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We consider approximating the solution of the Helmholtz exterior Dirichlet problem for a nontrapping
obstacle, with boundary data coming from plane-wave incidence, by the solution of the corresponding
boundary value problem where the exterior domain is truncated and a local absorbing boundary condition
coming from a Padé approximation (of arbitrary order) of the Dirichlet-to-Neumannmap is imposed on the
artificial boundary (recall that the simplest such boundary condition is the impedance boundary condition).
We prove upper- and lower-bounds on the relative error incurred by this approximation, both in the whole
domain and in a fixed neighbourhood of the obstacle (i.e., away from the artificial boundary). Our bounds
are valid for arbitrarily-high frequency, with the artificial boundary fixed, and show that the relative error
is bounded away from zero, independent of the frequency, and regardless of the geometry of the artificial
boundary.

Keywords: Helmholtz equation; absorbing boundary condition; high frequency.

1. Introduction and statement of the main results

1.1 Informal discussion of the main results, their context, and their novelty

Background on absorbing boundary conditions. Wave-scattering problems are usually posed in
unbounded domains. However, when computing approximations to the solutions of such problems via
discretization methods in the domain, such as finite-element methods (as opposed to discretization
methods on the boundary such as boundary-element methods), an artificial boundary is introduced so that
the computational domain is finite. The question then arises of what boundary condition to impose on
this artificial boundary. If the exact Dirichlet-to-Neumann map for the domain exterior to the artificial
boundary is used as the boundary condition, then the solution of the truncated problem is exactly the
restriction to the truncated domain of the solution of the scattering problem. However, the Dirichlet-to-
Neumann map is a nonlocal operator and is expensive to compute.

Since the late 1970s, starting with the papers Lindman (1975); Engquist & Majda (1977a,b, 1979);
Bayliss & Turkel (1980); Bayliss et al. (1982), there has beenmuch research on designing local boundary
conditions to impose on the artificial boundary, with these boundary conditions approximating the
(nonlocal) Dirichlet-to-Neumann map. Since the goal is for these boundary conditions to ‘absorb’ waves
hitting this boundary, and not reflect them back into the computational domain, they are often called
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2 J. GALKOWSKI ET AL.

‘absorbing’ or ‘non-reflecting’ boundary conditions. These boundary conditions are now standard tools
in the numerical simulation of waves propagating in unbounded domains; see, e.g., Givoli (1991);
Hagstrom (1997); (Ihlenburg, 1998, §3.3); Tsynkov (1998); Hagstrom (1999) and Givoli (2004).

The error incurred by absorbing boundary conditions. The following natural and important question
then arises: what is the error between the solution of the truncated problem and the solution of the true
scattering problem, and how does this error depend on the following factors?

(i) The shape of the artificial boundary.

(ii) The distance of the artificial boundary from the scatterer.

(iii) The position in the computational domain where the error is measured (e.g., is the error smaller
away from the artificial boundary than near it?).

(iv) Either the time (for problems posed in the time domain) or the frequency of the waves (for
problems posed in the frequency domain).

(v) The order of the artificial boundary condition.

Perhaps surprisingly, despite the decades-long interest in absorbing boundary conditions, there do
not yet exist rigorous answers to many of these questions.

A summary of the existing answers to these questions is as follows: In the time domain, there exist
error estimates describing how the error depends on the distance of the artificial boundary from the
scatterer (Bayliss & Turkel, 1980, Theorem 3.2 and Diaz & Joly, 2005, Theorem 2.4), on the order of
the boundary conditions (Hagstrom, 1997, §2.3) (for fixed boundary), and on the average frequency
present in the solution (Halpern & Rauch, 1987, §5). In the frequency domain for fixed frequency, there
exist error estimates describing how the error depends on the distance of the artificial boundary from the
scatterer (Bayliss et al., 1982, Theorems 4.1 and 4.2; Goldstein, 1982, Theorem 3.1).

The Helmholtz problem most studied by the numerical-analysis community: artificial boundary
fixed and frequency arbitrarily high. One situation where, to our knowledge, there do not yet exist
any estimates on the error incurred by absorbing boundary conditions is in the frequency domain when
the artificial boundary is fixed and the frequency is arbitrarily high. This situation is a ubiquitous model
problem for numerical methods applied to the Helmholtz equation.

Indeed, the following is a nonexhaustive list of papers analysing numerical methods applied to this
set up, with the analyses valid in the high-frequency limit with the domain fixed. We highlight that this
list includes some of the most influential work in the numerical analysis of the Helmholtz equation from
the last ∼15 years.1
• Conforming FEMs (including continuous interior-penalty methods) (Shen & Wang, 2005; Han

& Huang, 2008; Melenk & Sauter, 2011; Esterhazy & Melenk, 2012; Zhu & Wu, 2013;
Esterhazy & Melenk, 2014; Wu, 2014; Du & Wu, 2015; Zhu & Du, 2015; Du & Zhu, 2016;
Chaumont-Frelet & Nicaise, 2018; Burman et al., 2019; Chaumont-Frelet, 2019; Diwan et al.,
2019; Chaumont-Frelet & Nicaise, 2020; Du et al., 2020; Graham & Sauter, 2020; Melenk et al.,
2020).

1 More specifically, all of the following papers consider either the Helmholtz boundary-value problem (1.2) below with
the impedance boundary condition (1.2c) on the truncation boundary, or the analogous boundary-value problem with variable
coefficients in the PDE.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 3

• Least-squares methods (Demkowicz et al., 2012; Chen & Qiu, 2017; Bernkopf & Melenk, 2019;
Hu & Song, 2020; Song & Lee, 2020).

• DG methods based on piece-wise polynomials (Feng &Wu, 2009, 2011; Demkowicz et al., 2012;
Chen et al., 2013; Cui & Zhang, 2013; Feng & Xing, 2013; Hoppe & Sharma, 2013; Melenk
et al., 2013; Mu et al., 2014; Sauter & Zech, 2015; Zhu & Du, 2015; Wang et al., 2018; Cao &
Wu, 2020; Zhao et al., 2020; Zhu & Wu, 2021).

• Plane-wave/Trefftz-DG methods (Amara et al., 2009; Hiptmair et al., 2011; Amara et al., 2014;
Hiptmair et al., 2014, 2016; Hu & Yuan, 2018; Mascotto et al., 2019; Hu & Z., W., 2020; Yuan &
Hu, 2020).

• Multiscale finite-element methods (Gallistl & Peterseim, 2015; Barucq et al., 2017; Brown
et al., 2017; Peterseim, 2017; Ohlberger & Verfürth, 2018; Chaumont-Frelet & Valentin, 2020;
Peterseim & Verfürth, 2020; Chen et al., 2021; Freese et al., 2021; Hauck & Peterseim, 2022;
Ma et al., 2023).

• Preconditioning methods (Gander et al., 2015; Graham et al., 2017, 2020; Liu et al., 2020; Ramos
& Nabben, 2020; Gong et al., 2021, 2022, 2023).

• Uncertainty-quantification methods (Feng et al., 2015; Li et al., 2018; Ganesh et al., 2021).

Informal summary of the results of this paper. The present paper proves error bounds on the accuracy
of absorbing boundary conditions for the ubiquitousmodel problem discussed above. These bounds show
how the error in this set up depends on each of the factors (i)–(v) described above, and all but one of our
bounds are provably sharp.

More specifically, we consider the Helmholtz exterior Dirichlet problem with boundary data coming
from plane-wave incidence when the artificial boundary is fixed and the frequency is arbitrarily high.
We consider absorbing boundary conditions coming from a Padé approximation (of arbitrary order) of
the Dirichlet-to-Neumann map; recall that this popular class of boundary conditions was introduced in
Engquist & Majda (1977a,b, 1979) in the time-dependent setting.

These results are presented in §1.2 in the simplest-possible case of an impedance boundary condition,
with these results illustrated in numerical experiments in §1.7. The results for the general Padé case are
presented in §1.5 and §1.6. Our results about well-posedness of the truncated problem in §1.4 are also
new and of independent interest. Of the results present in the existing literature, the results in this paper
are closed to those of Halpern & Rauch (1987), and we compare and contrast these two sets of results
in §1.8.

How the results are obtained, and their novelty from the point of view of analysis. The main
results are obtained using techniques from semiclassical analysis; i.e., rigorous analysis of PDEs with a
large/small parameter, with the analysis explicit in that parameter. In this case the parameter is the large
frequency of the Helmholtz equation.

More specifically we use semiclassical defect measures (Zworski, 2012, Chapter 5; Dyatlov &
Zworski, 2019, §E.3). These measures describe where the mass of Helmholtz solutions in phase space
(i.e., the set of positions x and momenta ξ ) is concentrated in the high-frequency limit; for an informal
discussion of Helmholtz defect measures, see §9.1 in Lafontaine et al. (2022).

The main novelty of this paper is in applying these semiclassical techniques to this long-standing
numerical-analysis question of the accuracy of absorbing boundary conditions. A large part of the
analysis are delicate arguments (in §5) involving constructing geometric-optic rays and controlling their
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4 J. GALKOWSKI ET AL.

properties with respect to the distance of the artificial boundary from the scatterer, and the geometry
of both the artificial boundary and the scatterer. Indeed, controlling the properties of these rays is what
allows us to determine how the error depends on the factors (i)–(iii) above. We highlight that the ideas
behind the ray constructions are outlined in §5.6, and their use in the defect-measure arguments is
described informally in §5.3.

In addition, the following two aspects of our paper are of independent interest in (non-numerical)
analysis.

• The arguments in §4 that use defect measures to prove bounds on the solution operator over
families of domains (as opposed to a single one), with the bounds explicit in both frequency and
the characteristic length scale of the domains.

• The extension in §2.6 of the results in Miller (2000) about defect measures on the boundary to the
case when the right-hand side of the Helmholtz equation is nonzero.

The wider context of absorbing boundary conditions in the numerical analysis of the Helmholtz
equation. Another important use of local absorbing boundary conditions in the numerical analysis of
the Helmholtz equation is in domain-decomposition (DD) methods. This large interest began with the
use of impedance boundary conditions for nonoverlapping DD methods in Després (1991); Benamou &
Després (1997) and the connection between absorbing boundary conditions and the optimal subdomain
boundary conditions (involving appropriate Dirchlet-to-Neumann maps) was highlighted in Nataf
et al. (1994); Engquist & Zhao (1998). Despite the large current interest in Helmholtz DD methods
(see, e.g., the reviews in Gander & Zhang, 2019 and Graham et al., 2020), there are no rigorous
frequency-explicit convergence proofs for any practical DD method for the high-frequency Helmholtz
equation, partly due to a lack of frequency-explicit bounds on the error when absorbing boundary
conditions are used to approximate the appropriate Dirichlet-to-Neumann maps. We therefore expect
the results and techniques in the present paper to be relevant for the frequency-explicit analysis
of DD methods for the Helmholtz equation; preliminary results on this are given in Lafontaine &
Spence (2022).

1.2 Overview of the main results in the simplest-possible setting

In this section, we present a selection of our bounds on the error in their simplest-possible setting when
an impedance boundary condition is imposed on the truncation boundary. Our upper and lower bounds
on the error when the absorbing boundary condition comes from a general Padé approximation of the
Dirichlet-to-Neumann map are given in §1.5 and 1.6, with results on the well-posedness of this problem
in §1.4.

Let Ω− ⊂ R
d, d ≥ 2, be a bounded open set such that the open complement Ω+ := R

d \ Ω− is
connected, and let ΓD := ∂Ω− be C∞. Given k > 0 and a ∈ R

d with |a| = 1, let u ∈ H1
loc(Ω+) be the

solution to the Helmholtz equation in Ω+

(Δ+ k2)u = 0 in Ω+, (1.1a)

with the Dirichlet boundary condition

u = exp(ikx · a) on ΓD (1.1b)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 5

and satisfying the Sommerfeld radiation condition

∂u

∂r
− iku = o

(
1

r(d−1)/2

)
(1.1c)

as r := |x| → ∞, uniformly in x̂ := x/r. (The technical reason we only consider Dirichlet boundary
conditions on ΓD, and not also Neumann boundary conditions, is discussed in Remark 5.2 below.)

The physical interpretation of (1.1) is that u is minus the scattered wave for the plane-wave scattering
problem with sound-soft boundary conditions; i.e., exp(ikx · a) − u is the total field for the sound-soft
scattering problem.

We assume throughout that the obstacle Ω− is nontrapping, i.e., all billiard trajectories (in the
sense of Hörmander, 1985, §24.3) starting in a neighbourhood of the convex hull of Ω− escape that
neighbourhood after some uniform time.Without loss of generality, we assume thatΩ− has characteristic
length scale one (results explicit in the size of Ω− can then be obtained by a scaling argument). In
principle, our arguments could also cover the case when the Helmholtz equation (1.1) has variable
coefficients, but the ray arguments would be more complicated, since the rays are no longer straight
lines (at least in a neighbourhood of the scatterer).

Let v be the solution of the analogous exterior Dirichlet problem, but with the exterior domain Ω+
truncated, and an impedance boundary condition prescribed on the truncation boundary. More precisely,
let Ω̃R be such that Ω̃R ⊂ B(0,MR) for some M > 0, Γtr,R := ∂Ω̃R is C∞ and Ω− � Ω̃R, where �
denotes compact containment. The subscripts R on Ω̃R and Γtr,R emphasize that both have characteristic
length scale R, and the subscript tr on Γtr,R emphasizes that this is the truncation boundary. We assume
that the family {Γtr,R}R∈[1,∞) is continuous in R and is such that the limit Γ∞

tr := limR→∞(Γtr,R/R)
exists. Let ΩR := Ω̃R \Ω−, and let v ∈ H1(ΩR) be the solution of

(Δ+ k2)v = 0 in ΩR, (1.2a)

v = exp(ikx · a) on ΓD, and (1.2b)

∂nv − ikv = 0 on Γtr,R. (1.2c)

Theorem 1.1 (Lower and upper bounds when Γtr,R = ∂B(0,R)). Suppose that Ω− is nontrapping,
Ω− ⊂ B(0, 1), and Γtr,R = ∂B(0,R) with R ≥ 1. Then there exists Cj = Cj(Ω−) > 0, j = 1, 2, such that
for any R ≥ 1, there exists k0(R,Ω−) > 0 such that, for any direction a, the solutions to (1.1) and (1.2),
u and v, respectively, satisfy

C1

R2
≤ ‖u − v‖L2(ΩR)

‖u‖L2(ΩR)

≤ C2

R2
, for all k ≥ k0. (1.3)

Furthermore, there exists C3 = C3(Ω−) > 0 such that for any R ≥ 2, there exists k1 = k1(R,Ω−) > 0
such that, for any direction a,

‖u − v‖L2(B(0,2)\Ω−)
‖u‖L2(B(0,2)\Ω−)

≥ C3

R2
for all k ≥ k1. (1.4)
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6 J. GALKOWSKI ET AL.

Theorem 1.1 shows that, for sufficiently high frequency, the error is proportional to R−2 in both the
whole domain ΩR (1.3) and a neighbourhood of the obstacle (1.4).

We make two comments: (i) The reason that k0 and k1 depends on R is discussed below Theorem 1.7
(the more-general version of Theorem 1.1). (ii) When the impedance boundary condition is replaced by
the more-general boundary condition corresponding to Padé approximation, the only changes in (1.3)
and (1.4) are in the powers of R (see (1.14) and (1.19) below).

The following theorem shows that when Γ∞
tr is not a sphere centred at the origin, the relative error

between u and v does not decrease with R.

Theorem 1.2 (Lower bound for generic Γtr,R). Suppose that Ω− is nontrapping, Ω− ⊂ B(0, 1), and
there exists M > 1 such that

B(0,M−1R) ⊂ Ω̃R ⊂ B(0,MR).

Assume that Γtr,R is smooth and strictly convex and (i) Γ∞
tr is not a sphere centred at the origin, and

(ii) the convergence Γtr,R/R → Γ∞
tr is in C0,1 globally and in C1,ε (for some ε > 0) away from any

corners of Γ∞
tr .

Then there exists C = C(Ω−, {Γtr,R}R∈[1,∞)) > 0 such that for all R ≥ 1, there exists k0 =
k0(R,Ω−, {Γtr,R}R∈[1,∞)) > 0 such that, for any direction a, the solutions to (1.1) and (1.2), u and v,
respectively, satisfy

‖u − v‖L2(ΩR)

‖u‖L2(ΩR)

≥ C for all k ≥ k0. (1.5)

Remark 1.3 We highlight that the constant C in Theorem 1.2 depends on the family {Γtr,R}R∈[1,∞)
(indexed by R), but is independent of the variable R itself. This also applies in Theorems 1.5, 1.8 and 1.9
below.

Wemake four comments: (i) Even under the more-general boundary condition corresponding to Padé
approximation, the lower bound analogous to (1.5) is still independent of R; see Theorem 1.8 below.
(ii) The numerical experiments in § 1.7 indicate that k0 in Theorem 1.2 is independent of R, and in
fact a lower bound holds uniformly in k and R; see Tables 3 and 4. (iii) Under further smoothness
assumption on Γ∞

tr , Theorem 1.9 proves an upper bound on the relative error. (iv) The reason why the
error decreases with R when Γtr,R = ∂B(0,R), but is independent of R for generic Γtr,R is explained in
the text immediately after the statement of Theorem 1.9.

1.3 Definitions of the boundary conditions corresponding to Padé approximation of the Dirichlet-to-
Neumann map

We now consider a more-general truncated problem than (1.2). With Ω−, Ω̃R and ΩR as in § 1.2, let
v ∈ H1(ΩR) be the solution of

(Δ+ k2)v = 0 in ΩR, (1.6a)

v = exp(ikx · a) on ΓD, and (1.6b)

N
(
k−1∂nv

) − iD(v) = 0 on Γtr,R, (1.6c)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 7

where N ∈ Ψ 2N(Γtr,R), D ∈ Ψ 2M(Γtr,R) (i.e., N and D are semiclassical pseudodifferential operators
on Γtr,R of order 2N and 2M, respectively) and both have real-valued principal symbols (see § A for
background material on semiclassical pseudodifferential operators).

While most of our analysis applies to much more general choices ofN andD, we focus onN andD
corresponding to a Padé approximation (up to terms that are lower order both in k−1 and differentiation
order) of the principal symbol of the Dirichlet-to-Neumann map; this class of N and D was introduced
in Engquist & Majda (1977a,b, 1979) in the time-dependent setting. In the following assumption, Diffm

denotes the set of operators of the form

A(x, k−1D) =
m∑

j=0
aj(x)

(
k−1D

)j,

with aj ∈ C∞, D = −i∂ , Furthermore, we use Fermi normal coordinates x = (x1, x′), ξ = (ξ1, ξ ′), with
Γtr,R = {x1 = 0}, x1 the signed distance to Γtr,R, ∂x′ and ∂x1 orthogonal. We also let r(x′, ξ ′) denote the
symbol of one plus the tangential Laplacian on Γtr,R, i.e.,

r(x′, ξ ′) := 1− |ξ ′|2g (1.7)

where | · |g is the norm induced on the co-tangent space (i.e., the space of the Fourier variables ξ ′

corresponding to the tangential variables x′) of Γtr,R from R
d; see § 2.3 for more details.

Let the coefficients (pj
M,N)

M
j=0 and (q

j
M,N)

N
j=1 be defined so that p(t)/q(t) is the Padé approximant of

of type [M,N] at t = 0 to
√
1− t, where

p(t) =
M∑

j=0
pj

M,Ntj and q(t) =
N∑

j=0
qj

M,Ntj (1.8)

with q0M,N = 1 and pM
M,N, q

N
M,N 
= 0. This definition implies that

√
1− t −

⎛⎝ M∑
j=0

pj
M,Ntj

⎞⎠ ⎛⎝1+
N∑

j=1
qj

M,Ntj

⎞⎠−1
= O

(
tmord

)
as t → 0, (1.9)

where

mord ≥ M + N + 1.

Assumption 1.4 (Boundary condition corresponding to Padé approximation).We assume that

D − PM,N
(
x′, k−1Dx′

) ∈ k−1 Diff2M−1, N − QM,N
(
x′, k−1Dx′

) ∈ k−1 Diff2N−1,
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8 J. GALKOWSKI ET AL.

where

PM,N(x
′, ξ ′) :=

M∑
j=0

pj
M,N

(
1− r(x′, ξ ′)

)j and QM,N(x
′, ξ ′) := 1+

N∑
j=1

qj
M,N

(
1− r(x′, ξ ′)

)j .

By (1.7), PM,N and QM,N involve powers of |ξ ′|2g. Since |ξ ′|2g is a quadratic form in the variables ξ ′,
the boundary condition (1.6c) involves differential operators, and is thus local.

Recall that the rationale behind these particular D and N consists of the following three points.
(i) The ideal condition to impose on Γtr,R is that the Neumann trace, ∂nv, equals the Dirichlet-to-

Neumann map for the exterior of Ω̃R under the Sommerfeld radiation condition (1.1c) applied to the
Dirichlet trace, v (see § 2.7 and the references therein).

(ii) When Ω̃R is strictly convex, the principal symbol of this Dirichlet-to-Neumann map (as a
semiclassical pseudodifferential operator), away from glancing rays, i.e., rays that are tangent to the

boundary, equals
√

r(x′, ξ ′) =
√
1− |ξ ′|2g; see Remark 2.1 for more details.

(iii) The definitions of p(t) and q(t) (1.8) imply that if D and N satisfy Assumption 1.4, then the

boundary condition (1.6c) corresponds to approximating
√
1− |ξ ′|2g by the Padé approximant of type

[M,N] at |ξ ′|2g = 0, i.e., at rays that are normal to the boundary.
The polynomials p(t) and q(t) are constructed based on their properties at t = 0. However, the

quantity q(t)
√
1− t−p(t) can have other zeros in t ∈ (0, 1], which corresponds to the boundary condition

(1.6c) not reflecting certain non-normal rays. We record here notation used later in the paper for these
other zeros. Given M,N, let {tj}mvanish

j=1 be the zeros of q(t)
√
1− t − p(t) in t ∈ (0, 1] where p(t) and q(t)

are defined by (1.8). Then mvanish <∞ since q(t)
√
1− t − p(t) is analytic on (−1, 1), continuous at 1,

and p(1) 
= 0 (see Lemma 4.4 below). Let mmult be the highest multiplicity of the zeros {tj}mvanish
j=1 .

When N = D = I, (1.6c) is the impedance boundary condition

∂nv − ikv = 0, (1.10)

and is covered by Assumption 1.4 withM = N = 0, i.e., p(t) = q(t) = 1. In this case, mvanish = 0, since√
1− t − 1 has no zeros for t ∈ (0, 1].

1.4 Well-posedness of the truncated problem and k-explicit bound on its solution

Theorem 1.5 Let Ω− � B(0, 1) be a nontrapping obstacle, M > 0, Ω̃R ⊂ B(0,MR) be convex with
smooth boundary Γtr,R that is nowhere flat to infinite order and such that Γtr,R/R → Γ∞

tr in C∞. Let N
and D satisfy Assumption 1.4 with either M = N or M = N + 1.

There exists C > 0 such that given R ≥ 1, there exists k0 = k0(R) > 0 such that, given f ∈ L2(ΩR),
gD ∈ H1(ΓD) and gI ∈ L2(Γtr,R), if k ≥ k0, then the solution v ∈ H1(ΩR) of

(Δ+ k2)v = f in ΩR, (1.11a)

v = gD on ΓD, and (1.11b)

N
(
k−1∂nv

) − iD(v) = gI on Γtr,R (1.11c)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 9

exists, is unique, and satisfies

‖∇v‖L2(ΩR)
+ k ‖v‖L2(ΩR)

≤ C
(

R ‖f ‖L2(ΩR)
+ R1/2

(‖∇ΓD
gD‖L2(ΓD)

+ k‖gD‖L2(ΓD)

) + R1/2k‖gI‖L2(Γtr,R)

)
. (1.12)

Note that results analogous to the well-posedness statement in Theorem 1.5 in the time domain are
given in Theorem 4 of Trefethen & Halpern (1986) and Theorem 1 of Engquist & Majda (1979) for
problems where the spatial domain is a half-plane.

Because of the importance of the truncated problem in numerical analysis, proving bounds analogous
to (1.12) when v satisfies the impedance boundary condition

∂nv − ikv = gI on Γtr,R (1.13)

has been the subject of many investigations in the literature (Melenk, 1995, §8.1; Cummings & Feng,
2006; Hetmaniuk, 2007; Bao et al., 2012; Li et al., 2013;Moiola & Spence, 2014, Remark 4.7; Chaumont
Frelet, 2015, §2.1; Bao & Yun, 2016; Baskin et al., 2016; Chaumont-Frelet & Nicaise, 2018, Appendix
B; Sauter & Torres, 2018; Graham et al., 2019, Appendix A; Graham& Sauter, 2020). Indeed, the bound
(1.12) under the boundary condition (1.13) and various assumptions onΩ− and Ω̃R (often for star-shaped
Ω− and Ω̃R and sometimes with Ω− = ∅) in (Melenk, 1995, Proposition 8.1.4), (Cummings & Feng,
2006, Theorem 1), (Hetmaniuk, 2007, Proposition 3.3), (Chaumont Frelet, 2015, §2.1.5), (Baskin et al.,
2016, Theorem 1.8), (Sauter & Torres, 2018, Theorem 22), (Graham et al., 2019, §A.2), (Graham &
Sauter, 2020, Theorems 3.2 and 5.10) (with the last four references considering the variable-coefficient
Helmholtz equation).

To our knowledge, the bound (1.12), however, is the first k-explicit bound for a truncated Helmholtz
problem where a local absorbing boundary condition is posed other than the impedance boundary
condition (1.13).

1.5 Bounds on the relative error in ΩR

All the results in this section proved under the assumption that N and D satisfy Assumption 2.2 with
either M = N or M = N + 1, so the the truncated problem is well-posed by Theorem 1.5.

Theorem 1.6 (Lower bound for general strictly-convex Γtr,R). If Ω− is nontrapping and Γtr,R is
strictly convex, then there exists C = C(ΩR,M,N) > 0 that depends continuously on R and k0 =
k0(R,ΩR,M,N) > 0, such that, for any direction a,

‖u − v‖L2(ΩR)

‖u‖L2(ΩR)

≥ C for all k ≥ k0.

The following three results prove bounds on the relative error that are explicit in R. Theorem 1.7
considers the case Γtr,R = ∂B(0,R), and Theorems 1.8 and 1.9 consider the case when Γtr,R/R tends to
a limiting object that is not a sphere.

Theorem 1.7 (Quantitative lower and upper bounds when Γtr,R = ∂B(0,R)). Suppose that Ω− is non-
trapping, Ω− ⊂ B(0, 1), and Γtr,R = ∂B(0,R) with R ≥ 1. Then, there exists Cj = Cj(Ω−,M,N) > 0,
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10 J. GALKOWSKI ET AL.

j = 1, 2, such that for any R ≥ 1, there exists k0(R,Ω−,M,N) > 0 such that, for any direction a,

C1

R2mord
≤ ‖u − v‖L2(ΩR)

‖u‖L2(ΩR)

≤ C2

R2mord
, for all k ≥ k0. (1.14)

The reason that k0 in Theorem 1.7 depends on R is because of the difference between the limits
k → ∞ with R fixed and R → ∞ with k fixed. To illustrate this difference, consider the boundary
conditions

(∂n − ik)v = 0 and

(
∂n − ik + d − 1

2r

)
v = 0. (1.15)

Both satisfy Assumption 1.4 with M = N = 0, with, respectively N = 1, D = 1 and N = 1,
D = 1 − k−1i(d − 1)(2r)−1. Therefore, in both cases the error ‖u − v‖L2(ΩR)

/‖u‖L2(ΩR)
∼ R−2 for

fixed R as k → ∞ by Theorem 1.7. However, for fixed k as r := |x| → ∞,

(∂n − ik)(u − v)(x) = (∂n − ik)u(x) = O(r−(d+1)/2)L∞ = O(r−1)L2(∂B(0,r)) (1.16)

and(
∂n − ik + d − 1

2r

)
(u − v)(x) =

(
∂n − ik + d − 1

2r

)
u(x) = O(r−(d+3)/2)L∞ = O(r−2)L2(∂B(0,r)).

(1.17)

The fact that the right-hand sides of (1.16) and (1.17) are different shows that, while the behaviour of
u − v for the two boundary conditions in (1.15) is the same as k → ∞ with R fixed by Theorem 1.7,
the behaviour as R → ∞ with k fixed is different. We expect that the bounds in this paper – for the
limit k → ∞ with R fixed – in fact hold uniformly when R � kγ for some γ < 1 (i.e., when the large
parameter R is smaller than the large parameter k).

When the limiting object Γ∞
tr is not a sphere, the lower and upper bounds are given separately in

Theorems 1.8 and 1.9, respectively. This is because the lower bound allows the limiting object to, e.g.,
have corners, whereas the upper bound requires the limiting object to be smooth.

Theorem 1.8 (Quantitative lower bound for generic Γtr,R). Suppose that Ω− is nontrapping, Ω− ⊂
B(0, 1), and there exists M > 0 such that

B(0,M−1R) ⊂ Ω̃R ⊂ B(0,MR). (1.18)

Assume that Γtr,R is smooth and strictly convex and such that (i) Γ
∞
tr is not a sphere centred at the origin,

and (ii) the convergence Γtr,R/R → Γ∞
tr is in C0,1 globally and in C1,ε (for some ε > 0) away from any

corners of Γ∞
tr .

Then there exists C = C(Ω−,M,N, {Γtr,R}R∈[1,∞)) > 0 such that for all R ≥ 1, there exists k0 =
k0(R,Ω−,M,N, {Γtr,R}R∈[1,∞)) > 0 such that, for any direction a,

‖u − v‖L2(ΩR)

‖u‖L2(ΩR)

≥ C for all k ≥ k0.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 11

Theorem 1.9 (Quantitative upper bound for generic Γtr,R). Suppose thatΩ− is nontrapping withΩ− ⊂
B(0, 1). Suppose that, for every R ≥ 1, Ω̃R ⊂ B(0,MR), Γtr,R is smooth, convex, and nowhere flat to infi-
nite order, and (Γtr,R/R)→ Γ∞

tr inC∞ asR → ∞. Then there existsC = C(Ω−,M,N, {Γtr,R}R∈[1,∞)) >
0 such that for any R ≥ 1, there exists k0 = k0(R,Ω−,M,N, {Γtr,R}R∈[1,∞)) > 0 such that for any a ∈ R

d,

‖u − v‖L2(ΩR)

‖u‖L2(ΩR)

≤ C for all k ≥ k0.

We now explain why the constants in the upper and lower bounds in Theorems 1.6–1.9 decrease
with R when Γtr,R = ∂B(0,R), but are independent of R for generic Γtr,R. Recall from §1.3 that the
boundary condition (1.6c) corresponds to approximating

√
r(x′, ξ ′) by a Padé approximant in |ξ ′|2g, with

this approximation valid to ordermord in |ξ ′|2g at ξ ′ = 0 (i.e., rays hitting Γtr,R in the normal direction) by

(1.9); recall also that there exists finitely-many other values of |ξ ′|2g such that QM,N(x
′, ξ ′)

√
r(x′, ξ ′) −

PM,N(x
′, ξ ′) = 0, which corresponds to there being finitely-many non-normal angles such that rays

hitting Γtr,R at these angles are not reflected by Γtr,R. When Γtr,R = ∂B(0,R) and R is large, the rays
originating fromΩ− hit Γtr,R in a direction whose angle with the normal decreases with increasing R (in
fact the angle < R−1; see Lemma 5.14 below). Thus, if R is sufficiently large, the finitely-many special
non-normal angles are avoided, and the error for large k decreases with R, with the accuracy, depending
on mord; see Theorem 1.7. When Γ∞

tr is not a sphere centred at the origin, for every incident direction
there exist rays hitting Γ∞

tr at a fixed, non-normal angle that is also not one of the finitely-many special
non-normal angles (see Lemma 5.12 below). Since the Dirichlet-to-Neumann map is not approximated
by the boundary condition (1.6c) at such an angle, the error is therefore independent of R and mord; see
Theorems 1.8 and 1.9.

1.6 Bounds on the relative error in subsets of ΩR

Given the upper and lower bounds on the error in Theorems 1.6–1.9, a natural question is: is the error
any smaller in a neighbourhood of the obstacle (i.e., away from the artificial boundary)?

We focus on the case when either Γtr,R = ∂B(0,R) or Γtr,R is the boundary of a hypercube with
smoothed corners. We do this because the artificial boundaries most commonly used in applications
are Γtr,R = ∂B(0,R) and Γtr,R is a hypercube, but in the latter case we need to smooth the corners for
technical reasons.

Theorem 1.10 (Quantitative lower bound on subset ofΩR when Γtr,R = ∂B(0,R)). Suppose thatΩ− is
nontrapping, Ω− ⊂ B(0, 1) and Γtr,R = ∂B(0,R) with R ≥ 1. Then, there exists C = C(Ω−,M,N) > 0
and R0 = R0(M,N) ≥ 2 such that for any R ≥ R0, there exists k0 = k0(R,Ω−,M,N) > 0 such that, for
any direction a,

‖u − v‖L2(B(0,2)\Ω−)
‖u‖L2(B(0,2)\Ω−)

≥ C

R2mord
for all k ≥ k0. (1.19)

Furthermore, if M = N = 0, then R0 = 2.

That is, when Γtr,R = ∂B(0,R), the error in B(0, 2) is bounded below, independently of k, and the
lower bound has the same dependence on R as for the error in ΩR (see Theorem 1.7). The fact that we
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12 J. GALKOWSKI ET AL.

have explicit information about R0 when M = N = 0 is because in this case mvanish = 0, i.e., there are
no non-normal angles for which the reflection coefficient vanishes, and the proof is simpler.

Theorem 1.11 (Quantitative lower bound on subset of ΩR when Γtr,R is the boundary of a smoothed
hypercube), Suppose that Ω− is nontrapping and Ω− ⊂ B(0, 1). Let C be the set of corners of
[−R/2,R/2]d and, given ε > 0, let

Cε :=
⋃
x∈C

B(x, ε);

i.e., Cε is a neighbourhood of the corners. Then, there exists C = C(Ω−,M,N) > 0, and ε0 = ε0(Ω−)
such that, for any R ≥ 4, if Γtr,R is smooth and

Γtr,R \ Cε =
[
−R

2
,

R

2

]d

\ Cε for 0 < ε ≤ ε0,

then there exists k0 = k0(Γtr,R,Ω−,M,N) > 0 such that, for any direction a,

‖u − v‖L2(B(0,2)\Ω−)
‖u‖L2(B(0,2)\Ω−)

≥ C

R(d−1)/2 , for all k ≥ k0.

That is, when Γtr,R is a smoothed hypercube, the error in B(0, 2) is bounded below independently of k,
in a similar way to the error inΩR (see Theorem 1.8). However, whereas the lower bound in Theorem 1.8
is independent of R, Theorem 1.11 allows for the possibility that the large-k-limit of the error in B(0, 2)\
Ω− decreases with R.

Remark 1.12 (Smoothness of boundaries). Theorems 1.6, 1.7, 1.8, 1.9 and 1.5 are proved under the
assumptions that ΓD and Γtr,R are C∞, with Theorem 1.5 also assuming that Γ∞

tr is C∞. In all these
proofs one actually requires that these boundaries are Cm for some unspecifiedm. One could in principle
go through the arguments in the present paper, and those in Miller (2000) about defect measures on the
boundary (which we adapt in § 2), to determine the smallest m such that the results hold, but we have
not done this.

1.7 Numerical experiments in 2-d illustrating some of the main results

These numerical experiments all consider the simplest boundary condition satisfying Assumption 1.4,
i.e., the impedance boundary condition ∂nv − ikv = 0, which is covered by Assumption 1.4 with
N = D = 1.

We first describe the set up common to Experiments 1.13, 1.14 and 1.15. The set up for
Experiments 1.16 and 1.17 is slightly different, and is described at the beginning of Experiment 1.16.
The absorbing boundary condition. We let Γtr,R = ∂B(0,R), for some specified R > 0, d = 2, N =
D = 1 in (1.6c); therefore, M = N = 0, mord = 1 and mvanish = 0.
The PML solution used as a proxy for the exact solution. As a proxy for the solution u to (1.1), we use
upml defined to be the solution of the boundary value problem analogous to (1.1), but truncated with a
radial PML in an annular region B(0,Rpml)\B(0,R), with Rpml > R, using the particular PML described
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 13

in (Collino & Monk, 1998, §3). The one change from (Collino & Monk, 1998, §3) is that we take the
scaled variable to be independent of k, i.e.,

ρ̃ = ρ + i
∫ ρ

R
σ(s) ds, ρ > R

(compare to Collino & Monk, 1998, Second displayed equation on page 2067 where R in our notation
is a in their notation). We choose

σ(s) = (r − R)2/(Rpml − R)2. (1.20)

With this set up, the error between the PML solution and the solution to (1.1) decreases exponentially
with k by (Galkowski et al., 2023, Theorem 1.2). (Note, in particular, that σ = f ′

θ in the notation of
Galkowski et al. (2023), and thus the choice of σ (1.20) satisfies the regularity assumptions in Galkowski
et al. (2023) – indeed, this particular σ is given as an example in (Galkowski et al., 2023, Equation 1.7).)
The width of the PML, Rpml−R is chosen as a constant independent of k (specified in each experiment),
which is always larger than the largest wavelength considered.

The FEM approximation space. The boundary value problems for upml and v are discretized using
the finite element method with P4 elements (i.e., conforming piecewise polynomials of degree 4)
and implemented in FreeFEM++ (Hecht, 2012). The finite-element approximations to upml and v are
denoted by upml,hFEM and vhFEM, respectively, and the same mesh is used insideΩR when computing both.
We then compute the relative error ∥∥upml,hFEM − vhFEM

∥∥
L2(ΩR)∥∥upml,hFEM

∥∥
L2(ΩR)

, (1.21)

using an element-wise quadrature rule. In the figures we plot the total fields corresponding to upml,hFEM
and vhFEM, i.e., exp(ikx · a) − upml,hFEM and exp(ikx · a) − vhFEM, respectively; this is because the total
field is easier to interpret than the scattered fields.

Ensuring accuracy of the FEM solutions. The relative H1 errors in the FEM approximations of upml and
v are both controllably small, uniformly in k, if

kR(hFEMk)2p = C (1.22)

for some C > 0, independent of all parameters, where p is the polynomial degree and hFEM is the
meshwidth. This is proved in (Galkowski & Spence, 2023, Theorems 4.9 and 5.3), following earlier
results in (Du &Wu, 2015, Theorem 5.1 and Corollary 5.2) for the impedance problem with no scatterer
and (Li & Wu, 2019, Theorem 4.4) for the PML problem with no scatterer and p = 1 (see also
Chaumont-Frelet et al. (2022) for related results). Although p = 4, we choose hFEM to satisfy (1.22) with
p = 3. This choice ensures that the FEM error decreases as k → ∞, and thus the difference between
upml,hFEM − vhFEM and upml − v decreases as k → ∞. We choose C > 0 (depending on R and p) such that

when k = 20, hk = 1 (i.e., there are 2π points per wavelength at k = 20). We use triangular elements,
and thus there is a variational crime caused by approximating the curved boundaries Γtr,R and ∂Ω−;
empirically this error is controlled if hk is sufficiently small, and thus decreases as k → ∞ under the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad058/7261400 by C
atherine Sharp user on 08 N

ovem
ber 2023



14 J. GALKOWSKI ET AL.

Fig. 1. Scattering by a unit ball for k = 40 (as described in Experiment 1.13).

meshthreshold (1.22). The linear systems are solved using preconditioned GMRES, using the package
‘ffddm’ with tolerance 10−6 and the preconditioner ORAS (Optimized Restricted Additive Schwarz), as
described in FreeFEM++ (2020).

Experiment 1.13 (Scattering by ball, verifying Theorems 1.1/ 1.7).We choose ΓD = ∂B(0, 1), R = 2,
Rpml = 2 + 0.5, and a = (1, 0) (i.e., the plane wave is incident from the left). Figure 1 shows the real
parts of the total fields

�(
exp(ikx · a)− upml,hFEM

)
, �(

exp(ikx · a)− vpml,hFEM
)

and �(
upml,hFEM − vpml,hFEM

)
(1.23)

at k = 40. We see the error is largest in the shadow of the scatterer near ΓD.
Table 1 then shows the relative error (defined by (1.21)) for increasing k for R = 2, 4, 8. The errors

in Table 1 are constant for R fixed as k increases, in agreement with Theorems 1.1/1.7. The errors for
R = 4 are roughly 4 to 4.5 times smaller than the errors for R = 2, and the errors for R = 8 are roughly
4 times smaller than the errors for R = 4. Since mord = 1, the factor R−2mord = R−2 in the bound (1.14)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 15

Table 1 The relative error (1.21) against k for scattering by a ball (described in Experiment 1.13) for
two different values of R

k Relative error for ball R = 2 Relative error for ball R = 4 Relative error for ball R = 8

20 0.052557755 0.012321440 0.0035458354
40 0.050360302 0.011438903 0.0029200006
80 0.050034175 0.011050890
160 0.049001901

means that we expect the error for R = 4 to be 4 times smaller than that for R = 2, and the error for
R = 8 to be 4 times smaller than that for R = 4, at least when k ≥ k0(R) (with k0(R) the unspecified
constant in Theorems 1.1/ 1.7).

Experiment 1.14 (Scattering by a butterfly-shaped obstacle, verifying Theorems 1.1/1.7).We choose
ΓD to be the curve defined in polar coordinates by

ΓD := {
(r, θ) : r = (0.3+ sin2(θ))(1.4 cos(2θ)+ 1.5), θ ∈ [0, 2π)

}
R = 2 and Rpml = 2 + 0.5. We consider the two different incident plane waves corresponding to
a = (cos(7π/16), sin(7π/16)) and a = (cos(π/16), sin(π/16)).

Figure 2 shows the real parts of the total fields (1.23) at k = 40 with a = (cos(7π/16), sin(7π/16)),
computed with p = 2 and hFEM = (2π/5)k−1−1/4. In this case, the error is large in the shadow of the
scatterer not only near ΓD, but also away from the obstacle. The choice a = (cos(π/16), sin(π/16))
gives a qualitatively similar picture.

Table 2 shows the relative error (defined by (1.21)) for this set up for increasing k and the two different
incident plane waves. For each a, the error is constant as k increases, again in agreement with Theorems
1.1/ 1.7. While the errors depend on a, the results are consistent with the statement in Theorems 1.1/1.7
that the error can be bounded, from above and below, uniformly in a.

Experiment 1.15 (Trapping created by the impedance boundary). We choose R = 2, Rpml = 2 + 0.5,

k = 50, a = (10/
√
104, 2/

√
104), and Ω− the polygon connecting the points (0.5, 0.125),

(0.5, 0.5), (−0.5, 0.5), (−0.5,−0.5), (0.8,−0.5), (0.8,−0.125), (0.55,−0.125), (0.55,−0.375),
(−0.375,−0.375), (−0.375, 0.375), (0.25, 0.375), (0.25, 0.125). The total fields are plotted in Fig. 3.

This set up is not included in Theorems 1.1/1.7, since Ω− is trapping. However, we include this
experiment to show that artificial reflections from the impedance boundary ΓI can excite trapped waves
not present in the PML solution (as long as the incident angle is chosen in a careful way, depending on
Ω−, k, and the position of ΓI).

Experiment 1.16 (Square ΓI , investigating accuracy for increasing k with ΓI fixed). Both this exper-
iment and Experiment 1.17 investigate the effect of a noncircular impedance boundary. ΓI is the
square of side length 2Rsquare centred at the origin. We still compute our proxy for u using a radial
PML, posing the boundary-value problem for upml on B(0, 3Rsquare/2), with the PML region being
B(0, 3Rsquare/2+1/2)\B(0, 3Rsquare/2). Observe thatΓI ⊂ B(0, 3Rsquare/2), and soΓI is a fixed distance
away from the PML region. We choose Ω− = B(0, 1), Rsquare = 2, 4, 8 (observe that ΓD is then inside
ΓI – as required), and incident direction a = (cosπ/8, sinπ/8). Table 3 then shows the relative error for
increasing k.
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16 J. GALKOWSKI ET AL.

Fig. 2. Scattering by a butterfly-shaped obstacle for k = 40 (as described in Experiment 1.14).

Table 2 The relative error (1.21) against k for scattering by a butterfly-shaped obstacle
(described in Experiment 1.14) and two different incident plane waves

k Relative error, incident angle 7π/16 Relative error, incident angle π/16

20 0.066501411 0.060746128
40 0.063926342 0.061104428
80 0.063212656 0.058719452

When Γtr,R = ∂B(0,R), Table 1 showed the error decreasing by roughly a factor of 4 as R doubled.
In Table 3 we see very different behaviour: going from Rsquare = 2 to Rsquare = 4 the error decreases
by less than a factor of 2, and going from Rsquare = 4 to Rsquare = 8 the error does not decrease.
Although this experiment is not covered by Theorems 1.2/1.8, since the theorem requires Γtr,R to be
smooth, the behaviour of the error is consistent with the main result of Theorems 1.2/1.8, namely that
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 17

Fig. 3. Scattering by a trapping obstacle for k = 50 (as described in Experiment 1.15).

Table 3 The relative error (1.21) against k for scattering by the ball of radius 1 with ΓI a square of
side length 2Rsquare centred at the origin and incident angle π/8 (described in Experiment 1.16)

k Relative error for Rsquare = 2 Relative error for Rsquare = 4 Relative error for Rsquare = 8

20 0.0832432 0.0582767 0.0529081
40 0.0802578 0.0578435 0.0528049
80 0.0772090

when Γ∞
tr := limR→∞(Γtr,R/R) is not a ball centred at the origin, the relative error is bounded above

and below, independent of R, as k increases.

Experiment 1.17 (Square Γtr,R, investigating accuracy for increasing dist(ΓI , 0) with k fixed).We now
investigate the error when Γtr,R is a square as Rsquare increases with k fixed. This situation is not covered
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18 J. GALKOWSKI ET AL.

Fig. 4. Real part of error upml,hFEM − vhFEM for scattering by a circle radius one with k = 10, ΓI the square of side length 12
centred at the origin, and incident direction a = (cos(π/8), sin(π/8)) (as described in Experiment 1.17).

Table 4 The relative error (1.21) against Rsquare for
scattering by the ball of radius 1 with ΓI a square of
side length 2Rsquare centred at the origin, k = 10, and
incident direction a = (cos(π/8), sin(π/8)) (described
in Experiment 1.17)

Rsquare Relative error

4 0.0593483
8 0.0532721
16 0.0515247

by any of Theorems 1.6–1.9. However, we include this experiment since its results, along with those in
Experiment 1.16, indicate that the lower bound in Theorems 1.2/ 1.8 holds uniformly in R and k.

To investigate the case when Rsquare increases with k fixed, we consider an equivalent problem when
Rsquare is fixed, k increases, and the obstacle diameter decreases like 1/k. The set up is as in Experiment
1.16 with Rsquare = 2 (so the PML region is B(0, 3.5)\B(0, 3)),Ω− = B(0, 10/k) (so that we need k > 5
for ΓD to be inside ΓI), and the incident direction a = π/8. Figure 4 plots the relative error for this set
up with k = 30, and Table 4 displays the relative error (1.21) for k = 20, 40, 80. This set up is equivalent
to Ω− = B(0, 1), k = 10, and Rsquare = 4, 8, 16 and Table 4 is labelled with these parameters.

The fact that the last three entries of Table 4 and the last entries in the second and third columns of
Table 3 are all around 0.05 suggests that some value near 0.05 is a lower bound on the relative error in
both the limit k → ∞ with Rsquare fixed and the limit Rsquare → ∞ with k fixed.

1.8 Comparison to the results of Halpern & Rauch (1987)

Out of the existing results on absorbing boundary conditions in the literature, the closest to those in the
present paper are in Halpern & Rauch (1987). Indeed, Halpern & Rauch (1987) used microlocal methods
to study the time-domain analogue of the problems (1.1)/(1.6) when Ω− = ∅ (i.e., no obstacle), and
proved a bound on the error between the solutions of the analogues of (1.1)/(1.6) at an arbitrary time.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 19

While the results of the present paper also use microlocal methods (using defect measures instead
of propagation of singularities used in Halpern & Rauch (1987)), differences between the results of the
present paper and the results of Halpern & Rauch (1987) are the following.

• The constants in the main error bound in Halpern & Rauch (1987) (Halpern & Rauch, 1987,
Equation 5.1) depend in an unspecified way on time. The results of the present paper hold
uniformly for high-frequency in the frequency domain, which is analogous to proving results for
arbitrarily-long times in the time domain.

• The constants in the main error bound in Halpern & Rauch (1987) are not explicit in the distance
of the artificial boundary from the origin. In contrast, the error bounds in Theorems 1.8–1.11 are
explicit in R.

• Halpern & Rauch (1987) does not have to deal with glancings rays because it assumes that
(i) Ω− = ∅, and (ii) the data is supported away from the artificial boundary. In contrast, (i) we
allow the obstacleΩ− to be nonempty and have tangent points, and so have to deal with glancing
here, and (ii) we allow f in (1.11a) to have support up to the boundary Γtr,R (as is needed to use the
bound (1.12) in, e.g., the analysis of finite-element methods); therefore a large part of the analysis
in §4 takes place at glancing.

1.9 Outline of paper

§2 contains results about semiclassical defect measures of Helmholtz solutions, with these results used
in proofs of both the upper and lower bounds in Theorems 1.6–1.11.

§3 proves three results about outgoing solutions of the Helmholtz equation (i.e., solutions satisfying
the Sommerfeld radiation condition (1.1c)), Lemmas 3.1, 3.2 and 3.3, with the first used in the proof of
the lower bounds, and the last two used in the proof of the upper bounds.

§4 proves Theorem 1.5 (the well-posedness result). Important ingredients for this proof are the trace
bounds of Theorem 4.1; since the proofs of these are long and technical, they are postponed to §6.

§5 proves Theorems 1.6–1.11. The upper bounds follow immediately from Theorem 1.5 and
Lemma 3.2. However, the lower bounds require showing that there exist rays, created by the incident
plane wave, that reflect off ΓD and hit Γtr,R at an angle for which the reflection coefficient is not zero.
Furthermore, to prove the qualitative bounds Theorems 1.7–1.11 we need to control various properties
of these rays explicitly in R. §5.3 outlines the ideas used to construct these rays.

2. Results about defect measures of solutions of the Helmholtz equation

2.1 Restatement of the boundary-value problems in semiclassical notation

While we anticipate the vast majority of ‘end users’ of Theorems 1.6, 1.7, 1.8 and 1.9 will use the
Helmholtz equation in the form (1.1) with frequency k (and be interested in the limit k → ∞), the tools
and existing results from semiclassical-analysis that we use to prove these results are more convenient
to write using the semiclassical parameter h = k−1 (and the corresponding limit h → 0).

The boundary-value problem (1.1) therefore becomes,

(−h2Δ− 1)u = 0 in Ω+, (2.1a)
u = exp(ix · a/h) on ΓD, and (2.1b)

h
∂u

∂r
− iu = o

(
1

r(d−1)/2

)
as r → ∞, (2.1c)
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20 J. GALKOWSKI ET AL.

and the boundary-value problem (1.6) becomes,

(−h2Δ− 1)v = 0 in ΩR, (2.2a)

v = exp(ix · a/h) on ΓD, (2.2b)

Nh∂nv − iDv = 0 on Γtr,R. (2.2c)

In the rest of the paper, we use the ‘h-notation’ instead of the ‘k-notation’.
Appendix A recaps semiclassical pseudodifferential operators and associated notation.

2.2 The Helmholtz equation posed a Riemannian manifold M

While the main results of this paper concern the Helmholtz equation posed inΩR ⊂ R
d, in the rest of this

section (§2), in § 4, and in §6, unless specifically indicated otherwise, we consider theHelmholtz equation
posed on a Riemannian manifold M with smooth boundary ∂M and such that there exists a smooth
extension M̃ of M. The reason we do this is that we expect the intermediary results of Theorems 2.15
and 4.1 to be of interest in this manifold setting, independent of their application in proving the main
results (Theorems 1.6–1.11). This manifold setting involves the operator P := −h2Δg − 1, where Δg is
the metric Laplacian. Nevertheless, for the reader unfamiliar with this set up, we highlight that M can
be replaced by ΩR, M̃ replaced by Rd, and Δ replaced by Δg, and all the statements and proofs remain
unchanged.

2.3 The local geometry and the flow

Near the boundary ∂M, we use Riemannian/Fermi normal coordinates (x1, x
′), in which Γ is given by

{x1 = 0} and ΩR is {x1 > 0}. The conormal and cotangent variables are given by (ξ1, ξ ′). In these
coordinates,

P := −h2Δg − 1 = (hDx1)
2 − R

(
x1, x

′, hDx′
) + h

(
a1(x)hDx1 + a0(x, hDx′)

)
, (2.3)

where a1 ∈ C∞, a0 and R are tangential pseudodifferential operators (in sense of §A.3), with a0 of order
1, and R of order 2 with h-symbol r(x1, x

′, ξ ′), with r(0, x′, ξ ′) = 1 − |ξ ′|2gΓ (where the metric gΓ in
the norm is that induced by the boundary). That is, r(0, x′, ξ ′) is the symbol of one plus the tangential
Laplacian; in what follows, we often abbreviate r(0, x′, ξ ′) to r(x′, ξ ′).

The fact that P is self adjoint implies that R is self adjoint, a1 = a1, and [hDx1 , a1] = a0 − (a0)∗
(with the latter two conditions obtained by integration by parts in the x1 variable near Γ ). Let p denote
the semiclassical principal symbol of P := −h2Δg − 1, i.e., p = |ξ |2g − 1. In a classical way (see, e.g.,
(Hörmander, 1985, §24.2 page 423)), the cotangent bundle to the boundary T∗∂M is divided in three
regions, corresponding to the number of solutions of the second-order polynomial equation p(ξ1) = 0:

• the elliptic region E := {
(x′, ξ ′) ∈ T∗∂M, r(x′, ξ ′) < 0

}
, where this equation has no solution,

• the hyperbolic region H := {
(x′, ξ ′) ∈ T∗∂M, r(x′, ξ ′) > 0

}
, where it has two distinct solutions

ξ in1 = −√
r(x′, ξ ′) and ξout1 = √

r(x′, ξ ′), (2.4)

• the glancing region G := {
(x′, ξ ′) ∈ T∗∂M, r(x′, ξ ′) = 0

}
, where it has exactly one solution,

ξ1 = 0.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 21

The hyperbolic region plays a crucial role in obtaining the lower bounds in the main results, while
we perform analysis near glancing to obtain the upper bounds.

With p = |ξ |2g − 1 (i.e., the semiclassical principal symbol of P := −h2Δg − 1), the Hamiltonian
vector field of p is defined for compactly supported a by

Hpa := {p, a},
where {·, ·} denotes the Poisson bracket. Let H∗

p denote the formal adjoint of Hpa, and let ϕt(ρ) denote
the generalized bicharacteristic flow in M (see (Hörmander, 1985, §24.3)), defined such that

(t, ρ) ∈ R × S∗
M

M̃ → ϕt(ρ) ∈ S∗
M

M̃. (2.5)

In particular, when M = ΩR and M̃ = R
d, ϕt(ρ) ∈ S∗

ΩR
R

d := {(x, ξ) ∈ S∗
R

d, x ∈ ΩR} = {x ∈ ΩR, ξ ∈
R

d with |ξ | = 1}. By Hamilton’s equations, away from the boundary of M, this flow satisfies ẋi = 2ξi
and ξ̇i = 0, so that it has speed 2 (since |ξ | = 1). Recall that the projection of the flow in the spatial
variables are the rays.

We now defined some projection maps. Let πM : T∗M̃ → M̃ be defined by π
Rd (x, ξ) = x. Let

π∂M : T∗
∂MM̃ ∩ {p = 0} → T∗∂M be defined by

π∂M
(
0, x′, ξ1, ξ ′

) = (x′, ξ ′). (2.6)

Let π∂M,in := π∂M|ξ1<0 and let π∂M,out := π∂M|ξ1>0.
Remark 2.1 (The Dirichlet-to-Neumann map away from glancing in local coordinates). In the notation
above, locally on Γtr,R, the map u �→ hDx1u = −h∂nu/i has semiclassical principal symbol−√

r(x′, ξ ′).
The minus sign in front of the square root is chosen since, when ξ ′ = 0 (i.e., u corresponds to a normally-
incident wave), the outgoing condition is that hDx1u = −u (i.e., ∂nu = iku), as opposed to hDx1u = u
(i.e., ∂nu = −iku).

2.4 Existence and basic properties of defect measures

We first assume that u ∈ L2loc(R
d) is a solution to

Pu := ( − h2Δg − 1
)
u = hf on U, u|

Rd\U = 0, (2.7)

whereU ⊂ R
d is open with smooth boundary Γ and f ∈ L2comp(R

d). When taking traces of u, we always

do so from U rather than from R
d \ U. To define the defect measures associated with u we need the

following boundedness assumption.

Assumption 2.2 Given χ ∈ C∞
c (R

d), there exists C > 0, and h0 > 0 such that for any 0 < h ≤ h0

‖χu‖L2(U) + ‖u‖L2(Γ ) + ‖h∂nu‖L2(Γ ) ≤ C.

We highlight that Assumption 2.2 is satisfied when the problem is nontrapping; see Lemma 5.1
below.
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22 J. GALKOWSKI ET AL.

Theorem 2.3 (Existence of defect measures). Suppose that uhk
solves (2.7) and satisfies Assumption

2.2. Then there exists a subsequence hk� → 0 and non-negative Radon measures μ and μj on T∗M̃,
νd, νn, νj on T∗∂M such that for any symbol b ∈ C∞

c (T
∗M̃) and tangential symbol a ∈ C∞

c (T
∗∂M),

as �→ ∞〈
b

(
x, hk�Dx

)
u, u

〉 →
∫

b(x, ξ) dμ,
〈
b

(
x, hk�Dx

)
u, f

〉 →
∫

b(x, ξ) dμj,〈
a

(
x′, hk�Dx′

)
u, u

〉
Γ

→
∫

a(x′, ξ ′) dνd,
〈
a

(
x′, hk�Dx′

)
hk�Dx1u, u

〉
Γ

→
∫

a(x′, ξ ′) dνj,〈
a

(
x′, hk�Dx′

)
hk�Dx1u, hk�Dx1u

〉
Γ

→
∫

a(x′, ξ ′) dνn. (2.8)

Reference for the proof. See (Zworski, 2012, Theorem 5.2). �

Remark 2.4 (The measure νj). The joint measure νj also describes pairings with the Neumann and
Dirichlet traces swapped, since, by (A.2),

〈
a

(
x′, hk�Dx′

)
u, hk�Dx1u

〉
Γ

= 〈
a

(
x′, hk�Dx′

)∗
hk�Dx1u, u

〉
Γ

→
∫

a dνj =
∫

a dνj.

We use the notation that μ(a) := ∫
a dμ for the pairing of a function and a measure. We also use the

notation that bμ(f ) := ∫
f b dμ, where b ∈ L∞(dμ) and f ∈ L1(dμ).

We now recall the following two fundamental results.

Lemma 2.5 (Invariance and support of defect measures). Let u satisfy (2.7) and letμ be a defect measure
of u.

(i) In the interior of U,

μ(Hpa) = −2�μj(a) (2.9)

for all a ∈ C∞
c (T

∗U); in particular, if f = o(1) as h → 0, then μ is invariant under the flow.
(ii) μ is supported in the characteristic set:

suppμ ∩ T∗U ⊂ Σp := {p = 0}. (2.10)

References for the proof. (2.9) was originally proved inGérard (1991); see also (Zworski, 2012, Theorem
5.4), (Dyatlov & Zworski, 2019, Theorem E.44). (2.10) was proved in the framework with boundary by
(Miller, 2000, Lemma 1.3); see also (Galkowski et al., 2020, Lemma 4.2). �

Part (ii) of Lemma 2.5 implies that μ is only supported on |ξ | = 1; this is the reason why we only
consider the flow (2.5) defined on S∗

M
M̃.

2.5 Evolution of defect measures under the flow

Lemma 2.6 (Integration by parts). Let Bi ∈ C∞
c ((−2δ, 2δ)x1 ;Ψ �i(Rd−1)), i = 1, 2, and let B = B0 +

B1hDx1 . If

B∗
1 = B1, B∗

0 + [
hDx1 ,B1

] = B0, (2.11)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 23

then, for all u ∈ C∞(M),
i

h
〈[P,B]u, u〉L2(M) = −2

h
� 〈Bu,Pu〉L2(M)

− 〈
B1hDx1u, hDx1u

〉
L2(∂M)

− 〈(
B0 + h(Dx1B1)− h(B1a1 − a1B1)

)
hDx1u, u

〉
L2(∂M)

− 〈
B0u, hDx1u

〉
L2(∂M)

− 〈(
h(Dx1B0)+ B1(R − ha0)+ ha1B0

)
u, u

〉
L2(∂M)

. (2.12)

Corollary 2.7 Let u satisfy Assumption 2.2, and thus have defect measures as in Theorem 2.3. Given
a ∈ C∞

c (T
∗M̃), let

aeven(x, ξ1, ξ
′) := a(x, ξ1, ξ

′)+ a(x,−ξ1, ξ ′)
2

, aodd(x, ξ1, ξ
′) := a(x, ξ1, ξ

′)− a(x,−ξ1, ξ ′)
2ξ1

,

so that a(x, ξ1, ξ
′) = aeven(x, ξ1, ξ

′)+ ξ1aodd(x, ξ1, ξ
′). Then

μ(Hpa) = −2�μj(a)− νn(aodd)− 2�νj(aeven)− νd(r(x′, ξ ′)aodd). (2.13)

Proof of Lemma 2.6. First recall that R is self adjoint, a1 = a1, and [hDx1 , a1] = a0 − (a0)∗; see §2.3.
By integration by parts,

〈 (
hDx1

)2
Bu, u

〉
L2(M) =

〈
Bu,

(
hDx1

)2
u
〉
L2(M) −

h

i

[〈
hDx1Bu, u

〉
L2(∂M)

+ 〈
Bu, hDx1u

〉
L2(∂M)

]
,

and

〈
a1hDx1Bu, u

〉
L2(M)

= 〈
Bu,

(
a1hDx1 + [hDx1 , a1]

)
u
〉
L2(M)

− h

i

〈
Bu, a1u

〉
L2(∂M).

Using theses two identities, the expression for P (2.3), the self-adjointness of R, and the fact that
[hDx1 , a1] = a0 − (a0)∗, we obtain that

〈PBu, u〉L2(M) = 〈Bu,Pu〉L2(M) −
h

i

[〈
hDx1Bu, u

〉
L2(∂M)

+ 〈
Bu, hDx1u

〉
L2(∂M)

+ h
〈
Bu, a1u

〉
L2(∂M)

]
.

(2.14)

The definition of B and the form of P in (2.3) imply that

hDx1Bu = B1
(
hDx1

)2
u + (

hDx1B1 + B0
) (

hDx1u
) + (

hDx1B0
)

u,

= B1
(
R − ha0 − ha1hDx1

)
u + B1Pu + (

hDx1B1 + B0
) (

hDx1u
) + (

hDx1B0
)

u. (2.15)
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24 J. GALKOWSKI ET AL.

Therefore, using (2.14) and (2.15), we have

i

h
〈[P,B]u, u〉L2(M) =

i

h
〈PBu, u〉L2(M) −

i

h
〈B(Pu), u〉L2(M)

= i

h
〈Bu,Pu〉L2(M) −

i

h
〈B(Pu), u〉L2(M)

− 〈
B1hDx1u, hDx1u

〉
L2(∂M)

− 〈(
B0 + h

(
Dx1B1

) − h(B1a1 − a1B1)
)

hDx1u, u
〉
L2(∂M)

− 〈
B0u, hDx1u

〉
L2(∂M)

− 〈[
h(Dx1B0)+ B1(R − ha0)+ ha1B0

]
u, u

〉
L2(∂M)

− 〈
B1(Pu), u

〉
L2(∂M).

(2.16)

Next, using the definition of B, integration by parts, and (2.11), we find that, for any v, u,

〈Bv, u〉L2(M) = −h

i

〈
v,B∗

1u
〉
L2(∂M) +

〈
v,B∗

0u + hDx1

(
B∗
1u

)〉
L2(M)

= −h

i

〈
v,B1u

〉
L2(∂M) + 〈v,Bu〉L2(M). (2.17)

Letting v = Pu, combining (2.16) and (2.17), and using the fact that B1 = B∗
1, we obtain

i

h
〈[P,B]u, u〉L2(M) =

i

h
〈Bu,Pu〉L2(M) −

i

h
〈Pu,Bu〉L2(M)

− 〈
B1hDx1u, hDx1u

〉
L2(∂M)

− 〈(
B0 + h

(
Dx1B1

) − h(B1a1 − a1B1)
)

hDx1u, u
〉
L2(∂M)

− 〈
B0u, hDx1u

〉
L2(∂M)

− 〈[
h

(
Dx1B0

) + B1(R − ha0)+ ha1B0
]

u, u
〉
L2(∂M)

,

which is (2.12). �

Proof of Corollary 2.7. Letting h → 0 in (2.12), using the third equation in (A.2) and the definitions of
the measures in Theorem 2.3, we have

μ(Hpb) = −2�μj(b)− νn(b1)− 2�νj(b0)− νd(r b1), (2.18)

where b = σ(B), bi = σ(Bi). The idea of the proof is to construct a B satisfying the assumptions of
Lemma 2.6 with σ(B0) = aodd and σ(B1) = aeven (and thus σ(B) = a). Since (2.13) is linear in a,
without loss of generality, we assume that a is real. Since aeven and aodd are both smooth, even functions
of ξ1, abusing notation slightly, we can write

aeven/odd(x, ξ1, ξ
′) = aeven/odd(x, ξ

2
1 , ξ

′). (2.19)

Let

ãeven(x, ξ
′) = aeven

(
x, r(x1, x

′, ξ ′), ξ ′
)
, ãodd(x, ξ

′) = aodd
(
x, r(x1, x

′, ξ ′), ξ ′
)
, (2.20)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 25

and

ã(x, ξ ′) = ãeven(x, ξ
′)+ ξ1̃aodd(x, ξ

′).

Since S∗M̃ = {ξ21 − r(x1, x
′, ξ ′) = 0} and Hp

(
ξ21 − r(x1, x

′, ξ ′)
) = 0 (by (2.3)),

ã|S∗M̃ = a|S∗M̃ and Hpa|S∗M̃ = Hp

(
a|S∗M̃

)
;

therefore

Hpa|S∗M̃ = Hp

(̃
a|S∗M̃

)
.

Since μ is supported on {p = 0} by (2.10),

μ(Hpa) = μ(Hp̃a). (2.21)

Let

B0(x, hDx′) := ãeven(x, hDx′)+ (̃aeven(x, hDx′))∗

2
+ 1

2

[
hDx1 ,

ãodd(x, hDx′)+ (̃aodd(x, hDx′))∗

2

]
and

B1(x, hDx′) := ãodd(x, hDx′)+ (̃aodd(x, hDx′))∗

2
.

Then (2.11) is satisfied and by (A.2), (2.20), and (2.19),

σ(B0)(x, ξ
′) = ãeven(x, ξ

′) = aeven
(
x, ξ21 , ξ

′) on S∗M̃.

Similarly, σ(B0)(x, ξ
′) = aodd(x, ξ

2
1 , ξ

′), and thus σ(B) = a(x, ξ1, ξ
′) on S∗M̃. The result (2.13) then

follows from (2.18) and (2.21). �

2.6 Properties of defect measures on the boundary

In this subsection we review the calculations from Miller (2000), adapting them to the case when the
right-hand side of the PDE is nonzero.

Remark 2.8 (Notation in Miller (2000)). Since our results rely heavily on the results of Miller (2000),
we record here the correspondence between the notation in Miller (2000) (on the left) and our notation
(on the right):

Δp = 4r, kin/out = ξ in/out1 , σ = ξ1, s = x1, ν̇
N = 4νn, ν

jN = 2νj.

Recall that u has defect measure μ, trace measures νd, νn and νj, and f and u have joint defect

measure μj. By (Galkowski et al., 2020, Lemma 3.3), μj(a) is absolutely continuous with respect to μ,
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and μj = β dμ for some β ∈ L1(dμ); hence (2.13) becomes

μ(Hpa + 2�βa) = −νn(aodd)− 2�νj(aeven)− νd(raodd). (2.22)

For convenience, we define the differential operator

L := Hp + 2�β.

Lemma 2.9 There is a distribution μ0 on T∗
∂MM̃ supported in B∗∂M such that

L∗ (
μ1x1>0

) = δ(x1)⊗ μ0, (2.23)

where ⊗ denotes tensor product of distributions. Furthermore, on π−1
∂M(H),

μ0 := δ(ξ1 − ξ in1
) ⊗ μin − δ (ξ1 − ξout1

) ⊗ μout, (2.24)

where μin/out are positive measures on T∗∂M supported inH, and ξ in/out are defined by (2.4).

Proof. The proof follows (Miller, 2000, Proposition 1.7), replacing Hp at every step by L. In particular,
by (2.22), L∗(μ1x1>0) is supported in {x1 = 0}, and hence is of the form∑�

k=0 δ(k)(x1)⊗μk where each
μk is a distribution on T∗

∂MM̃. But, letting χ ∈ C∞
c (R) with χ

(k)(0) = 1, for k ≤ � and applying (2.22)
to aε = ε�χ(ε−1x1)b(x

′, ξ), we have for � ≥ 1,

�∑
k=0
ε�−kμk(b) = μ

(
1x1>0Laε

) = μ(
1x1>0

(
ε�−1Hpχ + ε�χHpb − 2�βa

)) → 0 as ε → 0.

In particular, μk = 0 for k ≥ 1 and (2.23) follows.
The result (2.24) about the structure of μ0 in the hyperbolic set follows by considering a small

neighbourhood V in T∗∂M of a point ρ ∈ H and δ > 0 such that each geodesic trajectory of length
2δ centered in π−1

∂M(V) intersects the boundary exactly once. We may then use

(−δ, δ)× π−1
∂M(V) � (t, ρ)→ ϕt(ρ) ∈ Vδ ⊂ T∗M̃

as coordinates on an open neighbourhood,Vδ ofπ−1
∂M(V). In these coordinates, writing μ̃ for the pull-back

of 1x1>0μ under ϕt, we obtain

(∂t + 2�β)μ̃ = δ(t)⊗ μ0.

In particular, μ̃ is null Vt0 for any t0 ∈ (−δ, δ), and testing by εχ(tε−1)bwith 0 ≤ b ∈ C∞
c (π

−1
∂M(V)),

and χ ∈ C∞
c (−δ, δ) with tχ ′(t) < 0 on |t| > 0, χ(0) = 1, we have

μ̃(χ ′(ε−1t)b − 2ε�βχ(ε−1t)b) = μ0(b).
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 27

Now μ̃ is identically zero on π−1
in (V) × [0,∞) and on π−1

out (V) × (−∞, 0]. Therefore, for b supported
in π−1

∂Mout(V)

μ0(b) ≤ lim inf
ε→0

μ̃
([
χ ′(ε−1t)b − 2ε�βχ(ε−1t)b

]
1t>0

)
≤ 0.

Similarly, for b supported in π−1
in (V), μ0(b) ≥ 0. In particular, μ0 is a positive distribution on π−1

in (H)
and a negative distribution of π−1

out (H), and the result follows. �
Next, we decompose μ into its interior and boundary components, with the following lemma the

analogue of (Miller, 2000, Proposition 1.8).

Lemma 2.10 There is a positive measure μ∂ on G ⊂ T∗
∂MM̃ such that

μ = 1x1>0μ+ δ(x1)⊗ δ(Hpx1)⊗ μ∂ .

Proof. Let χ ∈ C∞
c (R) with χ(0) = χ ′(0) = 1 and b ∈ C∞

c (R × T∗
R

n−1). Then, with aε =
εχ(x1ε

−1)b(x, ξ ′), (2.22) implies that

μ(Laε) = −2ε�νj(b).
Now,

Laε = 2χ ′(x1ε
−1)Hpx1b + O(ε).

Therefore, by the dominated convergence theorem,

μ(Laε)→ μ
(
1x1=0bHpx1

)
and, since |νj(b)| <∞,

μ
(
1x1=0bHpx1

) = 0.

Since b was arbitrary, μ decomposes as claimed. �
The following lemma is the analogue of (Miller, 2000, Lemma 1.9).

Lemma 2.11 On E (i.e., r < 0), �νj = 0 and νn = −rνd.

Proof. Let χ ∈ C∞(R) with χ ≡ 1 on (−∞,−1] and suppχ ⊂ (−∞, 0). Let b = b(x, ξ ′) ∈ C∞
c and

define bε = χ(ε−1r)b. Then, by (2.22) together with the fact that suppμ ⊂ S∗M,

0 = μ(
Hpbε + 2�βbε

) = −2�νj(bε).

Sending ε → 0+, we obtain

0 = 2�νj
(
b1r<0

)
.
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28 J. GALKOWSKI ET AL.

Since b was arbitrary, νj1r<0 = 0. Replacing b by b(x, ξ ′)ξ1 and applying the same argument, we obtain

νn1r<0 = −rνd1r<0.

�
Next, we prove the analogue of (Miller, 2000, Proposition 1.10).

Lemma 2.12 On the hyperbolic setH,
(i)

2μout = √
r(x′, ξ ′)νd + 2�νj + 1√

r(x′, ξ ′)
νn, 2μin = √

r(x′, ξ ′)νd − 2�νj + 1√
r(x′, ξ ′)

νn.

(2.25)

(ii) If μin = 0 on some Borel set B ⊂ H, then

μout = 2�νj = 2
√

r(x′, ξ ′)νd = 2√
r(x′, ξ ′)

νn. (2.26)

(iii) If

− 2�νj = (�α)νd = 4(�α)|α|−2νn (2.27)

on some Borel set B ⊂ H for α a complex valued function such that α + 2
√

r(x′, ξ ′) is never zero on
B, then

μout = αrefμin, (2.28)

where

αref :=
∣∣∣∣2√r(x′, ξ ′)− α
2
√

r(x′, ξ ′)+ α
∣∣∣∣ 2 on B, (2.29)

where the superscript ‘ref’ stands for ‘reflected’. If instead, α − 2
√

r is never zero, then

(αref)−1μout = μin.

Proof. (i) By combining Lemmas 2.9 and 2.10,

L∗μ = δ(x1)⊗ μ0 + L∗(δ(x1)⊗ δ(Hpx1)⊗ μ∂
)
. (2.30)

Let χ ∈ C∞(R) with χ ≡ 0 on (−∞, 1] and χ ≡ 1 on [2,∞). For a ∈ C∞
c (R × T∗∂M) (so a =

a(x1, x
′, ξ ′)), let aε = χ(ε−1|Hpx1|)a. Since Hpx1 = 2ξ1, aε = a for |ξ1| ≥ ε and aε = 0 for |ξ1| ≤ ε/2.

Combining (2.30) and (2.22), and using the facts that aε is even in ξ1 and aε = 0 for |Hpx1| ≤ ε/2, we
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 29

find that

μ0
(
aε |x1=0

) = μ(Laε) = −2�νj
(
aε |x1=0

)
.

By (2.24),

χ
(
2|ξ in1 |/ε)μin (

a|x1=0
) − χ (

2|ξout1 |/ε)μout (a|x1=0
) = 2�νj

(
aε |x1=0

)
.

Therefore, by the dominated convergence theorem,

μin − μout = −2�νj onH. (2.31)

Similarly, since aεξ1 is an odd function of ξ1, (2.30) and (2.22) imply that

μ0(aεξ1|x1=0) = μ(Laεξ1) = −νd(raε |x1=0)− νn(aε |x1=0).

By (2.24),

ξ in1 χ
(
2|ξ in1 |/ε)μin (

a|x1=0
) − ξout1 χ

(
2|ξout1 |/ε)μout (a|x1=0

) = −νd(raε |x1=0)− νn(aε |x1=0).

Therefore, by the dominated convergence theorem,

− √
r(μin + μout) = −rνd − νn onH. (2.32)

The result (2.25) now follows from solving (2.31) and (2.32) for μin and μout.
(ii) By the Cauchy–Schwarz inequality and similar reasoning used in the proof of (Galkowski et al.,

2020, Lemma 3.3),

|νj| ≤
√√

rνd

√
νn/

√
r. (2.33)

By (2.25), when μin = 0,

2�νj = √
rνd + νn/

√
r. (2.34)

However, for both (2.33) and (2.34) to hold, we must have
√

rνd = νn/
√

r, and (2.28) follows.
(iii) The equation (2.28) follows from using (2.27) in (2.25). �

Lemma 2.13

− H2
px1μ

∂ = 4νn1G .

In particular, μ∂ is supported in H2
px1 ≤ 0 and νn1G does not charge H2

px1 ≥ 0.
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30 J. GALKOWSKI ET AL.

Proof. We follow (Galkowski et al., 2020, Lemma 4.7). Since Hpx1 = 2ξ1,

Hp(2a(x, ξ)ξ1) = aH2
px1 + 2ξ1Hpa.

Now, put aε = χ(ε−1x1)χ(ε
−1r(x, ξ ′))2aξ1 where χ ∈ C∞

c (R) has χ ≡ 1 near 0. Then,

Hpaε = aχ
(
ε−1x1

)
χ(ε−1r)H2

px1 + O(1)
(∣∣χ ′(ε−1x1

)∣∣ + ∣∣χ ′(ε−1r)
∣∣ + ε1/2),

where we have used that on S∗M,Hpr = −Hpξ
2
1 = O(ξ1). Then, by the dominated convergence theorem,

μ(Hpaε)→
1

2
μ∂

([
H2

px1
]
a
)
.

Using (2.22), we have

μ(Hpaε) = −2μ(�βaε)− νd(2χ(ε−1r)ra)− νn(2χ(ε−1r)a).

Using the dominated convergence theorem again, using that ξ1 = O(
√

r) on S∗M, we have

μ(2�βaε)→ 0,

and hence

1
2μ
∂
([

H2
px1

]
a
) = −νn(2a1G),

as claimed. �

Lemma 2.14 Let q = q(x1, x1ξ1, x
′, ξ) ∈ C∞

c (T
∗M̃). Then,

μ(Hpq) = −2�βμ(q)+ (μin − μout) (q|x1=0
) + 1

2μ
∂
(�(ṅj)H2

px1q|x1=0
)
,

where ṅjνn = νj.

Proof. By Lemma 2.12,

μ(Lq) = −2�νj(q|x1=0) = (μin − μout)(q|x1=0)− 2�νj(1Gq|x1=0).

Now, since νj � νn we may write νj = ṅjνn and use Lemma 2.13 to obtain

− 2�νj(1Gq|x1=0) = −2�νn
(
ṅj1Gq|x1=0

) = 1

2
μ∂

(
(�ṅj)H2

px1q|x1=0
)
,

and the claim follows. �
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 31

Theorem 2.15 Suppose that ∂M is nowhere tangent to Hp to infinite order. Then, for q ∈ C∞
c (

bT∗M)

π∗μ(q ◦ ϕt)− π∗μ(q) =
∫ t

0

(
−2�π∗μj+ δ(x1)⊗ (μin − μout)+ 1

2
(�ṅj)H2

px1μ1G1x1=0
)
(q ◦ ϕs) ds,

(2.35)

where bT∗M denotes the b-cotangent bundle to M and π : T∗M → bT∗M is defined by
π(x1, x

′, ξ1, ξ ′) := (x1, x′, x1ξ1, ξ ′) (see (Galkowski et al., 2020, Section 4.2)).

Proof. This result is analogous to (Galkowski et al., 2020, Lemma 4.8), except that (Galkowski et al.,
2020, Lemma 4.8) only considers zero Dirichlet boundary conditions, and thus only −2�π∗μj appears
on the right-hand side of (Galkowski et al., 2020, Equation 4.3) compared to (2.35) (note that Galkowski
et al. (2020) defines the joint measure μj differently to (2.8), with the result that the signs of μj are
changed here compared to in Galkowski et al. (2020) – compare the definitions (Galkowski et al., 2020,
Equation 3.1) and (2.8), and then the sign change in the propagation statements (Galkowski et al., 2020,
Lemma 4.4) and (2.13)).

Examination of the proof of (Galkowski et al., 2020, Lemma 4.8) shows that the only time absolute
continuity of the measure μ1 in that proof is used is in the higher-order glancing set. Therefore, since
Lemma 2.14 shows that μ(Hpq) = μ1(q) for some measure that is absolutely continuous with respect
to μ on the glancing set, the result (2.35) follows in exactly the same way as in (Galkowski et al., 2020,
Equation 4.3 and Lemma 4.8). �

2.7 Linking Lemma 2.12 to concepts in the applied literature

The summary is that αref in (2.29) is the square of the reflection coefficient describing how plane waves
interact with the boundary condition

hDx1v(0, x
′) = −α(x

′, hDx′)

2
v(0, x′), (2.36)

where α is a semiclassical pseudodifferential operator. Indeed, when α = 2, the boundary condition
(2.36) corresponds to the first-order impedance boundary condition (hDx1 + 1)v = 0 at x1 = 0, i.e.,
(−∂x1 − ik)v = 0 (since h = k−1). The Helmholtz solution

v(x) = exp
(

ik
(
ξ ′ · x′ −

√
1− |ξ ′|2 x1

))
+ R exp ik

(
ξ ′ · x′ +

√
1− |ξ ′|2 x1

)
,

in the half-plane x1 > 0, corresponds to an incoming plane wave with unit amplitude, and an outgoing
plane wave with amplitude R. Imposing the boundary condition (∂x1 − ik)v = 0 at x1 = 0, we obtain
that

R =
√
1− |ξ ′|2 − 1√
1− |ξ ′|2 + 1

which equals
√
αref when α = 2 (since r(x′, ξ ′) = √

1− |ξ ′|2 when Γ is flat).
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32 J. GALKOWSKI ET AL.

The interpretation of
√
αref as the reflection coefficient is consistent with the relation μout = αrefμin

in (2.28). Indeed, the defect measure of the solution v of (1.6) records where the mass of the solution
is concentrated in phase space (x, ξ) in the high-frequency limit h → 0 (see, e.g., the discussion and
references in (Lafontaine et al., 2022, §9.1)). The relation μout = αrefμin therefore describes how much
mass of |v|2 (since the defect measure is quadratic in v) is reflected from Γtr,R.

The expression for αref in (2.29) shows that, to minimize reflection from Γtr,R (i.e., to make αref

small), α/2 must approximate the symbol of the Dirichlet-to-Neumann map
√

r(x′, ξ ′); recall the
discussion in § 1.3 and see, e.g., (Ihlenburg, 1998, §3.3.2) for similar discussion in this frequency-domain
setting, and, e.g., (Engquist &Majda, 1977b, pages 631–632), (Engquist &Majda, 1979, Equation 1.12),
(Tsynkov, 1998, §2.2), and (Givoli, 2004, §3) for analogous discussion in the time domain.

2.8 Relationship between boundary measures and the measure in the interior

The goal of this subsection is to prove Lemma 2.16 relating the measures μin and μout to the measure
μ|T∗U . We first introduce some notation.

Recall that π∂M is defined by (2.6); let

pout/in : H → π−1
∂MH ∩ {

ξ1 = ξout/in} ⊂ T∗
∂MM̃

be defined by

pout/in(x′, ξ ′) := (
0, x′, ξout/in(x′, ξ ′), ξ ′

)
(2.37)

(i.e., pout/in takes a point inH and gives it outgoing/incoming normal momentum).
For q ∈ H, let

tout(q) = sup
{
t > 0 : πMϕt(p

out(q)) ∩ (
Γ \ {πM(q)}

) = ∅}
; (2.38)

i.e., tout(q) is the positive time at which the flow starting at t = 0 from pout(q) hits Γ again. Similarly,
let

tin(q) = inf
{
t < 0 : πMϕt

(
pin(q)

) ∩ (
Γ \ {πM(q)}

) = ∅}
;

i.e., tin(q) is the negative time at which the flow starting at t = 0 from pin(q) hits Γ again.
Given V ⊂ H, let Bout(V),Bin(V) ⊂ T∗U be defined by

Bout(V) :=
⋃
q∈V

{
ϕt

(
pout(q)

)
, 0 < t < tout(q)

}
, and

Bin(V) :=
⋃
q∈V

{
ϕt

(
pout(q)

)
, tin(q) < t < 0

}
.

i.e., Bout(V) is the union of the outgoing flows from points in V up to their times tout and i.e., Bin(V) is
the union of the incoming flows from points in V up to their (negative) times tin.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 33

The whole point of these definitions is that in Bout(V) we can work in geodesic coordinates

(ρ, t) ∈ (
π−1
∂MV ∩ {

ξ1 = ξout1

} ) × R+ = pout(V)× R+,

defined for (x, ξ) ∈ B by (x, ξ) = ϕt(ρ) (in a similar way to in the proof of Lemma 2.9). Similarly, in
Bin(V) we work in geodesic coordinates

(ρ, t) ∈ (
π−1
∂MV ∩ {

ξ1 = ξ in1
}) × R− = pin(V)× R−.

In the following lemma, recall that the pushforward measure f∗μ is defined by (f∗μ)(B) =
μ(f −1(B)).
Lemma 2.16 (Relationship between boundary measures and the measure in the interior). Let u satisfy
(2.7) with f = o(1) as h → 0, and let μ be a defect measure of u. Let μout,μin be defined by Lemma
2.9. Then, in the geodesic coordinates described above,

μ = (
pout∗ (2

√
rμout)

) ⊗ dt on Bout(V) and μ = (
pin∗ (2

√
rμin)

) ⊗ dt on Bin(V),

where dt denotes Lebesgue measure in t and ⊗ denotes product measure.

Proof. We prove the result for Bout(V); the proof for Bin(V) is similar. By Part (i) of Lemma 2.5, μ is
invariant away from the boundary, therefore μ is invariant on ±t > 0 (away from Γ ). Since the flow is
generated by ∂t in geodesic coordinates, and, in these coordinates, Bout ⊂ {t > 0},

μ = μ(ρ, t) = μ1(ρ)⊗ 1t>0 dt,

for some μ1. Since μ|x1<0 = 0,

μ1 = μ11ξ1>0,

and thus, on Bout

μ = μ1(ρ)1ξ1>0 ⊗ 1t>0 dt, (2.39)

from which

∂tμ = μ1(ρ)1ξ1>0 ⊗ δ(t). (2.40)

On the other hand, since x1 = 0 is t = 0 in geodesic coordinates, Lemma 2.9 implies that

H∗
pμ = L∗μ = (2√r)δ(t)⊗ δ(ξ1 − ξ in1

) ⊗ μin − (2√r)δ(t)⊗ δ (ξ1 − ξout1

) ⊗ μout, (2.41)

where the factors of 2
√

r arise because |∂x1/∂t| = 2|ξ1| = 2
√

r.
Therefore, since Bout(V) ⊂ π−1

∂MV ∩ {ξ1 = ξout1 } and ∂tμ = −H∗
pμ, comparing (2.40) and (2.41),

we find that μ1 = pout∗ (2
√

rμout) in Bout (note that pout∗ appears because ρ = pout(q) for q ∈ V and μout

acts on V). The result then follows from (2.39). �
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34 J. GALKOWSKI ET AL.

The following corollary of Lemma 2.16 is an essential ingredient of our proofs of the lower bounds
in Theorems 1.6, 1.7, 1.8, 1.10 and 1.11.

Corollary 2.17 (Relationships between incoming boundary measures, outgoing boundary measures,
and measures in the interior) Let u be a solution of (2.7), and let μ be any defect measure of u.

(i) (Between two pieces of the boundary.) Let V1 ⊂ H. Assume that supq∈V1 tout(q) < ∞, and that
π∂M(ϕtout(q)(p

out(q))) ∈ H for all q ∈ V1. Let

V2 :=
⋃

q∈V1
π∂M

(
ϕtout(q)

(
pout(q)

) )
⊂ H

(i.e., V2 is the union of the outgoing flows from points in V1, projected into T∗∂M). Then

(2
√

rμin)(V2) = (2
√

rμout)(V1). (2.42)

(ii) (Between the boundary and the interior.) Let V ⊂ H and A ⊂ T∗U. Then

μ(A) ≥
(

inf
q∈V

∫ tout(q)

0
1A

(
ϕt(p

out(q))
)
dt

)
(2

√
rμout)(V) (2.43)

and

μ(A) ≥
(

inf
q∈V

∫ 0

tin(q)
1A

(
ϕt(p

in(q))
)
dt

)
(2

√
rμin)(V). (2.44)

The integrals on the right-hand sides of (2.43) and (2.44) are the shortest times that elements of V
spend in A under, respectively, the outgoing forward flow and the incoming backward flow, with the
flows considered until they hit Γ again.

Proof of Corollary 2.17. (i) The definition of V2 implies that

Bout(V1) = Bin(V2);

let B denote this set. In B, we work in both sets of geodesic coordinates:

(ρ1, t1) ∈ pout(V1)× R+ and (ρ2, t2) ∈ pin(V2)× R−

as defined above. The coordinates (ρj(q), tj(q)), j = 1, 2, of q ∈ B satisfy

t1 = t+(pout(ρ1))+ t2 and ρ2 = ϕτ(ρ1)(ρ1) =: Φ1→2(ρ1). (2.45)

The first equation in (2.45) implies that dt1 = dt2. By Lemma 2.16, in B,

μ = (
pout∗ (2

√
rμout)

)
V1 (ρ1)⊗ dt1 = (

pin∗ (2
√

rμin)
)
V2(ρ2)⊗ dt2,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad058/7261400 by C
atherine Sharp user on 08 N

ovem
ber 2023



LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 35

where the subscriptsV1 andV2 show onwhich neighbourhood ofH pout, pin,μout, andμin are considered.
This last equality and the second equation in (2.45) imply that

(
pin∗ (2

√
rμin)

)
V2 = Φ1→2∗

(
pout∗ (2

√
rμout)

)
V1 .

Then

(2
√

rμin)(V2) =
(
pin∗ (2

√
rμin)

)
V2

(
pin(V2)

)
,

= (
pin∗ (2

√
rμin)

)
V2

(
π−1
∂MV2 ∩ {

ξ1 = ξ in1
})
,

= Φ1→2∗
(
pout∗ (2

√
rμout)

)
V1

(
π−1
∂MV2 ∩ {

ξ1 = ξ in1
})
,

= (
pout∗ (2

√
rμout)

)
V1

(
(Φ1→2)−1

(
π−1
∂MV2 ∩ {

ξ1 = ξ in1
}))

,

= (
pout∗ (2

√
rμout)

)
V1

(
π−1
∂MV1 ∩ {

ξ1 = ξout1

} )
,

= (
pout∗ (2

√
rμout)

)
V1

(
pout(V1)

)
,

= (2√rμout)(V1).

(ii) We prove (2.43); the proof of (2.44) is similar. Using Lemma 2.16 along with the definitions of Bout,
tout, and the geodesic coordinates, we have

μ
(
Bout(V) ∩ A

) = ((
pout∗ (2

√
rμout)

) ⊗ dt
) (
Bout(V) ∩ A

)
,

=
∫

pout(V)

∫ tout(π∂M(ρ))

0
1A(ρ, t) dt d

(
pout∗ (2

√
rμout)

)
(ρ),

=
∫

pout(V)

∫ tout(π∂M(ρ))

0
1A

(
ϕt(ρ)

)
dt d

(
pout∗ (2

√
rμout)

)
(ρ),

where we have used the fact that the point represented in geodesic coordinates by (ρ, t) is in A iff ϕt(ρ) ∈
A. Using the change of variables ρ = pout(q), for q ∈ V , and then Fubini’s theorem, we then have that

μ(A) ≥
∫
V

∫ tout(q)

0
1A

(
ϕt(p

out(q))
)
dt d(2

√
rμout)(q),

≥
(

inf
q∈V

∫ tout(q)

0
1A

(
ϕt(p

out(q))
)
dt

)
(2

√
rμout)(V),

as required. �
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36 J. GALKOWSKI ET AL.

2.9 The reflection coefficient on Γtr,R

To understand how the defect measures of the solution v of the truncated problem (1.6) are affected by
the artificial boundary Γtr,R, we now show that the hypotheses of Part (iii) of Lemma 2.12 are satisfied,
and get expressions for the numerator and denominator in the reflection coefficient αref in (2.29).

Lemma 2.18 If v is the solution to (1.6) and

α(x′, ξ ′) = 2
σ(D)(x′, ξ ′)
σ (N )(x′, ξ ′)

, (2.46)

then, in the hyperbolic setH of Γtr,R

− 2�νj = (�α)νd = 4(�α)|α|−2νn. (2.47)

Combining (2.46), (2.47), (2.28) and (2.29), we obtain the following corollary.

Corollary 2.19 Let v be the solution of (1.6), and letμ be a defect measure of v. Then, in the hyperbolic
setH on Γtr,R, (2.28) holds with

αref =
∣∣∣∣√r − σ(D)/σ (N )√

r + σ(D)/σ (N )
∣∣∣∣2 . (2.48)

Proof of Lemma 2.18. We prove that

σ(D)(x′, ξ ′) dνtrd = −σ(N )(x′, ξ ′) dνtrj (2.49)

and (
σ(D)(x′, ξ ′)

)2 dνtrd = (
σ(N )(x′, ξ ′)

)2 dνtrn . (2.50)

The result then follows fromPart (iii) of Lemma 2.12, since (2.49) and (2.50) imply that (2.27) is satisfied.
For a ∈ C∞

c (T
∗Γtr,R), if the traces of v have associated defect measures, then, as h → 0,

〈
a(x′, hDx′)N (hDx1v), v

〉 →
∫

a(x′, ξ ′)σ (N )(x′, ξ ′) dνtrj . (2.51)

On the other hand, in local coordinates, the boundary condition (2.2c) is

NhDx1v + Dv = 0, (2.52)

so that 〈
a(x′, hDx′)NhDx1v, v

〉 = − 〈
a(x′, hDx′)Dv, v

〉
→ −

∫
a(x′, ξ ′)σ (D)(x′, ξ ′) dνtrd . (2.53)

Comparing (2.51) and (2.53), we obtain (2.49).
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 37

We now use a similar, but slightly more involved, argument to obtain (2.50). First observe that if
σ(B) is real and the trace of w has an associated defect measure dμ, then

〈
a(x′, hDx′)Bw,Bw

〉 = 〈
B∗a(x′, hDx′)Bw,w

〉
= 〈

a(x′, hDx′)B2 + a(x′, hDx′)(B∗ − B)B + [B, a(x′, hDx′)]Bw,w
〉

→
∫

a(x′, ξ ′)
(
σ(B)(x′, ξ ′)

)2 dμ (2.54)

as h → 0, since both B∗ − B and [B, a(x′, hDx′)] are O(h)(see (A.2) and (Dyatlov & Zworski, 2019,
Proposition E.17)). Therefore, (2.54) with B = N and w = hDx1v implies that

〈
a(x′, hDx′)NhDx1v,NhDx1v

〉 →
∫

a(x′, ξ ′)
(
σ(N )(x′, ξ ′)

)2 dνtrn . (2.55)

On the other hand by (2.52) and (2.54) (with B = D and w = v),

〈
a(x′, hDx′)NhDx1v,NhDx1v

〉 = 〈
a(x′, hDx′)Dv,Dv

〉
→

∫
a(x′, ξ ′)

(
σ(D)(x′, ξ ′)

)2 dνtrd . (2.56)

Comparing (2.55) and (2.56), we find (2.50). �

2.10 The mass produced by the Dirichlet boundary data on ΓD

Lemma 2.20 Suppose that h� → 0 and a� → a, then the defect measure of

eix·a�/h� |ΓD

is given by

dvolΓD
⊗δξ ′=(aT(x′))� ,

where dvolΓD
denotes Lebesgue measure on ΓD, aT(x′) := a−(a ·n(x′))n(x′) is the tangential component

of the direction a at the point x′, (·)� denotes the lowering map TΓD → T∗ΓD given by the metric, and
δ denotes Dirac measure.

Proof. By using a partition of unity argument, it is sufficient to work locally in a neighbourhood of a
point x0 ∈ ΓD. We work in Euclidean coordinates x such that in a neighbourhood of x0,

ΓD = {(γ (x′),x′)}.
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38 J. GALKOWSKI ET AL.

If a� = (a1,a′), then, since n(x′) = (1,−∇γ (x′))/
√
1+ |∇γ (x′)|2,

a − (a · n(x′))n(x′) =
(
a1|∇γ (x′)|2 + 〈a′,∇γ (x′)〉

1+ |∇γ (x′)|2 ,a′ − 〈a′,∇γ (x′)〉 − a1
1+ |∇γ (x′)|2 ∇γ (x′)

)
,

and the metric on ΓD in the x′ coordinates is

gij(x
′) = δij + ∂xi

γ (x′)∂xj
γ (x′), i, j = 2, . . . , n.

Therefore, since we identify the tangent space of ΓD with ∂xi
i = 2, . . . n

(aT)� = a′ − 〈a′,∇γ (x′)〉 − a1
1+ |∇γ (x′)|2 ∇γ (x′)+

(
a1|∇γ (x′)|2 + 〈a′,∇γ (x′)〉

1+ |∇γ (x′)|2
)

∇γ (x′)

= a′ + a1 − 〈a′,∇γ (x′)〉
1+ |∇γ (x′)|2 ∇γ (x′)+

(
〈a′,∇γ (x′)〉+ |∇γ (x′)|2

1+|∇γ (x′)|2 (a1−〈a′,∇γ (x′)〉)
)

∇γ (x′)

= a′ + a1∇γ (x′).

Let u� = eix·a�/h� |ΓD
; the previous calculation implies that u�(x

′) = exp((i/h)(a′
� ·x′ +a�,1γ (x

′))). By
change of variable for the semiclassical quantization (see, e.g., (Zworski, 2012, Theorem 9.3, p. 203)),

〈
b(x′, h�Dx′)u�, u�

〉
ΓD

=
∫
ΓD

(
b(x′, h�Dx′)u�

)
(x′) u�(x′) dx′

=
∫
ΓD

(
b(x′, h�Dx′)u�

)
(x′) u�(x′)

√
1+ |∇γ (x′)|2 dx′ + O(h�)

= (2πh�)
−n+1

∫
ΓD

∫
ΓD

∫
Rn−1

e
i
h (x

′−y′)·ξ ′b(x′, ξ ′)

× e
i
h (a

′
�·y′+a�,1γ (y′))e− i

h (a
′
�·x′+a�,1γ (x′))

√
1+ |∇γ (x′)|2 dξ ′dy′dx′ + O(h�).

Observe that for x′ fixed, the phase

Φ(y′, ξ ′) = (x′ − y′) · ξ ′ + a′
� · y′ + a�,1γ (y

′)− a′
� · x′ − a�,1γ (x

′),

= (x′ − y′) · (ξ ′ − a′
�)+ a�,1(γ (y

′)− γ (x′))

is stationary (i.e., ∂y′Φ = ∂ξ ′Φ = 0) if and only if

(y′, ξ ′) = (x′,a′
� + ∇γ (x′)a�,1),
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 39

where it is additionally nondegenerate. Consequently, by stationary phase (see, e.g., (Zworski,
2012, §3.5))〈

b(x′, h�Dx′)u�, u�
〉
ΓD

=
∫
ΓD

b
(
x′,a′

� + ∇γ (x′)a�,1
)√

1+ |∇γ (x′)|2 dx′ + O(h�)

=
∫
ΓD

b
(
x′, (aT)�(x′)

)√
1+ |∇γ (x′)|2 dx′ + O(h�).

The result follows by letting �→ ∞. �

3. Properties of outgoing solutions of the Helmholtz equation

The goal of this section is to prove three lemmas (Lemmas 3.1, 3.2 and 3.3), the first two of which
concern the solution to the exterior Dirichlet problem:⎧⎪⎨⎪⎩

(−h2Δ− 1)u = 0 in Ω+,
u = g on ΓD,

h∂ru − iu = o(r(1−d)/2) as r → ∞;

(3.1)

observe that the problem (2.1) is a special case of (3.1) with g = eia·x/h.

Lemma 3.1 Suppose that Ω− � B(0, 1) is nontrapping. Then there is C0 > 0 such that for all R ≥ 1
there is h0 > 0 such that for uh solving (3.1)

‖uh‖H1
h(B(0,R)\Ω−) ≤ C0R1/2‖g‖H1

h(ΓD)
, 0 < h < h0.

Lemma 3.2 Let N ,D be as in § 1.3 (i.e., N ∈ Ψ 2N(Γtr,R), D ∈ Ψ 2M(Γtr,R) and both have real-valued
principal symbols). There exists C > 0 such that for any R > 1 there exists h0(R) > 0 such that for
0 < h ≤ h0(R) the solution u of (3.1) satisfies

∥∥(NhDn − D)u
∥∥

L2(Γtr,R)
≤ C
Υ (R)

R1/2
‖u‖L2(ΩR)

,

where n(x) is the normal vector field to Γtr,R, and

Υ (R) := sup
{∣∣σ(N )(x′, ξ ′)n(x) · ξ − σ(D)(x′, ξ ′)

∣∣ + ∣∣Hp

(
σ(N )(x′, ξ ′)n(x) · ξ − σ(D)(x′, ξ ′)

)∣∣
: x ∈ Γtr,R,

∣∣∣∣ξ · x

|x| − 1

∣∣∣∣ ≤ C

|x|2 , |ξ | = 1

}
. (3.2)

The quantity Υ (R) controls, on all rays that are approximately radial, the reflection coefficient as
well as the change of the reflection coefficient under the Hamiltonian flow.

Lemma 3.3 (Bounds on Υ (R)). If N and D satisfy Assumption 1.4, then the following hold.
(i) There exists C1 > 0, independent of R, such that if Γtr,R = ∂B(0,R), then Υ (R) ≤ C1R−2mord .
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40 J. GALKOWSKI ET AL.

(ii) There exists C2 > 0, independent of R, such that if Γtr,R is C2 uniformly in R, then Υ (R) ≤ C2.

Regarding Lemma 3.1: this result gives us a lower bound on 1/‖u‖L2(ΩR)
, and we use this in proving

the R-explicit lower bounds on the relative error in Theorems 1.7, 1.8, 1.9. The analogue of this result
without the explicit dependence of the constant on R was proved in (Baskin et al., 2016, Theorem 3.5).

Regarding Lemmas 3.2 and 3.3: the upper bounds in Theorem 1.7 and in Theorem 1.9 follow from
applying Theorem 1.5 to u − v and then using these two lemmas.

3.1 Proof of Lemma 3.1

We define the directly-incoming set I by

I :=
{
ρ ∈ S∗ΩR, s.t. πRd

( ⋃
t≥0
ϕ−t(ρ)

)
∩Ω− = ∅

}
, (3.3)

where we recall that π
Rd denotes projection in the x variable. The following lemma reflects the fact that

u is an outgoing solution.

Lemma 3.4 If u solves (3.1) with ‖g‖H1
h

≤ C, then

WFh(u) ∩ I = ∅.

In particular, there exists C > 0, sufficiently large, such that

WFh(u) ∩ {|x| > C} ⊂
{ ∣∣∣∣ξ − x

|x|
∣∣∣∣ < C

|x| ,
∣∣∣∣ξ · x

|x| − 1

∣∣∣∣ ≤ C

|x|2
}
.

Proof. Let RD be the outgoing resolvent for

(−h2Δ− 1)w = f , w|ΓD
= 0,

i.e., w = RDf . Fix 0 < R1 < R2 such that Ω− ⊂ B(0,R1), and let χi ∈ C∞
c (B(0,R2)), i = 0, 1, 2, with

χi ≡ 1 on B(0,R1), suppχi ⊂ {χi+1 ≡ 1}. We now extend the Dirichlet boundary data off ΓD by letting
g̃ be the solution of

(−h2Δ− 1)̃g = 0 in Ω+ ∩ B(0,R1),

g̃ = g on ΓD,

(hDn − 1)̃g = 0 on ∂B(0,R1).

We now show that u can be expressed as an outgoing resolvent plus a function with compact support. To
this end, let

v := u − χ0̃g − RD

([ − h2Δ,χ0
]̃
g
)
,
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 41

and observe that (−h2Δ−1)v = 0. Since the Dirichlet Laplacian is a black box Hamiltonian in the sense
of (Dyatlov & Zworski, 2019, Chapter 4), by (Dyatlov & Zworski, 2019, Theorem 4.17), the radiation
condition for u implies that v = 0, and hence u = χ0̃g + RD([−h2Δ,χ0]̃g). Now, by, e.g., (Dyatlov &
Zworski, 2019, Theorem 4.4), the range of (1−χ2)RD lies in the range of R0χ1 where R0 denotes the free
resolvent. In particular, by the outgoing property of R0 (see e.g., (Dyatlov & Zworski, 2019, Theorem
3.37))

WFh(u) ∩ {|x| > R2 + 1} ⊂
⋃
t≥0
ϕt

(
S∗

B(0,R2)R
d). (3.4)

Now, suppose that A ⊂ I, where I is as in (3.3). Then, for t0 ≥ 0 large enough,

ϕ−t0(A) ⊂ {|x| > R2 + 1}

and, moreover, ⋃
t≤−t0

ϕt(A) ∩ S∗
B(0,R1)R

d = ∅.

Therefore, by (3.4), ϕ−t0(A) ∩ WFh(u) = ∅. Now, since (h2Δ+ 1)u = 0, and⋃
−t0≤t≤0

ϕt(A) ∩ S∗
ΓD

R
d = ∅,

by propagation of singularities (see e.g., (Dyatlov & Zworski, 2019, Appendix E.4)), A ∩ WFh(u) = ∅.
Now, suppose (x, ξ) ∈ WFh(u) ∩ {|x| ≥ R}. Then, (x, ξ) /∈ I and, in particular, there is t ≥ 0 such

that ϕ−t(x, ξ) ∈ S∗
Ω−R

d. Let

t0 = inf
{
t ≥ 0 : ϕ−t(x, ξ) ∈ S∗

Ω−R
d}

and (x0, ξ0) = ϕ−t0(x, ξ). Then, |x0| ≤ R1, t0 ≥ R−R0
2 , ξ = ξ0, and

x = x0 + 2t0ξ0.

Observe that

|x0 + 2tξ0| =
√

|x0|2 + 4t〈x0, ξ0〉 + 4t2 = 2t
√
1+ |x0|2t−2 + 2t−1〈x0, ξ0〉 = 2t + O(t−1|x0|2).

Then consider∣∣∣∣ x

|x| − ξ
∣∣∣∣ =

∣∣∣∣ x0 + 2tξ0
|x0 + 2tξ |0

− ξ0
∣∣∣∣ =

∣∣∣∣∣x0 + ξ0O
(
t−1|x0|2

)
|x0 + 2tξ0|

∣∣∣∣∣ = O
(
t−1|x0|

) = O

(
R1

|x| − R1

)
.

In particular, if R ≥ 2R1, |x| − R1 ≥ 1
2 |x|.
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42 J. GALKOWSKI ET AL.

Next, observe that

ξ · x

|x| = x0 · ξ0 + 2t

|x0 + 2tξ0|
, |x0 + 2tξ0|2 = |x0|2 + 4t2 + 4tx0 · ξ0

so that

1

|x0 + 2tξ0|
= 1

2t

(
1− x0 · ξ0

2t
+ O

(
R21t−2

))
.

In particular,

x0 · ξ0 + 2t

|x0 + 2tξ0|
= 1+ x0 · ξ0

2t
− x0 · ξ0

2t
+ O

(
R21t−2

) = 1+ O
(
R21t−2

) = 1+ O

(
R21

(|x| − R1)
2

)
.

Taking |x| ≥ 2R1 completes the proof. �

Corollary 3.5 There exists t0 > 0, r0 > 0 such that, if u solves (3.1) and has defect measure μ, then
for any r ≥ r0, if (x, ξ) ∈ suppμ with |x| = r, then, for 0 ≤ t ≤ r − t0,

|x(ϕ−t(x, ξ))|2 = |x − 2tξ |2 = (r − 2t)2 + O(tr−1).

Proof. This follows from Lemma 3.4 by observing that, by the definition of defect measures, suppμ ⊂
WFh(u); then, if |x| = r and |ξ | = 1 with |ξ · x

|x| − 1| < C
r2
, then x · ξ ≥ r − 1

r . �
By the definitions of WFh(u) and I, another corollary of Lemma 3.4 is the following lemma,

originally proved in (Burq, 2002, Proposition 3.5) (see also (Galkowski et al., 2020, Lemma 3.4)).

Lemma 3.6 Suppose that u solves (3.1) and has defect measure μ. Then μ(I) = 0.

We now prove Lemma 3.1.

Proof of Lemma 3.1. Suppose that the lemma fails. Then there exist R ≥ 1, ε > 0, (h�, g�) such that
h� → 0 as �→ ∞ and such that

‖uh�‖H1
h�
(B(0,R)\Ω−) = 1 and ‖g�‖H1

h�
(ΓD)

≤ 1

R1/2(C0 + ε) . (3.5)

Let w� solve

(−h2�Δ− 1)w� = 0, w�|ΓD
= g�, (hDn − 1)w�|∂B(0,1) = 0.

Since Lemma 3.1 is not used in the proof of Theorem 1.5, the upper bound in this latter result implies
that there exists a C1 > 0 such that

‖w�‖H1
h�
(B(0,1)\Ω−) ≤ C1‖g�‖H1

h�
(ΓD)

.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 43

Let χ ∈ C∞
c (B(0, 1)) with χ ≡ 1 near ΓD and put v� = u� − χw� so that⎧⎪⎨⎪⎩

(−h2�Δ− 1
)

v� = − (−h2�Δ� − 1
)
χw� =: h�f�

v�|ΓD
= 0

(h�Dn − 1)v� = o(r(1−d)/2),

and ‖f�‖L2 ≤ C2‖w�‖H1
h

≤ C2C1‖g�‖H1
h(ΓD)

, supp f� ⊂ B(0, 1). In particular, by e.g., (Galkowski

et al., 2020, Theorem 1) there is C3 > 0 such that for any ψ ∈ C∞
c with ψ ≡ 1 on B(0, 1) and

suppψ ⊂ B(0,R0), and any h� small enough,

‖ψv�‖H1
h�

≤ C3R0‖f�‖L2 ≤ R0C1C2C3‖g�‖H1
h(ΓD)

. (3.6)

Now, taking C0 ≥ C1(3C2C3 + 1) the proof is complete for 1 ≤ R ≤ 2. To see this, observe that using
(3.6) with R0 = 3 and ψ ≡ 1 on B(0, 2)

‖uh�‖H1
h�
(B(0,2)\Ω−) ≤ ‖ψ(v� + χw�)‖H1

h�
≤ ‖ψv�‖H1

h�
+ ‖χw�‖H1

h�
≤ C1(3C2C3 + 1)R1/2‖g‖H1

h
< 1

which contradicts (3.5).
Now, for R ≥ 2, we can pass to a subsequence in �, and assume that v� has defect measure μ. By

Lemma 3.6, μ(I ∩ T∗M̃ \ supp f ) = 0 and

μ(Hpa) = 0, a ∈ C∞
c (T

∗M̃ \ supp f ).

Therefore, since supp f ⊂ B(0, 1)

suppμ ∩ T∗M̃ \ B(0, 2) ⊂
⋃
t≥0
ϕt

({
(x, ξ) : |x| = 2, ∃s > 0 s.t. ϕ−s(x, ξ) ∈ T∗B(0, 1)

})
.

In particular, since μ is invariant under ϕt on T∗(Rd \ B(0, 1)),

μ(T∗B(0,R) \ B(0, 2)) ≤ μ
⎛⎜⎝ ⋃
0≤t≤

√
R2−4
ϕt

({
(x, ξ) : |x| = 2, ∃s > 0 s.t. ϕ−s(x, ξ) ∈ T∗B(0, 1)

})⎞⎟⎠
=

√
R2 − 4μ

⎛⎝ ⋃
−1≤t≤0

ϕt

({
(x, ξ) : |x|= 2, ∃s > 0 s.t. ϕ−s(x, ξ) ∈T∗B(0, 1)

})⎞⎠
≤

√
R2 − 4 lim

�→∞ ‖v�‖2L2(B(0,2)−B(0,1))

≤ 9C2
1C2

2C2
3

√
R2 − 4 lim

�→∞ ‖g�‖2H1
h(ΓD)

≤ 3C1C2C3

√
R2 − 4

R(C0 + ε)2 .
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44 J. GALKOWSKI ET AL.

By (Galkowski et al., 2020, Lemma 4.2)

μ
(|ξ |21T∗B(0,R)\B(0,2)

) ≥ lim sup
�→∞

‖v�‖2H1
h�
(B(0,R)\B(0,5/2))

.

Therefore, using (3.6) with R0 = 3, ψ ≡ 1 on B(0, 5/2),

lim sup
�→∞

‖v�‖2H1
h�
(B(0,R))

≤ 9C2
3C2

2C2
1(1+ √

R2 − 4)

R(C0 + ε)2 .

Hence, letting

C0 = C1 max

(
3C2C3 + 1, sup

R≥2
3C3C2

√
1+ √

R2 − 4+ 1

R1/2

)
,

we have

lim sup
�→∞

‖uh�‖H1
h�
(B(0,R)) ≤

3C3C2C1

√
1+ √

R2 − 4+ C1

R1/2(C0 + ε) < 1,

which contradicts (3.5). �

3.2 Proof of Lemmas 3.2 and 3.3

In the next lemma, we identify S∗Γtr,R with a subset of S∗
R

d.

Lemma 3.7 Suppose that A ∈ Ψ m(Rd) and WF′
h(A) ∩ S∗Γtr,R = ∅. Then there is C > 0 such that

‖Au‖L2(Γtr,R) ≤ C‖Au‖L2 + Ch−1‖PAu‖L2 + O(h∞)‖u‖L2 .

Proof. First, note that for B ∈ Ψ 0 with WF′
h(B) supported away from S∗

R
d, we can write using the

elliptic parametrix construction (Lemma A2) that there is E ∈ Ψ−2 such that

BAu = EPAu + O(h∞)Ψ−∞ .

In particular, by the Sobolev embedding as in (Galkowski, 2019a, Lemma 5.1) see also (Zworski, 2012,
Lemma 7.10),

‖BAu‖L2(Γtr,R) ≤ Ch−1/2‖BAu‖H1
h

≤ Ch−1/2‖EPAu‖H1
h
+ O(h∞)‖u‖L2

≤ Ch−1/2‖PAu‖L2 + O(h∞)‖u‖L2 .

Therefore, we can assume that

WF′
h(A) ⊂

{
1− δ ≤ |ξ |2 ≤ 1+ δ}
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 45

for any δ > 0. Next, ifWF′
h(A)∩S∗

Γtr,R
R

d = ∅, then there is χ ∈ C∞
c (R

d)with χ ≡ 1 in a neighbourhood
of Γtr,R such that

χA = O(h∞)Ψ−∞ .

In particular,

‖χAu|Γtr,R‖L2(Γtr,R) = O(h∞)‖u‖L2 .

By using a partition of unity, we can work locally, assuming that Γtr,R = {x1 = 0} as in § 2.3. We can
then assume that WF′

h(A) ⊂ {|x1| < δ}. Write A = a(x, hD) where d(supp a, {r(x, ξ) = 0}) > ε > 0
and supp a ⊂ {|x1| < δ} for some ε > 0. Then, choosing δ > 0 small enough, we have |ξ1| > 0 on
supp a, and hence there is e ∈ C∞

c (T
∗
R

d) with |e| > 0 on supp a and such that

e(x, ξ)(ξ1 − b(x, ξ ′))a(x, ξ ′) = ( − ξ21 + r(x, ξ ′)
)
a(x, ξ).

Therefore, ∥∥(
hDx1 − b(x, hDx′)

)
Au

∥∥
L2

≤ C‖PAu‖L2 + O(h)‖Au‖L2 ;

the result then follows by applying (Zworski, 2012, Lemma 7.11). �

Lemma 3.8 Let u be the solution to (3.1). For any η > 0, there exists R0 > 0 such that, for R ≥ R0 and
h small enough (depending on R)

‖u‖L2(B(0,R+1)\B(0,R−1)) ≤ (
√
2+ η)R− 1

2 ‖u‖L2(B(0,R)). (3.7)

Proof. We define Ar0,r1 := B(0, r0) \ B(0, r1). First, observe that it is sufficient to prove that there exists
R1(η) > 0 such that, for any R ≥ R1 and any u solving (3.1) having defect measure μ,

μ
(
T∗AR+1,R−1

)
<
(
√
2+ η)2

R
μ(T∗B(0,R)). (3.8)

Indeed, if (3.7) fails, then there exists η > 0 and hn → 0 and gn ∈ H1
h(ΓD) such that, for u(hn) solving

(3.1) with g = gn and some R ≥ R1(η),

‖u(hn)‖L2(AR+1,R−1) >

√
2+ η
R1/2

‖u(hn)‖L2(B(0,R)). ‖u(hn)‖L2(B(0,R)) = 1. (3.9)

Then, passing to a subsequence, we can assume that u(hn) has defect measure μ. Let ε > 0 be arbitrary.
Take χε0 equal to one in AR+1,R−1 and supported in AR+1+ε,R−1−ε and χε1 supported in B(0,R) and equal
to one in B(0,R − ε). The estimate (3.9) implies

∥∥χε0u(hn)
∥∥

L2 >

√
2+ η
R1/2

∥∥χε1u(hn)
∥∥

L2 ,
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46 J. GALKOWSKI ET AL.

passing to the limit hn → 0 and using e.g., (Galkowski et al., 2020, Lemma 4.2), we obtain

μ
( (
χε0

)2 ) ≥ (
√
2+ η)2

R
μ

( (
χε1

)2 )
,

which in turn implies, by the support properties of χ0,1,

μ
(
T∗AR+1+ε,R−1−ε

) ≥ (
√
2+ η)2

R
μ

(
T∗BR−ε

)
.

In particular, sending ε → 0+, and using monotonicity of measures

μ
(
T∗AR+1,R−1

) ≥ (
√
2+ η)2

R
μ

(
T∗BR

)
,

which contradicts (3.8).
We therefore only need to prove (3.8). The definition of defect measures implies supp μ ⊂ WFh(u),

thus, by Lemma 3.4,

suppμ ∩ {|x| > C} ⊂
{∣∣∣∣ξ · x

|x| − 1

∣∣∣∣ < C

|x|2
}
.

Now, invariance of defect measures away from the obstacle combined with the above implies that, for
r0 > C + 2, so that Ω− ⊂ B(0, r0 − 2), and 0 ≤ t ≤ 1,

μ
(
T∗Ar1,r0

) = μ
(
ϕ−t

(
T∗Ar1,r0 ∩

{
|ξ | = 1,

∣∣∣∣ξ · x

|x| − 1

∣∣∣∣ < C

|x|2
}))

.

By Corollary 3.5, there exist C0,C1,C2 > 0 such that

ϕ− 1
2−C0R−2

(
T∗AR+1,R−1 ∩ suppμ

) ∩ T∗ {|x| ≥ R} = ∅,
ϕ−1−1C0R−2

(
T∗AR+1,R−1 ∩ suppμ

) ⊂ T∗ {|x| < R − 1}.

Fix r0 > 0 such thatΩ− � B(0, r0). Then, for 0 ≤ 2t ≤ R−1−r0, we have ϕ−t(S
∗AR+1,R−1)∩B(0, r0) =∅. Therefore, using the fact that 〈x, ξ 〉 > 0 on suppμ ∩ T∗AR+1,R−1, we have

ϕ−t

(
T∗AR+1,R−1 ∩ suppμ

) ∩ T∗AR+1,R−1 ∩ suppμ = ∅ for t ∈
[
1+ C0R−2, R − 1− r0

2

]
. (3.10)

Now, let T1,R := (R − 1− r0)/2 and T0,R := 1+ C0R−2 and consider

fT ,R(x, ξ) :=
∫ T1,R

T0,R
1T∗AR+1,R−1∩suppμ ◦ ϕt(x, ξ) dt.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 47

We claim that 0 ≤ fT ,R ≤ T0,R; to see this, suppose that ϕt(x, ξ) ∈ T∗AR+1,R−1 ∩ suppμ and ϕs(x, ξ) ∈
T∗AR+1,R−1 ∩ suppμ with T0,R ≤ s ≤ t − T0,R and t ≤ T1,R. Then,

ϕ−(t−s)(x, ξ) ∈ T∗AR+1,R−1 ∩ suppμ, (x, ξ) ∈ T∗AR+1,R−1 ∩ suppμ

and T0,R ≤ t − s ≤ T1,R, contradicting (3.10).
Now, since μ is ϕt invariant,

(T1,R − T0,R) μ
(
1T∗AR+1,R−1

) = μ(fT ,R(x, ξ)) ≤ T0,R μ(B(0,R)).

In particular,

μ
(
1T∗AR+1,R−1

) ≤ T0,R

T1,R − T0,R
μ(B(0,R)) ≤ 2

R
(1+ O(R−1))μ(B(0,R)).

Choosing R > 0 large enough yields (3.8), and the proof is complete. �
We now prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. Let ñ be a smooth extension of the normal vector field to Γtr,R, nR(x) and C0 > 0
so that the conclusions of Lemma 3.4 hold, and, Ñ , D̃ smooth extensions of N and D. Next, fix ε > 0
such that

sup
{∣∣ÑhDñ − D̃

∣∣+∣∣Hp(ÑhDñ −D̃)
∣∣ : dist(x,Γtr,R)<ε,

∣∣∣∣ξ · x

|x| −1
∣∣∣∣≤ C0

|x|2 ,
∣∣|ξ |−1∣∣< ε}≤ 2Υ (R)

and let χ be smooth, supported in

Γε :=
{
x : dist(x,Γtr,R) < ε

}
,

and equal to one near Γtr,R. By Lemma 3.4, we can find Z ∈ Ψ (Rd) with WF′
h(Z) ∩ I = ∅ such that

χu = χZu + OC∞
(
h∞‖u‖L2

)
.

Now, since Ω̃R is convex, and Ω− � Ω̃R, S∗Γtr,R ⊂ I. In particular, by Lemma 3.7,

‖(NhDn − D)u‖L2(Γtr,R) = ‖(NhDn − D)χZu‖L2(Γtr,R) + O(h∞)‖u‖L2

≤ C‖(ÑhDñ − D̃)χZu‖L2 + Ch−1∥∥(−h2Δ− 1)(ÑhDñ − D̃)χZu
∥∥

L2 + O(h∞)‖u‖L2

= C‖(ÑhDñ − D̃)χu‖L2 + Ch−1∥∥(−h2Δ− 1)(ÑhDñ − D̃)χu
∥∥

L2 + O(h∞)‖u‖L2

≤ C‖(ÑhDñ − D̃)χu‖L2 + Ch−1∥∥(ÑhDñ − D̃)(−h2Δ− 1)χu
∥∥

L2

+ Ch−1∥∥[ − h2Δ− 1, ÑhDñ − D̃
]
χu

∥∥
L2 + O(h∞)‖u‖L2 ,
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48 J. GALKOWSKI ET AL.

and, using the fact that (−h2Δ− 1)u = 0,

‖(ÑhDñ − D̃)u‖L2(Γtr,R) ≤ ‖(ÑhDñ − D̃)χu‖L2 + h−1∥∥(ÑhDñ − D̃)[h2Δ+ 1,χ ]u
∥∥

L2

+ h−1∥∥[ − h2Δ− 1, ÑhDñ − D̃
]
χu

∥∥
L2 . (3.11)

Let

R1 := sup
{
R : Γtr,R ∩ B(0,C0 + 1) 
= ∅}

.

Then, for 1 ≤ R ≤ R1, the proof is completed, since ‖Bu‖H1
h

+ h−1‖[B, (−h2Δ − 1)]u‖L2 ≤ CB‖u‖L2

for any B ∈ Ψ∞. We now consider the case R ≥ C0.
Observe that, by Lemma 3.4,

WFh (χu) ⊂ suppχ ∩ WFh(u) ⊂
{∣∣∣ξ · x

|x| − 1
∣∣∣ < C

|x|2 , x ∈ Γε , |ξ | = 1

}
. (3.12)

Now, let χ̃ ∈ C∞
c (R

d) with χ̃ ≡ 1 on suppχ with supp χ̃ ⊂ Γε , and ψ ∈ C∞
c (T

∗
R

d) with

suppψ ⊂
{∣∣∣∣ξ · x

|x| − 1

∣∣∣∣ ≤ 2C

|x|2 ,
∣∣|ξ | − 1

∣∣ < ε} ,
with ψ ≡ 1 on {∣∣∣∣ξ · x

|x| − 1

∣∣∣∣ < C

|x|2 , |ξ | = 1

}
.

and Ψ := Oph(ψχ̃). By (3.12)

‖(ÑhDñ − D̃)χu‖L2 = ‖Ψ (ÑhDñ − D̃)χu‖L2 + O(h∞)‖χu‖L2 ,

where Ψ (ÑhDñ − D̃) has principal h-symbol

Λ(x, ξ) := ψχ̃(Ñ (x, ξ)ξ · ñ(x)− D̃(x, ξ)), (3.13)

and thus Ψ (ÑhDñ − D̃) = Oph(Λ)+ O(h)L2→L2 , and then, by(Zworski, 2012, Theorem 5.1),

‖Ψχu‖L2 ≤ (
sup

∣∣Λ(x, ξ)∣∣ + O
(
h1/2

))‖χu‖L2 .

However, by the support properties of χ̃ and ψ and the definition (3.13) of Λ,

sup
∣∣Λ(x, ξ)∣∣ ≤ Υ (R),
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 49

and it follows that, given R > 0, there exists h0(R) > 0 such that, for 0 < h ≤ h0,

‖(ÑhDñ − D̃)χu‖L2 � Υ (R)‖χu‖L2 . (3.14)

On the other hand, by Lemma 3.4,

WFh([−h2Δ− 1,χ ]u) ⊂
{∣∣∣ξ · x

|x| − 1
∣∣∣ < C

|x|2 , x ∈ Γε , |ξ | = 1

}
;

we obtain in the same way as before, reducing h0 if necessary, that for 0 < h ≤ h0∥∥(ÑhDñ − D̃)[−h2Δ− 1,χ ]u
∥∥

L2 � Υ (R)‖[−h2Δ− 1,χ ]u‖L2 � Υ (R)h‖χ0u‖H1
h
, (3.15)

where χ0 is supported in the support of χ̃ and equal to one on the support of χ . But, since (−h2Δ−1)u =
0, u has h-wavefront set in {|ξ |2 = 1}, thus so does χ̃u, and it follows that, taking η compactly supported
near one

‖χ0u‖H1
h

= ∥∥Oph(η(|ξ |2))χ0χ̃u
∥∥

H1
h
+ O(h∞)‖χ̃u‖L2

= ∥∥Oph(η(|ξ |2)ξχ0)χ̃u
∥∥

H1
h
+ O(h)‖χ̃u‖L2

� ‖χ̃u‖L2 . (3.16)

Hence, by (3.15), for 0 < h ≤ h0,

h−1∥∥(
ÑhDñ − D̃

)[ − h2Δ− 1,χ
]
u
∥∥

L2 � Υ (R)‖χ̃u‖L2 . (3.17)

Finally, observe that h−1[−h2Δ− 1, ÑhDñ − D̃] has principal h−symbol

σ
(
h−1[ − h2Δ− 1,

(
ÑhDñ − D̃

)]) = 1

i

{|ξ |2 − 1, Ñ (x, ξ)ξ · ñ(x)− D̃(x, ξ)
}

= 1

i
Hp

(
Ñ (x, ξ)ξ · ñ(x)− D̃(x, ξ)

)
,

therefore, using Lemma 3.4 in the same way as before, we obtain

h−1∥∥[
h2Δ+1, ÑhDñ − D̃

]
χu

∥∥
L2 �sup

∣∣χ̃ψHp

(
Ñ (x, ξ)ξ · ñ(x)−D̃(x, ξ)

)∣∣‖χu‖L2+ O(h1/2)‖χu‖L2 .

By the support properties of ψ and χ̃

sup
∣∣χ̃ψHp

(
Ñ (x, ξ)ξ · ñ(x)− D̃(x, ξ)

)∣∣ � Υ (R).

Reducing h0 > 0, depending on R if necessary, we obtain that for 0 < h ≤ h0

h−1∥∥[−h2Δ− 1, Ñ (x, ξ)ξ · ñ(x)− D̃(x, ξ)]χu
∥∥

L2 � Υ (R)‖χu‖L2 . (3.18)
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50 J. GALKOWSKI ET AL.

Combining (3.11) with (3.14), (3.17) and (3.18), we have, for 0 < h ≤ h0(R),

‖(NhDn − D)u‖L2(Γtr,R) � Υ (R)‖χ̃u‖L2 ,

and then Lemma 3.8 implies that

∥∥(NhDn − D)u
∥∥

L2(Γtr,R)
≤ C
Υ (R)

R1/2
‖u‖L2(ΩR)

.

To obtain the bound on Au, we observe that, by Lemma 3.4, S∗Γtr,R ⊂ I, and, by Lemma 3.7,

‖Au‖L2(Γtr,R) ≤ ‖Aχu‖L2 + h−1‖(−h2Δ− 1)Aχu‖L2 + O(h∞)‖χu‖L2 .

However, in the same way as we obtained (3.16), the fact that u has h-wavefront set in {|ξ |2 = 1}
implies that

‖Aχu‖L2 + h−1‖(−h2Δ− 1)Aχu‖L2 � ‖χ̃u‖L2 ,

and the bound on Au follows by reducing h0(R) > 0 again if necessary. �

Proof of Lemma 3.3.
Proof of (i). First observe that if Γtr,R = ∂B(0,R), then for x ∈ Γtr,R, n(x) = x/|x|. Therefore, on

O :=
{
(x, ξ) : x ∈ Γtr,R,

∣∣∣∣ξ · x

|x| − 1

∣∣∣∣ ≤ C

R2
, |ξ | = 1

}

since n(x) · ξ =
√
1− |ξ ′|2g, we have

|ξ ′|2g = 1− |n(x) · ξ |2 ≤ C

R2
.

We now claim that

σ(N )(x′, ξ ′)n(x) · ξ − σ(D)(x′, ξ ′) = e(x′, ξ ′)|ξ ′|2mord
g on O, (3.19)

where e(x′, ξ ′) is smooth onO. Indeed, the existence of e(x′, ξ ′) follows from the definition of mord (1.8)

and that n(x) · ξ =
√
1− |ξ ′|2g on O.

Therefore,

sup
O

∣∣σ(N )(x′, ξ ′)n(x) · ξ − σ(D)(x′, ξ ′)
∣∣ ≤ C|ξ ′|2mord

g ≤ CR−2mord . (3.20)

Next, we bound the terms in Υ (R) (3.2) involving the Hamiltonian vector field Hp = 2〈ξ , ∂x〉. First,
using again that ξ = (n(x) · ξ)n(x) + ξ ′ (where we abuse notation slightly to identify vectors and
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 51

covectors), we have Hp = 2n(x) · ξ ∂n + 2〈ξ ′, ∂x′ 〉. Thus, on O,

Hp (σ (N )n(x) · ξ − σ(D)) = σ(N )2
(

x

|x| · ξ
) 〈

x

|x| , ∂x
〉 (

x

|x| · ξ
)

+ 2
〈
ξ ′, ∂x′

〉
(σ (N )n(x) · ξ − σ(D))

= 2
〈
ξ ′, ∂x′

〉 (
σ(N )

√
1− |ξ ′|2g − σ(D)

)
, (3.21)

where we have used that ∂x′ is tangent to Γtr,R ∩ {|ξ | = 1} to write n(x) · ξ =
√
1− |ξ ′|2g in the last line.

Now, by (3.19),

∂x′
(
σ(N )

√
1− |ξ ′|2g − σ(D)

)
= O

(|ξ ′|2mord
g

)
.

In particular,

2〈ξ ′, ∂x′ 〉
(
σ(N )

√
1− |ξ ′|2g − σ(D)

)
= O

(|ξ ′|2mord+1
g

) = O(R−2mord−1). (3.22)

The required bound on Υ (R) follows by combining (3.20) (3.21), and (3.22).

Proof of (ii). This follows from the fact that σ(N ) and σ(D) have uniformly bounded C1 norms in R.
�

4. Proof of well-posedness of the truncated problem (Theorem 1.5)

4.1 Trace bounds for higher order boundary conditions

In this section, we consider the solution to{( − h2Δg − 1
)
u = hf in M,

NihDnu − Diu = gi on Γi ⊂ ∂M,
(4.1)

where (M, g) is a Riemannian manifold with smooth boundary ∂M = ∪N
i=1Γi such that Γi are the

connected components of ∂M, and Ni ∈ Ψ m1,i(Γi), and Di ∈ Ψ m0,i(Γi) have real-valued principal
symbols. We further assume that for all i = 1, . . . ,N,

|σ(Ni)|2〈ξ ′〉−2m1,i + |σ(Di)|2〈ξ ′〉−2m0,i ≥ c > 0 on T∗Γi,

|σ(Di)| > 0 on S∗Γi,
(4.2)

and for each i one of the following holds:

m0,i = m1,i + 1, or (4.3)

|σ(Ni)|2〈ξ ′〉−2m1,i ≥ c > 0, |ξ ′| ≥ C, and m0,i ≤ m1,i + 1, or (4.4)

|σ(Di)|2〈ξ ′〉−2m0,i ≥ c > 0, |ξ ′| ≥ C, and m1,i + 1 ≤ m0,i. (4.5)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad058/7261400 by C
atherine Sharp user on 08 N

ovem
ber 2023
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The first condition in (4.2) ensures nondegeneracy at infinity in ξ (with (4.3), (4.4) and (4.5) the different
options for which term in the boundary condition is dominant), and the second condition in (4.2) ensures
that the Dirichlet trace is bounded.

Theorem 4.1 Suppose that u solves (4.1) where Ni ∈ Ψ m1,i(Γi), Di ∈ Ψ m0,i(Γi) have real-valued
principal symbols and satisfy (4.2) and one of (4.3)–(4.5). Then, there exist C > 0 and h0 > 0 such that
for 0 < h < h0, and i and all �i, satisfying

− m0,i + m1,i

2
≤ �i ≤ 1

2
− m0,i + m1,i

2
, (4.6)

‖u‖
H
�i+m0,i
h (Γi)

+ ‖hDνu‖
H
�i+m1,i
h (Γi)

≤ C

(
‖u‖L2(M) + ‖f ‖

H
�i+

m1,i+m0,i−1
2

h (M)

+ ‖gi‖H
�i
h (Γi)

)
, (4.7)

‖u‖H1
h (M)

≤ C

(
‖u‖L2(M) + h‖f ‖L2(M) +

∑
i

‖gi‖H
�i
h (Γi)

)
, (4.8)

and for s ≤ 0,

‖hDνu‖Hs
h(Γi)

≤ C

(
‖u‖Hs+1

h (Γi)
+ ‖u‖L2(M) + ‖f ‖L2(M) +

∑
i

‖gi‖H
�i
h (Γi)

)
. (4.9)

The proof of Theorem 4.1 is postponed until Section 6. Here we proceed directly to its application.

4.1.1 Application of Theorem 4.1 with L2 right hand sides.

Corollary 4.2 Suppose that

m0 ≥ 0, m0 + m1 ≥ 0, m1 ≤ m0 + 1, (4.10)

and either

m0 ≤ m1 + min{1,m0 + m1}, (4.11)

or

m0 ≥ m1 + 1 and m0 ≥ 1. (4.12)

Then there exists C > 0 and h0 > 0 such that, for 0 < h ≤ h0, the solution to{
(−h2Δ− 1)u = hf in Ω ,(
NhDn − D

)
u = g on Γ ,
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with f ∈ L2(Ω) and g ∈ L2(Γ ) satisfies

‖u‖L2(Γ ) + ‖hDnu‖L2(Γ ) + ‖u‖H1
h(ΩR)

≤ C
(‖u‖L2(ΩR)

+ ‖f ‖L2(ΩR)
+ ‖g‖L2(Γ )

)
. (4.13)

Proof. Let

� = r − m0 + m1

2
.

If 0 ≤ r ≤ 1
2 , then Theorem 4.1 holds and (4.7) and (4.8) become

‖u‖
H

r+ m0−m1
2

h (Γ )

+ ‖hDνu‖
H

r+ m1−m0
2

h (Γ )

≤ C

(
‖u‖L2(ΩR)

+ ‖f ‖
H

r− 1
2

h (ΩR)

+ ‖g‖
H

r− m1+m0
2

h (Γ )

)
(4.14)

and

‖u‖H1
h(M)

≤ C

(
‖u‖L2(M) + h‖f ‖L2(M) + ‖g‖

H
r− m1+m0

2
h (Γ )

)
, (4.15)

respectively. Focusing on (4.14), we therefore impose the conditions that

r ≥ m1 − m0

2
, 0 ≤ r ≤ 1

2
, r ≤ m1 + m0

2
,

i.e.,

max
(
0,

m1 − m0

2

)
≤ r ≤ min

(
1

2
,

m1 + m0

2

)
(observe that this range of r is nonempty since m0 ≥ 0, m1 − m0 ≤ 1, and m1 + m0 ≥ 0). Choosing
r = min{1/2, (m1 + m0)/2}, we have

‖u‖L2(Γ ) +
∥∥hDνu

∥∥
Hs∗

h (Γ )
≤ C

(‖u‖L2(ΩR)
+ ‖f ‖L2(ΩR)

+ ‖g‖L2(Γ )

)
, (4.16)

where

s∗ := min
(
1

2
,

m1 + m0

2

)
+ m1 − m0

2
.

If s∗ ≥ 0, i.e., if (4.11) holds, then the result (4.13) follows from combining (4.16) with (4.15).
If (4.11) doesn’t hold, we seek control of ‖hDnu‖L2(Γ ) via the bound (4.9) with s = 0, i.e.,

‖hDνu‖L2(Γ ) ≤ C

(
‖u‖H1

h (Γ )
+ ‖u‖L2(M) + ‖f ‖L2(M) + ‖gi‖

H
r− m1+m0

2
h (Γ )

)
.
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To prove (4.13), therefore, we only need to bound ‖u‖H1
h (Γ )

in terms of the right-hand side of (4.13).
This follows from (4.14) if

max
(
0, 1+ m1 − m0

2

)
≤ r ≤ min

(
1

2
,

m1 + m0

2

)
,

which is ensured if (4.12) holds. �

4.1.2 Application of Theorem 4.1 to Dirichlet boundary conditions.

Corollary 4.3 There exist C > 0 and h0 > 0 such that if 0 ≤ h ≤ h0, then the solution of{
(−h2Δ− 1)u = hf in Ω

u = g on Γ ,

with f ∈ L2(Ω) and g ∈ H1
h(Γ ) satisfies

‖u‖H1
h (Γ )

+ ‖hDνu‖L2(Γ ) + ‖u‖H1
h (ΩR)

≤ C
(‖u‖L2(ΩR)

+ ‖f ‖L2(ΩR)
+ ‖g‖H1

h(Γ )

)
.

Proof of Lemma 3.3. The Dirichlet boundary condition corresponds to D = I,N = 0, and so satisfies
the assumptions of Theorem 4.1 with m0 = 0 and m1 = −1, say. The result follows by choosing � = 1
and combining (4.7) and (4.8). �

4.2 Recap of results of Trefethen & Halpern (1986) about Padé approximants

We now recall results of Trefethen & Halpern (1986) about Padé approximants. These results consider a
larger class of approximants than covered in our Assumption 1.4; before stating these results, we explain
this difference.

With p(t) and q(t) defined by (1.8), by Assumption 1.4,

σ(D)(x′, ξ ′) = PM,N(x
′, ξ ′) = p

(|ξ ′|2g) and σ(N )(x′, ξ ′) = QM,N(x
′, ξ ′) = q

(|ξ ′|2g). (4.17)

As described in § 1.3, this choice of D and N is based on approximating
√
1− |ξ ′|2g with a rational

function in |ξ ′|2g.
The boundary conditions in Trefethen & Halpern (1986) are based on approximating

√
1− |ξ ′|2g

with a rational function in |ξ ′|g, i.e., Trefethen & Halpern (1986) consider Padé approximants with
polynomials p̃(s) and q̃(s), where the degrees p̃(s) and q̃(s) allowed to be either even or odd. Our
polynomials p, q fit into the framework of Trefethen & Halpern (1986) with

p̃(s) := p(s2) and q̃(s) := q(s2), (4.18)

and then p̃ has degree 2M and q̃ has degree 2N. For d − 1 ≥ 2 (i.e., when the boundary dimension is
≥ 2), polynomials with odd powers of |ξ ′|g do not lead to N and D being local differential operators,

but for d − 1 = 1 (i.e., d = 2) they do, since in this case
√

|ξ ′|2g = √
g(x′)ξ ′, i.e., a polynomial in ξ ′.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 55

Our arguments also apply to polynomials with odd powers of |ξ ′|g in d = 2, but we do not analyze them
specifically, instead leaving this to the interested reader.

To state the results of Trefethen & Halpern (1986), we let p̃(s) and q̃(s) be polynomials of degree
m0 and m1, respectively; this notation is chosen so that, when we specialize the results to our case with
(4.18), these m0 and m1 are the same as in Theorem 4.1/Corollary 4.2, i.e., m0 = 2M and m1 = 2N.
Finally, we let

r̃(s) := p̃(s)

q̃(s)
.

Lemma 4.4 (Trefethen & Halpern, 1986, Theorems 2 and 4) If, and only if, m0 = m1 or m0 = m1+ 2,
then

(a) r̃(s) > 0 for s ∈ [−1, 1], and
(b) the zeros and poles of r̃(s)/s are real and simple and interlace along the real axis.

Corollary 4.5 If m0 = m1 or m0 = m1 + 2, then neither p̃(s) nor q̃(s) has any zeros in [−1, 1].

Proof. For p̃(s), this property follows directly from Part (a) of Lemma 4.4. For q̃(s), this property follows
from Parts (a) and (b) of Lemma 4.4; indeed, if there were a zero of q̃(s) (i.e., a pole of r̃(s)) in [−1, 1],
since the zeros of q̃(s) are simple and interlace with the zeros of p̃(s) (by Part (b)), r̃(s) would change
sign in [−1, 1], contradicting Part (a). �

4.3 Proof of Theorem 1.5

Throughout this section, we let Ω̃R be a smooth family of domains, depending on R and assume that
there is M > 0 such that

B(0, 1) ⊂ Ω̃R ⊂ B(0,MR),

Ω̃R is convex with smooth boundary, Γtr,R, that is nowhere flat to infinite order
(4.19)

Furthermore, we assume that

Ω̃R/R → Ω∞

in the sense that ∂Ω̃R/R → ∂Ω∞ in C∞.
We prove below that Theorem 1.5 is a consequence of the following result, combined with the results

from Trefethen & Halpern (1986) in § 4.2.

Theorem 4.6 Let Ω̃R be as in (4.19) and Ω− � B(0, 1) with Ω− nontrapping. Let N ∈ Ψ m1(Γtr,R),
D ∈ Ψ m0(Γtr,R) have real-valued principal symbols and satisfy (4.2) and one of (4.3)–(4.5). Let m0 and
m1 satisfy the assumptions of Corollary 4.2, and furthermore let N and D satisfy

σ(N )σ (D) > 0 on B∗Γtr,R. (4.20)

Let

GR
h : L2(Γtr,R)⊕ H1

h(ΓD)⊕ L2(Ω̃R \Ω−)→ H1
h(Ω̃R \Ω−)
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56 J. GALKOWSKI ET AL.

satisfy ⎧⎪⎨⎪⎩
(−h2Δ− 1)GR

h (gI , gD, f ) = hf on Ω̃R \Ω−(
NhDn − D

)
GR

h (gI , gD, f ) = gI on Γtr,R
GR

h (gI , gD, f ) = gD on ΓD.

Then there exists C > 0 such that for R ≥ 1, there is h0 = h0(R) > 0 such that for 0 < h < h0, GR
h is

well defined and satisfies∥∥GR
h (gI , gD, f )

∥∥
H1

h(Ω̃R\Ω−) ≤ CR1/2
(‖gI‖L2(Γtr,R) + ‖gD‖H1

h(ΓD)

) + CR‖f ‖L2(Ω̃R\Ω−). (4.21)

Proof of Theorem 1.5 using Theorem 4.6. Theorem 1.5 will follow from Theorem 4.6 (translating
between the h- and k-notations using § 2.1) if we can show that the boundary conditions in Assumption
1.4 with either M = N or M = N + 1, with M,N ≥ 0, satisfy

(i) (4.2),

(ii) one of (4.3)–(4.5),

(iii) the assumptions of Corollary 4.2, and

(iv) (4.20),

where m0 = 2M and m1 = 2N.
Regarding (iii): the first two inequalities in (4.10) are satisfied since m0,m1 ≥ 0, and the third

inequality is satisfied both when m0 = m1 and when m0 = m1 + 2. If m0 = m1, then (4.11) is satisfied,
and if m0 = m1 + 2 then (4.12) is satisfied (since m1 ≥ 0, and thus m0 ≥ 2).

Regarding (ii): if m0 = m1, then (4.4) holds since qN
M,N 
= 0 by definition. If m0 = m1+2, then (4.5)

holds since pM
M,N 
= 0 by definition.

Regarding (i) and (iv): using (4.17), the conditions (4.2) and (4.20) become (with t = |ξ ′|2g)∣∣q(t)∣∣2t−2N + ∣∣p(t)∣∣2t−2M > 0 for all t and |p(±1)| > 0, (4.22)

and

|p(t)q(t)| > 0 on− 1 ≤ t ≤ 1, (4.23)

respectively
If p̃(s) and q̃(s) are defined by (4.18), then (4.22) and (4.23) become∣∣̃q(s)∣∣2s−2m1 + ∣∣̃p(s)∣∣2s−2m0 > 0 for all s and |̃p(±1)| > 0, (4.24)

and

|̃p(s)̃q(s)| > 0 on− 1 ≤ s ≤ 1. (4.25)

The first condition in (4.24) holds since, by Part (a) of Lemma 4.4, p̃(s) and q̃(s) have no common
zeros. Both the second condition in (4.24) and the condition in (4.25) hold by Corollary 4.5. �
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We now prove Theorem 4.6. We first show that, for each z ∈ C and s ≥ 0 the operator

P̃(z) : H2+s(Ω̃R \Ω−) � u �→ ( − h2Δ− z,
(
NhDn − D

)
u|Γtr,R , u|ΓD

)
∈ Hs(Ω̃R \Ω−)⊕ H3/2+s−m(Γtr,R)⊕ H3/2+s(ΓD)

is Fredholm with m = max(m0,m1 + 1); we do this by checking the conditions of (Hörmander, 1985,
Theorem 20.1.8, page 249). Observe that, for fixed h > 0, as a homogeneous pseudodifferential operator,
(−h2Δ−z2) has symbol p(x, ξ) = |ξ |2. Therefore, in Fermi normal coordinates atΓtr,R, we need to check
that the map

Mx,ξ ′ � u → (
b

(
x, (Dt, ξ

′)
)

u
)
(0)

is bijective, where Mx,ξ ′ denotes the solutions to (D
2
t + |ξ ′|2g)u(t) = 0 with u is bounded on R+, and

b(x, ξ) = lim
λ→∞

(−σ(N )(x, λξ ′)λξ1 − σ(D)(x, λξ ′)) λ−m.

Since u = Ae−t|ξ ′|g ,(
b

(
x, (Dt, ξ

′)
)

u
)
(0) = A lim

λ→∞
(−σ(N )(x, λξ ′)λi|ξ ′| − σ(D)(x, λξ ′)) λ−m,

and bijectivity follows if the limit on the right-hand side is nonzero. SinceN and D are both real, this is
ensured by (4.2) and any of (4.3)–(4.5).

Now, to see that P̃ is invertible somewhere, consider z = −1. First, note that for s ≥ 0 the map

PD :
(

H2+s(Ω̃R \Ω−)� u �→→ (−h2Δ+ 1)u, u|Γtr,R , u|ΓD

)
∈Hs(Ω̃R\Ω−)⊕ Hs− 1

2 (ΓI)⊕ Hs− 1
2 (ΓD)

is invertible with inverse GD : Hs
h(Ω̃R \Ω−)⊕ H

s− 1
2

h (Γtr,R)⊕ H
s− 1

2
h (ΓD)→ H2+s

h (Ω̃R \Ω−) (see e.g.,
(Evans, 1998, Chapter 6)). In particular, the Dirichlet to Neumann map

Λ : g1 �→ hDnu|ΓI
, where

⎧⎪⎨⎪⎩
(−h2Δ+ 1)u = 0 on Ω̃R \Ω−,
u = g1 on Γtr,R,

u = 0 on ΓD,

is well defined. Furthermore, Λ ∈ Ψ 1(Γtr,R) is a semiclassical pseudodifferential operator with symbol

σ(Λ) = −i
√

|ξ ′|g + 1 (see, e.g., (Galkowski, 2019b, Proposition 4.1.1, Lemma 4.27)). In particular, by

(4.2) and (4.3)–(4.5), (−iNΛ− D)−1 exists, and hence

[̃P(−1)]−1(f , gI , gD) = GD

(
f , (−iNΛ− D)−1gI , gD

)
.
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Therefore, since for z = −1, the operator is invertible, by the analytic Fredholm Theorem (see e.g.,
(Dyatlov & Zworski, 2019, Theorem C.8)) the family GR

h (z) of operators solving⎧⎪⎨⎪⎩
(−h2Δ− z)GR

h (z)(gI , 0, f ) = hf on Ω̃R \Ω−(
NhDν − D

)
GR

h (z)(gI , 0, f ) = gI on Γtr,R
GR

h (z)(gI , 0, f ) = 0 on ΓD

is a meromorphic family of operators with finite rank poles. To include the Dirichlet boundary values,
we observe that by standard elliptic theory, the operator G̃h(z) : H1

h(ΓD)→ H3/2(B(0, 1) \Ω−) solving⎧⎪⎨⎪⎩
(−h2Δ− z)G̃(z)g = 0 on B(0, 1) \Ω−
G̃h(z)g = g on ΓD

(hDn − 1)G̃h(z)g = 0 on ∂B(0, 1)

is a meromorphic family of operators with finite rank poles. With χ ∈ C∞
c (B(0, 1)) with χ ≡ 1

near Ω−,

GR
h (gI , gD, f ) = GR

h

(
gI , 0, f − h−1[−h2Δ,χ ]G̃hgD

) + χG̃hgD,

and thus the operator GR
h is well defined.

We start by studying GR
h (0, g, 0).

Lemma 4.7 Let R > 0 and assume that N and D satisfy the assumptions of Theorem 4.1. Then there
exist C, h0 > 0 such that u = GR

h (0, g, 0), the solution to⎧⎪⎨⎪⎩
(−h2Δ− 1)u = 0 in ΩR,

u = g on ΓD,(
NhDν − D

)
u = 0 on Γtr,R,

satisfies

‖u‖H1
h (Ω̃R\Ω−) ≤ C‖g‖H1

h (ΓD)
.

Proof. Suppose the lemma fails. Then there exist (hn, gn) with hn → 0 such that un = GR
hn
(0, gn, 0),

‖un‖H1
hn
(Ω̃R\Ω−) = 1, ‖gn‖H1

hn
(ΓD)

= n−1.

Extracting subsequences, we can assume that un has defect measure μ. Moreover, by Corollaries 4.2 and

4.3, we can assume that the trace measures νD/tr
d , νD/tr

j and νD/tr
n exist. In particular, since gn → 0 in H1

h ,

νD
d = 0. Let ϕt denote the billiard flow outside Ω−. Then by Lemma 2.12 together with (Galkowski et

al., 2020, Section 4),

μ(ϕt(A)) = μ(A) if
⋃

0≤t≤T

ϕt(A) ∩ Γtr,R = ∅. (4.26)
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Furthermore, using again Corollaries 4.2 and 4.3, we find that

1 = lim sup
n

‖un‖2H1
hn

≥ μ(T∗
R

d) ≥ lim inf
n

‖vn‖2L2 ≥ c lim inf
n

‖̃vn‖2H1
hn

= c > 0.

Note also that μin/out,tr, νtrd , ν
tr
j and νtrn satisfy the relations in Lemma 2.12. Next, by Lemma 2.18,

μout,tr = αrefμin,tr where αref =
∣∣∣∣√rN − D√

rN + D

∣∣∣∣2 ∈ C∞({r > 0}). (4.27)

Here, we abuse notation slightly, since when σ(N )σ (D) < 0,
√

rN + D may take the value 0. In that
case, the first equation in (4.27) is replaced by (αref)−1μout,tr = μin,tr.

Finally, these measures satisfy Theorem 2.15 with ṅj = σ(N )/σ (D) which is well defined and
satisfies ±ṅj ≥ m > 0 since ±σ(N )σ (D) > 0 on B∗Γtr,R.

The proof of Lemma 4.7 is completed by the following lemma.

Lemma 4.8 Suppose that Ω− is nontrapping, and let M > 0. Then there exist T0, δ0 > 0 such that the
following holds for all R ≥ 1. Suppose Ω− � B(0, 1) ⊂ Ω̃R ⊂ B(0,MR) has smooth boundary and is
convex and that μ is a finite measure supported in S∗

Ω̃R\Ω−
R

d satisfying (4.26), (4.27) and Theorem 2.15

with �ṅj = σ(N )
σ (D) with 0 < ±σ(N )σ (D) on B∗Γtr,R Then, for all A ⊂ S∗

Ω̃R\Ω−
R

d,

μ
(
ϕ∓T0R(A)

) ≥ (1+ δ0)μ(A).

To see that Lemma 4.8 completes the proof of Lemma 4.7 observe that our defect measure μ has
μ(T∗

R
d) 
= 0, is finite, and is supported in S∗

Ω̃R\Ω−
R

d. Therefore, there is A ⊂ S∗
Ω̃R\Ω−

R
d such that

μ(A) > 0. But then

μ
(
ϕ∓NRT0(A)

) = (1+ δ0)Nμ(A)→ ∞,

which is a contradiction. �

Proof of Lemma 4.8. We consider only the case where σ(N )σ (D) > 0. The other case follows from an
identical argument, but reversing the time direction.

By (4.26),μ is invariant under ϕt away from Γtr,R. We first study the glancing set, G = T∗Γtr,R ∩{r =
0}. Note that since Γtr,R is convex, G ⊂ {H2

px1 ≤ 0} where x1 is a boundary defining function for Γtr,R.
Note that for ρ ∈ G, since Ω̃R(R) is convex and Ω̃R(R) ⊂ B(0,MR), there exist c > 0 and T0 > 0
independent of R such that

∫ 0

−T0R
−H2

px1(ϕs(ρ)) ds ≥ c > 0.
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In particular, since σ(N )σ (D) > m > 0 on S∗Γtr,R (by (4.20)), �ṅj ≥ m > 0, and hence by Theorem
2.15, for A ⊂ G,

μ(ϕ−T0R(A)) ≥ emcμ(A).

Next, we study the case where A ⊂ S∗
Ω̃R\Ω−

R
d \ G. Let β−1 : B∗Γtr,R → B∗Γtr,R be the reversed

billiard ball map induced by ϕt. That is, let π : S∗
Γtr,R

R
d → B∗Γtr,R be the natural projection map and

π−1± : B∗Γtr,R → S∗
Γtr,R

R
d the inward- and outward-pointing inverse maps. Next, for (x, ξ) ∈ S∗

Γtr,R
R

d

define

T−(x, ξ) = inf
{
t > 0 : ϕ−t(x, ξ) ∈ S∗

Γtr,R
R

d}.
SinceΩ− is nontrapping, there is T0 > 0 such that for all (x, ξ) ∈ S∗

Ω̃R\Ω−Rd∪π−1− (B∗Γtr,R)
, T−(x, ξ) ≤ T0R.

In particular, every trajectory intersects the boundary in time T0R.
The reversed billiard map is then given by

β−1(q) : π
(
ϕ−T−(π−1− (q))

(π−1− (q))
)
.

Since Γtr,R is convex β : B∗Γtr,R → B∗Γtr,R is well defined and, since μ is invariant under ϕt, β∗μout,tr =
μin,tr. Then, using (4.27), we have

μout,tr = αrefμin,tr = αrefβ∗μout,tr. (4.28)

Fix 0 < c < 1 and for ρ ∈ B∗Γtr,R, let

N(ρ, c) := inf

⎧⎨⎩N ≥ 0 :
N∑

j=0
log(r(β−j(ρ))) < −c

⎫⎬⎭.
We claim that there exist c0,T0 > 0 such that for all ρ ∈ B∗Γtr,R

N(ρ,c0)∑
j=0

T−(β−j(ρ)) < T0R. (4.29)

Once we prove this claim, using (4.28) together with the definition of μout,tr as the derivative along the
flow of μ, we see that if A ⊂ S∗

Ω̃R\Ω−
R

d \ G, then

μ
(
ϕ−T0R(A)

) ≥ e−c0μ(A),

and hence the proof will be complete.
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We now prove (4.29). If the claim fails then there is a sequence

(Rn, ρn,Mn) ∈ [1,∞)× B∗Γtr,R(Rn)× Z

such that

Mn∑
j=0

T−(β−j(ρn)) ≥ nRn,
Mn∑
j=0

log αref(r(β−jρn)) > −1

n
. (4.30)

Without loss of generality, we can assume that Rn → R∞ ∈ [1,∞]. Note that

log αref(ρ) = −4σ(N )
σ (D)

√
r(ρ)+ O(r(ρ)).

By (4.20), since σ(N )
σ (D) > m > 0 on S∗Γtr,R,

Mn∑
j=0

√
(r(β−jρn)) ≤

1

4mn
(4.31)

and in particular,

sup
0≤j≤Mn

r(β−j(ρn)) ≤
1

16m2n2
. (4.32)

Now, let πM : T∗M → M and ρ ∈ B∗∂Ω̃R. We consider the angle between the two vectors

V±(ρ) := dπM

(
∂tϕt

(
π−1± (ρ)

)) = 2ξ
(
π−1± (ρ)

)
.

Note that V± are the tangent vectors to the billiard trajectory just before (−) and after (+) reflection. We
define the angle accumulated at ρ, Δ(ρ) ∈ [0,π ] by

〈V+(ρ),V−(ρ)〉 = 4 cosΔ(ρ).

As can be seen, e.g., in Fig. 5,

sin(Δ(ρ)/2) = √
r(ρ), cos(Δ(ρ)/2) = √

1− r(ρ).

In particular,

sin(Δ(ρ)) = 2
√

r(ρ)
√
1− r(ρ).
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62 J. GALKOWSKI ET AL.

Fig. 5. Ray construction showing the change, Δ, in the angle of a ray when hitting the boundary at angle θ . Note that r = sin2 θ .

Therefore,

Δ(ρ) = 2
√

r(ρ)+ O(r(ρ)3/2).

Now, note that if

k∑
j=0
Δ(β−j(ρ)) <

π

4
,

then

∣∣πM(ρ)− πM(β
−k(ρ))

∣∣ ≥ 1√
2

k∑
j=0

T−(β−j(ρ)). (4.33)

By (4.31) and (4.32),

Mn∑
j=0
Δ

(
β−j(ρn)

) =
Mn∑
j=0

2
√

r
(
β−j(ρn)

) + Or
(
β−j(ρn)

)3/2 ≤ 1

2mn
+ O(n−3) < π

4

for n large enough. In particular, (4.30) and (4.33) imply that

∣∣πM(ρn)− πM

(
β−k(ρn)

)∣∣ ≥ 1√
2

k∑
j=0

T−
(
β−j(ρn)

) ≥ 1√
2

nRn

which, for n large enough, is impossible since Ω̃R ⊂ B(0,MR). �
We now set up our contradiction argument to prove the bound (4.21). Suppose there is no constant

C > 0 such that for all R ≥ 1 the estimate fails. Then, there exists {R�}∞�=1 ⊂ [1,∞), {hk,�}∞k,�=1, with
limk→∞ hk,� = 0, uk,�, and gk,�,tr/D, fk,� such that ‖uk,�‖H1

h(Ω̃R�\Ω−) = 1,

(
‖gk,�,I‖L2(Γtr,R(R�)) + ‖gk,�,D‖H1

hk,�
(ΓD)

)
≤ R−1/2

� �−1, ‖fk,�‖L2(Ω̃(R�)\Ω−) ≤ R−1
� �

−1,
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and such that

⎧⎪⎪⎨⎪⎪⎩
(
−h2k,�Δ− 1

)
uk,� = hk,�fk,� on Ω̃R� \Ω−

(Nhk,�Dn − D)uk,� = gk,�,I on Γtr,R�
uk,� = gk,�,D on ΓD.

Rescaling, we define

ũk,�(x) = R
n
2
� vk,�(xR�), g̃k,�,I(x) = R

n
2
� gk,�,I(xR�),

f̃k,�(x) = R
n+2
2
� fk,�(xR�), G̃k,�,D = R

n
2
� gl,�,D(xR�).

Then,

‖̃gk,�,I‖L2(Γtr,R� /R�)
+ ‖̃gk,�,D‖L2(ΓD/R�) ≤

1

�
, ‖̃uk,�‖H1

hk,�(Ω̃R�
)

≥ 1− C

R1/2� �
, ‖̃fk,�‖L2 ≤ 1

�
,

and, with U� = (Ω̃R�/R�) \ (Ω−/R�), Γ̃D,� = ΓD/R�, Γ̃I,� = Γtr,R�/R�,

⎧⎪⎨⎪⎩
( − (

hk,�R
−1
�

)2
Δ− 1

)̃
uk,� = (

hk,�R
−1
�

)̃
fk,� on U�(

Ñhk,�R
−1
k,�Dn − D̃

)
ũk,� = g̃k,�,I on Γ̃I,�

ũk,�|Γ̃D,�
= G̃k,�,D,

where, if a pseudodifferential operator B on Γtr,R is given by

B = Oph(b), b ∼
∑

j

hjbj,

then

B̃ = OphR−1(b̃), b̃ ∼
∑

j

(hR−1)jRjbj.

Putting h̃k,� = hk,�R
−1
� , we have h̃k,� →

k→∞ 0 hence, extracting subsequences if necessary, we can assume

that uk,� (k → ∞) has a defect measure μ� and by Corollaries 4.2 and 4.3 we can assume that the trace

measures for uk,�, ν
I/D
d,� , ν

I/D
n,� and νI/D

j,� exist. Moreover, μ� satisfies the relations from Proposition 2.12

whereμin/out. Finally, extracting even further subsequences, we can assume g̃k,�,I/D have defect measures
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ω�,I/D, f̃k,� has defect measure α�, and the joint measure of ũk,� and f̃k,� is μ
j
� with

ω�,I(T
∗Γ̃I,�) ≤

1

�2
, ω�,D(T

∗Γ̃D,�) ≤
1

�2
, α�(T

∗U�) ≤
1

�2
,

|μj
�(A)| ≤ √

μ�(A)α�(A)

and R� → R ∈ [1,∞]. Therefore, using e.g., (Galkowski et al., 2020, Lemma 4.2) together with
Corollaries 4.2 and 4.3 to estimate the H1

h�/R�
norm of ṽ by its L2 norm,

1 = lim sup
k

‖̃vk,�‖2H1
hk,�/R�

≥ μ�(T∗
R

d) ≥ lim inf
k

‖̃vk,�‖2L2 ≥ c lim inf
k

‖̃vk,�‖2H1
hk,�/R�

≥ c

2
> 0.

Note that each μ� is a finite measure satisfying suppμ� ⊂ S∗
B(0,M)R

d. Therefore, the sequence μ� is
tight and bounded, and hence by Prokhorov’s theorem (see, e.g., (Billingsley, 1999, Theorem 5.1, page
59) we can assume that μ� ⇀ μ for some measure μ. Moreover, suppμ ⊂ S∗

U∞
R

d and

1 ≥ μ(S∗
R

d) > c > 0. (4.34)

Lemma 4.9 The sequences of boundary measures νtrd,�, ν
tr
n,� and ν

tr
j,�, and ν

D
n,� are tight.

Proof. Since {r ≥ 0} ⊂ T∗∂MI,� is a compact set, we need only consider r < 0. By Lemma 2.11,

�νI/D
j,� 1r<0 = 0, ν

I/D
n,� 1r<0 = −rνI/D

d,� 1r<0. (4.35)

On the other hand, the boundary condition on Γtr,R gives for a ∈ C∞
c ({r < 0}),

〈
a(x, h̃D)Ñ h̃Dnu, u

〉 = 〈
a(x, h̃D)D̃u, u

〉 + O(�−1)+ o(1)h̃→0.

Sending h̃ → 0, we obtain

νtrj,�(σ (N )a) = νtrd,�(σ (D)a)+ O(�−1).

In particular, ∥∥νtrj,�(σ (N ))1r<0 − νtrd,�(σ (D))1r<0

∥∥ = O(�−1).

Now, since �νtrj,� = 0 and νtrd,�, σ(D) are real,∥∥νtrd,�(σ (D))1r<0

∥∥ = O(�−1).

Similarly, for a ∈ C∞
c ({r < 0}),〈
a(x, h̃D)h̃Dnu,Du

〉 = 〈
a(x, h̃D)u, ÑhDνu

〉 + O(�−1)+ o(1)h̃→0,
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so that, since σ(N ) and σ(D) are both real,∥∥νtrj,�(σ (D))1r<0 − νtrn,�(σ (N ))1r<0

∥∥ = O(�−1),

and hence ∥∥νtrj,�(σ (D))1r<0 + rνtrd,�(σ (N ))1r<0

∥∥ = O(�−1),

which again implies ∥∥rνtrd,�(σ (N ))1r<0

∥∥ = O(�−1).

We now claim that

there exists ε > 0 such that {r|σ(N )| ≤ ε} ∩ {|σ(D)| ≤ ε} is compact, (4.36)

which then implies that νtrd,� is tight. We now show that (4.36) holds in each of the three cases: m0 >

m1 + 1,m0 < m1 + 1 and m0 = m1 + 1. If m0 > m1 + 1, then {|σ(D)| ≤ c/2} is compact by (4.5) since
m0 ≥ 0 by (4.10). If m0 < m1 + 1 and m1 ≥ −2 then {r|σ(N )| ≤ c/2} is compact by (4.4); observe
that the inequality m1 ≥ −2 follows from m0 < m1 + 1 since m0 ≥ 0 by (4.10). We now show that
if m0 = m1 + 1 then the first inequality in (4.2) implies that there exists C > 0 such that if |ξ ′| ≥ C
then the intersection (4.36) with ε = √

c/2 (with c the constant in (4.3) is empty (and hence compact)).
Indeed, since m0 ≥ 0 and 〈ξ 〉 ≥ 1,

if |σ(D)|2 ≤ (c/2) then |σ(D)|2 ≤ (c/2)〈ξ 〉2m0 .

Now, by the first inequality in (4.2)

if |σ(D)|2 ≤ (c/2)〈ξ 〉2m0 then |σ(N )|2 ≤ (c/2)〈ξ 〉2m1 .

If |σ(N )|2 ≤ (c/2)〈ξ 〉2m1 then, since m1 > −2, r2|σ(N )|2 ≥ c/2 for sufficiently large ξ , and thus
(4.36) indeed holds with ε = √

c/2.

The tightness of νtrd,� and (4.35) then imply that ν
tr
n,� is tight and |νtrj,�| ≤

√
νtrd,�ν

tr
n,� implies that ν

tr
j,� is

tight. Next, the boundary condition on ΓD gives that

νD
d,� = ω�,D ≤ 1

�2
.

Hence, νD
n,� and ν

D
j,� are tight as above. �

Since the boundary measures form tight sequences, extracting subsequences if necessary, we can
assume νI/D

d,� ⇀ ν
I/D
d , νI/D

n,� ⇀ ν
I/D
n and νI/D

j,� ⇀ ν
I/D
j for some measures νI/D

d , and νI/D
n , and a complex

measure νI/D
j . Furthermore, νD

d,� = ω�,D → 0, and hence νD
j,� → 0. We also have α� → 0.
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Since these measures converge as distributions and Γ̃I,� → Γ∞
tr in C∞, the equations from

Lemma 2.12 and Theorem 2.15 hold for the limiting measures on Γ∞
tr . (Here, we think of Γ̃I,� as a

C∞ graph over Γ∞
tr .) In addition, since α� → 0,

μ(Hpa) = lim
�→∞μ�(Hpa) = 0, a ∈ C∞

c

(
T∗U∞ \ B(0,R−1)

)
.

In addition, (4.27) holds by Lemma 2.12.
We now introduce notation for various billiard flows in the next section. First, let ϕ�t denote the

billiard flow on Rd \ (Ω−/R�). Then, define

ϕ∞
t (x, ξ) = lim

�→∞ϕ
�
t (x, ξ), (x, ξ) ∈ S∗(

R
d \ (Ω−/R)

)
.

Note that, the convergence to ϕ∞
t is uniform and, in the case R < ∞, ϕ∞

t (x, ξ) agrees with the billiard
flow on Rd \ (Ω−/R) and we identify the two flows.

Proposition 4.10 Suppose that T <∞ and A ⊂ S∗
U�
R

dwith

⋃
0≤t≤T

ϕ�t (A) ∩ Γ̃I,� = ∅.

Then,

lim
�→∞ sup

t∈[0,T]
∣∣μ�(ϕ�t (A)) − μ�(A)

∣∣ = 0

Proof. This follow from Theorem 2.15 since∥∥μinD,� − μoutD,�

∥∥ = 2
∥∥�νD

j,�

∥∥ ≤ C
√

‖ωD,�‖ = O(�−1),

and ∥∥μj
�

∥∥ ≤ C
√
α� = O(�−1).

�
Next, we show that μ∞ is invariant under ϕ∞

t when R <∞.

Lemma 4.11 Suppose that R <∞ and that A ⊂ S∗
U∞R

d is closed and⋃
0≤t≤T

ϕ∞
t (A) ∩ Γ∞

tr = ∅.

Then,

μ
(
ϕ∞

t (A)
) = μ(A).
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Proof. First, note that since the convergence of ϕ�t to ϕ
∞
t is uniform,

lim
�→∞ d

(
ϕ∞

t (A),ϕ
�
t (A)

) = 0.

Therefore, fixing ε > 0, for � large enough,

ϕ�t (A) ⊂ {(x, ξ) : d(ϕT(A), (x, ξ)) < ε}

and

ϕ−T
�

(
ϕ∞

t A
) ⊂ {(x, ξ) : d(A, (x, ξ)) < ε}.

Now, for finite times T , μ� is invariant under ϕ
�
t up to o(1)�→∞. Combining this with the fact that our

assumption on A implies that, for � large enough, ϕ�t does not intersect Γtr,R in [0,T], we have

μ�
(
ϕ∞

t (A)
) = μ�

(
ϕ−T
� ϕ

∞
t (A)

) + o(1)�→∞ ≤ μ�({(x, ξ) : dist ((x, ξ),A) < ε})+ o(1)�→∞
and

μ�(A) = μ�
(
ϕ�t (A)

) + o(1)�→∞ ≤ μ�
({(x, ξ) : dist

(
(x, ξ),ϕ∞

t (A)
)
< ε}) + o(1)�→∞.

Sending �→ ∞ and then ε → 0, we obtain

μ(A) = μ (
ϕ∞

t (A)
)

as claimed. �

Remark. Note that when R = ∞, the analogue of Lemma 4.11 is obvious except on the sets {ξ = ± x
|x| }

and {x = 0} since we can test μ against Hpa away from these sets.

In the case R = ∞, we use the following lemmas.

Lemma 4.12 If R = ∞, then μ({x = 0} = 0}.

Proof. Fix ε > 0. Since Ω− is nontrapping and ΓD � B(0, 1), there is T > 0 and c > 0 such that

⋃
±t≥TR−1

�

ϕ�t
(|x| ≤ 2R−1

�

) ∩ ({|x| ≤ 3R−1
�

} ∪ {∣∣〈 x
|x| , ξ

〉∣∣ ≤ c
}) = ∅.

Thus, for � large enough

ϕ�4ε(|x| ≤ ε) ⊂ {
2ε ≤ |x| ≤ 6ε, ξ · x

|x| > c
}
.

In particular, there is c > 0 such that for j 
= k, 0 ≤ j < k < cε−1

ϕ�4ε+c−1k({|x| ≤ ε}) ∩ ϕ�4ε+c−1j({|x| ≤ ε}) = ∅.
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Since μ�(T
∗
R

d) ≤ 1, this implies that

μ�({|x| ≤ ε}) ≤ Cε + o�→∞(1),

and hence, sending �→ ∞,

μ({|x| ≤ ε}) ≤ Cε.

Finally, sending ε → 0 proves the claim. �

Lemma 4.13 If R = ∞ then μ∞ is invariant under ϕ∞
t away from Γ∞

tr .

Proof. Let

A± := { ± ξ = x
|x|

} ∩ {|x| = 1
2M

}
.

Note that μ� is invariant under ϕ
�
t modulo o�→∞(1). Now, Γ̃D,� ⊂ B(0,R−1

� ). Since R� → ∞, and Ω−
is nontrapping for (x, ξ) ∈ A−,

lim
�→∞ sup

(x,ξ)∈A−
dist

(
ϕ�1/M(x, ξ),A+

) = 0.

Similarly,

lim
�→∞ sup

(x,ξ)∈A+
dist

(
ϕ�−1/M(x, ξ),A−

) = 0.

Now, for δ > 0 small enough, −δ ≤ t ≤ δ and dist
(
(x, ξ),A±

) ≤ δ, ϕ�t (x, ξ) = ϕ∞
t (x, ξ). In particular,

for B− ⊂ A−,

μ�

⎛⎝ ⋃
−δ≤t≤δ

ϕ∞
t (B−)

⎞⎠ = μ�
⎛⎝ ⋃

−δ≤t≤δ
ϕ�t (B−)

⎞⎠ = μ�

⎛⎜⎝ ⋃
1
M −δ≤t≤ 1

M +δ
ϕ�t (B−)

⎞⎟⎠ + o�→∞(1).

Fix ε > 0. Then for � large enough,

⋃
1/M−δ≤t≤1/M+δ

ϕ�t (B−) ⊂
⋃

−δ≤t≤δ
ϕ�t

({
(x, ξ) : dist

(
(x, ξ),ϕ∞

1/M(B−)
) ≤ ε}).
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In particular,

μ�

⎛⎝ ⋃
−δ≤t≤δ

ϕ∞
t (B−)

⎞⎠ ≤ μ�
⎛⎝ ⋃

−δ≤t≤δ
ϕ�t

({
(x, ξ) | dist

(
(x, ξ),ϕ∞

1/M(B−)
) ≤ ε})

⎞⎠ + o(1)�→∞,

= μ�
⎛⎝ ⋃

−δ≤t≤δ
ϕ∞

t

({
(x, ξ) : dist

(
(x, ξ),ϕ∞

1/M(B−)
) ≤ ε})

⎞⎠ + o(1)�→∞,

where in the last line we use that ϕ�t = ϕ∞
t on the relevant set. Similarly, for � large enough (depending

on ε), and B+ ⊂ A+

μ�

⎛⎝ ⋃
−δ≤t≤δ

ϕ∞
t (B+)

⎞⎠ ≤ μ�
⎛⎝ ⋃

−δ≤t≤δ
ϕ∞

t

({
(x, ξ) : dist

(
(x, ξ),ϕ∞−1/M(B+)

) ≤ ε})
⎞⎠ + o(1)�→∞.

Putting B+ = ϕ∞
1/M(B−), sending �→ ∞ and then ε → 0, we obtain

μ

⎛⎝ ⋃
−δ≤t≤δ

ϕ∞
t (B+)

⎞⎠≤ μ
⎛⎝ ⋃

−δ≤t≤δ
ϕ∞

t−1/M(B+)

⎞⎠ = μ
⎛⎝ ⋃

−δ≤t≤δ
ϕ∞

t (B−)

⎞⎠
≤ μ

⎛⎝ ⋃
−δ≤t≤δ

ϕ∞
t+1/M(B−)

⎞⎠= μ
⎛⎝ ⋃

−δ≤t≤δ
ϕ∞

t (B+)

⎞⎠,
and the claim then follows from the fact that

μ(Hpa) = 0

for all a ∈ C∞
c (T

∗
U∞\{0}Rd). �

We now derive our contradiction to prove the bound (4.21), and thus complete the proof of
Theorem 4.6. By Lemmas 4.11, 4.12 and 4.13, μ is invariant under ϕ∞

t away from Γ∞
tr . In particular,

Lemma 4.8 applies and we obtain that μ = 0, which is a contradiction to (4.34).

5. Proofs of the bounds on the relative error (Theorems 1.6–1.11)

As discussed in § 3, the upper bounds in Theorem 1.7 and in Theorem 1.9 follow from applying
Theorem 1.5 to u − v and then using Lemma 3.2. It therefore remains to prove the lower bounds in
Theorems 1.6, 1.7, 1.8, 1.10 and 1.11.

5.1 Existence of defect measures

Lemma 5.1 IfΩ− is nontrapping, then Assumption 2.2 holds for u and v the solutions of (2.1) and (2.2),
respectively.

Proof. The bound on ‖χu‖L2 follows from Lemma 3.1; the bound on ‖hDnu‖L2(ΓD)
follows from

Corollary 4.3 and that on ‖u‖L2(ΓD)
follows from the condition (2.1b) that u|ΓD

= exp(ix · a/h). The

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad058/7261400 by C
atherine Sharp user on 08 N

ovem
ber 2023



70 J. GALKOWSKI ET AL.

bound on ‖v‖L2 follows from Theorem 1.5. The bounds on ‖v‖L2(Γtr,R) and ‖hDnv‖L2(Γtr,R) follow from
Corollary 4.2, and those for ‖hDnu‖L2(ΓD)

from Corollary 4.3. The bound on ‖v‖L2(ΓD)
follows from the

condition (2.2b) that v|ΓD
= exp(ix · a/h). �

Remark 5.2 (Neumann boundary conditions). We do not consider Neumann boundary conditions on ΓD
because, as far as we know, propagation of measures for Neumann boundary conditions is not available.
Indeed, the Neumann boundary condition does not satisfy the uniform Lopatinski–Shapiro condition
(see, e.g., (Hörmander, 1985, Part (ii) of Definition 20.1.1, page 233)) and, under Neumann boundary
conditions, if u is normalized so that ‖h∂nu‖L2(ΓD)

is bounded, then ‖u‖L2(ΓD)
is typically not uniformly

bounded as h → 0 (for example, when ΓD is the boundary of a ball; see, e.g., (Spence, 2014, Equation
3.31)); therefore Assumption 2.2 does not hold.

5.2 Reduction to a lower bound on the measure of the incoming set

Lemma 5.3 There exists C1 > 0 such that if {u�}∞�=1 and {v�}∞�=1 are sequences of solutions to (2.1) and
(2.2), respectively, such that u� has a defect measure and v� has defect measure μ, then

lim inf
�→∞

‖u� − v�‖L2(ΩR)

‖u�‖L2(ΩR)

≥ C1

√
μ(I)

R
, (5.1)

and

lim inf
�→∞

‖u� − v�‖L2(B(0,2)\Ω−)
‖u�‖L2(B(0,2)\Ω−)

≥ C1

√
μ

(
I ∩ (

S∗
B(0,3/2)R

d
))
, (5.2)

where I is the directly-incoming set defined by (3.3).

Proof. Let b ∈ C∞
c (S

∗ΩR) be supported in I and such that∫
|b|2 dμ ≥ μ(I)/2.

If μ̃ is a defect measure of u, then μ̃(I) = 0 by Lemma 3.6. By the definition of defect measures,

lim
�→∞

〈
b(x, h�D)u�, b(x, h�D)u�

〉 = 0,

and therefore

μ(I)/2 ≤ lim
�→∞

〈
b(x, h�D)v�, b(x, h�D)v�

〉
= lim
�→∞

(〈
b(x, h�D)v�, b(x, h�D)v�

〉 + 〈
b(x, h�D)u�, b(x, h�D)u�

〉)
− 2 lim

�→∞ �〈b(x, h�D)u�, b(x, h�D)v�〉
= lim
�→∞

〈
b(x, h�D)(v� − u�), b(x, h�D)(v� − u�)

〉
� ‖u� − v�‖2L2(ΩR)
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(where the upper bound on b(x, h�D) is independent of I by (Zworski, 2012, Theorem 5.1)). The bound
(5.1) then follows from the upper bound on ‖u�‖L2(ΩR)

in Lemma 3.1. The estimate (5.2) is proved in
the same way by taking b supported in S∗

B(0,3)R
d and such that

∫ |b|2 dμ ≥ μ(I ∩ S∗
B(0,3/2)R

d)/2. �

Corollary 5.4 Let {v�}∞�=1, {h�}∞�=1, and {a�}∞�=1 be sequences such that v� satisfies (2.2) with a = a�
and {v�}∞�=1 has defect measure μ.

(i) To prove Theorem 1.6 it is sufficient to prove that there exists c0 > 0 that depends continuously
on Γtr,R such that

μ(I) ≥ c0.

(ii) Having proved Theorem 1.6, to prove the lower bound in Theorem 1.7 it is sufficient to prove
that there exists c1 > 0 (independent of R) and R0 such that, for all R ≥ R0,

μ(I) ≥ c1
R4mord−1 . (5.3)

(iii) Having proved Theorem 1.6, to prove Theorem 1.8 it is sufficient to prove that there exists c2 > 0
and R0 > 0 (independent of R) such that, for all R ≥ R0,

μ(I) ≥ c2R. (5.4)

(iv) To prove Theorem 1.10 it is sufficient to prove that there exists c3 > 0 (independent of R) and
R0 ≥ 2 such that, for all R ≥ R0,

μ
(
I ∩ (

S∗
B(0,3/2)R

d)) ≥ c3
R4mord

. (5.5)

(v) To prove Theorem 1.11 it is sufficient to prove that there exists c4 > 0 (independent of R) such
that, for all R ≥ 2,

μ
(
I ∩ (

S∗
B(0,3/2)R

d)) ≥ c4
Rd−1 . (5.6)

Proof. We prove Part (ii), i.e., the lower bound in (1.14) in Theorem 1.7; the proofs of the other parts
are essentially identical and/or simpler.

We first show that it is sufficient to prove that there exists C̃1 = C̃1(Ω−,M,N) and R0 =
R0(Ω−,M,N) > 0 such that for any R ≥ R0, there exists k̃0(R) > 0 such that, for any direction a,

‖u − v‖L2(ΩR)

‖u‖L2(ΩR)

≥ C̃1

R2mord
for all k ≥ k0. (5.7)

Indeed, having proved (5.7), we let

C1 := min

(
C̃1, min

1≤R≤R0

‖u − v‖L2(ΩR)

‖u‖L2(ΩR)

)
.
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By Theorem 1.6 and the fact that the constant C in this theorem depends continuously on R, C1 exists, is
> 0, and is independent of k. With this definition ofC1, (5.7) implies that the lower bound in (1.14) holds
with k0(R) := k̃0(R) for R ≥ R0, and k0(R) equal to the respective k0 from Theorem 1.6 for 1 ≤ R ≤ R0.

We now prove (5.7); seeking a contradiction, suppose that the converse of (5.7) is true; that is, given
C0 > 0, for any R̃0 > 0 there exists R ≥ R̃0 and sequences {h�}∞�=1, {a�}∞�=1 with h� → 0, |a�| = 1 such
that the solutions u� and v� to (2.1) and (2.2) satisfy

‖u� − v�‖L2(ΩR)

‖u�‖L2(ΩR)

≤ C0

R2mord
. (5.8)

By extracting subsequences, we can assume that u� has defect measure μ̃ and v� has defect measure μ
by Lemma 5.1.

Setting R̃0 := R0, with R0 such that (5.3) holds for R ≥ R0, and using this lower bound on μ(I) in
(5.1), we have

lim inf
�→∞

‖u� − v�‖L2(ΩR)

‖u�‖L2(ΩR)

≥ C1
√

c1
R2mord

,

for all R ≥ R̃0, which contradicts (5.8) for C0 < C1
√

c1, thus proving the lower bound in
Theorem 1.7. �

5.3 Outline of the ideas behind rest of the proofs, and the structure of the rest of this section

By Corollary 5.4, we need to prove lower bounds on the measure of the incoming set μ(I). We argue by
contradiction and assume that μ(I) is small. The overall plan is the following.

(i) Show that, since μ(I) is small, mass is created when incoming rays reflect off ΓD using
Lemma 2.20 above.

(ii) Show that there exists a neighbourhood of rays starting fromΓD that hitΓtr,R directly (i.e., without
hitting ΓD in the meantime) and hit Γtr,R at angles to the normal that are not zero, and not one of the
special angles corresponding to the nonzero zeros {tj}mvanish

j=1 of q(t)
√
1− t − p(t) (these conditions are

made more precise in Condition 5.9 below).
(iii) Propagate the mass created in Point (i) on the rays constructed in Point (ii) using Part (i) of

Corollary 2.17 (to go from mass on ΓD to mass on Γtr,R).
(iv) Show that mass is reflected on Γtr,R using the expression for the reflection coefficient in

Corollary 2.19 and the fact that the rays hit Γtr,R away from angles where the reflection coefficient
vanishes.

(v) Show that this reflected mass produces mass on I using Part (ii) of Corollary 2.17 (to go from
mass on Γtr,R to mass in ΩR), contradicting the assumption that μ(I) is small.

For the quantitative (i.e., explicit-in-R) bounds the goal is to prove a lower bound on μ(I) that is
explicit in R. Therefore, on top of the requirements on the rays in Point (ii) above, we need (a) the angles
the rays hit Γtr,R to have certain R-dependence (since this will affect the R-dependence of the reflection
coefficient in Point (iv)), and (b) information about when the reflected rays next hit ΓD.

For the bounds on the relative error in subsets of ΩR (Theorems 1.10 and 1.11), we also require
information about when the rays return to a neighbourhood ofΩ−, since we need information about the
defect-measure mass here (more specifically, μ(I ∩ S∗

B(0,3/2)R
d)).
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Outline of the rest of § 5.
§ 5.4 contains preliminary results required for the ray arguments. § 5.5 states the condition the

rays must satisfy (Condition 5.9) and results constructing rays satisfying this condition (Lemmas 5.10–
5.13). § 5.7 proves Lemmas 5.10–5.13. § 5.8 bounds the reflection coefficient (2.48) for rays satisfying
Condition 5.9. § 5.9 proves the qualitative (i.e., not explicit in R) lower bound in Theorem 1.6; the steps
(i)–(v) above therefore appear in their simplest form in this proof. § 5.10 proves the quantitative (i.e.,
explicit in R) lower bounds in Theorem 1.7, 1.8, 1.10, 1.11.

5.4 Preliminary results required for the ray arguments

Recall that Sd−1 denotes the d-dimensional unit sphere. Given a ∈ R
d with |a| = 1, letRa : ΓD → Sd−1

be defined by

Ra(x
′) =

(
ξ1 =

√
r
(
x′, (aT(x

′))�
)
, ξ ′ = (aT(x

′))�
)
.

The definition of the local coordinates in § 2.3 and the fact that ξ1 > 0 imply that

Ra(x
′) =

{
a − 2(n(x′) · a)n(x′) if a · n(x′) ≤ 0,

a if a · n(x′) ≥ 0,
(5.9)

i.e.,Ra(x
′) is the reflection of a from ΓD if x′ is in the illuminated part of ΓD andRa(x

′) is just a if x′ is
in the shadow part of ΓD.

Definition 5.5 Given x′ ∈ ΓD and a ∈ R
d with |a| = 1, the ray emanating from x′ is the ray starting

from
(
x = x′, ξ = Ra(x

′)
)
.

Definition 5.6 The ray emanating from x′ ∈ ΓD is direct if the flow along the ray, starting at x′, hits
Γtr,R before hitting ΓD.

We now show that there are direct rays emanating from ΓD in every direction.

Lemma 5.7 Given a ∈ R
d with |a| = 1. Let Γ +,a

D ⊂ ΓD denote the set of points x′ of ΓD such that both
a · n(x′) 
= 0 and the ray emanating from x′ is direct. Then,

Ra

(
Γ

+,a
D

) = Sd−1.

Proof. We first prove that a ∈ Ra(Γ
+,a

D ). Without loss of generality a = (1, 0, . . . , 0). Let x′
0 ∈ ΓD be

the point with maximal x1 coordinate. Then Ra(x
′
0) = a by (5.9), x′

0 ∈ Γ +,a
D by the fact it has maximal

x1 coordinate, and so a ∈ Ra(Γ
+,a

D ).
We now need to show that, given ζ ∈ Sd−1 \ {a}, ζ ∈ Ra(Γ

+,a
D ). Let P be the plane defined by

P := Span(a, ζ ). Choose a cartesian system of coordinates in which P = {x3 = · · · = xn = 0},
a = (1, 0, · · · , 0), and (x1, x2) is right-handed oriented in P . For ξ ∈ Sd−1, let ra(ξ) := a − 2(ξ · a)ξ ;
i.e., ra(ξ) is the reflection of a from a boundary with normal ξ . This definition implies that

ra((cosω, sinω, 0, · · · , 0)) = (cos(2ω − π), sin(2ω − π), 0, · · · , 0),
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74 J. GALKOWSKI ET AL.

Fig. 6. Illustration of the proof of Lemma 5.7 in the two-dimensional case; i.e., construction of a ray reflecting from ΓD in
an arbitrary direction ζ . The point x′ has maximal y1 coordinate, where the vector ξ defines the y1 axis, and ξ is defined by
ζ = a − 2(a · ξ)ξ .

so that

ra(D) =
(
Sd−1 ∩ P

) \ {a}, where D :=
{
(cosω, sinω, 0, · · · , 0), ω ∈

(
π

2
,
3π

2

)}
.

Hence, there exists ξ ∈ D such that ra(ξ) = ζ .
Finally, to show ζ ∈ Ra(Γ

+,a
D ), we need to find x′ ∈ Γ +,a

D such thatRa(x
′) = ra(ξ). Let (y1, · · · , yd)

be a cartesian system of coordinates such that ξ = (y1 = 1, y2 = 0, · · · , yd = 0); see Fig. 6; let x′ be
a point of ΓD with maximal y1 coordinate. By definition, n(x′) = ξ , and, since ξ ∈ D, a · n(x′) < 0.
Therefore,Ra(x

′) = ra(n(x
′)) = ra(ξ) = ζ . Since x′ hasmaximal y1 coordinate inΓD, the ray emanating

from x′ only intersects ΓD at x′, and thus x′ ∈ Γ +,a
D . �

The following dilation property Ra(x
′) is needed for one of the proofs below (the proof of

Lemma 5.13).

Lemma 5.8 Let 0 < δ < 1 and let C ⊂ Γ +,a
D be uniformly convex (i.e., the second fundamental form is

positive definite) and such that, for any x′ ∈ C, δ ≤ |n(x′) · a| ≤ 1 − δ. Then, there exists CR > 0 and
α0 > 0 such that, for any x′ ∈ C and any 0 < α ≤ α0, if ∂B(x′,α) ∩ C 
= ∅ and ∂B(x′,α) ∩ ∂C = ∅,
there exists y′ ∈ ∂B(x′,α) ∩ C so that

|Ra(x
′)− Ra(y

′)| ≥ CR|x′ − y′| = CRα.

Proof of Lemma 5.8. Let (x1, · · · ,xd) =: (x1,x′) be an Euclidian system of coordinates in which
a = (1, 0, · · · , 0). Since C is included in {δ ≤ |n(x′) · a| ≤ 1 − δ}, there exists X ⊂ {x1 = 0} and a
smooth map γC : X −→ R such that C is given by, in this Euclidian system of coordinates

C = {
(γC(x

′),x′) : x′ ∈ X
}
.
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First observe that, for x′ = (γD(x
′),x′) ∈ C and y′ = (γD(y

′),y′) ∈ C

|x′ − y′| ≤ |x′ − y′| + |γD(x
′)− γD(y

′)| ≤
(
1+ sup

X
|∇γC |

)
|x′ − y′|,

and hence

C0|x′ − y′| ≤ |x′ − y′| ≤ |x′ − y′|, where C0 :=
(
1+ sup

X
|∇γD|

)−1
. (5.10)

By the definition of Ra (5.9),

Ra(x
′)− Ra(y

′) = 2
(
H(x′)− H(y′)

)
, (5.11)

H(x′) := (n(x′) · a)n(x′) and n(x′) := (1,−∇γD(x
′))/

√
1+ |∇γD(x

′)|2,

i.e., n(x′) is the outward-pointing normal to ΓD at x′ = (γD(x
′),x′) ∈ C.

Given x′, our plan is to use Taylor’s theorem onH to bound |Ra(x
′)−Ra(y

′)| below, and then choose
y′ appropriately so that this lower bound is ≥ CR|x′ − y′|. We first record that, since |n(x′) · a| ≤ 1− δ
and a = (1, 0, . . . , 0),

|∇γC(x′)| ≥ (1− δ)−2 − 1 =: β > 0. (5.12)

Let H1 be the component of H in the x1 direction (i.e., the direction of a), i.e.,

H1(x
′) = 1

1+ |∇γC(x′)|2 . (5.13)

Then, using (5.11), Taylor’s theorem, (5.13), (5.10) and (5.12), we obtain

1

2

∣∣Ra(x
′)− Ra(y

′)
∣∣ ≥ ∣∣H1(x

′)− H1(y
′)
∣∣ ≥ ∣∣∇H1(x

′) · (x′ − y′)
∣∣ − sup

X

∣∣∂2H1

∣∣∣∣x′ − y′∣∣2
=

∣∣∣∣〈2∂2γC(x′)∇γC(x′)
(1+ |∇γC(x′)|2)2 ,

x′ − y′

|x′ − y′|
〉∣∣∣∣ |x′ − y′| − sup

X

∣∣∂2H1

∣∣∣∣x′ − y′∣∣2
= 2|∇γC(x′)|
(1+ |∇γC(x′)|2)2

∣∣∣∣〈∂2γC(x′) ∇γC(x′)
|∇γC(x′)| ,

x′ − y′

|x′ − y′|
〉∣∣∣∣ |x′ − y′| − sup

X

∣∣∂2H1

∣∣∣∣x′ − y′∣∣2
≥ 2C1βC0QC

∣∣∣∣〈v,
x′ − y′

|x′ − y′|
〉∣∣∣∣ ∣∣x′ − y′∣∣ − C2

∣∣x′ − y′∣∣2, (5.14)

where

v :=
(
∂2γC(x

′) ∇γC(x′)
|∇γC(x′)|

) ∣∣∣∣∂2γC(x′) ∇γC(x′)
|∇γC(x′)|

∣∣∣∣ −1,
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and

C1 :=
(
1+ sup

X
|∇γC |2

)−2
> 0, C2 := sup

X

∣∣∣∂2H1

∣∣∣ <∞, QC := inf
x′∈X,|e|=1

∣∣∣∂2γC(x′)e
∣∣∣ > 0,

where QC > 0 because C is uniformly convex.
We now claim that, under the assumption that ∂B(x′,α)∩C 
= ∅ and ∂B(x′,α)∩∂C = ∅, it is always

possible to choose y′ ∈ C so that
|x′ − y′| = α and

x′ − y′

|x′ − y′| = v. (5.15)

Indeed, for d ≥ 3, the projection of ∂B(x′,α) ∩ C on the hyperplane {x1 = 0} is a closed hypersurface
of Rd−1 (e.g., for d = 3 it is a closed curve). Since x′ is in the geometrical interior of this hypersurface,
for any v ∈ R

d−1, there exists y′ satisfying (5.15). For d = 2, the projection of ∂B(x′,α) ∩ C on the
hyperplane {x1 = 0} equals two points (one on either side of x′); since v = ±1 in this case, there exists
y′ satisfying (5.15).

For such a y′ ∈ C satisfying (5.15), by (5.14),
|Ra(x

′)− Ra(y
′)| ≥ (

2C1βC0QC − C2α
)
α;

taking α0 := C0C1βQC/C2 gives the result with CR := C1βC0QC . �

5.5 Statement of the lemmas constructing the rays

Condition 5.9 Given {ψj}m
j=1 ∈ (0,π/2], there exist cray,j, j = 1, . . . , 5, such that, given a ∈ R

d with
|a| = 1, there exists VD ⊂ ΓD such that

(i) vol(VD) ≥ cray,1,

(ii) |n(x′) · a| ≥ cray,2 for all x′ ∈ VD,

(iii) the emanating rays from VD hit Γtr,R directly and, for each ray, the angle θ the ray makes with
the normal satisfies

θ ≥ cray,3 and min
j=1,...,m |θ − ψj| ≥ cray,4, (5.16)

(iv) after hitting Γtr,R, the rays travel a distance ≥ cray,5 before hitting either Γtr,R or ΓD again.

The {ψj}m
j=1 in Condition 5.9 are arbitrary angles, but in the proofs below we choose them to be the

angles at which the reflection coefficient on Γtr,R (i.e. (2.48)) vanishes, i.e., the angles corresponding to
the zeros of q(t)

√
1− t − p(t) in (0, 1]. We set

ψj := sin−1 √
tj ∈ (0,π/2], j = 1, . . . ,mvanish, (5.17)

where {tj}mvanish
j=1 are defined at the end of § 1.3. Then, when |ξ ′|g = sinψj for some j = 1, . . . ,mvanish,

σ(N )√r − σ(D) = q(tj)
√
1− tj − p(tj) = 0.

We now state four lemmas constructing the rays used to prove the different lower bounds on μ(I)
required by Corollary 5.4.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 77

Lemma 5.10 (The rays for general strictly-convex Γtr,R). If Γtr,R is strictly convex, then Condition 5.9
holds with cray,j = cray,j(ΓD,Γtr,R) for j = 1, 3, 4, 5, and cray,2 = cray,2(ΓD). Furthermore cray,j, j =
1, 3, 4, 5, are continuous in R.

Lemma 5.11 (The rays for Γtr,R = ∂B(0,R)). If Γtr,R = ∂B(0,R) then there exists R0 > 0 such that
Condition 5.9 holds for all R ≥ R0 with cray,1, cray,2, cray,4 independent of R, cray,3 = c̃3/R and cray,5 =
c̃5R with c̃3, c̃5 > 0 independent of R. Furthermore,

(iv)′ after their first reflection from Γtr,R, all of the rays hit B(0, 1).

Lemma 5.12 (The rays for generic Γtr,R). If Γtr,R satisfies the assumptions of Theorem 1.8, then
Condition 5.9 holds for R sufficiently large with cray,j, j = 1, . . . , 4, independent of R and cray,5 = c̃5R
with c̃5 > 0 independent of R.

Lemma 5.13 (The rays for when Γtr,R is a smoothed hypercube). Let Γtr,R coincide with the boundary
of the hypercube [−R/2,R/2]d at distance more than ε from the corners (as described in the statement
of Theorem 1.11).

There exists ε0 > 0 and M ∈ Z
+ (both dependent on ΓD, but not on R) such that, if 0 < ε ≤ ε0 and

R ≥ 4, then Condition 5.9 holds with cray,2, cray,3, and cray,4 independent of R, cray,1 = c̃ray,1/R
d−1 and

cray,5 = c̃5R with c̃1, c̃5 > 0 independent of R, and
(iv)′ the emanating rays from VD hit Γtr,R N(R) ≤ M times, each time with an angle θ to the normal

satisfying (5.16) without hitting ΓD in between, and then, after their N(R)th reflection, the rays intersect
B(0, 3/2) \ B(0, 5/4) before hitting either ΓD or Γtr,R again.

5.6 The ideas used in the proofs of the lemmas constructing the rays

In this subsection, we outline the ideas used in the proofs of Lemmas 5.10–5.12, in the simplest possible
case when M = N = 0 (i.e., the boundary condition on Γtr,R is the impedance boundary condition
(1.10)). In this case mvanish = 0 and there are no nonzero angles ψj; when such angles exist, mass needs
to be excluded in a careful way from the neighbourhoods described below so that the rays avoid these
angles. The proof of Lemma 5.13 has a different character to the proofs of Lemmas 5.10–5.12, and so
we postpone discussion of the ideas of that proof until the start of the proof itself.

The idea behind the ray construction for general strictly-convex Γtr,R in Lemma 5.10 is as follows.
We consider a point x′

0 in ΓD that is the extremum point on ΓD in the direction of a. The rays emanating
from a neighbourhood of this point are rays in the direction a, and thus hit Γtr,R directly. Since Γtr,R
is strictly-convex, these rays cannot be normal to Γtr,R at more than one point, see Fig. 7, and thus the
required neighbourhood exists.

For the proof of Lemma 5.11, we need in addition to quantify how far from the normal the ray
described in the last paragraph hits Γtr,R. When Γtr,R = ∂B(0,R), we show that a set of points of volume
c > 0 can reach Γtr,R with an angle |θ | � R−1; see Fig. 8.

For the proof of Lemma 5.12, i.e. when Γ∞
tr := limR→∞(Γtr,R/R) is not a sphere centred at zero,

we recall from Lemma 5.7 that, given any direction, there exists a direct ray emanating from ΓD in that
direction. We need to show that at least one of these rays hits Γ∞

tr non-normally. Since Γ∞
tr is not a

sphere centred at the origin, there exists x∞
0 ∈ Γ∞

tr with nΓ∞
tr
(x∞
0 ) 
= x∞

0 /|x∞
0 |. We use Lemma 5.7 to

identify a point x′
0 ∈ ΓD such that the ray emanating from x′

0 is in the direction x∞
0 /|x∞

0 | and does not
hit ΓD again. In the limit R → ∞, the rescaled obstacle Ω−/R shrinks to the origin; therefore the rays
emanating from a neighbourhood of x′

0 hit Γtr,R with an angle close to the angle between x∞
0 /|x∞

0 | and
nΓ∞

tr
(x∞
0 ); this angle is ≥ c > 0, with c independent of R; see Fig. 9.
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78 J. GALKOWSKI ET AL.

Fig. 7. The rays in Lemma 5.10 (i.e., for general strictly convex Γtr,R). Neighbourhoods on ΓD from which any of the blue rays
emanate satisfy Condition 5.9.

Fig. 8. The rays in Lemma 5.11 (i.e., for Γtr,R = ∂B(0,R)). Neighbourhoods on ΓD from which any of the blue rays emanate
satisfy Condition 5.9.

5.7 Proofs of Lemmas 5.10–5.13

In the proofs of these lemmas we use the notation that (b1, b2)
∧

is the angle between vectors b1 and
b2; i.e.,

(b1, b2)
∧

:= cos−1
(

b1 · b2
|b1||b2|

)
,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad058/7261400 by C
atherine Sharp user on 08 N

ovem
ber 2023



LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 79

Fig. 9. The rays in Lemma 5.12, i.e., when Γ∞
tr is not a ball centred at the origin. The figure shows the rescaled domain in the

limit R → ∞ (recall that in this limit the obstacle shrinks to the origin).

where the range of cos−1 is [0,π ].

Proof of Lemma 5.10. Step 1. Construction of direct emanating rays in the direction of a.
Without loss of generality, we assume that a = (1, 0, . . . , 0). Let x′

0 ∈ ΓD be the point on ΓD with
maximal x1 coordinate. By translating the obstacle Ω−, we can assume that x′

0 = 0. Then, locally near
0, for any 0 < ε ≤ ε0(ΓD), where ε0 is small enough

ΓD ∩ B(0, ε) ⊂ {
(γD(x

′), x′) : x′ ∈ B(0, ε) ⊂ R
d−1}, (5.18)

where γD ∈ C∞(Rd−1) and ∂γD(0) = 0, and γD(x
′) ≤ 0. Moreover, for ε0 > 0 small enough and

0 < ε ≤ ε0

ΓD ∩ {
(x1, x

′) : x1 > γD(x
′) and x′ ∈ B(0, ε)

} = ∅. (5.19)

Indeed, if not then there exist x′
n → 0, (yn, x

′
n) ∈ ΓD such that yn > γD(x

′
n). But then, extracting

subsequences if necessary, (yn, x
′
n) → (y, 0) ∈ ΓD and y ≥ γD(0). In particular, by maximality of the

x1 coordinate at x′
0, y = 0. But, near x′

0 (5.18) holds and, in particular, for n large enough, yn = γD(x
′
n),

which is a contradiction.
Observe that, shrinking ε0 > 0 if necessary, a is outward-pointing along ΓD ∩ B(0, ε0), and

|n(x′) · a| ≥ cray,2(ε0), for all x′ ∈ B(0, ε0), (5.20)

where cray,2(ε0) > 0 depends only on ε0 and hence ΓD. By (5.9), Ra(x
′) = a for all x′ ∈ ΓD ∩ B(0, ε0),

and thus the rays emanating from ΓD ∩ B(0, ε0) are the rays in the x1 direction; see Fig. 7. By (5.19),
these rays hit Γtr,R before hitting ΓD again. The neighbourhood VD will be a subset of B(0, ε0), and thus
Point (ii) in Condition 5.9 follows.
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80 J. GALKOWSKI ET AL.

Step 2. Parametrization of Γtr,R.
Let γtr : B(0, ε0) ⊂ R

d−1 → R+ be such that

Γtr,R ∩ {x1 > 0, |x′| < ε0} :=
{
(γtr(x

′), x′) : |x′| < ε0
}
;

since Γtr,R is strictly convex, this property holds without needing to reduce ε0, and thus ε0 still only
depends on ΓD. The outward-pointing normal to Γtr,R is given by

ntr(x
′) := (1,−∇γtr(x′))√

1+ |∇γtr(x′)|2 .

For x′ ∈ B(0, ε0) ⊂ R
d−1, let θ(x′) ∈ [0,π/2) be the angle between the ray emanating from (γD(x

′), x′)
and the normal to Γtr,R; since cos θ(x′) = (1, 0, . . . 0) · ntr(x

′),

θ(x′) = cos−1
(

1√
1+ |∇γtr(x′)|2

)
∈ [0,π/2). (5.21)

We use later the facts, obtained from from (5.21) by direct calculation, that,

tan θ(x′) = |∇γtr(x′)|, (5.22)

and, in {∇γtr(x′) 
= 0},

∇θ(x′) = 1

1+ |∇γtr(x′)|2 ∂
2γtr(x

′) ∇γtr(x′)
|∇γtr(x′)| . (5.23)

We also use the following quantities,

Q := inf
x′,|v|=1

∣∣∂2γtr(x′)v
∣∣ and Ck := sup

x′
max|k|=k

∣∣∂kγtr(x
′)
∣∣, k = 1, 2, 3. (5.24)

Step 3. Avoiding the angle ψi = 0.
Recall that our goal is to construct VD ⊂ ΓD ∩ B(0, ε) so that

min
i=1,...,m |θ(x′)− ψi| ≥ C > 0 for all x′ ∈ VD,

where vol(VD) and C depend only on Γtr,R. Our plan is to exclude mass from B(0, ε) for each i, taking
care that the volume is still bounded below to give Point (i) of Condition 5.9.

Avoiding the angle zero corresponds to obtaining a lower bound on |θ(x′)|. By Taylor’s theorem,

|∇γtr(x′)| ≥ ∣∣∇γtr(0)+ ∂2γtr(0)x′∣∣ − C̃dC3|x′|2,
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 81

where C3 is defined by (5.24), and C̃d depends only on d. By the definition of Q in (5.24),

∣∣∇γtr(0)+ ∂2γtr(0)x′∣∣ =
∣∣∣∂2γtr(0)((

∂2γtr(0)
)−1∇γtr(0)+ x′)∣∣∣ ≥ Q

∣∣(∂2γtr(0))−1∇γtr(0)+ x′∣∣.
Suppose that |(∂2γtr(0))−1∇γtr(0)| ≤ ε/3. Then

|∇γtr(x′)| ≥ Qε

6
− C̃dC3ε

2 for x′ ∈ B(0, ε) \ B(0, ε/2).

On the other hand, if
∣∣(∂2γtr(0))−1 ∇γtr(0)

∣∣ ≥ ε/3, then

|∇γtr(x′)| ≥ Qε

6
− C̃dC3ε

2

36
for x′ ∈ B(0, ε/6).

Therefore, in both cases, if ε ≤ Q/(12C̃dC3), then there exists a set W with

vol(W) ≤ max(2−d, 1− 6−d) vol(B(0, ε)) = (1− 6−d) vol(B(0, ε)), (5.25)

such that

|∇γtr(x′)| ≥ Qε

12
for all x′ ∈ B(0, ε) \ W.

Therefore, for x′ ∈ B(0, ε) \ W, by (5.21)

1− θ(x
′)2

2
≤ cos θ(x′) ≤ 1− |∇γtr(x′)|2

2
≤ 1− Q2ε2

288
,

and we conclude that

if 0 < ε ≤ min
(

Q

12C̃dC3
, ε0

)
, then θ(x′) ≥ Qε

12
for all x′ ∈ B(0, ε) \ W. (5.26)

Step 4. Avoiding the angles ψi.
Given ψi, let x′

i ∈ B(0, ε) ⊂ R
d−1 be such that

|θ(x′
i)− ψi| = min

x′∈B(0,ε)
|θ(x′)− ψi|, (5.27)

i.e., x′
i is the point in B(0, ε) where θ(x′) is closest to ψi. Let

ψmin := min
j=1,...,mψj > 0. (5.28)
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82 J. GALKOWSKI ET AL.

In the following we use the notation [a, b] for the line segment between a and b, i.e.,

[a, b] := {ta + (1− t)b, t ∈ [0, 1]},

and 〈·, ·〉 denotes the Euclidean inner product on Rd.
The main idea of the rest of this step is the following: |θ(x′) − ψi| is, by definition, smallest at x′

i,
and will be smallest when the minimum in (5.28) is attained, i.e., θ(x′

i) = ψi; in this case, the idea is for
the size of the neighbourhood of x′

i that we exclude to be dictated by using Taylor’s theorem

|θ(x′)− θ(x′
i)| ≥ |∇θ(x′

i) · (x′ − x′
i)| − sup

y′∈[x′,x′
i]
max|k|=2

∣∣∂kθ(y′)
∣∣|x′ − x′

i|2

= 1

1+ |∇γtr(x′
i)|2

∣∣∣∣〈∂2γtr(x′
i)

∇γtr(x′
i)

|∇γtr(x′
i)|
, x′ − x′

i

〉∣∣∣∣ − sup
y′∈[x′,x′

i]
max|k|=2

∣∣∂kθ(y′)
∣∣|x′ − x′

i|2,
(5.29)

where the requirement that the right-hand side is bounded below determines the size of the excluded
neighbourhood. The issues we then have to deal with are (a) θ(x′

i) is not necessarily equal to ψi, and
(b) |γtr(x′)| = tan θ(x′) is zero when θ(x′) = 0, and then the second-order term in (5.29) blows up.

To deal with Point (b), we first consider points in B(0, ε) where the second-order term in (5.29) does
not blow up. Let

Zi :=
{
x′ ∈ B(0, ε) : θ(y′) ≥ θ0 for all y′ ∈ [x′, x′

i]
}
, (5.30)

where θ0 will be chosen later in the proof (when dealing with the points not in Zi). By (5.22), for any
x′ ∈ B(0, ε) ∩ Zi, |∇γtr(y′)| ≥ tan(θ0) > 0 for y′ ∈ [x′, x′

i]. Recalling the definitions (5.24), and using
(5.29) and (5.23), we have

∣∣θ(x′)− θ (
x′

i

)∣∣ ≥ D1Q

∣∣∣∣〈vi,
x′ − x′

i

|x′ − x′
i|

〉∣∣∣∣ |x′ − x′
i| − D3|x′ − x′

i|2, (5.31)

where

D1 :=
(
1+ C2

1

)−1
, D3 := C3 + C1C2

2 + C2
2

|tan(θ0)|
, (5.32)

and the unit vector vi is defined by

vi :=
(
∂2γtr

(
x′

i

) ∇γtr
(
x′

i

)∣∣∇γtr (x′
i

)∣∣
) ∣∣∣∣∣∂2γtr (x′

i

) ∇γtr
(
x′

i

)
|∇γtr

(
x′

i

)|
∣∣∣∣∣ −1. (5.33)

Let

Wi(η, δ) := B
(
x′

i, ηε
) ∪

{∣∣∣∣〈 x′ − x′
i

|x′ − x′
i|
, vi

〉∣∣∣∣ ≤ δ
}
,
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 83

where η < 1; then (5.31) implies that∣∣θ(x′)− θ (
x′

i

)∣∣ ≥ (
D1Qδη − 4D3ε

)
ε for all x′ ∈ (

B(0, ε) ∩ Zi

) \ Wi.

We now deal with Point (a) above (i.e., that θ(x′
i) is not necessarily equal to ψi). If |θ(x′

i)−ψi| > α, for
α to be fixed later, then, by (5.27),

|θ(x′)− ψi| ≥ ∣∣θ (
x′

i

) − ψi

∣∣ > α for all x′ ∈ B(0, ε). (5.34)

If |θ(x′
i)− ψi| ≤ α, then

|θ(x′)− ψi| ≥ ∣∣θ(x′)− θ (
x′

i

)∣∣ − α

and then

|θ(x′)− ψi| ≥ (
D1Qδη − 4D3ε

)
ε − α for all x′ ∈ (

B(0, ε) ∩ Zi

) \ Wi. (5.35)

Combining (5.34) and (5.35), we have

min
i=1,...,m |θ(x′)− ψi| ≥ min

((
D1Qδη − 4D3ε

)
ε − α,α) for all x′ ∈ (

B(0, ε) ∩ Zi

) \
m⋃

i=1
Wi(η, δ);

(5.36)

recall that we still have the freedom to choose θ0, η, δ, and α.
We now deal with the case x′ ∈ B(0, ε) \ Zi; the idea here is the following: Zi consists of points

x′ such that every point on [x′, x′
i] has θ ≥ θ0, i.e., θ bounded below. If θ(x′) < θ0, and we chose θ0

appropriately, then |θ(x′)| can be small compared to |ψi|, and thus |θ(x′) − ψi| can be bounded below.
Indeed, let θ0 := ψmin/2; if θ(x′) < ψmin/2, then

|θ(x′)− ψi| ≥ |ψi| − |θ(x′)| ≥ 1

2
ψmin. (5.37)

We now need to consider x′ ∈ B(0, ε) \ Zi with θ(x
′) ≥ ψmin/2. The sequence of ideas here is that

(i) by the definition of Zi, there is a point, x′
t, in [x

′, x′
i] with θ(x

′
t) < ψmin/2, (ii) the argument in (5.37)

applies at x′
t, (iii) |x′ − x′

t| ≤ ε, which is small, (iv) x′
t can be chosen so that |∇γtr| 
= 0 on [x′, x′

t] and
then |θ(x′)− θ(x′

t)| can also be made small. The detail is as follows: let

ti(x
′) := inf

{
t ∈ [0, 1] :

∣∣∇γtr ((1− t)x′ + tx′
i

)∣∣ < ∣∣tan(ψmin/2)
∣∣};

the set on the right-hand side is not empty by (5.22) and the definition of Zi (5.30). Let x′
t := (1 −

ti(x
′))x′ + ti(x

′)x′
i. This definition implies that ∇γtr(y′) 
= 0 for y′ ∈ [x′, x′

t]. Therefore, using the mean-
value theorem and (5.23), we have∣∣θ(x′)− θ (

x′
t

)∣∣ ≤ sup
y′∈[x′,x′

t]
|∇θ(y′)| ∣∣x′ − x′

t

∣∣ ≤ 2C2ε.
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Using this together with (5.37), we obtain

|θ(x′)− ψi| ≥ ∣∣θ (
x′

t

) − ψi

∣∣ − ∣∣θ(x′)− θ (
x′

t

)∣∣ ≥ 1

2
ψmin − 2C2ε. (5.38)

Collecting both cases (5.37) and (5.38), we obtain that

if0 < ε ≤ min
(
ψmin

4C2
, ε0

)
, then |θ(x′)− ψi| ≥ 1

4
ψmin for all x′ ∈ B(0, ε) \ Zi. (5.39)

Putting (5.36) and (5.39) together, we find that if

ṼD := B(0, ε) \
m⋃

i=1
Wi(η, δ), (5.40)

and

0 < ε ≤ min
(
ψmin

4C2
, ε0

)
,

then

min
i=1,...,m |θ(x′)− ψi| ≥ min

((
D1Qδη − 4D3ε

)
ε − α,α, 1

4
ψmin

)
for all x′ ∈ ṼD. (5.41)

We now tune η > 0 and δ > 0 to make the volume of ṼD big enough, and conclude the step by
selecting suitable ε > 0 and α > 0. From the definition (5.40),

vol
(
ṼD

) ≥ vol (B(0, ε))−
m∑

i=1

(
vol

(
B(x′

i, ηε)
) + vol

(
Ci ∩ B(0, ε)

))
,

≥ vol (B(0, ε))−
m∑

i=1

(
vol

(
B(x′

i, ηε)
) + vol

(
Ci ∩ B(x′

i, 2ε)
))
, (5.42)

where

Ci :=
{

x′ :
∣∣∣∣〈 x′ − x′

i

|x′ − x′
i|
, vi

〉∣∣∣∣ ≤ δ
}

=
{

x′ : cos−1 δ ≤
(

x′−x′
i

|x′−x′
i| , vi

)∧

≤ π − cos−1 δ
}
.

Observe that Ci is the complement of a double cone, rotationally symmetric around the axis vi (recall that
vi defined by (5.33) depends on x′

i and not x′); therefore, vol(Ci) decreases as δ → 0. By integrating in
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 85

hyperspherical coordinates centered at xi with axis vi, and comparing vol(Ci∩B(x′
i, 2ε)) to vol(B(x′

i, 2ε)),
we have

vol
(
Ci ∩ B(x′

i, 2ε)
) ≤

(
π − 2 cos−1 δ

2π

)
vol

(
B(x′

i, 2ε)
) = 2d

π

(π
2

− cos−1 δ
)

vol (B(0, ε)).

Using this in (5.42), we have

vol
(
ṼD

) ≥ vol (B(0, ε))−
m∑

i=1

(
vol

(
B(x′

i, ηε)
) + 2d

π

(π
2

− cos−1 δ
)

vol (B(0, ε))
)

≥
(
1− mηd − m

2d

π

(π
2

− cos−1 δ
))

vol (B(0, ε)). (5.43)

We now fix both δ > 0 and η > 0 to be sufficiently small such that

0 <
π

2
− cos−1 δ ≤ π

2dm

10−d

2
, 0 < ηd ≤ 1

m

10−d

2
;

then (5.43) implies that

vol
(
ṼD

) ≥ (1− 10−d) vol (B(0, ε)) > 0. (5.44)

To conclude this step, we now restrict ε so that 0 < ε ≤ (D1Qδη)/(8D3) and then set α := D1Qδηε/4;
then (5.41) implies that if

0 < ε ≤ min
(

D1Qδη

8D3
,
ψmin

4C2
, ε0

)
(5.45)

then

min
i=1,...,m |θ(x′)− ψi| ≥ 1

4
min

(
D1Qδηε, ψmin

)
for all x′ ∈ ṼD. (5.46)

Step 5. Conclusion.
Combining the result of Step 3 (5.26) and the result of Step 4 (5.45)–(5.46), we see that if

0 ≤ ε ≤ min
(

Q

12C̃dC3
, ε0,

D1Qδη

8D3
,
ψmin

4C2

)
,

then

θ(x′) ≥ Qε

12
and min

i=1,...,m |θ(x′)− ψi| ≥ min
(

D1Qδηε

4
,
ψmin

4

)
for all x′ ∈ ṼD \ W.
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We then let

ε = ε1 := min
(

D1Qδη

8D3
,

Q

12C̃dC3
,
ψmin

4C2
, ε0

)
, (5.47)

so that

min
i=1,...,m |θ(x′)− ψi| ≥ Q2 × min

(
D1δη

4
,
ψmin

4Qε0

)
× min

(
D1δη

8D3
,

1

12C̃dC3
,
ψmin

4QC2
,
ε0

Q

)
,

for all x′ ∈ ṼD \ W,

where, by (5.44) and (5.25)

vol
(
ṼD \ W

) ≥ (6−d − 10−d) vol
(
B(0, ε1)

)
.

Points (i) and (iii) in Condition 5.9 then hold with

VD := ṼD \ W, cray,1 := (6−d − 10−d) vol
(
B(0, ε1)

)
,

cray,3 :=
Q

12
min

(
D1Qδη

8D3
,

Q

12C̃dC3
,
ψmin

4C2
, ε0

)
, (5.48)

and

cray,4 := Q2 × min
(

D1δη

4
,
ψmin

4Qε0

)
× min

(
D1δη

8D3
,

1

12C̃dC3
,
ψmin

4QC2
,
ε0

Q
,

)
. (5.49)

SinceQ,C2,C3,D1 andD3 (defined by (5.24) and (5.32)) all depend continuously on γtr, and γtr depends
continuously on R, cray,1, cray,3, and cray,4 depend continuously on R. The constant cray,5 depends on
cray,3, cray,4 Γtr,R, and ΓD, and thus also depends continuously on R. �

Before proving Lemma 5.11, we prove the following simple lemma.

Lemma 5.14 If Γtr,R = ∂B(0,R), then the emanating rays from ΓD hit Γtr,R directly with an angle to the
normal θ satisfying θ < R−1.

Proof. SinceΩ− ⊂ B(0, 1), any ray starting fromΩ− hits Γtr,R = ∂B(0,R) with an angle to the normal
θ satisfying tan θ ≤ 1/R. Since θ < tan θ , the result follows. �

Proof of Lemma 5.11. We first observe that Point (iv)′ follows from the same argument used to prove
Lemma 5.14; this implies that cray,5 = c̃5R with c̃5 independent of R.

The fact that cray,2 is independent of R follows from the proof of Lemma 5.10; see (5.20). By direct

calculation from the definitions (5.24), (5.32), using the fact that γtr(x
′) = √

R2 − |x′|2 + c where c is a
constant, we obtain that

Q ∼ R−1, C1 ∼ 1, C2 ∼ R−1, C3 ∼ R−2, and thus D1 ∼ 1, D3 ∼ R−2.
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Using these asymptotics in (5.47), (5.48) and (5.49), we find that cray,1 is independent of R and cray,3 ∼
R−1 (observe that the first minimum in (5.49) ∼ 1 and the second minimum ∼ R).

These arguments from the proof of Lemma 5.10 also show that cray,4 ∼ R−1, but we now show that
in fact cray,4 ∼ 1 for R sufficiently large. By Lemma 5.14, all the rays from VD hit Γtr,R with angles
< 1/R. Therefore, if R ≥ 2/ψmin, then |θ − ψj| ≥ ψmin/2 for all j. �

Remark 5.15 (Lemma 5.11 when M = N = 0). Recall that when M = N = 0, then mvanish = 0,
inspecting the proof of Lemma 5.11, we see that the result then holds with cray,4 = 0 and R0 = 1.

Proof of Lemma 5.12. For 0 < δ < 1, let Ψ = {0,ψ1, . . . ,ψm} and

V∞
tr (δ) :=

{
x∞ ∈ Γ∞

tr , : n(x∞) exists andmin
ψ∈Ψ

∣∣∣(n(x∞), x∞
|x∞|

)∧

− ψ
∣∣∣ > δ} .

We now claim that there exists δ0 < 1 such that V∞
tr (δ0) is nonempty. Indeed, first observe that the map

{
x ∈ Γ∞

tr : n(x) exists
} → R given by x �→

(
n(x), x

|x|
)∧

=
〈
n(x),

x

|x|
〉

is continuous. The only way for this map to be constant is for Γ∞
tr to be a sphere centred at the origin,

and this is ruled out by assumption. Since Γtr,R/R → Γ∞
tr in C0,1, Γ∞

tr is Lipschitz, and the set {x ∈
Γ∞
tr : n(x) exists} has full (d − 1) dimensional (i.e., surface) measure. Therefore, the image of the map

contains an interval, and the claim follows. We note for later that V∞
tr (δ0) is open in Γ

∞
tr .

Let x∞
0 ∈ V∞

tr (δ0). By Lemma 5.7, there exists x′
0 ∈ Γ +,a

D such that

Ra(x
′
0) =

x∞
0

|x∞
0 | ;

see Fig. 10. For x′ ∈ ΓD, let x′
R ∈ Γtr,R denote the point where the ray emanating from x′ first hits Γtr,R;

we use later the fact that this definition implies that

(x′
0)R − x′

0

|(x′
0)R − x′

0|
= x∞

0

|x∞
0 | . (5.50)

The neighbourhood VD in Condition 5.9 will be ΓD ∩ B(0, ε) for ε sufficiently small, independent of
R, and this ensures that Point (i) holds with cray,1 independent of R. Let ε > 0 be small enough so that

ΓD ∩ B(x′
0, ε) ⊂ Γ +,a

D ; this ensures that Point (ii) holds with cray,2 independent of R.
We now show that Point (iii) of Condition 5.9 holds with cray,3 and cray,4 independent of R. Let

W∞
tr,ε ⊂ Γ∞

tr be defined by

W∞
tr,ε := lim

R→∞

{
(x′)R

R
: x′ ∈ ΓD ∩ B(x′

0, ε)

}
; (5.51)

this limit exists W∞
tr,ε is the limit of subsets of Γtr,R/R and Γtr,R/R → Γ∞

tr as R → ∞. We claim that
it is sufficient to prove that W∞

tr,ε ⊂ V∞
tr (δ0) for ε sufficiently small (independent of R). This shows

the analogue of Point (iii) in Condition 5.9 with Γtr,R replaced by Γ∞
tr ; i.e., that the emanating rays
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Fig. 10. The points and rays used in the proof of Lemma 5.12.

from points in VD hit Γ∞
tr directly with an angle θ to the normal satisfying (5.16) with cray,3 and cray,4

independent of R. Point (iii) for Γtr,R with R sufficiently large then follows since W∞
tr,ε is the limit of

subsets of Γtr,R/R, and Γtr,R/R → Γ∞
tr as R → ∞.

We now claim that to prove that W∞
tr,ε ⊂ V∞

tr (δ0) for ε sufficiently small (independent of R) it is
sufficient to show that x∞

0 ∈ W∞
tr,ε for all ε > 0. Indeed, if this is the case then ∩ε>0W∞

tr,ε = {x∞
0 }. Then,

since (i) V∞
tr (δ0) is open in Γ

∞
tr and contains x∞

0 , and (ii) W∞
tr,ε1 ⊆ W∞

tr,ε2 for ε1 ≤ ε2, there exists ε0 > 0
such that W∞

tr,ε ⊂ V∞
tr (δ0) for all ε ≤ ε0.

We now show that x∞
0 ∈ W∞

tr,ε for all ε > 0. We do this by showing that (x′
0)Rk
/Rk → x∞

0 for a
sequence Rk → ∞, and then the result follows from (5.51). Observe that the inclusions (1.18) imply
that |x′

R| ≤ MR, for any x′ ∈ ΓD, and thus (x
′
0)R/R is bounded as R → ∞. Therefore, there exists a

sequence Rk → ∞ and y ∈ Γ∞
tr such that (x′

0)Rk
/Rk → y, and thus also

(x′
0)Rk

|(x′
0)Rk

| → y

|y| as Rk → ∞. (5.52)

By simple geometry, as R → ∞,

(x′
0)R

|(x′
0)R| = (x′

0)R − x′
0

|(x′
0)R − x′

0|
+ O(R−1) = x∞

0

|x∞
0 | + O(R−1),
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 89

by (5.50). Comparing this to (5.52), and using the uniqueness of the limit, we see that y/|y| = x∞
0 /|x∞

0 |.
Since Γ∞

tr is convex, and thus star-shaped, y = x∞
0 , and the proof that x∞

0 ∈ W∞
tr,ε for all ε > 0 is

complete; this completes the proof that Point (iii) of Condition 5.9 holds with cray,3 and cray,4 independent
of R.

Finally, we show that Point (iv) of Condition 5.9 holds for R sufficiently large with cray,5 = c̃5R with
c̃5 > 0 independent of R. Since Ω− ⊂ B(0, 1) and ΩR satisfies the inclusions (1.18), after hitting Γtr,R,
a ray must travel a distance ∼ R before hitting ΓD. Therefore, we only need to show that, after hitting
Γtr,R, a ray must travel a distance∼ R before hitting Γtr,R again. Since Γtr,R/R tends to a limit as R → ∞,
this result follows if the rays first hit Γtr,R with angle to the normal θ satisfying |θ − π/2| ≥ c > 0, with
c independent of R, which is the case because Ω− ⊂ B(0, 1) and ΩR satisfies the inclusions (1.18). �

Proof of Lemma 5.13. The overall plan is to select a ray emanating from ΓD that returns to B(0, 1)

after multiple reflections from the sides of the hypercube
[−R

2 ,
R
2

]d
. We do this by identifying Rd with[−R

2 ,
R
2

]d
by reflection through the lines

(x)j = R

2
+ nR for n ∈ Z and

, j = 1, . . . , d

(where (x)j denotes the jth component of the vector x ∈ R
d); under this identification the corners of

the hypercube correspond to the points (R/2 + RZ)d. Since Γtr,R coincides with the boundary of the
hypercube [−R/2,R/2]d only at distance more than ε from the corners, we need to make sure that the
selected ray avoids these neighbourhoods of the corners; hence the requirement that ε ≤ ε0(Ω−) in the
statement of the result. We highlight that the constant C in the bound then depends only on the dynamics
of the rays, and hence is independent of ε.

Step 0: Preliminary notation and results. This argument involves three domains, and three associated
flows. The first domain isΩR, with associated generalized bicharacteristic flow ϕt (as defined in § 2.3).

The second domain is Ω̂R := [−R
2 ,

R
2

]d \ΩR−, and we denote the generalized bicharacteristic flow on

Ω̂R by ϕ̂t. The third domain is the hypercube
[−R

2 ,
R
2

]d
, and we denote the generalized bicharacteristic

flow on
[−R

2 ,
R
2

]d
by ϕ

[
− R

2 ,
R
2

]d

t .
By the definition (5.9) of Ra, if both x′ and y′ are in the illuminated part of ΓD (i.e., a · n(x′) < 0),

then there exists C0 > 0 (depending on the Lipschitz constant of n) such that

|Ra(x
′)− Ra(y

′)| ≤ C0|x′ − y′|, (5.53)

i.e., Ra is Lipschitz.
We record for later use that, since Ω− ⊂ B(0, 1) and R ≥ 4,

dist

(
ΓD, ∂

([
−R

2
,

R

2

]d
))

≥ R

2
− 1 ≥ R

4
. (5.54)

Finally, let D be a nonempty, uniformly-convex open subset of Γ +,a
D in which n(x′) · a < 0 (such a

D exists, since Lemma 5.7 implies that Γ +,a
D ∩ {n(x′) · a < 0} is not everywhere flat). Shrinking D if
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necessary, we can assume that

there exists 0 < ν < 1 such that ν ≤ |n(x′) · a| ≤ 1− ν for all x′ ∈ D; (5.55)

this implies that the first assumption of Lemma 5.8 holds with C = D. The neighbourhood VD we
construct will be a subset of D.

Step 1: Bounding the distance between projections of the flow on
[−R

2 ,
R
2

]d
.

For (xj, ξj) ∈ S∗B(0, 1), j = 1, 2, since ϕR
d

t (xj, ξj) = xj + 2tξj,∣∣∣πRdϕ
R

d

t (x1, ξ1)− πRdϕ
R

d

t (x2, ξ2)
∣∣∣ ≤ |x1 − x2| + 2t|ξ1 − ξ2|. (5.56)

We now show that the same inequality holds for the flow on
[−R

2 ,
R
2

]d
; i.e., that for (xj, ξj) ∈ S∗B(0, 1),

j = 1, 2,

∣∣∣∣∣πRdϕ

[
− R

2 ,
R
2

]d

t (x1, ξ1)− πRdϕ

[
− R

2 ,
R
2

]d

t (x2, ξ2)

∣∣∣∣∣ ≤ |x1 − x2| + 2t|ξ1 − ξ2|. (5.57)

To prove (5.57), we compare
∣∣π

Rdϕ

[
− R

2 ,
R
2

]d

t (x1, ξ1) − π
Rdϕ

[
− R

2 ,
R
2

]d

t (x2, ξ2)
∣∣ with ∣∣π

RdϕR
d

t (x1, ξ1) −

π
RdϕR

d

t (x2, ξ2)
∣∣ by using the relationship between the two flows ϕ[

− R
2 ,

R
2

]d

t and ϕR
d

t .
First, observe that, since

∣∣∣∣∣πRdϕ

[
− R

2 ,
R
2

]d

t (x1, ξ1)− πRdϕ

[
− R

2 ,
R
2

]d

t (x2, ξ2)

∣∣∣∣∣ ≤ diam
[
−R

2
,

R

2

]d

= √
dR,

we can assume that

|x1 − x2| + 2t|ξ1 − ξ2| ≤ √
dR.

Therefore, there exists � = (�1, · · · �d) ∈ Z
d and ι = (ι1, · · · , ιd) ∈ {−1, 0, 1}d such that

⎧⎨⎩πRdϕR
d

t (x1, ξ1) ∈
([−R

2 ,
R
2

]d + �R
)
,

π
RdϕR

d

t (x2, ξ2) ∈
([−R

2 ,
R
2

]d + (�+ ι)R
)
;

(5.58)

i.e., after time t, the free-space rays from (x1, ξ1) and (x2, ξ2) are either in the same hypercube or in

adjacent hypercubes. We use the following notation for the components of ϕR
d

t (xj, ξj), j = 1, 2:

π
Rdϕ

R
d

t (xj, ξj) :=
(
z1j , · · · , zd

j

) ∈ R
d. (5.59)
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Now, observe that by (5.58) and the relationship between ϕ

[
− R

2 ,
R
2

]d

t and ϕR
d

t ,

⎧⎪⎪⎨⎪⎪⎩
π
Rdϕ

[
− R

2 ,
R
2

]d

t (x1, ξ1) = (
par(�1)

(
z11 − �1R

)
, · · · ,par(�d)

(
zd
1 − �dR

))
,

π
Rdϕ

[
− R

2 ,
R
2

]d

t (x2, ξ2) = (
par(�1 + ι1)

(
z12 − (�1 + ι1)R

)
, · · · ,par(�d + ιd)

(
zd
2 − (�d + ιd)R

))
,

(5.60)

where

par(�) :=
{
1 if � is even,

−1 if � is odd.

Let i ∈ {1, · · · , d}. We first assume that ιi = 1; then

∣∣par(�j)
(
zi
1 − �iR

) − par(�i + ιi)
(
zi
2 − (�i + ιi)R

)∣∣ = ∣∣(zi
1 − �iR

) + (
zi
2 − �iR

) − R
∣∣. (5.61)

Since ι = 1, zi
1 − �iR ∈ [−R

2 ,
R
2

]
, zi
2 − �iR ∈ [R

2 ,
3R
2

]
, and hence zi

2 ≥ zi
1. Now, because zi

1 − �iR ≤ R/2,

(
zi
1 − �iR

) + (
zi
2 − �iR

) − R ≤ (
zi
2 − �iR

) − (
zi
1 − �iR

) = zi
2 − zi

1 = ∣∣zi
1 − zi

2

∣∣. (5.62)

Similarly, since zi
2 − �iR ≥ R/2,

− (
zi
1 − �iR

) − (
zi
2 − �iR

) + R ≤ (
zi
2 − �iR

) − (
zi
1 − �iR

) = zi
2 − zi

1 = ∣∣zi
1 − zi

2

∣∣. (5.63)

Then, combining (5.61), (5.62) and (5.63), we have that, for i ∈ {1, · · · , d} with ιi = 1,

∣∣par(�j)
(
zi
1 − �iR

) − par(�i + ιi)
(
zi
2 − (�i + ιi)R

)∣∣ ≤ ∣∣zi
1 − zi

2

∣∣. (5.64)

If ιi = −1, the proof of (5.64) follows in a very similar way; if ιi = 0, it is straightforward to check that
(5.64) holds with equality. Hence, (5.64) holds for any i ∈ {1, · · · , d}. Recalling the notation (5.59), we
therefore obtain from (5.60) and (5.64) that

∣∣∣∣πRdϕ

[
− R

2 ,
R
2

]d

t (x1, ξ1)− πRdϕ

[
− R

2 ,
R
2

]d

t (x2, ξ2)

∣∣∣∣ ≤
∣∣∣πRdϕ

R
d

t (x1, ξ1)− πRdϕ
R

d

t (x2, ξ2)
∣∣∣ ,

and (5.57) follows from (5.56).
Step 2: Selecting a periodic ray. Let F be the finite set of unit vectors forming an angle belonging to

Ψ to one of the elements (±ei)1≤i≤d, where (ei)1≤i≤d denote the unit vectors in cartesian coordinates.
With D as in Step 0, Ra(D) contains a nonempty open subset of Sd−1 by Lemma 5.7, and therefore
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contains a vector of the form

ξ0 = (p1, · · · , pd)

|p| , pi ∈ Z and ξ0 /∈ F

(since vectors of this form are dense in Sd−1). Let x′
0 ∈ D be such that Ra(x

′
0) = ξ0.

We identify Rd with
[−R

2 ,
R
2

]d
as described above. Then, given any q1, . . . , qd ∈ Z,

(x1, . . . , xd)+ 2R(q1, . . . , qd) ≡ (x1, . . . , xd); (5.65)

the factor of two is because one reflection changes the parity.

The trajectory starting from (x′
0, ξ0) and evolving according to the flow ϕ

[
− R

2 ,
R
2

]d

t can be identified
with the trajectory in Rd

x′
0 + 2tξ0 = x′

0 + 2t
(p1, . . . , pd)

|p| ;

therefore, by (5.65), the former trajectory is periodic, with period at most R|p|. Thus, there exists t > 0

such that ϕ

[
− R

2 ,
R
2

]d

t ∈ B(0, 11/8); let T(R) be the infimum of such ts. Therefore,

T(R) ≤ R|p|, (5.66)

and

π
Rd

(
ϕ̂T(R)(x

′
0, ξ0)

) ∈ ∂B
(
0,
11

8

)
. (5.67)

Since Ω− ⊂ B(0, 1), the flows ϕ̂t and ϕ

[
− R

2 ,
R
2

]d

t acting on (x′
0, ξ0) agree up to (at least) time T(R); i.e.,

ϕ̂t(x
′
0, ξ0) = ϕ

[
− R

2 ,
R
2

]d

t (x′
0, ξ0) for all 0 ≤ t ≤ T(R). (5.68)

Furthermore, since ξ0 /∈ F, the flows ϕ̂t and ϕ

[
− R

2 ,
R
2

]d

t acting on (x′
0, ξ0) never hit ∂

( [−R
2 ,

R
2

]d )
at an

angle belonging to Ψ .
Finally, observe that a length R of a ray can be reflected at most twice. Therefore, since the length

of ϕ

[
− R

2 ,
R
2

]d

t (x′
0, ξ0) for t ∈ [0,T(R)] is at most 2R|p|, if M := "4|p|#, then the number of reflections of

this ray for t ∈ [0,T(R)], N(R), is bounded by M, i.e.,

N(R) ≤ "4|p|#. (5.69)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 93

Step 3: The neighbourhood VD on ΓD. The neighbourhood VD = VD(R) is chosen later in the proof
as a subset of

V1(R) := ΓD ∩ B

(
x′
0,
δ1

R

)
, (5.70)

where δ1 > 0 (independent of R) is small enough so that, for all R ≥ 1,⎧⎪⎨⎪⎩
V1(R) ⊂ D,
for all x′ ∈ V1(R), |n(x′) · a| ≥ 1

2 |n(x′
0) · a|,

for all x′ ∈ V1(R), minf∈F |Ra(x
′)− f| ≥ 1

2 minf∈F |ξ0 − f|.
(5.71)

Since the neighbourhood VD will be a subset of V1(R), the second condition in (5.71) implies that Part
(ii) of Condition 5.9 holds with cray,2 := |n(x′

0) · a|/2, which is positive since x′
0 ∈ D, and the third

condition in (5.71) implies that Part (iii) of Condition 5.9 holds with cray,3 > 0.
By (5.57), the fact that ξ0 = Ra(x

′
0), (5.53) and (5.66), we have, for any x′ ∈ V1(R) and any

0 ≤ t ≤ T(R)

∣∣∣∣πRdϕ

[
− R

2 ,
R
2

]d

t (x′
0, ξ0)− πRdϕ

[
− R

2 ,
R
2

]d

t (x′,Ra(x
′))

∣∣∣∣ ≤ |x′
0 − x′| + 2T(R)|Ra(x

′
0)− Ra(x

′)|,

≤ (
1+ 2R|p|C0

) |x′
0 − x′|,

≤ (
1+ 2|p|C0

)
R|x′

0 − x′|. (5.72)

Therefore, if δ1 ≤ (16(1+ 2C0|p|))−1, then
∣∣∣∣πRdϕ

[
− R

2 ,
R
2

]d

t (x′
0, ξ0)− πRdϕ

[
− R

2 ,
R
2

]d

t (x′,Ra(x
′))

∣∣∣∣ ≤ 1

16
(5.73)

for all x′ ∈ V1(R) and for all 0 ≤ t ≤ T(R). Combining (5.73), (5.67) and (5.68), we have

π
Rd

(
ϕ̂T(R)(x

′, ξ0)
) ∈ B

(
0,
23

16

) ∖
B

(
0,
21

16

)
for all x′ ∈ V1(R); (5.74)

and

ϕ̂t(x
′,Ra(x

′)) = ϕ
[
− R

2 ,
R
2

]d

t (x′,Ra(x
′)) for all x′ ∈ V1(R) and for all 0 ≤ t ≤ T(R). (5.75)

Step 4: Avoiding the corners. Under the identification of
[−R

2 ,
R
2

]d
with R

d, the corners of the
hypersquare correspond to (R/2 + RZ)d. Given x′ ∈ V1(R), each point on the ray x′ + 2tRa(x

′) for
0 ≤ t ≤ T(R) has a corner that is closest; we let Qα(x

′) denote the subset of these corners that are a
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94 J. GALKOWSKI ET AL.

distance ≤ α away. More precisely,

Qα(x
′) :=

{
q ∈ (R/2+ RZ)d : there exists 0 ≤ t ≤ T such that

dist
(
x′ + 2tRa(x

′), (R/2+ RZ)d
) = dist

(
x′ + 2tRa(x

′), q
) ≤ α

}
.

We then order the elements of Qα(x
′) with the closest first; i.e., Qα(x

′) = {q1(x′), . . . , qm(x′)(x
′)} with

dist(x′, qi) nondecreasing with i.
We now prove that if δ1 ≤ (4(1+ 2|p|C0))

−1, then

Q1/4(x
′) ⊂ Q1/2(x

′
0) for all x′ ∈ V1(R). (5.76)

To prove this, observe that, for 0 ≤ t ≤ T(R), by (5.66) and (5.53) (in a similar way to as in (5.72)),

dist
(
x′ + 2tRa(x

′), x′
0 + 2tRa(x

′
0)

) ≤ |x′ − x′
0| + 2t|Ra(x

′)− Ra(x
′
0)|,

≤ (
1+ 2|p|C0

)
R|x′ − x′

0| ≤ δ1
(
1+ 2|p|C0

)
if x′ ∈ V1(R). Therefore, if δ1 ≤ (4(1 + 2|p|C0))

−1, the distance between the rays is < 1/4. If qi ∈
Q1/4(x

′) then, since R ≥ 1, qi is at most distance 1/2 away from a point on the ray x′
0 + 2tRa(x

′
0), and

thus qi ∈ Q1/2(x
′
0).

It turns out that we will not need to restrict δ1 further in the proof; we therefore set

δ1 :=
1

16(1+ 2C0|p|) , (5.77)

and observe that this satisfies the requirements imposed on δ1 earlier in the proof (to ensure that (5.73)
and (5.76) hold).

We now select one set of corners to work with for all x′ ∈ V1(R). Let Q := Q1/2(x
′
0) = (q1, . . . qm).

By (5.76), (
(R/2+ RZ)d \ Q

) ⊂ (
(R/2+ RZ)d \ Q1/4(x

′)
)

for all x′ ∈ V1(R),

so that

dist
(
x′ + 2tRa(x

′), (R/2+ RZ)d \ Q
) ≥ 1/4 for all x′ ∈ V1(R). (5.78)

Furthermore, since R ≥ 4, the number of corners within distance 1/2 of the ray is less than or equal to
the number of reflections, i.e.,

m ≤ N(R). (5.79)

We now iteratively construct x′
i ∈ V1(R), i = 1, . . . ,m, such that the ray x′

i + 2tRa(x
′
i) for 0 ≤ t ≤

T(R) is at least a distance ηi from (q1, . . . , qi) where ηi > 0, i = 0, . . . ,m, are defined below (see (5.86))
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 95

and, in particular, have the property that ηi > ηi+1, i = 0, . . .m−1. Given x′
i, if dist(x′

i+2tRa(x
′
i), qi+1) ≥

ηi+1, we set x′
i+1 := x′

i. Otherwise, first observe that, for 0 ≤ t ≤ R/16,

dist
(
x′ + 2tRa(x

′), qi+1
) ≥ R/8 ≥ 1/2, (5.80)

by (5.54) and the fact that R ≥ 4; we can therefore restrict attention to t ≥ R/16. Let λi > 0, to be fixed
later. We first assume that there exists x′

i+1 ∈ V1(R) so that, with CR the constant associated to D by
Lemma 5.8,

|x′
i+1 − x′

i| = λi and
∣∣Ra(x

′
i+1)− Ra(x

′
i)
∣∣ ≥ CRλi; (5.81)

we later use Lemma 5.8 to show that such an x′
i+1 exists once the value of λi has been fixed. By,

respectively, the triangle inequality, the convexity of V1(R) ⊂ D, (5.81), and the fact that we are dealing
with the case that dist(x′

i + 2tRa(x
′
i), qi+1) < ηi+1, we have that, for R/16 ≤ t ≤ T(R),

dist
(
x′

i+1 + 2tRa(x
′), qi+1

) ≥ dist
(
x′

i+1 + 2tRa(x
′
i+1), x′

i + 2tRa(x
′
i)
) − dist

(
x′

i + 2tRa(x
′
i), qi+1

)
,

≥ dist
(
x′

i+1 + 2tRa(x
′
i+1), x′

i+1 + 2tRa(x
′
i)
) − dist

(
x′

i + 2tRa(x
′
i), qi+1

)
,

= 2t|Ra(x
′
i+1)− Ra(x

′
i)| − dist

(
x′

i + 2tRa(x
′
i), qi+1

)
,

≥ 2tCRλi − ηi+1,

≥ CRR

8
λi − ηi+1. (5.82)

Having bounded the distance from the ray to qi+1, we now bound the distance to qj for j = 0, . . . , i. By,
respectively, the triangle inequality, (5.53), and (5.66), for j = 0, . . . , i and 0 ≤ t ≤ T(R),

dist
(
x′

i+1 + 2tRa(x
′), qj

) ≥ dist
(
x′

i + 2tRa(x
′
i), qj

) − dist
(
x′

i+1 + 2tRa(x
′
i+1), x′

i + 2tRa(x
′
i)
)

≥ ηi − (
1+ 2tC0

) |x′ − x′
i|,

≥ ηi − R
(
1+ 2C0|p|) λi. (5.83)

The two inequalities (5.82) and (5.83) imply that if ηi and ηi+1 satisfy

16ηi+1
CR

= ηi − ηi+1
(1+ 2C0|p|) , (5.84)

and λi is defined by

λi :=
16ηi+1
RCR

= ηi − ηi+1
R(1+ 2C0|p|) , (5.85)

then

dist
(
x′

i+1 + 2tRa(x
′
i+1), qi+1

) ≥ ηi+1 for all R/16 ≤ t ≤ T(R)
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96 J. GALKOWSKI ET AL.

and

dist
(
x′

i+1 + 2tRa(x
′
i+1), qj

) ≥ ηi+1 for j = 0, . . . , i, and for all 0 ≤ t ≤ T(R).

This last two inequalities, combined with (5.80), imply that

dist
(
x′

i+1 + 2tRa(xi+1), qj

) ≥ ηi+1 for j = 0, . . . , i + 1, and for all 0 ≤ t ≤ T(R)

as required. We observe for use later that (5.84) implies that

ηi+1 = ηi

1+ 16
CR

(
1+ 2C0|p|) so that ηj := η0

(
1

1+ 16
CR

(
1+ 2C0|p|)

)j

, j = 0, . . . ,m. (5.86)

Since the value of λi > 0 has been fixed by (5.85), it remains to show that there exists x′
i+1 ∈ V1(R)

satisfying (5.81). We now use the freedom we have in choosing η0 to ensure that the can use Lemma 5.8
to construct such an x′

i+1. Recall that we chose D so that the assumptions of Lemma 5.8 hold; let α0 be
the associated constant. We impose the condition that

m−1∑
j=0
λj ≤ min

(
δ1

2R
,α0

)
, i.e., η0

16

CR

m−2∑
j=1

(
1

1+ 16
CR

(
1+ 2C0|p|)

)j

≤ min
(
δ1

2
, 4α0

)
,

(5.87)

where we have used the definitions of λj (5.85) and ηj (5.86) and the fact that R ≥ 4. Observe that (5.87)
is a condition that η0 is sufficiently small (recall that δ1 has been fixed by (5.77)).

The rationale behind imposing (5.87) is as follows; recalling the definition of V1(R) (5.70), we see
that

∑m−1
j=0 λj ≤ δ1/2 implies that x′

i ∈ V1(R) for i = 1, . . . ,m. The first inequality in (5.87) implies that
λi ≤ α0, for all i, and, since V1(R) ⊂ D (by (5.71)),

∂B(x′
i, λi) ∩ D 
= ∅ and ∂B(x′

i, λi) ∩ ∂D = ∅.

These relations combined with (5.55) imply that the assumptions of Lemma 5.8 are satisfied withD = C.
This lemma therefore implies that there exists x′

i+1 ∈ D satisfying (5.81), for all i = 1, . . . ,m.
In summary, we have proved that the ray x′

m + tRa(x
′
m), 0 ≤ t ≤ T(R), is a distance at least ηm from

any of the corners q1, . . . , qm, and a distance at least 1/4 from any of the other corners by (5.78).
Let η"4|p|# be defined by the second equation in (5.86) with j = "4|p|# and with η0 fixed to satisfy

(5.87). By (5.79) and (5.69), m ≤ N(R) ≤ "4|p|# so that ηm ≥ η"4|p|#. Therefore, with

ε0 :=
1

2
min

(
η"4|p|#,

1

4

)
,

the ray x′
m + tRa(x

′
m), 0 ≤ t ≤ T(R) is a distance at least 2ε0 > 0 from any corner. By (5.86) and (5.87),

η"4|p|# (and hence ε0) depends on C0, CR, α0, and |p|, and hence only on ΓD.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 97

Step 5: Putting everything together. By combining the results of Step 4 with the results (5.74) and
(5.75) of Step 3, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ̂t(x
′
m,Ra(x

′
m)) = ϕ

[
− R

2 ,
R
2

]d

t (x′
m,Ra(x

′
m)) for all 0 ≤ t ≤ T(R),

dist
(
ϕ̂t(x

′
m,Ra(x

′
m)),

(R
2 + RZ

)d
)

≥ 2ε0 for all 0 ≤ t ≤ T(R), and

π
Rd

(
ϕ̂T(R)(x

′
m, ξ0)

) ∈ B
(
0, 2316

)∖
B
(
0, 2116

)
.

(5.88)

We now define the neighbourhood VD (the neighbourhood of rays in the statement of the lemma) as a
neighbourhood of x′

m. Indeed, we let

VD := ΓD ∩ B

(
x′

m,
δ

R

)
with δ > 0 chosen sufficiently small; if δ > 0 is independent of R, then this implies that vol(VD) ≥
c̃ray,1/R

d−1 for some c̃ray,1 > 0 independent of R; i.e., that Point (i) of Condition 5.9 holds.
We first choose δ > 0 sufficiently small so that VD ⊂ V1(R); since δ1 (5.77) is independent of R, δ

can be chosen to be independent of R. As discussed below (5.71), the inclusion VD ⊂ V1(R) ensures that
Points (ii) and (iii) of Condition 5.9 hold.

Point (iv) in the statement of the result will follow if we can show that, for all x′ ∈ VD,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ̂t(xm,Ra(xm)) = ϕ

[
− R

2 ,
R
2

]d

t (x′,Ra(x
′)) for all 0 ≤ t ≤ T(R),

dist
(
ϕ̂t(x

′,Ra(x
′)),

(R
2 + RZ

)d
)

≥ ε0 for all 0 ≤ t ≤ T(R), and

π
Rd

(
ϕ̂T(R)(x

′, ξ0)
) ∈ B

(
0, 4732

)∖
B
(
0, 4132

)
.

(5.89)

Indeed, the second property in (5.89) (missing the corners) implies that all three flows are the same when
applied to (xm,Ra(xm)) for 0 ≤ t ≤ T(R), i.e.,

ϕt(xm,Ra(xm)) = ϕ̂t(xm,Ra(xm)) = ϕ
[
− R

2 ,
R
2

]d

t (x′,Ra(x
′)) for all 0 ≤ t ≤ T(R).

We now obtain (5.89) from (5.88). By (5.57), (5.53) and (5.66) (in a similar way to as in (5.72)), for
any x′ ∈ V(R) and any 0 ≤ t ≤ T(R),

∣∣∣∣πRdϕ

[
− R

2 ,
R
2

]d

t (x′
m,Ra(xm))− πRdϕ

[
− R

2 ,
R
2

]d

t (x′,Ra(x
′))

∣∣∣∣ ≤ (
1+ 2C0|p|) R|x′

m − x′|,

so that (5.89) follows as long as

δ ≤ min

(
1

32
(
1+ C0|p|) , ε0(

1+ 2C0|p|)
)
.
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98 J. GALKOWSKI ET AL.

Since δ > 0 is independent of R, Point (i) of Condition 5.9 holds with cray,1 = c̃ray,1/R, with c̃ray,1
independent of R, and the proof is complete. �

5.8 Bounding below the reflection coefficient (2.48) for rays satisfying Condition 5.9

In the follow result, we use the subscripts D and tr on H to denote the hyperbolic set on ΓD and Γtr,R,
respectively.

Lemma 5.16 (Lower bound on the reflection coefficient for general Γtr,R). Let Vtr ⊂ Htr. Given (x
′, ξ ′) ∈

Vtr, let

θ(x′, ξ ′) := sin−1 (|ξ ′|g) ∈ [0,π/2); (5.90)

observe that θ is well-defined since r(x′, ξ ′) := 1− |ξ ′|2g > 0 onHtr.
Let {ψj}mvanish

j=1 be defined be (5.17). Suppose that

θ ≥ c3 and min
j=1,...,m |θ − ψj| ≥ c4, (5.91)

and N and D satisfy Assumption 1.4 with either M = N or M = N + 1. Then there exists Cref =
Cref(M,N) > 0 such that∣∣∣∣√rσ(N )− σ(D)√

rσ(N )+ σ(D)
∣∣∣∣ ≥ Cref min

(|c3|2mord , |c4|mmult
)

on Vtr. (5.92)

We make three remarks.

• The rationale behind the definition of θ (5.90) is that later we apply it to sets Vtr whose elements
are of the form πΓtr,R(x, ξ) where (x, ξ) ∈ S∗

ΩR
R

d (so that |ξ | = 1). In this case, θ is the angle the
vector ξ makes with the normal to Γtr,R.

• We have denoted the constants in (5.91) by c3 and c4 since we later apply this lemma with c3 =
cray,3 and c4 = cray,4.

• We highlight that Cref only depends on M and N, and not on Γtr,R.

Proof of Lemma 5.16. By Assumption 1.4,

σ(N )(x′, ξ ′)
√

r(x′, ξ ′)− σ(D)(x′, ξ ′) = q
(|ξ ′|2g)√1− |ξ ′|2g − p

(|ξ ′|2g). (5.93)

SinceN andD satisfy Assumption 1.4 with either M = N or M = N+1, Part (a) of Lemma 4.4 implies
that there exists C1 = C1(M,N) > 0 such that |√rσ(N )+ σ(D)| ≥ C1 on Vtr.

By the definitions in § 1.3 of p(t), q(t), mord, {tj}mvanish
j=1 and mmult, there exists C2 = C2(M,N) > 0

such that

∣∣q(t)√1− t − p(t)
∣∣ ≥ C1 min

(
|t|mord ,

(
min

j=1,...,mvanish
|t − tj|

)mmult
)

for all t ∈ [0, 1]. (5.94)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 99

Since sin x ≥ 2x/π for x ∈ [0,π/2] and there exists C2 = C2(ψmin) > 0 such that |sin2 θ − sin2 ψj| ≥
C2|θ − ψj| for j = 1, . . . ,mvanish, the inequalities in (5.91) imply that

|ξ ′|2g ≥ (
c3

)2 (
2

π

)2

and min
j=1,...,mvanish

∣∣|ξ ′|2g − tj
∣∣ ≥ C2c4.

The bound (5.92) then follows from combining these bounds with (5.93) and (5.94). �

5.9 Proof of Theorem 1.6 (the qualitative lower bound)

Similar to above, we use the subscripts D and tr onH (and subsets of it) to denote the hyperbolic set on
ΓD and Γtr,R, respectively; we use analogous notation for boundary measures.

Proof of Theorem 1.6. By Part (i) of Corollary 5.4, we only need to show that μ(I) > 0. We now follow
the steps outlined in § 5.3; seeking a contradiction, we assume thatμ(I) = 0. The inequality (2.44) from
Point (ii) of Corollary 2.17 implies that μinD = 0. Therefore, (2.26) implies that

μoutD = 2
√

r(x′, ξ ′) νd,D

and Lemma 2.20 therefore gives that

μoutD = 2
√

r(x′, ξ ′) dvol(x′)⊗ δξ ′=(aT(x′))� . (5.95)

Given M and N, let {ψj}mvanish
j=1 be defined by (5.17); i.e., {ψj}mvanish

j=1 is the set of nonzero angles at which
the reflection coefficient (2.48) vanishes. Let the set VD ⊂ ΓD be given by Lemma 5.10; i.e., the
rays emanating from VD are nontangent to ΓD and hit Γtr,R directly and at angles bounded away from
{0,ψ1, . . . ,ψmvanish

}. Let

VD := {(
x′, (aT(x′))

�
)
, x′ ∈ VD

} ⊂ HD.

By (5.95), μoutD (VD) > 0. Therefore, using the equality (2.42) from Point (i) of Corollary 2.17 and the
fact that r > 0 onH,

(
2
√

rμintr
)
(Vtr) =

(
2
√

rμoutD

)
(VD) > 0, (5.96)

where

Vtr :=
⋃

q∈VD

πΓtr,R

(
ϕtout(q)

(
pout(q)

) ) ⊂ Htr,

where tout and pout are defined in (2.38) and (2.37), respectively, and πΓtr,R equals π∂M restricted to

T∗
Γtr,R

R
d; observe that supq∈VD

tout(q) <∞ since Γtr,R is (strictly) convex.
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Corollary 2.19 then implies that

(2
√

rμout)(Vtr) =
∣∣∣∣√rσ(N )− σ(D)√

rσ(N )+ σ(D)
∣∣∣∣ 2(2√rμin)(Vtr),

where we have used the fact that |σ(N )| > 0 on Vtr by Corollary 4.5.
Since the rays emanating from VD hit Γtr,R directly and at angles bounded away from {0,ψ1, . . . ,ψk},

Lemma 5.16 implies that (2
√

rμout)(Vtr) ≥ C(2
√

rμin)(Vtr) for C > 0. Combining this inequality with
(5.96), we have (2

√
rμout)(Vtr) > 0. By the inequality (2.43) in Point (ii) of Corollary 2.17, μ(I) > 0,

which is the desired contradiction.
Finally, the fact that C in Theorem 1.8 depends continuously on Γtr,R follows from the fact that

cray,j, j = 1, . . . , 4, depend continuously on Γtr,R, and Cref in Lemma 5.16 is independent of Γtr,R. �

5.10 Proof of the lower bounds in Theorem 1.7, Theorem 1.8, Theorem 1.9, Theorem 1.10, and
Theorem 1.11

Recall from Corollary 5.4 that to prove the lower bounds in Theorems 1.7, 1.8, 1.10 and 1.11, we only
need to bound μ(I) and μ

(
I ∩ S∗

B(0,3/2)

)
below; the following lemma provides the necessary lower

bounds.

Lemma 5.17 (i) Suppose Condition 5.9 holds for R ≥ R0 with cray,2 independent of R and cray,5 ≥ c̃5R
with c̃5 > 0 independent of R. Then, there exists C > 0 such that, for all R ≥ R0,

μ(I) ≥ CR
(
min

(|cray,3|2mord , |cray,4|mmult
))2

cray,1. (5.97)

(ii) If, in addition, there exists Nref ≥ 1 such that, for the interior billiard flow in ΩR, these rays are
reflected on Γtr,R Nref times, without being reflected on ΓD in between, and after their Nrefth reflection
all of these rays intersect B(0, 3/2) \ B(0, 5/4) without being reflected before, then

μ
(
I ∩ S∗

B(0,3/2)R
d) ≥ C

(
min

(|cray,3|2mord , |cray,4|mmult
))2

cray,1. (5.98)

Proof of (i). As in the proof of Theorem 1.6, we argue by contradiction and follow the steps in § 5.3.
Suppose that Condition 5.9 holds for R ≥ R0, but, for any ε > 0, there exists R ≥ R0 such that

μ(I) ≤ εR(
min

(|cray,3|2mord , |cray,4|mmult
))2

cray,1. (5.99)

Let

VD := {(
x′, (aT(x′))

�
) ∈ T∗ΓD, x′ ∈ VD

} ⊂ HD. (5.100)

We now claim that

μ(I) ≥
(
δ

M

)
R (2

√
rμin)(VD) for all R ≥ 1. (5.101)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 101

Indeed, Part (ii) of Corollary 2.17 implies that

μ(I) ≥ dist(Γtr,R,Ω−)(2
√

rμin)(VD),

and then to prove (5.101) we only need to show that

dist(Γtr,R,Ω−) ≥
(
δ

M

)
R. (5.102)

Let δ = dist(Ω−, ∂B(0, 1)). Then, since Ω̃R ⊃ B(0,M−1R) ∪ B(0, 1) and Ω− ⊂ B(0, 1), if R ≥ M,

dist(Γtr,R,Ω−) ≥
(

M−1R − 1+ δ
)

=
(

M−1 − (1− δ)
R

)
R ≥

(
δ

M

)
R

and then (5.102) follows for R ≥ M. On the other hand, if R ≤ M, then

dist(Γtr,R,Ω−) ≥ δ ≥
(
δ

M

)
R,

and then (5.102) follows for R ≤ M.
Combining (5.99) and (5.101), we have

(2
√

rμin)(VD) ≤ ε
M

δ

(
min

(|cray,3|2mord , |cray,4|mmult
))2

cray,1. (5.103)

We now use Lemmas 2.12 and 2.20 to obtain a lower bound onμout(VD). The two equations in (2.25)
imply that

μout = √
rνd + 1√

r
νn − μin (5.104)

(see (2.32)). By Lemma 2.20 and Part (i) of Condition 5.9,

νd(VD) = vol(VD) ≥ cray,1. (5.105)

By the assumption that Condition 5.9 holds (with cray,2 independent of R), |n(x′) · a| ≥ cray,2 > 0 on

VD. By the definitions of VD (5.100) and r(x′, ξ ′) (1.7), r(x′, (aT(x′))
� = |n(x′) · a| for x′ ∈ VD), and

thus r ≥ cray,2 > 0 on VD. Combining (5.104) with (5.105) and (5.103), and using the facts that νn is
nonnegative and cray,3, cray,4 ≤ π/2, we have

(2
√

rμout)(VD) ≥ 2rνd(VD)− (2
√

rμin)(VD)

≥ 2
√

cray,2

(√
cray,2 − εM

δ

(π
2

)max(2mord,mmult)
)

cray,1.
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102 J. GALKOWSKI ET AL.

If

ε ≤
√cray,2
2

δ

M

(
2

π

)max(2mord,mmult)

(5.106)

(observe that, since cray,2 is assumed independent of R, this upper bound on ε is independent of R), then

(2
√

rμout)(VD) ≥ cray,2 cray,1.

We now use Corollary 2.17 to propagate this lower bound on ΓD to a lower bound on Γtr,R. Indeed, Part
(i) of Corollary 2.17 then implies that

(2
√

rμin)(Vtr) = (2
√

rμout)(VD) ≥ cray,2 cray,1, (5.107)

where

Vtr :=
⋃

q∈VD

πΓtr,R

(
ϕtout(q)

(
pout(q)

)) ⊂ Htr,

where tout and pout are defined in (2.38) and (2.37), respectively, and πΓtr,R equals π∂M restricted to

T∗
Γtr,R

R
d.

Combining Corollary 2.19, Lemma 5.16, and Point (iii) of Condition 5.9, we have

μout(Vtr) =
∣∣∣∣√rσ(N )− σ(D)√

rσ(N )+ σ(D)
∣∣∣∣2 μin(Vtr) ≥ (

Cref min
(|cray,3|2mord , |cray,4|mmult

))2
μin(Vtr). (5.108)

Finally, using Part (ii) of Corollary 2.17 with Point (iv) of Condition 5.9, and then using (5.108) and
(5.107), we have,

μ(I) ≥ c̃5 R (2
√

rμout)(Vtr) ≥ c̃5 R (2
√

rμout)(Vtr)

≥ c̃5 R
(
Cref min

(|cray,3|2mord , |cray,4|mmult
))2

cray,2 cray,1. (5.109)

We now restrict ε so that, in addition to satisfying (5.106), ε satisfies

ε < c̃5
(
Cref

)2
cray,2

(observe that, since c̃5 and cray,2 are assumed independent of R, this upper bound is independent of R).
Thus, ε can be chosen sufficiently small (independent of R) such that (5.109) contradicts (5.99), which
is the desired contradiction.

Proof of (ii). If the assumption of (ii) holds, then our contradiction argument also assumes that for all
ε > 0 there exists R ≥ R0 such that

μ(I ∩ S∗
B(0,3/2)R

d) ≤ ε( min
(|cray,3|2mord , |cray,4|mmult

))2
cray,1. (5.110)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 103

Applying Part (i) of Corollary 2.17 Nref − 1 more times and using (5.108), we construct V1tr, . . . ,V
Nref
tr ⊂

T∗Γtr,R, satisfying

V1tr := Vtr, (2
√

rμin)
(
V j+1
tr

) = (2√rμout)
(
V j
tr

)
,

(2
√

rμout)
(
V j
tr

) ≥ (
Cref min

(|cray,3|2mord , |cray,4|mmult
))2
(2

√
rμin)

(
V j
tr

)
, (5.111)

and so that for any q ∈ VNref
tr ,

{
ϕR

d

t (p
out(q))

}
t≥0 intersects B(0, 32 ) \ B(0, 54 ) before hitting ΓD or Γtr,R.

Therefore, by (5.111) and (5.107)

(2
√

rμout)
(
VN
tr

) ≥ (
Cref min

(|cray,3|2mord , |cray,4|mmult
))2Nrefcray,2 cray,1. (5.112)

Finally, since any ray entering B(0, 32 ) \ B(0, 54 ) spends a time at least
1
2 (

3
2 − 5

4 ) = 1
8 in this annulus, Part

(ii) of Corollary 2.17 implies that

μ
(
I ∩ S∗

B(0,3/2)\B(0,5/4)R
d) ≥ 1

8
(2

√
rμout)

(
VNref
tr

)
≥ 1

8

(
Cref min

(|cray,3|2mord , |cray,4|mmult
))2Nrefcray,2 cray,1, (5.113)

where we have used (5.112). Therefore, if

ε < (Cref)
2Nrefcray,2,

then (5.113) contradicts (5.110), which is the desired contradiction. (Observe that, similar to in Part (i),
the upper bound on ε is independent of R since cray,2 and Cref are independent of R.) �

Proof of the lower bounds in Theorems 1.7, 1.8, 1.10 and 1.11. The lower bounds will follow from
combining Corollary 5.4, Lemma 5.17, and the ray constructions in Lemmas 5.10–5.13.

For Theorem 1.8 (for generic Γtr,R), Lemma 5.12 implies that the assumptions of Part (i) of Lemma
5.17 are satisfied with cray,1, cray,3, cray,4 independent of R, and R0 sufficiently large; the required lower
bound (5.4) on μ(I) then follows by inserting this (lack of) R-dependence into (5.97).

For the lower bound in Theorem 1.7 (for Γtr,R = ∂B(0,R)), Lemma 5.11 implies that the assumptions
of Part (i) of Lemma 5.17 are satisfied with cray,1, cray,4 independent of R, cray,3 = c̃3/R with c̃3 >
0 independent of R, and R0 sufficiently large. The required lower bound (5.3) μ(I) then follows by
inserting these R-dependences into (5.97), and observing that, for R sufficiently large,

min
(|cray,3|2mord , |cray,4|mmult

) =
∣∣∣∣ c̃3

R

∣∣∣∣ 2mord . (5.114)

For Theorem 1.10 (i.e., the local error for Γtr,R = ∂B(0,R)), Point (iv)′ in Lemma 5.11 implies
that the assumptions of Part (ii) of Lemma 5.17 are satisfied Nref = 1 and R0 sufficiently large. The
required lower bound on μ(I ∩ S∗

B(0,3/2)R
d) (5.5) then follows from (5.98) using (5.114) and the fact

that cray,1 is independent of R. The fact that the result holds with R0 = 2 when M = N = 0 follows from
Remark 5.15.
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104 J. GALKOWSKI ET AL.

Finally, for Theorem 1.11 (i.e., the local error for the hypercube), Lemma 5.13 implies that the
assumptions of Part (ii) of Lemma 5.17 are satisfied with cray,3, cray,4 independent of R, cray,1 = c̃1/R

d−1

with c̃1 independent of R, and R0 = 4. The required lower bound onμ(I∩S∗
B(0,3/2)R

d) (5.6) then follows
from (5.98) by inserting these R-dependences. �

6. Proof of the trace bounds (Theorem 4.1)

6.1 Strategy of the proof

To illustrate some of the main ideas, consider the BVP (4.1) with N = D = I, M compact, and the
boundary condition imposed on the whole of ∂M, i.e.,

{
(−h2Δ− 1)u = hf in M

hDnu − u = g on Γ := ∂M.
(6.1)

In the notation of Theorem 4.1, we have m0,i = m1,i = 0, and the bounds (4.7) and (4.8) in the case
�i = 0 are that

‖u‖L2(Γ ) +
∥∥hDnu

∥∥
L2(Γ ) ≤ C

(‖u‖L2(M) + ‖f ‖L2(M) + ‖g‖L2(Γ )

)
(6.2)

and

‖u‖H1
h(M)

≤ C
(‖u‖L2(M) + h ‖f ‖L2(M) + ‖g‖L2(Γ )

)
. (6.3)

We now show how to obtain these bounds; pairing the PDE in (6.1) with u and integrating by parts,
we have

h2 ‖∇u‖2L2(M) − ‖u‖2L2(M) − h 〈f , u〉L2(M) = hi ‖u‖2L2(Γ ) + h 〈g, u〉L2(Γ ). (6.4)

Taking the imaginary part of (6.4), we find that

‖u‖2L2(Γ ) ≤ ‖g‖2L2(Γ ) + ‖f ‖2L2(M) + ‖u‖2L2(M). (6.5)

Taking the real part of (6.4) and adding 2‖u‖2
L2(M)

to both sides of the resulting equation, we find that

‖u‖2
H1

h(M)
≤ 5

2
‖u‖2L2(M) +

h2

2
‖f ‖2L2(M) +

h2

2
‖u‖2L2(Γ ) +

1

2
‖g‖2L2(Γ ). (6.6)

Combining the inequality (6.5) with the boundary condition in (6.1), we obtain the first result (6.2). Then,
using (6.5) in (6.6), we obtain the second result (6.3).

The proof of Theorem 4.1 follows similar steps; indeed, the twomain ingredients are (i) bounds on the
traces in terms of the data and H1

h norms of u, and (ii) a bound the H1
h norm of u in term of the traces and

the data. The bound in (ii) is obtained by considering �〈(−h2Δg − 1)u, u〉L2(M) and integrating by parts,
similar to above, with the inequality (6.19) the generalization of the inequality (6.6). The bounds in (i) are
obtained by considering�〈(−h2Δg−1)u, u〉L2(M), similar to above, but also�〈(−h2Δg−1)u, hDνu〉L2(M)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 105

(with Lemma 2.6 above considering a general commutator, and Lemma 6.1 specializing to the case of a
normal derivative).

The additional complications for the bounds in (i) are because we need to consider the cases where
D and N are both elliptic (Lemma 6.2), where D is small and N elliptic (Lemma 6.3), and where D is
elliptic and N small (Lemma 6.4), These three cases are considered in § 6.2, and then in § 6.3 we show
that, under the assumptions (4.3)–(4.5), the bounds in these three cases cover all of T∗Γ .

6.2 A priori estimates

We begin by proving some a-priori estimates for (4.1). As usual, we work near Γ where M is locally
given by x1 > 0, as in § 2.3. We repeatedly use the integration by parts result in Lemma 2.6.

Lemma 6.1 If u solves (4.1), then, for all ε > 0 and for all �,

‖hDx1u‖H�h(Γi)
≤ C

(‖u‖H�+1h (Γi)
+ ‖u‖H�+1h (M) + ε−1‖f ‖H�h(M)

+ ε‖u‖H1
h (M)

)
.

Proof. Let χ ∈ C∞
c ((−2δ, 2δ); [0, 1]) with χ ≡ 1 on [−δ, δ]. Let

B1(x, hDx′) := χ(x1)〈hDx′ 〉2� and B0(x, hDx′) := 1

2
hDx1B1 = h

2i
χ ′(x1)〈hDx′ 〉2�.

Then (2.11) holds, and B satisfies the assumption of Lemma 2.6; since B0|x1=0 = 0, (2.12) implies that

i

h
〈[P,B]u, u〉L2(M) +

2

h
�〈Pu,Bu〉L2(M) = 〈h(B1a1 − a1B1)hDx1u, u〉L2(Γi)

+ 〈B1(R − ha0)u, u〉L2(Γi)
+ 〈B1hDx1u, hDx1u〉L2(Γi)

. (6.7)

Now, observe that

[P,B] = h(̃B2(hDx1)
2 + B̃1hDx1 + B̃0),

where

B̃2 ∈ C∞
c ((δ, 2δ);Ψ

2�(Γi)), B̃1 ∈ C∞
c ((δ, 2δ);Ψ

2�+1(Γi)), B̃0 ∈ C∞
c ((−2δ, 2δ);Ψ 2�+2(Γi)).

In particular, by boundary elliptic regularity, we have∥∥[P,B]u∥∥
Hs

h(M)
≤ Csh

(‖Pu‖Hs+2�
h (M) + ‖u‖Hs+2�

h (M)

)
.

Therefore, ∣∣∣ 〈
B1(1− R)u, u

〉
L2(Γi)

+ 〈
B1hDx1u, hDx1u

〉
L2(Γi)

∣∣∣
≤ Ch‖u‖2

H�h(Γi)
+ C‖u‖2

H�h(M)
+ Cε−1‖f ‖2

H�h
+ ε‖u‖2

H1
h (M)

,
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106 J. GALKOWSKI ET AL.

and hence

‖hDx1u‖2
H�h

≤ C‖u‖2
H�+1h (Γi)

+ C‖u‖2
H�h(M)

+ Cε−1‖f ‖2
H�h

+ ε‖u‖2
H1

h (M)
.

�

Remark. When � = 0 the bound in Lemma 6.1 is valid for Lipschitz domains and goes back to Nečas;
see (Nečas, 1967, §5.1.2), (McLean, 2000, Theorem 4.24 (i)).

We now show a bound where D and N are both elliptic.

Lemma 6.2 Suppose that WFh(E) ⊂ Ell(D) ∩ Ell(N ). Then for any B′ ∈ Ψ 0 with

WFh(E) ∩ WFh(Id −B′) = ∅, WFh(B
′) ⊂ Ell(N ) ∩ Ell(D)

there exist C > 0 and h0 > 0 such that for any ε > 0, 0 < h < h0,

‖Eu‖
H
�+m0
h (Γi)

+ ‖EhDx1u‖
H
�+m1
h (Γi)

≤ C

(
‖u‖

H
2�+m1+m0+1

2
h (M)

+ ‖u‖L2(M) + ‖f ‖
H
2�+m1+m0−1

2
h (M)

+ ‖f ‖L2(M)

)

+ ε
(
‖B′u‖

H
�+m0
h (Γi)

+ ‖B′hDx1u‖
H
�+m1
h (Γi)

)
+ Cε−1‖B′gi‖H�h(Γi)

+ O
(

h∞ (
‖u‖H−N

h (Γi)
+ ‖hDx1u‖H−N

h (Γi)
+ ‖g‖H−N

h (Γi)

))
.

Proof. Let B0 ∈ Ψ �0(Γi) self-adjoint with WFh(b0(x
′, hDx′)) ⊂ WFh(E). Let B′ ∈ Ψ 0(Γi) with

WFh(E) ⊂ Ell(B′) ⊂ WFh(B
′) ⊂ Ell(N ) ∩ Ell(D).

We can assume without loss of generality that B′ is microlocally the identity in a neighbourhood of
WFh(E). Next, let B1 = 0 and N−1 and D−1 denote microlocal inverses for N and D on WFh(B

′).
Then, by Lemma 2.6,∣∣∣〈B0hDx1u, u〉L2(Γi)

+ 〈ha1B0u, u〉L2(Γi)
+ 〈B0u, hDx1u〉L2(Γi)

∣∣∣
≤ |2〈f ,Bu〉L2(M)| + h−1|〈[P,B]u, u〉L2(M)|.

First, note that

[P,B] = h(̃B1hDx1 + B̃2),

where

B̃1 ∈ C∞
c

(
(δ, 2δ);Ψ �0(Γi)

)
, B̃2 ∈ C∞

c

(
(−2δ, 2δ);Ψ �0+1(Γi)

)
.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 107

In particular, by boundary elliptic regularity, for all s ∈ R,

‖[P,B]‖Hs
h(M)

≤ Csh
(
‖Pu‖

H
s+�0−1
h (M)

+ ‖u‖
H

s+�0+1
h (M)

+ ‖u‖L2(M)

)
.

Therefore,

∣∣〈B0hDx1u, u〉L2(Γi)
+ 〈ha1B0u, u〉L2(Γi)

+ 〈B0u, hDx1u〉L2(Γi)

∣∣
≤ C

(
‖f ‖

H
�0−1
2

h (M)
+ ‖u‖

H
�0+1
2

h (M)
+ ‖u‖L2(M) + ‖f ‖L2(M)

) (
‖u‖

H
�0+1
2

h (M)
+ ‖u‖L2(M)

)
.

Now, using (4.1),

〈B0hDx1u, u〉L2(Γi)
= 〈B0N−1(Du + gi), u〉L2(Γi)

+ O
(

h∞(
‖u‖2

H−N
h (Γi)

+ ‖hDx1u‖2
H−N

h (Γi)

))

and

〈B0u, hDx1u〉L2(Γi)
= 〈B0u,N−1(Du + gi)〉L2(Γi)

+ O
(

h∞(
‖u‖2

H−N
h (Γi)

+ ‖hDx1u‖2
H−N

h (Γi)

))
.

In particular, letting B′ ∈ Ψ 0 with WFh(B0) ⊂ Ell(B′),

∣∣∣〈[(N−1D)∗B0 + B0(N−1D)]u, u
〉
L2(Γi)

∣∣∣
≤ C

(
‖f ‖

H
�0−1
2

h (M)
+ ‖f ‖L2(M) + ‖u‖

H
�0+1
2

h (M)
+ ‖u‖L2(M)

) (
‖u‖

H
�0+1
2

h (M)
+ ‖u‖L2(M)

)
+ O(h)‖B′u‖2

H
�0
2

h (Γi)

+ ε‖B′u‖2
H

m0−m1+�0
2

h (Γi)

+ Cε−1‖B′gi‖2
H
�0−m1−m0

2
h (Γi)

+ O
(

h∞(
‖u‖2

H−N
h (Γi)

+ ‖hDx1u‖2
H−N

h (Γi)
+ ‖g‖2

H−N
h (Γi)

))
.

Now, choose b0(x
′, hDx′) ∈ Ψ m1−m0+2� self adjoint (i.e., �0 = m1 − m0 + 2�) such that B0 is elliptic on

WFh(E). Then, since D and N have real-valued symbols and −N−1D is elliptic on WFh(E),

−�〈
B0N−1Du, u

〉 ≥ C‖Eu‖2
H�h(Γi)

− Ch‖B′u‖2
H
�−1
2

h (Γi)

− O(h∞)‖u‖2
H−N

h (M)
,
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108 J. GALKOWSKI ET AL.

and

‖Eu‖2
H�h

≤ C

(
‖f ‖

H
m1−m0+2�−1

2
h (M)

+ ‖f ‖L2(M) + ‖u‖
H

m1−m0+2�+1
2

h (M)
+ ‖u‖L2(M)

)

×
(

‖u‖
H

m1−m0+2�+1
2

h (M)
+ ‖u‖L2(M)

)
+ O(h)‖B′u‖2

H
m1−m0+2�

2
h (Γi)

+ ε‖B′u‖2
H�h(Γi)

+ Cε−1‖B′gi‖2Hk−m0
h (Γi)

+ O
(

h∞(
‖u‖2

H−N
h (Γi)

+ ‖hDx1u‖2
H−N

h (Γi)
+ ‖g‖2

H−N
h (Γi)

))
. (6.8)

Let E′ ∈ Ψ 0 with

WFh(E) ∩ WFh(Id −E′) = ∅, WFh(E
′) ⊂ Ell(B′) ∩ Ell(N ) ∩ Ell(D).

By (6.8),

‖E′u‖2
H�h(Γi)

≤ C

(
‖u‖2

H
m1−m0+2�+1

2
h (M)

+ ‖u‖2L2(M) + C

(
‖f ‖2

H
m1−m0+2�−1

2
h (M)

+ ‖f ‖2L2(M)
))

+ O(h)‖B′u‖2
H
2�−m0+m1

2
h (Γi)

+ ε‖B′u‖2
H�h(Γi)

+ Cε−1‖B′gi‖2Hk−m0
h (Γi)

+ O
(

h∞(
‖u‖2

H−N
h (Γi)

+ ‖hDx1u‖2
H−N

h (Γi)
+ ‖g‖2

H−N
h (Γi)

))
.

Let N−1 denote a microlocal inverse for N on WFh(B
′). Then,

EhDx1u = E
(
N−1(−DE′u + B′gi)

) + O
(
h∞‖u‖H−N

h (Γi)

)
HN

h
,

so

‖EhDx1u‖H�h(Γi)
≤ C‖E′u‖

H
�+m0−m1
h

+ ‖B′gi‖H
k−m1
h

+ O
(
h∞‖u‖H−N

h (Γi)

)
.

In particular,

‖EhDx1u‖2
H�h

≤ C

(
‖u‖2

H
m0−m1+2�+1

2
h (M)

+ ‖u‖2L2(M) + ‖f ‖2
H

m0−m1+2�−1
2

h (M)

+ ‖f ‖2L2(M)
)

+ O(h)‖B′u‖2
H
2�+m0−m1

2
h (Γi)

+ ε‖B′hDx1u‖2
H�h(Γi)

+ Cε−1‖B′gi‖2Hk−m1
h (Γi)

+ O
(

h∞(
‖u‖2

H−N
h (Γi)

+ ‖hDx1u‖2
H−N

h (Γi)
+ ‖g‖2

H−N
h (Γi)

))
.

�
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We now consider D small and N elliptic:

Lemma 6.3 Let K � T∗Γi. Then for all η > 0 there is δ0 > 0 and C > 0 such that for all 0 < δ < δ0,
E ∈ Ψ 0 with

WFh(E) ⊂ K ∩ Ell(N ) ∩ {|σ(D)| < δ〈ξ 〉m0
} ∩ {|R(x′, ξ ′)| > η}, (6.9)

and B′ ∈ Ψ 0 with

WFh(E) ∩ WFh(Id −B′) = ∅, WFh(B
′) ⊂ Ell(N ) ∩ {|σ(D)| < δ〈ξ 〉m0

}
,

there is h0 > 0 small enough such that for all 0 < h < h0 and 0 < ε < 1

‖Eu‖
H
�+m0
h (Γi)

+ ‖EhDx1u‖
H
�+m1
h (Γi)

≤ C(ε + h)‖B′u‖
H
�+m0
h (Γi)

+ C(ε−1 + 1)‖B′g‖H�h(Γi)

+ C‖u‖
H
�+ m1+m0+1

2
h (M)

+ Cε−1
(

‖f ‖
H
�+ m1+m0−1

2
h (M)

+ ‖f ‖L2(M)

)
+ Cε‖u‖H1

h (M)

+ O
(

h∞ (
‖u‖H−N

h (Γi)
+ ‖hDx1u‖H−N

h (Γi)
+ ‖g‖H−N

h (Γi)

))
. (6.10)

Moreover, if m0 ≤ m1 + 1 (6.10) holds with K = T∗Γi

Proof. Throughout the proof, we take b1(x
′, hDx′) self-adjoint with b1 ∈ Ψ 2(k+m0−1) if m0 ≤ m1 + 1

and b1 ∈ Ψ comp otherwise. We assume that

WFh(E) ⊂ Ell(b1(x
′, hDx′)) ⊂ WFh(b1(x

′, hDx′)) ⊂ Ell(N ) ∩ {|σ(D)| < δ〈ξ 〉m0
}
.

As in Lemma 6.1, let χ ∈ C∞
c ((−2δ, 2δ); [0, 1]) with χ ≡ 1 on [−δ, δ]. Let

B1(x, hDx′) := χ(x1)b1(x′, hDx′) and B0(x
′, hDx′) := 1

2
hDx1B1. (6.11)

Then (2.11) holds, and B satisfies the assumption of Lemma 2.6; since B0|x1=0 = 0, (2.12) implies that
(6.7) holds.

Since N is elliptic on WFh B′, there exists N−1 ∈ Ψ−m1 a microlocal inverse for N on WFh(B
′);

that is, for any B̃ with WFh(̃B) ⊂ {B′ ≡ Id},

B̃hDx1u = B̃N−1(DB′u + B′g)+ O(h∞)Ψ−∞g + O(h∞)Ψ−∞u + O(h∞)Ψ−∞hDx1u. (6.12)
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and hence, using the fact that we are working with compactly microlocalized operators on Γ to see that
all Hs

h(Γi) norms are equivalent up to h∞ remainders, we have∣∣〈B1Ru, u〉L2(Γi)
+ 〈B1hDx1u, hDx1u〉L2(Γi)

∣∣
≤ Ch‖B′u‖2

H
�+m0
h (Γi)

+ Ch‖B′g‖2
H�h(Γi)

+ ∣∣ih−1〈[P,B]u, u〉L2(M) + 2�〈f ,Bu〉L2(M)

∣∣
+ O

(
h∞(

‖u‖2
H−N

h (Γi)
+ ‖hDx1u‖2

H−N
h (Γi)

+ ‖g‖2
H−N

h (Γi)

))
. (6.13)

Now, observe that

[P,B] = h(̃B2(hDx1)
2 + B̃1hDx1 + B̃0),

where

B̃2 ∈ C∞
c ((δ, 2δ);Ψ

2(k+m0−1)(Γi)), B̃1 ∈ C∞
c ((δ, 2δ);Ψ

2(k+m0)−1(Γi)),

B̃0 ∈ C∞
c ((−2δ, 2δ);Ψ 2(k+m0)(Γi)).

In particular, by boundary elliptic regularity as before, we have

‖[P,B]u‖Hs
h(M)

≤ Csh(‖Pu‖
H

s+2(k+m0)
h (M)

+ ‖u‖
H

s+2(k+m0)
h (M)

+ ‖u‖L2(M)),

so by (6.12) and (6.13),∣∣∣〈B1Ru, u〉L2(Γi)
+ 〈B1N−1Du,N−1Du〉L2(Γi)

∣∣∣
≤ C(ε + h)‖B′u‖2

H
�+m0
h (Γi)

+ C(ε−1 + 1)‖B′g‖2
H�h(Γi)

+ C‖u‖2
H
�+ m1+m0+1

2
h (M)

+ Cε−1
(

‖f ‖2
H
�+ m1+m0−1

2
h (M)

+ ‖f ‖2L2(M)
)

+ Cε‖u‖2
H1

h (M)

+ O
(

h∞(
‖u‖2

H−N
h (Γi)

+ ‖hDx1u‖2
H−N

h (Γi)
+ ‖g‖2

H−N
h (Γi)

))
. (6.14)

If m0 > m1 + 1, we assume that b1 ∈ Scomp. Therefore, for all (m0,m1)

B1R + (N−1D)∗B1N−1D ∈ Ψ 2(�+m0),

for our choice of B1. Next, sinceD is elliptic on {R = 0}, for any K ⊂ T∗Γi compact, there exists δ0 > 0
small enough such that

inf
{
〈ξ ′〉−2∣∣|σ(N−1D)(x′, ξ ′)|2 + R(x′, ξ ′)

∣∣ where |σ(D)(x′, ξ ′)| ≤ δ0〈ξ ′〉m0 , (x′, ξ ′) ∈ K
}

≥ cK > 0.
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Moreover, if m0 ≤ m1 + 1, then there is δ0 > 0 small enough such that

inf
{
〈ξ ′〉−2∣∣|σ(N−1D)(x′, ξ ′)|2 + R(x, ξ)

∣∣ where |σ(D)(x′, ξ ′)| ≤ δ0〈ξ ′〉m0 , (x′, ξ ′) ∈ T∗Γi

}
≥ c > 0.

In particular, since R is real-valued, there is B1 ∈ Ψ 2(k+m0−1) self adjoint, elliptic onWFh(E), such that

σ
(
B1R + (N−1D)∗B1N−1D

)
(x′, ξ ′) ≥ c〈ξ ′〉2(k+m0), (x′, ξ ′) ∈ WFh(E).

In particular, then the sharp Gårding inequality (Zworski, 2012, Theorem 9.11) gives

‖Eu‖2
H
�+m0
h (Γi)

≤ C
〈(

B1R + (N−1D)
)∗

B1N−1D
)
u, u

〉
L2(Γi)

+ Ch‖B′u‖2
H
�+m0− 1

2
h

+ O(h∞)‖u‖2
H−N

h (Γi)
,

and we obtain from (6.14),

‖Eu‖2
H
�+m0
h (Γi)

≤ C(ε + h)‖B′u‖2
H
�+m0
h (Γi)

+ C(ε−1 + 1)‖B′g‖2
H�h(Γi)

+ C‖u‖2
H
�+ m1+m0+1

2
h (M)

+ Cε−1
(

‖f ‖2
H
�+ m1+m0−1

2
h (M)

+ ‖f ‖2L2(M)
)

+ Cε‖u‖2
H1

h (M)

+ O
(

h∞(
‖u‖2

H−N
h (Γi)

+ ‖hDx1u‖2
H−N

h (Γi)
+ ‖g‖2

H−N
h (Γi)

))
.

Next, we write, as above,

EhDx1u = EN−1(DE′u + E′g)+ O(h∞)Ψ−∞g + O(h∞)Ψ−∞u + O(h∞)Ψ−∞hDx1u

to obtain

‖EhDx1u‖2
H
�+m1
h (Γi)

≤ C‖E′u‖
H
�+m0
h (Γi)

+ C‖E′g‖H�h(Γi)

+ O
(

h∞(
‖u‖H−N

h (Γi)
+ ‖hDx1u‖H−N

h (Γi)
+ ‖g‖H−N

h (Γi)

))
,

and this finishes the proof. �
Finally, we consider the case D elliptic and N small.

Lemma 6.4 For all K � T∗Γi, there is δ0 > 0 and C > 0 such that for all 0 < δ < δ0, E ∈ Ψ 0 with

WFh(E) ⊂ K ∩ Ell(D) ∩ {|σ(N )| < δ〈ξ 〉m1
}
, (6.15)

and B′ ∈ Ψ 0 with

WFh(E) ∩ WFh(I − B′) = ∅, WFh(B
′) ⊂ Ell(D) ∩ {|σ(N )| < δ〈ξ 〉m1

}
,
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there is h0 > 0 small enough such that have for 0 < h < h0 and 0 < ε < 1,

‖EhDx1u‖
H
�+m1
h (Γi)

+ ‖Eu‖
H
�+m0
h (Γi)

≤ Cε‖B′hDx1‖H
�+m1
h (Γi)

+ Cε−1‖B′g‖H�h(Γi)

+ C‖u‖
H
�+ m1+m0+1

2
h (M)

+ Cε−1
(

‖f ‖
H
�+ m1+m0−1

2
h (M)

+ ‖f ‖L2(M)

)
+ Cε‖u‖H1

h (M)

+ O
(

h∞ (
‖u‖H−N

h (Γi)
+ ‖hDx1u‖H−N

h (Γi)
+ ‖g‖H−N

h (Γi)

))
. (6.16)

Moreover, if m1 + 1 ≤ m0, then (6.16) holds with K = T∗Γi.

Proof. Throughout the proof, we take b1(x
′, hDx′) self-adjoint with b1 ∈ Ψ 2(k+m0) if m1 + 1 ≤ m0 and

b1 ∈ Ψ comp otherwise. We assume that

WFh(E) ⊂ Ell(b1(x
′, hDx′)) ⊂ WFh(b1(x

′, hDx′)) ⊂ Ell(D) ∩ {|σ(N )| < δ〈ξ 〉m1
}
.

Let B1 and B0 be defined by (6.11).
Since D is elliptic on WFh(B

′), there exists D−1 ∈ Ψ−m0 a microlocal inverse for D on WFh(B
′);

that is, for any B with WFh(B) ⊂ {B′ ≡ Id},

Bu = −BD−1(NhDx1B
′u − B′g)+ O(h∞)Ψ−∞g + O(h∞)Ψ−∞u + O(h∞)Ψ−∞hDx1u. (6.17)

Arguing as in the proof of Lemma 6.3, we obtain the analogue of (6.14) with B1 ∈ Ψ 2(k+m1)(Γi), namely

∣∣〈B1RD−1NhDx1u,D
−1NhDx1u

〉
L2(Γi)

+ 〈
B1hDx1u, hDx1u

〉
L2(Γi)

∣∣
≤ C(ε + h)‖B′hDx1‖2H�+m1

h (Γi)
+ C(ε−1 + 1)‖B′g‖2

H�h(Γi)

+ C‖u‖2
H
�+ m1+m0+1

2
h (M)

+ Cε−1
(

‖f ‖2
H
�+ m1+m0−1

2
h (M)

+ ‖f ‖2L2(M)
)

+ Cε‖u‖2
H1

h (M)

+ O
(

h∞(
‖u‖2

H−N
h (Γi)

+ ‖hDx1u‖2
H−N

h (Γi)
+ ‖g‖2

H−N
h (Γi)

))
.

If m0 < m1 + 1, we assume that b1 ∈ Scomp. Therefore, for all (m0,m1)(
D−1N

)∗
B1(1− R)D−1N + B1 ∈ Ψ 2(�+m1)

for our choice of B1. Now, any K ⊂ T∗Γi compact, there is δ0 > 0 small enough such that

inf
{∣∣1+ ∣∣σ(D−1N )(x′, ξ ′)

∣∣2R(x′, ξ ′)
∣∣ where |σ(N )(x′, ξ ′)| ≤ δ0〈ξ ′〉m1 , (x′, ξ ′) ∈ K

}
≥ cK > 0.
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Moreover, if m0 ≤ m1 + 1, then there is δ0 > 0 small enough such that

inf
{∣∣1+ ∣∣σ(D−1N )(x′, ξ ′)

∣∣2R(x′, ξ ′)
∣∣ where |σ(N )(x′, ξ ′)| ≤ δ0〈ξ ′〉m1 , (x′, ξ ′) ∈ T∗Γi

}
≥ c > 0.

Therefore, choosing B1 with non-negative symbol such that B1 is elliptic on WFh(E), we have

�σ ((D−1N
)∗

B1RD−1N + B1
)
(x′, ξ ′) ≥ c, (x′, ξ ′) ∈ WFh(E).

In particular,

‖EhDx1u‖2
H
�+m1
h (Γi)

≤ C
〈(
(D−1N )∗B1RD−1N + B1

)
hDx1u, hDx1u

〉
L2(Γi)

+ Ch‖B′u‖2
H
�+m1− 1

2
h

+ O(h∞)‖hDx1u‖2
H−N

h (Γi)
.

Therefore,

‖EhDx1u‖2
H
�+m1
h (Γi)

≤ C(ε + h)‖B′hDx1‖2H�+m1
h (Γi)

+ C(ε−1 + 1)‖B′g‖2
H�h(Γi)

+ C‖u‖2
H
�+ m1+m0+1

2
h (M)

+ Cε−1
(

‖f ‖2
H
�+ m1+m0−1

2
h (M)

+ ‖f ‖2L2(M)
)

+ Cε‖u‖2
H1

h (M)
+ O

(
h∞(

‖u‖2
H−N

h (Γi)
+ ‖hDx1u‖2

H−N
h (Γi)

+ ‖g‖2
H−N

h (Γi)

))
.

Then, using (6.17) again the second claim follows. �

6.3 Proof of Theorem 4.1

Throughout this section we assume that (4.2) holds. In particular, the union of the elliptic sets for A0,i
and A1,i covers T∗Γi and A0,i is elliptic on S∗Γi.

Proof. We start by briefly considering the conditions (4.3)–(4.5) separately. Suppose first that (4.3)
holds. Then, fixing δ0 > 0, such that Lemmas 6.3 and 6.4 with K = T∗Γi hold, there exist E0 ∈ Ψ 0

satisfying (6.9) and E1 ∈ Ψ 0 satisfying (6.15) (both with K = T∗Γi) such that

{σ(D) = 0} ⊂ Ell(E0), {σ(N ) = 0} ⊂ Ell(E1), T∗Γi ⊂ Ell(E0) ∪ Ell(E1).

Next, if (4.4) holds, there exists K2 � T∗Γi such that

K2 ∪ Ell(N ) ⊃ T∗Γi.

Fixing δ0 > 0, such that Lemma 6.3 holds with K = T∗Γi and 6.4 holds with K = K2, there exist
E0 ∈ Ψ 0 satisfying (6.9) with K = T∗Γi and E1 ∈ Ψ comp satisfying (6.15) with K = K2 such that

{σ(D) = 0} ⊂ Ell(E0), {σ(N ) = 0} ⊂ Ell(E1), T∗Γi ⊂ Ell(E0) ∪ Ell(E1).
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Finally, if (4.5) holds, there exists K3 ⊂ T∗Γi such that

K3 ∪ Ell(D) ⊃ T∗Γi.

Fixing δ0 > 0, such that Lemma 6.3 holds with K = K3 and 6.4 holds with K = T∗Γi, there exist
E0 ∈ Ψ comp satisfying (6.9) with K = K3 and E1 ∈ Ψ 0 satisfying (6.15) with K = T∗Γi such that

{σ(D) = 0} ⊂ Ell(E0), {σ(N ) = 0} ⊂ Ell(E1), T∗Γi ⊂ Ell(E0) ∪ Ell(E1).

In particular, in all cases, there exist h0 > 0, E0,E1,E2 ∈ Ψ 0 such that for 0 < h < h0, the estimates
of Lemma 6.3 hold for E∗

0E0, those for (6.4) hold for E∗
1E1, and those of Lemma 6.2 hold for E∗

2E2
such that

T∗Γi ⊂ Ell(E0) ∪ Ell(E1) ∪ Ell(E2).

Therefore, by Lemma 6.3

‖E∗
0E0u‖

H
�+m0
h

+ ‖E∗
0E0hDx1u‖

H
�+m1
h

≤ C(ε + h)‖u‖
H
�+m0
h (Γi)

+ C(ε−1 + 1)‖g‖H�h(Γi)

+ C‖u‖
H
�+ m1+m0+1

2
h (M)

+ Cε−1
(

‖f ‖
H
�+ m1+m0−1

2
h (M)

+ ‖f ‖L2(M)

)
+ Cε‖u‖H1

h (M)

+ O
(

h∞ (
‖u‖H−N

h (Γi)
+ ‖hDx1u‖H−N

h (Γi)
+ ‖g‖H−N

h (Γi)

))
.

Similarly, by Lemma 6.4

‖E∗
1E1u‖

H
�+m0
h

+ ‖E∗
1E1hDx1u‖

H
�+m1
h

≤ Cε‖hDx1‖H
�+m1
h (Γi)

+ Cε−1‖g‖H�h(Γi)

+ C‖u‖
H
�+ m1+m0+1

2
h (M)

+ Cε−1
(

‖f ‖
H
�+ m1+m0−1

2
h (M)

+ ‖f ‖L2(M)

)
+ Cε‖u‖H1

h (M)

+ O
(

h∞ (
‖u‖H−N

h (Γi)
+ ‖hDx1u‖H−N

h (Γi)
+ ‖g‖H−N

h (Γi)

))
.
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Finally, using Lemma 6.2,

‖E∗
2E2u‖

H
�+m0
h (Γi)

+ ‖E∗
2E2hDx1u‖

H
�+m1
h (Γi)

≤ C

(
‖u‖

H
2�+m1+m0+1

2
h (M)

+ ‖u‖L2(M) + ‖f ‖
H
2�+m1+m0−1

2
h (M)

+ ‖f ‖L2(M)

)

+ ε
(

‖u‖
H
�+m0
h (Γi)

+ ‖hDx1u‖
H
�+m1
h (Γi)

)
+ Cε−1‖gi‖H�h(Γi)

+ O
(

h∞ (
‖u‖H−N

h (Γi)
+ ‖hDx1u‖H−N

h (Γi)
+ ‖g‖H−N

h (Γi)

))
.

Since

T∗Γi ⊂ Ell
(
E∗
0E0 + E∗

1E1 + E∗
2E2

)
,

we have all together

‖u‖
H
�+m0
h (Γi)

+ ‖hDx1u‖
H
�+m1
h (Γi)

≤ C

(
‖u‖

H
�+ m1+m0+1

2
h (M)

+ ‖u‖L2(M) + ε‖u‖H1
h (M)

+ ‖f ‖
H

k+m1+m0−1
2

h (M)
+ ‖f ‖L2(M)

)

+ ε
(
‖u‖

H
�+m0
h (Γi)

+ ‖hDx1u‖
H
�+m1
h (Γi)

)
+ Cε−1‖gi‖H�h(Γi)

. (6.18)

Finally, observe that

�〈−h2Δu, u〉L2(M) = ‖h∇u‖2L2(M) + h
∑

i

�〈h∂νu, u〉L2(Γi)
.

Letting ψ ∈ Ψ comp with D elliptic on WFh(ψ) and N elliptic on suppWFh(Id −ψ), we have

|�〈h∂νu, u〉L2(Γi)
| =

∣∣∣�i
(〈

hDνu,ψu
〉
L2(Γi)
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(Id −ψ)hDνu, u

〉
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) ∣∣∣
=

∣∣∣�i
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〉
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〉
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+ O(h∞)
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H−N
h (Γi)
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H−N
h (M)
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H

−m0−s
h (Γi)
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H

m0−m1−1
2

h (Γi)

+ h‖u‖2Hs
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.
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Therefore, for any s,

‖u‖2
H1

h (M)
≤1

2
h2‖f ‖2L2(M) +

5

2
‖u‖2L2(M)

+ C

( ∑
i

h2‖hDnu‖2
H−N

h (Γi)
+ h2‖u‖2

H
max

(
s,

m0−m1−1
2

)
h (Γi)

+ ‖gi‖2H−m1,i−s
h (Γi)

)
. (6.19)

Using this in (6.18) and taking

− m0,i + m1,i

2
≤ �i ≤ 1

2
− m0,i + m1,i

2
, si = −�i − m1,i, (6.20)

we obtain

∑
i

‖u‖
H
�i+m0,i
h (Γi)

+ ‖hDx1u‖
H
�i+m1,i
h (Γi)

≤ C‖u‖L2(M) + C(ε−1 + εh)‖f ‖L2(M)

+
∑

i
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H
�i
h (Γi)

+ Cε
(
‖u‖

H
�+m0,i
h (Γi)

+ ‖hDx1u‖
H
�+m1,i
h (Γi)

)

+
∑

i

⎛⎝h‖hDnu‖H−N
h (Γi)

+ h‖u‖
H

max
(

−m1,i−�i ,
m0,i−m1,i−1

2

)
h (Γi)

⎞⎠ .

Shrinking ε such that Cε < 1/2 and taking h0 small enough such that Ch0 ≤ 1
2 , the proof is complete

since the inequality (4.6) (i.e., the first inequality in (6.20)) implies that the terms on the right can be
absorbed into the left.

The final inequality in Theorem 4.1 follows from combining the result of Lemma 6.1 (with � = −s)
with (4.8). �
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Appendix A. Semiclassical pseudodifferential operators and notation

We review the notation and definitions for semiclassical pseudodifferential operators onRd and refer the
reader to Appendix E in Dyatlov & Zworski (2019) and Chapter 14 in Zworski (2012) for details of how
to adapt these definitions to manifolds.
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Before we introduce these objects, we recall the notion of semiclassical Sobolev spaces Hs
h; these

are the standard Sobolev spaces Hs with a norm weighted with h. We say that u ∈ Hs
h(R

d) if

‖〈ξ 〉sFh(u)(ξ)‖L2 <∞, where 〈ξ 〉 := (1+ |ξ |2) 12 and Fh(u)(ξ) :=
∫
Rd

e− i
h 〈y,ξ〉u(y) dy

is the semiclassical Fourier transform.
We next introduce the notion of symbols. We say that a ∈ C∞(T∗

R
d) is a symbol of order m if∣∣∂αx ∂βξ a(x, ξ)

∣∣ ≤ Cαβ〈ξ 〉m,

and write a ∈ Sm(T∗
R

d). Throughout this section we fix χ0 ∈ C∞
c (R) to be identically 1 near 0. We

then say that an operator A : C∞
c (R

d)→ D′(Rd) is a semiclassical pseudodifferential operator of order
m, and write A ∈ Ψ m(Rd), if A can be written as

Au(x) = 1

(2πh)d

∫
Rd

∫
Rd

e
i
h 〈x−y,ξ〉a(x, ξ)χ0(|x − y|)u(y) dy dξ + E, (A.1)

where a ∈ Sm(T∗
R

d) and E = O(h∞)Ψ−∞ , where an operator E = O(h∞)Ψ−∞ if for all N > 0 there
exists CN > 0 such that

‖E‖H−N
h (R

d)→HN
h (R

d)
≤ CNhN .

We also define

Ψ−∞ :=
⋂
m

Ψ m, S−∞ :=
⋂
m

Sm, Ψ∞ :=
⋃
m

Ψ m, S∞ :=
⋃
m

Sm.

We say that a ∈ Scomp if a ∈ S−∞ and a is compactly supported, and we say that A ∈ Ψ comp if
A ∈ Ψ−∞ and can be written in the form (A.1) with a ∈ Scomp. We use the notation a(x, hDx) for the
operator A in (A.1) with E = 0.

We recall that there exists a map

σm : Ψ m → Sm/hSm−1

called the principal symbol map and such that the sequence

0 → hSm−1 Oph→ Ψ m σ→ Sm/hSm−1 → 0

is exact where Oph(a) = a(x, hD). Moreover,

σ(AB) = σ(A)σ (B), σ(A∗) = σ(A), σ(−ih−1[A,B]) = {σ(A), σ(B)}, (A.2)

where {·, ·} denotes the Poisson bracket; see Proposition E.17 in Dyatlov & Zworski (2019).

A.1 Wavefront sets and elliptic sets

To introduce a notion of wavefront set that respects both decay in h as well as smoothing properties of
pseudodifferential operators, we introduce the set

T∗Rd := T∗
R

d % (Rd × Sd−1),

where % denotes disjoint union and we view R
d × Sd−1 as the ‘sphere at infinity’ in each cotangent fiber

(see also Dyatlov & Zworski, 2019, §E.1.3, for a more systematic approach where T∗Rd is introduced as
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the fiber-radial compactification of T∗
R

d).We endow T∗Rd with the usual topology near points (x0, ξ0) ∈
T∗

R
d and define a system of neighbourhoods of a point (x0, ξ0) ∈ R

d × Sd−1 to be

Uε :=
{
(x, ξ) ∈ T∗

R
d
∣∣ |x − x0| < ε, |ξ | > ε−1,

∣∣ ξ〈ξ〉 − ξ0
∣∣ < ε}

%
{
(x, ξ) ∈ R

d × Sd−1 : |x − x0| < ε., |ξ − ξ0| < ε
}
.

We now say that a point (x0, ξ0) ∈ T∗Rd is not in the wavefront set of an operator A ∈ Ψ m, and
write (x0, ξ0) /∈ WFh(A), if there exists a neighbourhood U of (x0, ξ0) such that A can be written as in
(A.1) with

sup
(x,ξ)∈U

∣∣∂αx ∂βξ a(x, ξ)〈ξ 〉N
∣∣ ≤ CαβNhN .

We define the elliptic set of a pseudodifferential operator A ∈ Ψ m as follows. We say that (x0, ξ0) ∈
T∗Rd is in the elliptic set of A, and write (x0, ξ0) ∈ Ell(A), if there exists a neighbourhood U of (x0, ξ0)
such that A can be written as in (A.1) with

inf
(x,ξ)∈U

|a(x, ξ)〈ξ 〉−m| ≥ c > 0.

Next, we define the wavefront of a family of distributions uh, depending on h. We say that uh is
tempered if for all χ ∈ C∞

c (R
d) there exists N > 0 such that

‖χu‖H−N
h
<∞.

For a tempered family of functions, uh we say that (x0, ξ0) ∈ T∗Rd is not in the wavefront set of uh
and write (x0, ξ0) /∈ WFh(uh) if there exists A ∈ Ψ 0 with (x0, ξ0) ∈ Ell(A) such that for all N there is
CN > 0 such that

‖Auh‖HN
h

≤ CNhN .

A.2 Bounds for pseudodifferential operators

We next review some bounds for pseudodifferential operators acting on Sobolev spaces.

Lemma A1. (Dyatlov & Zworski, 2019, Propositions E.19 and E.24) (Zworski, 2012, Theorem 8.10)
Suppose that A ∈ Ψ m. Then,

‖Au‖Hs
h

≤ C‖u‖Hs+m
h

.

Moreover, if A = a(x, hD) ∈ Ψ 0, then there exists C > 0 such that

‖A‖L2→L2 ≤ sup |a| + Ch
1
2 .

Finally, we recall the elliptic parametrix construction (see e.g., Dyatlov & Zworski, 2019,
Proposition E.32).

Lemma A2. Suppose that A ∈ Ψ m1 and B ∈ Ψ m2 with WFh(A) ⊂ Ell(B). Then there exist E1,E2 ∈
Ψ m1−m2 such that

A = E1B + O(h∞)Ψ−∞ , A = BE2 + O(h∞)Ψ−∞ .
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A.3 Tangential pseudodifferential operators

It will sometimes be convenient to have families of pseudodifferential operators, depending on one
of the position variables. In this case, as in § 2.3, we write x = (x1, x′) ∈ R

d and ξ = (ξ1, ξ ′) for
the corresponding dual variables. We then consider families A ∈ C∞

c (Ix1 ;Ψ
m(Rd−1)), that is, smooth

functions in x1 valued in pseudodifferential operators of order m and write A = a(x, hDx′) for some
a ∈ C∞

c (Ix1 ; S
m(Rd−1)).
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