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Abstract
A symmetry-adapted fermion-to-spin mapping or encoding that is able to store information about
the occupancy of the n spin-orbitals of a molecular system into a lower number of n− k qubits in a
quantum computer (where the number of reduced qubits k ranges from 2 to 5 depending on the
symmetry of the system) is introduced. This mapping reduces the computational cost of a
quantum computing simulation and at the same time enforces symmetry constraints. These
symmetry-adapted encodings (SAEs) can be explicitly seen as a block-diagonalization of the
Jordan–Wigner qubit Hamiltonian, followed by an orthogonal projection. We provide the form of
the Clifford tableau for a general class of fermion-to-qubit encodings, and then use it to construct
the map that block-diagonalizes the Hamiltonian in the SAEs. The algorithm proposed does not
require any further computations to obtain this map, which is derived directly from the character
table of the molecular point group. An implementation of the algorithm is presented as an
open-source Python package, QuantumSymmetry, a user guide and code examples. QuantumSymmetry
uses open-source quantum chemistry software PySCF for Hartree–Fock calculations, and is
compatible with quantum computing toolsets OpenFermion and Qiskit. QuantumSymmetry takes
arbitrary user input such as the molecular geometry and atomic basis set to construct the qubit
operators that correspond in the appropriate SAE to fermionic operators on the molecular system,
such as the second-quantized electronic structure Hamiltonian. QuantumSymmetry is used to
produce numerical examples of variational quantum algorithm simulations to find the ground
state energy for a number of example molecules, for both Unitary Coupled Clusters with Singles
and Doubles and Adaptive Derivative Assembled Pseudo-Trotter Variational Quantum Eigensolver
ansätze. We show that, beyond the advantage given by the lower qubit count, the proposed
encodings consistently result in shallower and less complex circuits with a reduced number of
variational parameters that are able to reach convergence faster and without any loss of computed
accuracy.

1. Introduction

Quantum computers store information in the form of quantum bits (qubits): a single qubit spans a Hilbert
space of infinitely many possible states (isomorphic to the complex projective line CP1, the Bloch sphere). By
harnessing quantum properties of matter such as superposition and entanglement, quantum computers hold
the promise to solve certain complex problems classical computers will never be able to [1, 2]. However, even
the largest quantum computers available to date are able to process just tens [3] or a few hundreds [4] of
qubits, instead of the thousands of qubits required for the useful application of standard quantum
computing algorithms [5–10], including famously Shor’s prime factorization algorithm [11] and the phase
estimation algorithm [12]. Preskill coined the term noisy intermediate-scale quantum (NISQ) computers to

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/acd86c
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/acd86c&domain=pdf&date_stamp=2023-6-16
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6517-2458
https://orcid.org/0000-0002-4994-5238
mailto:picozzi.dario@gmail.com
https://doi.org/10.1088/2058-9565/acd86c


Quantum Sci. Technol. 8 (2023) 035026 D Picozzi and J Tennyson

describe these devices [13], and to differentiate them from future fault-tolerant quantum computers. Over
the last decade, hybrid quantum–classical algorithms that make do with NISQ devices have been proposed,
such as famously the variational quantum eigensolver [14] (VQE): these algorithms make use of quantum
computers in tandem with classical computers, in the hope of provide a quantum advantage to simulating
computationally expensive problems. A comprehensive review on the VQE is given by [15]. One intuition
driving recent developments in the NISQ era, is that quantum computers will be best suited to simulate
problems that are themselves quantum in nature, such as the electronic structure problem in quantum
chemistry. In particular, a quantity of interest is the full configuration-interaction ground state of the
electronic structure molecular Hamiltonian [16–18].

In this work, we introduce a symmetry-adapted fermion-to-spin mapping or encoding that is able to store
information about the occupancy of the n spin-orbitals of a molecular system into a lower number of n− k
qubits in a quantum computer (where the number of reduced qubits k ranges from 2 to 5 depending on the
symmetry of the system). This reduces the computational cost of the quantum computing simulation, while
at the same time enforcing symmetry constraints. We do this by first mapping the operators corresponding
to Boolean (self-inverse) symmetries of the molecular system to products of Z Pauli operators on the qubit
space. These are also known in the literature as Z2 symmetries. The idea that the physical symmetries of the
Hamiltonian can be used to remove some of the qubits from the qubit operator corresponding to it was
proposed by Bravyi et al [19], and generalizes the observation that two of the qubits in the parity and
Bravyi–Kitaev encoding [20, 21] are redundant. Borrowing from the theory of quantum error correction
codes, the ‘tapering of qubits’ algorithm requires computation of a parity check matrix, whose size scales
linearly with the number of Pauli terms in the Jordan–Wigner (JW) Hamiltonian (and typically asO(n4)
with the number of qubits n), which is then reduced to row-echelon form in order to find Boolean
symmetries. Here, we present a simple algorithm that, unlike earlier proposals in the literature [19, 22], does
not require further computations to obtain the form of the qubit operators corresponding to Boolean point
group symmetries and parity symmetries in qubit space. This form can be immediately derived from
knowledge of the character table of the point group and of the irreducible representation in which each
molecular orbital lies. The symmetry-adapted encoding we propose also has the virtue of being the first such
encoding where computational basis states correspond to Slater determinants, information about the
occupancy of spin-orbitals can be immediately read from qubit states, and the encoding can be explicitly seen
as the block-diagonalization of the Hamiltonian followed by an orthogonal projection. Furthermore, by
using molecular orbitals instead of atomic orbitals, we ensure orthonormality of the orbitals, and thus do not
run the risk of finding artificially low energies, as in the case of previously proposed algorithms [22]. The
diagram in figure 1 provides a bird’s-eye view of the mathematical formulation of our method.

This paper is structured as follows: in section 2 we review the form of the second-quantized electronic
molecular Hamiltonian in the JW fermion-to-spin mapping; in section 3 we give a short review of the theory
of Boolean groups, molecular point groups and parity operators, and of the representation theory of finite
point groups; in section 4 we show how Boolean symmetries can be mapped to products of one-qubit Z
Pauli operators in the JW basis; in 5 we show how symmetry-adapted encodings encode information about n
spin orbitals in n− k qubits by virtue of the reduction in degrees of freedom provided by Boolean
symmetries; in section 6 we introduce the Clifford map for a general encoding, and in particular for the
symmetry-adapted encodings (a proof of the result used in this section is provided in the supplemental
material); in section 7 we show how fermionic operators are mapped to operators on n− k qubits in the
symmetry-adapted encodings by the Clifford map followed by an orthogonal projection on the target
eigenspace; in section 8 we present a Python implementation of our algorithm in the form of the
QuantumSymmetry package; in section 9 we present numerical results to show that symmetry-adapted
encodings result in shallower and less complex circuits that are able to reach convergence faster than their JW
counterparts; in the supplemental material we also provide further details on the implementation of our
algorithm with a number of examples for small molecular systems.

2. The JWmolecular Hamiltonian

In second quantization, the nonrelativistic electronic molecular Hamiltonian Ĥ can be written as [23]:

Ĥ=
∑
pq

hpqâ
†
p âq +

1

2

∑
pqrs

hpqrsâ
†
p â

†
q ârâs + hnuc (1)

where the coefficients hpq and hpqrs are known as the one-electron integrals and the two-electron integrals
respectively, and are evaluated from the molecular spin-orbitals; the term hnuc is an overall constant in the
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Figure 1. The commutative diagram shows the action of a symmetry-adapted encoding on a fermionic operator: (a) first, as a
map from the infinite-dimensional nonrelativistic Born–Oppenheimer molecular electronic Hamiltonian to a finite-dimensional
second-quantized operator written in terms of fermionic creation and annihilation operators; and then mapping it to qubit
operators of the same dimensionality by the Jordan–Wigner encoding. (b) Secondly, as conjugation of the Jordan–Wigner qubit
operator by a Clifford operator Ĉ that corresponds to a permutation or reordering of the 2n computational basis states of n qubits,
where the 2n−k states in the target eigensector are mapped to the first 2n−k computational basis states. The action of the Clifford
operator on an operator that is symmetric with respect to the Boolean symmetries is a block-diagonalization in the
computational basis, where each block corresponds to one of the 2k different simultaneous eigenspaces of the Boolean
symmetries. (c) Finally, as conjugation by the orthogonal projection operator P̂, which keeps the first 2n−k computational basis
states and discards the other ones, mapping n-qubit operators to (n− k)-qubit operators. The operator shown is the Hamiltonian
for the hydrogen molecule (H2) in a minimal basis, shown in its matrix form in the computational basis in the four-qubit
Jordan–Wigner encoding and in the one-qubit symmetry-adapted encoding. In the visualization, the hue of a square corresponds
to the phase of the corresponding matrix element, and the brightness to its magnitude: red squares correspond to positive real
matrix elements, cyan squares to negative real matrix elements, and black squares to zero elements.

fixed nuclei approximation and is due to the repulsion between the positively charged nuclei of the molecule.
â†j and âj denote (respectively) the creation operator and annihilation operator acting on the jth spin orbital.

In the JW mapping spin-orbitals are mapped one-to-one to qubits in the most straightforward way: for a
computational basis state, the jth qubit is in state |1⟩ if the jth spin-orbital is occupied, and in state |0⟩ if it is
unoccupied.

To write down the qubit representation of the molecular Hamiltonian in the JW basis it is enough to
know the qubit operators corresponding to the fermionic operators â†j and âj (this will not be the case,
however, for the symmetry-adapted encodings).

The Pauli Z, X and Y operators act on the computational basis as:

Z|0⟩= |0⟩, Z|1⟩=−|1⟩
X|0⟩= |1⟩, X|1⟩= |0⟩
Y|0⟩= i|1⟩, Y|1⟩=−i|0⟩.

(2)

Then we have:

â†j →
Xj − iYj

2
Zj−1 . . .Z0

âj →
Xj + iYj

2
Zj−1 . . .Z0

(3)
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where the Pauli Z operators on qubits j− 1 to 0 enforce the fermionic sign rule.
This allows us to write down all of the terms of the qubit representation of the Hamiltonian in the JW

basis. For example, the JW encoding maps the number operator N̂j (whose eigenvalue+1 corresponds to

those states that have an electron in the jth spin orbital, and 0 to states that do not) as N̂j = â†j âj →
1−Zj

2 .

3. Molecular point groups, Boolean groups and their character tables

If a water molecule is rotated by 180◦ around its principal axis its two hydrogen atoms exchange places, but
the resulting geometry is indistinguishable from the one before the rotation was performed: in this sense, the
180◦ rotation around the principal axis C2(z) is a symmetry of the water molecule (where we have set
according to the usual convention the z-axis to coincide the principal axis, the y-axis to lie on the plane of the
molecule, and the x-axis to be perpendicular to it). The geometrical symmetries of the water molecule form
what is known as its point group. A point group is a group in the mathematical sense [24–26]. The four point
group symmetries for the water molecule are shown in figure 2. Its point group is known as the C2v point
group. Each point-group symmetry in C2v repeated twice gives the identity (for instance C2(z)×C2(z) = E):
C2v is a Boolean group.

A Boolean group is a group where every element is of order 2 (that is, every element is its own inverse).
The only eight Boolean molecular point-groups are C1, Cs, C2, Ci, C2v, C2h, D2 and D2h. They must all be
Abelian, because every Boolean group is Abelian (although they are not the only Abelian point groups: for
instance, the group Cn for n> 2 is Abelian, but it is not Boolean).

From a mathematical perspective, these are just four different groups: C1 is the trivial group, Cs, C2 and
Ci are all isomorphic to the group Z2 (the only group of two elements), C2v, C2h and D2 are all isomorphic to
the Klein-four group Z2

2 = Z2 ×Z2, and D2h is isomorphic to the group Z3
2 = Z2 ×Z2 ×Z2.

In general, every finite Boolean group is isomorphic to a power of Z2 (where multiplication is the direct
product of groups), and because point groups only act on objects in (at most) three dimensional space, the
maximum such power for a point-group is 3 (corresponding to the group D2h).

Quantum chemistry software generally works with Boolean groups, and often perform a descent in
symmetry to the largest Boolean subgroup of the molecular point group. For instance, the ammonia (NH3)
molecule is in the C3v point group, which is not Boolean: its Boolean subgroup Cs will be used in its place in
forming symmetry-adapted molecular orbitals. An advantage of this is that for a Boolean group molecular
orbitals, constructed as symmetry-adapted linear combinations of atomic orbitals, can naturally be expressed
as purely real (instead of complex) functions.

There are two further Boolean symmetries that we are going to be interested in, beyond the point-group
ones. In the usual nonrelativistic treatment of molecular system, which ignores effects like the spin-orbit
interaction, the operators for the number of electrons with spin up (N̂↑) and down (N̂↓) are also symmetries
of the Hamiltonian. Then so are the parity operators P̂↑ and P̂↓ defined by:

P̂↑ = (−1)N̂↑ P̂↓ = (−1)N̂↓ . (4)

If we multiply them together, these two parity symmetries generate the total electron number parity operator
P̂= P̂↑P̂↓ = (−1)N̂, forming a group that is also isomorphic to the Klein four-group Z2

2.
Together, the Boolean point group symmetries and the parity operators form a larger Boolean group,

which we are going to refer to as the full Boolean group for the molecule, and that is isomorphic to Zk
2, where

k= 2,3,4,5 is the number of independent generators of the group.
While the geometry of the molecule itself is, by the definition of the point-group, left unchanged by the

action of any point-group symmetry, its molecular orbitals might change when acted upon by a point-group
symmetry. For a Boolean point group the molecular orbitals can be defined so that there are only two
possibilities: either the orbital is symmetric with respect to a point group element (it stays unchanged) or it is
antisymmetric with respect to it (it acquires a phase of−1). Each symmetry-adapted orbital is in an
(irreducible) representation of the point group, and for a Boolean group knowing which representation it is
in amounts to the same as knowing whether the orbital is symmetric or antisymmetric with respect to each
point group symmetry. In this sense, Boolean groups are a class of particularly simple groups: for a general
Abelian group, there are more possibilities than these two, corresponding to the symmetry-adapted orbitals
acquiring complex phases (given by roots of unity); for a non-Abelian group, there are degenerate irreducible
representation, and the symmetry-adapted orbitals in the same representations will mix upon the action of a
symmetry element.

Information on the behaviour of the symmetry-adapted orbitals can be found in the group’s character
table [27]. For example, the character table for the point group C2v, the point group of the water molecule (a
Boolean group), is given in figure 3.
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Figure 2. The water molecule (H2O) and its four point-group symmetries, which form the point-group group C2v

(isomorphic to the Boolean group Z2
2): these are the identity element E (which is equivalent to not doing anything at all), the

rotation by 180◦ along the z-axis C2(z) (shown as a green line in the diagram), the reflection across the xz-plane σ(xz) (blue
plane), and the reflection across the yz-plane σ(yz) (red plane).

Figure 3. Character table for the point-group group C2v: each column corresponds to a conjugacy class (for an Abelian group, this
is the same as the elements of the group: in this case the identity E, the rotation C2(z), and the two reflections σv(xz) and σv(yz));
each row corresponds to an irreducible representation (A1, A2, B1 and B2). As the group C2v is Boolean, every entry in its
character table is either 1 or−1.

A representation of a group is a map that sends the group elements to linear transformations on a vector
space, in a way that respects the group operation (it is a group homomorphism). A representation is
irreducible if those linear transformations do not leave any nontrivial linear subspace of the vector space
invariant. Although this is not in general the case, for finite-dimensional groups (like the ones we are
interested in) this is equivalent to the claim that any representation of the group that is not one of its
irreducible representations can be decomposed into a direct sum of irreducible representations [28–30].

The group elements are naturally partitioned into conjugacy classes. For Abelian groups (including
Boolean groups), each element forms a conjugacy class of its own, and we can take the columns to refer to
the point group elements. Each row of the character tables corresponds to an irreducible representation of
the point group.

The character of a group element under a representation is the trace of the corresponding matrix in the
representation. Each entry of the character table corresponds to the character of conjugacy classes (the
corresponding column) under the irreducible representations (the corresponding row). For an Abelian
group all irreducible representations are one-dimensional: the characters on the character table for an
Abelian group are the same as the images of its elements under the irreducible representations. For a Boolean
group each element must square to the identity, and the characters can then only be either 1 or−1.

4. Boolean symmetries in the JW representation

Boolean point-group symmetries have a particularly simple form in the JW basis, as long as the qubits
represent symmetry-adapted molecular spin-orbitals (as an example, the symmetry-adapted molecular
orbitals for the water molecule are shown in figure 4). We present a straightforward rule to construct them:
one just needs to look up the column corresponding to that point group element in the character table for
the relevant symmetry group. A symmetry will act as a Pauli Z on the jth qubit if the corresponding
spin-orbital is in a representation that is antisymmetric with respect to that symmetry (corresponding to a
value of−1 in the character table), and it will act as the identity if it is in a representation that is symmetric
with respect to that symmetry (a value of+1 in the character table). The resulting qubit operator has its+1
eigenspace spanned by the computational basis states corresponding to Slater determinants that are
symmetric under that symmetry (those that have an even number of antisymmetric spin-orbitals in them),
and its−1 eigenspace spanned by the computational basis states corresponding to Slater determinants that
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Figure 4. Isosurfaces for the molecular orbitals of the water molecule (H2O) in a minimal basis constructed as symmetry-adapted
linear combinations of atomic orbitals, in order of ascending energy starting from the right (this follows the convention that will
be used for the rest of the article). The orbitals are named by the irreducible point group (C2v) representation they lie in (in this
case A1, B1 and B2). Of the 214 = 16 384 possible Slater determinants that can be formed from the molecular orbitals, exactly
212 = 4096 lie in each of the four irreducible representations: for instance the four computational states corresponding to the
configuration 2b21b13a211b

2
22a

2
11a

2
1 all lie in the A2 irreducible representation. Each of the seven molecular orbitals corresponds to

two spin-orbitals, each of which in turn corresponds to a qubit in the JW encoding, for a total of 14 qubits. In the
symmetry-adapted encoding for the water molecule this number is reduced to 10 qubits.

Figure 5. In the Jordan–Wigner encoding, where each qubit corresponds to a spin-orbital given by the symmetry-adapted linear
combinations of molecular orbitals, the qubit operators corresponding to Boolean symmetries have a particularly simple form.
We see that the three non-identity elements of the point-group C2v are mapped to a (tensor) product of Pauli Z operators acting
on the orbitals that are antisymmetric with respect to them, using the information contained in the point-group character table
that was given in figure 3. It is easy to see that the group operation is respected by the mapping, as for example the product of
symmetry operators C2(z)× σv(xz) = σv(yz) is mirrored by the product of qubit operators Z13Z12Z9Z8Z5Z4 × Z13Z12Z5Z4 =
Z9Z8. Finally, the two parity operators P↑ and P↓ are mapped to Pauli Z operators on those qubits that correspond to spin-up and
spin-down spin-orbitals respectively.

are antisymmetric under that symmetry (an odd number of antisymmetric spin-orbitals). This simple rule
allows one to construct the qubit representations of Boolean point group symmetries just from knowledge of
the point group character table.

For example, in the character table for the point group D2h the 180◦ rotation along the y-axis C2(y) is
symmetric with respect to orbitals in the Ag irreducible representation (a value of+1 in the character table),
but antisymmetric with respect to orbitals in the B1u irreducible representation (a value of−1 in the
character table). If in a simulation for the hydrogen molecule (H2) in the minimal basis the third, second,
first and zeroth qubit correspond respectively to the 1b1u↓, 1b1u↑, 1ag↓ and 1ag↑ spin-orbitals, the qubit
operator corresponding to the rotation C2(y) will be Z3Z2.

Number parity symmetries have a similar form as Pauli Z operators as well: in the JW basis, the operator
P̂↑ corresponds to Pauli Z operators on half of the qubits, the ones that correspond to the spin-orbitals with
spin up, and P̂↓ will correspond to Z operators on the other half (the qubits corresponding to the
spin-orbitals with spin down).

A marginally more involved example for the qubit form of symmetry operators, for the water molecule
(H2O) in the minimal basis, is shown in figure 5.

For example, in the same qubit assignment as given before, P̂↑ corresponds to Z2Z0, and P̂↓, corresponds
to Z3Z1.

5. The symmetry-adapted encoding of qubit states

Allowed states of electrons correspond to antisymmetrized products of spin-orbital functions (where the
requirement for antisymmetrization with respect to interchange of the two electrons comes from the Pauli
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principle), the Slater determinants, and their linear combinations. In the JW encoding, computational basis
states are in one-to-one correspondence to Slater determinants. A spin-orbital can only be either symmetric
or antisymmetric with respect to a Boolean symmetry, and hence these are also the only two possibilities for
a Slater determinant. In fact, a Boolean symmetry will partition the set of all possible Slater determinants
(where each determinant is counted once irrespective of the overall phase, and we are considering all possible
occupancies) in two: half of the determinants will be in the symmetric eigenspace of the symmetry, and the
either half in the antisymmetric one. The Slater determinants that are symmetric with respect to the
symmetry are the ones for which the number of occupied antisymmetric spin-orbitals is even, and the Slater
determinants that are antisymmetric with respect to the symmetry are the ones for which it is odd. For the
Boolean symmetry group Zk

2, where k is the number of independent generators for the point group, this
translates into a set of k constraints in the form of linear equations for the occupancies of the spin orbitals,
where addition is taken modulo 2.

Formally, let:

• g0, . . . ,gk−1 be k independent generators of the Boolean symmetry group Zk
2;

• A0, . . . ,Ak−1 be the sets of spin-orbitals that are antisymmetric with respect to the symmetry g0, . . . ,gk−1

respectively;
• c0, . . . , ck−1 ∈ {0,1} be equal to 0 if the target irreducible representation is symmetric with respect to the
symmetry g0, . . . ,gk−1 respectively (there character in the corresponding entry of the character table +1)
and 1 if it is antisymmetric with respect to it (−1 in the character table);

• p0, . . . ,pn−1 ∈ {0,1} be the spin-orbital occupancies (equivalently, the qubit states for a computational basis
state in the JW encoding).

We then have a set of k binary constraints each of the form:⊕
pj∈Ai

pj = ci (5)

where⊕ denotes addition in modulo 2. This in turn means that the occupancies of k of the spin-orbitals in
k∪

i=1
Ai are redundant.

We will consider the example of H2 in the minimal basis, where even qubits correspond to spin-orbitals
with spin up and odd qubits to spin-orbitals with spin down, where the generators of the Boolean symmetry
group Z3

2 are P↑, P↓ and C(y).
The requirement that for the ground state there is an odd number of electrons with spin up

(corresponding to the−1 eigenspace of the P↑ symmetry) can be expressed in terms of the four spin orbital
occupancies p0,p1,p2,p3 as:

p0 ⊕ p2 = 1 (6)

(in the formalism of equation (5), the generator g0 = P↑ is antysimmetric with the set of spin-orbitals/JW
qubitsA0 = {p0,p2}, and the target eigensector is the one for which c0 = 1) Similarly, the requirement that
there is an odd number of electrons with spin down (corresponding to the−1 eigenspace of the P↓
symmetry) can be expressed as:

p1 ⊕ p3 = 1. (7)

Finally, the requirement that the ground state function is symmetric with respect to a rotation along the
y-axis, where the z-axis lies along the bond (corresponding to the+1 eigenspace of the C(y) symmetry),
means that the number of occupied spin-orbitals that are antisymmetric with respect to it is even:

p2 ⊕ p3 = 0. (8)

The three symmetry constraints together take the number of degrees of freedom of the occupancies of the
spin-orbitals from four to one. We can set q ∈ {0,1}, and then we have:

p0 = q⊕ 1

p1 = q⊕ 1

p2 = q

p3 = q.

(9)
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For q= 0 we obtain the JW state |0011⟩, and for q= 1 the state |1100⟩. The first state is the Hartree–Fock
(HF) state, and the second one is the doubly excited state with two electrons: these two states correspond to
the only Slater determinants to appear in the full configuration interaction ground state for the hydrogen
atom in the minimal basis. In fact, the symmetry-adapted encoding for the ground state eigensector of H2 in
the minimal basis leads to exactly this parameterization.

A symmetry-adapted encoding for the hydrogen atom in the minimal basis can then be constructed as a
mapping from the 4-qubit JW computational basis states to 1-qubit computational basis states, where the
two states in the target eigensector are mapped as:

|0011⟩ → |0⟩
|1100⟩ → |1⟩.

(10)

And the component of states that lies outside of the target eigensector is projected out:

|0110⟩ → 0. (11)

This mapping reduces the dimensionality of Hilbert space from a four-qubit space to the space of a single
qubit.

In general, by enforcing k independent Boolean symmetry conditions (corresponding to k independent
Boolean symmetry generators) the symmetry-adapted encoding reduces the Hilbert space by k qubits.

6. The Clifford map for the symmetry-adapted encoding

The Clifford group is the group of unitary operators that map Pauli operators to Pauli operators by
conjugation: that is, C is an element of the Clifford group if and only if C is an operator such for any element
P of the Pauli group, P ′ = CPC† is also an element of the Pauli group.

The Clifford group is important for classical simulation of quantum computers and quantum error
correction [1, 31, 32], as well as in quantum randomized benchmarking [33] and quantum tomography.
Their investigation has recently led to an unexpected proof of quantum advantage [34].

In order to completely characterise (up to a unimportant overall phase) the Clifford operator C, it is
enough to consider its action on the one-qubit Z and X operators (the action on one-qubit Y operators
follows from Y=−iZX and preservation of multiplication, and similarly the action on Pauli operators acting
on more than one qubit follows from the action on one-qubit Pauli operators). This is referred to as writing
down the Clifford tableau for C [32].

An example of a Clifford tableau is given by:

Z0 →−Z3Z2Z0 X0 → X0

Z1 →−Z3Z1 X1 → X1

Z2 → Z3Z2 X2 → X2X0

Z3 → Z3 X3 → X3X2X1.

(12)

We are able to read off the action of a Clifford operator on any Pauli operator from its tableau. For
example, we can see that the Clifford operator given maps Y0 →−Z3Z2Y0 and Z1Z0 → Z2Z1Z0.

More formally, the tableau of the Clifford operator C corresponds to a 2n× 2n binary matrixM (where
the first n columns correspond to the images under the action of the Clifford operator on Z0,Z1, . . . ,Zn and
the last n columns correspond to the action on X0,X1, . . . ,Xn), together with a 2 n dimensional binary vector
s (where each entry corresponds to the sign of the corresponding column in the matrix: the image of each
one-qubit Pauli picks up a factor of−1 if the corresponding entry of s equals 1, and it does not if it equals 0).
The Clifford tableau for the example given is shown in figure 6.

In order to find the form of operators such as the qubit Hamiltonian in the symmetry-adapted encodings,
we first perform a transformation from the JW states to an encoding where k of the n qubits correspond each

8
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Figure 6. The Clifford tableau for the example given by equation (12), where red squares correspond to a matrix element equal to
1 and white squares to 0, and the columns (rows) of the matrixM correspond to the Pauli operators Z0, Z1, Z2, Z3, X0, X1, X2, X3

from left to right (from top to bottom). The corresponding Clifford operator followed by a projection maps qubit operators in the
Jordan–Wigner encoding to the corresponding symmetry-adapted encoding qubit operators, for the example of the ground state
eigensector of H2 on a minimal basis.

to the parity of the set of qubits that are antisymmetric with respect to one of the k generators), and the
remaining n− k non-redundant qubits are left unchanged. For the example from the previous section we let:

q0 = p0 ⊕ p2 ⊕ 1

q1 = p1 ⊕ p3 ⊕ 1

q2 = p2 ⊕ p3

q3 = p3

(13)

where the first three qubits (q0, q1, q2) specify the symmetry eigensector (symmetry qubits), whilst the last
one (q3) is left unchanged (nonredundant qubits). In particular, all states in the ground state eigensector
have q0, q1 and q2 each in state |0⟩ (corresponding respectively to eigenstates−1,−1 and+1 for P↑, P↓ and
C(y)). Furthermore, we are able to recover the occupancy of all spin-orbitals in a given symmetry sector from
knowledge of the state of the nonredundant qubits (q3 in the example) only (as shown in equation (9)).

In what follows we consider the space Zn
2 of 2

n bitstrings of length n (which correspond to the
computational basis states for the projective Hilbert space of n qubits CP2n−1). Formally, the map from
|p3p2p1p0⟩ to |q3q2q1q0⟩ can be written as the action of an affine transformation C under the operation⊕ of
bitwise addition modulo 2 (XOR) on the space of bitstrings Zn

2 of the form:

|a⟩ C−→ |c⟩= |Ta⊕ b⟩ (14)

where the binary matrix T and the bitstring b for the example given can be read from equation (13) and are
shown explicitly below (here red squares correspond to a matrix element equal to 1 and white squares to 0):

The matrix T acts as a permutation of computational basis states linearly on the space of bitstrings Zn
2 (a

stronger requirement than the usual sense of linearity on the Hilbert space of qubits CP2n−1). The vector |b⟩
acts to flip those qubits that correspond to a constraint with ci = 1.

For example, one can check that the map in equations (13) and (15) maps the state |0011⟩ to |0000⟩ and
the state |1100⟩ to |1000⟩.

The affine map on bitstrings C naturally induces a linear operator Ĉ on the whole Hilbert space of qubits
CP2n−1 whose action on any element of the Hilbert space follows from the action on the computational basis
states and from the linearity requirement. For example, the state 0.99361|0011⟩− 0.11283|1100⟩ is mapped
to the state 0.99361|0000⟩− 0.11283|1000⟩ (where the rightmost three qubits correspond to information
about which irreducible representation of the Boolean symmetry group the states lie in: if we then project
these out we obtain a one-qubit state 0.99361|0⟩− 0.11283|1⟩).

9
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Figure 7. The Clifford tableau for the Bravyi–Kitaev encoding on four qubits. The corresponding Clifford operator maps qubit
operators in the Jordan–Wigner basis to the corresponding qubit operators in the Bravyi–Kitaev basis.

A proof of the following result is provided in the supplemental material:

The Clifford tableau (M, s) for an encoding C such that computational basis states in the JW
encoding are mapped by an affine transformation on bitstrings:

|a⟩ C−→ |c⟩= |Ta⊕ b⟩

where a,b and c are bitstrings and T is a linear operator on the space of bitstrings Zn
2 has the form:

M=

(
MZZ MZX

MXZ MXX

)
.

WithMZX =MXZ = 0,MZZ = (T−1)T andMXX = T, and with s=

(
b
0

)
.

This allows us to find the Clifford tableau, and consequently the form of qubit operators given their JW
form, for any given such encoding. In particular, the tableau shown in figure 6 corresponds to our example of
symmetry-adapted encoding for H2 in a minimal basis.

The encoding thus obtained maps the k generators of the Boolean symmetry operators to one-qubit Pauli
Z operators with a phase of+1 or−1 that depends on whether the target eigenspace for that operator is the
+1 or−1 eigenspace, each acting on a different symmetry qubit. In our example we have:

P↑ → Z2Z0 → −Z0

P↓ → Z3Z1 → −Z1

C(y)→ Z3Z2 → Z2

. (16)

The result stated above also immediately yields the Clifford tableaux for the Bravyi–Kitaev encoding
(shown in figure 7), which allow an alternative derivation of the form of qubit operators in those encodings
to the one given in the literature [20, 21, 35].

7. Operators in the symmetry-adapted encoding

A 2n-dimensional linear operator M̂ can be written with respect to a Boolean operator B̂ (an operator which
has half of its eigenvalues equal to+1 and the other half equal to−1) of the same dimensionality in terms of
a commuting part and an anticommuting part:

M̂= M̂C + M̂A (17)

where B̂ and M̂C commute (B̂M̂C = M̂CB̂), and B̂ and M̂A anticommute (B̂M̂A =−M̂AB̂).
One can pick a basis where B̂ is a one-qubit Z Pauli operator. Any 2n-dimensional linear operator M̂ can

be written as a linear combination of Pauli operators in that basis, its Pauli expansion. Each Pauli operator in
turn either commutes or anticommutes with B̂. The sum of the Pauli terms that commute with B̂ give the
commuting part M̂C, and the sum of the Pauli terms that anticommute with B̂ give the anticommuting part

10
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Â. If M̂ itself commutes with B̂ (such is the case if M̂ is the Hamiltonian, B̂ one of its Boolean symmetries) we
have M̂= M̂C and M̂A = 0.

For a general operator M̂ that does not commute with each of the Boolean symmetries, the map from
operators in the JW basis to the symmetry-adapted encoding discards the anticommuting part for each of the
Boolean symmetries, and preserves only the part that commutes with all of them. Operationally, in the basis
given by the Clifford map, where Boolean symmetries correspond to one-qubit Pauli Z operators on the
symmetry qubits, this is achieved simply by discarding a term from the Pauli sum for the operator if it
contains a X or a Y operator on any of the symmetry qubits, and keeping it if it contains only either Z
operators or identity on all of the symmetry qubits. The Pauli operators that act on the symmetry qubits are
then simply removed (the remaining nonredundant qubits are then relabelled accordingly): on each of the
terms that commute with the symmetries these will only either be Pauli Z operators or identity operators;
Pauli Z operators act as the identity on |0⟩ qubits; and the target eigenspace after action of the Clifford map is
exactly (by construction) that of states with their symmetry qubits each in state |0⟩.

If, after action of the Clifford map (and before the projection), the order of the qubits is swapped so that
the symmetry qubits correspond to the leftmost (highest) qubits, the matrix form in the computational basis
of an operator that commutes with the Boolean symmetries (such as the molecular Hamiltonian) is explicitly
block-diagonal, and the target eigensector corresponds to the top-left block.

In short, the symmetry-adapted encoding restricts states and operators to a given common eigenspace of
the Boolean symmetries of the Hamiltonian: it corresponds to the action of a Clifford transformation C on
states in the JW representation, followed by an orthogonal projection P̂. The k symmetry qubits are qubits
that are made rendundant by k linearly independent Boolean symmetry constraints. The Clifford
transformation C acts as a permutation of computational basis states such that those states in the common
eigenspace of the Boolean symmetries are mapped to the states that have each of their symmetry qubits equal
to |0⟩. Conjugation by the orthogonal projection operator P̂ is equivalent to keeping only the component of
states that lies in the target eigenspace, and discarding the component orthogonal to it.

Qubit states are mapped from their JW n qubit encoding to the n− k qubit symmetry-adapted encoding
as:

|ψ ⟩ → P̂Ĉ|ψ ⟩. (18)

And operators are mapped from their JW n qubit encoding to the n− k qubit symmetry-adapted
encoding as:

Ĥ→ P̂ĈĤĈTP̂T (19)

where, for both states and operators, only the component in the common eigenspace of interest is kept by the
projection P̂.

In particular, single excitation operators â†i âj (double excitation operators â†i â
†
j âkâl) either commute or

anticommute with each of the Boolean molecular symmetries. This can be seen as follows: the single (double)
excitation operators act on Slater determinants by flipping the occupancies of the ith and jth (the ith, jth, kth
and lth) spin-orbitals, up to multiplication by a factor of 0, 1 or−1; a Boolean molecular symmetry operator
acts as the identity on those Slater determinants for which the number of occupied spin-orbitals that are
antisymmetric with respect to it is even, and as multiplication by a phase of−1 on Slater determinants for
which it is odd; hence, if the number of orbitals that are antisymmetric with respect to the symmetry in the
set {i, j} (in the set {i, j,k, l} is even then the two operators commute; if it is odd they anticommute.

The symmetry-adapted encoding maps those nonzero operators that anticommute with at least one of
the Boolean molecular symmetries to the zero operator. These are the operators that map all states in the
target symmetry sector to either zero or states that lie outside it. In the example of H2O in the minimal basis
given in figure 8, the single excitation â†1b2↑â3a1↑ anticommutes with the symmetry σ(yz): it maps states in the
target symmetry sector, the states in the totally symmetric point-group representation A1, to either zero or
states in the B2 representation; on the other hand, the single excitation â†2a1↑â3a1↑ commutes with all Boolean
molecular symmetries: it preserves the point-group symmetry by mapping states in A1 to either zero or states
in A1. While both fermionic operators correspond to nonzero qubit operators in the JW encoding, the
former is mapped to the zero operator in a symmetry-adapted encoding, and the latter is mapped to a
nonzero operator.

A symmetry-adapted encoding E does not preserve the multiplication properties of general operators, so
that, for instance, E(â†i )E(âj) ̸= E(â†i âj). However, E does preserve multiplication between those operators
that commute with all the Boolean molecular symmetries, and therefore it also preserves exponentiation of

those operators, so that if the operator â†i âj commutes with the symmetries we have E(eiθ(â
†
i âj+â†j âi)) =

11
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Figure 8. Commutative diagrams for a symmetry-adapted encoding of the water molecule (H2O) in the minimal basis (C2v

Boolean point group) for fermionic operators â†1b2↑â3a1↑ (a) and â†2a1↑â3a1↑ (b). The Clifford operator Ĉ acts by mapping each

one-qubit Pauli operator in the Jordan–Wigner encoding to a Pauli term according to its tableau, so that the state of each
symmetry qubit (here the 0th, 1st, 4th and 8th qubits) corresponds to whether a Slater determinant is symmetric or
antisymmetric with respect to a symmetry operator (respectively P↑, P↓, σ(yz) and σ(xz)); the projection P̂ acts by discarding the
Pauli terms that anticommute with one of the symmetries (those acting as X or Y operators on any of the symmetry qubits, red),
and by keeping only the ones commuting with all symmetries (acting as Z operators or the identity on the symmetry qubits,
green), and then removing the symmetry qubits and relabelling the remaining qubits (the nonredunant qubits). In the case of a
fermionic excitation operator either all Pauli terms commute with all the Boolean molecular symmetries or they all anticommute
with at least one of them.

eiθE(â
†
i âj+â†j âi). This observation allows a straightforward application of symmetry-adapted encodings to

variational ansätze where the circuit is composed of unitary gates that each correspond to an exponential of

excitation operators such as eiθ(â
†
i âj+â†j âi), which we discuss in the following sections of this article.

8. The QuantumSymmetry package

We present an implementation of our algorithm to reduce the number of qubits by point group symmetries
for arbitrary molecules as QuantumSymmetry, an open-source Python package, whose source code is hosted
online as GitHub and Zenodo repositories [36]. Users can install QuantumSymmetry by running the following
command from terminal:

pip install quantumsymmetry

QuantumSymmetry employs open-source quantum chemistry package PySCF [37, 38] to perform HF
calculations, for the calculation of one- and two-electron integrals and the construction of
symmetry-adapted molecular orbitals. It automatically retrieves from PySCF the largest Boolean symmetry
group for the input molecular geometry, as well as the irreducible representation of its HF ground state. It is
compatible with both quantum computing toolsets OpenFermion and Qiskit. QuantumSymmetry takes arbitrary
user input such as the molecular geometry and the atomic basis set and outputs the qubit operators that
correspond in the appropriate symmetry-adapted encoding to fermionic operators on the molecular system,
namely the second-quantized electronic structure Hamiltonian. For instance, the following minimal code
returns the symmetry-adapted encoding Hamiltonian for the ground state of the ethene molecule (C2H4) in
the minimal basis (STO-3G) as an OpenFermion [39] qubit operator object:
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import quantumsymmetry
quantumsymmetry.reduced_hamiltonian(
atom = 'C 0 0 0.6695; C 0 0 -0.6695; H 0
↪→ 0.9289 1.2321; H 0 -0.9289 1.2321; H 0
↪→ 0.9289 -1.2321; H 0 -0.9289 -1.2321',
basis = 'sto-3g',
verbose = False,
output_format = 'openfermion'
)

The user can set the optional argument output_format = 'qiskit' to obtain the symmetry-adapted
Hamiltonian as a Qiskit [40] Pauli sum operator object instead.

The user can set the optional argument irrep to manually specify the target irreducible representation
(and hence the target eigensector): if no such argument is given, QuantumSymmetry defaults to the irreducible
representation of the HF ground state.

The interested reader can find a user guide to OpenFermion and example code and visualizations (at
https://colab.research.google.com/drive/17grKKkyGxCfo0QXCDeDz6rrfkOi-bf1J), which we invite them to
experiment with. The examples given in the Supplementary Information are covered.

QuantumSymmetry also allows the user to create an encoding object that stores information about the
symmetry-adapted encoding for the molecule of interest; the encoding object can then be used to encode
operators other than the Hamiltonian in the corresponding symmetry-adapted encoding. An example of
minimal code is given below:

importquantumsymmetry
fromopenfermionimport FermionOperator

encoding = quantumsymmetry.make_encoding(
atom = 'H 0 0 0; H 0.7414 0 0',
basis = 'sto-3g')

operator = FermionOperator('0̂ 1̂ 3 2') +
↪→ FermionOperator('2̂ 3̂ 1 0')

reduced_operator =
↪→ quantumsymmetry.apply_encoding(operator,
↪→ encoding)

This can be used to run VQE simulations with a symmetry-adapted encoding, and this is shown in
further code examples in the user guide.

9. Numerical results

In order to assess the performance of the symmetry-adapted encoding (SAE) against that of the JW
encoding, we have run numerical simulations for several molecular systems employing QuantumSymmetry in
conjunction with Qiskit. We have assessed the performance of both SAE and JW when running: (a) VQE with
a Unitary Coupled Clusters with Singles and Doubles ansatz (UCCSD); and (b) An Adaptive Derivative
Assembled Pseudo-Trotter Variational Quantum Eigensolver (ADAPT-VQE).

We have done so by considering a number of molecular systems, namely:

(1) The trihydrogen cation (H3
+) in a STO-3G basis with bond length of 0.8705 Å (UCCSD and

ADAPT-VQE);
(2) The hydrogen molecule (H2) in the double-zeta basis with bond length of 0.7414 Å (UCCSD and

ADAPT-VQE);
(3) The lithium hydride molecule (LiH) in a STO-3G basis with bond length of 1.5949 Å (UCCSD and

ADAPT-VQE);
(4) The beryllium hydiride molecule (BeH2) in a STO-3G basis with bond length of 1.3260 Å (UCCSD);
(5) The water molecule (H2O) in a STO-3G basis with bond length of 0.9551 Å and bond angle of 104.694◦

(UCCSD).
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The number of qubits required for their simulation was respectively 6, 8, 12, 14 and 14 in the JW
encoding; in the corresponding symmetry-adapted encoding this was reduced to 3, 5, 8, 9 and 10 qubits. The
number of variational parameters in the UCCSD ansatz was respectively 8, 15, 92, 204 and 140 in the JW
encoding when the spin symmetries were already accounted for; in the corresponding symmetry-adapted
encoding this was reduced by virtue of the Boolean point-group symmetries to 4, 7, 34, 38 and 48 parameters
(a reduction in the dimensionality of the parameter space by as much as 80% in the case of BeH2).

A summary of our numerical results is shown in figure 9.
The unitary coupled clusters (UCC) ansatz [41] was one of earliest circuit proposals to appear in the VQE

literature. Inspired by a standard method in computational quantum chemistry, the coupled clusters
technique, UCC furnishes a parameterised circuit composed of a series of exponential qubit gates that
correspond to fermionic excitation operators. In its most common form, UCCSD, these operators
correspond to single (S) and double (D) excitations only, and the circuit is initialised in the state that
corresponds to the HF wave function. This results in an ansatz that is able to capture corrections of the HF
ansatz by exploring only a significantly smaller subspace of the total qubit Hilbert space, while at the same
time enforcing some symmetry constraints such as conservation of electron number. However, because
UCCSD only takes into account single and double excitations, it is unable to take into account higher-order
corrections, something that can be improved by adding higher-order excitations. We note that many later
ansatz proposals in the VQE literature can be understood as modifications of the original UCC, notably the
adaptive derivative assembled pseudo-trotter variational quantum eigensolver (ADAPT-VQE) [42] and more
recent proposed variations of it [43]. Unlike the fixed circuit of UCC, where optimisation happens only at the
level of circuit parameters, ADAPT-VQE iteratively constructs its circuit step by step, gradually adding new
gates to it that are chosen from a pre-selected pool of fermionic excitations. This requires estimating a
different expectation value for each operator in the pool at each iteration, in order to each time select the
operator that will result in the lowest energy.

Based on the results of our numerical simulations we have found that, besides the obvious advantage in
terms of the reduction in qubit count, there are further significant advantages in the performance of the SAE
over that of JW: the number of cost function evaluations to convergence to the same accuracy was
consistently found to be significantly lower for SAE over JW in both UCCSD and ADAPT-VQE; measures of
circuit complexity such as circuit depth (defined as the number of gates in the longest path in the circuit) and
CNOT gate count (the total number of CNOT gates in the circuit) were also consistently found to be
significantly lower in SAE than in JW in both UCCSD and ADAPT-VQE.

As expected, we found that within the same encoding ADAPT-VQE performs worse than UCCSD in
terms of cost function evaluations, but better in terms of circuit complexity. However, in contrast to earlier
claims [42], we found that ADAPT-VQE does not perform significantly better than UCCSD in terms of the
accuracy of the computed ground state energy in the example systems. We have also found that in all
examples under consideration SAE UCCSD performs better than JW ADAPT-VQE also in terms of circuit
complexity (and in some cases also better than SAE ADAPT-VQE).

In all our numerical results we have employed the Sequential Least SQuares Programming optimizer
(SLSQP) as the classical optimisation routine, which we have found to perform better than alternatives.
Although the goal of the numerical results was not a comparison between the performance of UCCSD and
ADAPT-VQE, but between SAE and JW, in order to take into account the full computational cost of
ADAPT-VQE the number of cost function evaluations for ADAPT-VQE includes the energy evaluations for
each operator in the pool. The measures of circuit complexity were evaluated by a circuit decomposition into
Hadamard, S-gates, RZ-gates and CNOT gates without any form of circuit optimisation (consistently for all
the numerical experiments).

The observed faster convergence in terms of energy function evaluations was not due to the reduced qubit
count itself (as the variational procedure is hardware-agnostic), but to the number of variational parameters
in UCCSD, and similarly to the reduced pool size in ADAPT-VQE. As mentioned previously, the SAE maps
certain nonzero excitation operators to the zero operator, namely those that do not respect (anticommute
with) at least one of the Boolean symmetries. These excitations correspond to redundant parameters that, if
included, are left constant during the variational optimization procedure. Discarding them results in both
faster convergence and a shallower circuit. We note that the same improvement in performance in terms of
number of parameters and operator pool size could be obtained in JW or other encoding by only including
excitations that preserve point-group symmetries. However, SAE have the further advantage of
implementing this symmetry constraint automatically, without any further computation needed.

The reduced circuit complexity observed for SAE over JW can be attributed to a combination of both the
reduction in the UCCSD variational parameters and ADAPT-VQE operator pool size and the reduction in
qubit count.
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Figure 9. Numerical results for the hydrogen molecule (H2), the trihydrogen cation (H3
+), the lithium hydride molecule (LiH),

the beryllium hydiride molecule (LiH) and the water molecule (H2O) for SAE and JW encoding for UCCSD and ADAPT-VQE
(see legend). The curves show the number of cost function evaluations, measured in number of energy expectation values that are
calculated as part of the iterative algorithm (for ADAPT-VQE this includes all evaluations for different operators in the pool). The
curves are (in order of faster convergence) SAE UCCSD, JW UCCSD, SAE ADAPT-VQE and JW ADAPT-VQE. The bar chart is in
the order (from left to right) JW UCCSD, JW ADAPT-VQE, SAE UCCSD and SAE ADAPT-VQE. The graphs for BeH2 and H2O
only show data for UCCSD.
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Figure 10. Potential energy curves obtained from numerical simulations of the VQE with a UCCSD ansatz under a
symmetry-adapted encoding for both the ground state and the first excited state of the hydrogen molecule (H2) in the double-zeta
basis.

Furthermore, the symmetry-adapted encodings can be used to extend the application of NISQ-friendly
variational algorithms to the problem of finding energies beyond the ground state’s: notably, the first excited
state of a molecular system often lies in a different point-group irreducible representation than its ground
state. Figure 10 shows the potential energy curves that we have obtained through numerical simulations of
the VQE with a UCCSD ansatz for both the ground state 1Σ+

g (which lies in the totally symmetric A1

representation of the C2v point group) and the triplet first excited state 3Σ+
u (which instead lies in its B1

representation) of the hydrogen molecule (H2) in the double-zeta basis (corresponding to five-qubit systems
under the symmetry-adapted encodings). The iterative procedure started from reference states
corresponding respectively to the Slater determinants 1a1↑1a1↓ (the HF state) and 1a1↑1b1↓. All energies we
have obtained have an error from their exact values in the order of 10−6 Ha or lower. The number of cost
function evaluations required for each simulation was in the range 52− 90 for both 1Σ+

g and 3Σ+
u .

10. Conclusions

In this paper we have shown how symmetry-adapted encodings allow one to reduce the number of qubits in
the JW Hamiltonian by k qubits (where the number of reduced qubits k ranges from 2 to 5 depending on the
symmetry of the system).

Unlike earlier work in the literature [19, 22], they do so at minimal computational cost: finding the
correct encoding only requires knowledge of the character table of the Boolean point group, a subgroup of
the molecular point group, and knowledge of the representations in which the molecular orbitals lie; the
encoding acts simply as a relabelling of the Pauli terms of the JW Hamiltonian (followed by a simplification
of like terms). The eigenvalues of the symmetry-adapted encoding are exactly the same as the eigenvalues of
the JW Hamiltonian in the symmetry target eigensector, with no approximation.

In this encoding computational basis states are in one-to-one correspondence to Slater determinants.
Information about the occupancy of spin-orbitals can be immediately read off from the qubit states,
according to rules that are immediately derived from knowledge of the character table and of the orbital’s
irreducible representations. The encoding can be explicitly seen as a block-diagonalization of the
Hamiltonian into symmetry eigensectors, followed by a projection onto the target eigensector.

By making use of molecular orbitals, instead of atomic orbitals, we do not run the risk of finding
artificially low energies due use of a non-orthogonal orbital set, as is the case for the previous attempt to use
point group symmetry to reduce the size of molecular electronic structure calculations [22].

The reduction in qubit count is an obvious advantage of the method we presented that is particularly
relevant in the context of near-term (NISQ) quantum computing. Although the reduction in qubit count
due to the exact Boolean symmetries we have investigated is at most by five qubits and does not scale with the
size of the molecule, the method can be extended to further symmetries such as approximate Boolean
symmetries, which will be the subject of further work. Furthermore, recent work in the literature has shown
that larger molecules can be studied with a mixture of classical and quantum resources through
projection-based embeddings [44]: a symmetry-adapted encoding can straightforwardly be applied in
conjunction with such methods to allow a further reduction in the quantum resources necessary for the
simulation of larger molecules.

The Hilbert space on which the second-quantized Hamiltonian acts contains states of all possible
occupancies and numbers of electrons. In certain cases, its lowest eigenvalue will not correspond to a desired
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ground state of the system, but to an unstable system (an example of this is the H3
+ example in the

supplemental material). In order to determine whether a molecular species is stable, by which we mean
energetically favourable, and hence naturally occurring (and not in the chemical sense of being non-reactive)
the energy given by the Hamiltonian does not give enough information, and we need to also consider the
bond dissociation energy. Because of this, it is possible that the lowest eigenvalue of the second-quantized
Hamiltonian belongs to an unstable species with a different occupancy. That the lowest eigenvalue of the
second-quantized Hamiltonian might in some cases not be the same as the ground state of the stable species
is conventionally addressed by an appropriate choice of circuit such as unitary-coupled cluster circuit [41] or
more recently introduced variations [45], or by adding penalty terms in the classical step of hybrid
quantum–classical algorithms [46]. However, as we have just seen, enforcing symmetries with the
symmetry-adapted encoding is able to address this problem on its own, independently of the choice of ansatz.

The symmetry-adapted encodings also allow us to purposely restrict the Hamiltonian to irreducible
representations of the Boolean point group symmetry that are different from the one of the ground state.
This is something that the QuantumSymmetry package provides for, by allowing the user to choose the
irreducible representation of interest (although this defaults to the ground state representation). This allows
use of a variational algorithm to minimize the energy and find, for example, the first excited state, as opposed
to the ground state, as the two lie usually in different point-group representations. We have shown
numerically that, for example, symmetry adapted-encodings can yield through a variational algorithm an
accurate potential energy curve for an excited energy state in the same way as for the ground state.

Importantly, we have shown that the symmetry-adapted encodings map excitation operators that do not
respect the symmetries to the zero operator, and that this allows a significant reduction in the number of
variational parameters, and consequently in the number of iterations to convergence in variational
algorithms. They also result in more shallow and less complex circuits, extending the possibility of executing
variational algorithms on near-term devices hardware even for the currently limited number of available
qubits.

In light of these results, it is our hope that symmetry-adapted encodings will become a useful and
common feature in the quantum computing simulation of quantum chemistry, especially in the context of
variational methods for near-term (NISQ) quantum devices.
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