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Abstract

Purpose Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are either
tested on unrepresentative patient cohorts or are insufficiently well-validated, leading to poor generalisability to real-world
tasks. The aim was to determine the diagnostic test accuracy and summarise the evidence supporting the use of AI models
performing first-line, high-volume neuroimaging tasks.

Methods Medline, Embase, Cochrane library and Web of Science were searched until September 2021 for studies
that temporally or externally validated Al capable of detecting abnormalities in first-line computed tomography (CT) or
magnetic resonance (MR) neuroimaging. A bivariate random effects model was used for meta-analysis where appropriate.
This study was registered on PROSPERO as CRD42021269563.

Results Out of 42,870 records screened, and 5734 potentially eligible full texts, only 16 studies were eligible for inclu-
sion. Included studies were not compromised by unrepresentative datasets or inadequate validation methodology. Direct
comparison with radiologists was available in 4/16 studies and 15/16 had a high risk of bias. Meta-analysis was only
suitable for intracranial hemorrhage detection in CT imaging (10/16 studies), where Al systems had a pooled sensitivity
and specificity 0.90 (95% confidence interval [CI] 0.85-0.94) and 0.90 (95% CI 0.83-0.95), respectively. Other Al studies
using CT and MRI detected target conditions other than hemorrhage (2/16), or multiple target conditions (4/16). Only
3/16 studies implemented Al in clinical pathways, either for pre-read triage or as post-read discrepancy identifiers.
Conclusion The paucity of eligible studies reflects that most abnormality detection Al studies were not adequately
validated in representative clinical cohorts. The few studies describing how abnormality detection Al could impact patients
and clinicians did not explore the full ramifications of clinical implementation.
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Introduction

In the developed world, first-line imaging is performed in
almost all hospitals, and refers to imaging performed at
onset, for example, a head computed tomography (CT)
for an unconscious patient in the emergency department,
or a head magnetic resonance imaging (MRI) for a pa-
tient with headache. First-line imaging is a high-volume
task and a range of pathologies can be encountered. We
distinguish this from second-line imaging where detailed
biomarkers are extracted, based on prior clinical and first-
line imaging information. Typically, second-line imaging is
only performed in specialist hospitals where examples in-
clude large vessel occlusion imaging for stratifying stroke
patients for thrombectomy treatment, or perfusion imaging
for characterising brain tumours [1]. In comparison to first-
line imaging, second-line imaging is a low-volume task.

Radiology workloads for first-line imaging have soared
in the last decade due to changing demographics, increased
screening for early diagnosis initiatives, and updated clini-
cal pathway guidelines requiring imaging. In the years lead-
ing up to the coronavirus disease 2019 (COVID-19) pan-
demic, the number of brain MRI scans performed in, for
example, the United Kingdom (UK) increased on average
by 7.8% annually, and the demand for both CT and MRI re-
porting outpaced the growth in the radiology workforce [2,
3]. Reporting backlogs are problems of national importance
in the UK, and analogous scenarios are seen in healthcare
systems globally. Diagnostic delays cause poorer short and
long-term clinical outcomes, with the late detection of ill-
ness inflating healthcare costs [4].

The automated detection of abnormalities in a scan us-
ing artificial intelligence (AI) has the potential to improve
radiologist efficiency. The Al can be used to reorder radi-
ology worklists by flagging abnormal scans, as a reader aid
or even as a second reader to identify missed pathology.
However, the considerable interest in introducing Al into
clinical environments to improve productivity in the high
volume first-line imaging tasks, may be clouded by two
main challenges in most published studies. Firstly, many
abnormality detection Al studies report the diagnostic accu-
racy using non-representative clinical datasets (e.g. intracra-
nial hemorrhage alone versus healthy controls without any
other pathology) [5], including commercially available Al
solutions [6]. Indeed, few studies validate their findings on
datasets that are representative of the scans seen in routine
clinical practice which contain a wide variety of patholo-
gies. A second concern is that many studies do not demon-
strate the generalisability of Al models due to inadequate
validation methodology [7, 8]. By validating abnormality
detection Al on a hold-out subset from the same patient
dataset, known as internal validation, it is unclear whether
reported Al performance would translate to different patient
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populations scanned at different institutions. A recent sys-
tematic review analysing the enormous number of recent
studies where Al was used for the detection of COVID-
19 using chest imaging, found that all 62 included studies
had no potential clinical use due to methodological biases
such as the use of unrepresentative datasets and insufficient
validation [9].

The aim of this systematic review was to determine the
diagnostic performance and summarise the evidence sup-
porting the use of those Al models carrying out first-line
neuroimaging tasks. Critically, we ensured that our analyses
were only focused on those studies that were not compro-
mised by unrepresentative datasets or inadequate validation
methodology. Therefore, we analysed those Al models that
might conceivably be ready for use in the clinic. The pri-
mary objective was to determine the diagnostic accuracy of
these Al models. A secondary objective was to determine
the impact of Al on downstream clinical outcomes in those
studies where this had been investigated.

Methods

This systematic review was conducted in accordance with
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses of Diagnostic Test Accuracy (PRISMA-
DTA) statement [10]. The review protocol is registered on
the international prospective register of systematic reviews
(PROSPERO), CRD42021269563.

Data Sources and Searches

The full strategy is listed in Supplementary Material 1.
Searches were conducted on MEDLINE, EMBASE, the
Cochrane Library and Web of Science for studies published
until September 2021. Bibliographies from eligible studies
and systematic reviews were searched for additional rele-
vant studies. Conference abstracts and pre-prints were ex-
cluded. A full description of data extraction is provided in
Supplementary Material 2.

Index Test, Reference Standard and Target Condition

The target condition of the systematic review was the ab-
normality detected, for example intracranial hemorrhage.
The Al model detecting the target condition was the index
test. The radiological review was designated as the refer-
ence standard.

Inclusion Criteria

We included studies where an AI model could predict if
a given CT or MRI examination was abnormal. Only stud-
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ies that validated Al models on test datasets that were sep-
arated from the training data temporally or geographically
were included. Test datasets were required to have normal
scans, scans with the target condition and scans with one
or more non-target conditions, in order to be representative
of clinical practice.

Exclusion Criteria

The motivation for the study was to review abnormality
detection in first-line, clinical neuroimaging. Studies that
only reported the accuracy of the Al model to make voxel-
wise (e.g. segmentation studies) or slice-wise predictions
but did not subsequently report at the examination level
were excluded (unless examination level accuracy could be
calculated from the published study data). Studies using
second-line imaging exclusively (e.g. angiography, perfu-
sion studies) were excluded. Psychiatric conditions were
excluded if structural differences have only been shown in
group-wise comparison studies (e.g. schizophrenia, autism
spectrum disorder); all conditions that had a structural cor-
relate often seen at the individual level were included (e.g.
Alzheimer’s disease). Studies testing exclusively on pedi-
atric populations were excluded. Studies not published in
a peer-reviewed journal or without an English language
translation were excluded [11].

Data Analysis

We used the QUality Assessment of Diagnostic Accuracy
Studies-2 (QUADAS-2) tool [12], tailored to the review
question incorporating items from the Checklist for Artifi-
cial Intelligence in Medical Imaging (CLAIM) [13]; mod-
ified signalling questions are presented in Supplementary
Material 3. The unit of analysis was the patient undergoing
a CT or MRI examination. The primary outcome was diag-
nostic test accuracy. Secondary outcomes assessed whether
the Al model had been implemented in clinical practice (i.e.
in a pathway that could affect clinical outcomes rather than
reporting diagnostic test accuracy on a retrospective test
dataset in a dry laboratory setting), and if so, the associated
performance metrics.

To determine the primary outcome measures, where pub-
lished, the 2x 2 contingency tables and the principal diag-
nostic accuracy measures of sensitivity (recall) and speci-
ficity were extracted for test datasets. The area under the
receiver operating characteristic curve (ROC-AUC) values,
and positive predictive values (PPV or precision) were also
extracted where published. Where 2x 2 contingency tables
were not provided, the tables were populated based on the
published study data; the calculations are outlined in Sup-
plementary Material 4.

The PPV is important for abnormality detection (Supple-
mentary Material 4) and is more informative than specificity
for imbalanced datasets particularly when the prevalence of
the target condition is small [14]. The calculation of PPV is,
however, dependent on the prevalence of the target condi-
tion in a test dataset, where PPV increases with increasing
prevalence assuming constant sensitivity and specificity; the
calculation is outlined in Supplementary Material 4 [15].

To directly compare Al model performance, the PPV
for each model must be adjusted for a uniform prevalence.
There were sufficient studies in one subgroup (intracranial
hemorrhage detection in CT scans) for the calculation of
prevalence-adjusted PPV. Here, we chose a prevalence of
10% based on recent evidence of routine clinical practice in
the UK [16]. The prevalence-adjusted PPV we subsequently
quote can be interpreted as the PPV that would be expected
for each model if the prevalence of ICH within the test
dataset was 10%.

Meta-analysis

Meta-analysis was performed when four or more studies
evaluated a given target condition within a specific modal-
ity [17]. Studies investigating the detection of intracranial
hemorrhage on CT scans were the only subgroup of suffi-
cient number and homogeneity to allow inclusion for meta-
analysis.

A bivariate random effects model was used for meta-
analysis, taking into account the within and between study
variance, and the correlation between sensitivity and speci-
ficity across studies [18]. Sensitivities and specificities were
presented for each study using forest plots, and pooled esti-
mates for both measures were calculated. To investigate the
impact of variables of interest contributing to heterogeneity,
metaregression was performed with the variable of interest
as a covariate for the bivariate model. Using the existing
model parameters, the absolute differences in pooled sen-
sitivity and specificity between subgroups of interest were
computed.

Parameters of the model also allowed the estimation of
the summary ROC (SROC) curve and the summary ROC-
AUC (SROC-AUC). Using a resampling approach [19], the
model estimates were also used to derive the pooled mea-
sures of balanced accuracy as well as the positive and neg-
ative likelihood ratios and the diagnostic odds ratio.

The meta-analysis was conducted by a statistician (M.G.)
with 15 years of relevant experience. All the statistical anal-
yses were performed in R (v 3.6.1, R Foundation for Sta-
tistical Computing, Vienna, Austria). The R package mada
(v 0.5.10) was used for the bivariate model [20]. As some
of the 2 x 2 contingency table input cell values derived from
the individual studies contained zeros, we applied a conti-
nuity correction (0.5).
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Results
Characteristics of Included Studies

Database searches resulted in 42,870 unique results, of
which 5734 potentially eligible full texts were assessed
(Supplementary Fig. 1). Our criteria for clinically represen-
tative test datasets were not met in 1239 studies which were
excluded. Additionally, we excluded 218 studies for using
internal validation only. Only sixteen studies were of suffi-
cient scientific rigour to be eligible for inclusion. The test
datasets from the 16 studies comprised of 26,164 patients
in total; however, the total number of patients in the train-
ing datasets could not be calculated as some commercial
studies did not publish this data. Supervised convolutional
neural networks (CNNs) to classify scans as normal or ab-
normal were used in 14/16 (88%) studies, with a variety
of different model architectures and 5 studies (5/16, 31%)
demonstrated the accuracy of commercially available Al
models (from three AI vendors: Qure.ai (Mumbai, India);
Aidoc (Tel Aviv, Israel); Avicenna.ai (La Ciotat, France)
[21-26]). The largest subgroup of studies (11/16, 69%) em-
ployed CNNs to detect intracranial hemorrhage using CT
[21-25, 27-32]. Other studies used CT and MRI to de-
tect other single non-hemorrhage pathology (2/16, 13%)
[21, 33], or multiple pathologies (4/16, 25%) [33-36]. The
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characteristics of each included study are summarised in
Supplementary Material 5 with further AI model informa-
tion shown in Table 1.

Assessment of Risk of Bias

The risk of bias evaluation for each study using the
QUADAS-2 tool is summarised in Fig. 1. A high risk
of bias in at least one domain was shown in 15/16 (94%) of
studies. The modified signalling questions used for assess-
ing each study, and their explanations are in Supplementary
Materials 3 and 6, respectively.

The following were the commonest sources of bias: eight
studies (8/16, 50%) assessed Al model performance in lab-
oratory conditions only (“analytical validation” [21, 25, 26,
28-30, 33, 35, 37]). In contrast, four studies (4/16, 25%)
placed the AI model within the clinical pathway (‘“clini-
cal validation”) [22-24, 32], which more closely resembles
a “real world” environment and therefore the intended ap-
plicability. Seven studies (7/16, 44%) used temporal valida-
tion alone, and therefore had a high risk of bias for patient
selection as there is limited assessment of generalisability
[26, 30-32, 34-36], compared to 9/16 (56%) studies where
Al models were externally validated on test data from other
institutions [21-25, 27-29, 33]. Studies that used fewer than
two radiologists to assess the images of a scan for their ref-

Concerns for

Risk of bias Applicability

Reference
standard

Index
test

Flowand Patient
timing selection

Reference
standard

Index
test

Patient
selection

Unclear

Nael (2021), all pathology
Prevedello (2017), multiple
Prevedello (2017), infarct
Salehinejad (2021)

Voter (2021)

Wang (2021)
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Table 1 Summary characteristics of AI models for each study. Machine learning models typically use training labels in order to establish
a relationship between medical images and the model outputs. Further details regarding the training and test sets can be found in Supplementary

Material 5
Study (au- Modality  Target pathol- Index test Training labels Model outputs
thor, year) ogy
Arbabshirani CT ICH CNN, with 5 convolutional Examination-level Binary prediction of ICH (present/not
(2018) [32] and 2 fully connected lay- binary presence of ab-  present) for each examination
ers normality (present/not
present)
Buls (2021) CT ICH Aidoc v1.3, a proprietary Combination of ex- Binary prediction of ICH (present/not
[24] CNN amination-level bi- present) for each examination, key
nary labels, bounding images for review
boxes and segmenta-
tions
Chang CT ICH CNN, modified mask Manual segmenta- Binary prediction of ICH (present/not
(2018) [31] R-CNN architecture tions for each exami- present) for each examination, seg-
nation mentations, and volume estimation of
ICH
Chilamkurthy CT ICH Qure.ai proprietary CNN, Slice-level binary Binary prediction of ICH (present/not
(2018) [21] CT Mass effect modified ResNet18 presence of present) for each examination
architecture abnormality
(present/not present)
Chilamkurthy CT Skull fracture Qure.ai proprietary CNN, Bounding-box anno-
(2018) [21] modified DeepLab archi- tations per slice
tecture
Finck CT Any pathol- “Weakly supervised ma- Not directly trained Prediction of any pathology for each
(2021) [34] ogy chine learning”: normative on labels, although examination into three classes: normal,
learning by registering nor- training was con- uncertain, abnormal.
mal brains to a shared atlas ducted on brains that Anomaly score: ratio of outlier voxels
and determining per-voxel were known to be to entire brain ranging from 0 to 1
confidence-intervals normal Anomaly heat map: voxels where
value was outside the Cls
Ginat CT ICH Aidoc (see Buls 2021
(2020) [23] above)
Ginat CT ICH
(2021) [22]
Kuo (2019) CT ICH CNN, ‘PatchFCN’ (mod- Manual segmenta- Binary prediction of ICH (present/not
[30] ified ResNet-38 architec- tions for each exami- present) and lesion segmentations for
ture) nation each examination
Monteiro CT ICH CNN, DeepMedic architec- Semi-automatically Binary prediction of ICH (present/not
(2020) [28] ture created segmentations present) and lesion segmentations for
for each examination each examination (output segmenta-
tions > 1 ml were considered as ICH
present)
McLouth CT ICH Avicenna.ai, CINA v1.0: Not disclosed Binary prediction of acute, hyperdense
(2021) [26] proprietary Al model ICH (present/not present) for each
examination
Prevedello CT ICH, mass CNN, modified Googl.eNet Examination-level Binary prediction of pathology
(2017) [36] effect, hy- architecture presence of (present/not present) for each
drocephalus abnormality examination
(‘algorithm (present/not present)
1)
Prevedello CT Acute infarct
(2017) [36] (‘algorithm
2’)
Salehinejad CT ICH CNN, ensemble model of Slice-level binary Binary prediction of ICH (present/not

(2021) [27]

modified ResNeXt-50 and
ResNeXt-101 architec-
tures, both pre-trained from
ImageNet

presence of abnor-
mality (present/not
present)

present) for each examination

@ Springer



S. Agarwal et al.

Table 1 (Continued)

Study (au- Modality = Target pathol- Index test Training labels Model outputs
thor, year) ogy
Wang CT ICH Ensemble model of CNN Slice-level binary Binary prediction of ICH (present/not
(2021) [29] and two recurrent neural presence of abnor- present) for each slice and examina-
networks. 1st place in the mality (present/not tion
2019-RSNA “Brain CT present)
Hemorrhage Challenge”
Voter CT ICH Aidoc (see Buls, 2021)
(2021) [25]
Gauriau MR Any pathol- CNN with 10 convolu- Examination-level Binary prediction of pathology
(2021) [35] ogy tional layers and one fully binary presence of ab- (present/not present) for each exami-
connected layer normality (present/not  nation
present)
Nael (2021) MR Any pathol- CNN, modified U-net Examination-level Binary prediction of pathology
[32] (FLAIR, ogy architecture binary presence of (present/not present) for each
ADC, abnormality examination
DWI) (present/not present)
Nael (2021) MR ICH
[32] (FLAIR,
ADC,
DWI)
Nael (2021) MR Acute infarct
[32] (FLAIR,
ADC,
DWI)

Aidoc, Qure.ai and Avicenna.ai are commercial vendors of Al products. Aidoc v1.0, Aidoc v1.3 and CINA v1.0 are commercial Al solutions.
Mask R-CNN, PatchFCN, GoogLeNet, ResNet18, ResNet38, ResNeXt-50, ResNeXt-101, U-net, DeepLab and DeepMedic are CNN
architectures, published in academic literature. ImageNet is a large visual database often used in computer vision research; pretraining a model on

ImageNet is a form of transfer learning

CT computed tomography, MR magnetic resonance, FLAIR fluid-attenuated inversion recovery, DWI diffusion weighted imaging, ADC apparent
diffusion coefficient. FLAIR, DWI and ADC are commonly used MR sequences. /CH intracranial hemorrhage, CNN convolutional neural

network, RSNA Radiological Society of North America

erence standard were considered at high risk of bias, as
individual radiologists do not have perfect accuracy—five
studies (5/16, 31%) were therefore considered to have high
risk of bias as only the clinical report was reviewed [22, 27,
32, 33, 36]. One study had a high risk of bias as the refer-
ence standard was informed by the output of the AI model
(the index test) [25]; this study was therefore excluded from
the meta-analysis.

Analysis

The primary outcome for each study was diagnostic test
accuracy, which is summarised in Table 2. Studies var-
ied greatly in accuracy performance (sensitivity range:
0.70-1.00, specificity range: 0.51-1.00), but the highest
accuracies were typically seen for intracranial hemorrhage
detection using CT (Supplementary Fig. 2). Only two
studies validated AI that used MRI; two AI models that
detected any pathology using MRI had modest accuracies
(sensitivity range: 0.78-1.00, specificity range: 0.65-0.80),
compared to single pathology performance (Supplementary
Fig. 3).
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Diagnostic Test Accuracy of Radiologists Compared to Al

The performance of Al models against individual radiol-
ogists under laboratory conditions are available for four
studies, summarised in Fig. 2. A full description of these
studies can be found in Supplementary Material 7.

Clinical Implementation

All three (3/16, 19%) studies that also investigated clinical
implementation performance, assessed the detection of in-
tracranial hemorrhage using CT. Two (2/16, 13%) studies
placed the AI model at the start of the clinical pathway
before radiologist interpretation (pre-read triage) [22, 32],
and 2/16 (13%) at the end after radiologist interpretation
(post-read) [27, 32].

In the two studies where Al had been applied for pre-
read triage, one showed a reduction in the time-to-report
for non-urgent examinations which the Al flagged as ab-
normal, from a median time of 512min to 19min [32].
Radiologists in this study were unaware of the reprioriti-
sation and were effectively blinded from the output of the
Al The other study was unblinded, as radiologists were
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Fig. 3 Forest plots demonstrating individual studies’ sensitivities and specificities
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Fig.4 Summary receiver operating characteristic (SROC) curve for in-
tracranial hemorrhage detection in CT imaging. A bivariate random ef-
fects model was used for meta-analysis, which allowed the estimation
of the summary ROC (SROC) curve

made aware of examinations that the Al predicted to be
abnormal [22]. This study demonstrated significant reduc-
tions in the mean time-to-report for flagged examinations
for outpatients (674 to 70min, p<0.001), inpatients (390
to 352min, p=0.002), but not emergency cases (p=0.37),
or an undefined “other” class (p=0.25) [22]. Importantly,
neither study examined the extent and potential harms of
delaying non-flagged studies, particularly Al false nega-
tives which occurred in 26/347 (7.5%) [32] and 205/1760
(11.6%) [22] of outputs, respectively.

In two studies (2/16, 13%), Al had been applied as a sec-
ond reader after radiologist interpretation and discrepancies
between radiologists and Al were examined [27, 32]. Al
was able to identify 4/347 (1.2%) and 2/5965 (0.03%) of
intracranial hemorrhages that radiologists had missed (radi-
ologist false negatives), respectively. If implemented, both
studies estimated that the radiologist would be alerted that
there was a discrepancy between them and the AI model
in 10% (34/347) and 5% (313/5965) of cases, respectively,
and 9 and 157 re-reviews would be required for 1 change
in report, respectively [32]. In the second study, radiolo-
gist-positive and Al-negative discrepancies were also ex-
amined (59/5965, 1%) and found these were all Al false
negatives—AI was unable to identify any radiologist over-
calls (radiologist false positives). If Al were to be imple-
mented to identify overcalls (radiologist false positives) as
well as misses (radiologist false negatives), the radiologist
would be alerted in 6% (372/5965) of cases and 186 re-
reviews would be required for 1 change in a report [27].

@ Springer

Meta-analysis

Six (6/16, 38%) studies were unsuitable for meta-analy-
sis. We excluded five studies (5/16, 31%) with heteroge-
neous modality or target conditions (one study detected
hyperdense, intracranial hemorrhage only as might typi-
cally be seen in an acute setting, and did not consider
isodense or hypodense intracranial hemorrhage as might
typically be seen in a subacute or chronic setting) [26,
33-36]. One study (1/16, 6%) was excluded due to the
fundamental methodological flaw of having a circular ref-
erence standard as described above [25]. The remaining
subgroup of studies were those detecting intracranial hem-
orrhage using CT and applying CNNs, and consisted of 10
studies (10/16, 63%) [21-24, 27-32]; we included these
studies for meta-analysis. Forest plots of sensitivity and
specificity (Fig. 3) graphically showed a high level of het-
erogeneity. There was significant heterogeneity observed in
both sensitivity and specificity; the y>-test p-values were
both <0.001 and I? statistics were 85.4% and 99.3%, re-
spectively. The pooled sensitivity for intracranial hemor-
rhage detection in CT=0.901 (95% confidence interval [CI]
0.853-0.935), and the pooled specificity=0.903 (95% CI
0.826-0.948). The derived pooled measures of balanced ac-
curacy=0.931 (95% CI 0.889-0.957); positive likelihood
ratio=26.7 (95% CI 15.8-42.3); negative likelihood ra-
tio=0.106 (95% CI 0.0471-0.199); and diagnostic odds
ratio=280.0 (95% CI 128.0-533.0).

Heterogeneity was investigated using metaregression,
which compared the pooled sensitivities and specificities
of two subsets of the studies: three studies where dif-
ferent Al models were applied on the same test dataset
(CQ500) [21, 28, 29], and three studies where the same
Al model (Aidoc) was applied on different test datasets
[22-24]. Using the Aidoc subset as a baseline, the CQ500
subset had higher pooled sensitivity (p=0.008) and lower
pooled specificity (p=0.004), implying that Al model type
and patient make-up in the test dataset contributed to the
heterogeneity observed.

Individual study ROC point estimates resulted in a sum-
mary ROC (SROC) curve (Fig. 4), for which the summary
ROC-AUC=0.948.

Discussion
Summary

This study aimed to determine the diagnostic accuracy of
Al systems used to identify abnormalities in first-line neu-
roimaging tasks. Any productivity gains in such tasks are
important as they are high volume and performed in almost
all hospitals. To ensure our analyses were only focused on
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those studies that were not compromised by unrepresen-
tative datasets or inadequate validation methodology, we
excluded many studies (1239) that did not validate the Al
model using datasets from representative clinical cohorts
and many (218) for validating without temporal or external
validation. Only sixteen studies were of sufficient rigour
to be eligible for inclusion; however, even for these studies
the overall methodological quality remained low with a high
risk of bias in 94% of studies. Furthermore, most included
studies were retrospective, with only four studies validat-
ing their Al models in clinical environments prospectively
in real time (i.e. clinical validation).

For CT imaging studies, a subgroup of 10 Al models
used to detect intracranial hemorrhage using CNNs, had
a pooled sensitivity and specificity of 0.90, with a sum-
mary ROC-AUC of 0.95. Metaregression suggested that
differences in the Al model development and patient selec-
tion contributed to the significant heterogeneity observed
in both pooled measures (sensitivity 1>=85.4%, specificity
12=99.3%). Four CT imaging studies allowed direct com-
parison between Al models with radiologists under labora-
tory conditions—further discussion is provided in Supple-
mentary Material 7.

For MRI, only two studies were included. Both studies
validated AI models that detect all pathologies. Together
with a third study that used CT, a limitation of the three
Al models that detect all pathologies is that findings seen
in healthy ageing such as small vessel disease and age-
commensurate atrophy are considered abnormal—this is
reflected in the high prevalence of what was assigned as
pathological in their test datasets (64-81%) [33-35]. Al
that overcalls all older patients as abnormal raises concerns
for applicability in clinical practice.

There were only three clinical implementation studies
where Al was placed within the clinical pathway, as pre-
read triage and for post-read discrepancy identification [22,
27, 32]. No study demonstrated a downstream clinical or
health economic benefit.

Strengths and Limitations

A strength of this study was that the search strategy was
sensitive [38, 39]. This allowed the identification of a wide
range of studies included in this review, many of which
were missing in other systematic reviews for the general
use of Al in neuroimaging [40—43]. We also included all
Al methods, not just those limited to deep learning. Whilst
broad inclusion is a study strength, it is also conceivable
that summary performance accuracy might be diminished
by the inclusion of older AI models; however, older Al
models barely contributed to our results as 88% of all el-
igible studies, and 100% of studies in the meta-analysis
subgroup used CNNss.

Another strength, unique to this study, was that the in-
clusion criteria were designed to only include studies where
outcome metrics would have a reasonable chance of gener-
alising to first-line neuroimaging in routine clinical practice.
Therefore, the diagnostic test accuracies presented here are
plausibly more generalisable than if less stringent inclusion
criteria were used. Specifically, we first excluded studies
that did not validate AI on temporally distinct or exter-
nal test datasets. Second, we excluded studies that did not
test on representative patient cohorts (which as a minimum
standard required normal brains, the target condition and
at least one non-target condition). As a result, we excluded
studies that validated AI models on test datasets that con-
tained the target condition and healthy controls only, which
does not reflect the “real world”; we note that almost all
ischemic stroke detection studies were therefore excluded
[44].

A limitation is that meta-analysis was only suitable for
one subgroup where there were sufficient homogeneous
studies using the same imaging modality, target condition
and Al model type. Another limitation is that no formal
assessment of publication bias was undertaken; however,
it is unlikely that our overall conclusions would change if
studies with poorer Al model performances had been pub-
lished.

Strategies for Implementing Al into Clinical
Pathways

The standalone diagnostic accuracy of Al to detect abnor-
malities has been demonstrated to be high, particularly for
intracranial hemorrhage in CT imaging. There was insuffi-
cient evidence, however, to suggest where such Al would
be most useful in the clinical pathway. This included those
being marketed commercially (Supplementary Material 8).

Both studies that investigated intracranial hemorrhage
Al detectors for pre-read CT worklist triage found that the
greatest reduction in reporting time was for outpatient ex-
aminations when compared to emergency or inpatient ex-
aminations [22, 32]. There was insufficient evidence, how-
ever, from these and any other studies regarding the down-
stream clinical benefit and cost-effectiveness of Al imple-
mentation. AI models with poor sensitivity in a pre-read
triage setting would systemically increase the time to re-
port Al false negative examinations as these would be put
at the back of the reporting queue; it was unclear from
both studies whether Al false negatives were significantly
delayed and the extent of harm, if any, that was associ-
ated with this delay. For pre-read triage, it is also unknown
whether knowing that Al puts flagged examinations to the
front of the queue could have long-term consequences on
radiologist performance. There is a similar question regard-
ing Al intended as a second reader which may unintention-
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ally affect the behaviour of radiologists; for example, the
implementation of automated computer-assisted diagnosis
(CAD) tools in mammography, to be used as a reader aid
during radiologist interpretation, has previously been shown
to reduce radiologist sensitivity [45] and overall accuracy
[46].

One advantage of a post-read implementation is that ra-
diologists are initially blinded to the Al decision. In a post-
read setting, Al models could be used to flag discrepancies
to determine potential radiologist “misses” or “overcalls”
and allow a re-review. An Al model with poor specificity
or PPV in this setting would create a high burden on ra-
diologist time with a large number of false positive scans
to re-review. In the two studies that investigated discrep-
ancies, there appeared to be low additive diagnostic yield
associated with a high rate of re-review. Therefore, further
studies will be necessary to understand the cost-effective-
ness of such post-read strategies.

Many Al models developed for high-sensitivity pre-read
triage could plausibly be repurposed as high-PPV post-read
discrepancy identifiers and vice versa simply by adjusting
the operating threshold.; however, for any specific down-
stream clinical task it is necessary to further validate any
predictive model following such recalibration.

Conclusion

We have analysed the evidence and presented the diagnos-
tic performance of the current state-of-the-art Al detection
models that can be applied to first-line neuroimaging. Such
tasks are important as they are high volume and performed
in almost all hospitals and offer considerable potential for
the necessary productivity gains required in the twenty-
first century. If the intended use of Al detection models is
as a tool to improve radiologist efficiency rather than a re-
placement for radiologists, Al may be clinically useful even
if the accuracy shown in our meta-analysis remains lower
than that of radiologists for the task of intracranial hemor-
rhage detection; however, at present, there is insufficient ev-
idence to recommend implementation of Al for abnormality
detection, including hemorrhage detection, into any part of
the clinical pathway. Importantly, the clinical and health
economic benefits are currently unproven. For now, future
research efforts should aim to minimise bias and demon-
strate analytical validation through well-designed studies
using clinically representative external test datasets which
can unequivocally prove high performance accuracy and
good generalisability. Following this, clinical trials will be
required to confirm the performance findings in the “real
world” and determine whether the clinical benefits of im-
plementing Al in the clinical pathway outweigh the poten-
tial harm to patients. In addition to clinical validation, such

@ Springer

trials could include health economic analyses to determine
the costs incurred and benefits obtained within the wider
healthcare system.

Supplementary Information The online version of this article (https://
doi.org/10.1007/s00062-023-01291-1) contains supplementary mate-
rial, which is available to authorized users.
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