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Abstract 
 
Background. We aimed to describe the severity of the changes in brain diffusion-based 

connectivity as multiple sclerosis (MS) progresses and the microstructural characteristics of 

these networks that are associated with distinct MS phenotypes.  

Methods. Clinical information and brain magnetic resonance images were collected from 221 

healthy individuals and 823 people with MS at eight MAGNIMS centers. The patients were 

divided into four clinical phenotypes: clinically isolated syndrome, relapsing-remitting, 

secondary-progressive, and primary-progressive. Advanced tractography methods were used 

to obtain connectivity matrices. Then, differences in whole-brain and nodal graph-derived 

measures, and in the fractional anisotropy of connections between groups were analyzed. 

Support vector machine algorithms were used to classify groups. 

Results. Clinically isolated syndrome and relapsing-remitting patients shared similar network 

changes relative to controls. However, most global and local network properties differed in 

secondary progressive patients compared with the other groups, with lower fractional 

anisotropy in most connections. Primary progressive participants had fewer differences in 

global and local graph measures compared to clinically isolated syndrome and relapsing-

remitting patients, and reductions in fractional anisotropy were only evident for a few 

connections. The accuracy of support vector machine to discriminate patients from healthy 

controls based on connection was 81%, and ranged between 64% and 74% in distinguishing 

among the clinical phenotypes. 

Conclusions. In conclusion, brain connectivity is disrupted in MS and has differential patterns 

according to the phenotype. Secondary progressive is associated with more widespread 

changes in connectivity. Additionally, classification tasks can distinguish between MS types, 

with subcortical connections being the most important factor.  



What is already known on this topic 

 
● MS is a neurodegenerative disease characterized by inflammation and demyelination in 

the central nervous system, leading to disrupted neural connections and varying clinical 

phenotypes. 

 

● People with MS present disconnection of brain networks, mainly due to poor integration 

between cortical areas and enhanced segregation of brain regions.  

 

● Diffusion-based MRI techniques and graph theory can be used to study microstructural 

changes and brain network alterations in MS patients across different phenotypes. 

What this study adds 

 
● The study highlights distinct patterns of brain connectivity disruptions associated with 

different MS phenotypes, particularly revealing more widespread changes in 

connectivity for secondary-progressive MS. 

 

● It demonstrates the effectiveness of support vector machine algorithms in classifying 

patients from healthy controls (81% accuracy) and distinguishing among clinical 

phenotypes (64% to 74% accuracy) based on brain connectivity patterns. 

 

● The study emphasizes the importance of subcortical connections as a key factor in 

differentiating MS types, providing valuable insights into the underlying neural 

mechanisms related to MS phenotypes. 

 
How this study might affect research, practice or policy 
 

● This study might affect research, practice, or policy by providing a better understanding 

of the differential patterns of brain connectivity disruptions across MS phenotypes, 

which can guide the development of more accurate diagnostic and prognostic tools, 

leading to improved personalized treatment and management strategies for people with 

multiple sclerosis. 



INTRODUCTION 
 

Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and 

neurodegenerative disorder of the central nervous system, which is characterised by varying 

degrees of physical and cognitive disability 1. The diversity in the progression of the disease 

has been traditionally classified into several phenotypes: patients with a clinically isolated 

syndrome (CIS), commonly progressing to a relapsing-remitting (RRMS) disease course and 

eventually, experiencing a poorly understood sustained deterioration in their disability 

independent of relapses after several years, referred to as secondary progressive MS (SPMS). 

In addition, a smaller percentage of patients develop a progressive course from the very 

beginning, known as primary-progressive MS (PPMS) 2. 

MS is characterised by the presence of focal and diffuse damage within the white and 

grey matter of the brain 3, which accumulates as the disease progresses and disrupts structural 

connections in the brain 4. Diffusion magnetic resonance imaging (MRI) can offer information 

regarding the integrity of white matter (WM) connections, representing the topology and 

hierarchy of structural brain networks 5. The disconnection among MS brain networks is 

characterised by impaired information flow and worse network efficiency, mainly due to poor 

integration between cortical areas and the enhanced segregation of brain regions 6. In particular, 

long-range anatomical tracts are damaged, and at later stages of the disease the disruption of 

the connections between network hubs becomes more prominent 7. The changes in networks 

are quite heterogeneous in MS, depending mainly on the areas damaged and the severity of the 

disruptions 8,9. In fact, compensatory reorganization can to some extent preserve the global 

efficiency of the brain in the early stages of the disease, mainly manifested by functional 

changes 10. By contrast, at more advanced stages of MS structural damage leads to less efficient 

network wiring and when this loss of efficiency reaches a critical threshold, the network 

collapses and clinical progression accelerates 11. 

At present, the extent and characteristics of the modifications in structural connectivity 

in relation to MS phenotypes are not well understood. A previous report found differences in 

global and local network metrics between RRMS and SPMS, that seemed partially independent 

of the disconnection effects of focal lesions 12. Hence, it would appear that those previous 

results of an overall decline in network integrity were caused principally by the effects of lesion 

load on the underlying tissue structure. Preliminary studies that employed machine learning 

(ML) algorithms and binary classifications to discriminate clinical phenotypes based on the 



characteristics of connectivity displayed good accuracy, suggesting that the distinct MS 

phenotypes are associated with different network modifications 13,14, but this awaits 

confirmation in larger samples. 

Here, we set out to comprehensively test the clinical relevance of structural network 

changes in MS by describing the modifications to brain networks and their components 

associated with the different MS phenotypes, and to assess the ability of these modifications to 

classify the changes in connectivity. To this end, we studied a large cohort of people with MS 

(PwMS) recruited through a multicentre collaboration within the MAGNIMS network. 

METHODS 

Participants 

In this retrospective cross-sectional study, we included data from eight centres across 

Europe that were members of the MAGNIMS network (https://www.magnims.eu/): [1] 

ImaginEM group at the Hospital Clinic Barcelona (Spain); [2] The Amsterdam MS Center, 

Amsterdam UMC, location VUmc, Amsterdam (The Netherlands); [3] The Neuroimaging 

Research Unit, San Raffaele Scientific Institute, Milan (Italy); [4] University Medical Center 

of the Johannes Gutenberg University Mainz (Germany); [5] Division of Clinical 

Neuroscience, University of Nottingham, Nottingham (UK); [6] St. Josef Hospital Ruhr 

University, Bochum (Germany); [7] The Cemcat and Section of Neuroradiology, University 

Hospital Vall d’Hebron, Barcelona (Spain); and [8] Institute of Neurology, UCL, London 

(UK). None of the participants had any clinically signs of relapse nor had they received steroid 

treatment in the 30 days prior to the study visit. The MRI scans, obtained from the participants 

during the period from 2011 to 2019, were incorporated into our analysis. After conducting a 

quality-control evaluation, we excluded 27 PwMS due to poor alignment between MRI 

modalities, despite the quality of the data meeting our standards (see Magnetic resonance 

acquisition and processing section). We then proceeded to analyze the clinical and 

demographic information of the final cohort, which consisted of 823 PwMS according to 2010 

McDonald criteria and 221 HCs. Patients with a CIS presented radiological dissemination in 

space, while SPMS participants had a progressive accumulation of neurological disability over 

at least one year after a relapsing remitting phase.  

The ethical review board at the Hospital Clinic in Barcelona approved the study and all 

the participants gave their written consent for their data to be used. Data transfer agreements 



were established with the participating centres in order to allow sharing of pseudonymized 

images and clinical information governed by a central MAGNIMS collaboration framework 

agreement. 

 

Magnetic resonance acquisition and processing 

 MRI scans were collected for each participant site using 3T scanners (different vendors) 

using common MRI acquisition parameters (MRI details for each centre are provided in 

Supplementary Table 1: a) 3D-T1 structural sequences with ≤ 1.5 mm 

isotropic voxel size; and b) whole brain diffusion scans with at least 

30 diffusion encoding directions, ≤ 2.5 mm isotropic voxel size and 

b-value ≥ 900 s/mm². We computed whole brain and local (nodal) 

graph metrics, as well as the fractional anisotropy (FA) levels from 

each connection contributing to the network. 

 

Anatomical and diffusion processing pipelines to build the structural brain 

networks 

Along with the MRI data, all the centres involved in this study provided the 

corresponding white matter lesion segmentation mask for each subject. In PwMS where the 

lesion mask was outlined in T2 space, the center provided the correspondent T2 image, which 

was subsequently registered to the T1w image using a rigid (6 DOF) transformation. These 

masks were used to obtain lesion-filled T1w images in order to guarantee accurate 

segmentation 15. We estimated normalized global brain and lesion volumes using the scaling 

factor from the FSL-SIENAX software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA) and 

harmonized these values through ComBat, including as a covariate MS phenotypes, to ensure 

that the biological variability related to the MS phenotypes is preserved while minimizing the 

unwanted technical variability arising from center effects 16 . The lesion-filled T1w images 

were parcellated into 62 cortical and 14 subcortical grey matter (GM) regions using the 

anatomical Desikan-Killany atlas (as generated with Mindboggle software from T1w images 

processed by ANTs cortical thickness and through the FSL-FIRST pipeline), and these regions 

were considered the nodes of the network 17,18,. 

 To reduce the confounding effects derived from diffusion-weighted images (DWI) 

acquisition, a well-established DWI preprocessing pipeline was followed using the FSL and 



MRtrix packages, as described previously 19. These preprocessing steps involved skull 

stripping, Gibbs ringing correction, MP-PCA denoising, slice-wise outlier detection, eddy 

current and motion correction within DWI volumes (using FSL's eddy tool), rotation of the b-

vectors, geometric distortion corrections depending on each dataset involved (gradient field 

maps, performing a non-linear registration of the b0 image to an undistorted T2 anatomical 

image or using a B0 undistorted synthetic image) 20,21, and field bias correction. After these 

corrections, model fitting was performed on the undistorted DWI to estimate the diffusion 

tensor and then compute the quantitative FA scalar map using FSL’s DTIFIT 22. In addition, 

the undistorted b0 images were used to improve the accuracy of DWI registration to anatomical 

T1w images. 

 Quantitative FA connectivity matrices were obtained by performing constrained-

spherical deconvolution (CSD) and probabilistic advanced diffusion tractography  23. A set of 

6 million streamlines were generated into WM mask to capture the entire WM fibre trajectories, 

including both lesioned and non-lesioned areas, thereby mitigating the influence of reduced FA 

within lesions on structural connectome reconstruction 6. This was achieved through the 

application of anatomically constrained tractography (5-tissue-types) 24, which established the 

assessment of  2850 WM connections based on all pairs of cortical and deep grey matter (dGM) 

regions. Subsequently, anatomical exclusion criteria were applied to reduce the number of 

spurious streamlines from each connection 25. We defined pairs of GM regions as structurally 

connected if the connection was preserved after applying SIFT2 functions 26. The mean FA 

along each reconstructed fibre pathway was computed to establish the whole-brain structural 

connectome between all pairs of GM regions. Finally, the connections that were present in less 

than 60% of the HCs group were removed from the network, ending up with 1818 connections, 

and we then corrected the effects of age and gender using linear regression 27. As the FA-

weighted adjacency matrices could suffer from inter-site variability related to heterogeneity in 

the acquisition protocol, we harmonized the data with the ComBat model using an imputation 

technique for missing values 28. 

 

Network metrics 

Global and local network graph measures were estimated using the Brain Connectivity 

toolbox (https://sites.google.com/site/bctnet/) 29. We investigated local network measures like 

nodal strength (the sum of the edge weights connected to a node), nodal betweenness-centrality 

(the number of the shortest paths that pass through a node), nodal clustering coefficient (the 



fraction of the node’s neighbours that are closed as triangles) and nodal local efficiency (the 

inverse of the shortest path distance between the nodes). In addition, we calculated the average 

of these local topological features for all the nodes involved in each network and the global 

efficiency to measure the global network properties. 

 

Statistical analyses and classification tasks 

A two-sample Student’s t-test was carried out to assess differences in the network 

metrics and FA connectivity matrices between HCs and PwMS, as well as among different MS 

phenotypes. We applied multiple comparison tests with the Benjamini/Yekutieli method to 

control for false positives (p < 0.05) and only variables with an effect size, measured using 

Cohen’s D, greater than 0.6 in absolute value were considered for further statistical analysis.  

We used a support vector machine (SVM) classification algorithm to discern between 

the HCs and MS groups, and to classify the disease phenotypes using binary classification tasks 

once the significant graph-derived measures and the FA-weighted connections had been 

selected from the group differences. For this task, we analysed the Receiver Operating 

Characteristic (ROC), while handling  unbalanced data by sub-sampling the larger group in 

each comparison. Thus, our dataset for classification analysis varied depending on the smaller 

group analyzed at each iteration. In each scenario, we used 75% of the dataset for training and 

25% for validation purposes. Through a 10-fold cross-validation process applied to the entire 

selected dataset, we were able to determine the classification accuracy (F-measure) among MS 

subtypes. These models were also investigated using confusion matrices to assess other 

indicators of the classification’s performance, such as precision, sensitivity and specificity. 

Finally, the 20 most important inter-regional connections were identified in each machine 

learning model proposed. 

RESULTS 
The clinical and demographic information was collected from the 823 PwMS (74 CIS, 

571 RRMS, 121 SPMS and 57 PPMS) and 221 HCs included in the study. As expected, the 

PwMS with progressive forms of the disease were older and had higher scores on the Expanded 

Disability Status Scale (EDSS), as well as a longer disease duration (p < 0.05). Lesion volume 

was larger in SPMS than in the other phenotypes, while normalized brain volume was smaller 

in SPMS and PPMS compared with the CIS and RRMS groups (Table 1).  



Table 1. Characteristics of the sample 
 

 HCs 
(n= 221) 

CIS 
(n= 74) 

RRMS 
(n= 571) 

SPMS 
(n= 121) 

PPMS 
(n= 57) 

p-value 
HCs vs PwMS 

p-value 
MS types 

Age, median in 
years (range)  

41.2  
(30.3-49.7) 

34.1  
(28.9-42.3) 

43 
(35.9-50.6) 

55.2 
(49.5-61.5) 

58.1 
(50.5-65.8) <0.001a <0.001c 

Female, n (%) 132 (60) 48 (65) 403 (71) 72 (60) 26 (46) 0.064b <0.001b 

Disease 
duration 
median in years 
(range)  

– 0.3  
(0.2-0.4) 

9.8 
(5.7-17.4) 

20.1 
(14.0-26.7)  

16 
(8.6-21.2)  – <0.001c 

EDSS median 
(range) – 1.5 (0-5.5) 2.0 (0.0-7.5) 6.0 (1.5-8.0) 6.0 (2.5-8.0) – <0.001c 

Normalized T2 
lesion volume 
(cm3) 

- 2.38 
(0.68-4.93) 

9.69 
(4.35-17.7) 

19.5  
(7.33-34.3) 

13.9  
(4.41-24.1) - <0.001c 

Normalized 
brain volume 
(cm3) 

1504 
(1434-1577) 

1496 
 (1420-1570) 

1464  
(1402-1536) 

1378  
(1335-1420) 

1413 
(1333-1450) <0.001a <0.001c 

The data represent the absolute numbers and the proportions of the qualitative data, or the median and interquartile range (IQR) for the quantitative 
data: HCs, healthy controls; MS, multiple sclerosis; CIS, clinically isolated syndrome; RRMS, relapsing-remitting MS; SPMS, secondary-
progressive; PPMS, primary progressive; EDSS, Expanded disability status scale; PwMS, people with MS; a, Wilcoxon signed-rank test; b, Chi-
squared test; c, Kruskal–Wallis H test. Dunn’s test was used to analyze pairwise comparison between MS phenotypes: age and EDSS score were 
different in all PwMS groups except in the comparison between SPMS and PPMS, while disease duration was different in all groups. Additionally, 
the normalized T2 lesion volume exhibited differences when comparing CIS and RRMS to SPMS, as well as between PPMS and SPMS. 
Furthermore, the normalized brain volume demonstrated disparities between CIS and RRMS compared to SPMS and PPMS, and between PPMS 



and SPMS. All volumetric statistical analyses were performed after adjusting for age and sex, and applying the ComBat harmonization.



Network modifications in PwMS 

When compared with HCs, the global network graph metrics (Table 2) and local 

properties were significantly lower in all the PwMS. Moreover, PwMS presented a reduced FA 

in numerous connections (1686 of 1818 connections, 92.74%), with the strongest differences 

observed for the intrahemispheric and interhemispheric connections between regions 

connected to the cingulate, frontal, occipital and dGM structures, such as the right thalamus 

and right pallidum. 

 

Table 2. Global network measures 

 HCs vs PwMS 
 

p value 

CIS/RRMS  
vs SPMS 
p value 

CIS/RRMS  
vs PPMS 
p value 

SPMS  
vs PPMS 
p value 

Strength <0.001 <0.001 n.s <0.001 

Betweenness 
centrality 0.005 n.s n.s <0.001 

Clustering 
coefficient <0.001 <0.001 n.s <0.001 

Global 
efficiency <0.001 <0.001 n.s <0.001 

HCs, healthy controls; CIS, clinically isolated syndrome; RRMS, relapsing-remitting MS; 

SPMS, secondary-progressive MS; PPMS, primary progressive MS; n.s., not statistically 

significant.  

 

Network changes regarding MS phenotypes 
There were similar disruptions to the global and regional properties of CIS (n=74) and 

RRMS (n=571) networks connections relative to the HCs, affecting 1454 (CIS, 79.98%) and 

1484 (RRMS, 81.63%) of the 1818 connections. As no significant differences were found 

between these phenotypes, we combined them for the analyses (CIS/RRMS). There were 

significant differences in global (Table 2, p values) and local graph network measures between 

SPMS and CIS/RRMS across all 76 brain network nodes, including strength, clustering 

coefficient and local efficiency. There was a lower FA in 1452 (79.87%) of the connections 

associated with the SPMS phenotype, and involving bilateral areas of frontal, parietal, occipital 



and cingulate cortex, while higher FA values were found for 2 connections from the thalamus 

and left caudate relative to CIS/RRMS (Figure 1a). 

In comparison to CIS/RRMS, there were no statistically significant differences 

regarding global (Table 2) and local graph measures in PPMS participants. At the same time, 

the PPMS phenotype was associated with significantly lower FA in 35 connections (1.92%), 

most of these involving the bilateral frontal and right parietal lobes or the insula, whilst there 

was also a higher FA at 10 connections within the dGM or the left lateral and medial 

orbitofrontal cortical regions (Figure 2). When comparing the global network properties of the 

progressive phenotypes, there were significant differences relative to the SPMS phenotype 

(Table 2), with a weaker nodal strength at 55.3% of the nodes, lower local efficiency at 60.5% 

of the nodes and a lower clustering coefficient at 65.8% of the nodes in the SPMS phenotype, 

whereas there were no significant differences in the betweenness centrality measures. 

Moreover, there was a lower FA at 303 (16.70%) connections in the SPMS networks relative 

to the PPMS networks, mainly in the bilateral parietal and occipital cortex or the dGM (Figure 

1b). 

 

Classification task according to MS disease and phenotype 

The significant differences in the global and regional network characteristics between 

the phenotypes were used to distinguish PwMS from HCs, and to classify the disease courses. 

The accuracy of the models to discriminate PwMS from HCs based on FA connectivity 

matrices (81%) and on local properties (77%) was better than that of the model based on global 

network graphs (65%: Table 3). The most informative connections to distinguish between 

PwMS and HCs included dGM structures, such as in the bilateral thalamus, hippocampus, 

putamen and caudate, or the right pallidum, and cingulate regions. 

The average accuracy in classifying the MS phenotypes was calculated based on the 

fraction of significant differences in the connections between CIS/RRMS and SPMS (71%), 

CIS/RRMS and PPMS (66%), and SPMS and PPMS (74%: Figure 3 and Table 3). As expected, 

the largest group CIS/RRMS was easier to identify correctly, while the other MS phenotypes 

were generally more difficult to discriminate with the classification models (see confusion 

matrix in Figure 3a and 3b). The most important connections in the classification models could 

be identified (Figure 4), and, the right thalamus, bilateral pallidum and left putamen being 

particularly important regions to differentiate CIS/RRMS from SPMS. The enhanced FA of the 

thalamic connections were those with the strongest weights. By contrast, areas of the frontal 



cortex enabled CIS/RRMS to be differentiated from PPMS, such as the left rostral and right 

caudal middle frontal cortex. Finally, both the left post-central and parietal cortex 

(supramarginal and superior parietal) were the regions with the strongest weights to distinguish 

SPMS from PPMS. Nonetheless, the global and local graph-derived networks performed less 

accurately than using the FA-weighted connections itself when discriminating the MS subtypes 

(Table 3). 

 

Table 3. Classification measures from super vector machine algorithms to discriminate 

groups of participants 

  HCs vs 
PwMS 

CIS/RRMS 
vs SPMS 

CIS/RRMS 
vs PPMS 

SPMS vs 
PPMS 

Global graph 
metrics 

Accuracy 65 ± 4% 65 ± 7% n.a. 55 ± 8% 

Precision 60 ± 6% 60 ± 11% n.a. 57 ± 11% 

Recall 71 ± 2% 71 ± 3% n.a. 54 ± 6% 

Local graph 
metrics 

Accuracy 77 ± 3% 60 ± 5% n.a. 56 ± 8% 

Precision 77 ± 4% 59 ± 4% n.a. 54 ± 8% 

Recall 77 ± 3% 62 ± 8% n.a. 59 ± 8% 

FA of 
connections  

Accuracy 81 ± 4% 71 ± 7% 66 ± 4% 74 ± 5% 

Precision 81 ± 4% 66 ± 10% 63 ± 5% 66 ± 8% 

Recall 80 ± 4% 77 ± 6% 71 ± 8% 85 ± 4% 

Classification algorithms could not be applied (n.a.) to metrics that did not show significant 

differences in the group analyses: HCs, healthy controls; CIS, clinically isolated syndrome; 

RRMS, relapsing-remitting MS; SPMS, secondary-progressive MS; PPMS, primary 

progressive MS; ± SD, standard deviation.  

  



DISCUSSION 
In this study, we aimed to assess the clinical relevance of structural network measures 

in MS. We identified modifications to several components of brain networks that appear to be 

specific to different MS phenotypes. In PwMS, both the local and global graph properties of 

the networks and WM connections were altered, which in turn affects global network integrity. 

The network modifications associated with the CIS/RRMS and PPMS phenotypes are more 

similar, while SPMS showed stronger abnormalities relative to the other phenotypes. 

Classification algorithms were able to discriminate the MS phenotypes, with the best accuracy 

obtained when models use information from FA-weighted connections, especially those 

regarding thalamic connections, as opposed to those relying on graph metrics. 

To address the current lack of knowledge on the value of structural network measures 

in MS, this multicentre study of advanced MRI data from a large cohort of subjects was 

designed to assess the diffusion-based structural connectivity characteristics of specific MS 

phenotypes. In the early stage of the disease, PwMS already express broad modifications to 

nodal and WM connectivity, triggering global network impairment. In later secondary 

progressive stages, the network modifications are more extensive, with widespread changes in 

connectivity associated with the SPMS phenotype 30. Indeed, nearly 80% of connections in the 

SPMS group had a lower FA than in CIS/RRMS, mainly involving bilateral areas of the frontal, 

parietal and temporal cortex. These results reflect the severe diffuse WM damage at advanced 

stages of the disease, with higher lesion load, where more normal-appearing white matter 

damage and more cortical atrophy are usually evident, leading to a more prominent 

disconnection syndrome 31,32. By contrast, the PPMS phenotype differed less from CIS/RRMS, 

with alterations limited to bilateral frontal and right parietal connections, and with less 

extensive network changes than in SPMS, as suggested previously 33. These findings are 

concordant with what is commonly observed in PPMS, and with the present results, where the 

burden of brain lesions is lower and atrophy predominates (Table 1) 34. All in all, these results 

support the idea that MS phenotypes reflect a continuum of pathological mechanisms 

underlying the disease course, suggesting that the observed microstructural differences across 

subtypes represent varying degrees of damage and inflammation along the progression of a 

single disease process rather than discrete, separable phenotypes. 

One interesting finding was that the FA of some connections from the thalamus and 

other dGM structures was higher in SPMS and PPMS than in CIS/RRMS, although the FA 

values did not reach the values of the HCs. Indeed, atrophy of the thalamus is an early finding 



in MS 35, although silent neurodegeneration at a microstructural level in subcortical projection 

systems occurs in even earlier stages of the disease 36. In progressive forms of MS, changes in 

neuronal micro-organization occur in conjunction with severe atrophy. Therefore, the 

significant increase in FA at later phases might be related to tighter packing of WM fibres, 

which leads to an increase in myelin density and reduce fibre dispersion 37. 

We analysed the value of features of structural connectivity to differentiate PwMS from 

healthy individuals and to discern between clinical phenotypes. The resulting ML models 

demonstrated an accuracy of up to 81% in distinguishing between PwMS and HCs, also 

identifying the most relevant structural changes in connections from the cingulate cortex and 

dGM structures like the thalamus and pallidum, areas known for their strong clinical 

correlations with disability and cognition 4,38. The capacity to classify MS phenotypes based 

on FA-weighted measures was reflected by accuracy values between 66 and 74%, with the 

greatest accuracy observed in ML models to discern the SPMS phenotype from the others. 

Nevertheless, the superior discriminative ability of FA-weighted connectivity matrices 

compared to graph network measures implies that converting the former to the latter may result 

in the loss of important information. In addition, the most relevant structural connectivity 

patterns to classify MS subtypes differed depending on the phenotypes compared. Thus, dGM 

regions were the most relevant to differentiate CIS/RRMS from SPMS, especially these 

connections involving the thalamus and pallidum. Connections from the parietal cortex 

(bilateral post-central and superior parietal) and thalamus were the most relevant to 

differentiate SPMS from PPMS, while tracts involving the frontal cortex (pars opercularis, 

caudal and rostral middle frontal) were crucial in distinguishing CIS/RRMS from PPMS. Our 

findings support previous studies on smaller cohorts that reported good discrimination of 

clinical MS phenotypes using ML-based classification methods and deep learning architectures 
13,14,39, providing evidence of the distinct patterns of WM connectivity in MS. 

There are some limitations to this study that should be noted. The dataset was collected 

at eight MAGNIMS sites that had some heterogeneity in the acquisition protocols, the number 

of participants and the representation of phenotypes. Thus, we applied the ComBat approach 

to diminish the individual site effects while preserving the inter-individual FA variability 16. 

The low number of PPMS patients included, which is concordant with the frequency of this 

phenotype in the disease could have limited the power to detect subtle differences. Quantitative 

FA metrics may be influenced by the spatial configuration of the tissue, such as the crossing 

fibres, which can limit its pathological specificity 40. Hence, further studies with advanced 



multicompartmental diffusion methods could help to overcome this limitation and provide a 

better understanding of the pathological mechanisms underlying the network changes. Finally, 

future research involving functional connectivity and longitudinal network studies is warranted 

to gain a more comprehensive understanding of the relationship between structural 

disconnection and functional reorganization. 

In conclusion, structural brain connectivity is disrupted globally in PwMS and 

differential patterns of regional WM changes are specific to MS phenotypes. As such, 

CIS/RRMS and PPMS have similar network modifications, while SPMS is associated with 

more widespread changes in connectivity relative to other phenotypes. Classification methods 

can distinguish between phenotypes and the largest discriminative value is obtained by 

considering the integrity of the subcortical connections. 
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Figure legends 

Figure 1. Connectograms comparing the MS phenotypes: a) CIS/RRMS vs SPMS and b) 

SPMS vs PPMS. Only differences with an effect size above 0.5 are shown (connections with a 

smaller FA in SPMS than in the other phenotypes are in red and those with a higher FA are in 

blue): ctx, cortex; lh, left hemisphere; rh, right hemisphere. These connectograms were 

generated using bokeh from python 3.7 (http://bokeh.org/). 

 

Figure 2. Comparison of the MS connectograms from CIS/RRMS and PPMS. All the 

significant differences are shown (with a smaller FA in PPMS relative to CIS/RRMS in red 

and a higher FA in blue): ctx, cortex; lh, left hemisphere; rh, right hemisphere. These 

connectograms were generated using bokeh from python 3.7 (http://bokeh.org/) 

 

Figure 3. Performance of the classification models for the MS phenotypes and confusion 

matrices. The receiver operating characteristics (ROC) curves were generated to evaluate the 

classification performance between a) CIS/RRMS vs SPMS, b) CIS/RRMS vs PPMS and c) 

SPMS vs PPMS. AUC, Area under the curve. 

 

Figure 4. The most important connections established by the ML model to discriminate MS 

phenotypes based on FA: a) CIS/RRMS vs SPMS; b) CIS/RRMS vs PPMS and c) SPMS vs 

PPMS. The weights were normalized according to the highest values, with red bars represent 

lower FA connection weights and blue bars representing higher weights. 

 


