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Abstract

We examine the use of instrumental variable (IV) methods to measure the effect of a

ceteris paribus change in an endogenous variable on an ordered outcome. Specifically,

we use these methods to investigate the effect of neighborhood characteristics on sub-

jective well-being (SWB) among participants in the Moving to Opportunity (MTO)
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housing voucher experiment. We find that the estimated positive effect of a decrease

in neighborhood poverty on SWB is sensitive to the specification of the first stage

auxiliary equation for endogenous neighborhood poverty. Our results highlight the

influential role of control function restrictions in complete triangular models.

Keywords: Instrumental Variables, Ordered Choice, Incomplete Models, Partial Iden-

tification, Neighborhood Effects, Subjective Well-Being, Moving to Opportunity.

JEL classification: C25, C26, C35, I31, R2.

1 Introduction

Consider a community of individuals each possessing a set of observable characteristics, some

of which are thought to bear on their well-being. Economists often aim to infer ceteris paribus

effects that answer a question of the following type: If a policy were implemented that were

to exogenously shift the value of one of these characteristics, all else equal, how would this

affect subsequent values of a measurable outcome of interest?

An essential qualifier in the study of ceteris paribus effects on an outcome is that the

outcome be measurable. There is no obvious unit of measurement, for instance, when the

outcome is happiness of individuals. A commonly used measure of happiness is self-reported

subjective well-being (SWB), elicited by individuals’ responses to a query asking them to

place themselves in one of an ordinal set of categories. For example, the General Social

Survey asks, “Taken all together, how would you say things are these days – would you

say that you are happy, pretty happy, or not too happy?”While the ranking of possible

responses to such a question is clear, there is no unique measure of happiness to compare

across individuals. We propose a path to addressing this issue in this paper; while our

focus is on the use of ordinal SWB as the outcome, the same issues arise with other ordinal

outcomes to which our analysis is also equally applicable.

Two complications need to be taken into account. The first is related to measurement of

ordinal SWB. Comparisons of average happiness across different populations are not invariant
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to monotonic transformations of the measures of happiness used; Schröder and Yitzhaki

(2017) and Bond and Lang (2019) show that happiness data generally do not satisfy the

properties required for these comparisons, or in the case of Schröder and Yitzhaki (2017),

that linear regression coefficients do not satisfy the properties required to be robust to

monotonic rescalings of the ordinal outcomes.1 An alternative approach is given by Chen

et al. (2019), who suggest the use of quantiles and quantile regression, since quantiles are

equivariant under monotonic transformations. While a sound alternative, their methods do

not enable measurement of ceteris paribus effects in the presence of potentially endogenous

explanatory variables which is our goal. Kaplan and Zhou (2019) also study the problem of

how ordinal data may be used to draw comparisons between the distributions of two latent

continuous variables; this is an interesting endeavor, but once again an altogether different

goal from that of this paper.

We circumvent these problems by using nonlinear models that respect the ordinal nature

of the outcome to measure quantities that have a natural real-world interpretation. We do

not aim to map responses onto a single scale of happiness on which to draw comparisons,

due to the inherent subjectivity of how such a scale might be created. Instead, we consider

questions about how individuals’ responses to the questions actually asked would change in

a counterfactual scenario. The first type of question we consider concerns marginal effects

for the response variable itself. In the context of our application, the question is: “All

else fixed, what is the marginal effect of a change in local neighborhood poverty on the

probability that a head of household reports that they are happy (or not too happy)?”

The second type of question is a counterfactual probability induced by a discrete shift in

household circumstances, rather than a local shift: “Suppose that the poverty rate in the

local community in which a household is situated were exogenously changed to a given level.

What then would be the counterfactual probability that such a household, if asked, would

respond that they were happy (or not too happy)?”These are coherent questions which do

1Like ordinary least squares, linear IV estimates are weighted averages of the ordinal outcomes, and thus
also sensitive to monotonic transformations of the scale on which these variables are placed.
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not require the construction of a happiness measure beyond what is reported by households,

and allow for the possibility that households interpret the questions in different ways.

A second complication is potential endogeneity. We expect individuals to make decisions

that improve their well-being. Observable covariates chosen by households should therefore

not be independent of unobservable determinants of well-being. For instance, when exam-

ining the effect of neighborhood poverty on SWB using the Moving to Opportunity (MTO)

data, the neighborhood poverty rate should be treated as endogenous. Households that be-

lieve they stand to benefit from moving to a lower poverty neighborhood are more likely to

do so when given the opportunity.

We review point-identifying, complete nonlinear models for ordered outcomes that may

be used, such as ordered probit and logit, in Section 2. These models restrict covariates

to be independent of unobserved heterogeneity. One way to allow for endogeneity is to

employ a complete triangular model, hence referred to as the “CT” model. CT models

specify the determination of endogenous covariates as a function of exogenous covariates,

instruments, and unobservable heterogeneity. This can be done by maintaining the ordered

probit equation for the ordinal variable, and augmenting it with additional linear equations

for each endogenous covariate featuring additive unobservables, all of which are normally

distributed. This generalizes a complete triangular model for binary outcomes studied by e.g.

Heckman (1978) and Rivers and Vuong (1988). This model provides a complete specification

for the determination of all endogenous variables. All parameters are point identified under

mild conditions, and can be consistently estimated by a two stage procedure or maximum

likelihood. Marginal effects and counterfactuals are smooth functions of these parameters,

and standard approaches can be employed for asymptotic inference.2

The CT model is fully parametric, and, as is always the case in a structural analysis,

the inferences drawn rely on the suitability of restrictions imposed by the model. One may

2Furthermore, although our focus here is on conditional marginal effects and counterfactual response
probabilities, CT models can sometimes justify estimation of average structural functions and average partial
effects using control functions, as considered e.g. by Blundell and Powell (2003) and Wooldridge (2014).
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wonder how sensitive empirical findings are to relaxation of these restrictions. In Section 3

a nonlinear instrumental variable (IV) model is considered in which the auxiliary equations

for the endogenous variables are dropped. The IV model is incomplete because it does not

uniquely pin down the value of endogenous variables as a function of exogenous observed

and unobserved variables. Such models are generally partially identifying, and results from

Chesher and Rosen (2017) are applied to characterize the resulting identified sets.

Section 4 describes our application to the study of the effect of neighborhood poverty on

SWB using MTO data. We compare estimates using different models in Section 4. The CT

model point identifies marginal effects and counterfactual probabilities, while partially iden-

tifying IV models provide an analysis of the sensitivity of inference to restrictions imposed

on the determination of endogenous neighborhood characteristics. Section 5 concludes.3

Related Literature

Our methodology broadly pertains to applications with ordinal outcome variables, although

our focus in this paper is to data on SWB. Determinants of SWB, or happiness, have been

of interest to both academics and policy makers in recent years as evidenced by the incep-

tion of the first World Happiness Report (Helliwell et al. (2012)) commissioned for the UN

Conference on Happiness in April 2012, and which has been followed by world happiness re-

ports each year since except 2014. Surveys that include references to the larger literature on

happiness research in economics and the wide variety of topics studied within this literature

include Stutzer and Frey (2010) and MacKerron (2012).

We focus attention on the effect of neighborhood characteristics on SWB among econom-

ically disadvantaged individuals eligible for MTO. The effect of neighborhood characteristics

on SWB may be difficult to isolate due to the presence of unobservable factors that effect

individuals’ SWB – such as drug addiction or gang membership – that may also play a role in

the individual’s choice of neighborhood. Treating neighborhood characteristics as exogenous

3Several appendices are provided in an online supplement, covering details of bound derivations for the
IV model presented in Section 3.1, linear model and first stage CT model estimates that do no appear in
the main text, a discussion of the identifying power of a semi-monotone IV assumption, and computational
details further to those provided in the main text.
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variables in the determination of SWB may, therefore, be unjustified. MTO data offer a

unique opportunity to exploit random variation in housing possibilities – and neighborhood

choice in particular – through random assignment of housing vouchers.

MTO has been the focus of many previous studies; two studies to which our application

is most closely related are those by Ludwig et al. (2012) and Pinto (2019). Ludwig et al.

(2012) also focus on SWB, but instead using OLS and linear IV. Like Pinto (2019), our focus

is on inferring neighborhood effects. Specifically, Pinto (2019) cleverly uses the incentives of

the MTO experimental design in conjunction with revealed preference reasoning to identify

average effects of a discrete classification of neighborhood poverty level on continuous and

binary labor market outcomes. Unlike Pinto’s analysis – which did not analyze SWB –

our approach employs structural models for ordinal outcomes. As previously discussed,

when outcomes are ordered discrete such as SWB, average effects are not easily interpreted,

lending motivation to our IV approach. Moreover, in contrast to Pinto (2019), our approach

allows and indeed utilizes a continuously varying endogenous variable. In Pinto (2019)

a monotonicity restriction is applied to a discretization of the endogenous neighborhood

poverty variable into three categories, used to define a finite set of types. His model and our

IV model are thus non-nested and offer complementary approaches to estimating the effects

of neighborhood poverty on different types of outcomes.4

Although our pursuit of counterfactual probabilities and marginal effects differs from the

ITT and 2SLS estimands that are the focus of Ludwig et al. (2012), our results using a CT

model continue to suggest an increase in SWB from a reduction in neighborhood poverty.

However, we find this result to be sensitive to the specification of the first stage auxiliary

equation for the endogenous variable, in this case neighborhood poverty. When using an IV

model, the empirical results are compatible with a wide range of effects and we can no longer

rule out a decrease in SWB from a reduction in neighborhood poverty.

4The IV approach used here exploits instrument exclusion and independence restrictions with a structural
model for an ordinal outcome. In Appendix E we illustrate how the addition of a monotonicity restriction
similar to that considered by Pinto (2019) in combination with our IV model can potentially help to sign
the effect of the endogenous variable.
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The sensitivity analyses of Section 4 employ bound characterizations obtained by appli-

cation of results in Chesher and Rosen (2017) to the models studied here. The IV ordered

probit type specification without any additional restrictions falls in the class of models con-

sidered earlier by Chesher and Smolinski (2012), but for the fact that here the endogenous

variable is continuously distributed. The bound characterization delivered by application

of the Chesher and Rosen (2017) analysis features many moment inequalities. Methods

employing many moment inequalities for inference on parameter vectors have been recently

developed by Chernozhukov et al. (2019) (CCK19) and Bai et al. (2019). We employ meth-

ods from CCK19 as well as Belloni et al. (2018) (BBC18), which build on ideas in CCK19

to conduct inference on functions of partially identified parameter vectors.5

Summary of Contributions

Our main contributions are summarized as follows. First, we propose the use of structural

modeling to study the effect of exogenous changes in endogenous variables when the outcome

is an ordered variable lacking cardinal interpretation. We do this by focusing on changes

induced in measurable quantities such as the probability of a given ordinal response, rather

than on ad hoc cardinal scales onto which ordinal outcomes can be mapped. Second, we

advocate for and illustrate the use of alternative modeling assumptions to investigate the

sensitivity of empirical findings to modeling restrictions chosen by the researcher. Our third

contribution is the detailed implementation of new inference methods from BBC18 to func-

tions of parameters satisfying the bound characterization delivered by IV models for ordered

outcomes using the Chesher and Rosen (2017) partial identification analysis. This appar-

ently constitutes the first application of inference methods of BBC18 to data, as well as the

first empirical application of IV models for ordered outcomes.6 A fourth contribution lies in

the empirical contribution to MTO. Our analysis examines how neighborhood characteris-

5A working paper version of CCK19 appeared on arXiv in 2013.
6Chesher and Rosen (2020b) provide an application to binary outcome data on female employment using

inference methods from Chernozhukov et al. (2013). Subsequent to this work, Chesher and Rosen (2020a)
and Chesher et al. (2021) also use methods from CCK19 and BBC18 in applications to market structure
featuring interdependent binary choices, and an application of IV methods for Tobit models to tobacco
expenditure, respectively.
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tics are found to affect SWB using MTO data with a fully parametric CT model and an IV

model, allowing us to examine the sensitivity of results to underlying modeling restrictions.

2 Complete Nonlinear Models

This Section first considers the ordered probit model that does not allow for endogenous

covariates, and then moves on to the CT model that does allow for endogeneity. Expressions

for counterfactual response probabilities and marginal effects applicable for both models as

well as the IV models of Section 3 are then derived.

2.1 The Ordered Probit Model

The ordered probit – henceforth “OP” – model specifies that ordered outcome Y ∈ {0, ..., J}

is determined by

Y =



0 if Wβ +Xγ + U ≤ c1,

1 if c1 < Wβ +Xγ + U ≤ c2,

...
...

J if cJ < Wβ +Xγ + U .


, (2.1)

where all regressors are assumed exogenous, in the sense that U ∥ (X,W ). The values 0, ..., J

for Y are labels used for ordered discrete outcomes and they play no role in the statistical

analysis or in the policy use of the model other than as categorical labels. Random variable U

is an unobserved exogenous variable, normally distributed with mean zero and unit variance.

The thresholds c1, ..., cJ and vectors β, γ comprise model parameters.

This model is complete because for each realization of the exogenous observed variables

(X,W ) and the unobserved variable U , the endogenous variable Y is uniquely determined.

For each y ∈ {0, ..., J} and any realization (x,w) of the exogenous variables, the conditional

probability that Y = y is given by the probability that normally distributed U lies within
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the interval

[cy − wβ − xγ, cy+1 − wβ − xγ),

where c0 ≡ −∞, and cJ+1 ≡ ∞. These intervals partition the real line according to each

possible value of Y , and their probabilities correspond to likelihood contributions of the

standard maximum likelihood estimator. Under the usual rank condition the expected value

of 1/n times the log likelihood is uniquely maximized at the population parameter values.

Estimation is easily carried out in modern software packages such as STATA, but the model

does not allow for endogenous variables. In our application, choice of neighborhood and

therefore neighborhood characteristics may be correlated with unobservable heterogeneity,

so the required independence restriction may not be credible.

2.2 A CT Model

We now consider CT models that allow for potential endogeneity of W . We consider the

same functional form for the ordered outcome given in (2.1) for the OP model, where again

X is a vector of observed exogenous variables, and U is an unobserved exogenous variable.

As in the OP model, U is restricted to be normal with mean zero and unit variance. It will

not, however, be restricted to be independent of endogenous variables W .

With the components of random kw-vector W allowed to be correlated with U , additional

restrictions on the determination ofW can play an important role for identification. We begin

by considering a complete model that specifies how W ≡ (W1, ...,Wkw) is determined as a

function of X, instruments Z, and additional unobservable variables V :

Wk = Xδkx + Zδkz + Vk, k = 1, ..., kw, (2.2)

where each Vk ∈ R is an unobserved random variable.

The vector of unobservables (U, V1, ..., Vkw) is restricted to be independent of (X,Z) and
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distributed multivariate normal with mean zero and variance

Σ =

 1 R

R′ Σv

 ,

where Σv denotes the variance of V = (V1, ..., Vkw), assumed nonsingular. Component rk of

R ≡ (r1, ..., rkw) denotes the covariance of U with Vk. Both Σv and R comprise unknown

parameters, while Σ11 = 1 imposes the same scale normalization as in the OP model.

The triangular model is complete because realization of the observed and unobserved

exogenous variables X, Z, U , and V uniquely determines the realization of the endogenous

variables Y and W . It thus remains that the conditional distribution of endogenous variables

given observed exogenous variables is uniquely determined as a function of model parameters.

Taking (2.1) and (2.2) together with multivariate normality of (U, V ),

Pr [Y = y|x, z, w] =

Φ

(
cy+1 − wβ − xγ −RΣ−1

v v (w, x, z)

σ (v)

)
− Φ

(
cy − wβ − xγ −RΣ−1

v v (w, x, z)

σ (v)

)
, (2.3)

where v (w, x, z) ≡
(
w1 − xδ1x − zδ1z , ..., wK − xδKx − zδKz

)′
, σ (v) ≡ 1 − RΣ−1

v R′, and Φ (·)

denotes the standard normal CDF. Consequently, it can be shown that under standard rank

conditions there is point identification of all model parameters β, γ, R,Σv and δkx and δkz for

each k. Estimation can proceed by way of a two stage procedure using estimated residuals

from (2.2) obtained in a first stage as regressors in a second stage ordered probit regression

that also includes observations of W and X, which generalizes the procedure developed by

Rivers and Vuong (1988) for binary outcome models with endogenous variables. Algebraic

manipulation of the second stage estimates can be used to consistently estimate all model

parameters. Alternatively, (2.3) can be used as a basis for estimation by maximum likelihood.

Point estimators using either the two stage procedure or maximum likelihood are easy to

compute. Marginal effects are also point identified and easily estimated. The model allows
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such effects to be heterogeneous for individuals with different observable characteristics. The

model explicitly accounts for the ordered nature of the outcome variable, but also relies on the

specification for the determination of the endogenous variables W as a parametric function

of exogenous variables with a normal unobservable as in (2.2). In Section 3 implications of

the model are investigated in the absence of such a restriction.

2.3 Counterfactual Probabilities and Marginal Effects

Define the individual response function

y (x,w, u, θ) ≡
J∑

j=1

j × 1 [cj < wβ + xγ + u ≤ cj+1] ,

denoting for any individual the value of the ordered outcome y that would be chosen when

faced with given values of (x,w, u). The function y (·, ·, u, θ) : Supp (X,W ) → {0, 1, ..., J}

denotes the response function of an individual with unobservable u to values of (x,w).

For the sake of counterfactual analysis these are used to consider what would happen if a

randomly selected individual in the population (or a randomly selected individual from the

subpopulation with a given set of covariates x) were to have their value of w or x or both

exogenously set to an alternatve value, holding their value of u fixed.

Counterfactual probabilities and marginal effects can be expressed as functions of compo-

nents of parameter vector θ through use of the ordered outcome equation (2.1) in conjunction

with the restrictions U ∥ (X,Z) and U ∼ N (0, 1). The counterfactual probability that a per-

son with observable characteristics X = x randomly drawn from that subpopulation would

achieve SWB y ∈ {0, ..., J} if their neighborhood characteristics were exogenously shifted to

w is given by

p (θ; y, x, w) ≡ P [y (x,w, U, θ) = y|X = x] = Φ (cy+1 − wβ − xγ)− Φ (cy − wβ − xγ) ,

(2.4)
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where c0 = −∞ and cJ = ∞. Marginal effects attributable to local changes in w are obtained

as partial derivatives of these probabilities, or the corresponding finite differences for discrete

components if W is discrete. For example, in a model with a single continuous endogenous

variable W , the marginal effect with respect to w is given by

ME (θ; y, x, w) ≡ ∂p (θ; y, x, w)

∂w
= β (ϕ (cy − wβ − xγ)− ϕ (cy+1 − wβ − xγ)) . (2.5)

In the OP and CT models laid out in this section parameters β, γ, c1, ..., cJ are point

identified under mild conditions. The counterfactual probabilities and marginal effects in

(2.4) and (2.5) are known smooth functions of these parameters. Thus, plugging in consis-

tent and asymptotically normal point estimators for β, γ, c1, ..., cJ results in consistent and

asymptotically normal estimators for counterfactual probabilities and marginal effects, with

asymptotic variances obtainable by way of the delta method.

3 IV Models

In this section we maintain the specification (2.1) for the determination of the ordered

outcome Y , but without assuming the “first stage” specification (2.2). We continue to

assume that the unobservable U is a standard normal random variable independent of (X,Z)

but – crucially – place no further restriction on its joint distribution with W . The analysis

extends the nonparametric IV model for ordered outcomes studied by Chesher and Smolinski

(2012). Here we consider a parametric version of their model, which generalizes the OP model

commonly used in the absence of covariate endogeneity, and which allows for W to be either

discrete or continuously distributed. We describe how the analysis of Chesher and Rosen

(2017) can be applied to partially identify structural parameters, and we briefly describe how

to obtain set estimates and confidence sets for marginal effects and counterfactual choice

probabilities using these IV models.
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3.1 Generalized Instrumental Variable Moment Inequalities

Despite the parametric specification in (2.1) and the normal distribution of U , this model is

incomplete because it is silent as to the determination of endogenousW . As a result, the joint

distribution of (Y,W ) conditional on exogenous variables (X,Z) is no longer pinned down

by knowledge of the distribution of U and model parameters. The model does however carry

observable implications for the conditional distribution of (Y,W ) in the form of conditional

moment inequalities.

To see how such implications can be derived, recall that the ordered response specification

(2.1) ensures that unobservable U lies in the interval (cY −Xγ −Wβ, cY+1 −Xγ −Wβ].

Consider for the sake of argument any fixed interval [s, t] on the real line. Then

{
[cY −Xγ −Wβ, cY+1 −Xγ −Wβ] ⊆ [s, t]

}
=⇒

{
U ∈ [s, t]

}
. (3.1)

That is, when the interval from cY − Xγ − Wβ to cY+1 − Xγ − Wβ is contained in [s, t],

then U must be contained in [s, t]. The first event implies the second, so the conditional

probability of the former event provides a lower bound on the conditional probability of the

latter.

Application of Theorems 3 and 4 of Chesher and Rosen (2017) builds on this logic to char-

acterize sharp bounds on model parameters that can be used for the construction of bound

estimates. Specifically, the following inequality for all s, t pairs with s ≤ t characterizes

sharp bounds on θ ≡ (β, c1, c2, γ, σ).
7

max
x,z

P [(s ≤ c (Y,X,W ; θ) ∧ c (Y + 1, X,W ; θ) ≤ t) |X = x, Z = z] ≤ Φ (t)− Φ (s) , (3.2)

7Here s and t are elements of the extended real line, inclusive of ±∞ with the understanding that
when s = −∞ the inequality s ≤ c (y, x, w; θ) always holds, as does the inequality c (y + 1, x, w; θ) ≤ t
when t = +∞, even when c (y, x, w; θ) and c (y + 1, x, w; θ) are themselves −∞ and +∞, respectively, with
Φ(−∞) = 0 and Φ(∞) = 1.
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where “∧” denotes the logical “and” operator, and

∀j ∈ {1, ..., J} : c (j, x, w; θ) ≡ cj − xγ − wβ, c (0, x, w; θ) ≡ −∞, c (J + 1, x, w; θ) ≡ ∞.

The inequality (3.2) is obtained by applying the conditional probability P [·|X = x, Z = z] to

events in (3.1). The right hand side of these inequalities employs the normal CDF because

U is restricted to be standard normal, independent of (X,Z).8

It is interesting to compare moment inequalities of the form (3.2) to the implications of

the OP and CT models.9 The OP and CT models are complete, meaning that the value

of all endogenous variables is uniquely determined as a function of exogenous observed and

unobserved variables. Consequently these inequalities strengthen to equalities for specific

values of s and t. In the OP model, the space of unobservable U can be partitioned into

intervals that uniquely deliver each possible value of Y given realizations of X and W , and

the probability that U lies in each of these intervals is known because U is standard normally

distributed. For the collection of s and t pairs that correspond precisely to these intervals,

we must have that the probability of the events on the left of (3.2) sum to one, and so

must those on the right of (3.2), by virtue of the these [s, t] intervals comprising a partition

of R. Therefore, these inequalities across this particular collection of s and t must hold

with equality. The resulting equalities are in fact the conditional probabilities that comprise

the OP likelihood function. In the CT model for any realization of (W,X,Z), R can also

be partitioned into intervals for U that uniquely determine the outcome. The conditional

probability that U is in each of these regions conditional on (W,X,Z) is a known function

of parameters, and the resulting equalities are precisely those of (2.3) that can be used for

maximum likelihood estimation in the triangular model.

8As long as U ∥ (X,Z) is maintained, these inequalities hold with the CDF of U in place of the Gaussian
CDF Φ(·). For instance, if U were restricted to have the logit distribution, (3.2) would continue to hold,
but with Φ(·) replaced by the logit CDF Λ(·). In this case the same approach for estimation and inference
employed in this paper could be used, simply with Λ(·) in place of Φ(·).

9Inequalities on (conditional) probabilities are (conditional) moment inequalities because the probability
of an event is the expectation of a binary indicator of that event.
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In contrast, in the incomplete IV model there is no partition of R into intervals of values

for U that uniquely determine the endogenous variables, given exogenous variables (X,Z).

The observable implications take the form of inequalities in (3.2) that do not reduce to

equalities, but whose components are nonetheless easily computed. The terms on the left

hand side are probabilities involving the joint distribution of observable variables, while the

probabilities on the right hand side of the inequalities are simply normal probabilities.

Corollary 3 and Theorem 6 of Chesher and Rosen (2017) provide further characterizations

of parameter bounds when the assumption that U is normally distributed is relaxed. If U

is assumed independent of exogenous variables (X,Z) but with an unknown distribution,

Corollary 3 implies for example that parameters θ satisfy

max
x,z

P [s ≤ c (Y,X,W ; θ) ∧ c (Y + 1, X,W ; θ) ≤ t|X = x, Z = z]

≤ min
x,z

P [c (Y,X,W ; θ) ≤ t ∧ c (Y + 1, X,W ; θ) ≥ s|X = x, Z = z] .

for all pairs s < t on the extended real line. When the stochastic independence restriction is

weakened to only require that U is median independent of (X,Z) – with conditional median

normalized to zero – then Theorem 6 implies that the identified set for θ are those that

satisfy the inequalities

max
x,z

P [c (Y + 1, X,W ; θ) ≤ 0|X = x, Z = z] ≤ 1

2
, (3.3)

max
x,z

P [c (Y,X,W ; θ) ≥ 0|X = x, Z = z] ≤ 1

2
. (3.4)

These characterizations enable bound estimation for model parameters in the IV model

without requiring a parametric specification for the unobervable variable U . The weakening

of assumptions relative to the IV model with a parametric distributional restriction will

however result in (weakly) wider bounds. Further details of the derivation of these bounds

are provided in Appendix A.
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3.2 Computing Sets for Counterfactuals and Marginal Effects

The expressions (2.4) and (2.5) are known functions of θ, and are both point identified in the

OP and CT models. When instead the IV model is used, the expressions for counterfactual

probabilities and marginal effects remain valid, but θ is in general only partially identified.

Consequently, identified sets for counterfactual probabilities and marginal effects are char-

acterized as the set of all possible values for (2.4) and (2.5), respectively, taking θ across all

values in the identified set. In Section 4.3 we report set estimates and confidence sets for

marginal effects using such a characterization when employing IV models, thus providing a

sensitivity analysis for the CT model point estimates presented in Section 4.2. Before doing

so, we now demonstrate the ability of the IV model to bound counterfactual probabilities

and marginal effects with a numerical example. This illustrates the bounds obtained at the

population level, purely in terms of identification analysis, in an ideal but infeasible setting

in which the distribution of observable variables is known exactly. We then describe how

computation of set estimates and confidence intervals is carried out with sample data before

presenting our application in Section 4.

Numerical Illustration of IV Bounds

Table 1 illustrates bounds for counterfactual probabilities and marginal effects as described

in (2.4) and (2.5) from a population in which the conditional distributions of (Y,W ) given

(X,Z) are generated using a CT structure as described in Section 2.2 with X = 1, Z ∈

{−1, 1}, and parameters:

c1 = −0.5, c2 = 0.8, γ = 0, β = 1, δ1x = 0, δ1z = 0.5, R = 0, Σv ∈ {1.00, 0.01}.

The bounds shown were obtained by inequalities of the form (3.2) using intervals [s, t] with

endpoints in {−∞,Φ−1(1/n),Φ−1(2/n), ...,Φ−1((n− 1)/n),∞}.10 In all cases the bounds

10The interval [−∞,∞] is omitted and n is set to 50 which results in n(n+1)/2−1 = 1274 inequalities at
each of two values of Z and so 2548 inequalities in total. Doubling n leads to only slightly shorter identified
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are informative. The binary instrumental variable Z is a much more accurate predictor of

the value of W when Σv = 0.01 than when Σv = 1, resulting in much shorter identified sets.

As Σv is driven further towards zero (not shown here), the IV model approaches a state in

which it delivers point identification because when Σv = 0, exogenous Z is in fact a perfect

predictor of W . The ability of the instrument to induce variation in W is helpful in achieving

more informative bounds.

The covariance parameter R is zero in these illustrations, so in fact W is exogenous.

Models incorporating this knowledge are point identifying, but that is not assumed in the

IV model employed here, so this example is informative about the cost of not knowing an

explanatory variable is exogenous when in fact it is.

Discrepancy Function, Set Estimates, and Critical Values

To put the moment inequalities (3.2) into a form convenient for inference using techniques

from CCK19 and BBC18, note that they can be equivalently expressed as

P [(s ≤ c (Y,X,W ; θ) ∧ c (Y + 1, X,W ; θ) ≤ t) ∧X = x ∧ Z = z]−p(x, z) (Φ (t)− Φ (s)) ≤ 0,

where as before “∧” denotes logical “and”, and p(x, z) denotes P [X = x ∧ Z = z]. The

sample analog of the expression on the left is, for any (s, t, x, z) = (sj, tj, xj, zj):

m̂j (θ) ≡ Ên [ωj (Y,W,X,Z; θ)] =
1

n

n∑
i=1

ωj (Yi,Wi, Xi, Zi; θ) ,

ωj (Y,W,X,Z; θ) ≡ (1 [sj − cY ≤ −Xγ −Wβ ≤ tj − cY+1]− (Φ (tj)− Φ (sj))) · 1 [X = xj, Z = zj] .

To form moments indexed by j = 1, ..., J for estimation and inference we enumerate

all possible combinations of xj, zj combined with pairs of values sj, tj as follows. The unit

interval [0, 1] is divided into K evenly spaced intervals. Pairs (sj, tj) are selected as the

sets. Details of the calculation are in the online supplementary material.
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standard normal quantile function evaluated at the endpoints of all intervals that comprise

unions of these 1/K length intervals, resulting in K(K +1)/2 pairs, less one for the removal

of the uninformative pair (−∞,∞). Crossed with 15 different points of support for (X,Z),

this yields J = 15
(

K(K+1)
2

− 1
)
moments. In the results reported in Section 4.3, K = 24

was used resulting in J = 4, 485 moments.

We use the discrepancy function Q̂(·) and profile discrepancy function T̂ (·) defined as:

Q̂ (θ) ≡ max
j∈[J ]

√
n
m̂j (θ)

σ̂j (θ)
, T̂ (r) ≡ min

θ:g(θ)=r
Q̂(θ),

σ̂2
j (θ) ≡ Ên

[
(ωj (Y,W,X,Z)− m̂j (θ))

2] . (3.5)

Here [J ] ≡ {1, ..., J}, and g(θ) denotes the function of interest, a counterfactual response

probability or conditional marginal effect as defined in (2.4) and (2.5), respectively. Set

estimates and confidence intervals are of the form

{
r : T̂ (r) ≤ cn(r)

}
, (3.6)

for different choices of cn(r). For analog set estimates, the critical value is simply cn(r) = 0

for all r. For inference on g(θ) we employ two different kinds of critical values.

The first type of critical value is a self-normalized (SN) critical value given by

cSNn (α) =
Φ−1 (1− α/J)√

1− Φ−1 (1− α/J)2 /n
(3.7)

for nominal coverage probability 1 − α provided by CCK19. The self-normalized critical

values generally provide conservative asymptotic inference, but have the advantage that

they do not depend on the value r under consideration and are easy to compute.

The second type of critical value we use for inference is a Discard Resampling (DR)

bootstrap critical value. DR critical values for subvector inference using moment inequalities

were introduced by Bugni et al. (2017) and adapted for use with many moment inequalities
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by BBC18. We denote an asymptotic 1−α DR critical value as cDR
n (r, α). Due to the use of

the bootstrap and the need to recompute the critical values for each r, obtaining DR critical

values takes substantially more computation time. However, because it accounts for the

covariance structure of the sample moment inequalities that are close to binding, it generally

results in less conservative inference.11

Section 4.3 reports sets of the form (3.6) for critical values cn(r) ∈ Cr, where Cr denotes

the cutoff values for testing g(θ) = r, i.e. Cr ≡ {0, cSNn (0.50), cSNn (0.05), cDR
n (r, 0.05)}. The

steps used to compute these sets are outlined in Algorithm 1. The sample discrepancy

function Q̂(·) defined in (3.5) is not smooth, so the full parameter search step used 1000

random starting values sampled uniformly over the parameter space in addition to a small

set of deterministic starting values.12 For each target parameter g(θ) a separate search was

conducted over regions of the parameter space in which β is nonpositive and nonnegative.13

Our implementation was executed in R, with computationally intensive components written

in C++. Further computational details are provided in Appendix F.14

4 Application to MTO

MTO was a unique randomized housing voucher experiment implemented from 1994 to 1998.

Through the program, 4, 604 volunteer families living in “extreme-poverty” neighborhoods

11BBC18 also consider an alternative profile resampling bootstrap critical value, similar in spirit to that
of BCS, but also adapted to achieve asymptotic validity with many moment inequalites. Relative to self-
normalized critical values, sufficient conditions for bootstrap critical values established by BBC18 to guaran-
tee asymptotic size control are more stringent. We do not verify these conditions here. We note in particular
that BBC18 employ convexity of the set {θ ∈ Θ : g(θ) = r} as a sufficient condition. This condition is sat-
isfied for counterfactual probabilities for Y = 0 or Y = 2, but not for Y = 1 or for conditional marginal
effects. Alternative sufficient conditions may be possible. We leave this to future investigation, noting that
this condition is not needed to ensure validity of self-normalized critical values.

12Specifically, in addition to the randomly chosen starting values, nine deterministic starting values were
used based on point estimates from the CT and OP model, as well as bound analysis using fewer (810)
moment inequalities employed in an earlier draft.

13The sign of β dictates whether the thresholds cj − wβ − xγ are increasing or decreasing in the value
w of the endogenous variable. From results in for instance Chesher (2013) and Chesher and Rosen (2020b)
for binary outcome models and Chesher and Smolinski (2012) for ordered outcome models, it is known that
regions of the parameter space that correspond to different orderings of values of such thresholds across
different values of the endogenous variable can be disconnected.

14Code for replication is available at https://github.com/adammrosen/MTO-Replication.
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Algorithm 1 Computation of set estimates and confidence sets.

1: Initialization: Set g(·), K & parameter spaces Θ and R ≡
[
g, ḡ

]
for search.

2: Load data. Compute Φ(tj)− Φ(sj) and 1 [Xi = xj;Zi = zj], all j = 1, ..., J .
3: Set a collection of deterministic and random starting values Θ̃ ⊆ Θ.
4:

5: Full Parameter Search: Call MinDiscrepancyCpp(Θ̃) to obtain Θ̂ ⊆ {argmin Q̂(θ) :
θ ∈ Θ}.

6:

7: Target Parameter Search: Find min/max values of r ∈ R such that T̂ (r) ≤ c.
8: for each c ∈ Cr do
9: Set gℓ, gu to min/max values of g(θ) from full parameter search such that Q̂(θ) ≤ c.
10: Set G: a grid from gℓ to g and gu to ḡ with distance δ = 0.005 between points.

11: Call ProfileDiscrepancyOnGridCpp(G) to compute T̂ (r) for each r ∈ G.
12: end for
13:

14: Endpoint Refinement: Refine min/max values of r found to satisfy T̂ (r) ≤ c.
15: for each c ∈ Cr do
16: Set rℓ, ru to min/max values of {r = g(θ) : T̂ (r) ≤ c} from target parameter search.
17: Call RefineBoundCpp(rℓ − δ, rℓ, fromLower = T,∆ = 0.0005).
18: Call RefineBoundCpp(ru + δ, ru, fromLower = F,∆ = 0.0005).
19: end for
20:

21: Report Results: Report min/max r found to satisfy T̂ (r) ≤ c, each c ∈ Cr.

in Baltimore, Boston, Chicago, Los Angeles, and New York were randomly assigned to one of

three treatments: receipt of a low poverty experimental housing voucher (which could be used

only if the family moved to a low poverty area), a traditional section 8 voucher (which could

be used without any location restriction), or no voucher (control group).15 Assignments are

recorded as Z = 2, Z = 1, and Z = 0, respectively. Unlike traditional vouchers, low-poverty

vouchers could only be applied toward housing in census tracts that had 1990 poverty rates

below 10%. The vouchers made it more feasible for recipients to move, and in particular

the low-poverty vouchers encouraged them to move to less distressed neighborhoods. Not

all recipients chose to move, but many did.

Random assignment of housing vouchers in the experiment justifies the use of assignment

Z as an IV for neighborhood characteristics. The SWB outcome we use is taken from long-

15“Extreme-poverty” neighborhoods are those in which at least 40% of residents’ income lies below the
U.S. federal poverty threshold.
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term data recorded 10-15 years after assignment. This outcome is categorical, with three

allowable answers to the following question, taken from the General Social Survey (GSS):

“Taken all together, how would you say things are these days – would you say that you are

very happy, pretty happy, or not too happy?”16 The corresponding outcome is Y ∈ {0, 1, 2},

ranging from least to most happy.17 The responses are ordered, but do not have a cardinal

interpretation. Only MTO adults were asked this question.

Families that were in the program were extremely economically disadvantaged; see Ap-

pendix B for details on the set of covariates which were elicited in a baseline survey before

randomization took place in 1994-1998. The majority of household heads were minorities

and less than 40% had completed high school. More than three quarters reported that one

of the top two reasons for wanting to move was to get away from gangs and drugs.

Previous studies of MTO include Kling et al. (2007), Ludwig et al. (2012), Pinto (2019),

and Chetty et al. (2016). Kling et al. (2007) used medium term (4-7 years after assignment)

outcome data to measure the effect of the program on participants. They found mixed

results of the effect of the program on traditional objective measures of well-being. No

significant effects were found on adult economic self-sufficiency or physical health outcomes.

Substantial mental health benefits were found for adults and female youths, but adverse

effects were found for male youths. Chetty et al. (2016) subsequently studied the long-term

impacts of treatment on the economic outcomes of those who were young children at the

time of random assignment, finding significant effects that are decreasing in the child’s age

at the time of assignment. As noted in the introduction, Pinto (2019) developed a model

that combines revealed preference analysis with monotonicity assumptions motivated from

the incentives of the MTO experiment to measure average treatment effects of a change

in neighborhood on various labor market outcomes. This enabled estimation of effects of

neighborhood transitions rather than of voucher assignment using a different approach than

16Further details about the GSS are available at http://www3.norc.org/GSS+Website/.
17Specifically, the values of Y correspond to 0 for ‘not too happy’, 1 for ‘pretty happy’ and 2 for ‘very

happy’.
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is taken here, for different (continuous and binary) outcomes than the one considered in our

application. The measured effects aligned qualitatively with those of Kling et al. (2007), but

in contrast produced statistically significant estimates for important labor market outcomes

such as total income when the effect of the neighborhood was isolated.

Ludwig et al. (2012) revisited MTO using long-term data on outcomes recorded 10-

15 years after assignment. They used a linear model to measure ITT effects on various

outcomes Y . This provides a measure of the effect of offering a voucher on the outcome.

Ludwig et al. (2012, p.1508) concluded that, “...the opportunity to move through MTO

had mixed (null to positive) long-term effects on objective measures of well-being of the

type that have been the traditional focus of the neighborhood effects literature.” In previous

work Ludwig and coauthors showed that MTO had significant long-term effects on some

important long-term health outcomes, specifically extreme obesity and diabetes. Relating

specifically to SWB, Ludwig et al. (2012) wrote that their paper includes,“the first time the

effect of neighborhoods on SWB has been assessed in an experimental analysis.” They found

significant effects of neighborhood characteristics on SWB. These conclusions however rely on

linear model estimates generally sensitive to the scale on which SWB is measured, and which

do not enable computation of counterfactual probabilities or their marginal sensitivity to

endogenous variables.18 Following Ludwig et al. (2012), the neighborhood characteristics we

examine are also measures of neighborhood poverty and residential share minority, denoted

Wpov and Wmin, respectively; Appendix B discusses how these characteristics are constructed

and their distribution across different treatment groups.

The following subsections report empirical results using a sequence of progressively less

restrictive models to estimate the effect of neighborhood characteristics on SWB. Subsection

4.1 provides results using the ordered probit (OP) model, making no allowance for endo-

18In the supplementary materials of Ludwig et al. (2012) it is noted that “As a sensitivity analysis
we also relax this assumption and re-estimate equations (S2) and (S3) using instrumental variables probit
following the control function approach from Rivers and Vuong and obtain qualitatively similar results.”
Unfortunately no further details on these estimates are provided in the main paper or in the supplementary
materials.
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geneity. Subsection 4.2 reports estimates using the CT model of Section 2 that allows for

endogeneity of neighborhood characteristics. Subsection 4.3 reports results obtained using

the IV model. Appendix C reports results using linear models as previously used in Ludwig

et al. (2012).

4.1 OP Model Estimates

Columns (1)-(3) of Table 2 report parameter estimates for the OP model with only dummy

variables for randomization site used as exogenous variables X. The base site is New York,

and the positive coefficient estimates indicate that households in other cities tended to report

higher SWB. Neighborhood characteristics W are also restricted to be exogenous. Columns

(4)-(6) report parameter estimates after inclusion of a complete set of covariates; we find

that the parameter estimates remain qualitatively unchanged.

The solid curves in Figures 1 and 2 depict OP estimates of the predicted probabilities that

a person reports being ‘not too happy’ (y = 0) or ‘very happy’ (y = 2) across different values

of the neighborhood characteristics. Dashed lines present the corresponding estimates for

the CT model, discussed in Section 4.2. These are all conditional on the adult being in NY.

Other exogenous explanatory variables X are held fixed at the NY sample median values.

Thus the predicted probabilities are conditional on the adult being a white, Hispanic female

with age between 41 and 45 who is not married (among other characteristics).19 Focusing

now on the OP estimates, Figure 1 shows that the probability of being ‘not too happy’

for such a person increases with neighborhood poverty Wpov and the probability of being

‘very happy’ decreases with Wpov. Figure 2 illustrates that this also holds true when Wpov

is changed while holding neighborhood minority Wmin constant at the NY sample median.

Figure 1 also shows that the probability of being ‘not too happy’ is increasing in Wmin and

the probability of being ‘very happy’ is declining in Wmin. However, Figure 2 illustrates that

the effect of changes in Wmin on SWB is relatively small once Wpov is held constant at the

19In unreported results we also examine the predicted probabilities and marginal effects which do not
condition on baseline covariates and find that the pattern of estimates is very similar.
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NY sample median, so that the predicted probability is almost flat across changes in Wmin.

Figures 3 and 4 present the corresponding marginal effects (2.5). Again focusing on the

OP estimates shown by the solid curves, these figures indicate that Wpov has a negative

effect on SWB, with and without holding Wmin constant. Also from these figures the effect

of Wmin on SWB is less clear; there is some negative effect without controlling for Wpov in

Figure 3 but these effects are close to zero once Wpov is held constant at the NY sample

median as may be seen in Figure 4.20

The OP estimates are broadly in line with the signs and statistical significance of ef-

fects measured using linear models (see Appendix C), despite the difference in interpretation

afforded by the linear model. There is a negative statistically significant effect on the prob-

ability of being ‘very happy’ with a unit increase in Wpov; conversely a positive statistically

significant effect on the probability of being ‘not too happy’ with a unit increase in Wpov.

Relative to linear model estimates, the nonlinear model estimates enable construction of

heterogeneous and interpretable counterfactual probabilities and marginal effects.

It is important to keep in mind that these OP estimates continue to be sensitive to the

cardinal scale used for categorical SWB outcomes. Bond and Lang (2019) show that simply

transforming the underlying MTO long term happiness data using a transformation that

applies a slightly more right-skewed distribution than a standard log-normal reverses the

result that recipients of MTO experimental vouchers were happier than those in the control

group. This is because individuals in the MTO control group have lower mean SWB, but

also a higher variance in SWB. Since variances across experimental and control groups are

unequal, a necessary condition for rank order identification under normality is not satisfied.

20In unreported results we also estimate ordered logit and multinomial logit models on the data to
construct predicted probabilities and marginal effects. We find that these models give very similar patterns
of predicted probabilities and marginal effects as the ordered probit.
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4.2 CT Model Estimates

The restriction requiring that neighborhood characteristics are exogenous is now relaxed,

and estimates are reported for the CT model presented in Section 2. Endogenous variables

W are the same as before; in all cases estimation is carried out by maximum likelihood.21

Parameter estimates for the outcome equation (2.1) are given in Table 3.22 Neighbor-

hood poverty Wpov has a negative and statistically significant effect across all specifications.

Neighborhood minority Wmin has a negative but statistically insignificant effect when it is

included in the absence ofWpov. When both variables are included, Wmin has a positive effect

on SWB, although it is just statistically significant at the 10% level when both neighbor-

hood characteristics are included and only site indicators are used as exogenous explanatory

variables.

The finding that the effect of Wmin is not statistically significantly different from zero

when Wpov is not included accords with the linear IV estimates reported in Appendix Table

C.1. Likewise, so do the findings that Wpov has a negative impact on SWB, and that when

both neighborhood characteristics are included Wmin has a (borderline significant) positive

impact. The OP model estimates reported in the previous section, which did not allow for

endogeneity of neighborhood characteristics, did not produce a positive effect for Wmin.

Like the OP model, however, the CT model enables further investigation of the effect

of endogenous variables on SWB through the consequent formulas for counterfactual prob-

abilities and marginal effects, while also accounting for endogeneity. The dashed curves

in Figures 1 and 2 give predicted probabilities using the CT model for different values of

neighborhood characteristics, again conditional on the adult being in NY, and having values

of exogenous explanatory variables X that correspond to the NY sample median values.23

21In unreported results we also estimate model parameters using an alternative control function approach.
The results are close to those obtained using maximum likelihood, but estimators obtained by maximum
likelihood are more asymptotically efficient.

22Estimates from the first stage are reported in Table D.1 in Appendix D.
23As in the case of the OP, in unreported results we also examine the predicted probabilities and marginal

effects which do not condition on baseline covariates and find that the pattern of estimates is very similar.

25



Figure 1 shows that, as expected, the probability of being ‘not too happy’ for such a person

is increasing in Wpov and the probability of being ‘very happy’ is decreasing in Wpov. Figure

1 also indicates that the probability of being ‘not too happy’ is increasing in Wmin and the

probability of being ‘very happy’ decreasing with Wmin. Note that the specifications used

in the top panels of Figure 1 include only Wpov and those in the bottom panels of Figure 1

include only Wmin as endogenous variables.

Figure 2 further investigates the effect of these variables when both are included as

endogenous variables, where the value of the variable whose effect is not being illustrated

is held fixed at the NY median value in the sample. Figure 2 shows that the direction of

change in the probability of SWB taking on different values across values of Wpov remains

the same as in Figure 1. Compared to Figure 1, Figure 2 provides a different picture for the

effect of Wmin on SWB. With Wpov held fixed, the probability of being ‘not too happy’ is

decreasing in Wmin and the probability of being ‘very happy’ is flat at very low levels and

then increasing in Wmin. The CT estimates indicate a greater degree of heterogeneity in the

effect of these variables on counterfactual response probabilities than do the OP estimates.

Figures 3 and 4 show the estimated conditional marginal effects, again with the CT model

estimates indicated by the dashed curves. As before the Figures indicate a clear negative

effect of higher neighborhood poverty Wpov on SWB. The effect of Wmin on SWB, as also

indicated in Table 3 is found to be slightly negative but statistically insignificant without

holdingWpov fixed as in Figure 3. Yet in Figure 4 when both variables are included withWpov

fixed at the sample median, the marginal effects indicate that SWB is generally increasing

in Wmin with varying levels of statistical significance.

What then can be concluded from these results further to what can been learned using

linear IV? To answer this question, consider what can be inferred from Figures 1 - 4 about the

impact of shifts in exogenous neighborhood characteristics, both in sign and magnitude. The

figures are in agreement in indicating that shifts in policy that serve to lower the poverty

rate can have a positive effect on the well-being of households in affected neighborhoods.
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This neighborhood effect is separate from any direct effect that particular households in

that neighborhood may experience from their own increase in earnings. Not only are the

results clear as to the direction of the effect but they also allow us to measure its magnitude,

and to observe that the size of the effect of a change in neighborhood poverty will in general

differ with the level at which the effect is measured. That is, the model allows for estimation

of different effects at different poverty levels. Such information is useful to policy makers

who must decide where to distribute public resources for the best possible impact.

In any application, the virtues of the CT model relative to the linear IV model rely on

the suitability of the restrictions embodied in the structural equations (2.1) and (2.2) and

the joint normality of unobserved variables. In order to investigate, information matrix (IM)

tests of the CT specifications were conducted. These IM procedures test for equality of

components of the expected outer product of score and expected negative Hessian forms of

the information matrix whose inverse is the asymptotic variance of ML estimates of model

parameters.24

For specifications both including and excluding the neighborhood minority variableWmin,

without additional exogenous regressors, the test was carried out by comparing the two forms

of the IM matrix diagonal terms associated with the coefficients on Wpov, the coefficient on

the dummy variable for residence in Baltimore, and the off diagonal cross-derivative term.

The p-values for these tests were 0.0576 and 0.0083. The test was also computed using all

derivative and cross-derivative terms associated with the coefficients on Wpov and all city

dummy variables for the specification in which Wmin is omitted, with a resulting p-value of

0.0554.

The results in hand indicate that the IM test statistic for the CT specification is at best

near the margin of the rejection region at conventional testing levels, and possibly well inside

the rejection region, e.g. for the case where the neighborhood minority variable is included.

24See White (1982) for details of the information matrix test. Implementation as described in Chesher
(1983) was used, in which it was shown that the test statistic can be computed as n times the R2 of a least
squares regression of a vector of ones on first and second order derivatives of the log density, see also Chesher
(1984) for an interpretation of the test in terms of uncontrolled parameter heterogeneity.
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Accordingly some exploration of the sensitivity of the estimates to relaxation of the CT

specification is warranted. The next section sets out a brief investigation of the sensitivity

of some of the empirical findings to the removal of the first stage specification and the joint

normality restriction.

4.3 Sensitivity Analysis with IV Models

Table 4 reports set estimates and confidence intervals for the conditional marginal effect of the

neighborhood poverty index on the conditional probability that a head of household in New

York responds that they are “not too happy” (y = 0) and that they are happy (y = 2) using

the IV model described in Section 3. The model maintains the specification for Y in equation

(2.1) with U ∼ N(0, 1), but without any specification for the determination of endogenous

W as in equation (2.2) in the CT model. The set estimates and confidence intervals are

compared to point estimates and confidence intervals obtained using the more restrictive

CT specification, the results of which were presented in Section 4.2. These quantities are

functions of parameter vector θ defined in (2.5), comprising the threshold parameters c1 and

c2, the four dimensional parameter γ multiplying randomization site indicators (with base

site taken to be New York), and the coefficients on neighborhood characteristics W . It is

seven dimensional in specifications in which only neighborhood poverty is included in W ,

and eight dimensional when share neighborhood minority is also included.

The conditional marginal effects depend additionally on the particular value of the en-

dogenous right hand side variable(s) at which they are evaluated. The values reported here

are obtained with the endogenous variables fixed at their sample median in New York.25

The CT estimates and confidence intervals are reported both with and without the inclusion

of additional exogenous variables. When included, the marginal effects are also measured

25The observed median values are approximately −0.20 for neighborhood poverty and 0.49 for neighbor-
hood minority. The same values are used for results reported in application of the OP and CT models for
estimation of marginal effects and counterfactual response probabilities. The median poverty rate is slightly
sensitive to the treatment of observations in which SWB is missing, of which there were two such observations
in New York. These were kept in the sample for the sake of computing the median.
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conditional on their median values, as in Section 4.2. Results reported for the IV model use

only city dummies as included exogenous variables for computational tractability.

Computations were carried out as described in Section 3.2. Recall that all reported sets

are of the form {r : T̂ (r) ≤ cn(r)} for a given cn(·). Analog set estimates are obtained

by setting cn(·) = 0, corresponding to those values of the conditional marginal effect for

which there is some θ such that all sample inequalities m̂j (θ) ≤ 0 hold, equivalently such

that maxj m̂j (θ) ≤ 0. In finite samples application of the max operator to a noisy sample

estimate will tend to result in an overestimate of m̂j (θ). Consequently, the set of θ such that

maxj m̂j (θ) ≤ 0 will tend to be smaller than the set of θ such that maxj mj (θ) ≤ 0, where

eachmj (θ) is a corresponding population moment, i.e. the analog set estimate will be inward

biased. The corrected set estimates in Table 4 adjust for this by setting cn(·) = cSNn (0.50)

such that the asymptotic probability that the maximum (minimum) value in the set estimate

for g (θ) is less (more) than its population value is no greater than one half. That is, with

probability at least one half asymptotically, each endpoint estimate is no tighter than its

population target. Such a correction is a half-median-unbiased set estimate, as proposed in

Chernozhukov et al. (2013). The set (3.6) with this value of cn(·) provides an asymptotic

50% confidence set for the conditional marginal effect. The third set estimate provided is a

95% confidence set obtained using the self-normalized critical value cn(·) = cSNn (0.05) from

(3.7). The fourth set estimate provided uses the discard resampling (DR) bootstrap critical

value, cn(·) = cDR
n (·, 0.05) discussed in Section 3.2.

Consider first the results from the IV specification reported in Table 4 in comparison

to those obtained from the complete triangular (CT) specification. When computing set

estimates and confidence sets for marginal effects, separate searches were conducted over the

region in which β ≤ 0 and that in which β ≥ 0 with the results reported in Columns (3)

and (4), respectively. The region in which β ≤ 0 is that in which neighborhood poverty has

a zero or negative effect on SWB, and that in which β ≥ 0 is that in which neighborhood

poverty has a zero or positive effect on SWB. In principle the restrictions of the IV model
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can be sufficient to sign β, and hence the conditional marginal effect, but with the MTO

data at hand this is not the case. Using the inequalities implied by the IV model, the set

estimates and confidence sets obtained comprise the union of those in columns (3) and (4).

A researcher who finds it reasonable to assume that the effect of neighborhood poverty on

counterfactual SWB is negative (β ≤ 0) can simply take the IV model set estimates and

confidence regions to be those reported in column (3).26

For the marginal effect of neighborhood poverty on respondents answering they are either

“not too happy” or “happy” we see that the IV interval estimates are fairly wide. For the

marginal effect on respondents answering “not too happy”, the CT point estimates are near

the lower bound of the IV point estimates in column (3). Similarly, the marginal effect on

respondents answering they are “happy” is measured as slightly negative using the CT model,

but can range over a much wider domain under the IV specification, all the way to −0.258

according to the analog estimate. Thus, if one doubts the veracity of the second equation

of the CT model, one must consider the possibility that the effect of neighborhood poverty

on happiness could be substantially stronger than what the CT model implies. Moreover,

the effect of sampling variation on both the CT and IV estimates is not negligible, and the

corrected IV interval estimates and 95% confidence intervals are substantially wider than

both the IV analog estimates and the CT 95% confidence intervals.

The results reported in Table 5 are for specifications in which the neighborhood minority

index is included as an additional exogenous variable. By construction these result in larger

intervals than those reported in Table 4. This is because the specification that excludes this

variable can be viewed as the special case of the more general specification in which the

coefficient on neighborhood minority is fixed at zero. Once again the IV analog interval esti-

26There are alternative routes to signing the effect of β. Note that, by contrast, the CT model produces
point estimates and confidence sets that imply that the effect of neighborhood poverty on SWB is negative.
The “first-stage” specification of the CT model implies that the direction of the effect of voucher receipt on
the poverty level of a household’s neighborhood in a given city is the same for all households. That is, the
CT model embeds an instrument monotonicity restriction as in Imbens and Angrist (1994). In Appendix
E we discuss how the addition of such a restriction to the IV model can also serve to sign the effect of
neighborhood poverty on SWB.
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mates always include the CT point estimates, although now both intervals include marginal

effects of zero in addition to effects much larger in magnitude than those obtained from the

CT model.27 The ability to measure this marginal effect to any reasonable accuracy thus

seems especially sensitive to the inclusion of the second equation in the CT specification.

Table 6 reports point and set estimates and 95% confidence regions on counterfactual

response probabilities using the CT and IV specifications, the latter imposing the restriction

β ≤ 0 throughout. The probabilities in Table 6 correspond to response probabilities for

individuals in New York that would be obtained by exogenously shifting the endogenous

neighborhood poverty index to the median level in New York (columns (1)-(3)) and to

one standard error below the median level in New York (columns (4)-(6)), respectively. This

presents results for the subpopulation of individuals with exogenous covariates X at the same

values as used for Table 4, using specifications in which the neighborhood minority rate was

not included. In all but one case the analog estimates from the IV model contain the CT

model point estimates, with the sole exception that the point estimate of 0.166 in column

(5) lies barely outside the lower bound of the IV set estimate in column (6). The sensitivity

analysis afforded by the IV model generally accords with the CT results, but indicates that

without the additional restrictions used in the CT specification, the ranges of possible values

of counterfactual probabilities are much wider in magnitude. For these probabilities, the

IV specification is not as informative. However, bounds and confidence intervals on the

probability that individuals answer they are in the highest happiness category indicate that

the CT estimates for this probability are close to the lower end of what is indicated by the

IV specification. Thus, if the additional restrictions of the CT specification are incorrect, it

could be that the CT specification substantially under estimates the fraction of individuals

that would report they were happy at these neighborhood poverty levels, in particular for

the counterfactual in which neighborhood poverty is lowered by one standard error.

27Note that while the IV bound estimates would generally be expected to contain the CT point estimates,
this need not occur if the CT model is misspecified.
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5 Conclusion

In this paper we considered the use of nonlinear instrumental variable models for ordered

outcomes to measure marginal effects and counterfactual probabilities. In the context of

research on happiness data, it has recently been shown that comparisons of means across

populations and the use of OLS estimates are problematic with ordinal outcomes. The

inherent problem is that the methods are sensitive to the cardinal scale on which the ordered

outcome is measured. There is no natural cardinal measure for happiness. The use of linear

model IV estimation methods intended to deal with endogeneity are similarly problematic.

Instead, estimators employing nonlinear IV models may be used that respect the ordinal

nature of the outcome data. This enables the measurement of ceteris paribus effects, which

are often of interest to economists, and useful for studying the impact of exogenous changes.

With these methods, researchers need not impose a cardinal scale for the ordered outcome.

We demonstrated the use of nonlinear IV models in an application to data from the MTO

housing voucher experiment. Point estimates of structural parameters as well as marginal

effects and counterfactual probabilities for reported household happiness induced by changes

in neighborhood poverty were provided using a CT specification. As is the case with any

structural model, the results rely on the restrictions employed by the model used. Thus, we

turned to consideration of partially identifying IV models that nested the CT specification,

and allowed some degree of investigation of the sensitivity of the structure of the triangular

model to relaxation of the auxiliary equation for the endogenous variable. In the absence

of the complete specification provided by the CT model the data have substantially less to

say about the magnitudes of marginal effects and counterfactual probabilities. This analysis

highlights the under-appreciated power of the often-used control function restrictions that

are embodied in the CT model.

Recently, there have been many studies of happiness, and there are other contexts in

which outcomes are measured on an inherently ordinal scale. Often, there may be endogenous

variables, and IV methods are called for. This paper has presented some methods that can
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be used in such contexts, which are compatible with ordinal outcome data. There is ample

scope for application and further development of such methods.
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Tables and Figures

Table 1: Conditional counterfactual probabilities and marginal effects in numerical examples

Bounds on Counterfactual Probabilities Bounds on Marginal Effects

y1 y2 p(θ0, y, x, w) s22 = 1.00 s22 = 0.01 ∂p(θ0,y,x,w)
∂w

s22 = 1.00 s22 = 0.01

0.5 0.16 [0.03, 0.64] [0.10, 0.23] −0.24 [−0.49,−0.06] [−0.31,−0.19]

0 0 0.31 [0.07, 0.76] [0.24, 0.39] −0.35 [−0.63,−0.05] [−0.57,−0.23]

-0.5 0.50 [0.14, 0.88] [0.41, 0.62] −0.40 [−0.66,−0.06] [−0.61,−0.26]

0.5 0.46 [0.17, 0.67] [0.31, 0.59] −0.14 [−0.45, 0.16] [−0.36,−0.05]

1 0 0.48 [0.18, 0.69] [0.32, 0.61] 0.06 [−0.23, 0.31] [−0.03, 0.15]

-0.5 0.40 [0.17, 0.61] [0.27, 0.52] 0.23 [−0.09, 0.56] [0.12, 0.42]

0.5 0.38 [0.09, 0.83] [0.30, 0.51] 0.38 [0.05, 0.67] [0.23, 0.64]

2 0 0.21 [0.05, 0.69] [0.15, 0.29] 0.29 [0.07, 0.58] [0.19, 0.47]

-0.5 0.10 [0.02, 0.57] [0.06, 0.15] 0.17 [0.04, 0.45] [0.13, 0.23]
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Table 2: Ordered probit estimation of neighborhood effects on SWB

(1) (2) (3) (4) (5) (6)

βPoverty -0.0886*** -0.0791*** -0.0904*** -0.0885***

(0.0209) (0.0238) (0.0217) (0.0248)

βMinority -0.0585*** -0.0213 -0.0471** -0.0044

(0.0206) (0.0235) (0.0223) (0.0256)

γBaltimore 0.3068*** 0.3150*** 0.2996*** 0.2197** 0.2375*** 0.2180**

(0.0766) (0.0772) (0.0772) (0.0856) (0.0859) (0.0862)

γBoston 0.1812*** 0.1577** 0.1589** 0.0917 0.0866 0.0877

(0.0669) (0.0716) (0.0717) (0.0755) (0.0788) (0.0791)

γChicago 0.2800*** 0.2666*** 0.2828*** 0.1609** 0.1452* 0.1613**

(0.0667) (0.0665) (0.0667) (0.0785) (0.0784) (0.0786)

γLA 0.0957 0.1045 0.0967 0.0676 0.0691 0.0677

(0.0645) (0.0647) (0.0645) (0.0728) (0.0729) (0.0728)

c1 -0.4935*** -0.5243*** -0.4986*** -0.7239*** -0.6989*** -0.7225***

(0.0472) (0.0467) (0.0476) (0.2600) (0.2613) (0.2609)

c2 0.8962*** 0.8620*** 0.8914*** 0.7033*** 0.7240*** 0.7048***

(0.0485) (0.0475) (0.0489) (0.2603) (0.2617) (0.2611)

N 3263 3263 3263 3175 3175 3175

Notes: The dependent variable is Subjective Well Being (SWB) which takes the value zero for not too happy, one for
pretty happy and two for very happy; columns (1)-(3) use a set of dummy variables for randomization site as covariates
X while columns (4)-(6) use a complete set of baseline characteristics (as given in Table B.1), and whether a sample
adult was included in the first release of the long-term evaluation survey fielding period, as covariates X; all regressions
are weighted; * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01.
Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data,
2008-2010.
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Table 3: Complete triangular model estimation of neighborhood effects on SWB

(1) (2) (3) (4) (5) (6)

βPoverty -0.1487** -0.2876*** -0.1609** -0.3141***

(0.0630) (0.0994) (0.0642) (0.1119)

βMinority -0.0619 0.3417* -0.1147 0.3656

(0.1359) (0.2042) (0.1399) (0.2322)

γBaltimore 0.2778*** 0.3131*** 0.3823*** 0.1814** 0.1949 0.3127***

(0.0809) (0.1052) (0.0965) (0.0906) (0.1200) (0.1153)

γBoston 0.1435* 0.1531 0.4967** 0.0526 0.0093 0.3779*

(0.0771) (0.1954) (0.2243) (0.0822) (0.1801) (0.2253)

γChicago 0.2989*** 0.2676*** 0.2363*** 0.1803** 0.1591* 0.1394*

(0.0694) (0.0742) (0.0788) (0.0808) (0.0831) (0.0845)

γLA 0.0893 0.1045 0.0688 0.0663 0.0690 0.0600

(0.0640) (0.0647) (0.0628) (0.0726) (0.0729) (0.0703)

c1 -0.4750*** -0.5247*** -0.3704*** -0.7291*** -0.6788** -0.8070***

(0.0508) (0.0488) (0.0923) (0.2599) (0.2694) (0.2528)

ln(c2 − c1) 0.3271*** 0.3267*** 0.2705*** 0.3531*** 0.3505*** 0.2984***

(0.0233) (0.0229) (0.0721) (0.0237) (0.0246) (0.0769)

ρ 0.0668 0.0036 0.0769 0.0676

(0.0681) (0.1400) (0.0675) (0.1383)

ρ1 0.0563 0.0732

(0.0662) (0.0653)

ρ2 -0.2718 -0.2579

(0.1702) (0.1844)

cov(v1, v2) 0.4502*** 0.4200***

(0.0242) (0.0224)

N 3263 3263 3263 3175 3175 3175

Notes: The dependent variable is Subjective Well Being (SWB) which takes the value zero for not too happy, one for
pretty happy and two for very happy; columns (1)-(3) use a set of dummy variables for randomization site as covariates
X while columns (4)-(6) use a complete set of baseline characteristics (as given in Table B.1), and whether a sample
adult was included in the first release of the long-term evaluation survey fielding period, as covariates X; all regressions
are weighted; * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01.
Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-
2010.
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Table 4: Complete triangular (CT) and nonlinear IV estimates and confidence sets for
marginal effects for the probability of reporting SWB “not too happy” (0, the lowest cat-
egory) and “happy” (2, the highest category) with respect to neighborhood poverty, with
neighborhood minority excluded, at the New York median level. Columns CT (1) and CT
(2) report results for the CT model excluding and including additional exogenous covariates,
respectively. Columns IV (1) and IV (2) report results from the IV model with parameter
restrictions β ≤ 0 and β ≥ 0, respectively.

(1) (2) (3) (4)
CT (1) CT (2) IV (1) IV (2)

β ≤ 0 β ≥ 0

marginal effect on “not too happy”

analog estimate 0.052 0.062 [0.019, 0.261] [−0.211,−0.036]
corrected estimate – – [0.000, 0.410] [−0.340, 0.000]
95% interval [0.008, 0.096] [0.013, 0.110] [0.000, 0.472] [−0.351, 0.000]
95% bootstrap interval – – [0.000, 0.391] [−0.340, 0.000]

marginal effect on “happy”

analog estimate −0.040 −0.034 [−0.258,−0.032] [0.035, 0.199]
corrected estimate – – [−0.375, 0.000] [0.000, 0.342]
95% interval [−0.074,−0.007] [−0.061,−0.006] [−0.398, 0.000] [0.000, 0.372]
95% bootstrap interval – – [−0.375, 0.000] [0.000, 0.342]
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Table 5: Complete triangular (CT) and nonlinear IV estimates and confidence sets for
marginal effects for the probability of reporting SWB “not too happy” (0, the lowest cat-
egory) and “happy” (2, the highest category) with respect to neighborhood poverty, with
neighborhood minority included, at the New York median level. Columns CT (1) and CT
(2) report results for the CT model excluding and including additional exogenous covariates,
respectively. Columns IV (1) and IV (2) report results from the IV model with parameter
restrictions β ≤ 0 and β ≥ 0, respectively.

(1) (2) (3) (4)
CT (1) CT (2) IV (1) IV (2)

β ≤ 0 β ≥ 0

marginal effect on “not too happy”

analog estimate 0.096 0.115 [0.001, 0.289] [−0.221, 0.000]
corrected estimate – – [0.000, 0.503] [−0.456, 0.000]
95% interval [0.034, 0.159] [0.038, 0.192] [0.000, 0.550] [−0.465, 0.000]
95% bootstrap interval – – [0.000, 0.496] [−0.435, 0.000]

marginal effect on “happy”

analog estimate −0.089 −0.081 [−0.300, 0.000] [0.000, 0.198]
corrected estimate – – [−0.482, 0.000] [0.000, 0.393]
95% interval [−0.162,−0.016] [−0.160,−0.002] [−0.571, 0.000] [0.000, 0.428]
95% bootstrap interval – – [−0.480, 0.000] [0.000, 0.392]
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Table 6: Complete triangular (CT) and nonlinear IV estimates and confidence sets for coun-
terfactual response probabilities of reporting SWB “not too happy” (0, the lowest category),
“pretty happy” (1, the middle category), and “happy” (2, the highest category) with respect
to neighborhood poverty, with neighborhood minority excluded, at the New York median
and one standard deviation below the NY median level. Columns CT (1) and CT (2) report
results for the CT model excluding and including additional exogenous covariates, respec-
tively. IV results were obtained under the restriction β ≤ 0.

(1) (2) (3) (4) (5) (6)
CT (1) CT (2) IV CT (1) CT (2) IV

NY median poverty NY median poverty minus 1 s.e.

counterfactual response probability for “not too happy”

analog estimate 0.307 0.387 [0.167, 0.532] 0.256 0.326 [0.119, 0.427]

corrected estimate – – [0.055, 0.714] – – [0.027, 0.605]

95% interval [0.274, 0.339] [0.299, 0.475] [0.041, 0.750] [0.210, 0.302] [0.236, 0.416] [0.024, 0.626]

95% bootstrap – – [0.067, 0.727] – – [0.027, 0.621]

counterfactual response probability for “pretty happy”

analog estimate 0.504 0.485 [0.136, 0.662] 0.512 0.509 [0.058, 0.651]

corrected estimate – – [0.000, 0.844] – – [0.000, 0.832]

95% interval [0.484, 0.525] [0.442, 0.528] [0.000, 0.874] [0.492, 0.531] [0.476, 0.541] [0.000, 0.883]

95% bootstrap – – [0.000, 0.807] – – [0.000, 0.828]

counterfactual response probability for “happy”

analog estimate 0.189 0.128 [0.121, 0.383] 0.233 0.166 [0.171, 0.529]

corrected estimate – – [0.036, 0.603] – – [0.071, 0.717]

95% interval [0.164, 0.214] [0.079, 0.177] [0.017, 0.633] [0.187, 0.279] [0.101, 0.230] [0.044, 0.744]

95% bootstrap – – [0.037, 0.613] – – [0.084, 0.733]
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Figure 1: p(y;x,w) across w for NY respondents
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(a) p(0;x,w) across neighborhood poverty
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(b) p(1;x,w) across neighborhood poverty
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(c) p(2;x,w) across neighborhood poverty
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(d) p(0;x,w) across neighborhood minority
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(e) p(1;x,w) across neighborhood minority
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(f) p(2;x,w) across neighborhood minority

Notes: The dependent variable Y or SWB takes the value zero for not too happy, one for pretty happy and two for very happy. Solid lines connect eleven predicted conditional
probabilities for w ∈ {−6,−5, ...,+3,+4} using an ordered probit model as reported in columns (4)-(5) of Table 2 while dashed lines connect eleven predicted conditional
probabilities for w ∈ {−6,−5, ...,+3,+4} using a complete triangular model as reported in columns (4)-(5) of Table 3. Values of X variables are held fixed at the NY sample
median, and randomization assignment is to the experimental voucher group. The dark shaded area gives 95% confidence intervals for ordered probit predictions using the delta
method while the light shaded area gives 95% confidence intervals for complete triangular model predictions using the nlcom command in STATA.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-2010.
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Figure 2: p(y;x,w) across hood poverty (minority) while holding the value of hood minority (poverty) constant at it’s median
value for NY respondents
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(a) p(0;x,w) across neighborhood poverty

-.6
-.3

0
.3

.6
.9

1.
2

1.
5

 

-6 -4 -2 0 2 4
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(d) p(0;x,w) across neighborhood minority
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(e) p(1;x,w) across neighborhood minority
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(f) p(2;x,w) across neighborhood minority

Notes: The dependent variable Y or SWB takes the value zero for not too happy, one for pretty happy and two for very happy. Solid lines connect eleven predicted conditional
probabilities for w ∈ {−6,−5, ...,+3,+4} using an ordered probit model as reported in column (6) of Table 2 while dashed lines connect eleven predicted conditional probabilities
for w ∈ {−6,−5, ...,+3,+4} using a complete triangular model as reported in column (6) of Table 3. Values of X variables are held fixed at the NY sample median, and
randomization assignment is to the experimental voucher group. The dark shaded area gives 95% confidence intervals for ordered probit predictions using the delta method
while the light shaded area gives 95% confidence intervals for complete triangular model predictions using the nlcom command in STATA.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-2010.
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Figure 3: Marginal effects across w for NY respondents
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Notes: The dependent variable Y or SWB takes the value zero for not too happy, one for pretty happy and two for very happy. Solid lines connect eleven predicted marginal
effects for w ∈ {−6,−5, ...,+3,+4} using an ordered probit model as reported in columns (4)-(5) of Table 2 while dashed lines connect eleven predicted marginal effects for
w ∈ {−6,−5, ...,+3,+4} using a complete triangular model as reported in columns (4)-(5) of Table 3. Values of X variables are held fixed at the NY sample median, and
randomization assignment is to the experimental voucher group. The dark shaded area gives 95% confidence intervals for ordered probit predictions using the delta method
while the light shaded area gives 95% confidence intervals for complete triangular model predictions using the nlcom command in STATA.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-2010.
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Figure 4: Marginal effects across hood poverty (minority) while holding the value of hood minority (poverty) constant at it’s
median value for NY respondents
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Notes: The dependent variable Y or SWB takes the value zero for not too happy, one for pretty happy and two for very happy. Solid lines connect eleven predicted marginal
effects for w ∈ {−6,−5, ...,+3,+4} using an ordered probit model as reported in column (6) of Table 2 while dashed lines connect eleven predicted marginal effects for
w ∈ {−6,−5, ...,+3,+4} using a complete triangular model as reported in column (6) of Table 3. Values of X variables are held fixed at the NY sample median, and
randomization assignment is to the experimental voucher group. The dark shaded area gives 95% confidence intervals for ordered probit predictions using the delta method
while the light shaded area gives 95% confidence intervals for complete triangular model predictions using the nlcom command in STATA.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-2010.
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A Details of Bound Derivations

This section provides further mathematical detail for the derivation of bounds for the IV

model presented in Section 3.1. To proceed with set identification analysis for model param-

eters θ ≡ (β, γ, c1, c2), define the sets

U (y, x, w; θ) ≡


(−∞, c1 − wβ − xγ] , if y = 0,

(c1 − wβ − xγ, c2 − wβ − xγ] , if y = 1,

(c2 − wβ − xγ,∞) , if y = 2.

 . (A.1)

From Chesher and Rosen (2017) we have for any set S ⊆ R the conditional containment

inequality

Cθ (S|x, z) ≡ P [U (Y,X,W ; θ) ⊆ S|X = x, Z = z] ≤ P [U ∈ S|X = x, Z = z] ,

as well as the conditional capacity inequality

P [U ∈ S|X = x, Z = z] ≤ P [U (Y,X,W ; θ) ∩ S ≠ ∅|X = x, Z = z] ,

where

Cθ (S|x, z) ≡ 1− Cθ (Sc|x, z) = P [U (Y,X,W ; θ) ∩ S ≠ ∅|X = x, Z = z] .

In the context of the ordered outcome IV model, the capacity and containment functional

inequalities take a particular form, which is now derived. Define for y ∈ {0, 1, 2, 3}, x ∈
Supp (X), and any w ∈ Supp (W ) the function c (y, x, w; θ) as follows.

c (0, x, w; θ) ≡ −∞, c (1, x, w; θ) ≡ c1 − xγ − wβ,

c (2, x, w; θ) ≡ c2 − xγ − wβ, c (3, x, w; θ) ≡ ∞.

Thus, we can express the set U (y, x, w; θ) as

U (y, x, w; θ) = [c (Y,X,W ; θ) , c (Y + 1, X,W ; θ)] ,

with the lower (upper) bound of the interval understood to be open in the event c (Y,X,W ; θ) =

3



−∞ (= +∞).1

We can now re-express the containment and capacity functionals as

1. For all t ∈ R:

Cθ ((−∞, t] |x, z) = P [c (Y + 1, X,W ; θ) ≤ t|X = x, Z = z] ,

Cθ ((−∞, t] |x, z) = P [c (Y,X,W ; θ) ≤ t|X = x, Z = z] .

The difference Cθ ((−∞, t] |x, z)− Cθ ((−∞, t] |x, z) is equal to

P [c (Y,X,W ; θ) ≤ t < c (Y + 1, X,W ; θ) |X = x, Z = z] .

2. For all s, t ∈ R, s ≤ t,

Cθ ([t1, t2] |x, z) = P [t1 ≤ c (Y,X,W ; θ) ∧ c (Y + 1, X,W ; θ) ≤ t2|X = x, Z = z] ,

Cθ ([t1, t2] |x, z) = P [c (Y,X,W ; θ) ≤ t2 ∧ c (Y + 1, X,W ; θ) ≥ t1|X = x, Z = z] .

3. For all t ∈ R:

Cθ ([t,∞) |x, z) = P [c (Y,X,W ; θ) ≥ t|X = x, Z = z] ,

Cθ ([t,∞) |x, z) = P [c (Y + 1, X,W ; θ) ≥ t|X = x, Z = z] .

If U ∼ N (0, 1) and U ∥ (X,Z), then using results from Chesher and Rosen (2017)

Theorem 4 we have that the identified set for θ ≡ (β, c1, c2, γ1, γ2, γ3, γ4) are those parameters

such that for all s, t ∈ R, s < t:

max
x,z

P [c (Y + 1, X,W ; θ) ≤ t|X = x, Z = z] ≤ Φ (t) ,

max
x,z

P [c (Y,X,W ; θ) ≥ t|X = x, Z = z] ≤ 1− Φ (t) ,

max
x,z

P [(s ≤ c (Y,X,W ; θ) ∧ c (Y + 1, X,W ; θ) ≤ t) |X = x, Z = z] ≤ Φ (t)− Φ (s) .

If we continue to assume that U ∥ (X,Z) but without imposing U ∼ N (0, σ2), we have

from Chesher and Rosen (2017) Corollary 3 that bounds on θ are given by the following

1When the endpoints of the intervals in (A.1) are finite it is convenient to define these intervals as closed
intervals which include their endpoints, although this is of no substantive consequence with continuously
distributed U .
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inequalities for all t1, t2 ∈ R±∞ with t1 < t2, where R±∞ denotes the extended real line (i.e.

inclusive of ±∞):

max
x,z

Cθ ([t1, t2] |x, z) ≤ min
x,z

Cθ ([t1, t2] |x, z) .

Substitution for Cθ and Cθ then delivers the inequalities displayed in the main text. With

this assumption in place we require a location normalization, for which we can use the

restriction that Median (U |X,Z) = 0, giving the inequalities

max
x,z

Cθ ((−∞, 0] |x, z) ≤ 1

2
≤ min

x,z
Cθ ((−∞, 0] |x, z) . (A.2)

If we then drop the independence restriction U ∥ (X,Z) and replace it with only the

weaker restriction that Median (U |X,Z) = 0, we obtain the inequalities given in (3.3) and

(3.4).

max
x,z

P [c (Y + 1, X,W ; θ) ≤ 0|X = x, Z = z] ≤ 1

2
,

max
x,z

P [c (Y,X,W ; θ) ≥ 0|X = x, Z = z] ≤ 1

2
.
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B Data Description

Table B.1 shows the set of covariates which were elicited in a baseline survey before ran-

domization took place in 1994-1998. These covariates include randomization site, gender,

age, race and ethnicity, marital status, work and education, whether on welfare, household

income, household size, and covariates on the kind of neighborhood the individual was living

in and reasons why they wanted to move. As may be seen in Table B.1 the baseline covariates

are quite balanced across different treatment arms.

Prior to our access, some observations for baseline covariates in the ICPSR data were

replaced with imputed values (or group averages), either when the observation on the co-

variate was missing or to maintain data confidentiality; further details are provided in the

codebook documentation of the MTO Restricted Access Dataset (ICPSR 34860) for the Sci-

ence article Ludwig et al. (2012). We thus report estimates in all point-identifying models

with and without controlling for these baseline covariates.

In empirical analysis that produces point estimates we use weights in our empirical analy-

sis following Ludwig et al. (2012) to account for differences in random assignment proportions

across sites and time as well as various aspects of survey administration. Further details re-

garding these weights can be found in the supplementary material to Ludwig et al. (2012).

In unreported results, we also carried out all computations without incorporating sampling

weights and obtained only small numerical differences, resulting in qualitatively similar con-

clusions. These weights were not used in empirical analysis using moment inequalities, as

weighting different covariate subpopulations has no effect on identification analysis at the

population level, and its effect on inference with partial identification using many moment

inequality has not been studied.

Ludwig et al. (2012) construct residential poverty using the z-score of duration weighted

share poor in an individual’s neighborhood while share minority is constructed using the z-

score of duration weighted share minority. Share poor is the fraction of census tract residents

living below the poverty threshold while share minority is the fraction of census tract minority

residents. These variables are constructed using interpolated data from the 1990 and 2000

decennial census as well as the 2005-2009 American Community Survey for all neighborhoods

MTO adults lived in between random assignment and the start of the long term survey

fielding period. Duration weighted share poor and share minority are the ‘average measures

weighted by the amount of time respondents lived at each of their addresses between random

assignment and May 2008 (just prior to the start of the long term survey fielding period)’.
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Z-scores of these variables are standardized values of the duration-weighted neighborhood

characteristic, using the control group weighted average and standard deviation.2

Figures B.1 and B.2 show the distributions of these across different treatment groups.

Adults belonging to the experimental voucher group lived in less poor neighborhoods than

either the MTO traditional section 8 voucher group or the control group (Figure B.1). Adults

belonging to the experimental voucher group also lived in neighborhoods that had fewer

minority residents, but the difference from the MTO traditional section 8 voucher group or

the control group is less striking than for neighborhood poverty (Figure B.2).

2Ludwig et al. (2012) use duration weighted measures rather than current measures of neighborhood
environment in their main analysis since an individual’s life outcomes may depend on cumulative exposure to
the neighborhood environment. Nevertheless, they find that their main conclusions remain robust to the use
of current measures of neighborhood environment, or neighborhood poverty and share minority measured at
the start of the MTO long-term fieldwork (May 2008).
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Table B.1: Baseline characteristics of MTO adults or covariates X across randomization
groups

Experimental Section 8 Control

Site:

Baltimore 0.14 0.14 0.14

Boston 0.19 0.19 0.22

Chicago 0.27 0.16 0.16

Los Angeles 0.19 0.22 0.27

New York 0.22 0.29 0.20

Demographic characteristics:

African American (non-hispanic) 0.67 0.59 0.63

Hispanic ethnicity (any race) 0.28 0.36 0.32

Female 0.99 0.98 0.98

<= 35 years old 0.14 0.14 0.15

36-40 years old 0.21 0.23 0.22

41-45 years old 0.25 0.22 0.23

46-50 years old 0.19 0.19 0.18

Never married 0.64 0.61 0.64

Parent while younger than 18 years old 0.26 0.26 0.25

Working 0.27 0.28 0.24

Enrolled in school 0.16 0.18 0.16

High school diploma 0.40 0.35 0.37

General Education Development (GED) certificate 0.16 0.18 0.19

Receiving Aid to Families with Dependent Children (AFDC) 0.77 0.74 0.78

Household characteristics:

Household income (dollars) 12,659 12,799 12,655

continued on next page
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Table B.1: Baseline characteristics of MTO adults or covariates X across randomization
groups

Experimental Section 8 Control

Household owns a car 0.17 0.18 0.17

Household member had a disability 0.15 0.17 0.15

No teens in household 0.61 0.62 0.64

Household size is <= 2 0.21 0.22 0.20

Household size is 3 0.30 0.30 0.32

Household size is 4 0.24 0.24 0.22

Neighborhood characteristics:

Household member was a crime victim in past 6 months 0.43 0.42 0.41

Neighborhood streets very unsafe at night 0.49 0.54 0.51

Very dissatisfied with neighborhood 0.47 0.48 0.45

Household living in neighborhood > 5 years 0.60 0.63 0.60

Household moved more > 3x in last 5 yrs 0.09 0.08 0.11

Household has no family living in neighborhood 0.63 0.64 0.63

Household has no friends living in neighborhood 0.40 0.41 0.41

Household head chatted with neighbor >= 1x per week 0.53 0.50 0.54

Household head very likely to to tell on neighborhood kid 0.55 0.52 0.56

Household head very sure of finding apartment 0.47 0.50 0.46

Housheold head applied for Section 8 before 0.39 0.40 0.43

Primary or secondary reason for wanting to move:

Want to move to get away from gangs and drugs 0.78 0.75 0.78

Want to move for better schools for children 0.49 0.54 0.47

Want to move to get a bigger/better apartment 0.45 0.44 0.46

continued on next page
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Table B.1: Baseline characteristics of MTO adults or covariates X across randomization
groups

Experimental Section 8 Control

Want to move to get a job 0.07 0.05 0.06

N 1422 655 1098

Notes: Each cell gives the average value of a variable in the sub-sample. Only observations with non-missing values for

Subjective Well Being (SWB), neighbourhood characteristics and x covariates are used. There are seven observations with

missing SWB, three observations with missing neighborhood characteristics and 89 out of 3,273 observations with missing

household income. Some observations of covariates include imputed values.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-

2010.
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Figure B.1: Distribution of neighborhood poverty by randomization group
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Notes: Only observations with non-missing values for neighborhood poverty are used (neigh-

borhood poverty is missing for 3 out of 3,273 adults). These include 1,453 adults in the

Experimental group, 678 adults in the Section 8 group and 1,139 adults in the Control group.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation

Science Article Data, 2008-2010.
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Figure B.2: Distribution of neighborhood minority by randomization group
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Notes: Only observations with non-missing values for neighborhood minority are used (neigh-

borhood minority is missing for 3 out of 3,273 adults). These include 1,453 adults in the

Experimental group, 678 adults in the Section 8 group and 1,139 adults in the Control group.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation

Science Article Data, 2008-2010.
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C Linear Model Estimates

We estimate linear model parameters using the ICPSR MTO data using similar methods

as Ludwig et al. (2012). Our results are very similar to theirs, with minor differences

seemingly down to small discrepancies between their data and that available through ICPSR.

The estimation sample in the original analysis has 3, 273 adults while the estimation sample

using data from ICPSR has 3, 175 adults; this is due to the missing observations on SWB,

neighborhood characteristics and household income in the ICPSR data. Additionally, some

observations for baseline covariates in the ICPSR data are replaced with imputed values (or

group averages) either when the observation is missing or to maintain data confidentiality.

The results obtained using least squares linear regression are presented in Panel A of Table

C.1; results are given using neighborhood poverty and share minority separately and together

as neighborhood characteristics W . The coefficients on W give the effect of neighborhood

characteristics on SWB under the assumption that W is uncorrelated with U .

In columns (1)-(3) of Panel A in Table C.1, dummy variables for randomization site are

used as the only covariates X. The results show a statistically significant and negative effect

of neighborhood poverty and share minority on SWB. When both neighborhood poverty

and share minority are included, the negative effect of share minority on SWB becomes

statistically indistinguishable from zero. In columns (4)-(6) of the table a complete set of

baseline covariates (as given in Table B.1) is included, and the results remain qualitatively

unchanged.

Interactions of MTO assignment and randomization site are used as instrumental vari-

ables Z in the results reported in Panel B of Table C.1.3 Unlike the results in Panel A

these estimators allow for the possibility that neighborhood characteristics are endogenous.

Under an instrument monotonicity assumption the estimated coefficients are consistent for

weighted averages of LATE parameters; see Chapter 4.5 of Angrist and Pischke (2009) for

details regarding the mixture of LATE parameters estimated when there are multiple en-

dogenous variables and additional covariates. These are, however, sensitive to the cardinal

scale used for the categorical SWB outcomes.

Columns (1)-(3) in Panel B of Table C.1 report results without the inclusion of additional

3That is, instrumental variables Z here refer to interactions of both the included exogenous variable
randomization site as well as excluded exogenous treatment assignment; these are identical to the instruments
used by Ludwig et al. (2012). For tests on the validity of these instruments and alternative estimates
(including limited information maximum likelihood (LIML) and Fuller-modified LIML) designed to adjust
for weak instruments we refer the reader to Tables S5 and S9 of the supplementary materials to Ludwig et
al. (2012).
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covariates. As before the coefficient on neighborhood poverty is negative and statistically

significantly different from zero. The coefficient on the neighborhood minority variable is

closer to zero. In column (2) it is statistically insignificant and in column (3) it is positive

and larger in magnitude, but remains statistically insignificant.

Columns (4)-(6) report results when a complete set of baseline covariates is included.

These results can be directly compared with those in Tables S5 and S9 in the supplementary

material to Ludwig et al. (2012), where estimates from IV regressions that included baseline

covariates were also reported. The results reported in Panel B of Table C.1 are qualita-

tively similar, with minor differences likely caused by the aforementioned differences in the

two estimation samples and small modifications to the data available through ICPSR. The

coefficient on neighborhood poverty on SWB in Table S5 is −0.141 while here it has been

estimated as −0.096, both having p-values less than 0.05. The coefficient on neighborhood

minority on SWB in Table S5 is −0.069 while here it has been estimated as −0.063, both
with p-values higher than 0.1. The coefficient on neighborhood poverty, while controlling for

neighborhood minority, in Table S9 is −0.261 while here it has been estimated as −0.186,
both with p-values less than 0.01. The coefficient on neighborhood minority, while control-

ling for neighborhood poverty, in Table S9 is 0.279 with a p-value between 0.05 and 0.1 while

here it has been estimated as 0.202 with a p-value of 0.105.

Table C.2 reports ITT effects obtained by linear regression of SWB on X and Z using

the ICPSR MTO data, which correspond roughly to those of Table S4 of the supplementary

material to Ludwig et. al (2012). Specifically, the coefficient on MTO voucher assignment

is the ITT effect. Columns (1)-(3) of Table C.2 report ITT estimates without including a

complete set of covariates while columns (4)-(6) report ITT estimates with inclusion of these

covariates. Column (1) pools both kinds of vouchers (experimental and section 8) together.

Column (2) excludes adults who were randomly assigned the section 8 voucher, so gives

the ITT effect of the experimental voucher on SWB. Column (3) excludes adults who were

randomly assigned the experimental voucher, so gives the ITT effect of the section 8 voucher

on SWB. In all three cases the ITT effect of an MTO voucher is positive with a p-value

between 0.01 and 0.10, consistent with a positive effect of being offered an MTO voucher on

SWB.

Compared to the case without covariates, the coefficient on the MTO voucher reported

in columns (4)-(6) of Table C.2 is slightly larger. Estimates still indicate a positive and

statistically significant effect of being offered an MTO voucher on SWB.

14



Table C.1: Linear model estimation (OLS and IV) of neighborhood effects on SWB

(1) (2) (3) (4) (5) (6)

Panel A: OLS estimation

βPoverty -0.0551*** -0.0491*** -0.0546*** -0.0534***

(0.0130) (0.0148) (0.0131) (0.0151)

βMinority -0.0367*** -0.0135 -0.0287** -0.0029

(0.0129) (0.0147) (0.0136) (0.0157)

N 3263 3263 3263 3175 3175 3175

Panel B: IV estimation

βPoverty -0.0916** -0.1803*** -0.0962** -0.1859***

(0.0382) (0.0675) (0.0376) (0.0687)

βMinority -0.0383 0.2048 -0.0632 0.2019

(0.0694) (0.1245) (0.0688) (0.1247)

N 3263 3263 3263 3175 3175 3175

Notes: The dependent variable is Subjective Well Being (SWB) which takes the value zero for not too happy, one
for pretty happy and two for very happy; columns (1)-(3) use a set of dummy variables for randomization site as
covariates X while columns (4)-(6) use a complete set of baseline characteristics (as given in Table B.1), and whether
a sample adult was included in the first release of the long-term evaluation survey fielding period, as covariates X;
all regressions are weighted; * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01.
Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data,
2008-2010.
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Table C.2: Linear model estimation (ITT) of neighborhood effects on SWB

(1) (2) (3) (4) (5) (6)

Z = Any voucher 0.0630** 0.0660**

(0.0283) (0.0284)

Z = Low pov voucher 0.0521* 0.0546*

(0.0298) (0.0298)

Z = Sec 8 voucher 0.0793** 0.0875**

(0.0385) (0.0440)

N 3266 2593 1811 3178 2523 1753

Notes: The dependent variable is Subjective Well Being (SWB) which takes the value zero for not too happy, one for pretty
happy and two for very happy; columns (1)-(3) use a set of dummy variables for randomization site as covariates X while
columns (4)-(6) use a complete set of baseline characteristics (as given in Table B.1), and whether a sample adult was
included in the first release of the long-term evaluation survey fielding period, as covariates X; all regressions are weighted;
* p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01.
Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-
2010.
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D Complete Triangular Model First Stage Estimates

First stage estimates for the CT model estimated in Section 4.2 are presented below in Table

D.1.

Table D.1: Triangular IV estimation of neighborhood effects on SWB, first stage

(1) (2) (3) (4) (5) (6)

δexp,Balt
1 -1.0912*** -0.8235*** -1.0910*** -1.1591*** -0.9015*** -1.1589***

(0.1017) (0.1143) (0.1021) (0.1038) (0.1190) (0.1042)

δexp,Bos
1 -1.2798*** -1.7007*** -1.2819*** -1.2154*** -1.4961*** -1.2168***

(0.0877) (0.1264) (0.0876) (0.0896) (0.1189) (0.0898)

δexp,Chi
1 -0.3068*** 0.0993 -0.3055*** -0.3470*** 0.0334 -0.3450***

(0.0852) (0.0736) (0.0853) (0.0915) (0.0792) (0.0917)

δexp,LA1 -0.8787*** -0.3421*** -0.8801*** -0.8137*** -0.3436*** -0.8142***

(0.1007) (0.0822) (0.1003) (0.1044) (0.0916) (0.1042)

δexp,NY
1 -0.8052*** -0.1401 -0.8021*** -0.7993*** -0.1326 -0.7945***

(0.0875) (0.0854) (0.0877) (0.0891) (0.0873) (0.0895)

δsec8,Balt
1 -1.0427*** -0.6651*** -1.0412*** -1.1065*** -0.7093*** -1.1032***

(0.1184) (0.1992) (0.1194) (0.1254) (0.1986) (0.1264)

δsec8,Bos
1 -1.0880*** -1.2662*** -1.0838*** -1.0376*** -1.1362*** -1.0328***

(0.1055) (0.1428) (0.1058) (0.1130) (0.1455) (0.1134)

δsec8,Chi
1 -0.1905* 0.2901*** -0.1863* -0.2696** 0.1970** -0.2643**

(0.1092) (0.0802) (0.1092) (0.1171) (0.0894) (0.1168)

δsec8,LA1 -0.8139*** 0.0257 -0.8072*** -0.7508*** -0.0071 -0.7429***

(0.0960) (0.0988) (0.0960) (0.1041) (0.1066) (0.1038)

δsec8,NY
1 -0.3742*** -0.0448 -0.3728*** -0.3945*** -0.0548 -0.3920***

(0.0913) (0.0838) (0.0916) (0.0923) (0.0867) (0.0926)

δcont,Balt
1 -0.5220*** -0.3311*** -0.5184*** -0.5641*** -0.3941*** -0.5590***

(0.0899) (0.0931) (0.0902) (0.0949) (0.0998) (0.0951)

continued on next page
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Table D.1: Triangular IV estimation of neighborhood effects on SWB, first stage

(1) (2) (3) (4) (5) (6)

δcont,Bos
1 -0.7145*** -1.1184*** -0.7106*** -0.6409*** -0.9028*** -0.6350***

(0.0722) (0.1018) (0.0721) (0.0823) (0.1047) (0.0825)

δcont,Chi
1 0.2299** 0.2621*** 0.2297** 0.1848* 0.2124*** 0.1855*

(0.0999) (0.0718) (0.0999) (0.1078) (0.0809) (0.1077)

δcont,LA1 0.1584* 0.2110*** 0.1597* 0.2360** 0.2192*** 0.2381**

(0.0907) (0.0664) (0.0906) (0.0959) (0.0729) (0.0959)

δcont,NY
1 0.1371** 0.1735*** 0.1354** 0.5305** -0.2895 0.5258**

(0.0547) (0.0567) (0.0548) (0.2234) (0.2631) (0.2235)

δexp,Balt
2 -0.8173*** -0.8886***

(0.1118) (0.1171)

δexp,Bos
2 -1.7055*** -1.4949***

(0.1226) (0.1166)

δexp,Chi
2 0.0880 0.0216

(0.0733) (0.0798)

δexp,LA2 -0.3677*** -0.3710***

(0.0828) (0.0929)

δexp,NY
2 -0.1588* -0.1447*

(0.0846) (0.0877)

δsec8,Balt
2 -0.6895*** -0.7349***

(0.1946) (0.1968)

δsec8,Bos
2 -1.2842*** -1.1477***

(0.1401) (0.1415)

δsec8,Chi
2 0.2812*** 0.1982**

(0.0799) (0.0877)

δsec8,LA2 0.0347 0.0240

(0.0883) (0.0941)

continued on next page
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Table D.1: Triangular IV estimation of neighborhood effects on SWB, first stage

(1) (2) (3) (4) (5) (6)

δsec8,NY
2 -0.0617 -0.0641

(0.0843) (0.0863)

δcont,Balt
2 -0.3553*** -0.4127***

(0.0982) (0.1033)

δcont,Bos
2 -1.1349*** -0.9192***

(0.1018) (0.1077)

δcont,Chi
2 0.2454*** 0.1999**

(0.0743) (0.0824)

δcont,LA2 0.1980*** 0.2055***

(0.0667) (0.0731)

δcont,NY
2 0.1858*** -0.2870

(0.0565) (0.2625)

N 3263 3263 3263 3175 3175 3175

Notes: Each column reports first stage estimates of a triangular model for specifications reported in corresponding columns

of Table 3. The dependent variables in the first stage are neighborhood poverty and neighborhood minority. Columns

(1)-(3) exclude while columns (4)-(6) include a complete set of baseline characteristics (as given in Table B.1), as well as

whether a sample adult was included in the first release of the long-term evaluation survey fielding period, as covariates X;

all regressions are weighted; * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-

2010.
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E Semi-Monotone Instrument

In this section we briefly consider the ability of a type of instrument monotonicity restriction

to sign the effect of neighborhood poverty on SWB, when used in conjunction with the IV

modeling restrictions. This constitutes a blend of the sort of monotonicity restriction used by

Pinto (2019) with the IV model, in a setting in which the endogenous variable is continuous

and latent type space is infinite.

Receipt of either type of voucher by a household expands the menu of housing options

available. This may be credibly thought to induce low income participants to choose a

housing location in a neighborhood of no higher poverty level than would have been chosen

had they not received the voucher. Further, if an experimental voucher were received that

stipulates it can only be used in a neighborhood with poverty rate below some threshold, one

might reason that this would induce individuals to live in an even (weakly) lower poverty

neighborhood. On the other hand, it could be that some participants who would move if

awarded a traditional voucher might choose not to move at all if given an experimental

voucher, because of the additional restrictions imposed on those neighborhoods to which

they could move. Nonetheless, receipt of a traditional voucher could induce those families

to move to a lower poverty neighborhood than the one they would otherwise be in, even if

it were not of low enough poverty level to use the experimental voucher.

This can be used to motivate an instrument semi-monotonicity restriction, in which it is

assumed that counterfactual neighborhood poverty is weakly lower under receipt of either

kind of voucher than it would be if no voucher were received. This does not impose any

restriction on the relationship between neighborhood choice under the two different kinds of

vouchers.

To formalize this restriction, suppose that neighborhood minority is the sole endogenous

neighborhood characteristic W , and let the random vector (W0,W1,W2) denote a given

individual’s potential value of W from treatment assignment, or equivalently instrument

value Z. Motivated by random assignment of the treatment, we assume that (W0,W1,W2) ∥

Z|X. The observed value of the endogenous variable is W = WZ . The instrument semi-

monotonicity restriction can then be written as follows.

Restriction SMI: W0 ≥ W1 and W0 ≥ W2 almost surely.

As previously noted, the rationale for this restriction follows similar reasoning to the

instrument monotonicity restriction used in Pinto (2019) in conjunction with random as-

signment of treatment. Here we adapt his logic to the present analysis, which differs in that
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(i) the outcome of interest is ordinal rather than continuous, and (ii) the endogenous variable

is continuous rather than discrete. The reasoning extends the well-known instrument mono-

tonicity assumption used with a binary instrument in Imbens and Angrist (1994) and Angrist

et al. (1996) to more general cases, in conjunction with revealed preference arguments.

Depending on the data, the inequalities delivered by the IV model presented in Section

3 may or may not be sufficient to sign the effect of the endogenous variable W on sub-

jective well-being, whereas additionally imposing instrument semi-monotonicity can do this

in a transparent fashion. To understand how, consider the probability of response Y = 0

conditional on X and Z corresponding to no voucher. Suppose one compares this to the

same conditional probability holding the value of X fixed but now conditioning on Z cor-

responding to receipt of a voucher. If the second conditional probability is higher (lower),

then, because Z is excluded from the outcome equation, the increase must be due to the

effect of the change in voucher receipt on W . Since voucher receipt weakly lowers W for all

households under Restriction SMI, this means that lower W , all else equal, leads to a higher

(lower) conditional probability of Y = 0. Formally, if β > 0, then we have for z̃ ∈ {1, 2}:

P [Y = 0|X = x, Z = 0] = P [U ≤ c1 −W0β −Xγ|X = x, Z = 0]

= P [U ≤ c1 −W0β −Xγ|X = x, Z = z̃]

≤ P [U ≤ c1 −Wz̃β −Xγ|X = x, Z = z̃] = P [Y = 0|X = x, Z = z̃] ,

where the second equality follows by random assignment conditional on X and the inequality

follows since W0 ≥ Wz̃ under Restriction SMI. Therefore if we observe that

P [Y = 0|X = x, Z = 0] > P [Y = 0|X = x, Z = z̃] , (E.1)

we can conclude that β ≤ 0. Similar reasoning applies to changes in the conditional proba-

bility of Y = 2, from which it follows that

P [Y = 2|X = x, Z = 0] < P [Y = 2|X = x, Z = z̃] . (E.2)

also implies that β ≤ 0. Thus, a researcher who imposes Restriction SMI together with

conditional independence from random assignment, in addition to the IV assumptions of

Section 3.1, can test whether (E.1) and (E.2) hold for all x ∈ Supp(X) and all z̃.

In some of our empirical analysis W denotes both a measure of neighborhood poverty

and the proportion of minority households in a neighborhood. Extensions of Restriction
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SMI for multivariate W could also be considered. Without placing some restrictions on

counterfactual values of the additional component(s) of W the inequalities derived above

need not follow, and further care would need to be taken regarding assumptions on the

impact of instrument Z on multivariate potential outcomes.
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F Additional Computational Details

This section provides computational details further to those of Section 3.2.

F.1 Numerical Illustrations

Computations for numerical illustration of IV bounds discussed in Section 3.2 and reported

in Table 1 were done by executing an R script using the nloptr package (Ypma (2018)) that

wraps functionality in the nonlinear optimization package nlopt (Johnson (2007–2019)). The

lower and upper bounds reported in Table 1 were computed by minimizing p (θ; y, x, w) and

ME (θ; y, x, w), and −p (θ; y, x, w) and −ME (θ; y, x, w), respectively, subject to inequalities

of the form (3.2) using values s < t both in {−∞,Φ−1(1/n),Φ−1(2/n), ...,Φ−1((n− 1)/n),∞},
as described in Section 3.2.

Minimization was done using the COBYLA algorithm of nloptr. At termination of the

COBYLA algorihm there are typically a few inequalities that are violated by small amounts,

of the order of 1e−9. In the calculations reported in the paper the inequalities were adjusted

by subtracting an amount ε < 1e− 5 from the Gaussian probabilities on the right hand side

of the inequalities (3.2) - (3.4). The amount subtracted varies with y2 and y1 and in most

cases is 1e−6. With this adjustment at the termination of COBYLA there are no violations

of the original unadjusted inequalities. The adjustment has no effect on the bounds to the

accuracy reported here.

For the sake of illustrating identified sets delivered by the data generating structures

employed, the probabilities on the left hand side of (3.2) were calculated using the probability

distribution of (Y,W ) given Z = z delivered by the structure employed in the numerical

example, in which X = 1 is a constant. This expression, here denoted

℘(s, t, x, z; θ) ≡ P [(s ≤ c (Y,X,W ; θ) ∧ c (Y + 1, X,W ; θ) ≤ t) |X = x, Z = z] ,

where “∧” denotes “and” simplifies as follows depending on the values of s and t employed.

Case 1: s = −∞, t <∞.

℘(−∞, t, x, z; θ) =

P [(Y = 0 ∧Wβ ≥ c1 −Xγ − t) ∨ (Y = 1 ∧Wβ ≥ c2 −Xγ − t) |X = x, Z = z] . (F.1)
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Case 2: s > −∞, t =∞.

℘(s,∞, x, z; θ) =

P [(Y = 1 ∧Wβ ≤ c1 −Xγ − s) ∨ (Y = 2 ∧Wβ ≤ c2 −Xγ − s) |X = x, Z = z] . (F.2)

Case 3: −∞ < s < t <∞.

℘(s, t, x, z; θ) = P [Y = 1 ∧ c2 −Xγ − t ≤ Wβ ≤ c1 −Xγ − s|X = x, Z = z] . (F.3)

These probabilities can be computed for any (s, t, x, z, θ) given the values of population

parameters, making use of the CT structure used for these illustrations, in which

Y =
J∑

j=1

j × 1 [c0,j < Wβ0 +Xγ0 + U ≤ c0,j+1] , W = δx + Zδz + V,

(U, V ) ∼ BVN

((
0

0

)
,

(
1 R

R Σv

))
,

with population parameters θ0 ≡ (c0,1, c0,2, β0, γ0, δx, δz, R,Σv)
′ taking values as specified on

page 16 under “Numerical Illustration of IV Bounds”.4 Substituting for W in equation 2.1

for the determination of Y there is

Y =


0 , V β0 + U ≤ c0,1 −Xγ0 − (δx + Zδz) β0

1 , c0,1 −Xγ0 − (δx + Zδz) β0 < V β0 + U ≤ c0,2 −Xγ0 − (δx + Zδz) β0

2 , c0,2 −Xγ0 − (δx + Zδz) β0 < V β0 + U

 .

Defining (V1, V2) ≡ (V β0 + U, V β) such that

(V1, V2) ∼ BVN

((
0

0

)
,

(
β2
0Σv + 2β0R + 1 ββ0Σv + βR

ββ0Σv + βR β2
0Σv

))
,

and making use of V ∥ (X,Z), the probabilities (F.1), (F.2) and (F.3) are as follows.

4Here the parameter vector θ = (c1, c2, γβ) whose identifed set is of interest comprises fewer elements
than θ0. This is because the true data generating process in these illustrations is from a CT structure
specified by more parameters than the single equation IV model.
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℘(−∞, t, x, z; θ) =

P [(V1 ≤ c0,1 − xγ0 − δxβ0 − zδzβ0 ∧ V2 ≥ c1 − xγ − δxβ − zδzβ − t)]

+ P [c0,1 ≤ V1 + xγ0 + δxβ0 + zδzβ0 ≤ c0,2 ∧ V2 ≥ c2 − xγ − δxβ − zδzβ − t] ,

℘(s,∞, x, z; θ) =

P [c0,1 ≤ V1 + xγ0 + δxβ0 + zδzβ0 ≤ c0,2 ∧ V2 ≤ c1 − xγ − δxβ − zδzβ − s)]

+ P [V1 ≥ c0,2 − xγ0 + δxβ0 + zδzβ0 ∧ V2 ≤ c2 − xγ − δxβ − zδzβ − s] ,

℘(s, t, x, z; θ) =

P [c0,1 ≤ V1 + xγ0 + δxβ0 + zδzβ0 ≤ c0,2 ∧ c2 − t ≤ V2 + xγ + δxβ + zδzβ ≤ c1 − s] .

Since (V1, V2) are bivariate normal with parameters given in (F.1) these probabilities can

be computed using standard software. In our numerical examples, such probabilities were

calculated using the pmvnorm function in the R package mvtnorm, Genz et al. (2021), which

additionally refers to Genz and Bretz (2009).

When β = 0 there are further simplifications, as follows:

℘(−∞, t, x, z; θ) = 1 [c1 − xγ ≤ t] · P[Y = 0|x, z] + 1 [c2 − xγ ≤ t] · P[Y = 1|x, z],

℘(s,∞, x, z; θ) = 1 [c1 − xγ ≥ s] · P[Y = 1|x, z] + 1 [c2 − xγ ≥ s] · P[Y = 2|x, z],

℘(s, t, x, z; θ) = 1 [c2 − t ≤ xγ ≤ c1 − s] · P[Y = 1|x, z],

where

P[Y = 0|x, z] = Φ

(
c0,1 − xγ0 − (δx + zδz) β0

(β2
0Σv + 2β0R + 1)

1/2

)

P[Y = 1|x, z] = Φ

(
c0,2 − xγ0 − (δx + zδz) β0

(β2
0Σv + 2β0R + 1)

1/2

)
− Φ

(
c0,1 − xγ0 − (δx + zδz) β0

(β2
0Σv + 2β0R + 1)

1/2

)

P[Y = 2|x, z] = 1− Φ

(
c0,2 − xγ0 − (δx + zδz) β0

(β2
0Σv + 2β0R + 1)

1/2

)
The above expressions for the case β = 0 are employed for all β such that |β| < 0.00001.
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In the reported calculations for the numerical example there are no included exogenous

variables X and no parameter γ. In this case the terms Xγ0 and Xγ are zero and may be

removed.

F.2 Application to MTO

Computations using the MTO data were implemented by executing an R script (R Core

Team (2022)) using the nonlinear optimization package nlopt linked through the nloptr pack-

age (Johnson (2007–2019), Ypma (2018)) for optimization and the rcpp and rcpparmadillo

packages (Eddelbuettel and François (2011), Eddelbuettel (2013), Eddelbuettel and Sander-

son (2014), Sanderson and Curtin (2016), Eddelbuettel and Balamuta (2017)) were used

to employ C++ implementations of the most computationally intensive aspects. The full

parameter search, target parameter search, and endpoint refinement steps of Algorithm 1,

as well as the DR Bootstrap computations, each involve solving a large number of successive

minimization problems inside a loop. These loops were executed in C++ rather than R for

computational efficiency.

Simply computing the discrepancy function Q̂ (θ) defined in (3.5) at just a single value of θ

requires first computing and then taking the maximum of the ratio of 4, 485 sample moments

and standard errors. The steps described in Algorithm 1 entail computing Q̂ (θ) for a large

number of different values of θ in order to solve the constituent constrained optimization

problems. As is typical for set estimates and confidence sets using moment inequalities,

and especially when there is such a large number of moment inequalities, implementation

is computationally intensive. All computations reported here were carried out on a Dell

Precision 3620 i7-6700 desktop with a 3.4 gigahertz processor and 16 gigabytes of memory.

Total computation time for all eight sequences of results for conditional marginal effects

reported in Tables 4 and 5 executed in parallel took just over 20 hours, with the first one

having finished in just under 19 hours.5 For counterfactual response probabilities, twelve

sequences of computations were conducted in parallel, corresponding to the six sets of results

reported in Table 6 along with six sets of results with neighborhood minority included as an

5A sequence of results is obtained by executing Algorithm 1 for a given choice of (i) whether β is restricted
nonpositive or nonnegative, (ii) whether the marginal effect under consideration is for the response y = 0 or
y = 2, and (iii) whether the neighborhood minority variable is included or excluded from the specification.
The eight sequences for which computation time is reported refers to all such combinations. For counter-
factual response probabilities, the twelve sequences referenced correspond to all possible configurations of
(i) counterfactual response y = 0, y = 1, or y = 2, (ii) whether neighborhood poverty is fixed at the NYC
median or one standard error below, and (iii) whether the neighborhood minority variable is included or
excluded.
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additional endogenous variable.6 All six sequences of computations corresponding to results

reported in Table 6 were completed in a little over two days, and all twelve sequences were

finished in a little more than three days.

To give a rough reflection of the computational complexity involved, note that each

sequence of computations reported comprised roughly between 129,000 and 153,000 evalua-

tions of Q̂ (θ) at different values of θ, not including bootstrap computations. For the eight

sequences of computations for the conditional marginal effects a total of 1, 161, 946 evalu-

ations of Q̂(·) were executed, each one comprising a maximum 4, 485 studentized moment

functions. Implementation of the DR bootstrap additionally requires repeated computation

of the the maximization problem (F.7) and the bootstrap statistic in (F.9) below. Com-

putations for counterfactual response probabilities required substantially more computation

of bootstrap critical values, which is apparently what resulted in the longer execution time

reported above.

Details of the DR Bootstrap procedure are provided below, followed by a table that

provides a rough outline of key functions employed for computations described in Algorithm

1. The code used to carry out these computations can be found at https://github.com/

adammrosen/MTO-Replication.

Discard Resampling Bootstrap

Computation of the DR Bootstrap critical value is implemented in the C++ function Boot-

strapCV, which takes r, the hypothesized value of g(θ) as an argument. We follow the steps

described by Belloni et al. (2018) on pages 12–13 and define the bootstrap process

v̂∗θ,j ≡ n−1/2

n∑
i=1

ξi{ωj(Y,W,X,Z; θ)− m̂j(θ)}, (F.4)

where {ξi : i = 1, ..., n} denote i.i.d. standard normal bootstrap draws independent of the

data. We further define

Θ̂(r) ⊆ {θ ∈ Θ(r) : Q̂(θ) = T̂ (r)}, (F.5)

which is a set of values of θ such that g(θ) = r and for which the discrepancy function Q̂(θ)

attains the value of the profile discrepancy at r, T̂ (r). For the results reported in Tables

6To save on space IV estimates and confidence sets for counterfactual response probabilities with the
neighborhood minority variable included are not reported. By construction, they produce larger sets than
those obtained with the neighborhood minority variable excluded as was the case with conditional marginal
effects.
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4 – 6 we specify Θ̂(r) as the singleton set {θ̂}, where θ̂ is the value of θ achieved in the

constrained minimization defining Θ̂(r) in (3.5). From a computation standpoint this is the

easiest choice of Θ̂(r), but employing a larger collection of values of θ will produce (weakly)

smaller critical values. Finally,

Ψ̂θ ≡ {j ∈ [J ] :
√
nm̂j(θ)/σ̂j(θ) ≥ max

j̃∈[J ]

√
nm̂j̃(θ)/σ̂j̃(θ)−Mn} (F.6)

denotes the indices of the studentized moments that come within distance Mn of achieving

the maximum value Q̂(θ). Here Mn is an appropriately chosen sequence that diverges to ∞
as n → ∞. Such a sequence is also used in Bugni et al. (2017), but as BBC18 explain, in

a many moment inequality setting it is required additionally that Mn/w̄n →∞, with w̄n as

specified in BBC equation (4.2). We follow their recommendation for approximating w̄n by

approximating with w̄∗
n the 1− γn quantile of

sup
θ∈Θ(r),j∈[J ]

|v̂∗θ,j|, (F.7)

and in order to ensure Mn/ω̄n →∞ we set

Mn = log(n) · w̄∗
n. (F.8)

Finally, using (F.4) – (F.7), the DR bootstrap test statistic is defined as

RDR∗
n ≡ inf

θ∈Θ̂(r)
max

j∈Ψ̂θ(Mn)
v̂∗θ,j. (F.9)

For a given r the DR bootstrap test statistic critical value cDR
n (r, α) is then computed

by first taking B bootstrap samples of independent standard normal variates ξ1, ..., ξn and

computing the bootstrap process (F.4). For each bootstrap sample the following steps are

then conducted:

1. Compute ω̄n by solving the maximization problem in (F.7) and set Mn = log(n) · ω̄n.

2. Compute RDR∗
n defined in (F.4).

Once these steps are finished the DR critical value cDR
n (r, α) is set to the 1 − α quantile of

RDR∗
n in the B bootstrap iterations. For results presented here, B = 99 was used.
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Functions Referenced in Algorithm 1

Function MinDiscrepancyCpp(Θ̃)
∀θs ∈ Θ̃ minimize Q̂(θ) using θs as starting value.
return for each θs ∈ Θ̃
– Vector θ∗ at which minimization terminated.
– Discrepancy value Q̂ (θ∗) achieved.
– Target parameter value g (θ∗).

End Function

Function ProfileDiscrepancyOnGridCpp(G, runDR)
for each r ∈ G do Compute T̂ (r)← minθ{Q̂(θ) : g(θ) = r}

if (runDR & T̂ (r) > 0) then
Compute DR critical value cDR

n (r, α) by calling BootstrapCV(r)
end if

end for
return for each r ∈ G
– Profile discrepancy value T̂ (r)
– Vector θ such that Q̂(θ) = T̂ (r)
– DR critical value cDR

n (r, α)
End Function

Function RefineBoundCpp(rout, rin, fromLower,∆)
Construct a grid G from rout to rin in increments of ∆.
if (fromLower) then

return min{r ∈ G : T̂ (r) ≤ c}
else

return max{r ∈ G : T̂ (r) ≤ c}
end if
End Function

Function BootstrapCV(r)
for each b = 1, ..., B do

Compute ω̄n and set Mn = log(n) · ω̄n

Compute RDR∗
n = inf

θ∈Θ̂(r)
max

j∈Ψ̂θ(Mn)
v̂∗θ,j

end for
return 1− α quantile of RDR∗

n

End Function
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