , is for regular hexachiral cells always 60 degrees. The 

node distance , the node radius , the angle of chirality  and the ligament length are 

geometrically interdependent, where  

  (5.15) 

and  

  (5.16) 

Then relating the unit cell dimensions to the dimensions for the tubular structure, with  

being the tube diameter and  the number of unit cells making up the tubular structure in 

the circumferential direction, for the orientation of the unit cell with regards to the tube as 

pictured in Figure 39. 

  (5.17) 

The relative density,  where  is the density of the solid, of the hexachiral honeycomb 

structure according to Spadoni & Ruzzene [106], is calculated as  

  (5.18) 

Since the hexachiral structure is theoretically isotropic, only one Young’s modulus and one 

Poisson’s ratio is needed. The elastic constants are then, re-adapted from the model by 

Spadoni & Ruzzene [106] to that of this tubular model, as following with the Poisson’s ratio 

calculated by 

  (5.19) 

 the Young’s modulus  

  (5.20) 

and for the shear modulus 

  (5.21) 
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It is important to note that Spadoni & Ruzzene [106] clearly states that the analytical 

micropolar continuum model is using the assumption of rigid nodes, and that for numerical 

modelling of cases with deformable nodes the result differs. As they state that any analytical 

model fully taking into account the deformability of the nodes would be too complex, a 

simpler model is the best currently available, however they do provide graphs of the results 

from the second numerical-based deformable node-model as a mean of comparison. This 

also highlights the importance of using numerical validation for these kinds of complex 

structures.    
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6. Numerical Method 

6.1 Nominal tubes – For comparison between analytical and numerical 
 To compare numerical and analytical results, the same method as the one described by 

Karnessis and Burriesci [49] was used. For each of the numerical models, nominal elastic 

properties were calculated.  

 

Figure 40: Schematic of nominal tube under (a) longitudinal nominal stress, (b) circumferential 
nominal stress and (c) under nominal shear stress. [49] 

The nominal moduli for the structure were calculated using a nominal tube defined as having 

a diameter  equal to the diameter of the tubular structure, wall thickness equal to the 

diameter of the struts, and length  equal to the axial length of the auxetic structure, as seen 

in Figure 40.  

The nominal longitudinal stress  is the ratio between the resulting axial load on the tube 

and the resisting nominal cross section calculated  (Figure 40 (a)), the nominal 

circumferential stress   is the ratio between the resulting hoop load on the tube and the 

resisting nominal cross section calculated  (Figure 40 (b)), and the nominal shear 

stress  is the ratio between the resulting axial torque on the tube and the resisting 

nominal cross section calculated (Figure 40 (c)) [49]. 

To analytically calculate the nominal diameter of the tube  and the nominal length of the 

tube , simple approximate equations can be derived for each shape from the geometry of 

the unit cell and their orientation along the nominal tube, represented by a hollow cylinder. 

(6.1)     (6.2) 
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Where  is the number of cells in the circumferential direction,  is the cell length in the 

direction enveloped circumferentially around the tube,  is the number of cells along the 

length of the tube and  is the cell length in the direction along the length of the tube.  

Applying this for each of the different cell geometries:  

For the re-entrant hexagonal honeycomb 

   (6.3) 

  (6.4) 

For the double arrowhead configuration 

   (6.5) 

  (6.6) 

For the hexachiral configuration 

   (6.7) 

   (6.8) 

The nominal longitudinal strain , the nominal circumferential strain  and the nominal 

shear strain  are then defined as  

   (6.9) 

  (6.10) 

  (6.11) 

where φ is the relative angular rotation occurring between the cross-sections at the two ends 

of the tube, D* is the expanded diameter of the tubular structure and H* is the elongated 

length of the tubular structure.  

The nominal Poisson’s ratio is defined as the longitudinal expansion or contraction of the 

tube in response to a circumferential load; whilst the nominal Poisson’s ratio  is defined 

as the circumferential expansion or contraction of the tube in response to a load along the 

longitudinal axis. The nominal Young’s Modulus  is defined as the ratio between the 

nominal circumferential stress  and the corresponding circumferential strain ; the 



 

95 
 

nominal Young’s Modulus  is defined as the ratio between the nominal longitudinal stress 

and the corresponding longitudinal strain ; and the nominal shear Modulus of the 

tube is defined as the ratio between the nominal shear stress  and the nominal shear 

strain , resulting in: 

 

  (6.12) 

 

  (6.13) 

 

  (6.14) 

 

 (6.15) 

 

  (6.16) 

 

 

Reference configurations 

For each of the three different unit cells used, models were built to study the effect of varying 

each geometric variable. To compare with Karnessis & Burriesci [49], the same number of 

unit cells in the circumferential direction ( ) was used as default, and the same range was 

used to study the effect of varying the number of cells in the circumferential direction. 

Table 9: Geometric parameters used for re-entrant hexagonal honeycombs 

REH Values of parameters Default parameter  

Nc 4, 6, 8, 10, 12 12  

ϴ 10°, 20°, 30°, 40°  30°  

h/l 1.25, 1.5, 1.75, 2 1.5  
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Table 10: Geometric parameters used for the double arrowhead configuration 

DAH Values of parameters Default parameter 

Nc 4, 6, 8, 10, 12 12 

α 10°, 20°, 30°, 40°  30° 

β/α 1.25, 1.5, 1.75, 2 1.5 

 

Table 11: Geometric parameters used for the hexachiral configuration 

HC Values of parameters Default parameter 

Nc 4, 6, 8, 10, 12 12 

L/R 0.7, 0.8, 0.9, 0.95 0.9 

 

This creates in total 35 × 3 different geometrical configurations for each of the three modes 

of deformation considered. To be able to compare the different auxetic structures, the 

ranges of the geometric parameters were kept as consistent as possible across the different 

structures. For each structure, there were geometric constraints of the possible range that 

needed to be considered. For the REH the angle ϴ has to be smaller than arcsin(2h/l) to 

avoid co-penetration of the structure and larger than 0 to keep a negative Poisson’s ratio, for 

the DAH the angle β has to be larger than the angle α for the smaller ‘arrow’ to fit within the 

larger ‘arrow’ and β has to be smaller than 90 degrees, and for the HC the level of chirality 

L/R has to be smaller than 1 (L/R =1 is a equilateral triangle) and larger than 0 (L/R = 0 is a 

lattice consisting of directly connected circles), where the most interesting configurations for 

stents undergoing larger deformations is above L/R = 0.7, to keep the main form of 

deformation to flexure of the struts and rotation of the unit cells. 

For the number of cells in the circumferential direction, Nc, the decision was taken to 

investigate even numbered structures to reduce the number of models, with a minimum of 

be 4 cells (2 would be too low to be considered a cellular structure and would have extreme 

cell curvatures). The maximum number of cells in the circumferential direction was chosen to 

be 12, as more would create a too high relative density in a more realistic setting with a 

larger d/D. This results in a relative fine cell density in the circumferential direction, 

facilitating the comparison to the analytical flat two-dimensional models due to the lower 

curvature of the individual cell, where examples like Karnessis and Burriesci show that this 

produces results close to the analytically predicted behaviours that have been verified for the 

REH both numerically and experimentally for flat planes.    
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The length of the tubes was chosen as H = 10D, resulting in a different number of units in 

the longitudinal direction Nz depending on cell size for each individual configuration. As 

periodic boundary conditions were used, this parameter has negligible significance in the 

present study. In fact, when doing convergence testing the difference in Young’s modulus 

between H = 5D and H = 15D is about 0.08% for the REH circumferential expansion, while it 

is slightly larger but in this case still negligible of 0.6% for Poisson’s ratio and 0.7% for 

Young’s Modulus for H = 10D and H = 15D for longitudinal expansion. This convergence 

testing indicates that a shorter tube could be used, however due to the large differences in 

number of cells in the longitudinal direction with the fewest being 15 and the most being 179 

(due to the differences in unit cell size, dependent on factors like number of cells in the 

circumferential direction), it was decided to keep the tube a bit longer to negate any effect of 

that difference. 

For the diameter d, there was the choice to make, as this a non-dimensional parameter 

relating to the individual strut length (like d/l for the REH for example).  This is a common 

issue in most studies in the literature. As the goal of the project is to facilitate the comparison 

between the three different types of structures with the aim of find a practicable application, 

the decision was taken to use the same range of  for all structures. Hence the non-

dimensional parameter chosen for investigating the effect of increasing the strut diameter 

was . This still allows for analysis of the non-dimensional equivalents for each structure, 

while keeping the relationship between the diameter of the strut and the diameter of the tube 

consistent for all three types of structures. This also better reflects the constraints in practical 

applications. A maximum parameter = 0.02 was chosen to attempt to maintain the ratios 

of within a range where the assumptions in the equations are acceptable, guaranteeing 

at the same time dimensions consistent with realistic stent designs. This results into values 

in the range of 0.025-0.1 for  for DAH, 0.04-0.15 for for REH and 0.028-0.15 for  

for HC. For an aortic stent of D = 26 mm, d = 0.52 mm, which is a reasonable value and 

would likely be at the thicker strut end. The models were also investigated for a  = 0.01 

and = 0.005. The latter is too thin to be realistic for most practical applications but is 

intended for the purpose to identify a trend towards the idealised analytical predictions with a 

more theoretically reasonable maximum  = 0.035. The standard configurations can be 

seen in Figure 41.  
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Figure 41: The standard configuration tube for a) REH b) DAH and c) HC 

6.2 Finite Element Analysis: Details 

6.2.1 Beam models, Beam types, Analysis type etc 
For each configuration, two CAD models were created in CATIA v5 (Dassault Systèmes SE, 

Vélizy-Villacoublay, France) as beam models; one full-tube and one half-tube, except for the 

hexachiral configurations where only the full-tube versions were created, for the standard 

configurations see Figure 41. The models were then imported into, processed, and analysed 

with MSC Marc/Mentat (MSC Software Corporation, Newport, CA, U.S.A./Hexagon AB, 

Stockholm, Sweden), a non-linear implicit finite element software.  

To perform the finite element analysis, the complex full models where subdivided into 

smaller components with simpler geometries, the finite elements which is used to perform 

the mathematical analysis on, by meshing the structure. The line mesh was chosen as 12 

beam elements per strut for the maximum number of beams in the circumferential direction 

for the REH and DAH cases, as this is used in several of the sources. In the convergence 

analysis, the force variation between models using 10 and 12 elements per beam was only 

0.3% and reduced to 0.2% when comparing models using 12 and 14 elements per beams. 

Further refinement of the mesh would also significantly slow down the computing time. For 

the hexachiral case an equivalent arrangement was made taking into account the beam 

length that the nodes contributed with in the circumferential direction. Hence for a case of Nc 

= 12, with two beams for each cell in the circumferential direction divided into 12 elements, 

there would be a total number of 288 elements in the circumferential direction. For the 

equivalent case of Nc = 4, the beams would be divided into 36 element each to achieve the 

same number of elements in the circumferential direction.  
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The geometric properties were set as a solid section beam, beam element 98, which is an 

elastic straight beam element which incorporates transversal shear. Linear interpolation was 

used for displacements and rotations [145].   

The material properties were chosen as linear elastic, similarly to the analytical study, with a 

Young’s modulus equivalent to steel (210 GPa). The latter is of irrelevant to our study as it is 

normalised when comparing to the analytical study. The Poisson’s ratio was chosen to be 

0.3 as this is similar to that of engineering metals suitable and commonly used for stents, like 

stainless steel, chromium-cobalt and nitinol [146], [147]. However, this may have some 

impact on accuracy of the models as influences the deformation of the beams [148], and in 

turn might make the deformation of the beam a larger contributor than the deformation of the 

auxetic unit cell to the deformation of the structure as a whole.  

6.3 Modes of deformation and associated boundary conditions 
The pre-requisites of the boundary conditions vary greatly between each configuration due 

to different degrees of symmetry and anti-symmetry, see Figure 42. The re-entrant 

hexagonal honeycomb is symmetric in two directions, the double arrowhead in one direction 

and anti-symmetrical in the other. The hexachiral configuration have a rotational symmetry, 

however it is harder to define in two directions. One direction can be defined as anti-

symmetrical, while the other one direction is treated as non-symmetry due to the rotational 

element of the deformation, even though it may be anti-symmetry from an image point of 

view. The boundary conditions also vary according to the different types of loading, resulting 

in different combinations for each structure and loading. 

 

Figure 42: Symmetry evaluation of the different configurations, from the left: hexachiral, double 
arrowhead and re-entrant hexagonal honeycombs. 

In cases where symmetry planes could be used, they were used in the axial direction along 

the tube, taking advantage of the symmetry of the double arrowhead and re-entrant 

hexagonal in that direction, allowing for reducing the analysis to half of a tube. For the 

hexachiral configuration, a full tube was used in all cases as that direction is non-
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symmetrical. For unifying the boundary conditions of the open end of the tubes, and to 

reduce the dependency of tube length which is important as the number of cells in the axial 

direction varies greatly between the different geometrical combinations, periodic, or 

matching, boundaries were used when possible. These matching boundaries, see Figure 43, 

work by creating ties between the nodes at the top and bottom of the tubes, for which a set 

number of degrees of freedoms were linked, forcing the nodes at the bottom and top to 

behave in a similar way, for example by aligning the rotation or displacement in certain 

directions depending on type of loading.    

 

Figure 43: Matching boundary links: The red lines mark the connection between the node on the 
bottom and top of the tube. The pictures below are of the bottom ends of the tubes. 

6.3.1 Circumferential expansion 
The first mode of deformation selected for the tube investigation was circumferential 

expansion. A radial displacement was imposed on the structure of the nominal tube, which 

results into a circumferential stretching of the structure, see Figure 44.   
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For the REH and DAH models, a longitudinal 

symmetry plane was placed along the axis of the 

tube to replicate a full tube, and a full cylinder was 

expanded inside, by setting a ‘growth factor’. The 

reaction forces were then extracted from the 

longitudinal planes to calculate the nominal Young’s 

modulus of the stents. 

For the HC models, the circumferential models were 

all created as full-tube versions as there is only one 

way to cut the hexachiral structure and achieve anti-

symmetry, and no way to cut it to achieve 

symmetry, as shown in Figure 42.  

A tube sector of 60 degrees was analysed for the 

estimation of the hoop nominal Young’s modulus, 

as for this portion the hoop force is identical to the resultant of the radial forces acting on the 

model, simplifying calculations. 

For the edges of the tube, to avoid a dependency on the tube length, the degrees of freedom 

except axial displacement were connected between the corresponding nodes at each end of 

the tube: Displacement in the circumferential direction, since in a cartesian coordinate 

system, consisted of two degrees of freedom, and all three rotational degrees of freedom. 

Therefore the stresses along the tube were uniform along the whole length of the tube.  

The internal cylinder expanded the tube from a diameter of 20 mm to a diameter of 22 mm, 

hence an increase in diameter of 10 %.  

6.3.2 Longitudinal expansion 
The longitudinal expansion of the models was carried out 

by the imposing a displacement in the axial direction to 

one of the edge planes. For the REH and the DAH 

configurations, a half tube was used with a symmetry 

plane along the axis of the tube to create a full tube. For 

the HC the same solution of using a full tube like 

discussed above for the circumferential expansion was 

used.  

The moving plane was displaced to extend the tube by 

10% for the longitudinal displacement, see Figure 45.  

Figure 44: The circumferential expansion 
of an inner tubular surface expands the 
auxetic structure. For those cases where 
possible, a symmetry plane is added (see 
rectangle behind).  

Figure 45: Longitudinal expansion of 
the tubular structure with the aid of a 
moving plane (moving line on top). 
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Just as for the circumferential expansion, to avoid a dependency on length of tube, all 

degrees of freedom except axial displacement were linked between the two edges of the 

tube for each set of corresponding nodes: displacement in the circumferential direction, 

which due to the use of a cartesian coordinate system consisted of two degrees of freedom, 

and all three rotational degrees of freedom. Due to this the stresses along the tube were 

uniform along the whole length of the tube.  

6.3.3 Twist – Shear 
The shear models were treated using full tube structures for all models, as no longitudinal 

symmetry would be possible for the type of deformation imposed. Initially, the same 

configuration with a plane at each edge of the tube was used, just as for the case of the 

longitudinal expansion, but the end nodes to the surface were glued to the plane (this 

boundary condition still allows rotations). The plane was then rotated around the axis of the 

tube, hence the need for the full tube and not an axially split half-tube like the previous 

cases. However, it was found that the structure did not rotate, even at high separation forces 

imposed though the rotating planes. The actual rotational displacement of the tubular 

structure around the axis were minimal in comparison to the rotation of the planes, indicating 

sliding between the two contact bodies. 

In alternative, a setup of a series of 

plates was used to rotate the structure, 

where the structure could freely expand 

in axial and circumferential direction. 

After having observed the behaviour of 

the deforming tube, it was noted that 

since the auxetic structures have a high 

shear modulus, the tube would only be 

able to shear for a small deformation and 

then local buckling of the struts 

connected to the rotating plates would 

occur. To counter this and allow the 

study of tubes of an ‘infinite’ length under 

larger shear, a small cylinder was 

introduced at the edges where the tube 

was connected to the rotating plates, see Figure 46. This allowed the tubes to undergo a 

twist of 0.1 radians (around 5.7 degrees). Further numerical investigation of higher degrees 

of shearing would require more computing power and time. A potential further path of 

investigation could be to be able to determine what properties of the structure vs material 

Figure 46: Twisting of tubular structure with the aid of 
rotating planes. 
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would cause this buckling under the global shearing load.  Due to the challenges in the 

simulation and the unsuitable length of the processing time for each model, the further 

numerical investigation of this is not included in the project.  

To minimise a dependency on length of tube, the degrees of freedom except axial 

displacement and rotation was connected between the two sides for each set of 

corresponding nodes: Displacement in the circumferential direction, which again due to the 

use of a cartesian coordinate system consisted of two degrees of freedom, and two out of 

three rotational degrees of freedom. Axial displacement could potentially be connected since 

a tube should not theoretically expand axially during torsion, but as it was decided not to 

over-restrict the deformations of the tube in case of unusual behaviour stemming from the 

auxetic cellular structure.  

Due to the rotational symmetry of the hexachiral structure, for due diligence, the structures 

were investigated with both clockwise and anti-clockwise rotations, with the expectation that 

both should yield the same result.  
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7. Results: Tubular structures  
Presented here are the results from the numerical study of the tubular structures described 

above. The numerical results for each combination of geometrical parameters and each 

beam thickness are displayed along with the analytically calculated equivalent for flat plane 

structure of identical parameters. The numerical results are displayed as dots and the 

analytical as lines. Each graph presents one elastic mechanical property as a result of 

variation in one structural geometrical component, for different beam thickness. For the re-

entrant structures the elastic property is displayed in different graphs for different directions, 

so the Poisson’s ratio in the circumferential direction, νcz, is displayed in a separate graph to 

the Poisson’s ratio in the axial direction, νzc. Similarly for the Young’s moduli, the graphs are 

separate for the Young’s modulus in the circumferential direction, Ec and for the Young’s 

modulus in the axial direction, Ez. For the hexachiral structures, both are displayed on the 

same graph due to the isotropic behaviour of the structure. 

7.1 Re-entrant hexagonal 
The elastic behaviour of the re-entrant hexagonal honeycomb relating to the geometric 

parameters in Figure 47 is presented below. 

 

 

Figure 47: Re-entrant hexagonal geometric parameters referred to in results 

7.1.1 Poisson’s ratio 
For the re-entrant hexagonal honeycomb, the results for the Poisson’s ratio were as seen 

below in Figure 48: 
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The largest range of NPR observed was associated with changes in the angle ϴ, as the 

largest NPR values were seen at very low angles of ϴ which practically can pose a problem 

if the aim for the final structure is to undergo larger deformation. The structures with a 

smaller angle could not expand beyond a certain point well before the intended 10% total 

expansion and maintain its NPR, as the unit cell would approach a rectangle and then after 

that point either convert into a regular hexagonal honeycomb or change mode of 

deformation depending on the direction of the force. A general expression for this maximum 

Figure 48: Poisson’s ratio in relation to four different geometric parameters for the Re-entrant hexagonal 
honeycomb configuration, where M&E indicates analytical method derived by Masters & Evans and G&A 
Gibson & Ashby. Angle Theta (ϴ) is given in degrees.  
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point of deformation, only taking the pivoting of the beam into account and not any resultant 

local shearing at the intersection of the beams just for guidance, could be expressed as 

   (7.1) 

The deformation for the structures with  = 10° was less than 10% for that reason. 

With larger angles, the structure behaved more isotropically, with NPR approaching -1 in 

both directions when the angle ϴ passed 40 degrees. When changing the ratio between h 

and l, the structure behaved highly anisotropic for lower ratios of h/l closer to 1 with a higher 

NPR in the circumferential direction, while the closer the ratio h/l came to 2 the more 

isotropic the structure became with the NPR getting close to -1 in both directions, indicating 

different ways of nudging the structure towards a more iso- or anisotropic behaviour. Looking 

at the graphs for the h/l ratio, it is interesting to note the slight difference in slope between 

the numerical and analytical analyses for the axial deformation, while the numerical results 

for the Poisson’s ratio in the circumferential direction seems to follow the analytically 

predicted behaviour more closely. The number of cells in the circumferential direction, Nc, do 

not significantly have an impact on the Poisson’s ratio theoretically, however the numerical 

results align better with the analytical results with an increase in the number of cells, 

especially in the longitudinal direction. The graph REH Poisson’s ratio νzc vs Nc is particularly 

interesting, as for the smaller beam thickness the numerical models behave very close to the 

analytical models for a larger number of cells, in comparison to larger deviations for fewer 

number of cells. This indicates that the curvature of the cells has a stronger impact on the 

result along the axial direction. In contrast, the larger beam thickness results in smaller 

deviation all along. 

 

7.1.2 Young’s modulus 
For the re-entrant hexagonal honeycomb, the results of the numerical study and the 

analytical study looking at the nominal Young’s modulus, the following was observed as 

shown in Figure 49: 
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As expected, the same behaviour as for the Poisson’s ratio was observed when it came to 

how anisotropic the system behaved in relation to which parameters changed, with an 

increase in anisotropic behaviour with a decrease in the angle ϴ and a decrease the ratio 

h/l. The largest values of nominal Young’s modulus was achieved at the largest values of 

NPR, for the lowest value of ϴ, with an inverted relationship between the NPR and the 

nominal Young’s modulus for both the relationship with a change in angle ϴ and in ratio h/l. 

However, the nominal Young’s modulus increases rapidly with the number of cells in 

Figure 49: Nominal Young’s Modulus E/Es in relation to four different geometric parameters for the Re-
entrant hexagonal honeycomb configuration 
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circumferential direction, despite the Poisson’s ratio keeping stable. This is related to the 

increase in relative density, which is also seen with an increase in the Young’s moduli with 

the beam diameter. The Poisson’s ratio is not as affected as the Young’s moduli, which with 

an increase in relative density slowly approaches the Young’s modulus of the material of the 

beams. The same happens with the Poisson’s ratio, which tends to the positive Poisson’s 

ratio material, but far more slowly (in practice, the material Poisson’s ratio becomes more 

and more relevant as its relative volume increases).  

The notable difference between the analytical models and the numerical models is the 

deviations in behaviour for the Young’s modulus in the axial direction, Ez. The Young’s 

modulus is lower for the tubular structures, and the deviations in relation to the parameter 

h/l is particularly noteworthy. 

7.1.3 Shear modulus 
For the behaviour of the re-entrant hexagonal honeycomb under shear deformation, Figure 

50, it can be observed that the numerical results are very close to the analytical predictions, 

with a decrease in the nominal shear modulus with an increase in the ratio h/l, the angle ϴ 

and an increase in the shear modulus with an increase in the number of cells in the 

circumferential direction. Both the increase in angle ϴ and the decrease of the ratio h/l leads 

to a higher relative density of the structure. The relative density increases to an even greater 

extent with the increase in the number of cells in the circumferential direction, Nc, which is a 

logical explanation to the increase in the shear resistance of the structure, just as can be 

seen with the increase in beam thickness. It is worth to note that the deformation of the 

numerical models shows that the shearing of the structure follows the analytically suggested 

behaviour of the majority of the twisting of the structure coming from the rotation of the beam 

joint and the flexure of the vertical beam with the length h. 
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7.2 Double arrowhead 
The elastic behaviour of the re-entrant hexagonal honeycomb relating to the geometric 

parameters in Figure 51 is presented below. 

 

Figure 51: Double arrowhead geometric parameters referred to in results 

7.2.1 Poisson’s ratio 
The largest range of the Poisson’s ratio is achieved by altering the angle α, with very high 

NPR achieved when subjected by a load along the axial direction. As the structure gradually 

expands, the angle α expands, which would indicate that the structure’s Poisson’s ratio 

gradually decreases with expansion. Looking at the results for 10% expansion of the 

structures in Figure 52, the NPR does not change significantly, especially for deformation in 

the circumferential direction, while it’s noteworthy that the NPR in the axial direction is lower 

for a larger beam thickness 

The other geometric parameter that has the second largest impact on the Poisson’s ratio is 

the ratio between the angles of the beams β/α. Just as for the angle α, a smaller angle β 

results in a larger NPR. This indicates that the two angles are the most influential geometric 

parameters on the Poisson’s ratio of the DAH, and the largest NPR would be achieved with 

the smallest angles so that all struts are approaching alignment with the direction of the 

Figure 50: Nominal shear modulus for Re-entrant Hexagonal honeycombs 
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force. In the case of the structures studied here, the largest NPR are observed in the axial 

direction. As mentioned above, the NPR is lower for a larger beam thickness in the axial 

direction and follow a different pattern which could be more related to factors like the relative 

density of the structure.   

The number of cells in the circumferential direction, Nc, do not significantly have an impact 

on the Poisson’s ratio theoretically, however the numerical results align better with the 

analytical results with an increase in the number of cells, especially in the longitudinal 

direction. The graph DAH Poisson’s ratio νzc vs Nc is particularly interesting as for the smaller 

beam thickness the numerical models behave very close to the analytical models for a larger 

number of cells, likely indicating that the curvature of the cells has a stronger impact on the 

result along the axial direction. In contrast, the larger beam thickness results in a larger 

deviation, which is likely due to the increase in relative density of the structure with the 

number of cells in the circumferential direction Nc. The increased discrepancies between 

analytical and numerical models for νzc as a function of β/α as the beam thickness increases 

would need to be investigated further but could be related to the increase in relative density 

as well.  
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7.2.2 Young’s modulus 

When varying the angle α independently, see Figure 53, the effect on the nominal Young’s 

modulus in the axial direction is far more gradual than the variation in Poisson’s ratio and the 

difference between the axial and circumferential directions is smaller. The highest nominal 

Young’s modulus was observed in the circumferential direction and stemmed from the 

highest angle α, when the beams are approaching alignment with the direction of the force. 

When altering the ratio β/α the nominal Young’s modulus respond very differently in the 

circumferential and axial directions.  

 

  

Figure 52: Poisson's ratio for the double arrowhead 



 

112 
 

  

  

 

The nominal Young’s modulus varies significantly when altering the number of cells 

circumferentially, Nc. Again, in the axial direction the behaviour of the analytical models and 

the numerical models deviates. The beam thickness and, as a result, relative density of the 

structure, is consistently contributing to a higher stiffness of the structure.   

The increase in strut diameter, which not cause major changes in the Poisson’s ratio of the 

structure using the analytical approach, when referring to the numerical results appears 

subjected to a larger influence in the axial direction. Looking at the density of the structure, if 

the beam thickness is gradually increased, the structure will approach a solid wall instead of 

a beam lattice, where the Poisson’s ratio would be determined not by the structure itself but 

by the material of the structure. Between the infinitely small theoretical beams and the solid 

surface, the Poisson’s ratio of the object gradually transfers from being determined by the 

Poisson’s ratio of the auxetic structure to that of the material. This can partially be observed 

from the numerical results as the NPR becomes significantly lower as the ratio d/D 

increases, indicating some limitations of the analytical models. For the more studied re-

entrant hexagonal structures, there are models that have improved on the original equations 

done by Gibson and Ashby [77] and Masters and Evans [83] taking into account thicker ribs, 

like the one done by Grima et al [85]. Grima et al look at the joints of the ligaments, where 

Figure 53: Nominal Young's moduli for the double arrowhead 
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the effective length of the ligament becomes shorter when it ‘overlaps’ at the joint with the 

neighbouring ligaments due to the thickness of the ligaments. This type of approach could 

be a future improvement on the equations presented here for the double arrowhead 

structure. In contrast, for both the analytical and numerical results a major increase in 

nominal Young’s modulus is observed. This can again be related to the relative density of 

the structure.  

7.2.3 Shear modulus 
Observing the shear behaviour of the structure, Figure 55, there is a significant increase in 

shear stiffness with an increase in the angle α and with an increase in the ratio between the 

angles, β/α. There is a significant increase with an increase in the number of cells in the 

circumferential direction, Nc, and a similar increase in shear stiffness with an increase in 

beam diameter, indicating that an increase in the relative density of the structure increases 

the shear stiffness. 

  

 

 

Overall, the difference between the behaviour of the analytical and numerical models are 

very small for the shearing of the structure, with a stretching behaviour being observed in the 

Figure 55: Shear moduli for the double arrowhead 
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numerical models instead of a flexure dominated deformation mechanism, as initially 

assumed, resulting in the selection of stretching equations being used solely for the 

analytical expressions. This is demonstrated below in Figure 56, when comparing the 

numerical results to the different analytical approaches of pure stretching, pure flexure and 

the combination of the two. The numerical results align very well with the pure stretching 

model than either of the other options.  

 

Figure 56: Double arrowhead shearing - comparing modes of deformation (flexure, stretching and a 
combination of both). 

7.3 Hexachiral 
The elastic behaviour of the re-entrant hexagonal honeycomb relating to the geometric 

parameters in Figure 57 is presented below. 
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Figure 57: Hexachiral geometric parameters referred to in results, with R being the distance between 
the centre of two unit-cells and L the beam length of the connecting ligament 

7.3.1 Poisson’s ratio 
For the hexachiral configuration, there are only three different geometrical parameters that 

could be altered to potentially affect the elastic properties of the structure. Due to the 

theoretical assumption that the hexachiral system is isotropic, there is only one analytically 

calculated Poisson’s ratio which is to be valid for both directions, compared to two 

numerically investigated ones, one for each direction ‘in-plane’, see Figure 58.   

  

 

The numerical results for the deformation in the axial and circumferential direction show an 

isotropic behaviour in line with the theoretical assumption, while the difference between the 

analytical and numerical models have been indicated by the authors of the analytical model 

to be related to the assumption of rigid nodes, while these numerical models use deformable 

nodes, as discussed for the Young’s modulus below.  

Like the other two structures, the change in number of cells in the circumferential direction 

does not have a major impact on the Poisson’s ratio, although some increase in the NPR 

can be observed with both analytical and numerical models at lower number of cells in the 

Figure 58: Poisson's ratio for the hexachiral configurations 
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circumferential direction. The ratio L/R, or the degree of chirality (also sometimes written as 

the angle β), have a much larger impact. The impact of the degree of chirality in the 

numerical models appears much larger than in the analytical prediction. This could be 

related to the relative density, as a higher angle means a shorter strut length of L and, in 

turn, a higher d/L ratio. 

7.3.2 Young’s modulus 
Observing the Young’s modulus of the hexachiral configurations, as seen in Figure 59, it 

increases with the number of cells in the circumferential direction, just as for the re-entrant 

structures. The Young’s modulus in relation to the degree of chirality, or the parameter L/R, 

shows an interesting effect, with the lowest Young’s modulus reached somewhere between 

0.7 and 0.85.  For the nominal modulus in relation to the change in thickness of the ribs, the 

analytical models give a far lower prediction than the numerical results.  

This could be compared with the numerical results with deformable nodes from the paper 

that presented the analytical method with rigid nodes by Spadoni & Ruzzene [106], as seen 

in Figure 60. The nominal Young’s modulus for the case of deformable nodes is marginally 

lower than that of the rigid nodes for the cases considered here, while the Poisson’s ratio is 

higher and follow a similar curve to the results from this study. This highlights the importance 

of ensuring that the simplified analytical models really reflect the more complex systems they 

are meant to model. The higher the t/L ratio (where this work used d/L), the further from the 

analytical models. As for the other structures, as the relative density increases, the elastic 

properties become closer to the material ones.  

  

 

Figure 59: Nominal Young's moduli for hexachiral 
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Figure 60: Micropolar constants with two values of ligament aspect ratio t/L = [1/100 and 1/20] with 
rigid nodes (black lines, +, x symbols) and deformable nodes (red lines, □, Δ symbols) for Nominal 
Young’s Modulus and Poisson’s ratio by Spadoni and Ruzzene for comparison. [106] 

7.3.3 Shear modulus 
In contrast to the other structures, the analytical predictions and the numerical results for the 

Hexachiral configurations differs greatly for the shear modulus, as seen in Figure 61. 

  
 
Figure 61: Nominal shear moduli for the hexachiral configurations 

From the work of Spadoni & Ruzzene [106], it can be seen that the authors of the analytical 

method came across the same problem as seen in  
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Figure 62. They concluded that the contribution of the deformation of the rings affects the 

results even more during shear deformation than in tension. The shear modulus observed in 

the case of deformable rings were significantly lower than the shear modulus observed in the 

case of ridged rings. The thickness of the ribs is hence a major influential parameter as it 

stiffens the nodes. An increase in L/R ratio increases the shear stiffness, and the results for 

the deformable and rigid nodes approaches each other, which is expected due to the 

deformation mechanism moving from being primarily of the deformation of the nodes to the 

deformation of the struts. Since the chiral structure is rotationally symmetrical and not axially, 

the simulations were run with both clockwise and anti-clockwise shear deformation for due 

diligence for a sample of 3 cases, and as expected, there is no significant difference shown 

in the result between the directions.  

 

Figure 62: Micropolar constants with two values of ligament aspect ratio t/L = [1/100 and 1/20] with 
rigid nodes (black lines, +, x symbols) and deformable nodes (red lines, □, Δ symbols) for Nominal 
Shear Modulus by Spadoni and Ruzzene for comparison. [106] 

7.4 Difference between analytical and numerical models 

For the re-entrant and double arrowhead, the analytical prediction is generally consistent 

with the numerical results.  Comparison between the two approaches indicates that 
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analytical description loses accuracy as the number of cells in the circumferential direction 

reduces and the ligaments thickness reduces the ability to adopt a beam model. Adapting 

the equations derived for a planar structure to predict the results for a tubular structure 

appears an acceptable approximation, which could be further improved by adding additional 

parameters considering eccentricity of load, when the number of circumferential cells 

becomes reduced. Though, the loss of accuracy appears to be significant when referring to 

the longitudinal direction, which is usually the less relevant in stent applications.  

Another source of approximation is associated with the ligament thickness. Moreover, the 

ligaments being defined as uniformly circular in cross-section would also only be applicable 

to certain applications and manufacturing methods. The analytical equations leave room for 

the use of another shape of cross section by not simplifying the area A and second moment 

of area I, however there are several practical applications where the cross-section would be 

less than uniform. One example of source of more variation in the cross-section would be 

manufacturing methods. Either joining the ribs with welds or laser cutting would produce 

different kinds of unevenness in the cross-section, which would be more prominent the 

larger the relative rib thickness is. For the hexachiral structures, the analytical expressions, 

especially for shear, would need to be further developed to be more useful in guiding 

practical design, while the numerical analysis can in the meantime act as a guide on how the 

different parameters affect the performance.  

7.5 Summary results 

There is a large difference in outcome between the re-entrant structures, the re-entrant 

hexagonal (REH) honeycomb and the double arrowhead (DAH) honeycomb, and the 

hexachiral (HC) structure. The re-entrant structures have shown a mostly consistent result 

with the numerical models, while the chiral structure have shown less consistent results 

between analytical prediction and numerical models, especially in regard to shearing. The 

analytical chiral model is a continuum model focused on the deformation of the connecting 

ligaments, in contrast to the re-entrant models able to take the deformation of all 

components into consideration in their respective beam models. Since the analytical method 

for the hexachiral structure does not include the deformation of the nodes, and the numerical 

models do not restrict deformation of the nodes, this is likely a factor contributing to the 

discrepancy, which was also mentioned by the creators of the analytical model. Another 

difference worth noting is the effect of direction of deformation versus the direction of 

curvature for the anisotropic re-entrant structures in comparison to the isotropic hexachiral 

structure, where the effect of the axial deformation diverts more from the theoretical 

analytical values for plane beam structures than for circumferential deformation. 
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8. Discussion  

8.1 Discussion of study of tubular structures   

8.1.1 General behaviour of the auxetic tubular structures  

It can be observed that for all three different structures, the Young’s modulus increases with 

the number of cells in the circumferential direction, although the Poisson’s ratio remains 

largely the same, with some variation with curvature more noticeable for thinner ligaments, 

and some variation relating to increases in relative density more noticeable for thicker 

ligaments. Change in strut diameter resulted the parameter impacting the Young’s modulus 

far more than any other for all three structures. This parameter had less geometric 

constraints than the others, with the only limit being that the structure should still be a 

cellular solid. In reality, in the case of laser cut or machined structures obtained from tubes, 

there are manufacturing constraints, but these will be neglected in the first instance. As the 

thickness increases, the structure slowly loses its auxetic behaviour as the dominant 

deformation mechanism, transitioning from being that of the structure which is auxetic to 

being that of the beam material. The analytical studies have indicated that their expressions 

are only valid for a very small strut diameter to length ratio or for small relative density of the 

structure. It is interesting that the Poisson’s ratio still follows analytical models well up to a 

certain point for most re-entrant cases, with the notable exception of the Poisson’s ratio in 

the axial direction for the double arrowhead. For the hexachiral structure, the difference 

between the numerical models and the analytical predictions can partially be attributed to the 

deformable centre rings, or nodes, and it is interesting to see how the result from the tubular 

structures here shows a similar pattern to the flat models from the study by Spadoni & 

Ruzzene [106].   

One of the major takeaways from this is that it is possible to manipulate the Young’s 

modulus of the structure without impacting much on the Poisson’s ratio, while there are no 

geometric parameters that allows to change the Poisson’s ratio without resulting in 

substantial changes in the Young’s modulus. This has the implication that when designing 

an auxetic structure, the primary step should be to select which Poisson’s ratio is desirable 

and after that the Young’s modulus can be tailored to what is required.  Another takeaway is 

the importance to identify in which direction the deformation is more prominent when 

planning to use an anisotropic structure, as the mechanical properties can differ greatly in 

the different directions and there is a constant trade-off when trying to achieve for example a 

higher Poisson’s ratio in one direction, resulting in a lower one in the other direction. There 

are different options of structures which theoretically behave in an isotropic manner in both 
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in plane directions with a negative Poisson’s ratio of about - 1, and which one to use can be 

selected based on other parameters, like shear behaviour or stiffness, or retention/change of 

that behaviour under large deformation.  

Comparing the different ranges of Poisson’s ratio, Youngs modulus and Shear modulus 

possible for the various configurations explored above without altering the diameter of the 

struts, Figure 63 can give an indication of the comparative magnitudes.  

 

 
 



 

122 
 

 

 

8.1.2 Comparison and suitability for different types of applications 

Looking at the results above, some of the differences between the various structures which 

would be needed to take into account to inform the selection of which structure to use is the 

difference in behaviour between the underlying principal deformation mechanism: the re-

entrant mechanisms, of both the re-entrant hexagonal cells and the double arrowhead cells, 

and the chiral mechanism. For the hexachiral structures, two of the main indications for use 

is the retention of elastic properties over larger range of deformation and the isotropic nature 

of the structure. Although it has been reported that the hexachiral structure retains its 

behaviour over larger range of deformations in experiments, the type of study that have been 

done numerically above has not confirmed this feature. Hence it is difficult to know the 

stipulations for which that applies to. The same goes for the isotropic behaviour of the 

hexachiral – there is a small difference in the numerical results between the deformations for 

the different directions, and further study on the extent of the isotropic behaviour in practical 

application would be needed. For the re-entrant hexagonal and the double arrowhead, the 

anisotropic behaviour can be leveraged to allow for a far larger range of Poisson’s ratios. 

Again, since the properties of the two are not retained for large deformations, for practical 

applications it would be even more important to make sure that manufacturing constraints do 

not impact this further without taking their effect into consideration in the design stage. The 

Figure 63: Direct quantitative comparison of the different ranges achievable for the different 
configurations without altering thickness of struts, for the circumferential (c) and the axial (z) 
directions for anisotropic parameters, with each dot representing the numerical result from one 
analysis for the reference d/D=0.02. Higher concentrations of dots indicate the property intervals 
more commonly achieved while outliers highlight extreme cases achieved only for a very small range 
of values for a parameter.  
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re-entrant hexagonal and the double arrowhead have a quite clear ‘maximum’ extension 

stage before the auxetic behaviour is compromised, so for larger deformations not only the 

change in elastic behaviour along the course of deformation need to be taken into account, 

but also how large maximum expansion is desired. The hexachiral have less clear definitions 

for this, so numerical and experimental modelling is more important in this case, early in the 

design stage.  

8.1.3 Difference between analytical and numerical predictions – impact on design 

considerations, limitations, and further questions 

There are clear distinctions between the analytical and numerical predictions of the elastic 

behaviour of the tubular structures. The curvature of the stent poses a challenge to analytical 

predictions, that should be taken into account when designing auxetic stents.  

Another is the thickness of struts. In an actual design, the thin ligament needed to meet the 

analytical predictions highlight the importance to make adjustments based on the patterns 

observed when considering designing physical auxetic stents. The deviation shown in the 

numerical analysis should be incorporated in stent designs to ensure realistic expectations of 

elastic behaviour.  

The third is the impact of manufacturing method on joints, and strut uniformity. As these 

numerical models of tubular structures were beam models, the joints were not specifically 

considered. Both the local deformations at the joints and the impact of the joints on the 

overall elastic behaviour of the stents were excluded from the analysis. If looking at two 

common stent manufacturing methods, laser cutting and knitting and welding of metal wires 

cause differences to both the struts and joints, that are not taken into consideration in the 

above numerical models. When obtaining the auxetic pattern from laser cutting of a metal 

tube, the cross section of the struts would be uneven along the struts. The knitted wires may 

have a more uniform beam cross section; however, the welded joints would be another 

factor to take into account instead. 

Another limitation in respect to specific stent design is the factors that has been introduced 

to generalise the results: the lack of free edges. The tubular structures modelled above are 

designed to behave as if they are infinitely long, however in a real case the stents will be 

finite. Since the length of the stents are governed by anatomical considerations for the 

specific applications, some stents will be relatively long that only the ends of the stent 

behaves differently, while others are shorter and the stent length will have a more drastic 

impact on the elastic behaviour of the entire structure.  
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The above can be a good measure for the auxetic behaviours of bare stents, however for 

covered stents and stent-grafts, a covering or membrane would be needed. Membranes on 

top of auxetic structures have not been investigated in the literature and would likely impact 

the auxetic behaviour of the structure. So, additional investigation would be needed to 

address this aspect. In conclusion, the presented analytical and numerical investigation of 

auxetic tubular structures gives a good indication of the behaviour of the different 

configurations, and which type of structure may be more suitable for certain types of 

applications, but adjustments have to be made to any specific device design to take into 

account the device specific limitations.  

8.1.4 Summary tubular structures 

All three structures exhibit distinctly different elastic behaviours. The analytical models for 

flat planes can to an extent be adapted and used for tubular structures, however there are 

differences which increase with factors like beam thickness and seems to be more 

pronounced in one direction than the other. The notable exception is the shear modulus for 

the hexachiral structures. The analytical plane structure model is made with the assumption 

of rigid nodes; however, the numerical models indicate that the shear behaviour might 

deviate more. Compared to the arrowhead structure, whose shear behaviour is dominated 

by stretching rather than flexure (which instead dominates for tension), it is possible that due 

to the triangular architecture of the structure, the shearing behaviour of the hexachiral 

structure might be dominated by different deformation mechanisms compared to those 

during tension. 

The double arrowhead offers the largest range of Poisson’s ratios, and the highest shear 

rigidity, while the re-entrant have a smaller range and the lowest shear rigidity. Both exhibit 

an anisotropic behaviour and have a similar range of Young’s moduli. The hexachiral differs 

substantially from the two re-entrant configurations, with its isotropic and very limited range 

of Poisson’s ratio. The Young’s modulus is less isotropic in the context of tubular structures 

than the theoretical one for the plane structures with a thicker ligament, with a higher 

Young’s modulus than the other two.  
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9. Specific issues in practical stent design  

9.1 Manufacturing and deployment discussion 
One of the popular stent manufacturing methods today is laser cutting which, especially in 

the case of TAVI, is typically done on a tube of the smallest size (in the case of transcatheter 

heart valves, the largest tube available commercially is substantially smaller than the 

operating valve size), which is then expanded, thermoset and polished to the final stent 

configuration. Here, an auxetic structure would have an advantage over a conventional one 

as it would not only be smaller in circumference but also shorter, resulting in a denser 

pattern and limiting the material which need to be cut out.  

Another element of stent design that might benefit from using auxetic structures is the 

deployment mechanism used for implantation of minimally invasive devices like TAVI or 

PPVI. The stent is crimped to fit in a very narrow catheter which is then inserted through a 

vein in the body. When doing this with conventional stents, they elongate when in the 

crimped state, which is less ideal for the insertion and can also cause malpositioning as the 

stent foreshortens while expanding.  

9.2 Membranes  

In a number of cardiovascular applications, such as stent grafts and transcatheter valves, 

the stent needs to provide sealing at its nominal wall.  This is commonly achieved by fixing to 

the structural cellular material a membrane made from fabric, soft tissue or polymer.  The 

interaction of this membrane with the stent material may result in alterations of the auxetic 

behaviour. Here, this effect is investigated, in order to verify the effect of the covering 

component on the auxetic behaviour of the configurations identified as most suitable for 

stent applications. 

There are several ways that membranes are attached to stents, with two examples being 

‘dip coating’ in a polymer or suturing a sleeve onto the stent, with attachment to the metal 

frame in just a few places.  

Membranes could theoretically be auxetic, as a form of knitted fabrics, however there are 

currently no clinically approved stent covers that are auxetic.   

In the common case that the cover is not auxetic, it will have a restrictive impact on the 

otherwise auxetic behaviour of the structure. The option of different fastening mechanisms 

will play a role, because if the membrane is attached to the stent in a few localised regions, 

there might be the possibility of mutual sliding and that the fastening only restricts the motion 

in a limited way. For dipping in a polymer, the combined structures will need to be studied as 

one, to verify how the addition of a membrane impacts on the stent behaviour.  
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This effect will depend on which type of auxetic structure is being used, on beam and 

membrane thickness and on the rigidity of their materials (on the relation between the beam 

and membrane properties).  

A preliminary study with membrane covered unit cells, for the three different auxetic 

structures investigated above is presented below.    

9.2.1 Membrane modelling methodology 

The preliminary study was done with a beam material like stainless steel with a Young’s 

modulus of 210 GPa and a Poisson’s ratio of 0.3, with a beam thickness of d = 0.3 mm and 

a membrane with material properties similar to silicone with a Poisson’s ratio of 0.49, a 

Young’s modulus of 10 MPa, and a thickness of 0.1 mm.  

In the case of the hexachiral configuration, the boundary conditions essentially act on the 

membrane component.  This resulted into mechanical instability and out of plane 

deformations, transferred to the beams. To avoid this problem and obtain indicative results 

from the analysis, the beam thickness was increased to 3 mm. This should be kept in mind 

when interpreting the results and will be discussed further, as it has significant impact on the 

structures Poisson’s ratio, even in absence of the membrane.  

The Young’s modulus of the beams, in relation to that of the membrane is 21,000 : 1, and 

the beam thickness to membrane thickness is 3:1.  

The boundary conditions used were different for each structure, due to different degrees of 

symmetry on the membrane. It is important to note that the membrane unit cell can have 

different symmetry requirements than the beam unit cell, due to the movement of the 

membrane. The concept of ‘Matching Boundaries’ was used in MSC Marc: for each element 

the corresponding edges were marked (in Figure 64 below as pink and green), and the 

nodes ‘tied’ between these sides (marked with red lines). The deformation imposed on the 

structure was a simple expansion in one direction. For a more complete investigation of the 

structures, it would be of importance to investigate deformation in both directions.  
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Figure 64: Re-entrant hexagonal membrane model, where the thin black lines represent the beams, 
the blue the membrane, and the pink and green the matching boundaries (where the pink side is tied 
to the mirrored green side, vertically and horizontally respectively). 

Each structure required different configurations of number of cells, and boundary conditions. 

The re-entrant hexagonal is symmetrical in both directions for both the beam structure and 

the membrane, and hence a square of one unit cell in the x-direction and one in the y-

direction with an additional half one in either direction to allow for membrane deformation to 

contribute on either side of the slanted beams, as seen in Figure 64.  

For the double arrowhead, the structure is only symmetrical in one direction. Hence, to 

simulate the membrane on both side of the beams in the other direction, multiple stacked 

unit cells were used. This was also chosen as the direction of expansion, with 4 cells (3 full 

and two halves at each end) in the direction of the expansion, and one cell in the other, as 

shown in Figure 65.  
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Figure 65: Double arrowhead membrane model, where the thin black lines represent the beams, the 
blue the membrane, and the pink and green the matching boundaries (where the pink side is tied to 
the mirrored green side, vertically and horizontally respectively). 

For the hexachiral, the complex boundary conditions suffer not only from the lack of 

symmetry but is further complicated by the rotational nature of the structure. To compensate 

as much as possible from this, a much larger assembly of cells were used for simulations, 

with 4 number of cells in the direction of deformation, and 4 number of cells in the other, as 

shown in Figure 66. 
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Figure 66: Hexachiral membrane model, where the thin black lines represent the beams, the blue the 
membrane, and the pink and green the matching boundaries. 

Due to the differences between the configurations, different mesh densities were used. The 

re-entrant hexagonal uses quadratic, 4 node, structural 3D membrane cells (Element 18, 

MSC Marc) while the double arrowhead and hexachiral uses triangular 3 node elements 

(Element 158, MSC Marc). Both uses the same beam elements as for the tubular structures, 

element 98 (MSC Marc), a Structural 3D solid section linear beam element. For a more in-

depth dedicated study, improving mesh uniformity between the three structures would be a 

point where to improve result comparability.  

For consistency, the geometries of all three cell structures were chosen to exhibit a 

theoretical Poisson’s ratio of -1, as that is the standard of the hexachiral and can be 

achieved by all three.  

The size of the unit cells was unified with the unit cell width of 10 mm for both the re-entrant 

hexagonal and the double arrowhead, and a diameter of 15 mm for the hexachiral unit cell.  

The height of the unit cell would be dependent on the different parameters, and for a more 

thorough examination, different combinations of those would be investigated. 

All parameters can be seen below in Table 12. 

X1 is the direction of displacement and X2 is the other perpendicular in-plane direction 
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Table 12: Membrane model parameters 

 Nr of cells 

X1 

Nr of cells 

X2 

Unit cell 

length X1 

(mm) 

Unit cell 

length X2 

(mm) 

Displacement in 

X1 direction 

(mm) 

Displacement % 

of unit cell 

length in X1 

REH 2 1 15 20 3 

(1.5 mm/cell) 

10% 

DAH 4 1 15 20 6  

(1.5 mm/cell) 

10% 

HC 4 4 15 15 6  

(1.5 mm/cell) 

10% 

 

9.2.2 Membrane elastic strain and stress results 
 

For each structure is below a table and a stress and strain diagram of both the structure and 

the unit cells, with the latter taken from a central cell to exclude stress concentration effects 

at the edges. 

For the re-entrant model, geometries, test contitions and estimated Poisson’s ratios with and 

without membrane are summarised in Table 13. 

Table 13: Re-entrant hexagonal membrane results 

Cell width X2 20 mm 

Cell height X1 15 mm 

Beam length l 12.2066 mm 

Beam length h 22 mm 

Theta 34.992 degrees  

Displacement X1 3 mm (1.5 mm per unit cell)  

(30 mm to 33 mm)  

@10% real unit cell length X1 = 16.4967 mm 

Real unit cell displacement = 1.4967 mm 

Resultant displacement X2 @10% 2.0769 mm (22.0769 mm new width) 

Nr of cells X1 2 

Nr of cells X2 1 

Analytically calculated Poisson’s ratio for 

unit cell without membrane 

-1.09365 

Numerically calculated Poisson’s ratio for 

unit cell with membrane 

-1.04074 

 

 

Equivalent elastic strain and equivalent von Mises stress distribution for the re-entrant 

hexagonal membrane cell are represented in Figure 67. 
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Equivalent Von Mises Stress 

  

Equivalent Elastic Strain 

 
 

 

Figure 67: Re-entrant hexagonal membrane stresses and strains 

For the double arrowhead, geometries, test contitions and estimated Poisson’s ratios with 

and without membrane are summarised in Table 14. 

Table 14: Double arrowhead membrane results 

Cell width X2 20 mm 

Cell height X1 15 mm 

Beam length la  22.3607 mm 

Beam length lb 11.1803 mm 

Alpha 26.56505 Degrees  

Beta 63.435 Degrees 

Displacement X1 6 mm (1.5 mm per unit cell)  

New X1 length is 15.7502 mm 

Resultant displacement X2 0.9841 mm (20.9841 mm new width) 

Nr of cells X1 4 
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Nr of cells X2 1 

Analytically calculated Poisson’s ratio for unit 

cell without membrane 

-1 

Numerically calculated Poisson’s ratio for unit 

cell with membrane 

-0.98384 

 

Equivalent of elastic strain and equivalent von Mises stress distribution for the double 

arrowhead membrane cell are represented in Figure 68.  

Equivalent von Mises Stress  

  

Equivalent Elastic Strain  

  

Figure 68: Double arrowhead membrane strain and stresses 
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For the hexachiral model, geometries, test contitions and estimated Poisson’s ratios with and 

without membrane are summarised in Table 15 and the resulting equivalent von Mises 

stresses and equivalent elastic strains are shown in Figure 69. 

Table 15: Hexachiral membrane results 

Cell diameter D 15 mm 

Cell width X2 15 mm 

Cell height X1 17.3205 mm 

Beam length L  7.16437 mm 

Node diameter 2r 1.67705 mm 

Displacement X1 1.5 mm (6 mm for all) 

19.293 mm Cell length X1 

Resultant displacement X2 14.8053 mm cell length X2 

Nr of cells X1 4 

Nr of cells X2 4  

Analytically calculated Poisson’s ratio for unit cell without 

membrane 

0.04739 

Numerically calculated Poisson’s ratio for unit cell with 

membrane 

0.113977 

  

Equivalent Von Mises Stress  
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Equivalent Von Mises Stress with threshold excluding beam stresses 

  

Equivalent Elastic Strain  

  

Figure 69: Top: Equivalent von Mises stress for the hexachiral configuration with membrane, Middle: 
Equivalent von Mises stress with threshold excluding beam stresses, Bottom: Equivalent elastic strain 

In conclusion, results indicates that a thin silicone membrane would not impact the Poisson’s 

ratio and auxetic behaviour significantly for the two re-entrant structures. For the chiral 

structure the results are more complex to interpret, as the results of any hexachiral structure 

that exhibits a NPR becomes unstable due to substantial out of plane deformation, see 

Figure 70, and the results hence are not necessarily accurate. Though, the deformation 

appears to be driven by the membrane rather than the beam structure mechanism in the 

cases where the beam structure was supposed to exhibit a NPR behaviour. This suggests 

that this structure is less suitable to be used in combination with membranes. 
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Figure 70: Instability of hexachiral membrane with struts of equivalent thickness to those for the 
double arrowhead and re-entrant hexagonal, with indications of out-of-plane deformations. To the left, 
in-plane view, to the right, out of plane view. At the top, the auxetic structure’s struts were allowed to 
move out of plane, at the bottom the struts were restricted to in-plane movement (range of 
displacement shown in color narrowed for clarity). 

9.3 Examples of cardiovascular applications possibly suitable for auxetic 

stents and design suggestions 

For restoring the motion of a stiffened vessel, it would be more applicable to focus on 

surgical stent-grafts, as the native vessel around the endovascular stent graft would limit the 

motions and resist the dynamics of the implanted stent. For the case of an implantation site 

in an aneurysm, there is a possibility that the stent could impact on the dynamic pattern of 

the vessel, while reducing the strain on the vessel wall.  

Examples of where this could be appropriate is the ascending aorta, for either endovascular 

grafting as treatment of ascending aorta aneurysm or surgical graft repair for stiffened, 

stenotic vessels. Auxetic configurations would allow, for example, to create a surgical stent-

graft for the treatment of aneurysms of the ascending aorta, allowing to restore the optimum 

healthy dynamics of the native aortic root described in the clinical background.  
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Another suggested application would be in the area of non-invasive PPVI, Percutaneous 

Pulmonary Valve Implantation, device. As shown in the studies of the motion of the 

pulmonary artery, the simultaneous elongation and dilation is quite extreme, especially at the 

lower end of the vessel by the RVOT, right ventricular outflow tract, which expands greatly in 

diameter while having a simultaneous smaller elongation. The Poisson’s ratio approaches 

zero around the valve, which is a naturally more rigid area, and then again turn negative at 

the upper end closer to the bifurcation. This variation of Poisson’s ratio of the structure 

indicates that the ideal stent structure would be flexible at the ends and rigid in the middle, 

with a higher NPR at the lower end. This makes the hexachiral structure less suitable for the 

application. Since the NPR needed is larger than -1, and the pulmonary exhibits a very 

anisotropic behaviour, both the re-entrant hexagonal and the arrowhead structure could be 

considered.  

To finetune the selection of parameters, a designated clinical study would be needed to 

make sure that needed measurements would be provided. Further indication of both the 

rigidity and shear rigidity of the native vessel, as well as the individual movement of the 

different sections of the vessels, would provide valuable guidance in tailored stent design.      

9.4 Case study: Design of auxetic stent graft for ascending aorta using re-

entrant hexagonal honeycombs 

To provide a proof-of-concept case study, the design of an auxetic stent for the ascending 

aorta a structure is presented below.  

Since the observations of the motion of the ascending aorta have indicated an optimum 

Poisson’s ratio of around -1 for the stent-graft, this theoretically gives the option of all the 

structures studied above. However, the observed motion of the healthy root also presents a 

twisting of the ascending aorta of about 6 degrees, which indicates that a structure with 

lower shear rigidity could be more suitable. Hence, the re-entrant hexagonal geometry would 

be, in this case, the most suitable configuration. In fact, the diagrams in chapter 7 indicate 

for this configuration a shear modulus lower for the double arrowhead of about one order of 

magnitude, and for the hexachiral of about 3 orders of magnitude. Moreover, the membrane 

exploration above indicates that re-entrant structures are more suitable to integrate sealing 

coverings, that in this application may be required.   

9.4.1 Introduction to Design Process 

The initial base criteria for the design came from the anatomical data provided by George 

Tellides, a clinical collaborator at Yale University. The design process was divided into three 

stages.  
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The initial stage focused on designing a stent to suit the anatomical criteria of the ascending 

aorta as reported by Tellides, for a stent with diameter D = 23 mm, using the analytical 

expressions presented earlier in the thesis.  

The second stage focused on adapting this design to be able to be manufactured with laser 

cutting from a standard tube, 10 mm in diameter and 0.5 mm thickness, with a laser beam of 

diameter 0.5 mm.  

The third stage consisted of numerically evaluating the designed shape using finite element 

analysis. 

9.4.2 Analytical design process 

For the analytical design process, the equations and nomenclature presented in Chapter 5 

[34] are used to relate the geometric variables of the stent structure to the mechanical 

properties of the stent.  

The geometric variables of the stent are similar to the tubes above, with the length of the 

struts parallel to the length of the stent, h, the angled struts connecting them, l, the circular 

diameter of the struts, d, and the angle θ between the angled struts and the direction 

perpendicular to the length of the stent. The other two geometrical variables are the number 

of cells of struts along the circumference of the stent, Nc, and the number of cells along the 

length of the stent, .  

The range of angles θ considered were between 0° and 40°. The number of cells around the 

circumference of the stent, Nc, considered were between 4 and 12. The strut length l was 

dependent on this with the relationship: 

     (see 5.1) 

where D = 23 mm, 4 < Nc < 12, 0 < θ < 40.  

The strut length h was studied in relation to the strut length l, where the h/l ratios were 1.25 

to 2.0. The number of cells in the longitudinal direction, , were dependent on the strut 

length h, l and the angle θ. To achieve the desired length of the stent, H, the number of cells 

in the longitudinal direction were adjusted to achieve the closest possible H for each 

combination, where: 

  (see 6.4) 
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The most relevant mechanical properties to achieve are the Poisson’s ratio and the radial 

compliance of the stent. The Poisson’s ratio is calculated using the anatomical data, from the 

formula presented in Chapter 6:  

   (see 6.12) 

where D’ is the expanded systolic diameter, D the diastolic diameter, H’ the expanded 

systolic length and H the diastolic length of the ascending aorta. To calculate the Poisson’s 

ratio of the stent for different geometrical variables the following equation from Chapter 5 

was used: 

   (see 5.3) 

For all angles below 28 degrees, the Poisson’s ratio was too low for all combinations of h 

and l.  

The manufacturing requirements of being able to make the stent out of a smaller, 10 mm 

diameter tube, put a limitation on maximum angle and minimum h/l ratio. To be able to have 

a 0.5 mm diameter gap (the size of the cutting laser beam) between the angular struts when 

the stent is crimped to 10 mm diameter, all angles above 32 degrees are excluded, as are all 

h/l ratios below 2.0, the maximum taken into consideration.  

The Poisson’s ratio for 30 degrees was the closest to the desired value of -1. The 

circumferential numbers of cells were selected to best approximate the desired radial 

compliance, C.  

This is quantified as: 

C =    (9.1) [49] 

where P is the difference between the systolic and diastolic pressure, also known as pulse 

pressure. For these calculations, a typical systolic pressure of 120 mmHg and a typical 

diastolic pressure of 70 mm Hg were assumed, obtaining a pulse pressure of 50 mmHg, 

which corresponds to 6.6661 kPa. 

To calculate the compliance of the theoretical shape of the stent, the equation used was: 

C = x100%   (9.2) [49] 

where is the Young’s Modulus of the material. The analytically calculated value for the 

radial compliance of the aorta was ca 1.82%/kPa. 
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For a beam diameter of 0.5 mm, only 4 cells around the circumference were possible, but 

when lowering the circular beam diameter to 0.45, the radial compliance necessary was 

possible to archive for 5 cells.  For 6 cells however, the beams would be too small to allow 

practical manufacturing. 

Since the structure was to be laser cut from a commercially available tube with a wall 

thickness of 0.5 mm, the beams are not circular, but about trapezoidal, with one dimension 

fixed at 0.5 mm. To accommodate for this, the second moment of area were calculated for a 

circular beam of diameter 0.45 mm, and this was used to find the width of the struts for a 

beam with the breath 0.5 mm and an equal second moment of area. This results in an ‘in-

plane’ mean width of 0.25 mm. This is consistent with the requirement of a beam width 

smaller than the beam thickness (wall thickness) to avoid beam twisting during expansion 

and collapse of the stent. 

9.4.3 Numerical modelling process 

Two CAD models were built using CATIA. One showing the larger structure, and one looking 

at the individual cells, which was used for the finite element analysis. Imported into the finite 

element program MSC Marc, they were subjected to an expansion imitating the thermal 

expansion used to enlarge the initial structure cut out from a 10 mm diameter tube, see 

Figure 71, to the final shape with a diameter of 23 mm. The material properties of Nitinol 

used for the model was a Poisson’s ratio of 0.33 and a Young’s Modulus of 70 MPa. The 

material was assumed as linear elastic.   

 

Figure 71: To the left, the pattern cut out from the tube; to the right, the unfolded pattern 

It was decided to analyse a single cell to minimise computing time, while increasing 

accuracy of the analysis with a higher mesh density, see Figure 72. To account for the rest 

of the structure, symmetry planes were used, see  
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Figure 73. This allowed more elements being used for the single cell of the three-

dimensional ten node tetrahedron element type, element number 127. [145] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The actual physical process of expanding a stent to the desired size would be to forcefully 

expand it and then thermally set it into the new shape. For the numerical model, the thermal 

expansion progress was simulated with the aid of an expanding inner cylinder. The stent unit 

cell was allowed to move along the circumferential symmetry planes, expanding without 

additional friction from those while mimicking the presence of further cells. 

Symmetry 

planes, 

Circumferential 

Figure 72: One cell cut out from the structure with the aid of symmetry plans to mark the presence of 
the other cells in the grid: cell marked in pattern on the left, isolated cell on the right. 

 

Figure 73: The cell flanked by symmetry planes marking the existence of the other cells, here around 
the circumference of the cylinder 
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To validate the numerical models, the global mechanical properties exhibited by the model 

were compared to those calculated with the aid of the analytical study above. As already 

mentioned, the main global mechanical properties of interest where the Poisson’s ratio (νcz) 

and the radial compliance (C). These were determined using the expansion in the 

longitudinal direction, radial direction and the resultant forces acting on the stent.  

9.4.4 Resulting design 

Table 16 reports the desired dimensions and global mechanical properties according to the 

anatomical data collected and analysed, and Table 17 show the resulting analytical design. 

Table 16: Anatomical data 

Anatomical study 

Asc Ao length H 66,2 mm 

Asc Ao length H* 74,6 mm 

Asc Ao Diameter D 23,1 mm 

Asc Ao Diameter D*, Dp 25,9 mm 

Poisson’s ratio νcz -0,96 

Radial compliance C 1.82%/kPa  

  

The radial compliance is calculated in %/kPa to better allow for comparison between the 

analytical analysis and the numerical models. 

Table 17: Analytical design 

Analytical design 

Global length H 63 mm 

Diameter D 23 mm 

Strut length l 8.35 mm 

Strut length h 16.7 mm 

Strut angle θ 30° 

Number of cells Nc 5 

Number of cells Nz 5 

Comparison of the analytical design to the numerical model is reported in Table 18.  

Table 18: Comparison analytical design and numerical model 

 Analytical design Numerical model % Difference 

Poisson’s ratio νcz -1 -1,03 3% 

Radial compliance C 

%/kPa 

1.83 1.87 2% 
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The final unit cell used in the numerical analysis is shown during ‘thermal’ expansion below 

in Figure 74 and Figure 75, and during ‘cardiac cycle’ in Figure 76. It is essential to observe 

that the departure from the analytical models maintains small and well acceptable, despite 

the geometrical alterations in the numerical 3D model to fit the manufacturing requirements 

of the stent. In fact, although the resulting non-uniform beam cross-sections and hinges have 

some effect, the analytically estimated elastic behaviour of an ideal structure still gives a 

good prediction for the more realistic unit cell studied here.  

 

 

 

 

 

 

 

 

 

 

 

 

A view of the final device is shown in Figure 77. 

Figure 74: Expansion in the radial direction, symmetry planes shown, accounting for the rest of the 
cells around the circumference of the tube 

Figure 75: Expansion in the radial direction, view on cell showing expansion in both radial and 
longitudinal direction. 

Figure 76: Shape of cell during the diastolic versus systolic phase of the cycle. 
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Figure 77: Final device in full 

 

9.4.5 General afternotes and concluding remarks 
 

Notes on kinking 

The factors affecting the kinking curvature, as observed by Karnessi & Burriesci [49], would 

be the h/l ratio, the number of cells in the circumferential direction and the angle between the 

stents θ.  The high h/l ratio of the design would lower the stents resistance to kinking but 

could not be avoided due to the manufacturing requirements. The low number of cells, Nc, in 

the circumferential direction works in favour for increasing the tolerance against kinking. The 

angle θ could not have been altered greatly either due to the required specifications, though 

a slightly lower one could help, if required, to increase tolerance against kinking.  

Conclusion 

The behaviour of the more complex numerical model did not vary significantly from the 

analytical model predictions and the simpler idealised numerical models in earlier chapters. 

A design meeting the anatomical and physiological requirements was easily created, 

adopting the presented analysis, which allowed an immediate selection of a suitable auxetic 

configuration and its realistic dimensioning, taking into consideration a common 

manufacturing process. The approach provided an accurate design, despite the geometrical 

alterations in the numerical 3D model compared to the earlier idealised beam models, and 

due to the fact that the numerical 3D model had to be adjusted to fit the manufacturing 

requirements of the stent. The analytically estimated elastic behaviour of an ideal structure 

gives a good prediction for the more realistic unit cell studied here.  
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10. Conclusion and future works 

After investigating the range of available auxetic structures to find potential ones for 

cardiovascular stent design, three auxetic cellular configurations were selected for further 

study. The comparison of the three structures, the re-entrant hexagonal, the double 

arrowhead and the hexachiral structures were done both analytically and numerically. To 

facilitate analytical comparison, original analytical expressions for the elastic behaviour of 

the double arrowhead were derived and proposed as part of the current work, as the 

available ones were incomplete. The three auxetic configurations were numerically 

investigated and adapted to tubular structures, and the effect of variation of the different 

geometrical properties of the structure on the mechanical response was studied for a range 

of parameters. The structures were subjected to axial tension, circumferential expansion, 

and twisting. These were then compared to each other to offer a guidance for selecting the 

most appropriate architecture for practical design application. The analysis indicates that the 

double arrowhead offers the largest range of Poisson’s ratios, and the highest shear rigidity, 

while the re-entrant have a slightly smaller range of Poisson’s ratios and by far the lowest 

shear rigidity of all three structures. Both exhibit an anisotropic behaviour and have a similar 

range of Young’s modulus. The hexachiral differs much from the other two which have re-

entrant deformation mechanisms, with its isotropic and very limited range of Poisson’s ratio. 

The Young’s modulus is less isotropic in the context of tubular structures with a thicker 

ligament than the theoretical one for the plane structures with a slightly higher Young’s 

modulus than the other two. Finally, the mechanical behaviour of the structures was then 

analysed in relation to the clinical data available in respect to potential practical applications 

where auxetic configurations would allow stent designs more respectful of the physiological 

dynamics. 

A new stent for the treatment of the stiffening of the ascending aorta was designed and 

presented as part of this work, exploiting the analysis of auxetic structures described in the 

first part of the thesis. 

When looking at the limitations of the current models and practical implications of the 

suggested stent designs, there are a few areas that have been identified and partially 

analysed here, where further investigation would be useful.  

The primary one for stent-graft design is the effect of membranes on an auxetic stent; the 

impact on the mechanical behaviour of the stent, and the possibility to mitigate this with 

selection of membrane type. Another is the potential effect of manufacturing methods on the 

mechanical properties, and to investigate if there is a preferred method to not negatively 
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impact the desired behaviour. A third is the effect of the length of the stent on the auxetic 

behaviour, and how the ends of the structure behaves.  

From a clinical point of view more specific data would need to be collected, to optimally 

exploit the possibilities that auxetics can provide. Most clinical studies are incomplete from 

the auxetic stent design point of view, as all interesting factors are seldom included in 

studies using comparable methods.  

Another device specific avenue for research is the impact of wall-device interactions. For this 

study, an ascending aortic stent-graft was discussed as a surgical option as most 

endovascular are used for stiffened aortas that would hamper the possible dynamics of a 

stent. However, similar principles could be a possibility for those with pathological changes 

associated with Marfans syndrome or hyper elastic vessels. In this case, maintaining the 

native aortic root might cause significant changes to the intended dynamics of a stent, and 

this would be important to study further.   
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Appendix 
A.1 Stretching equations 

In the case of the double arrowhead configuration, exploring the stretching equations as 

defined by Masters and Evans’ for the Poisson’s ratio and Young’s modulus in the main text. 

In fact, their definition of the stretching approach is ‘This model assumes that the cell walls 

are only able to deform by stretching along their axes with no change in angle’. Due to the 

configuration of the double arrowhead, this just forces the cell to scale up (in the case of 

tension), expanding equally in both in-plane directions, resulting in a Poisson’s ratio of -1. 

Although this is expected, here are included the equations as per Masters and Evans’ 

approach, which confirm this (resulting Poisson’s ratios are equal to -1). 

A.1.1 Uniaxial loading of double arrowhead cell in direction 1 

 

Figure 78: a) Uniaxial loading in 1-direction and resulting b) long beam and c) short beam free body 
diagram, respectively 

Submitting the unit cell to uniaxial loading by a far field nominal stress , where 

   (see 4.3) 

The force  along the long beam of length  is expressed as a function of the part of the 

force   acting on the long beam, . 

   (A.1) 

The displacement  along the long beam of length  is calculated using eq.4.2:  

   (A.2) 

 

 



 

158 
 

where the component of deformation along the 1-axis is  

  (A.3) 

and the component of deformation along the 2-axis is 

  (A.4) 

The force  along the short beam of length  is expressed as a function of the part of the 

force   acting on the short beam, . 

   (A.5) 

and the displacement  along the short beam of length  is calculated using eq.4.2 

   (A.6) 

The component of deformation along the 1-axis is  

  (A.7) 

and the component of deformation along the 2-axis is 

  (A.8) 

Due to geometry constrains, , the relation between  and  can be determined 

as 

 

Since  

 

   (A.9) 

  (A.10) 
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A.1.2 Uniaxial loading of unit cell in direction X2 

Submitting the double arrowhead cell to uniaxial loading by a far field nominal stress , 

where  

    (see 4.14) 

The force  along the long beam of length   

  (A.11) 

Where  is the horizontal reaction force from the shorter beam. 

The displacement  along the long beam of length  is calculated using eq.4.2:  

   (A.12) 

Where the component of deformation along the 1-axis is  

  (A.13) 

And the component of deformation along the 2-axis is 

  (A.14) 

 

Figure 79: a) Uniaxial loading in 2-direction and resulting b) long beam and c) short beam free body 
diagram, respectively 
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The force  along the short beam of length   can be written as 

  (A.15) 

where  is the horizontal reaction force from the longer beam. 

The displacement  along the short beam of length  is calculated using eq.4.2 

  (A.16) 

Where the component of deformation along the 1-axis is  

  (A.17) 

And the component of deformation along the 2-axis is 

  (A.18) 

Due to geometric constrains, , an expression for   can be developed 

 

  (A.19) 

Calculating the elastic properties for pure stretching deformation 

For expansion in 1-direction 

 

  (A.20) 

  (A.21) 

Leading to 

  (A.22) 
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  (A.23) 

For expansion in 2-direction 

  (A.24) 

   (A.25) 

Leading to 

   (A.26) 

  (A.27) 

4.3.5 Rewritten in the format  and   

 

  (A.28) 

  (A.29) 

  (A.30) 

  (A.31) 

 

Combining Flexure and Stretching to a complete model 

For expansion in X1-direction 

   (A.32) 
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  (A.33) (see 4.54 

and 4.12) 

  (see A.20) 

   (A.34) 

   (A.35) (see 4.55, 4.12 and 4.13) 

   (see A.21) 

 

Stress, derived from eq 4.3 

   (A.36) 

Young’s modulus 

 

  (A.37) 

Poisson’s ratio 
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  (A.38) 

 

 

For expansion in X2-direction 

 

Deformation 

     (See A.32) 

  (A.39) (See 4.58 and 

4.23) 

  (See A.24) 

   (See A.34) 

  (A.40) (See 4.59 and 4.23) 

  (See A.25) 

 

Stress, derived from eq. 4.14, is  

 (A.41) 

Young’s modulus 
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 (A.42) 

Poisson’s ratio 

 

 

 

(A.43) 

Rewritten in the format  and  

   (A.44) 

 

  (A.45) 

  (A.46) 
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  (A.47) 

 

 

Example of comparison between pure flexure and combined flexure and stretching according to Masters & Evans 


