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We consider approximating the solution of the Helmholtz exterior Dirichlet problem for a nontrapping
obstacle, with boundary data coming from plane-wave incidence, by the solution of the corresponding
boundary value problem where the exterior domain is truncated and a local absorbing boundary condition
coming from a Padé approximation (of arbitrary order) of the Dirichlet-to-Neumann map is imposed on the
artificial boundary (recall that the simplest such boundary condition is the impedance boundary condition).
We prove upper- and lower-bounds on the relative error incurred by this approximation, both in the whole
domain and in a fixed neighbourhood of the obstacle (i.e., away from the artificial boundary). Our bounds
are valid for arbitrarily-high frequency, with the artificial boundary fixed, and show that the relative error
is bounded away from zero, independent of the frequency, and regardless of the geometry of the artificial
boundary.

Keywords: Helmholtz equation; absorbing boundary condition; high frequency.

1. Introduction and statement of the main results
1.1 Informal discussion of the main results, their context, and their novelty

Background on absorbing boundary conditions. Wave-scattering problems are usually posed in
unbounded domains. However, when computing approximations to the solutions of such problems via
discretization methods in the domain, such as finite-element methods (as opposed to discretization
methods on the boundary such as boundary-element methods), an artificial boundary is introduced so that
the computational domain is finite. The question then arises of what boundary condition to impose on
this artificial boundary. If the exact Dirichlet-to-Neumann map for the domain exterior to the artificial
boundary is used as the boundary condition, then the solution of the truncated problem is exactly the
restriction to the truncated domain of the solution of the scattering problem. However, the Dirichlet-to-
Neumann map is a nonlocal operator and is expensive to compute.

Since the late 1970s, starting with the papers Lindman (1975); Engquist & Majda (1977a,b, 1979);
Bayliss & Turkel (1980); Bayliss et al. (1982), there has been much research on designing local boundary
conditions to impose on the artificial boundary, with these boundary conditions approximating the
(nonlocal) Dirichlet-to-Neumann map. Since the goal is for these boundary conditions to ‘absorb’ waves
hitting this boundary, and not reflect them back into the computational domain, they are often called
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2 J. GALKOWSKI ET AL.

‘absorbing’ or ‘non-reflecting’ boundary conditions. These boundary conditions are now standard tools
in the numerical simulation of waves propagating in unbounded domains; see, e.g., Givoli (1991);
Hagstrom (1997); (Ihlenburg, 1998, §3.3); Tsynkov (1998); Hagstrom (1999) and Givoli (2004).

The error incurred by absorbing boundary conditions. The following natural and important question
then arises: what is the error between the solution of the truncated problem and the solution of the true
scattering problem, and how does this error depend on the following factors?

(i) The shape of the artificial boundary.
(i) The distance of the artificial boundary from the scatterer.

(iii)) The position in the computational domain where the error is measured (e.g., is the error smaller
away from the artificial boundary than near it?).

(iv) Either the time (for problems posed in the time domain) or the frequency of the waves (for
problems posed in the frequency domain).

(v) The order of the artificial boundary condition.

Perhaps surprisingly, despite the decades-long interest in absorbing boundary conditions, there do
not yet exist rigorous answers to many of these questions.

A summary of the existing answers to these questions is as follows: In the time domain, there exist
error estimates describing how the error depends on the distance of the artificial boundary from the
scatterer (Bayliss & Turkel, 1980, Theorem 3.2 and Diaz & Joly, 2005, Theorem 2.4), on the order of
the boundary conditions (Hagstrom, 1997, §2.3) (for fixed boundary), and on the average frequency
present in the solution (Halpern & Rauch, 1987, §5). In the frequency domain for fixed frequency, there
exist error estimates describing how the error depends on the distance of the artificial boundary from the
scatterer (Bayliss et al., 1982, Theorems 4.1 and 4.2; Goldstein, 1982, Theorem 3.1).

The Helmholtz problem most studied by the numerical-analysis community: artificial boundary
fixed and frequency arbitrarily high. One situation where, to our knowledge, there do not yet exist
any estimates on the error incurred by absorbing boundary conditions is in the frequency domain when
the artificial boundary is fixed and the frequency is arbitrarily high. This situation is a ubiquitous model
problem for numerical methods applied to the Helmholtz equation.

Indeed, the following is a nonexhaustive list of papers analysing numerical methods applied to this
set up, with the analyses valid in the high-frequency limit with the domain fixed. We highlight that this
list includes some of the most influential work in the numerical analysis of the Helmholtz equation from
the last ~15 years.!

* Conforming FEMs (including continuous interior-penalty methods) (Shen & Wang, 2005; Han
& Huang, 2008; Melenk & Sauter, 2011; Esterhazy & Melenk, 2012; Zhu & Wu, 2013;
Esterhazy & Melenk, 2014; Wu, 2014; Du & Wu, 2015; Zhu & Du, 2015; Du & Zhu, 2016;
Chaumont-Frelet & Nicaise, 2018; Burman er al., 2019; Chaumont-Frelet, 2019; Diwan et al.,
2019; Chaumont-Frelet & Nicaise, 2020; Du et al., 2020; Graham & Sauter, 2020; Melenk et al.,
2020).

! More specifically, all of the following papers consider either the Helmholtz boundary-value problem (1.2) below with
the impedance boundary condition (1.2c) on the truncation boundary, or the analogous boundary-value problem with variable
coefficients in the PDE.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 3

e Least-squares methods (Demkowicz et al., 2012; Chen & Qiu, 2017; Bernkopf & Melenk, 2019;
Hu & Song, 2020; Song & Lee, 2020).

* DG methods based on piece-wise polynomials (Feng & Wu, 2009, 2011; Demkowicz et al., 2012;
Chen et al., 2013; Cui & Zhang, 2013; Feng & Xing, 2013; Hoppe & Sharma, 2013; Melenk
et al., 2013; Mu et al., 2014; Sauter & Zech, 2015; Zhu & Du, 2015; Wang et al., 2018; Cao &
Wu, 2020; Zhao et al., 2020; Zhu & Wu, 2021).

¢ Plane-wave/Trefftz-DG methods (Amara ef al., 2009; Hiptmair ez al., 2011; Amara et al., 2014;
Hiptmair et al., 2014, 2016; Hu & Yuan, 2018; Mascotto et al., 2019; Hu & Z., W., 2020; Yuan &
Hu, 2020).

e Multiscale finite-element methods (Gallistl & Peterseim, 2015; Barucq et al., 2017; Brown
et al., 2017; Peterseim, 2017; Ohlberger & Verfiirth, 2018; Chaumont-Frelet & Valentin, 2020;
Peterseim & Verfiirth, 2020; Chen et al., 2021; Freese et al., 2021; Hauck & Peterseim, 2022;
Ma et al., 2023).

* Preconditioning methods (Gander et al., 2015; Graham et al., 2017, 2020; Liu et al., 2020; Ramos
& Nabben, 2020; Gong et al., 2021, 2022, 2023).

*  Uncertainty-quantification methods (Feng et al., 2015; Li et al., 2018; Ganesh er al., 2021).

Informal summary of the results of this paper. The present paper proves error bounds on the accuracy
of absorbing boundary conditions for the ubiquitous model problem discussed above. These bounds show
how the error in this set up depends on each of the factors (i)—(v) described above, and all but one of our
bounds are provably sharp.

More specifically, we consider the Helmholtz exterior Dirichlet problem with boundary data coming
from plane-wave incidence when the artificial boundary is fixed and the frequency is arbitrarily high.
We consider absorbing boundary conditions coming from a Padé approximation (of arbitrary order) of
the Dirichlet-to-Neumann map; recall that this popular class of boundary conditions was introduced in
Engquist & Majda (1977a,b, 1979) in the time-dependent setting.

These results are presented in §1.2 in the simplest-possible case of an impedance boundary condition,
with these results illustrated in numerical experiments in §1.7. The results for the general Padé case are
presented in §1.5 and §1.6. Our results about well-posedness of the truncated problem in §1.4 are also
new and of independent interest. Of the results present in the existing literature, the results in this paper
are closed to those of Halpern & Rauch (1987), and we compare and contrast these two sets of results
in §1.8.

How the results are obtained, and their novelty from the point of view of analysis. The main
results are obtained using techniques from semiclassical analysis; i.e., rigorous analysis of PDEs with a
large/small parameter, with the analysis explicit in that parameter. In this case the parameter is the large
frequency of the Helmholtz equation.

More specifically we use semiclassical defect measures (Zworski, 2012, Chapter 5; Dyatlov &
Zworski, 2019, §E.3). These measures describe where the mass of Helmholtz solutions in phase space
(i.e., the set of positions x and momenta &) is concentrated in the high-frequency limit; for an informal
discussion of Helmholtz defect measures, see §9.1 in Lafontaine et al. (2022).

The main novelty of this paper is in applying these semiclassical techniques to this long-standing
numerical-analysis question of the accuracy of absorbing boundary conditions. A large part of the
analysis are delicate arguments (in §5) involving constructing geometric-optic rays and controlling their
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properties with respect to the distance of the artificial boundary from the scatterer, and the geometry
of both the artificial boundary and the scatterer. Indeed, controlling the properties of these rays is what
allows us to determine how the error depends on the factors (i)—(iii) above. We highlight that the ideas
behind the ray constructions are outlined in §5.6, and their use in the defect-measure arguments is
described informally in §5.3.

In addition, the following two aspects of our paper are of independent interest in (non-numerical)
analysis.

e The arguments in §4 that use defect measures to prove bounds on the solution operator over
families of domains (as opposed to a single one), with the bounds explicit in both frequency and
the characteristic length scale of the domains.

e The extension in §2.6 of the results in Miller (2000) about defect measures on the boundary to the
case when the right-hand side of the Helmholtz equation is nonzero.

The wider context of absorbing boundary conditions in the numerical analysis of the Helmholtz
equation. Another important use of local absorbing boundary conditions in the numerical analysis of
the Helmholtz equation is in domain-decomposition (DD) methods. This large interest began with the
use of impedance boundary conditions for nonoverlapping DD methods in Després (1991); Benamou &
Després (1997) and the connection between absorbing boundary conditions and the optimal subdomain
boundary conditions (involving appropriate Dirchlet-to-Neumann maps) was highlighted in Nataf
et al. (1994); Engquist & Zhao (1998). Despite the large current interest in Helmholtz DD methods
(see, e.g., the reviews in Gander & Zhang, 2019 and Graham et al., 2020), there are no rigorous
frequency-explicit convergence proofs for any practical DD method for the high-frequency Helmholtz
equation, partly due to a lack of frequency-explicit bounds on the error when absorbing boundary
conditions are used to approximate the appropriate Dirichlet-to-Neumann maps. We therefore expect
the results and techniques in the present paper to be relevant for the frequency-explicit analysis
of DD methods for the Helmholtz equation; preliminary results on this are given in Lafontaine &
Spence (2022).

1.2 Overview of the main results in the simplest-possible setting

In this section, we present a selection of our bounds on the error in their simplest-possible setting when
an impedance boundary condition is imposed on the truncation boundary. Our upper and lower bounds
on the error when the absorbing boundary condition comes from a general Padé approximation of the
Dirichlet-to-Neumann map are given in §1.5 and 1.6, with results on the well-posedness of this problem
in §1.4.

Let 2 C RY, d > 2, be a bounded open set such that the open complement 2, := R4 \ Q2 s
connected, and let Iy, := 0§2_ be C*°. Given k > 0 and a € R? with |a| = 1, letu € Hlloc(SZJr) be the
solution to the Helmholtz equation in §2

A+ u=0 ing,, (1.1a)
with the Dirichlet boundary condition

u=-exp(ikx-a) onlp (1.1b)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 5

and satisfying the Sommerfeld radiation condition

ou . 1
E—lkuzo m (IIC)

as r := |x| = oo, uniformly in X := x/r. (The technical reason we only consider Dirichlet boundary
conditions on I}, and not also Neumann boundary conditions, is discussed in Remark 5.2 below.)

The physical interpretation of (1.1) is that u is minus the scattered wave for the plane-wave scattering
problem with sound-soft boundary conditions; i.e., exp(ikx - a) — u is the total field for the sound-soft
scattering problem.

We assume throughout that the obstacle §2_ is nontrapping, i.e., all billiard trajectories (in the
sense of Hormander, 1985, §24.3) starting in a neighbourhood of the convex hull of §2_ escape that
neighbourhood after some uniform time. Without loss of generality, we assume that £2_ has characteristic
length scale one (results explicit in the size of §£2_ can then be obtained by a scaling argument). In
principle, our arguments could also cover the case when the Helmholtz equation (1.1) has variable
coefficients, but the ray arguments would be more complicated, since the rays are no longer straight
lines (at least in a neighbourhood of the scatterer).

Let v be the solution of the analogous exterior Dirichlet problem, but with the exterior domain £2,
truncated, and an impedance boundary condition prescrlbed on the truncation boundary. More premsely,
let 2, be such that 2, C B(0, MR) for some M > 0, I R = 32g is C*° and £2_ € §2p, where €
denotes compact containment. The subscripts R on .QR and I,  emphasize that both have characteristic
length scale R, and the subscript tr on I, , emphasizes that this is the truncation boundary. We assume
that the family {I}; g}ge[1.00) 1S continuous in R and is such that the limit I'?° := limg_, (I3 z/R)

exists. Let 2 1= 25 \ £2_, and let v € H' (£23) be the solution of

(A+KHv =0 in 2, (1.2a)
v =exp(ikx-a) onlp, and (1.2b)
9,y —ikv=0 on I} g. (1.2¢)

THEOREM 1.1 (Lower and upper bounds when I, = 9B(0,R)). Suppose that £2_ is nontrapping,
£2_ C B(0,1), and Ftr’R = 0B(0,R) with R > 1. Then there exists Cj = Cj(.Q_) > 0,j = 1,2, such that
for any R > 1, there exists ky(R, £2_) > 0 such that, for any direction a, the solutions to (1.1) and (1.2),
u and v, respectively, satisfy

C;  Mu—vl C
_; < _EE@R) 5 for all k > k. (1.3)
R ||14||L2(:2R) R

Furthermore, there exists C; = C3(§2_) > 0 such that for any R > 2, there exists k; = k; (R, £2_) > 0
such that, for any direction q,

[T C
PEONL) > 23 forallk > k. (1.4)

lullz2 8020 020)
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Theorem 1.1 shows that, for sufficiently high frequency, the error is proportional to R~2 in both the
whole domain §2j (1.3) and a neighbourhood of the obstacle (1.4).

We make two comments: (i) The reason that k; and k; depends on R is discussed below Theorem 1.7
(the more-general version of Theorem 1.1). (i) When the impedance boundary condition is replaced by
the more-general boundary condition corresponding to Padé approximation, the only changes in (1.3)
and (1.4) are in the powers of R (see (1.14) and (1.19) below).

The following theorem shows that when I'2° is not a sphere centred at the origin, the relative error
between u and v does not decrease with R.

THEOREM 1.2 (Lower bound for generic I3, ). Suppose that £2_ is nontrapping, £2_ C B(0, 1), and
there exists M > 1 such that

B(0O,M~'R) C 2, C B(0O,MR).

Assume that I, g is smooth and strictly convex and (i) I?° is not a sphere centred at the origin, and
(ii) the convergence I /R — I7° is in C%! globally and in C'# (for some ¢ > 0) away from any
corners of I2°.

Then there exists C = C(£2_,{I}; g}re[1.00)) > O such that for all R > 1, there exists k, =
ko(R, $2_, {IeRYRe[1,00)) > O such that, for any direction a, the solutions to (1.1) and (1.2), u and v,
respectively, satisfy

u-—v
ez vlizen S o forane sk, (1.5)

”M”LZ(QR)

REMARK 1.3 We highlight that the constant C in Theorem 1.2 depends on the family {I% g}re(1.00)
(indexed by R), but is independent of the variable R itself. This also applies in Theorems 1.5, 1.8 and 1.9
below.

We make four comments: (i) Even under the more-general boundary condition corresponding to Padé
approximation, the lower bound analogous to (1.5) is still independent of R; see Theorem 1.8 below.
(ii) The numerical experiments in § 1.7 indicate that k; in Theorem 1.2 is independent of R, and in
fact a lower bound holds uniformly in k& and R; see Tables 3 and 4. (iii) Under further smoothness
assumption on I;2°, Theorem 1.9 proves an upper bound on the relative error. (iv) The reason why the
error decreases with R when I, . = dB(0, R), but is independent of R for generic I, g is explained in

the text immediately after the statement of Theorem 1.9.

1.3 Definitions of the boundary conditions corresponding to Padé approximation of the Dirichlet-to-
Neumann map

We now consider a more-general truncated problem than (1.2). With £2_, ﬁR and 25 asin § 1.2, let
v € H'(£2) be the solution of

(A+KHv =0 in 2, (1.62)
v=-exp(ikx-a) only, and (1.6b)

Nk '9,y) —iD@) =0 on Iy, (1.6¢)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 7

where N € W2N(I, p), D € wM(I, ) (i.e., N and D are semiclassical pseudodifferential operators
on I, g of order 2N and 2M, respectively) and both have real-valued principal symbols (see § A for
background material on semiclassical pseudodifferential operators).

While most of our analysis applies to much more general choices of A" and D, we focus on N and D
corresponding to a Padé approximation (up to terms that are lower order both in k~! and differentiation
order) of the principal symbol of the Dirichlet-to-Neumann maps; this class of A/ and D was introduced
in Engquist & Majda (1977a,b, 1979) in the time-dependent setting. In the following assumption, Diff"
denotes the set of operators of the form

A@kT'D) =" a0 (k' DY,
Jj=0

with @; € C*, D = —id, Furthermore, we use Fermi normal coordinates x = (x;,x),§ = (§;,§’), with
Iig = {x; = 0}, x; the signed distance to L gs Oy and BXI orthogonal. We also let r(x', §’) denote the
symbol of one plus the tangential Laplacian on I g, i.e.,

r(d,E) = 1- €] (1.7)

where | - |, is the norm induced on the co-tangent space (i.e., the space of the Fourier variables g
corresponding to the tangential variables x') of I} ; from RY; see § 2.3 for more details.

Let the coefficients (le,N)j'\io and (q,M,N)jN=l be defined so that p(¢) /g(¢) is the Padé approximant of
of type [M,N] att = 0to +/1 — ¢, where

M N
P = pyn? and g = qyn? (1)
j=0 j=0
with g0y = 1 and pM . g \ # 0. This definition implies that
Vi=t= DNt | [ 1+ D dun? | =0() ast—o, (1.9)
j=0 j=!
where

ASSUMPTION 1.4 (Boundary condition corresponding to Padé approximation). We assume that

D —Pun(.k7'Dy) e ' DM NV — Qun(¥.kT'D,) e k7! DN,
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8 J. GALKOWSKI ET AL.

where

PunG. &) = Z pun (1=, €)) and Qun&', € =1+ Zq’M’N (1-r(,&)).

Jj=0 j=1

By (1.7), Py and Qy  involve powers of |é’|§. Since |é’|§ is a quadratic form in the variables &,
the boundary condition (1.6¢) involves differential operators, and is thus local.

Recall that the rationale behind these particular D and A consists of the following three points.

(i) The ideal condition to impose on I}, p is that the Neumann trace, 9,v, equals the Dirichlet-to-
Neumann map for the exterior of §R under the Sommerfeld radiation condition (1.1c) applied to the
Dirichlet trace, v (see § 2.7 and the references therein).

(ii)) When ﬁR is strictly convex, the principal symbol of this Dirichlet-to-Neumann map (as a
semiclassical pseudodifferential operator), away from glancing rays, i.e., rays that are tangent to the

boundary, equals +/r(x',§") = /1 — |’ |§; see Remark 2.1 for more details.

(iii) The definitions of p(¢) and ¢(¢) (1.8) imply that if D and N satisfy Assumption 1.4, then the
boundary condition (1.6¢) corresponds to approximating /1 — |’ |§ by the Padé approximant of type
[M, NJ at |.§/|§ =0, i.e., at rays that are normal to the boundary.

The polynomials p(#) and g(f) are constructed based on their properties at + = 0. However, the
quantity g(#)a/1 — t—p(t) can have other zeros in ¢ € (0, 1], which corresponds to the boundary condition

(1.6¢) not reflecting certain non-normal rays. We record here notation used later in the paper for these
other zeros. Given M, N, let {t }mv‘ﬂ‘"lgh be the zeros of q(t)«/l —t—p() int € (0, 1] where p(¢) and ¢(¢)

are defined by (1.8). Then m,,;, < oo since g(H)+/1 — p(t) is analytic on (—1, 1), continuous at 1,
and p(1) # O (see Lemma 4.4 below). Let m_, ;, be the hlghest multiplicity of the zeros {t; }mVanlSh
When N = D = I, (1.6¢) is the impedance boundary condition

3,v — ikv =0, (1.10)

and is covered by Assumption 1.4 withM = N = 0, i.e., p(f) = ¢(t) = 1. In this case, m
/1 —t—1has no zeros for r € (0, 1].

vanish = 0, since
1.4 Well-posedness of the truncated problem and k-explicit bound on its solution

THEOREM 1.5 Let £2_ & B(0, 1) be a nontrapping obstacle, M > 0, §R C B(0,MR) be convex with
smooth boundary I, r that is nowhere flat to infinite order and such that I3, g/R — I'y° in C*°. Let N/
and D satisfy Assumption 1.4 with either M = N or M = N + 1.

There exists C > 0 such that given R > 1, there exists k; = k(R) > 0 such that, given f Lz(.QR),
gp € H'(I'p) and g; € L*(T, I g), if k > k, then the solution v € H'($2g) of

(A+IP)Wv=f in2p, (1.11a)
v=gp onlp, and (1.11b)
N(k',v) —iD(v) =g, onTlg (1.11¢)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 9
exists, is unique, and satisfies

”VV”LZ(QR) +k ”V”LZ(_QR)

<C (R Wl 22 + R (1Y 80l 2y + Kl8Dll2(r) + R”Zkllgzllmm,m) . (L1

Note that results analogous to the well-posedness statement in Theorem 1.5 in the time domain are
given in Theorem 4 of Trefethen & Halpern (1986) and Theorem 1 of Engquist & Majda (1979) for
problems where the spatial domain is a half-plane.

Because of the importance of the truncated problem in numerical analysis, proving bounds analogous
to (1.12) when v satisfies the impedance boundary condition

3,y —ikv =g, onTlyz (1.13)

has been the subject of many investigations in the literature (Melenk, 1995, §8.1; Cummings & Feng,
2006; Hetmaniuk, 2007; Bao et al., 2012; Li et al., 2013; Moiola & Spence, 2014, Remark 4.7; Chaumont
Frelet, 2015, §2.1; Bao & Yun, 2016; Baskin et al., 2016; Chaumont-Frelet & Nicaise, 2018, Appendix
B; Sauter & Torres, 2018; Graham et al., 2019, Appendix A; Graham & Sauter, 2020). Indeed, the bound
(1.12) under the boundary condition (1.13) and various assumptions on §2_ and Q ' (often for star-shaped
£2_ and !~2R and sometimes with £2_ = @) in (Melenk, 1995, Proposition 8.1.4), (Cummings & Feng,
2006, Theorem 1), (Hetmaniuk, 2007, Proposition 3.3), (Chaumont Frelet, 2015, §2.1.5), (Baskin ez al.,
2016, Theorem 1.8), (Sauter & Torres, 2018, Theorem 22), (Graham et al., 2019, §A.2), (Graham &
Sauter, 2020, Theorems 3.2 and 5.10) (with the last four references considering the variable-coefficient
Helmbholtz equation).

To our knowledge, the bound (1.12), however, is the first k-explicit bound for a truncated Helmholtz
problem where a local absorbing boundary condition is posed other than the impedance boundary
condition (1.13).

1.5 Bounds on the relative error in 2

All the results in this section proved under the assumption that N and D satisfy Assumption 2.2 with
either M = N or M = N + 1, so the the truncated problem is well-posed by Theorem 1.5.

THEOREM 1.6 (Lower bound for general strictly-convex I, ). If £2_ is nontrapping and [ p is
strictly convex, then there exists C = C(§23,M,N) > 0 that depends continuously on R and k, =
ky(R, 25, M, N) > 0, such that, for any direction a,

u—v
N = vllz2 (2 >C  forallk > k.

||u||L2(QR)

The following three results prove bounds on the relative error that are explicit in R. Theorem 1.7
considers the case I, p = dB(0, R), and Theorems 1.8 and 1.9 consider the case when I /R tends to
a limiting object that is not a sphere.

THEOREM 1.7 (Quantitative lower and upper bounds when I'vr= dB(0, R)). Suppose that §2_ is non-
trapping, £2_ C B(0,1), and Iy r = 9B(0,R) with R > 1. Then, there exists Cj = Cj(.Q_, M,N) > 0,
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10 J. GALKOWSKI ET AL.

J = 1,2, such that for any R > 1, there exists k,(R, $2_, M, N) > 0 such that, for any direction a,

C llu— vl C
L v . G
R2mord — — R2mord

for all k > k. (1.14)
||M||L2(_QR)

The reason that k; in Theorem 1.7 depends on R is because of the difference between the limits
k — oo with R fixed and R — oo with k fixed. To illustrate this difference, consider the boundary
conditions

d—1
(8, —ikjy =0 and (8n—ik+ 5 )v:(). (1.15)
r

Both satisfy Assumption 1.4 with M = N = 0, with, respectively N' = 1, D = l and N' = 1,
D = 1—kYi(d — 1)(2r)~!. Therefore, in both cases the error |u — Vil op /1l 2 ~ R~2 for
fixed R as k — oo by Theorem 1.7. However, for fixed k as r := |x| — oo,

@, — i) —v)(x) = 3, — uE) = 0~V = 0™ 2680 (1.16)

and

r ) u(x) = 0~ “I2) = 0 2B
(1.17)

( ' d_l) ( .
0,—tk+ —)w—v)x)=|0, —ik+
2r

The fact that the right-hand sides of (1.16) and (1.17) are different shows that, while the behaviour of
u — v for the two boundary conditions in (1.15) is the same as k — oo with R fixed by Theorem 1.7,
the behaviour as R — oo with k fixed is different. We expect that the bounds in this paper — for the
limit k — oo with R fixed — in fact hold uniformly when R < k¥ for some y < 1 (i.e., when the large
parameter R is smaller than the large parameter k).

When the limiting object I72° is not a sphere, the lower and upper bounds are given separately in
Theorems 1.8 and 1.9, respectively. This is because the lower bound allows the limiting object to, e.g.,
have corners, whereas the upper bound requires the limiting object to be smooth.

THEOREM 1.8 (Quantitative lower bound for generic I, z). Suppose that £2_ is nontrapping, £2_ C
B(0, 1), and there exists M > 0 such that

B(0,M™'R) C 2, C B(0,MR). (1.18)

Assume that I, , is smooth and strictly convex and such that (i) I is not a sphere centred at the origin,
and (ii) the convergence I, z/R — I7° is in C%! globally and in C'* (for some & > 0) away from any
corners of I2°.

Then there exists C = C(£2_, M,N,{I'; p}re[1.00)) > 0 such that for all R > 1, there exists ky =
ko(R, $2_, M,N,{I'; g}re[1.00)) > O such that, for any direction a,

u—"vi2
llu = vliz2 2 >C  forallk > k.

”u”LZ(QR)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 11

THEOREM 1.9 (Quantitative upper bound for generic I, z). Suppose that £2_ is nontrapping with £2_ C
B(0, 1). Suppose that, for every R > 1, sz C B(0,MR), FH, & 1s smooth, convex, and nowhere flat to infi-
nite order, and (I, g/R) — I;7°in C*° as R — oo. Then there exists C = C(£2_, M, N, {I'; g}rc(1.00)) >
0 such that for any R > 1, there exists ky = ko (R, 2_, M, N, {I}; g}grc(1.00)) > Osuchthatforanya € RY,

u—v
e =Vl e _ for all k > ;.

||”||L2(QR)

We now explain why the constants in the upper and lower bounds in Theorems 1.6—-1.9 decrease
with R when I3, p = 9B(0,R), but are independent of R for generic I5, g. Recall from §1.3 that the
boundary condition (1.6¢) corresponds to approximating /7(x’, £’) by a Padé approximant in |£|2, with
this approximation valid to order m, in |§’ |§ at&" = 0 (i.e., rays hitting I';, p in the normal direction) by
(1.9); recall also that there exists finitely-many other values of |£’ |§ such that Qu (', §")/r(x, &) —
Pun@,&) = 0, which corresponds to there being finitely-many non-normal angles such that rays
hitting I r at these angles are not reflected by I3, g. When I = 9B(0,R) and R is large, the rays
originating from §2_ hit I, p in a direction whose angle with the normal decreases with increasing R (in
fact the angle < R™!; see Lemma 5.14 below). Thus, if R is sufficiently large, the finitely-many special
non-normal angles are avoided, and the error for large k decreases with R, with the accuracy, depending
on my,,; see Theorem 1.7. When I'$° is not a sphere centred at the origin, for every incident direction
there exist rays hitting I;7° at a fixed, non-normal angle that is also not one of the finitely-many special
non-normal angles (see Lemma 5.12 below). Since the Dirichlet-to-Neumann map is not approximated
by the boundary condition (1.6¢) at such an angle, the error is therefore independent of R and m,_4; see
Theorems 1.8 and 1.9.

ord>

1.6 Bounds on the relative error in subsets of 25

Given the upper and lower bounds on the error in Theorems 1.6—1.9, a natural question is: is the error
any smaller in a neighbourhood of the obstacle (i.e., away from the artificial boundary)?

We focus on the case when either I\, g = dB(0,R) or I p is the boundary of a hypercube with
smoothed corners. We do this because the artificial boundaries most commonly used in applications
are [ p = dB(0,R) and TR is a hypercube, but in the latter case we need to smooth the corners for
technical reasons.

THEOREM 1.10 (Quantitative lower bound on subset of £2; when I = 9B(0, R)). Suppose that £2_ is
nontrapping, £2_ C B(0,1) and I}, x = dB(0,R) with R > 1. Then, there exists C = C(£2_,M,N) > 0
and Ry = Ry(M, N) > 2 such that for any R > R, there exists k, = ky(R, £2_,M,N) > 0 such that, for
any direction q,

[l — V”LZ(B(O,Z)\.Q_) -
— R2moa

for all k > k. (1.19)
lull 2320 2-)
Furthermore, if M = N = 0, then R, = 2.

That is, when FmR = dB(0, R), the error in B(0,2) is bounded below, independently of k, and the
lower bound has the same dependence on R as for the error in §2; (see Theorem 1.7). The fact that we
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12 J. GALKOWSKI ET AL.

have explicit information about R, when M = N = 0 is because in this case m,,,;, = 0, i.e., there are
no non-normal angles for which the reflection coefficient vanishes, and the proof is simpler.

THEOREM 1.11 (Quantitative lower bound on subset of 2 when I p is the boundary of a smoothed
hypercube), Suppose that §2_ is nontrapping and £2_ C B(0,1). Let € be the set of corners of
[—R/2, R/2]‘1 and, given € > 0, let

¢ = J Bk o)

xe€

i.e., €_ is a neighbourhood of the corners. Then, there exists C = C(£2_,M,N) > 0, and €, = €,(£2_)
such that, for any R > 4, if FH’R is smooth and

R R
Fer\Ce=|=5.5| \€& for0<e=e,
then there exists ky = ky(I; g, $2_,M,N) > 0 such that, for any direction a,

flu — V||L2(B(o,2)\_(2_) - C
— Rd-1)/2°

for all k > k.
el z2B02)\02-)

Thatis, when I g is a smoothed hypercube, the error in B(0, 2) is bounded below independently of &,
in a similar way to the error in §2j (see Theorem 1.8). However, whereas the lower bound in Theorem 1.8
is independent of R, Theorem 1.11 allows for the possibility that the large-k-limit of the error in B(0, 2) \
£2_ decreases with R.

REMARK 1.12 (Smoothness of boundaries). Theorems 1.6, 1.7, 1.8, 1.9 and 1.5 are proved under the
assumptions that I, and I3,  are C°°, with Theorem 1.5 also assuming that I;2° is C*°. In all these
proofs one actually requires that these boundaries are C"* for some unspecified m. One could in principle
go through the arguments in the present paper, and those in Miller (2000) about defect measures on the
boundary (which we adapt in § 2), to determine the smallest m such that the results hold, but we have
not done this.

1.7  Numerical experiments in 2-d illustrating some of the main results

These numerical experiments all consider the simplest boundary condition satisfying Assumption 1.4,
i.e., the impedance boundary condition 9,v — ikv = 0, which is covered by Assumption 1.4 with
N=D=1.

We first describe the set up common to Experiments 1.13, 1.14 and 1.15. The set up for
Experiments 1.16 and 1.17 is slightly different, and is described at the beginning of Experiment 1.16.
The absorbing boundary condition. We let FH,R = 0B(0,R), for some specified R > 0,d = 2, N =
D = 1in (1.6¢); therefore, M = N = 0, my = | and m,,;, = 0.

The PML solution used as a proxy for the exact solution. As a proxy for the solution u to (1.1), we use
Upm defined to be the solution of the boundary value problem analogous to (1.1), but truncated with a
radial PML in an annular region B(0, Rpml) \ B(0, R), with Rpml > R, using the particular PML described

€202 JaqWBAON g0 U0 Jasn dieys suuayied Aq 001 92//8S0PBIP/WNUBWI/EE0L 0 | /I0p/a|0Ie-aoueApe/eulewl/woo dnoolwapese//:sdjy Wol) papeojumod



LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 13

in (Collino & Monk, 1998, §3). The one change from (Collino & Monk, 1998, §3) is that we take the
scaled variable to be independent of k, i.e.,

0
,5:,0+i/ o(s)ds, p>R
R

(compare to Collino & Monk, 1998, Second displayed equation on page 2067 where R in our notation
is a in their notation). We choose

o(s)=(r—R?*/(R, —R)?>. (1.20)

pml
With this set up, the error between the PML solution and the solution to (1.1) decreases exponentially
with k by (Galkowski er al., 2023, Theorem 1.2). (Note, in particular, that o = fé in the notation of
Galkowski et al. (2023), and thus the choice of o (1.20) satisfies the regularity assumptions in Galkowski
et al. (2023) —indeed, this particular o is given as an example in (Galkowski et al., 2023, Equation 1.7).)
The width of the PML, R, — R is chosen as a constant independent of k (specified in each experiment),
which is always larger than the largest wavelength considered.

The FEM approximation space. The boundary value problems for u,, and v are discretized using
the finite element method with P4 elements (i.e., conforming piecewise polynomials of degree 4)
and implemented in FreeFEM++ (Hecht, 2012). The finite-element approximations to i, and v are
denoted by upy e, and v respectively, and the same mesh is used inside £2; when computing both.
We then compute the relative error

”umehFEM ~ Vhpem ||L2(.QR) 1.21)
” Uoml, hppm ” 12(2R)
using an element-wise quadrature rule. In the figures we plot the total fields corresponding to w5

and Vhea .i.e., e.xp(ikx @) = Upml gy @0 €xpikx - a)
field is easier to interpret than the scattered fields.

= Vigear? respectively; this is because the total

Ensuring accuracy of the FEM solutions. The relative H' errors in the FEM approximations of Upmi and
v are both controllably small, uniformly in k, if

kR (hpppk) P = C (1.22)

for some C > 0, independent of all parameters, where p is the polynomial degree and hgg), is the
meshwidth. This is proved in (Galkowski & Spence, 2023, Theorems 4.9 and 5.3), following earlier
results in (Du & Wu, 2015, Theorem 5.1 and Corollary 5.2) for the impedance problem with no scatterer
and (Li & Wu, 2019, Theorem 4.4) for the PML problem with no scatterer and p = 1 (see also
Chaumont-Frelet et al. (2022) for related results). Although p = 4, we choose hggy, to satisfy (1.22) with
p = 3. This choice ensures that the FEM error decreases as k — 00, and thus the difference between

Upml g — Vhy A0 Upm — v decreases as k — oo. We choose C > 0 (depending on R and p) such that

when k = 20, hk = 1 (i.e., there are 27 points per wavelength at k = 20). We use triangular elements,
and thus there is a variational crime caused by approximating the curved boundaries I5,  and 0£2_;
empirically this error is controlled if Ak is sufficiently small, and thus decreases as k — oo under the
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(a) Real part of total field corresponding to Upml,hpgy (b) Real part of total field corresponding to vpppy,
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o
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(c) Real part of error Upml,hpgy — Yhpem

Fi1G. 1. Scattering by a unit ball for k = 40 (as described in Experiment 1.13).

meshthreshold (1.22). The linear systems are solved using preconditioned GMRES, using the package
‘ffddm’ with tolerance 10~° and the preconditioner ORAS (Optimized Restricted Additive Schwarz), as
described in FreeFEM-++ (2020).

EXPERIMENT 1.13 (Scattering by ball, verifying Theorems 1.1/ 1.7).We choose I', = dB(0,1), R = 2,
Ry = 24 0.5, and a = (1,0) (i.e., the plane wave is incident from the left). Figure 1 shows the real
parts of the total fields

Eﬁ(exp(ikx -a) — ”pml,hpEM) R Eﬁ( exp(ikx - a) — and N (u (1.23)

vpml,hFEM) pmlLApem mel,hFEM)
at k = 40. We see the error is largest in the shadow of the scatterer near I7,.

Table 1 then shows the relative error (defined by (1.21)) for increasing k for R = 2,4, 8. The errors
in Table | are constant for R fixed as k increases, in agreement with Theorems 1.1/1.7. The errors for
R = 4 are roughly 4 to 4.5 times smaller than the errors for R = 2, and the errors for R = 8§ are roughly
4 times smaller than the errors for R = 4. Since m4 = 1, the factor R~ZmMod = R=2 in the bound (1.14)
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 15

TABLE 1  The relative error (1.21) against k for scattering by a ball (described in Experiment 1.13) for
two different values of R

k Relative error for ball R = 2 Relative error for ball R = 4 Relative error for ball R = 8
20 0.052557755 0.012321440 0.0035458354

40 0.050360302 0.011438903 0.0029200006

80 0.050034175 0.011050890

160 0.049001901

means that we expect the error for R = 4 to be 4 times smaller than that for R = 2, and the error for
R = 8 to be 4 times smaller than that for R = 4, at least when k > ky(R) (with ky(R) the unspecified
constant in Theorems 1.1/ 1.7).

EXPERIMENT 1.14 (Scattering by a butterfly-shaped obstacle, verifying Theorems 1.1/1.7).We choose
I'p, to be the curve defined in polar coordinates by

Iy ={(n0) : r=(03+sin>())(1.4cos(20) + 1.5),0 € [0,21)}

R = 2and R,,; = 2+ 0.5. We consider the two different incident plane waves corresponding to
a = (cos(7m/16),sin(7x/16)) and a = (cos(rr/16),sin(mw/16)).

Figure 2 shows the real parts of the total fields (1.23) at k = 40 with a = (cos(77/16),sin(77/16)),
computed with p = 2 and hpgy = 2/ 5)k=!1=1/4 In this case, the error is large in the shadow of the
scatterer not only near I}, but also away from the obstacle. The choice a = (cos(rr/16), sin(w/16))
gives a qualitatively similar picture.

Table 2 shows the relative error (defined by (1.21)) for this set up for increasing k and the two different
incident plane waves. For each a, the error is constant as k increases, again in agreement with Theorems
1.1/ 1.7. While the errors depend on a, the results are consistent with the statement in Theorems 1.1/1.7
that the error can be bounded, from above and below, uniformly in a.

EXPERIMENT 1.15 (Trapping created by the impedance boundary). We choose R = 2, R, =2+ 0.5,

k = 50, a = (10/@, 2/\/@), and £2_ the polygon connecting the points (0.5,0.125),
0.5,0.5), (—=0.5,0.5), (—0.5,-0.5), (0.8,-0.5), (0.8,—-0.125), (0.55,—0.125), (0.55,—0.375),
(—=0.375,—-0.375), (—0.375,0.375), (0.25,0.375), (0.25,0.125). The total fields are plotted in Fig. 3.

This set up is not included in Theorems 1.1/1.7, since §2_ is trapping. However, we include this
experiment to show that artificial reflections from the impedance boundary Iy can excite trapped waves
not present in the PML solution (as long as the incident angle is chosen in a careful way, depending on
£2_, k, and the position of 7).

EXPERIMENT 1.16 (Square [, investigating accuracy for increasing k with I fixed). Both this exper-
iment and Experiment 1.17 investigate the effect of a noncircular impedance boundary. I is the
square of side length 2R, centred at the origin. We still compute our proxy for u using a radial
PML, posing the boundary-value problem for u,., on B(0, 3R ,/2), With the PML region being
B(0, 3R quare/2+1/2)\B(0, 3R are /2). Observe that I C B(0, 3R 4/2), and so I7 is a fixed distance
away from the PML region. We choose §2_ = B(0, 1), Ryg4re = 2,4, 8 (observe that I7, is then inside
I'; — as required), and incident direction a = (cos 77/8, sin 7r/8). Table 3 then shows the relative error for
increasing k.
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F1G. 2. Scattering by a butterfly-shaped obstacle for k = 40 (as described in Experiment 1.14).

TABLE 2 The relative error (1.21) against k for scattering by a butterfly-shaped obstacle
(described in Experiment 1.14) and two different incident plane waves

k Relative error, incident angle 77 /16 Relative error, incident angle 7 /16
20 0.066501411 0.060746128
40 0.063926342 0.061104428
80 0.063212656 0.058719452

When I, = dB(0, R), Table 1 showed the error decreasing by roughly a factor of 4 as R doubled.

In Table 3 we see very different behaviour: going from Ry, = 2 t0 Ryg o = 4 the error decreases

by less than a factor of 2, and going from Ry .. = 4 10 Ry e = 8 the error does not decrease.

Although this experiment is not covered by Theorems 1.2/1.8, since the theorem requires I5, ; to be
smooth, the behaviour of the error is consistent with the main result of Theorems 1.2/1.8, namely that

€202 JaqWBAON g0 U0 Jasn dieys suuayied Aq 001 92//8S0PBIP/WNUBWI/EE0L 0 | /I0p/a|0Ie-aoueApe/eulewl/woo dnoolwapese//:sdjy Wol) papeojumod



LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 17

— 2.1e+00 216400
1 o}
8-5 o 05 =
05 = y 3
2 05 2
15 1 =
= -1.5
—-2.1e+00 — -2.2e+00
(a) Real part of total field corresponding to Upmi, hpgy (b) Real part of total field corresponding to v gy,
2.8e-01
[ 0.25
—02
~015 O
— 0.1 .

[ 0.05
0.0e+00

(c) Real part of error Upmi hpgu

~ VhrEM
FI1G. 3. Scattering by a trapping obstacle for k = 50 (as described in Experiment 1.15).

TABLE 3 The relative error (1.21) against k for scattering by the ball of radius 1 with I'y a square of
side length 2R centred at the origin and incident angle /8 (described in Experiment 1.16)

square
k Relative error for Ry, =2  Relative error for R, ... =4  Relative error for Ry, = 8
20 0.0832432 0.0582767 0.0529081

40 0.0802578 0.0578435 0.0528049

80 0.0772090

when I(7° 1= limp_, (I}, z/R) is not a ball centred at the origin, the relative error is bounded above

and below, independent of R, as k increases.
EXPERIMENT 1.17 (Square Ly g investigating accuracy for increasing dist(/7, 0) with & fixed). We now

investigate the error when I,  is a square as R, . increases with k fixed. This situation is not covered
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FiG. 4. Real part of error upmi pppyy — Vhpgy fOT scattering by a circle radius one with k = 10, Iy the square of side length 12
centred at the origin, and incident direction a = (cos(r/8), sin(,r/8)) (as described in Experiment 1.17).

TABLE 4 The relative error (1.21) against Ry, for
scattering by the ball of radius 1 with I'y a square of
side length 2R ..y, centred at the origin, k = 10, and
incident direction a = (cos(w/8), sin(mw/8)) (described
in Experiment 1.17)

quuare Relative error
4 0.0593483
8 0.0532721
16 0.0515247

by any of Theorems 1.6—1.9. However, we include this experiment since its results, along with those in
Experiment 1.16, indicate that the lower bound in Theorems 1.2/ 1.8 holds uniformly in R and k.

To investigate the case when R, increases with k fixed, we consider an equivalent problem when
Rquare 18 fixed, k increases, and the obstacle diameter decreases like 1/k. The set up is as in Experiment

1.16 with quuare = 2 (so the PML region is B(0,3.5) \ B(0, 3)), £2_ = B(0, 10/k) (so that we need k > 5
for I';, to be inside [7), and the incident direction a = /8. Figure 4 plots the relative error for this set
up with k = 30, and Table 4 displays the relative error (1.21) for k = 20, 40, 80. This set up is equivalent
to 2_ = B(0,1), k = 10, and quuare = 4,8, 16 and Table 4 is labelled with these parameters.

The fact that the last three entries of Table 4 and the last entries in the second and third columns of
Table 3 are all around 0.05 suggests that some value near 0.05 is a lower bound on the relative error in

both the limit k — 00 with Ry, fixed and the limit Ry, — 00 with k fixed.

1.8  Comparison to the results of Halpern & Rauch (1987)

Out of the existing results on absorbing boundary conditions in the literature, the closest to those in the
present paper are in Halpern & Rauch (1987). Indeed, Halpern & Rauch (1987) used microlocal methods
to study the time-domain analogue of the problems (1.1)/(1.6) when §2_ = { (i.e., no obstacle), and
proved a bound on the error between the solutions of the analogues of (1.1)/(1.6) at an arbitrary time.
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While the results of the present paper also use microlocal methods (using defect measures instead
of propagation of singularities used in Halpern & Rauch (1987)), differences between the results of the
present paper and the results of Halpern & Rauch (1987) are the following.

* The constants in the main error bound in Halpern & Rauch (1987) (Halpern & Rauch, 1987,
Equation 5.1) depend in an unspecified way on time. The results of the present paper hold
uniformly for high-frequency in the frequency domain, which is analogous to proving results for
arbitrarily-long times in the time domain.

* The constants in the main error bound in Halpern & Rauch (1987) are not explicit in the distance
of the artificial boundary from the origin. In contrast, the error bounds in Theorems 1.8—1.11 are
explicit in R.

e Halpern & Rauch (1987) does not have to deal with glancings rays because it assumes that
(i) £2_ = 0, and (ii) the data is supported away from the artificial boundary. In contrast, (i) we
allow the obstacle £2_ to be nonempty and have tangent points, and so have to deal with glancing
here, and (ii) we allow fin (1.11a) to have support up to the boundary I, r (as is needed to use the
bound (1.12) in, e.g., the analysis of finite-element methods); therefore a large part of the analysis
in §4 takes place at glancing.

1.9  Outline of paper

§2 contains results about semiclassical defect measures of Helmholtz solutions, with these results used
in proofs of both the upper and lower bounds in Theorems 1.6—1.11.

§3 proves three results about outgoing solutions of the Helmholtz equation (i.e., solutions satisfying
the Sommerfeld radiation condition (1.1c)), Lemmas 3.1, 3.2 and 3.3, with the first used in the proof of
the lower bounds, and the last two used in the proof of the upper bounds.

§4 proves Theorem 1.5 (the well-posedness result). Important ingredients for this proof are the trace
bounds of Theorem 4.1; since the proofs of these are long and technical, they are postponed to §6.

§5 proves Theorems 1.6—1.11. The upper bounds follow immediately from Theorem 1.5 and
Lemma 3.2. However, the lower bounds require showing that there exist rays, created by the incident
plane wave, that reflect off I';, and hit I,  at an angle for which the reflection coefficient is not zero.
Furthermore, to prove the qualitative bounds Theorems 1.7—1.11 we need to control various properties
of these rays explicitly in R. §5.3 outlines the ideas used to construct these rays.

2. Results about defect measures of solutions of the Helmholtz equation
2.1 Restatement of the boundary-value problems in semiclassical notation

While we anticipate the vast majority of ‘end users’ of Theorems 1.6, 1.7, 1.8 and 1.9 will use the
Helmholtz equation in the form (1.1) with frequency k (and be interested in the limit k — 00), the tools
and existing results from semiclassical-analysis that we use to prove these results are more convenient
to write using the semiclassical parameter # = k~! (and the corresponding limit 2 — 0).

The boundary-value problem (1.1) therefore becomes,

(~H*A-Du=0 ing,, (2.1a)
u=exp(ix-a/h) onlp, and (2.1b)

ou . 1 51
ha—lMZO m asr — o0, (C)
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and the boundary-value problem (1.6) becomes,

(=h?A—1)y=0  in £, (2.2a)
v = exp(ix - a/h) on Iy, (2.2b)
Nhdv—iDv=0 onlyp. (2.2¢)

In the rest of the paper, we use the ‘h-notation’ instead of the ‘k-notation’.
Appendix A recaps semiclassical pseudodifferential operators and associated notation.

2.2 The Helmholtz equation posed a Riemannian manifold M

While the main results of this paper concern the Helmholtz equation posed in £2 C R?, in the rest of this
section (§2),1n § 4, and in §6, unless specifically indicated otherwise, we consider the Helmholtz equation
posed on a Riemannian manifold M with smooth boundary dM and such that there exists a smooth
extension M of M. The reason we do this is that we expect the intermediary results of Theorems 2.15
and 4.1 to be of interest in this manifold setting, independent of their application in proving the main
results (Theorems 1.6—1.11). This manifold setting involves the operator P := —hA e 1, where A ¢ is
the metric Laplacian. Nevertheless, for the reader unfamiliar with this set up, we highlight that M can
be replaced by £2p, M replaced by R?, and A replaced by A ¢» and all the statements and proofs remain
unchanged.

2.3 The local geometry and the flow

Near the boundary M, we use Riemannian/Fermi normal coordinates (xl,x’), in which I" is given by
{x, = 0} and £2; is {x; > 0}. The conormal and cotangent variables are given by (£;,&’). In these
coordinates,

P:=—I*A, — 1 = (hD,))* — R (x;,X',hD,)) + h (a,(¥)hD,, + ay(x,hD,,)), (23)

where a; € C*°, a, and R are tangential pseudodifferential operators (in sense of §A.3), with a, of order
1, and R of order 2 with h-symbol r(x;,x’, &), with r(0,x,&") = 1 — |§/|§r (where the metric g in
the norm is that induced by the boundary). That is, r(0,x’, ") is the symbol of one plus the tangential
Laplacian; in what follows, we often abbreviate r(0,x', ") to r(x/, &’).

The fact that P is self adjoint implies that R is self adjoint, a; = @y, and [AD, ,a,] = ay — (ap)*
(with the latter two conditions obtained by integration by parts in the x; variable near I"). Let p denote
the semiclassical principal symbol of P := —thg —l,ie,p= |§|§ — 1. In a classical way (see, e.g.,
(Hormander, 1985, §24.2 page 423)), the cotangent bundle to the boundary 7*9M is divided in three
regions, corresponding to the number of solutions of the second-order polynomial equation p(&§;) = O:

s the elliptic region £ := {(x',&") € T*OM, r(x',&') < 0}, where this equation has no solution,

 the hyperbolic region H := {(x’, £ e T*OM, r(x, &) > 0}, where it has two distinct solutions
g = —fr(d &) and EM = /r(,€), (2.4)

s the glancing region G := {(X',&') € T*0M, r(x',’) = 0}, where it has exactly one solution,
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The hyperbolic region plays a crucial role in obtaining the lower bounds in the main results, while
we perform analysis near glancing to obtain the upper bounds.

Withp = |& |§, — 1 (i.e., the semiclassical principal symbol of P := —h?A e~ 1), the Hamiltonian
vector field of p is defined for compactly supported a by
Hpa = {p,a},

where {-, -} denotes the Poisson bracket. Let H;‘ denote the formal adjoint of Ha, and let ¢,(p) denote
the generalized bicharacteristic flow in M (see (Hormander, 1985, §24.3)), defined such that

(t,p) € R x SEM — ¢,(p) € SEM. (2.5)

In particular, when M = £2 and M = R, @,(p) € S*Q7Rd = {(x,&) € S*R? x € Q_R} ={xe .Q_R,S €

R? with |£] = 1). By Hamilton’s equations, away from the boundary of M, this flow satisfies x; = 2§;
and él- = 0, so that it has speed 2 (since |£| = 1). Recall that the projection of the flow in the spatial
variables are the rays.

We now defined some projection maps. Let m, : T*M — M be defined by mpa(x,&) = x. Let
Ty T;MM N {p = 0} — T*9dM be defined by

om (0,X,61,8") = (W, &). (2.6)

Let mypin 2= Topmle, <o and 1et oy o 1= Typrle, <0

REMARK 2.1 (The Dirichlet-to-Neumann map away from glancing in local coordinates). In the notation
above, locally on I' g, the map u +— hD, u = —hd,u/ihas semiclassical principal symbol —/r(x’,§").
The minus sign in front of the square root is chosen since, when &£’ = 0 (i.e., u corresponds to a normally-
incident wave), the outgoing condition is that D, u = —u (i.e., d,u = iku), as opposed to hD, u = u
(i.e., 0,u = —iku).

2.4  Existence and basic properties of defect measures

We first assume that u € leo . (Rd) is a solution to
Pui=(—hA,—Nu=hf onU,  ulgay=0, (2.7)

where U C R is open with smooth boundary I" and f € Lg (R%). When taking traces of u, we always

omp
do so from U rather than from R? \ U. To define the defect measures associated with u we need the
following boundedness assumption.

AssuMPTION 2.2 Given x € C° (Rd), there exists C > 0, and &, > O such that for any 0 < h < h

||X’/‘||L2(U) + ||u||L2(r) + ||h3n“||L2(r) =C.

We highlight that Assumption 2.2 is satisfied when the problem is nontrapping; see Lemma 5.1
below.

€202 JaqWBAON g0 U0 Jasn dieys suuayied Aq 001 92//8S0PBIP/WNUBWI/EE0L 0 | /I0p/a|0Ie-aoueApe/eulewl/woo dnoolwapese//:sdjy Wol) papeojumod



22 J. GALKOWSKI ET AL.

THEOREM 2.3 (Existence of defect measures). Suppose that uy, solves (2.7) and satisfies Assumption
2.2. Then there exists a subsequence /;, — 0 and non-negative Radon measures 4+ and w on T*M,
Vg, Vs V; on T*OM such that for any symbol b € C° (T*M) and tangential symbol a € CX(T*oM),

as { n—) cj>o
(b (x. by, D) u,u) — / b(x,&) du, (b (x. 1y, D) u.f) — / b(x,&) di,
@@@pﬂw%e/ﬂhﬁww @@%Mwmpwwre/mﬂﬂw3
{a (x, 7y, D) hy, Dy s Iy, Dy 1) . — / a(x,&") dv,. (2.8)
Reference for the proof. See (Zworski, 2012, Theorem 5.2). O

REMARK 2.4 (The measure v;). The joint measure v; also describes pairings with the Neumann and
Dirichlet traces swapped, since, by (A.2),

(a (' by, D) u, by, D) = (a (X', g, D) by D s u) . — /Edvj = /a dv;.

We use the notation that s(a) := [ adpu for the pairing of a function and a measure. We also use the
notation that b (f) := [ f bdu, where b € L*(dp) and f € L' (du).
We now recall the following two fundamental results.

LEMMA 2.5 (Invariance and support of defect measures). Let u satisfy (2.7) and let u be a defect measure
of u.
(i) In the interior of U,

w(H,a) = =231 (a) 2.9)

for all a € C2°(T*U); in particular, if f = o(1) as & — 0, then  is invariant under the flow.
(i1) p is supported in the characteristic set:

suppu NT*U C X, ={p=0} (2.10)

References for the proof. (2.9) was originally proved in Gérard (1991); see also (Zworski, 2012, Theorem
5.4), (Dyatlov & Zworski, 2019, Theorem E.44). (2.10) was proved in the framework with boundary by
(Miller, 2000, Lemma 1.3); see also (Galkowski et al., 2020, Lemma 4.2). O

Part (ii) of Lemma 2.5 implies that 4 is only supported on |§| = 1; this is the reason why we only
consider the flow (2.5) defined on SI%M .

2.5 Evolution of defect measures under the flow
LEMMA 2.6 (Integration by parts). Let B; € C°((—26,29),; wliRI"Y), i = 1,2, and let B = By, +
B\hD, . If

B =B,,  Bj+|hD, .B/| =B, (2.11)

X1?

€202 JaqWBAON g0 U0 Jasn dieys suuayied Aq 001 92//8S0PBIP/WNUBWI/EE0L 0 | /I0p/a|0Ie-aoueApe/eulewl/woo dnoolwapese//:sdjy Wol) papeojumod



LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 23

then, for all u € C®°(M),

i 2
E ([P, B]I/l, u>L2(M) = _ZS (BM,PM)LZ(M)
— (ByhDy u,hDy ) 50— ((Bo + h(Dy, By) — h(Byay — @;By) hDy w5 500
— (Bou, hD,, u)L2 o ((h(D,,By) + By (R — hag) + ha;B) u, u)L2 " (2.12)

CoROLLARY 2.7 Let u satisfy Assumption 2.2, and thus have defect measures as in Theorem 2.3. Given
a € CX(T*M), let

a(xs Els é/) + a(-x’ _sl s g/)

a(-x’ ‘S;:ls E/) - Cl()C, _%_1’ s/)

eyen (X, "51’5/) = Aoqq (X, 51’5/) =

2 ’ 2¢,
so that a(x, §,&") = deyen 1, &) + &A%, &1, &"). Then
w(H,a) = =231/ (@) — v, (agqq) — 200;(@ayen) — v (r(x', € )aggq)- (2.13)

Proof of Lemma 2.6. First recall that R is self adjoint, a; = a;, and [AD

- a1l = ag — (ag)*; see §2.3.
By integration by parts,

2 2 h
((hD,,)” Buu) 2 ) = (But (hD, ) )20y, — 7[(thlBu, W2 ongy + (B D )2 |
and
h
(a\hDy Bu.u), = (Bu. (a\hD, + [hDy .a\]) u) 5, — " (Bu, ayu) 2 5)-

Using theses two identities, the expression for P (2.3), the self-adjointness of R, and the fact that
[hD,,,a;] = ag — (ay)*, we obtain that

+ <Bu, thl u) +h <Bu, a; u)

L2(0M)

h
(PBu,u) 25y = (Bu, Pu) 2 pp) — n [(hDXIBu, u) 120M)

L2(aM)] :
(2.14)

The definition of B and the form of P in (2.3) imply that

hD, Bu = By (hD, )’ u+ (hD, B, + By) (hD, u) + (hD, B,) u,
= B, (R — hag — ha\hD, ) u + B,Pu+ (hD, B, + By) (hD, u) + (hD, Bo) u. ~ (2.15)
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Therefore, using (2.14) and (2.15), we have

i i i
E ([P, B]Li, M)LZ(M) = E <PBM, u>L2(M) - E <B(PM),M>L2(M)

i i
= Z <BM,PM)L2(M) - Z (B(Pu)’u)LZ(M)

— (BhD, u,hD, u) ((Bg+ h (D,,B,) — h(Bya; —a;B))) hD, u,u)

L2(0M)

([n(D,,By) + B, (R — hay) + ha; B | u, u)

L2(dM)

— (Bou, th1 u) (Bl (Pu), u)

L2(0M)*
(2.16)

L2(M) L2OM)

Next, using the definition of B, integration by parts, and (2.11), we find that, for any v, u,

h
(Bv,u) 21y = - (v, BT”)LZ(BM) + <v, Biu + hD,, (BTM))LZ(M)
h
= = 0 Byt g, + 0 Bu) 2 2.17)

Letting v = Pu, combining (2.16) and (2.17), and using the fact that By = BT, we obtain

i i
([P, B]M, M)LZ(M) = Z (Bl/l, PM)LZ(M) - Z (Pu, BM)LZ(M)

=1~

— (BhD, u,hD, u) By + h (D,,B)) — h(Bya; —a;B))) hD, u,u)

L2(M) <( L2(dM)

— (Bou, hD, u) , o~ ([n (D, By) + By (R — hag) + ha, By u,u) , oM
which is (2.12). O

Proof of Corollary 2.7. Letting h — 0 in (2.12), using the third equation in (A.2) and the definitions of
the measures in Theorem 2.3, we have

J(H,b) = =230 (b) — v, (by) — 29v;(by) — vy (rby), (2.18)

where b = o(B), b; = o(B;). The idea of the proof is to construct a B satisfying the assumptions of
Lemma 2.6 with 0 (B)) = ayyq and o(B|) = a,,., (and thus o (B) = a). Since (2.13) is linear in q,
without loss of generality, we assume that a is real. Since a,,, and a, g4, are both smooth, even functions
of &, abusing notation slightly, we can write

even

eyenjodd (% &1 é/) = Geyenfodd (X ‘512’ s/) (2.19)

Let

Qgyen (6, §') = dgyen (X, r(x), X, 6N, &), Toaq(*, &) = agqq (v, r(x;, ¥, €),8), (2.20)
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and
A(X,E") = Agyen (0, &) + §1Gogq (. E).
Since $*M = {2 — r(x;,x',&') = 0} and H, (£ — r(x;,x', ")) = 0 (by (2.3)),
alg:jy = algjy and  H,algj; = H, (alg-j7);
therefore

Hyalg;; = H, (5|S*1\71)~

Since p is supported on {p = 0} by (2.10),

= (221)
Let
By(x,hD,,) := Eeven(X, hDy) +2(Eeven(x7 th/))* + % |:th1 s ZiOdd (x,hD ) +2(2iodd (x, th’))*]
and
Aoaa (%, hD.y D))"
B,(x,hD,) := g6, D) + (dggq (x, hD,)) |

2
Then (2.11) is satisfied and by (A.2), (2.20), and (2.19),

0 (B)(%,€') = Ty (:8) = Goyen (¥.£7,")  on S*M.

Similarly, o (By)(x,&") = ay44(x, 512, ¢’), and thus o(B) = a(x,&,§’) on S*M. The result (2.13) then
follows from (2.18) and (2.21). [l

2.6  Properties of defect measures on the boundary

In this subsection we review the calculations from Miller (2000), adapting them to the case when the
right-hand side of the PDE is nonzero.

REMARK 2.8 (Notation in Miller (2000)). Since our results rely heavily on the results of Miller (2000),
we record here the correspondence between the notation in Miller (2000) (on the left) and our notation
(on the right):

_ infout __ gin/out _ _ N _ iN __
Ap_4r, k =£ , o=§&, s=x, VvV =4y, 1% —ZVj~

Recall that u has defect measure p, trace measures vy, v, and v, and f and u have joint defect
measure /,Lj . By (Galkowski et al., 2020, Lemma 3.3), /,Lj (a) is absolutely continuous with respect to u,
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and / = B du for some B € L' (du); hence (2.13) becomes

W(H,a +23a) = =1, (dogq) — 2RV (deyen) — Vg(Faggq)- (2.22)

For convenience, we define the differential operator

L:=H,+23p.

LEMMA 2.9 There is a distribution 1 on T MIVI supported in B*dM such that
L (uly, o) =8(x) ® 1, (2.23)
where ® denotes tensor product of distributions. Furthermore, on 7, A} (H),

W= (e — &) @ W 5 (6 — ") @ W, .24

in/out

where @ are positive measures on 7*dM supported in 7, and £ are defined by (2.4).

Proof. The proof follows (Miller, 2000, Proposition 1.7), replacing H, at every step by L. In particular,
by (2.22), L* (uly,~0) is supported in {x; = 0}, and hence is of the form Zi:o sW (1) ® w where each
[y, is a distribution on T; MA~4 . But, letting x € C2°(R) with X(k) (0) = 1, for k < ¢ and applying (2.22)
toa, = ezx(e_lxl)b(x’,é), we have for £ > 1,

14

Zeszuk(b) = (1, 0La,) = n(l, >0(e€*lH[,X + eeprb —23Ba)) - Oase — 0.
k=0

In particular, ;, = 0 for k > 1 and (2.23) follows.

The result (2.24) about the structure of 1 in the hyperbolic set follows by considering a small
neighbourhood V in T*9M of a point p € H and § > 0 such that each geodesic trajectory of length
2§ centered in 7, [Vll (V) intersects the boundary exactly once. We may then use

(—8,8) x m (V) 3 (1, p) — ¢,(p) € Vs C T*M

as coordinates on an open neighbourhood, V; of 7, A,l, (V). In these coordinates, writing it for the pull-back
of 1, _ou under ¢,, we obtain

(0, +23B)L = 8(1) ® .

In particular, jx is null V,, forany 7, € (=34, 4), and testing by € x (te " Hbwith0 < b € Ccx (na_ﬁ,l, V),
and x € C°(—6,8) withrx'(r) < Oon|t] > 0, x(0) = 1, we have

() (€7 b — 2e3Bx (e 7' D)b) = uO(b).
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Now [ is identically zero on ”i;1 (V) x [0,00) and on no_ui (V) x (=00, 0]. Therefore, for b supported

i 7500 (V)
1O(b) < liminf ([X’(e_lt)b - 263ﬂx(e_1t)b]1t>0) <.
e—0

Similarly, for b supported in rri;1 V), u0(b) > 0. In particular, wlisa positive distribution on Tl’i;1 (H)
and a negative distribution of 77} (H), and the result follows. g

Next, we decompose & into its interior and boundary components, with the following lemma the
analogue of (Miller, 2000, Proposition 1.8).

LeEmMMA 2.10 There is a positive measure ,ua ong C T; MM such that
=1, ou+80x) ®8H,x) ® .
Proof. Let x € CX(R) with x(0) = x’(0) = land b € C®[R x T*R"~1). Then, with a, =
ex(xle_l)b(x, &’), (2.22) implies that
n(La,) = —2eMv;(D).

Now,

La, =2x (xe ") H,x,b + O(e).
Therefore, by the dominated convergence theorem,

w(La,) — M(1x1=0prx1)
and, since |vj(b)| < 00,
I,L(lx]:()pr.xl) - 0.

Since b was arbitrary, u decomposes as claimed. (]

The following lemma is the analogue of (Miller, 2000, Lemma 1.9).

LEMMA 2.11 On € (ie., r < 0), %y; =0and v, = —rv,.

Proof. Let x € C*°(R) with x = 1 on (—o0, —1] and supp x C (—00,0). Let b = b(x,&’) € C° and
define b, = x (e~ 'r)b. Then, by (2.22) together with the fact that supp u C S*M,

0 = u(H,b, +238b.) = =29, (b,).
Sending € — 0%, we obtain

0 = 29tv; (b1,_).
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Since b was arbitrary, v;1, _, = 0. Replacing b by b(x, § ")&, and applying the same argument, we obtain

vn1r<0 = _rvd1r<0'
O
Next, we prove the analogue of (Miller, 2000, Proposition 1.10).
LEMMA 2.12 On the hyperbolic set H,
(@)
1 . 1
200 = Jr(d, v, + 20y, + —— | 2u™ = /r(x, €N, — 2Ry, + ——v .
1% ( E) d j /—r(x/’%_/) n 1% ( %_) d J r(x’,é;-") n
(2.25)
(i) If ™™ = 0 on some Borel set B C H, then
2
uott =20y, = 2Vr(x, v, = ———=v,. (2.26)
! r(x',§")
(iii) If
- ZS'ivj = Ny, = 4(9’%04)|0(|_2vn 2.27)

on some Borel set B C H for « a complex valued function such that « + 2./r(x’, £’) is never zero on
B, then

MOUt — aref'uin, (228)

where

et - ‘2«/r(x/,5’ —

_ 2
—2«/1’(T,$’)+Ol on 3, (2.29)

where the superscript ‘ref” stands for ‘reflected’. If instead, @ — 24/ is never zero, then

(aref)—luout — Min.
Proof. (i) By combining Lemmas 2.9 and 2.10,
Lu :B(xl)®,u0—+-£*(8(x1)®8(pr1)®ua). (2.30)

Let x € C*°(R) with x = O on (—oo0,1]and x = 1 on [2,00). Fora € C°(R x T*dM) (so a =
a(x;,x',&"),leta, = x(e™! |H,x)a. Since H,x; = 2§, a, = afor [§;| > € and a, = Ofor [§,]| < €/2.
Combining (2.30) and (2.22), and using the facts that a, is even in §; and a, = O for |pr1| <eg/2, we
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find that
10 (acly o) = n(Lay) = =29 (al,, —o)-
By (2.24),
X 2IE"M/€) ™ (aly, —o) — x (2167 1/€) 1" (aly, —o) = 29, (acly,—o)-
Therefore, by the dominated convergence theorem,
u" — p = —2%v; onH. (2.31)
Similarly, since a £, is an odd function of &, (2.30) and (2.22) imply that
10a k|, —g) = m(Lag) = —vg(ral,,_) — v,(@cly,—o)-
By (2.24),
E (21611/€) 1™ (aly, o) — &7 x (21E7™1/€) 1™ (aly =) = =]y, o) = Vel —o)-
Therefore, by the dominated convergence theorem,
— (™ + % = —rv, — v, onH. (2.32)

The result (2.25) now follows from solving (2.31) and (2.32) for ™™ and p°".
(ii) By the Cauchy—Schwarz inequality and similar reasoning used in the proof of (Galkowski et al.,

2020, Lemma 3.3),
il < /v v/ VT (2.33)

By (2.25), when " = 0,

2Ry, = vy + v, /T (2.34)
However, for both (2.33) and (2.34) to hold, we must have \/rv; = v,//r, and (2.28) follows.
(iii) The equation (2.28) follows from using (2.27) in (2.25). [l
LEMMA 2.13

- H[%xl,ua =4v,l1g.

In particular, 12 is supported in ngl < 0 and v, 1 does not charge HI%xl > 0.
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Proof. We follow (Galkowski et al., 2020, Lemma 4.7). Since prl = 2¢,,
H,(2a(x,£)§) = aHyx, + 2§ H,a.
Now, put a, = x (€~ 'x))x (e~ !r(x,£))2a&, where x € C2°(R) has x = 1 near 0. Then,
H,a, = ax (e_lxl)x(e_lr)HI%xl + oM ([x (e x)| + [x/ (7' n] + €73,

where we have used that on S*M, H = —H pS 12 = O(§)). Then, by the dominated convergence theorem,

M(Hpaé) — %Ma ([Hl%xl]a).

Using (2.22), we have
w(Hya,) = =2uu(3pa,) — vg2x (€ ryra) — v, 2x (€' Na).
Using the dominated convergence theorem again, using that &, = O(/r) on S*M, we have
n@23a,) — 0,

and hence

b? (B3 ]a) = v, alg).
as claimed. U
LEMMA 2.14 Let g = q(x;,x,&,,x,€) € C2°(T*M). Then,

(H,q) = =23B1(q) + (1™ — 1) (gl =) + 31° (MG Hyx, g1, o)

where /v, = V.
Proof. By Lemma 2.12,

W(Lg) = —29,(dl,—o) = (1™ — 1 (gl —o) — 2901 ggl,, o).

Now, since v; < v, we may write v; = i v, and use Lemma 2.13 to obtain

, ¥ 1 L
— 20;(Iggl,,—g) = —2%v, (¥ 154l,,—o) = 5“8 (N H x4l )

and the claim follows. O
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THEOREM 2.15 Suppose that 9M is nowhere tangent to H,, to infinite order. Then, for g € Ccx® tT*M)

t . . 1 ..
T (g o) —m u(q) = /0 (—ZSN*M“r S(xp) ® (U™ — p® + z(mn‘])H[%xl,bnglxl:O) (q 0 ¢*) ds,
(2.35)

where T*M denotes the b-cotangent bundle to M and = : T*M — PT*M is defined by
w(xy, X, 6,8 = (x, X, x, 6, &) (see (Galkowski et al., 2020, Section 4.2)).

Proof. This result is analogous to (Galkowski et al., 2020, Lemma 4.8), except that (Galkowski et al.,
2020, Lemma 4.8) only considers zero Dirichlet boundary conditions, and thus only —237, w/ appears
on the right-hand side of (Galkowski et al., 2020, Equation 4.3) compared to (2.35) (note that Galkowski
et al. (2020) defines the joint measure 1/ differently to (2.8), with the result that the signs of 1/ are
changed here compared to in Galkowski ef al. (2020) — compare the definitions (Galkowski et al., 2020,
Equation 3.1) and (2.8), and then the sign change in the propagation statements (Galkowski et al., 2020,
Lemma 4.4) and (2.13)).

Examination of the proof of (Galkowski ef al., 2020, Lemma 4.8) shows that the only time absolute
continuity of the measure w; in that proof is used is in the higher-order glancing set. Therefore, since
Lemma 2.14 shows that wH,q) = (g for some measure that is absolutely continuous with respect
to u on the glancing set, the result (2.35) follows in exactly the same way as in (Galkowski et al., 2020,
Equation 4.3 and Lemma 4.8). U

2.7 Linking Lemma 2.12 to concepts in the applied literature

The summary is that ™" in (2.29) is the square of the reflection coefficient describing how plane waves
interact with the boundary condition

a(x',hD,) ,

hD, v(0,x') = — 3

0,x), (2.36)

where « is a semiclassical pseudodifferential operator. Indeed, when o = 2, the boundary condition
(2.36) corresponds to the first-order impedance boundary condition (hD,, + 1)v = O atx; = 0, i.e,,

(—BX1 — ik)v = 0 (since h = k’l). The Helmholtz solution

V(x) = exp (ik(g’ =1 |§’|2x1)) + Rexp ik(g/ A1 - |.§/|2x1),

in the half-plane x; > 0, corresponds to an incoming plane wave with unit amplitude, and an outgoing
plane wave with amplitude R. Imposing the boundary condition (3, — ik)v = 0 atx; = 0, we obtain
that

e YIZEP -1
N

which equals va'f when o = 2 (since r(x',&’) = /1 — |&’|2 when I is flat).
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32 J. GALKOWSKI ET AL.

The interpretation of ~/a™f as the reflection coefficient is consistent with the relation o' = ot i

in (2.28). Indeed, the defect measure of the solution v of (1.6) records where the mass of the solution
is concentrated in phase space (x,&) in the high-frequency limit 2 — O (see, e.g., the discussion and
references in (Lafontaine ef al., 2022, §9.1)). The relation u°" = o™ ;I" therefore describes how much
mass of |v|? (since the defect measure is quadratic in v) is reflected from Ly g

The expression for ™' in (2.29) shows that, to minimize reflection from I g (ie., to make aret
small), /2 must approximate the symbol of the Dirichlet-to-Neumann map /r(x’,&’); recall the
discussion in § 1.3 and see, e.g., (Ihlenburg, 1998, §3.3.2) for similar discussion in this frequency-domain
setting, and, e.g., (Engquist & Majda, 1977b, pages 631-632), (Engquist & Majda, 1979, Equation 1.12),
(Tsynkov, 1998, §2.2), and (Givoli, 2004, §3) for analogous discussion in the time domain.

2.8 Relationship between boundary measures and the measure in the interior

The goal of this subsection is to prove Lemma 2.16 relating the measures u™ and ©°" to the measure
Wl p«y- We first introduce some notation.
Recall that 7;, is defined by (2.6); let

poul/in TN ”3_11/117'[ ) {gl — goudin} c TgMM
be defined by
pout/in(x/’ %_/) — (0, x/’ Eout/in(x/’ E/), S/) (2.37)

(i.e., p°¥i" takes a point in 7 and gives it outgoing/incoming normal momentum).
For g € H, let

"(q) = sup {r > 0 : 70, (@) N (I \ {my(9)}) = ¥} (2.38)

i.e., 1°"(g) is the positive time at which the flow starting at ¢ = 0 from p°(g) hits I again. Similarly,
let

"(g) = inf {r < 0 : w0, (" (@) N (M \ {7y (9)}) = 0}

i.e., "(g) is the negative time at which the flow starting at 7 = 0 from p"(g) hits I" again.
Given V C H, let B(V), B™(V) C T*U be defined by

BY(Y) == U {o, P> (@), 0 <1 <1™(¢9)}, and
qey

B"W) = | J {e, (™ @), @) <t <0}
qeV

i.e., B°"(V) is the union of the outgoing flows from points in V up to their times °" and i.e., B™(V) is
the union of the incoming flows from points in V up to their (negative) times f;,.
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The whole point of these definitions is that in B°"*()) we can work in geodesic coordinates

(p.1) € (mapgV N {E =6}) x Ry =p™ (V) x R,

deﬁned for (x,£) € Bby (x,€) = ¢,(p) (in a similar way to in the proof of Lemma 2.9). Similarly, in
B™(V) we work in geodesic coordinates

(p.1) € (mypV N {E =&} x R_ =p"(V) x R_.

In the following lemma, recall that the pushforward measure f,u is defined by (f,u)(B) =
n(f~1(B)).

LEMMA 2.16 (Relationship between boundary measures and the measure in the interior). Let u satisfy
(2.7) with f = o(1) as h — 0, and let u be a defect measure of u. Let u®", u'™ be defined by Lemma
2.9. Then, in the geodesic coordinates described above,

= (P QVru®) @ dt on B*(V) and p= (p{'2/ru™) ® dt on BM(V),
where dr denotes Lebesgue measure in ¢ and ® denotes product measure.
Proof. We prove the result for B°"())); the proof for B™(V) is similar. By Part (i) of Lemma 2.5, u is

invariant away from the boundary, therefore u is invariant on £¢ > 0 (away from I"). Since the flow is
generated by 9, in geodesic coordinates, and, in these coordinates, BOUt  {t > 0},

nw=nulp,t)= H«l(P) & 1t>0 dr,

for some p,. Since pl,, o =0,
My = l’v1151>0’

and thus, on B%

pw=pn(P)g .o ® 1, 0ds, (2.39)
from which

= py(p) g oo ® 8(0). (2.40)
On the other hand, since x; = 0 is # = 0 in geodesic coordinates, Lemma 2.9 implies that

Hyp=Lu=Q2JNs0) @85 —&") @u™ — /NS0 @6 (& — ") @ u®™, (241

where the factors of 2,/r arise because |dx, /01| = 2|&,| = 2./r.
Therefore, since B°"(V) C 718_1‘,111} N{g = &M and 9, = —H;,“,u, comparing (2.40) and (2.41),
we find that p; = pQ"(24/ru®") in B°" (note that po"* appears because p = p°*'(g) for g € V and u°"

*

acts on V). The result then follows from (2.39). O
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The following corollary of Lemma 2.16 is an essential ingredient of our proofs of the lower bounds
in Theorems 1.6, 1.7, 1.8, 1.10 and 1.11.

COROLLARY 2.17 (Relationships between incoming boundary measures, outgoing boundary measures,
and measures in the interior) Let u be a solution of (2.7), and let i be any defect measure of u.
(1) (Between two pieces of the boundary.) Let V| C H. Assume that sup gV °"(g) < oo, and that

Tom (Pron ) (P°"(¢))) € H forall g € V,. Let

V2 = U ﬂaM(gﬂtout(q) (Pout(q))) CH
qu1

(i.e., V, is the union of the outgoing flows from points in V,, projected into 7*9M). Then

QY™ (V) = @V (V). (2.42)

(i) (Between the boundary and the interior.) Let V C H and A C T*U. Then

t°"‘t(q)
n(A) = (;25 /0 L (¢, (™" (@) dt) QV/rH W) (2.43)
and
O . .
p(A) = (inf / L, (¢, (" (9)) dt) Q™). (2.44)
qEV fin(q)

The integrals on the right-hand sides of (2.43) and (2.44) are the shortest times that elements of V
spend in A under, respectively, the outgoing forward flow and the incoming backward flow, with the
flows considered until they hit I” again.

Proof of Corollary 2.17. (i) The definition of V), implies that
By V1) = Bin(V2);
let B denote this set. In 3, we work in both sets of geodesic coordinates:
(01, ) € P (V) x R, and (py.1) € pin(Vz) x R_
as defined above. The coordinates (pj(q), t(q),j = 1,2, of g € B satisfy
h=6,0" )+t and  py=¢.,, () =D (o). (2.45)

The first equation in (2.45) implies that df; = dt,. By Lemma 2.16, in 5,

w= (P Vr™)y, (o) ® diy = (PR V™), (py) @ diy,
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out

where the subscripts V| and V, show on which neighbourhood of H p°*, ™, 1®, and p'™ are considered.

This last equality and the second equation in (2.45) imply that
(PrVr™)y, = 2,72 (P2 VIRM)y,.
Then
QM) = (pL V™), (P V),
= (Pin(z\/;“m))vz (a2 N {& = &),
= @72 (0" @)y, (ma V2 0 {6 = €')).
= (P2 V™), (@77 (mpa N {E =),
= (P2 @Vr)y, (ma Vi 0 e = 6M}),
= (P2 Q@VrROY)y, (™ OD),
= Q™).

(i) We prove (2.43); the proof of (2.44) is similar. Using Lemma 2.16 along with the definitions of B,
1°Ut, and the geodesic coordinates, we have

1 (Boy W) NA) = (P2 2Vri®™)) ® di) (B (V) N A),

" (rapm (p)) . .
-/ o / Lu(p.1) drd (P2 /™) (o),
pou

" (rapm (p)) . .
[ L (0(p) drd (P2 V™) (o),
poul(V) 0

where we have used the fact that the point represented in geodesic coordinates by (p, 1) isin A iff ¢,(p) €
A. Using the change of variables p = p®"(g), for ¢ € V, and then Fubini’s theorem, we then have that

tout(q)
L) = /v /0 1, (0,(°(@))) drd@7u®) (),

qeV

tnut(q)
> (inf /0 1, (0,0 (@) dr) QYT V),

as required. O
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2.9 The reflection coefficient on Iy, p

To understand how the defect measures of the solution v of the truncated problem (1.6) are affected by
the artificial boundary I, g, we now show that the hypotheses of Part (iii) of Lemma 2.12 are satisfied,

and get expressions for the numerator and denominator in the reflection coefficient o™ in (2.29).
LEMMA 2.18 If v is the solution to (1.6) and

o(D)(', &N

TG D)

(2.46)

then, in the hyperbolic set H of I, p
— ZE}ivj = Ra)y; = 4(9ia)|a|72vn. (2.47)

Combining (2.46), (2.47), (2.28) and (2.29), we obtain the following corollary.

COROLLARY 2.19 Letv be the solution of (1.6), and let « be a defect measure of v. Then, in the hyperbolic
set H on Iy, g, (2.28) holds with

ot _ | VT a@)/e )|’

Voo | 249
Proof of Lemma 2.18. We prove that
o (D)X, 6 Y = —a (M), &) dvf (2.49)
and
(0D, &) dvi = (0 (M), E)) dul. (2.50)

The result then follows from Part (iii) of Lemma 2.12, since (2.49) and (2.50) imply that (2.27) is satisfied.
Fora € C°(T* Ftr, r)» if the traces of v have associated defect measures, then, as h — 0,

(ax', hD )N (hD, v), V) — / a(x,ENo N (X, &) dvj“. (2.51)
On the other hand, in local coordinates, the boundary condition (2.2c) is

NhD, v+ Dv =0, (2.52)

so that

(a(x’, th/)J\/'thl v, v) =— (a(x’, hD,)Dv, v)

- / a, €Yo (D) (X, ") v (2.53)

Comparing (2.51) and (2.53), we obtain (2.49).
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We now use a similar, but slightly more involved, argument to obtain (2.50). First observe that if
o (B) is real and the trace of w has an associated defect measure dyu, then

(a(x’, hD,,)Bw, Bw) = (B*a(x/, hD,,))Bw, w)

= (a(¥',hD,)B* + a(x',hD,))(B* — B)B + [B, a(x', hD,,)1Bw, w)

- / a@,&) (0B, &) du (2.54)

as h — 0, since both B* — B and [B,a(x’,hD )] are O(h)(see (A.2) and (Dyatlov & Zworski, 2019,
Proposition E.17)). Therefore, (2.54) with B = A and w = hD, v implies that

(a(x’,th/)./\/hD)qv,./\/'th1 v) — /a(x',é’) (G(N)(x’,é/))zdvff. (2.55)

On the other hand by (2.52) and (2.54) (with B =D and w = v),
(a(x’, th’)Nth. v, NhDX] v) = (a(x/, hD,,)Dv, Dv)

- / ax, &) (o(D) (¥, €")> dvl. (2.56)
Comparing (2.55) and (2.56), we find (2.50). [l

2.10 The mass produced by the Dirichlet boundary data on Iy,

LemmA 2.20 Suppose that i, — 0 and a, — a, then the defect measure of

oirae/he N
is given by
dvol, ®8§,:(am,))b,
where dvol, denotes Lebesgue measure on I'p, ar(y := a—(a- n(x'))n(x’) is the tangential component

of the direction « at the point x’, (-)° denotes the lowering map T, — T*I'} given by the metric, and
8 denotes Dirac measure.

Proof. By using a partition of unity argument, it is sufficient to work locally in a neighbourhood of a
point x € I';,. We work in Euclidean coordinates x such that in a neighbourhood of x,

Ip = {y ), x)}.
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If a; = (a; o), then, since n(x') = (1, =Vy (x))/v/1 + IVy (x)|2,

a, lVy) 1P+ (@, Vy(x)) , (@, VyE)) —a; (/))

a—(a-nx)n(x) = ( l+|V7/(X/)|2 & 1+|V)/(X/)|2

and the metric on I, in the x’ coordinates is
gl-j(x’) =38; + Bxl,y(x’)axjy(x’), Lj=2,...,n.

Therefore, since we identify the tangent space of I', with 0, i =2,...n

ro_ o @Yy —a o (&l VyE)IP+ @ Vy ) :

SR P MEIe W(X”( T+ VY GO)P )W(X)
A @& o : A 2GS | , ) :
=a+ L+ VG V)/(><)+(<a,Vy(x)>+—1+|W(X,)|2(al (@, VyH) ) vy (x)

=a' +a,Vy ).

Letu, = elxae/he | 1,,; the previous calculation implies that u, (x") = exp((i/h)(a), - x" + a,1v(x))). By
change of variable for the semiclassical quantization (see, e.g., (Zworski, 2012, Theorem 9.3, p. 203)),

(b(x/,thX/)uz,ug)FD =/F (b=, hyD)uy) () uy(x) dx’
D

= /r (b(x/,heDX,)ue) () up(x)y/ 1+ |Vy(x)|? dx' + O(hy)
D

=(2nh£)_"+1/ // eh =Y (! )
I'pJIp Rr—1

X e%(aii'y,"’a‘vlV(y/))e_é(az'xl+a“v‘V(X,))\/ 1+ |Vy(x)|? d§'dy'dx" + O(hy).

Observe that for x’ fixed, the phase

P& = —y) Eta v tary) e x —arE),
= —-y) (¢ —-ap+a,vy)—yE))

is stationary (i.e., 8y,¢> = 85@ = 0) if and only if

&) = &.a) + Vy(Day,),

€202 JaqWBAON g0 U0 Jasn dieys suuayied Aq 001 92//8S0PBIP/WNUBWI/EE0L 0 | /I0p/a|0Ie-aoueApe/eulewl/woo dnoolwapese//:sdjy Wol) papeojumod



LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 39

where it is additionally nondegenerate. Consequently, by stationary phase (see, e.g., (Zworski,
2012, §3.5))

(b, gDy g, ug) =/ b(x,a) + Vy(xag, )/ 1 + IVy &2 dx' + O(hy)

I'p

:/ b(x, @)’ (x))y/1 + IVy (&) 2 dx + O(hy).
I'p

The result follows by letting £ — oco. (]

3. Properties of outgoing solutions of the Helmholtz equation

The goal of this section is to prove three lemmas (Lemmas 3.1, 3.2 and 3.3), the first two of which
concern the solution to the exterior Dirichlet problem:

2 .
(—=h2A —Du=0 in 2,
u=g on FD’ (31)

ho,u — iu = o(r1=D/2)y  asr — o0;
observe that the problem (2.1) is a special case of (3.1) with g = ¢/**/ h,

LemMA 3.1 Suppose that £2_ & B(0, 1) is nontrapping. Then there is C, > 0 such that for all R > 1
there is iy > 0 such that for u;, solving (3.1)

1/2
”uh”H},(B(O,R)\i) < CyR / ”g”H;]l(FD)’ 0<h<hy

Lemma 3.2 Let N, D beas in § 1.3 (ie, N € WN(I, 5), D € w2M(I, z) and both have real-valued
principal symbols). There exists C > 0 such that for any R > 1 there exists s5(R) > 0 such that for
0 < h < hy(R) the solution u of (3.1) satisfies

T(R)
” (Nth - D)“HLZ([‘U_)R) E C R1/2 ”u”LZ(QR),

where n(x) is the normal vector field to I3, g, and

T(R) :=sup [|G(N)(x/,€')n(X) £ — o (D)W, &)+ |H, (M), £ -§ — o (D), €))]

‘X € FtrR’

X C
€~——1‘5—2, |s|=1}. (32)
|x|

|x|

The quantity 7" (R) controls, on all rays that are approximately radial, the reflection coefficient as
well as the change of the reflection coefficient under the Hamiltonian flow.

LEMMA 3.3 (Bounds on T (R)). If A/ and D satisfy Assumption 1.4, then the following hold.
(i) There exists C; > 0, independent of R, such that if I, , = dB(0,R), then T'(R) < C IR_Z’”Ofd.
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(i) There exists C, > 0, independent of R, such that if Ftn R 1S C? uniformly in R, then T (R) < C,.

Regarding Lemma 3.1: this result gives us a lower bound on 1/||u| 2 g, and we use this in proving
the R-explicit lower bounds on the relative error in Theorems 1.7, 1.8, 1.9. The analogue of this result
without the explicit dependence of the constant on R was proved in (Baskin et al., 2016, Theorem 3.5).

Regarding Lemmas 3.2 and 3.3: the upper bounds in Theorem 1.7 and in Theorem 1.9 follow from
applying Theorem 1.5 to u — v and then using these two lemmas.

3.1 Proof of Lemma 3.1

We define the directly-incoming set Z by

I:: [10 c S*‘QR’ s.t. an(U(p—l('o)) D.Q_ = @], (33)

>0

where we recall that 7R« denotes projection in the x variable. The following lemma reflects the fact that
u is an outgoing solution.

LEMMA 3.4 If u solves (3.1) with ”g”H;l < C, then

WF,(u) N T = 0.

In particular, there exists C > 0, sufficiently large, such that

<£’ 'Ei_l‘fil

|x]

X

WE,(u) N {lx| > C} C [ ‘S -

|x]|

Proof. Let Rp, be the outgoing resolvent for

(=h*A = Dw =, wlp, =0,
ie., w=Rpf.Fix0 < R; < R, suchthat £2_ C B(0,R;), and let x; € C°(B(0,R,)), i = 0, 1,2, with
x; =10onB(0,R;),supp x; C {x;;; = 1}. We now extend the Dirichlet boundary data off I';, by letting

¢ be the solution of

(=h*A—1)g=0 in2, NBO,R)),
g=g onlp,
(hD, — Dg =0 on dB(O,R)).

‘We now show that u can be expressed as an outgoing resolvent plus a function with compact support. To
this end, let

vi=u—xo8 = Rp([ = 24, xJg),
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and observe that (—h%A — 1)v = 0. Since the Dirichlet Laplacian is a black box Hamiltonian in the sense
of (Dyatlov & Zworski, 2019, Chapter 4), by (Dyatlov & Zworski, 2019, Theorem 4.17), the radiation
condition for u implies that v = 0, and hence u = (g + Ry ([—h*A, x,]g). Now, by, e.g., (Dyatlov &
Zworski, 2019, Theorem 4.4), the range of (1 — x,)Rp, lies in the range of R, x; where R denotes the free
resolvent. In particular, by the outgoing property of R (see e.g., (Dyatlov & Zworski, 2019, Theorem
3.37))

WF, @) 0 {lx| > Ry + 1} € | 0,(Sh0.0)R)- (3.4)

t>0

Now, suppose that A C Z, where Z is as in (3.3). Then, for #;, > 0 large enough,
P_y,(A) C{Ix| > R, + 1}
and, moreover,

U @) N Shor, R =14.

t<—ty

Therefore, by (3.4), ¢_, (A) N WF,(u) = . Now, since (WA + u =0, and

U e@nsp R =0,

—1p<t<0
by propagation of singularities (see e.g., (Dyatlov & Zworski, 2019, Appendix E.4)), AN WF, (u) = @.
Now, suppose (x,&) € WF, (u) N {|x| > R}. Then, (x,&) ¢ Z and, in particular, there is > 0 such
that p_,(x,€) € S% R Let
to=inf{t>0: ¢_(x,&) € S R’}
and (xo, ‘i:()) = (p—[o(x’%-)' Then9 |-x0| = Rl; t() > %95 = é()» and

Observe that

g + 268g| = 1ol + dt{xg. £) + 42 = 201+ o 22 + 26 (xg, &) = 2t + O [,
Then consider

X0+ §0 (1 Ixol?)
|xg + 228

X + 26|,

—&| =

; ’

=0(t 'Ixl) = 0 (|x|R—1R1) .

|x|

In particular, if R > 2R, x| — R; > %|X|-

€202 JaqWBAON g0 U0 Jasn dieys suuayied Aq 001 92//8S0PBIP/WNUBWI/EE0L 0 | /I0p/a|0Ie-aoueApe/eulewl/woo dnoolwapese//:sdjy Wol) papeojumod



42 J. GALKOWSKI ET AL.

Next, observe that

X _XOEO+ZI

T oy Dot AP = ol A e g
so that
1 1 .
—=—({1- %o - o + O(R%t_z) .

In particular,

2
Xy - & + 2t X & X5 2,2 2,2 Ry
- =14+ ——— —= 4+ O(R5t =14 O(Rjt =140 —— ).
Ixo + 215 21 21 (Rir™) (Rir™) (Ix] = Ry)?

Taking |x| > 2R, completes the proof. d

CorOLLARY 3.5 There exists f, > 0,7, > 0 such that, if u solves (3.1) and has defect measure pt, then
for any r > 1, if (x,&) € supp p with |x| = r, then, for0 < <r —¢,,

(@_, (6, EN? = v — 268> = (r — 20% + O(er ™ V).

Proof. This follows from Lemma 3.4 by observing that, by the definition of defect measures, supp u C
WEF),(w); then, if |x| = r and || = 1 with |§ - &5 — 1] < S.thenx-& >r—1. O

I

By the definitions of WF, (1) and Z, another corollary of Lemma 3.4 is the following lemma,
originally proved in (Burg, 2002, Proposition 3.5) (see also (Galkowski et al., 2020, Lemma 3.4)).

LEMMA 3.6 Suppose that u solves (3.1) and has defect measure p. Then u(Z) = 0.
‘We now prove Lemma 3.1.

Proof of Lemma 3.1. Suppose that the lemma fails. Then there exist R > 1, € > 0, (h,, g,) such that
h, — 0as £ — oo and such that

1
Wt e, womnemy =1 and gl o = gime, oy G

Let w, solve
(—=h2A — )w, =0, welpy = 80 (hD,, — Dwylyp.1) = O-

Since Lemma 3.1 is not used in the proof of Theorem 1.5, the upper bound in this latter result implies
that there exists a C; > 0 such that

”WKHH}W(B(O,])\K) < C] ”ge”H’]ll (I'p)*
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Let x € C°(B(0, 1)) with x = 1 near I}, and put v, = u, — xw, so that

(=hgA = 1) vy = = (=hjA, = 1) xwe = hufy
Vzl]‘b = 0
(h,D, — Vv, = o(r1=9/2),

and fyll2 = Clwelly = CCiligelly ry)» suPPS, € B(O,1). In particular, by e.g., (Galkowski
et al., 2020, Theorem 1) there is C; > 0 such that for any ¢y € C2° with ¥ = 1 on B(0,1) and
supp ¥ C B(0,R;), and any h, small enough,

||1)0Vz||15(}1”Z < GRyllfpll2 < R()C1C2C3||gg||yé(p1))~ (3.6)

Now, taking C, > C;(3C,C5 + 1) the proof is complete for 1 < R < 2. To see this, observe that using
(3.6) with Ry =3 and ¥ = 1 on B(0,2)

it it moonsy < IO+ xwollgr < Iovellg +lxwelly < CiGCC+ DRV Il < 1
he > hy hy hy h
which contradicts (3.5).

Now, for R > 2, we can pass to a subsequence in £, and assume that v, has defect measure u. By
Lemma 3.6, u(Z N T*M \ suppf) = 0 and

u(H,a)=0,  aeCX(T*M\ suppf).

Therefore, since suppf C B(0, 1)

supp u N "M \ B(0,2) C U ®; ({(x,é) Dlxl=2,35 > 0s.t. ¢_ (x, &) € T*B(0, 1)}).

>0

In particular, since u is invariant under ¢, on T* (R4 \ B(0, 1)),

w(T*B(0,R) \ B(0,2)) < U o ({8 1 IxI =2, 35 > Os.t.p_y(x,§) € T*B(0, })
0<t<+/R2—4

=VR2—4pu U ¢, ({8 1 Ix=2,35 > 0s.t. 9_(x,§) €eT*B(0, })

—1<t<0

/R2 4 1; 2
= VRS =4 T {1v 7250001y
<9CIGCVR? — 4 lim g, I
—00

Hi(I'p)
_ 3G GGVR -4
- R(CO + 6)2 '
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By (Galkowski et al., 2020, Lemma 4.2)
(111 g ) > limsup [[v,||2, :
O,R\B(0,2)) = P ¢ Hj, (BO.R)\B(0.5/2))
Therefore, using (3.6) with Ry = 3, Y = 1 on B(0,5/2),

. 5 9CIC3CH(1 + VR2 — 4)
lim sup [lv, 17, <
oo i (BOR) R(Cy+¢€)?

Hence, letting

Co=¢C max(3C2C3 + 1,sup

3C;C,V 1+ VR — 4 + 1)

"2 R1/2
we have
. o | - 3C;C,C V1 + VR —4+C
imsup |lu <1,
SR M U, soR) = RVZ(Cy + €)
which contradicts (3.5). O

3.2 Proof of Lemmas 3.2 and 3.3

In the next lemma, we identify S* I, » with a subset of S*RY.

LEMMA 3.7 Suppose that A € ¥™(R?) and WEF},(A) N §*I', g = V. Then there is C > 0 such that

lAull 2, o < CllAull 2 + Ch™ [ PAUll 2 + OG) lull 2.

Proof. First, note that for B € ¥ with WFEF),(B) supported away from S*R?, we can write using the
elliptic parametrix construction (Lemma A2) that there is E € ¥ ~2 such that

BAu = EPAu+ O(h*) .

In particular, by the Sobolev embedding as in (Galkowski, 2019a, Lemma 5.1) see also (Zworski, 2012,
Lemma 7.10),

|BAW 21,y < Ch™ "2 1BAull . < Ch™' /|| EPAul| gy + O(h™) |ul| 2
< Ch 12| PAu| 2 + Oh™®) ul| 2.
Therefore, we can assume that

WF}, @A) c {1 -8 <|g]> <1+8}
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forany é > 0. Next, if WF;(A)DS}‘}rRRd = (), then thereis x € C° (RY) with x = 1 in a neighbourhood
of I', g such that ’

XA = O(hoo)lp—oo
In particular,
||XAM|1"“’R||L2(1}TVR) = O(h™)lull 2.
By using a partition of unity, we can work locally, assuming that I, p = {x; = O} asin § 2.3. We can
then assume that WF}, (A) C {|x;| < 8}. Write A = a(x, hD) where d(suppa, {r(x,§) = 0}) > € > 0

and suppa C {|x;] < 8} for some € > 0. Then, choosing § > 0 small enough, we have |£;| > 0 on
supp a, and hence there is e € C° (T*R%) with |e| > 0 on supp a and such that

e(x, &) (& — b(x,£)ax,&) = (- £+ r(x, €))a(x, £).
Therefore,

|(rD,, — b(x,hD,)) Aul ,, < C|[PAull;> + O(h) |Aul 125
the result then follows by applying (Zworski, 2012, Lemma 7.11). (I

LemMA 3.8 Let u be the solution to (3.1). For any n > 0, there exists R > 0 such that, for R > R and
h small enough (depending on R)

1
el 20,4 10\BOR-1) < (V24 DR [ull 2800 gy (3.7)

Proof. We define A, = B0,rp) \ B(O,r)). First, observe that it is sufficient to prove that there exists
R, (1) > 0such that, for any R > R and any u solving (3.1) having defect measure u,

V2 +n)?
R

w(T*Agy1p1) < w(T*B(0,R)). (3.8)

Indeed, if (3.7) fails, then there exists n > Oand s, — Oand g, € H, }l (I'p) such that, for u(h,) solving
(3.1) with g = g,, and some R > R (1),

V2+n

””(hn)”LZ(ARH,R_]) > R1/2 ””(hn)”LZ(B(O,R))- ”“(hn)”LZ(B(O,R)) =1 (3.9)

Then, passing to a subsequence, we can assume that u(h,,) has defect measure u. Let € > 0 be arbitrary.
Take x; equal to one in Ag | p_; and supported in Ag | gp__, and x| supported in B(0, R) and equal
to one in B(0, R — €). The estimate (3.9) implies

V2+1

| x§un)| 2 > R w2,
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passing to the limit 2, — 0 and using e.g., (Galkowski et al., 2020, Lemma 4.2), we obtain

2
Z(ﬁ+n) "

n((x6)°) = n((x)).

which in turn implies, by the support properties of x|,

K (T*AR+1+€,R717€) = R M (T*BRfs)'
In particular, sending € — 0T, and using monotonicity of measures

V2+n? o
%M(T BR)’

1 (T Apyrp—1) =
which contradicts (3.8).

‘We therefore only need to prove (3.8). The definition of defect measures implies supp u C WEF, (u),
thus, by Lemma 3.4,

X C
suppu N{lx| > C} C S-m—l <W .

Now, invariance of defect measures away from the obstacle combined with the above implies that, for
rg>C+2,s0that 2_ C B(0,ry —2),and0 <r <1,
x C
)]
|x] Jx|2

¢_1_cor-2 (T"Ags1p1 Nsupp u) NT* {x] = R} = ¥,

w(TA,, ) =1 (w_, (T*Arl,r0 n [IEI =1,

By Corollary 3.5, there exist Cj), C, C, > 0 such that

Y_1-1CoR2 (T*Agy1p—1 Nsuppp) C T*{|x| < R—1}.

Fix ry > Osuchthat £2_ & B(0,ry). Then, for0 < 2t < R—1—r,, we have (p_t(S*AR_H,R_l)ﬂB(O, rg) =
f. Therefore, using the fact that (x,&) > 0 on supp u N T*Ap, | g1, we have

R-2 R—1-r

¢ (T*Agy1 gy Nsupp ) NT* A,y gy Nsupp u = ¥ for 1 € |:1 +Cy 3

} . (3.10)

Now, letT) g :=(R—1—ry)/2and Ty := 1+ CyR~? and consider

T\r

frr@, ) ;:/ LAy oy supp e © @106 €) 1.

Tor
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We claim that O < f7 p < T g; to see this, suppose that ¢,(x,§) € T*AR-H,R—] N supp  and @ (x,§) €
T*Agy g1 Nsupp u with Ty p < s <t — Ty pand t < Ty . Then,

Py %, ) € T*Ap gy Nsupppt,  (%,§) € T"Agy | gy NSUPP K

and Ty g <t — s < T g, contradicting (3.10).
Now, since u is ¢, invariant,

(Tl,R - TO,R) M(IT*ARJA,R—I) = M(fT,R(X,és')) = TQ,R n(B(O,R)).

In particular,

Ty, R 2 .
(g, py) < 7—2—u(BO,R) < =1+ OR ") (B(O,R)).
' Ty g —Tor R

Choosing R > 0 large enough yields (3.8), and the proof is complete. ]
‘We now prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. Let n be a smooth extension of the normal vector field to I, g, ng(x) and Cy > 0

so that the conclusions of Lemma 3.4 hold, and, N s D smooth extensions of A" and D. Next, fix € > 0
such that

sup “Jthﬁ — 75|+’Hp(/\~/hD;1- —75)| s dist(x, Iy g) <€,

S.i_l‘<&

FRREE E1-1| < e]§ 2T (R)

and let x be smooth, supported in

= {x : dist(x, I 2) < €},

€

and equal to one near I, . By Lemma 3.4, we can find Z € ¥ (RY) with WF;(Z) N Z = ¢ such that
xu= xZu+ Ocw (h°°||u||Lz).
Now, since QR is convex, and £2_ & ﬁR, S* Ftr’R C Z. In particular, by Lemma 3.7,

INAD, = Dyull 2, o = INED,, = D) x Zull 2y oy + O lull 2
< CINhD; — D) x Zullz + Ch™" || (—=h* A = )Y(NhD;; — D) x Zul) 12 + O™ lull 2
= CI(NhD; — D)xull 2 + Ch (=2 A — 1YNAD; — Dyxul| ;2 + OG) ul 2
< CI(NhD; — D)xull 2 + Ch™" |(NhD;; — D)(=h*A — Dxu| 2
+ Ch [~ WA = LD = Dlul| 2 + OG> ull 2,
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and, using the fact that (—h?A—Du=0,

INRD; — Dyull 2, o < INED; = Dyxull 2 + h™" | (NhDy — D)W A + 1, xul 12

r,R )

+h7Y|[ = n*A — 1, NhD; — D] xul 2. (.11
Let
Ry :=sup{R : I,z NB(,Cy+ 1) # A}
Then, for 1 < R < Ry, the proof is completed, since [|Bul 1 + h~"[|[B, (=h*A — Dlull 2 < Cyllull2

for any B € ¥°°. We now consider the case R > C,,.
Observe that, by Lemma 3.4,

X C
WEF), (xu) C supp x N WF,(u) C “S-E—l‘ < W, xel,, |&§ = 1]. 3.12)

Now, let ¥ € C°(R?) with ¥ = 1 on supp x withsupp ¥ C I., and ¥ € C°(T*RY) with

2C
Suppwcué-i—l'sw, ||§|—1|<e],

|x]

with ¥ = 1 on

Hé-i—l‘ <5, |s|=1}.
B P
and ¥ := Op, (¥ x). By (3.12)
|(NhD5; = D) xull o = ¥ (NhDg = D) xull 2 + OG) | xul 2,
where ¥ (N hD5; — D) has principal A-symbol
AW§) == Y XN 6§ -7ix) — D, £)), (3.13)
and thus lI/(./\N/'hD% — 5) = Op;,(A) + O(h);2_, 12, and then, by(Zworski, 2012, Theorem 5.1),
1 xull 2 < (sup|AG.&)] + O(R'2)) lIxull 2.
However, by the support properties of x and ¥ and the definition (3.13) of A,

sup [A(x, &) < T(R),
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and it follows that, given R > 0, there exists /,(R) > 0 such that, for 0 < & < hy,

INBD; — D) xull 2 ST Rl xul 2. (3.14)

On the other hand, by Lemma 3.4,

c
WE,(—h*A - Lxlw € e = —1 < =, xe L lel =1}
|x| |x|

we obtain in the same way as before, reducing A, if necessary, that for 0 < 7 < h
|(NhDg = D=1 A — L xlull p S TBN=1PA =1, xlullp ST ®hlIxoully,  (3.15)

where x, is supported in the support of ¥ and equal to one on the support of x. But, since (=h*A—Du =
0, u has h-wavefront set in {|£|?> = 1}, thus so does ¥ u, and it follows that, taking 1 compactly supported
near one

xoully = [0Pa (181D x0Xu] gy + OKN Kl 2
= [|op (1118 x0) Xull gy + O 1Kl 2
< lIxull 2. (3.16)
Hence, by (3.15), for 0 < h < hy,

h|(NhDy = D)[ — P A — 1, x]u] 2 £ TR I Xul . (3.17)

Finally, observe that A~ [—h% A — LN hD5; — D] has principal A—symbol

| =

o (h'[ = WA =1, (NhD; = D)]) = -{IE° - LN, )§ -7iv) - D(x, )}

| = ~

= —H, (N(x.£)& -7i(x) - D(x,8)),

~

therefore, using Lemma 3.4 in the same way as before, we obtain
W[ A+1,NhD; — D)xul 2 Ssup |FwH, (N (x, 6)& - 7ix) =Dex, ©)) [ xull 2+ OG> | xull -
By the support properties of vy and
sup |[X¥H, (N (x.£)& -7i(x) - D(x.£))| S T®R).
Reducing A, > 0, depending on R if necessary, we obtain that for 0 < i < hy

W =R A = LN (n,6)8 () — D ©)1xul| 2 S TR lxull 2. (3.18)
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Combining (3.11) with (3.14), (3.17) and (3.18), we have, for 0 < i < hy(R),
INAD, = Dyl 2, S TR IFull 2,

and then Lemma 3.8 implies that

T(R)

| WAD, = Dyul| 2,y < Cizz Il2cp:

To obtain the bound on Au, we observe that, by Lemma 3.4, S* Ftr, g CZ,and, by Lemma 3.7,
Aull 2, ) < IAxull 2 + BN I(=RA = DAxull 2 + OB | xull 2.

However, in the same way as we obtained (3.16), the fact that u has h-wavefront set in {|£]*> = 1}
implies that

IAXull 2 + B~ (=1 A = DAxul 2 < I Xull 2,
and the bound on Au follows by reducing hq(R) > 0 again if necessary. g

Proof of Lemma 3.3.
Proof of (i). First observe that if I'ir= dB(0,R), then for x € Iy g n(x) = x/|x|. Therefore, on

0= {(X,S) P x € g,

| P
|x] “RY

since n(x) - £ = . /1 — |€|2, we have
, C
E = 1= In() - " < 5.
We now claim that
oM, &) - &£ —a(D)(¥, &) = <f(x’,$’)|5'|§m°“i on O, (3.19)

where e(x’, £’) is smooth on O. Indeed, the existence of e(x’, §) follows from the definition of m 4 (1.8)
and that n(x) - § = /1 — |¢’[2on O.
Therefore,

sup |0 (N)(¥. &) - & — o (D), &)| < CIg[" < CR™>"ox, (3.20)
(@]

Next, we bound the terms in 7" (R) (3.2) involving the Hamiltonian vector field H, = 2(£,9,). First,
using again that § = (n(x) - £)n(x) + & (where we abuse notation slightly to identify vectors and
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covectors), we have H, = 2n(x) - £ 9, +2(¢’,0,). Thus, on O,

H, (6(\N)n(x) - € — o(D)) = o(N)2 (i : s) < al ax> (% : s) +2(8,0.) (0N @) - £ — o(D))

ERVAT)
=2(¢,3,) (o)1 - €12 - 0(D)), (3.21)

where we have used that 9, is tangent to I}, p N {|§| = 1} to write n(x) - § = /1 — |$/|§ in the last line.
Now, by (3.19),

8x/ (O’(N)m _ G(D)) — 0(|§/|§mmd).
In particular,
2(8,0.) (U(N)m — U(D)) = 0(|E/|§mord+l) _ O(R*2mordfl)‘ a2

The required bound on 7 (R) follows by combining (3.20) (3.21), and (3.22).
Proof of (ii). This follows from the fact that o (A) and o (D) have uniformly bounded C! norms in R.

O
4. Proof of well-posedness of the truncated problem (Theorem 1.5)
4.1 Trace bounds for higher order boundary conditions
In this section, we consider the solution to
2 _ .
(—h Ag—l)u_hf inM, @)
NhD,ju—Du=g; onl;C M,

where (M, g) is a Riemannian manifold with smooth boundary 3 = UY_ I’ such that I’ are the
connected components of M, and N; € ¥™.i(I}), and D; € ¥™i(I}) have real-valued principal
symbols. We further assume that foralli =1,...,N,

lo (N)2(E") ™2™+ |o(D)P(E) ™2™ > ¢ > 0 on T*T},

4.2)
lo(D)| >0 onS*I;,
and for each i one of the following holds:
my; =my;+ 1, or 4.3)
lo (NP () 72mi > ¢ > 0, 1€’ > C, and  my; <my;+1, or 4.4)

lo(D,)? (&) "2 > ¢ > 0, 1€’ > C, and  my;+1<my, (4.5)
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The first condition in (4.2) ensures nondegeneracy at infinity in & (with (4.3), (4.4) and (4.5) the different
options for which term in the boundary condition is dominant), and the second condition in (4.2) ensures
that the Dirichlet trace is bounded.

THEOREM 4.1 Suppose that u solves (4.1) where N; € ¥™.i(I}), D; € ¥™i(I}) have real-valued

principal symbols and satisfy (4.2) and one of (4.3)—(4.5). Then, there exist C > 0 and & > 0 such that
for 0 < h < hg, and i and all ¢;, satisfying

0 + 1,i < Ei < 1 0. + 1,1’ (4.6)
2 2 2
”u”HflﬁmO’i(f}) + ||hDu“||H£i+m1,i(n) = C(”“”LZ(M) + ”f||Hli+"11,i+glo,i—1 o + ”gi”H,fi(F,-))’ 4.7)
h

lull gt oy < C(uuan(M) + Al zgny + lgill e m), (4.8)
i

and for s <0,

IAD ull g 1y < C(||u||H;+1(m +lull 2y + Wll2an + D ||g,~||Hﬁi(n)). 4.9)
i

The proof of Theorem 4.1 is postponed until Section 6. Here we proceed directly to its application.

4.1.1 Application of Theorem 4.1 with L? right hand sides.

COROLLARY 4.2 Suppose that

my >0, mg+m =0, m <my+1, (4.10)
and either
my < my + min{l, my + m,}, 4.11)
or
my>m;+1 and my > 1. (4.12)

Then there exists C > 0 and hy > 0 such that, for 0 < h < h, the solution to

(—=h*A —Du=hf in$2,
(MhD, —D)u=g onT,
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with f € L?(£2) and g € L>(I") satisfies

||u||L2(r) + ||thu||L2([') + ||”||H;11(_QR) =C (”u”LZ(QR) + Hf”LZ(_QR) + ||g||L2(r))- (4.13)
Proof. Let
my +m
t=r— 21
T

Ifo<r< %, then Theorem 4.1 holds and (4.7) and (4.8) become

mom A+ NDul  momg = C ey + WA,y + gl g (4.14)
() H, % ) Hy = (£2p) H *

u
el .22 h

and

el < C(nuuLz(M) il lan + g, s m), (4.15)

h

respectively. Focusing on (4.14), we therefore impose the conditions that

m; —my

2 >

— 1
max O’ u S r S min -, m
2 2 2

(observe that this range of r is nonempty since mq > 0, m; — my < 1, and m; + m; > 0). Choosing
r =min{1/2, (m; + mg)/2}, we have

m, +m,
r> 0<r<-—, rs%,

N =

i.e.,

lull 2y + [ ADyu ] e ) = € (M2 + 1z + 182 (4.16)

where

¢ o min (L EM0) L =
. 2’ 2 2

If s* > 0, i.e., if (4.11) holds, then the result (4.13) follows from combining (4.16) with (4.15).
If (4.11) doesn’t hold, we seek control of ||2D,ul| ;2 via the bound (4.9) with s = 0, i.e.,

||hDuu||L2(1") <C ||M||H1 () + ||”||L2(M) + |V||L2(M) + ||gl|| M1 tmg .
" H, (D)

h
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To prove (4.13), therefore, we only need to bound | u|| H\(D) in terms of the right-hand side of (4.13).
This follows from (4.14) if

max (0.1 + ™L2"0) < < i (L, E )
2 2 2
which is ensured if (4.12) holds. Il

4.1.2 Application of Theorem 4.1 to Dirichlet boundary conditions.

CoROLLARY 4.3 There exist C > 0 and &, > 0 such thatif 0 < i < h, then the solution of

(A —Du=hf ing
u=g on [,

with f € L*(2) and g € H}(I) satisfies
el g1 oy + 1BDull 2y + Nt g1 2y < Clull 2020y + 202 + 1811152 1))

Proof of Lemma 3.3. The Dirichlet boundary condition corresponds to D = I, ' = 0, and so satisfies
the assumptions of Theorem 4.1 with m; = 0 and m; = —1, say. The result follows by choosing £ = 1
and combining (4.7) and (4.8). O

4.2 Recap of results of Trefethen & Halpern (1986) about Padé approximants

We now recall results of Trefethen & Halpern (1986) about Padé approximants. These results consider a
larger class of approximants than covered in our Assumption 1.4; before stating these results, we explain
this difference.

With p(¢) and ¢(¢) defined by (1.8), by Assumption 1.4,

o(D),&) = Pyn(,&) =p(l&';) and oWN)(,&) = Qun(. &) =q(I€';).  (4.17)

As described in § 1.3, this choice of D and N is based on approximating /1 — |& ’|§ with a rational
function in |§’|§.
The boundary conditions in Trefethen & Halpern (1986) are based on approximating ,/1 — |§’ |§,

with a rational function in |’ g 1.e., Trefethen & Halpern (1986) consider Padé approximants with
polynomials p(s) and g(s), where the degrees p(s) and g(s) allowed to be either even or odd. Our
polynomials p, g fit into the framework of Trefethen & Halpern (1986) with

p(s):=p(sH and G(s) := q(s7), (4.18)

and then p has degree 2M and g has degree 2N. For d — 1 > 2 (i.e., when the boundary dimension is
> 2), polynomials with odd powers of |£'| ¢ do not lead to N and D being local differential operators,

but ford — 1 = 1 (i.e., d = 2) they do, since in this case /|$/|g = /g(xX)&, i.e., a polynomial in &’.
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Our arguments also apply to polynomials with odd powers of |&’| ¢ ind = 2, but we do not analyze them
specifically, instead leaving this to the interested reader.

To state the results of Trefethen & Halpern (1986), we let p(s) and g(s) be polynomials of degree
my and my, respectively; this notation is chosen so that, when we specialize the results to our case with
(4.18), these m(, and m, are the same as in Theorem 4.1/Corollary 4.2, i.e., m; = 2M and m; = 2N.
Finally, we let

LEmMA 4.4 (Trefethen & Halpern, 1986, Theorems 2 and 4) If, and only if, m; = m; or my = m;+ 2,
then

(a)7(s) > Ofors € [—1,1], and

(b) the zeros and poles of 7(s) /s are real and simple and interlace along the real axis.

COROLLARY 4.5 If my = m; or my = m, + 2, then neither p(s) nor g(s) has any zeros in [—1, 1].

Proof. For p(s), this property follows directly from Part (a) of Lemma 4.4. For g(s), this property follows
from Parts (a) and (b) of Lemma 4.4; indeed, if there were a zero of g(s) (i.e., a pole of 7(s)) in [—1, 1],
since the zeros of g(s) are simple and interlace with the zeros of p(s) (by Part (b)), 7(s) would change
sign in [—1, 1], contradicting Part (a). O

4.3 Proof of Theorem 1.5

Throughout this section, we let ﬁR be a smooth family of domains, depending on R and assume that
there is M > 0 such that

B(0,1) C 23 C B(0, MR),

~ (4.19)
§2p is convex with smooth boundary, I, p, that is nowhere flat to infinite order

Furthermore, we assume that
/R — 2,
in the sense that 82,/R — 82, in C*.

We prove below that Theorem 1.5 is a consequence of the following result, combined with the results
from Trefethen & Halpern (1986) in § 4.2.

THEOREM 4.6 Let ﬁR be as in (4.19) and £2_ € B(0, 1) with £2_ nontrapping. Let ' € @™ (I'y.p)>
D € w0 (I, g) have real-valued principal symbols and satisfy (4.2) and one of (4.3)—(4.5). Let m;, and
m; satisfy the assumptions of Corollary 4.2, and furthermore let A" and D satisfy

o(N)a (D) > 0on B*Ip. (4.20)
Let

GR: LA (I p) @ HY(I'p) ® LA(S2p \ 2_) — Hp (2, \ 2_)
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satisfy
(=2 A = 1)GR(g).8p.f) = hf  on 2\ £2_
(N/’an — D) Gﬁ(g]sgD,f) =g on Ftr,R
GR(g.8p:1) = &b on I'p.

Then there exists C > 0 such that for R > 1, there is /i, = hy(R) > 0 such that for 0 < h < hy, G is
well defined and satisfies

R 1/2 ~
|Gy (g1 8p-1) HH;@R\Q?) < CR'(llggll 2y + Igpllg (rp)) + CRIF 2 Gpv a2 )- 4.21)

Proof of Theorem 1.5 using Theorem 4.6. Theorem 1.5 will follow from Theorem 4.6 (translating
between the 4- and k-notations using § 2.1) if we can show that the boundary conditions in Assumption
1.4 with either M = N or M = N + 1, with M, N > 0, satisfy

@ (4.2),
(ii) one of (4.3)-(4.5),
(iii) the assumptions of Corollary 4.2, and

>iv) (4.20),
where m, = 2M and m; = 2N.

Regarding (iii): the first two inequalities in (4.10) are satisfied since myg,m; > 0, and the third
inequality is satisfied both when my = m| and when my = m| + 2. If my = m,, then (4.11) is satisfied,
and if my = m; + 2 then (4.12) is satisfied (since m; > 0, and thus m > 2).

Regarding (ii): if m; = m,, then (4.4) holds since q,\N,I N 7 0 by definition. If my = m; + 2, then (4.5)
holds since pm N 7 0 by definition.

Regarding (i) and (iv): using (4.17), the conditions (4.2) and (4.20) become (with t = |&’ |§)

g0 N+ p@ '™ > 0 forallz and |p(£1)] > 0, 4.22)
and

p(Hg®] >0 on—1=<t=<1, (4.23)

respectively
If p(s) and g(s) are defined by (4.18), then (4.22) and (4.23) become

G52 + [p(9)|’s72™ > 0 forall s and [p(£1)| > O, (4.24)

and

p(s)g(s)] >0 on—1<s<1. 4.25)

The first condition in (4.24) holds since, by Part (a) of Lemma 4.4, p(s) and g(s) have no common
zeros. Both the second condition in (4.24) and the condition in (4.25) hold by Corollary 4.5. O
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We now prove Theorem 4.6. We first show that, for each z € C and s > 0 the operator
P(2): H*S(2x\ 2) 2 u+> (= h*A -z, (NhD, — D) Ul ol )
c HS(éR \ 97) @ H3/2+S—m(1ﬂtr’R) @ H3/2+S(FD)
is Fredholm with m = max(mg, m; + 1); we do this by checking the conditions of (Hérmander, 1985,
Theorem 20.1.8, page 249). Observe that, for fixed 4 > 0, as a homogeneous pseudodifferential operator,

(—h* A—z?) has symbol p(x, £) = |&|2. Therefore, in Fermi normal coordinates at I g» We need to check
that the map

Mg >u— (b (x, (Dt,é;‘/)) u) )

is bijective, where M, ¢ denotes the solutions to (th + & |§)u(t) = 0 with u is bounded on R | , and

bx.§) = lim (o V), 2ENAE — o (D) (x, 28")) 17"

Since u = Ae"€'ls,
(b (X, (D, 5/)) u) 0 =A }Lli?;o (—U(N)(X, AENAIE| — o (D)(x, )»5/)) A",

and bijectivity follows if the limit on the right-hand side is nonzero. Since N and D are both real, this is
ensured by (4.2) and any of (4.3)—(4.5).
Now, to see that P is invertible somewhere, consider z = —1. First, note that for s > 0 the map

Py (HZJ”(.@R \2.)3 ur— (A + Duuly, ., u|FD) CH (Sp\ 2_) @ H1(I) ® H 3 (I)

~ _1 _1 ~
is invertible with inverse Gy, : Hj(2x \ 2_) ® H, >(Iy,z) ® H, *(Ip) — Hr ™ (24 \ 2_) (seee.g.,
(Evans, 1998, Chapter 6)). In particular, the Dirichlet to Neumann map

(=?A+1u=0 on2\2_,
A g+ hDyulp,  where u=g on I g,
u=20 on I,

is well defined. Furthermore, A € ¥! (I'yg) 1s a semiclassical pseudodifferential operator with symbol
o(A) =—i /|$/|g + 1 (see, e.g., (Galkowski, 2019b, Proposition 4.1.1, Lemma 4.27)). In particular, by
(4.2) and (4.3)—(4.5), (—iN'A — D)~ ! exists, and hence

P11 (.81.80) = Gp (£ (<N 4 = D) gy.8).
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Therefore, since for z = —1, the operator is invertible, by the analytic Fredholm Theorem (see e.g.,
(Dyatlov & Zworski, 2019, Theorem C.8)) the family Gf (z) of operators solving

(—?A = )GR@)(8.0.0) = hf  on g\ $2_
(MrD, — D) GR(2)(g,,0.f) = g on Iz
Gh(@)(81,0,) =0 on Ip

is a meromorphic family of operators with finite rank poles. To include the Dirichlet boundary values,
we observe that by standard elliptic theory, the operator G;,(z) : H }l Ip) — H32(B(0,1)\ $2_) solving

(=h*A —2)G(z)g=0 onB(0,1)\ 2_
6h(z)g =g on I,
(hD, — )G, (z)g =0  on dB(0,1)

is a meromorphic family of operators with finite rank poles. With x € C°(B(0,1)) with x = 1
near §2_,

GR(gp.8p-1) = GR(g,,0.f — h'[—h*A, x1Gep) + xGrgp.

and thus the operator Gﬁ is well defined.
We start by studying G;f ©0,g,0).
LeEMMA 4.7 Let R > 0 and assume that A/ and D satisfy the assumptions of Theorem 4.1. Then there
exist C, hg > 0 such that u = Gf (0, g,0), the solution to
(=h*A—Du=0 in$2,
u=4g on FD’
(MhD, —D)u=0 on I}y,

satisfies

”M”H}'(ﬁR\Q_) = C”g”H},(FD)'

Proof. Suppose the lemma fails. Then there exist (4, g,) with i, — 0 such that u, = Gﬁfn 0,g,,.0),

-1
”Mn”H}m(.(ZR\.Q,) =1, ”g"”H}lzn(FD) =n .

Extracting subsequences, we can assume that u,, has defect measure p. Moreover, by Corollaries 4.2 and

D/tr D/t
4.3, we can assume that the trace measures v, / " Vi /w

v(? = 0. Let ¢, denote the billiard flow outside §2_. Then by Lemma 2.12 together with (Galkowski et
al., 2020, Section 4),

D/t . . . .
and v, /' exist. In particular, since g, — Oin H}I,

w(p(A) = p@A) if U e@nr =9 (4.26)

0<t<T
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Furthermore, using again Corollaries 4.2 and 4.3, we find that

1 = limsup |lu,|?, > w(T*RY) > liminf [|v,]|?, > climinf [7,]%, =c > 0.
n th n n th

Note also that g¢"/outtr, vg, vjtr and vY satisfy the relations in Lemma 2.12. Next, by Lemma 2.18,
2
out,tr ref in,tr ref \/7 N —-D o0
N = M where o =|——| € C{r > 0}). 4.27
Iz U SINTD { D (4.27)

Here, we abuse notation slightly, since when o (N)o (D) < 0, /rN + D may take the value 0. In that
case, the first equation in (4.27) is replaced by (a™®f) =1y 0ubtr = yintr,

Finally, these measures satisfy Theorem 2.15 with n/ o (N)/o (D) which is well defined and
satisfies +#/ > m > 0 since +o0 (N)o (D) > 0 on B* Iyr

The proof of Lemma 4.7 is completed by the following lemma.

LEMMA 4.8 Suppose that £2_ is nontrapping, and let M > 0. Then there exist 7}, §; > 0 such that the

following holds for all R > 1. Suppose §2_ & B(0,1) C 25 C B(0, MR) has smooth boundary and is

convex and that y is a finite measure supported in S%\Q R satisfying (4.26), (4.27) and Theorem 2.15
R —

. Wi o(N) . S d
with R = (;(D) with 0 < 0 (N)o (D) on B* T,  Then, for all A C SE?\Q,R ,

1 (027,(A) = (14 8p)p(A).

To see that Lemma 4.8 completes the proof of Lemma 4.7 observe that our defect measure u has
w(T*R%) £ 0, is finite, and is supported in S%\Q RY. Therefore, there is A C S*QT\Q R4 such that
R R _

w(A) > 0. But then :

1 (9nrr, @A) = (1 + 8N u(4) — oo,
which is a contradiction. O

Proof of Lemma 4.8. We consider only the case where o (N)o (D) > 0. The other case follows from an
identical argument, but reversing the time direction.
By (4.26), w is invariant under ¢, away from I, .. We first study the glancing set, G = T* I g N {r =

0}. Note that since I, g is convex, G C {H, 2x1 < 0} where x; is a boundary defining function for I g.

Note that for p € G, since .QR(R) is convex and .QR(R) C B(0,MR), there exist c > Oand T, > 0
independent of R such that

0
/ —H}x;(p,(p)) ds > ¢ > 0.
—ToR
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In particular, since o (N)o (D) > m > 0 on $* I g (by (4.20)), MY > m > 0, and hence by Theorem
2.15,forA C G,

m(p_r,r(A)) = €™ 11 (A).

d -1.
Next, we study the case where A C SET(\Q,R \G.Let B7" : B*I g — B*I} p be the reversed

billiard ball map induced by ¢,. That is, let 7 : SHRRd — B* I g be the natural projection map and

Ty Y I'or — S}imR]Rd the inward- and outward-pointing inverse maps. Next, for (x,§) € SELRRKI
define

T_(x,&) =inf{r>0: ¢_(x,&) € S’,imRRd}.

Since §2_ is nontrapping, there is T, > O such that forall (x, &) € SﬁR\SZ_R 4Un = (B

In particular, every trajectory intersects the boundary in time 7,R.
The reversed billiard map is then given by

)a T_(-x9 S) S TOR

BH@ (9 g 1) T @)

1 1 . * % 1 1 1 i1 3 out,tr __
Since I, g is convex B : B*I g — B* I, g is well defined and, since w is invariant under ¢, B, =

™. Then, using (4.27), we have

Mout,tr — aref’um,tr — O{refﬂ*uout,tr‘ (4.28)

Fix 0 < ¢ < 1 and for p € B*I g, let

N
N(p,¢) :==inf {N >0 : > log(r(87(p)) < —¢
j=0

We claim that there exist ¢y, Ty > O such that for all p € B*I}, ¢

N(p.co) ‘
Z T_(87(p)) < TyR. (4.29)
j=0
Once we prove this claim, using (4.28) together with the definition of p°"tt
flow of 1, we see thatif A C S;T\Q R4 \ G, then
R

as the derivative along the

1 (#_1A) = e Ou(A),

and hence the proof will be complete.
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We now prove (4.29). If the claim fails then there is a sequence
(R, ppM,) € [1,00) x B*I p(R,) x Z

such that

M, . M, ‘ 1
D T_(Bp) =R, D loga™(r(B7p,) > —-.
n

Jj=0 j=0
Without loss of generality, we can assume that R, — R € [1, oo]. Note that

40 (N)

o) v r(p) + O(r(p)).

log o™ (p) = —

By (4.20), since 240 > m > 0 on S* T}, p,

o (D)
M)'l 1
= < —
Z\/mxs ) =
j=0

and in particular,

; 1
D

Now, let ), : T*M — M and p € B*852,. We consider the angle between the two vectors

Vi(p) = dmy (3,0, (n' (0)) = 26 (X' ().

61

(4.30)

(4.31)

(4.32)

Note that V__ are the tangent vectors to the billiard trajectory just before (—) and after (+) reflection. We

define the angle accumulated at p, A(p) € [0, ] by

(Vi(p), V_(p)) = 4cos A(p).

As can be seen, e.g., in Fig. 5,

sin(A(p)/2) = vr(p), cos(A(p)/2) = v 1 =r(p).

In particular,

sin(A(p)) = 2vr(p)v 1 —r(p).
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Qg

billiard trajectory

FIG. 5. Ray construction showing the change, A, in the angle of a ray when hitting the boundary at angle 6. Note that r = sin? 6.

Therefore,

Ap) = 2/r(p) + O(r(p)*?).
Now, note that if
k ‘ -
2 AT <
j=0

then

7 (0) — 7y (B~ (0))| = T_(B7(p)). (4.33)
f
By (4.31) and (4.32),
M, M, ' |
D A o) = 2 2r (o) +0r(B ()" = -+ 0™ < Z
j=0 j=0

for n large enough. In particular, (4.30) and (4.33) imply that

k

1
‘”M(:On) - 7TM(/3 (Pn 2 Z (pn > —nR,
o V2
which, for n large enough, is impossible since 2, C B(0, MR). =

We now set up our contradiction argument to prove the bound (4.21). Suppose there is no constant
C > 0 such that for all R > 1 the estimate fails. Then, there exists {Re}ffz’l C [1,00), {hk’e},fogzl, with

limy_, hk,fz =0, u 4, and gk,e,tr/D’fk,e such that ”“k,é”H}l(.@RZ\Q,) =1,

—1)2

_ _ —1,-1
(”gk,Z,I”Lz(ﬂryR(Re)) + ”gk,e,D”H,'l”(FD)) =R, Wlp@rnae) =R
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and such that
(_hieA - 1) Uy =y ofie on 2, \ 2.

WNhy D, — Doy = 8oy 0N Typ,

U = 8ke.D on I'p,.

Rescaling, we define

U o (X) = R} v g(xRy), G s (0) = R} g1 o1 (XRy),

~ nt2 ~ n
foo@ =Ry fi o &R, Grop = R;8ep(Ry).
Then,

C

gyt 21— —,  fillp2 <
hico (2R,) R;/zﬁ '

>

S| =

~ 1 -
|2 (rem, k) + 8kenlli2apry = 3 ik

I8k.es
and, with U, = (ﬁRz/RZ) \(2_/R). Tpy=Tp/Ry I}, = Tyg, /Ry

(: (o Ry 1)2A - Vit = (hy Ry l)ﬁc,e on Uy
(Nhk,le_,t}en - D) ﬁk,{ = gk,[J on FI,Z

Upp |fw = Gip

where, if a pseudodifferential operator B on I p is given by

B=0p,(b), b~ > b,
J

then

B=0pue-1(B), b~ (hR'VRb,

J

Putting Ek =My KRZI, we have Ek ¢ k—) 0 hence, extracting subsequences if necessary, we can assume
’ ’ ’ —> 00

that u; , (k — o0) has a defect measure , and by Corollaries 4.2 and 4.3 we can assume that the trace

measures for Uy gs v‘l/f, v,Il/ f and vaQD exist. Moreover, i, satisfies the relations from Proposition 2.12

where ;"°U_ Finally, extracting even further subsequences, we can assume kol /p have defect measures
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Wy gy D,fk’g has defect measure «;, and the joint measure of i , andfk’g is w), with

1

wy [(T*I7 ) < ek wy p(T*Tp ) <

2 =g
WA < Vi, A)a, (A)

and R, — R € [1,00]. Therefore, using e.g., (Galkowski et al., 2020, Lemma 4.2) together with
Corollaries 4.2 and 4.3 to estimate the H,llZ /R, DOrm of v by its L norm,

1= limsup [V |17, > 0.
k hic e/

- e (T*RY) > limkinf 9 ¢ll72 = climinf |5 17, >
k2%

- k hico/Rg

\SH oY

Note that each 4, is a finite measure satisfying supp u, C Sp, M)]Rd . Therefore, the sequence (i, is
tight and bounded, and hence by Prokhorov’s theorem (see, e.g., (Billingsley, 1999, Theorem 5.1, page
59) we can assume that u, — u for some measure p. Moreover, supp u C S%Rd and

1> pn(S*RY > ¢ > 0. (4.34)

LeEMMA 4.9 The sequences of boundary measures vg PE vrtlr , and v;’rﬁ, and vrlz , are tight.
Proof. Since {r > 0} C T*dM, , is a compact set, we need only consider r < 0. By Lemma 2.11,

~ I/D 1/D 1/D
R 1,0=0. w1 =—ni]1, (4.35)

On the other hand, the boundary condition on I, p gives fora € Cc°({r < 0}),
{a(x, ADYNRD,,u, u) = (a(x, ADYDu,u) + O(¢~") + o(1);_ -

Sending h— 0, we obtain
v (0 (N)a) = v, (0 (D)a) + O™
In particular,
[V (e NN, — v (0 (DD, | = o).

Now, since iﬁv}rg =0and v}],, o(D) are real,

[v5, (D)1, | = OCC™).
Similarly, for a € C2°({r < 0}),

(a(x, AD)RD,,u, Du) = (a(x, RDYu, NhDu) + O™ + o(1);_,,
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so that, since o (N) and o (D) are both real,
[} (o (D)1, oo — Vi (e (WD, | = 0™,
and hence

I v}’rg(a(D))IKO + 1 (e (M1, || = oY),

which again implies

||VU5,E(O’(N))1},<O ” = 0(6_1)'
‘We now claim that
there exists € > 0 such that {r|oc (N)| < €} N {|o(D)| < €} is compact, (4.36)

which then implies that viz is tight. We now show that (4.36) holds in each of the three cases: mg >
m;+1,my <m;+1andmy=m; +1.1f my > m; + 1, then {|o (D)| < c¢/2} is compact by (4.5) since
my > 0 by (4.10). If my < m; + 1 and m; > —2 then {r|lo (N)| < ¢/2} is compact by (4.4); observe
that the inequality m; > —2 follows from my < m + 1 since m; > 0 by (4.10). We now show that
if my = m; + 1 then the first inequality in (4.2) implies that there exists C > 0 such that if |§'| > C
then the intersection (4.36) with € = 1/c/2 (with c the constant in (4.3) is empty (and hence compact)).
Indeed, since my > 0 and (§) > 1,

if |0(D)]* < (¢/2) then |o(D)* < (c/2)(g)>™.
Now, by the first inequality in (4.2)
if [o(D)|* < (c/2)(£)*™ then |0 (N)I* < (c/2)(8)*™.

If [0 (N)|> < (c/2)()>™ then, since m; > —2, r*|o(N)|*> > ¢/2 for sufficiently large &, and thus
(4.36) indeed holds with € = /c/2.

The tightness of v, and (4.35) then imply that vy, is tight and |v}’re| < \/Vi.¢Vy¢ implies that UJ% is
tight. Next, the boundary condition on I}, gives that

1
Vig = Wpp = 7

Hence, vnD , and vﬁ are tight as above. |

Since the boundary measures form tight sequences, extracting subsequences if necessary, we can
1/D 1/D " I/D 1/D I/D 1/D 1/D 1/D
assume v,/,” — v/, v’ — v/" and v;,;” — v.’” for some measures v,/ ", and vy
. d >Vt i i d
1/D
measure vj/ . Furthermore, vg | =Wgp —> 0, and hence ijE — 0. We also have oy — 0.

, and a complex
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Since these measures converge as distributions and I, — [I2° in C*°, the equations from

Lemma 2.12 and Theorem 2.15 hold for the limiting measures on I2°. (Here, we think of I:I,E as a
C* graph over I;2°.) In addition, since o, — 0,

w(H,a) = Zl_i)rglo 1o (Hya) =0, aeCX(T*Uy \ BO,R™Y).

In addition, (4.27) holds by Lemma 2.12.
We now introduce notation for various billiard flows in the next section. First, let ¢! denote the
billiard flow on R? \ (£2_/ R,). Then, define

v E) = lim g/(n8),  (66) €S (RN (2_/B)).

Note that, the convergence to ¢;° is uniform and, in the case R < 00, ¢;/°(x, £) agrees with the billiard
flow on R? \ (£2_/R) and we identify the two flows.

ProposITION 4.10 Suppose that 7 < co and A C S’{]l Rewith

U efanr, =0
0<t<T

Then,

lim | sup. | (f (A) = )] =0

£—00 te 0,7

Proof. This follow from Theorem 2.15 since

”“BZ oy, | = 2”gn e” = C/llop,ll =0 b,

and

it < cya, = o™,

Next, we show that 1, is invariant under ¢;° when R < oo.

LEMMA 4.11 Suppose that R < oo and that A C S}*]OOR”I is closed and

U e@anry=o.

0<t<T

Then,

(92 (A) = n).
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Proof. First, note that since the convergence of ¢! to ¢* is uniform,
lim d((A), ¢{(A)) = 0.
£—00

Therefore, fixing € > 0, for £ large enough,

¢ (A) C{(x.E) : dpr(A), (x,£)) < €}

and
0, T (9A) C {(x,8) ¢ dA, (v,8)) < €).

Now, for finite times 7, i, is invariant under (pf up to o(1),_, .. Combining this with the fact that our
assumption on A implies that, for £ large enough, ¢! does not intersect Iy g in [0, T], we have

1o (972 A)) = 1y (07 "o (W) + 0(1)y o < e ({(x,6) : dist ((x,€),4) < €}) + 01y o

and

1o (A) = e (9f A) +0(1) o0 < g ({(x,8) = dist ((x,8), ¢°(A)) < €}) + 0(1)y_, -

Sending ¢ — oo and then € — 0, we obtain

(A = (90 (A))

as claimed. O

REMARK. Note that when R = oo, the analogue of Lemma 4.11 is obvious except on the sets {§ = j:ﬁ}
and {x = 0} since we can test u against Hj,a away from these sets.

In the case R = oo, we use the following lemmas.

LemMa 4.12 If R = oo, then u({x = 0} = 0}.

Proof. Fix € > 0. Since §2_ is nontrapping and I, € B(0, 1), there is T > 0 and ¢ > 0 such that

U, or (11 < 2R, ") ({Ixl < 3R, 'Y U {[(&.8)| <)) = 0.

Thus, for £ large enough
gh(lxl <€) C{2e < |x <6e. & & > c}.

In particular, there is ¢ > O such that forj # k,0 <j < k < ce!

Pgere (X =Dl 1 ({lxl <€) = 0.
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Since w, (T*Rd) < 1, this implies that
me({lx] < €}) < Ce +0y_, (1),
and hence, sending ¢ — oo,
u({lx|l < €}) < Ce.

Finally, sending € — O proves the claim. O
LEMMA 4.13 If R = oo then ., is invariant under ¢° away from I72°.

Proof. Let
Ay i={x& =G0 {kl = 5}

Note that s, is invariant under ¢ modulo o,_, ..(1). Now, FD’(Z C B(O,Rzl). Since R, — 00, and £2_
is nontrapping for (x,£§) € A_,

lim sup dist (¢!, &),A,) =0.
00 (v yeh_ ( 1/M +)

Similarly,

lim sup dist ((pfl/M(x,é),A_) =0.

L—00 (E)eAL

Now, for § > 0 small enough, —§ <t < § and dist ((x,&),Ai) <3, <pf(x,§) = ¢/°(x, €). In particular,
forB_ C A_,

| U @) ) =u | U ofB))=wn U efB) | +oi.00.
—8<t<$ —8<t<$ h—s<i< it s

Fix € > 0. Then for ¢ large enough,

U  eeoc U eof({@d : dist((n§).0fuB) < €}).

1/M—8<t<1/M+8 —8<1<8
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In particular,

el U o3 sue| U o ({8 1 dist ((8),959,(BL) < €}) | +o(Dnos

—8<t<8 —8<1<8

=ue | U e(ed) : dist (066), 07 B) < €}) | + oD m

—8<1<8

where in the last line we use that (pf = ¢7° on the relevant set. Similarly, for £ large enough (depending
one),and B, CA,

wel U @) <um | U o8« dist (06,03 B)) <€}) | + o) n.

—8<t<$ —8<t<$

Putting B, = (pf;’M(Bf), sending { — oo and then € — 0, we obtain

wl U e@o)<ul U eXimBo|=nl U @)

—8§<t<$8 —8§<t<$8 —8<t<8

<u U eXimB) | =n| U o6 |

—6<t<é —8<t<8

and the claim then follows from the fact that

w(H,a) = 0

forall a € C2(T}_\ 0)R)). O

\{0}

We now derive our contradiction to prove the bound (4.21), and thus complete the proof of
Theorem 4.6. By Lemmas 4.11, 4.12 and 4.13, p is invariant under ¢ ° away from I2°. In particular,
Lemma 4.8 applies and we obtain that 4 = 0, which is a contradiction to (4.34).

5. Proofs of the bounds on the relative error (Theorems 1.6-1.11)

As discussed in § 3, the upper bounds in Theorem 1.7 and in Theorem 1.9 follow from applying
Theorem 1.5 to u — v and then using Lemma 3.2. It therefore remains to prove the lower bounds in
Theorems 1.6, 1.7, 1.8, 1.10 and 1.11.

5.1 Existence of defect measures
LEMMA 5.1 If £2_ is nontrapping, then Assumption 2.2 holds for # and v the solutions of (2.1) and (2.2),

respectively.

Proof. The bound on | xul/;> follows from Lemma 3.1; the bound on ||hD, ul| [2(Ip) follows from
Corollary 4.3 and that on [|u|| 12(Ip) follows from the condition (2.1b) that u|, = exp(ix - a/h). The
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bound on ||v||;2 follows from Theorem 1.5. The bounds on IVllz2(r, ) @nd 1DV 21, ) follow from
Corollary 4.2, and those for [|hD,ul| 2, from Corollary 4.3. The bound on ||v|| [2(Ip) follows from the
condition (2.2b) that v|, = exp(ix - a/h). O

REMARK 5.2 (Neumann boundary conditions). We do not consider Neumann boundary conditions on I},
because, as far as we know, propagation of measures for Neumann boundary conditions is not available.
Indeed, the Neumann boundary condition does not satisfy the uniform Lopatinski—Shapiro condition
(see, e.g., (Hormander, 1985, Part (ii) of Definition 20.1.1, page 233)) and, under Neumann boundary
conditions, if u is normalized so that |9, ull 2, is bounded, then [ull 2 ) is typically not uniformly
bounded as i — O (for example, when I, is the boundary of a ball; see, e.g., (Spence, 2014, Equation
3.31)); therefore Assumption 2.2 does not hold.

5.2 Reduction to a lower bound on the measure of the incoming set

LEMMA 5.3 There exists C; > 0 such that if {u,}7° | and {v,}2 are sequences of solutions to (2.1) and
(2.2), respectively, such that 1, has a defect measure and v, has defect measure u, then

ltg — vl 2 T
liminf ot 2@ o o JEE) 5.1)
t—o00 ||Me||L2(QR) R

llug — vy ||L2(B(o,2)\9,)

and

z Cl\/” (Zn (52(0,3/2)Rd))’ (5.2)

lim inf
{—o0 luglr2 o220
where 7 is the directly-incoming set defined by (3.3).

Proof. Let b € C2°(S5*$§2R) be supported in Z and such that

/w%uzmmﬂ
If 1 is a defect measure of u, then ;1(Z) = 0 by Lemma 3.6. By the definition of defect measures,

lim (b(X, th)u(Z’ b(x’ hZD)u[> = O’
{— 00

and therefore
w@D/2 < lim (b(x, hyD)vy, b(x, hyD)v,)

—00

= elim ((bGx, hyDyvy, b(x, hyD)v,) + (b(x, hyD)u,, b(x, hyD)uy))
—00

— 2elim R(b(x, hyD)u,, b(x, h,D)v,)
—00
= Zli>nolo (b(x, h,DY(vy —u,), b(x,h,D)(v, — ul))

2
S ”u[ - VZ ”LZ(.QR)
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(where the upper bound on b(x, #,D) is independent of Z by (Zworski, 2012, Theorem 5.1)). The bound
(5.1) then follows from the upper bound on ||u, | 2 (g, in Lemma 3.1. The estimate (5.2) is proved in

the same way by taking b supported in 52(0’3)1[%’1 and such that [ 1b> dp > w(Z N S§(0,3 /Z)Rd) /2. O

COROLLARY 5.4 Let {v,}72,, {h,};2,, and {a,};2 | be sequences such that v, satisfies (2.2) witha = a,
and {v,}72 | has defect measure w.

(i) To prove Theorem 1.6 it is sufficient to prove that there exists ¢, > O that depends continuously
on I, g such that

W@ = ¢

(i1) Having proved Theorem 1.6, to prove the lower bound in Theorem 1.7 it is sufficient to prove
that there exists ¢; > 0 (independent of R) and R, such that, for all R > R,

u(@) > R4mc—1 (5.3)

ord—1 "

(iii) Having proved Theorem 1.6, to prove Theorem 1.8 it is sufficient to prove that there exists ¢, > 0
and R, > 0 (independent of R) such that, for all R > Ry,
W(@) = R, (5.4)

(iv) To prove Theorem 1.10 it is sufficient to prove that there exists ¢; > 0 (independent of R) and
Ry = 2 such that, for all R > R,

&
1(Z 0 (Spo32RY)) = R4’30rd'

(5.5)
(v) To prove Theorem 1.11 it is sufficient to prove that there exists ¢, > 0 (independent of R) such
that, for all R > 2,

C
m(Zn (52(0,3/2)Rd)) z Rdil' (5.6)

Proof. We prove Part (ii), i.e., the lower bound in (1.14) in Theorem 1.7; the proofs of the other parts
are essentially identical and/or simpler.

We first show that it is sufficient to prove that there exists C; = C;(£2_,M,N) and R, =
Ry(£2_,M,N) > 0 such that for any R > R, there exists 7€0 (R) > 0 such that, for any direction a,

= vilr2(2p - C,
- Rzmord

for all k > k. 5.7
||”||L2(_QR)

Indeed, having proved (5.7), we let

| = M=Vl
€, :=min( C,, min — L&)
1<R=<Ro ||14||L2(9R)
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By Theorem 1.6 and the fact that the constant C in this theorem depends continuously on R, C, exists, is
> 0, and is independent of k. With this definition of C, (5.7) implies that the lower bound in (1.14) holds
with ky(R) := ky(R) for R > Ry, and ky(R) equal to the respective k, from Theorem 1.6 for 1 < R < R,

We now prove (5.7); seeking a contragiction, suppose that the converse of (5.7) is true; that is, given
Cy > 0, for any R, > O there exists R > R, and sequences {h,}7° |, {a,}72, with hy — 0, |a,| = 1 such
that the solutions u, and v, to (2.1) and (2.2) satisfy

g — vellr2(2q) - Cy
— R2mord

(5.8)
||Mz ”LZ(_QR)

By extracting subsequences, we can assume that u, has defect measure & and v, has defect measure p
by Lemma 5.1.

Setting jéo := Ry, with R such that (5.3) holds for R > R, and using this lower bound on u(Z) in
(5.1), we have

luy, — vl 2 C, . /c
lim inf — L) > 12m 1,
{—o00 ||Me||L2(QR) R=Mord

for all R > I~€O, which contradicts (5.8) for C, < C; NGE thus proving the lower bound in
Theorem 1.7. 0

5.3 Outline of the ideas behind rest of the proofs, and the structure of the rest of this section

By Corollary 5.4, we need to prove lower bounds on the measure of the incoming set (7). We argue by
contradiction and assume that (Z) is small. The overall plan is the following.

(i) Show that, since w(Z) is small, mass is created when incoming rays reflect off I}, using
Lemma 2.20 above.

(ii) Show that there exists a neighbourhood of rays starting from Iy, that hit I, ¢ directly (i.e., without
hitting I, in the meantime) and hit I, p at angles to the normal that are not zero, and not one of the
special angles corresponding to the nonzero zeros {tj};'gal‘"“h of q(t)~/1 — t — p(¢) (these conditions are
made more precise in Condition 5.9 below).

(iii) Propagate the mass created in Point (i) on the rays constructed in Point (ii) using Part (i) of
Corollary 2.17 (to go from mass on I, to mass on [, g).

(iv) Show that mass is reflected on I3, using the expression for the reflection coefficient in
Corollary 2.19 and the fact that the rays hit I, p away from angles where the reflection coefficient
vanishes.

(v) Show that this reflected mass produces mass on Z using Part (ii) of Corollary 2.17 (to go from
mass on [, p to mass in £25), contradicting the assumption that 1 (Z) is small.

For the quantitative (i.e., explicit-in-R) bounds the goal is to prove a lower bound on w(Z) that is
explicit in R. Therefore, on top of the requirements on the rays in Point (ii) above, we need (a) the angles
the rays hit I, ; to have certain R-dependence (since this will affect the R-dependence of the reflection
coefficient in Point (iv)), and (b) information about when the reflected rays next hit I',.

For the bounds on the relative error in subsets of £2; (Theorems 1.10 and 1.11), we also require
information about when the rays return to a neighbourhood of £2_, since we need information about the
defect-measure mass here (more specifically, w(Z N 52(0’3 ) RYY).
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Outline of the rest of § 5.

§ 5.4 contains preliminary results required for the ray arguments. § 5.5 states the condition the
rays must satisfy (Condition 5.9) and results constructing rays satisfying this condition (Lemmas 5.10-
5.13). § 5.7 proves Lemmas 5.10-5.13. § 5.8 bounds the reflection coefficient (2.48) for rays satisfying
Condition 5.9. § 5.9 proves the qualitative (i.e., not explicit in R) lower bound in Theorem 1.6; the steps
(1)—(v) above therefore appear in their simplest form in this proof. § 5.10 proves the quantitative (i.e.,
explicit in R) lower bounds in Theorem 1.7, 1.8, 1.10, 1.11.

5.4 Preliminary results required for the ray arguments

Recall that S~ denotes the d-dimensional unit sphere. Givena € RY with |a| = 1,letR,, : I}, — S9!
be defined by

R, () = (51 = /r (¥, (ar())’). € = (aT(X’))b)-

The definition of the local coordinates in § 2.3 and the fact that §&; > 0 imply that

R, ) =

[a —2m(X) -a)n@) ifa-ni) <0, (5.9
a

ifa-n(x) >0,

i.e., M, (x') is the reflection of a from I, if X’ is in the illuminated part of I, and 2R, (x') is just a if ¥’ is
in the shadow part of I7,.

DEFINITION 5.5 Given ¥’ € I, and a € R? with |a| = 1, the ray emanating from x' is the ray starting
from (x =x,§= %a(x’)).

DEFINITION 5.6 The ray emanating from x’ € I7, is direct if the flow along the ray, starting at x’, hits
I g before hitting I7,.

We now show that there are direct rays emanating from 7, in every direction.

LEMMA 5.7 Given a € R? with |a| = 1. Let F; ““ C I denote the set of points x’ of I'j, such that both
a - n(x’) # 0 and the ray emanating from x’ is direct. Then,

s)%a (Fg,a) = Sd_l'

Proof. We first prove that a € %a(FDJ“a). Without loss of generality a = (1,0, ...,0). Let x;, € I';; be
the point with maximal x; coordinate. Then R, (x(’)) = aby (5.9), x(’) € FI;F ““ by the fact it has maximal
x; coordinate, and so a € R, (I} ).

We now need to show that, given { € S~ '\ {a}, ¢ € Eﬁu(l“;)“a). Let P be the plane defined by
P := Span(a, ¢). Choose a cartesian system of coordinates in which P = {x; = --- = x, = 0},
a=(1,0,---,0), and (x,x,) is right-handed oriented in P. For & € ST et r, (&) :=a— 2§ - a)§;
i.e., r,(&) is the reflection of a from a boundary with normal £. This definition implies that

r,((cosw,sinw,0,---,0)) = (cos2w — ), sin(2w — 7),0,---,0),
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FiG. 6. Illustration of the proof of Lemma 5.7 in the two-dimensional case; i.e., construction of a ray reflecting from I'p in
an arbitrary direction ¢. The point x' has maximal y; coordinate, where the vector & defines the y; axis, and & is defined by

{=a—2a-£E.
so that

r,(D) = (8‘171 N P) \ {a}, where D := [(cosa), sinw,0,---,0), w e (%, 37”)} .
Hence, there exists £ € D such that r,(§) = ¢.

Finally, to show ¢ € R,(I'; ), we need to find x’ € Iy such that R, (¥') = r,(§). Let (v;, -+ ,¥,)
be a cartesian system of coordinates such that§ = (y; = 1,y, = 0,---,y; = 0); see Fig. 6; let X' be
a point of I, with maximal y; coordinate. By definition, n(x’) = &, and, since & € D, a - n(x') < 0.
Therefore, R, (x') = r,(n(x)) = r,(&§) = ¢. Since x’ has maximal y, coordinate in I}, the ray emanating
from x’ only intersects I, at x’, and thus x" € Fl;r . O

The following dilation property 9R,(x") is needed for one of the proofs below (the proof of
Lemma 5.13).

LEMMA 5.8 Let0O <8 < landletC C T, D+ “ be uniformly convex (i.e., the second fundamental form is
positive definite) and such that, for any x’ € C, § < |n(x') - a| < 1 — §. Then, there exists Cyx > 0 and
oy > 0 such that, for any X' € C and any 0 < o < o, if 3B(x',@) N C # @Y and 9B(x', ) N 3C = @,
there exists y € dB(x’,a) N C so that

IR, () = R,0N| = Cxl' =y = Ca.
Proof of Lemma 5.8. Let (xq,---,xq) =: (x1,%) be an Euclidian system of coordinates in which

a = (1,0,---,0). Since C is included in {§ < |n(x') - a] < 1 — 8}, there exists X C {x; = 0} and a
smooth map y : X — R such that C is given by, in this Euclidian system of coordinates

C={x).x): ¥ ex}.
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First observe that, for x' = (yp(x'),x’) € Cand y = (yp(y'),y) € C
W =y < ¥ =¥+ 1ypE) —ypE)l < (1 + S‘;{P |V)/c|) X' -yl
and hence
—1
ColX =Y <X =¥ | <K —)y|, where C,:= (1 —|—sup|VyD|) ) (5.10)
X

By the definition of R, (5.9),
R,) —R,0) =2H)-H{Y)), (5.11)

H(x') = (nx)-a)n(x’) and nx'):=(1,-Vyp))/\/1+ |Vyp)2,

i.e., n(x’) is the outward-pointing normal to I}, atx’ = (yp(x'),x) € C.

Given x', our plan is to use Taylor’s theorem on H to bound |9, (x") — R, ()")| below, and then choose
¥’ appropriately so that this lower bound is > Cg |x" — y'|. We first record that, since |n(x’) -a| <1 —§
anda = (1,0,...,0),

|Vyc(x’)| > - 8)_2 —1=:8>0. (5.12)
Let H, be the component of H in the x; direction (i.e., the direction of a), i.e.,

1

TV GOR o

H,(x) =
Then, using (5.11), Taylor’s theorem, (5.13), (5.10) and (5.12), we obtain
1 2
3% =R,00| 2 [H ) = B (V)] 2 [VH () - = )| = sup |0%H, ||x' - v/|

2027 V() x —Y

2
B K (1+ |Vye(x)»)? ¥/ —y/|>

| /

x -y - Sl;p ’82H1Hx’ — y/|

“a +2||VVZCC(<XX/’)>||2)2 <82 cG) ;iﬁi; |§ = §|>‘ =y s Py
> 2C,C,0c <v%> K —y| =G =y, (5.14)
where
. (azyc(x/);yc(x?) oy TG [
Yo (X)) [Vye ()]
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and

-2
C, = (1 + sup |V)/C|2) >0, C,:=sup ‘BZHI‘ <00, Q¢:= ‘azyc(x’)e) > 0,
X X

x'€X,|e|=1
where Q- > 0 because C is uniformly convex.
We now claim that, under the assumption that dB(x', ) NC # @ and dB(x', ) NIC = @, it is always
possible to choose y' € C so that
/ /
’ / X —Y
X —y|=a and ——— =. (5.15)
%" — vyl

Indeed, for d > 3, the projection of dB(x’,a) N C on the hyperplane {x; = 0} is a closed hypersurface
of R¥~! (e.g., for d = 3 it is a closed curve). Since x’ is in the geometrical interior of this hypersurface,
for any v € R?™!, there exists y’ satisfying (5.15). For d = 2, the projection of dB(x’,a) N C on the
hyperplane {x; = 0} equals two points (one on either side of x'); since v = %1 in this case, there exists
Y satisfying (5.15).

For such ay’ € C satisfying (5.15), by (5.14),

1R, () = R,0)| = (2C,BC,0¢ — Crat) a3

taking o := CyC; BQc/C, gives the result with Cy; := C;BC, 0. O

5.5 Statement of the lemmas constructing the rays

CoNDITION 5.9 Given {1//]-}]’.”:1 € (0, /2], there exist ¢ 1,...,5, such that, given a € R4 with

|a| = 1, there exists V, C I such that
(1) vol(Vp) >c

rayj>) =

ray,1°
(i) |nG)-a| > Cray, for all X eVp,

(iii) the emanating rays from V), hit I p directly and, for each ray, the angle 6 the ray makes with
the normal satisfies

(5.16)

0> Cray,3 and j=nllinm 6 — 1/f]| = Cray,47

(iv) after hitting I, p, the rays travel a distance > c,,, 5 before hitting either I g or I';, again.

ray,

The {wj}j'": ; in Condition 5.9 are arbitrary angles, but in the proofs below we choose them to be the
angles at which the reflection coefficient on I, p (i.e. (2.48)) vanishes, i.e., the angles corresponding to

the zeros of g(t)/1 — t — p(¢) in (0, 1]. We set

yi=sinT! e 0.7/2], =1 My (5.17)
where {tj};'i"l‘"“h are defined at the end of § 1.3. Then, when [§'|, = sin y; for some j = 1,..., mypigh,

sN)Wr—a(D) = q(1) [T = 1;— p(t) = 0.

We now state four lemmas constructing the rays used to prove the different lower bounds on ©(Z)
required by Corollary 5.4.
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LEMMA 5.10 (The rays for general strictly-convex I g). If I, p is strictly convex, then Condition 5.9
holds with ¢,y i = ¢y (I, Iy g) for j = 1,3,4,5, and ¢ = Cray2(I'p). Furthermore ¢
1,3,4,5, are continuous in R.

ray,2 ray,j’ J =

LEMMA 5.11 (The rays for I, g = 9B(0,R)). If I\, x = 9B(0,R) then there exists R, > 0 such that
Condition 5.9 holds for all R > Ry, with ¢,y 1, Cpay 2, Cray 4 independent of R, ¢, 3 = ¢3/R and ¢

¢5R with ¢3,¢5 > 0 independent of R. Furthermore,
(iv)’ after their first reflection from IS all of the rays hit B(0, 1).

ray, ray,5 —

LEMMA 5.12 (The rays for generic I ). If I p satisfies the assumptions of Theorem 1.8, then
Condition 5.9 holds for R sufficiently large with ¢ 1,...,4, independent of R and c,,, s = C5R
with ¢5 > 0 independent of R.

ray, ] = ray,

LEMMA 5.13 (The rays for when I,  is a smoothed hypercube). Let I, p coincide with the boundary
of the hypercube [—R/2, R/2]¢ at distance more than € from the corners (as described in the statement
of Theorem 1.11).

There exists €, > 0 and M € Z* (both dependent on I, but not on R) such that, if 0 < € < ¢, and
R = 4, then Condition 5.9 holds with ¢, 5, ¢p,y 3, and ¢, 4 independent of R, ¢ /R and
Crays = CsR with ¢}, s > 0 independent of R, and

(iv)’ the emanating rays from Vp, hit I3,z N(R) < M times, each time with an angle 6 to the normal
satisfying (5.16) without hitting I}, in between, and then, after their N(R)th reflection, the rays intersect
B(0,3/2) \ B(0,5/4) before hitting either I}, or I}, p again.

ray,] = Cray,

5.6 The ideas used in the proofs of the lemmas constructing the rays

In this subsection, we outline the ideas used in the proofs of Lemmas 5.10-5.12, in the simplest possible
case when M = N = 0 (i.e., the boundary condition on I3 p is the impedance boundary condition
(1.10)). In this case m,,;¢, = 0 and there are no nonzero angles /;; when such angles exist, mass needs
to be excluded in a careful way from the neighbourhoods described below so that the rays avoid these
angles. The proof of Lemma 5.13 has a different character to the proofs of Lemmas 5.10-5.12, and so
we postpone discussion of the ideas of that proof until the start of the proof itself.

The idea behind the ray construction for general strictly-convex I, p in Lemma 5.10 is as follows.
We consider a point x;, in Iy, that is the extremum point on I}, in the direction of a. The rays emanating
from a neighbourhood of this point are rays in the direction a, and thus hit I, directly. Since I »
is strictly-convex, these rays cannot be normal to I, p at more than one point, see Fig. 7, and thus the
required neighbourhood exists.

For the proof of Lemma 5.11, we need in addition to quantify how far from the normal the ray
described in the last paragraph hits I, z. When I, z = dB(0, R), we show that a set of points of volume
¢ > 0 can reach I ; with an angle |6] 2 R~!; see Fig. 8.

For the proof of Lemma 5.12, i.e. when I7;° := limg_, (I}, g/R) is not a sphere centred at zero,
we recall from Lemma 5.7 that, given any direction, there exists a direct ray emanating from I, in that
direction. We need to show that at least one of these rays hits /;°° non-normally. Since I;2° is not a
sphere centred at the origin, there exists x3° € I'7° with n ree (xg°) # x5°/1xg°|. We use Lemma 5.7 to
identify a point x;, € I}, such that the ray emanating from x;, is in the direction xJ°/|x3°| and does not
hit I'j, again. In the limit R — oo, the rescaled obstacle £2_ /R shrinks to the origin; therefore the rays
emanating from a neighbourhood of x; hit I, g with an angle close to the angle between x°/|x;°| and
oo (x8°); this angle is > ¢ > 0, with c independent of R; see Fig. 9.
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F1G. 7. The rays in Lemma 5.10 (i.e., for general strictly convex Iy g). Neighbourhoods on I'p from which any of the blue rays
emanate satisfy Condition 5.9.

FiG. 8. The rays in Lemma 5.11 (i.e., for Ity g = 9dB(0,R)). Neighbourhoods on I'p from which any of the blue rays emanate
satisfy Condition 5.9.
5.7 Proofs of Lemmas 5.10-5.13

In the proofs of these lemmas we use the notation that (bl,/b\z) is the angle between vectors b; and
by;ie.,

S b, -b
By, 5) 1= cos™! (M) ,
ALY
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F1G. 9. The rays in Lemma 5.12, i.e., when I;2° is not a ball centred at the origin. The figure shows the rescaled domain in the
limit R — oo (recall that in this limit the obstacle shrinks to the origin).

where the range of cos~!is [0, 7].

Proof of Lemma 5.10. Step 1. Construction of direct emanating rays in the direction of a.

Without loss of generality, we assume that a = (1,0,...,0). Let x() € I, be the point on I, with
maximal x; coordinate. By translating the obstacle £2_, we can assume that x;, = 0. Then, locally near
0, forany 0 < € < €;({ ), where ¢ is small enough

I NBO,€) C {(yp(¥),x) : ¥ € B(0,e) c R}, (5.18)

where yp € C® (R4—1y and dyp(0) = 0, and y,(x') < 0. Moreover, for ¢, > 0 small enough and
0<e=<g

Iy N {2 = x> yp() and X' € B(0,e)} = 0. (5.19)

Indeed, if not then there exist x, — 0, (v,,x,) € I}, such thaty, > y,(x),). But then, extracting
subsequences if necessary, (yn,x;l) — (3,0) € I'pand y > yp(0). In particular, by maximality of the
x; coordinate at x6, y = 0. But, near x6 (5.18) holds and, in particular, for n large enough, y, = yD(x;l),
which is a contradiction.

Observe that, shrinking €, > 0 if necessary, a is outward-pointing along Iy, N B(0, €), and

In(xX’) - al > ¢y (&), forallx’ € B(0,¢), (5.20)

ray,

where ¢, »(€y) > 0 depends only on €, and hence . By (5.9), R,(x) =aforall X' € I, NB(0,¢),
and thus the rays emanating from I', N B(0, €;) are the rays in the x; direction; see Fig. 7. By (5.19),
these rays hit I, p before hitting I, again. The neighbourhood V, will be a subset of B(0, €)), and thus
Point (ii) in Condition 5.9 follows.
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Step 2. Parametrization of I}, p.
Let v, : B(0,¢,) C R™! — R, be such that

Ter N x> 0, 1] < €0} i= {0, (). X)) = 1] < €0}

since I, p is strictly convex, this property holds without needing to reduce €, and thus ¢ still only
depends on I'j,. The outward-pointing normal to I  is given by

(L, =Vy, (&)

VT+ [Vy 2

n,(x') =

Forx' € B(0,¢,) C RY! let 8(x') € [0, 7/2) be the angle between the ray emanating from (yp,(x'),x)
and the normal to I, g; since cos 6 (x') = (1,0,...0) - n, (x),

1
o) =cos M ——— 0,7/2). 5.21
(x') = cos ( = IV)/tr(x’)lz) € [0,7/2) (5:21)

We use later the facts, obtained from from (5.21) by direct calculation, that,

tan 0 (x') = |Vy, ()], (5.22)
and, in {Vy, (x") # 0},
V /
Vo) = —,zazyu(x’)Lx,). (5.23)
1+ |VVtr(x )| |VVtr(x )|
We also use the following quantities,
Q:= inf [8%y,()v| and €y :=supmax|d*y, ()|, k=1,2,3. (5.24)
X, v|=1 x K=k

Step 3. Avoiding the angle {; = 0.
Recall that our goal is to construct Vi, C I'; N B(0, €) so that

_I?in ) — ¥, >C>0 foralx' €V,
i=1,..., m
where vol(Vp) and C depend only on I . Our plan is to exclude mass from B(0, €) for each i, taking
care that the volume is still bounded below to give Point (i) of Condition 5.9.

Avoiding the angle zero corresponds to obtaining a lower bound on |6 (x)|. By Taylor’s theorem,

IVVe ()] = | VY (0) + 82y, (00X | — C,C51x'1%,
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where Cj is defined by (5.24), and E‘d depends only on d. By the definition of Q in (5.24),

[97:0) + 27, 0| = |01 O (927 0) 7' V74,0 +¥) | 2 0] (02,0) ™ Vi (@) + ¥,

Suppose that |(82ytr(0))_1Vytr(0)| < €/3. Then
/ Q6 e 2 /
VY XD > o C,Cye” forx’ € B(0,¢) \ B(0,€/2).

On the other hand, if !(azytr(o))_l Vy,(0)| = €/3, then

QE EdC3€2

= forx' € B .
s 36 orx € B(0,¢/6)

IVye )] =
Therefore, in both cases, if € < Q/ (126‘dC3), then there exists a set W with
vol(W) < max(2™%,1 — 679 vol(B(0,¢€)) = (1 — 6~ vol(B(0, €)), (5.25)
such that
/ QG /
IVy, ()| > - for all X' € B(0,¢) \ W.

Therefore, for X' € B(0,¢€) \ W, by (5.21)
_0W)? VyeII? _ | 0%

1 —_— 2
2 288

<cosfX) <1-—

and we conclude that

if 0 < € <min ( 60) , thenf(x') > % for all X’ € B(0,¢) \ W. (5.26)

12C,C;

Step 4. Avoiding the angles .
Given ;, let x, € B(0,€) C R~ be such that

0 — ¥l = min [0() — ¥, (5.27)
X' €B(0,¢)

i.e., x is the point in B(0, €) where 0(x’) is closest to ;. Let

Yinin = I{lin Y > 0. (5.28)
]:
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In the following we use the notation [a, b] for the line segment between a and b, i.e.,
[a9 b] = {ta + (1 - t)b9 te [O’ 1]}9

and (-, -) denotes the Euclidean inner product on R¥.

The main idea of the rest of this step is the following: |6 (x') — Y| is, by definition, smallest at x;,
and will be smallest when the minimum in (5.28) is attained, i.e., 0 (xg) = v;; in this case, the idea is for
the size of the neighbourhood of x; that we exclude to be dictated by using Taylor’s theorem

10() — ()| > |VOW) - (' —x))| — sup max|8k9(y)||x —X?

l

Vel x ]
Vytr(x) ¥ /> k 2
=T vl 2 () —=—— X —x})| — sup maxae(y)| ,
1+ |Vy, ()2 < Y IVye (DI ' Vel ] KI=2 | |
(5.29)

where the requirement that the right-hand side is bounded below determines the size of the excluded
neighbourhood. The issues we then have to deal with are (a) 6(x’) is not necessarily equal to ¥;, and
(b) |7, ()| = tan 6 (x’) is zero when 6 (x’) = 0, and then the second-order term in (5.29) blows up.

To deal with Point (b), we first consider points in B(0, €) where the second-order term in (5.29) does
not blow up. Let

={x' € B(0,¢) : 0() = fyforally € [, x]]}, (5.30)
where 6, will be chosen later in the proof (when dealing with the points not in Z;). By (5.22), for any

¥ € B(0,e) NZ;, |[Vy,(y)| = tan(fy) > 0 fory’ € [x’,x]]. Recalling the definitions (5.24), and using
(5.29) and (5.23), we have

X —x
o) — 6 (x})| = D <vi, m> I — x| — Dyl — x}|%, (5.31)
1
where
D 1+ D; = C; + C,C? & 532
= (1+c}) 5= G+ G+ s (5.32)
and the unit vector v; is defined by
Ve () Ve ()
v = 9%y, () == ) (8%, (x)) =2 | L (5.33)
i ( tr( z) ‘Vytr (x:)’ tr( l) |V - (x:)|

Let

W;(n,8) :==B (xg, ne) U ’
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where 1 < 1; then (5.31) implies that
|0() — 6 (x})| = (D,08n —4Ds€) € forallx’' € (B(0,€) NZ;) \ W,.

We now deal with Point (a) above (i.e., that G(x:.) is not necessarily equal to ;). If |0(x§) — ;| > o, for
o to be fixed later, then, by (5.27),

0 — ;| = |0 (x]) — ¥;| > @ forallx’ € B0, ). (5.34)
If |0(x) — ;] < @, then
06) — ] = [0() — 0 ()] —
and then
10(X') — ¥;| = (D;08n — 4Dse) € — o for all X’ € (B(0,€) NZ;) \ W;. (5.35)

Combining (5.34) and (5.35), we have

m
_ r{lin 10(X') — ¥;| = min ((D,Q8n — 4Ds¢) € — o, ) forallx’ € (B(0,€) N Z;) \ U W;(n,9);
i=1,..., m i=1

(5.36)

recall that we still have the freedom to choose 6, 1, 5, and «.

We now deal with the case X' € B(0,¢) \ Z;; the idea here is the following: Z; consists of points
¥’ such that every point on [x',x]] has 6 > 6, i.e., 6 bounded below. If 6(x") < 6, and we chose 6,
appropriately, then |0(x")| can be small compared to |;|, and thus |6 (x") — ¥;| can be bounded below.
Indeed, let 6 := Vi, /25 if O(X') < Ypin/2, then

1
0 =] = 19l = 10()] = 5 Vmin- (5.37)

We now need to consider X' € B(0,¢€) \ Z; with (x") > ¥,;,/2. The sequence of ideas here is that
(i) by the definition of Z;, there is a point, x/, in [x', x7] with 6(x;) < v,,.;,,/2, (ii) the argument in (5.37)
applies at x}, (iii) [x' — x| < €, which is small, (iv) x; can be chosen so that [Vy,.| # 0 on [x,x]] and
then |6(x") — 6(x})| can also be made small. The detail is as follows: let

() ==inf {r € [0,1] : |Vy, ((1 — DX + 1x))| < [tan(Wyin/2)

&

the set on the right-hand side is not empty by (5.22) and the definition of Z; (5.30). Let x; := (1 —
1;(X'))x" + t;(x")x]. This definition implies that Vy, (y) # 0 for y" € [x’,x]]. Therefore, using the mean-
value theorem and (5.23), we have

0 —6 (X)) < sup VOO |« — x| <2Cse.

Vel x
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Using this together with (5.37), we obtain

1
6G) =il = |6 (x)) = 3] = [0G) = 0 ()] = S ¥min — 22, (5.38)
Collecting both cases (5.37) and (5.38), we obtain that
: 1
if0 < € < min (ﬁgm,eo) , then |0(x) — ¥, > Zwmin for all X' € B(0,¢) \ Z,. (5.39)
2
Putting (5.36) and (5.39) together, we find that if
_ m
Vp = B0.6)\ | W,(n. ). (5.40)
i=1
and
0<ec< min(wmi“,eo),
4C,
then
1 ~
. r{lin |6(x) — ¥;| > min ((DIQSn — 4D36) € —a,d, Z’»”min) forall X' € V. 5.41)
i=l1,..., m

We now tune > 0 and § > 0 to make the volume of \7D big enough, and conclude the step by
selecting suitable € > 0 and o > 0. From the definition (5.40),

vol (VD) > vol (B(0,¢€)) — Z (vol (B(x}, n€)) + vol (C; N B(0,¢))),
i=1
> vol (B(0, €)) — z (vol (B(x], ne)) + vol (C; N B(x}, 2¢))), (5.42)

i=1

where

-

X,
58] = [x' ccosTl < (x/ ’,,v~) fn—cos_le].
‘X7xi| !

C / x/_x;
=X | ——L Ly,
! I — x|

Observe that C; is the complement of a double cone, rotationally symmetric around the axis v; (recall that
v; defined by (5.33) depends on x; and not x'); therefore, vol(C;) decreases as § — 0. By integrating in
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hyperspherical coordinates centered at x; with axis v;, and comparing vol(C; B (x;, 2¢)) to vol(B (x;, 2¢)),
we have

, m—2cos!8 , _Zd T
vol (C; N B(x,,2€)) < (T) vol (B 26)) = = (E cos 5) vol (B(0, €)).
Using this in (5.42), we have
~ e 24
vol (V) = vol (B(0,€)) — > (vol (B, ne)) + — (5 ~ cos~! 5) vol (B(O,e)))
T
i=1
d 24 —1

> (1= mn? —m=— (— — cos 3) vol (B(0, €)). (5.43)

T \2

We now fix both § > 0 and n > 0 to be sufficiently small such that

T 4 r 1074 d
0<——cos” 8§ —/———, 0<n®<
2 2dm 2

then (5.43) implies that
vol (Vp) = (1 — 107%) vol (B(0, €)) > 0. (5.44)

To conclude this step, we now restrict € so that 0 < € < (D;Qén)/(8D5) and then set o := D, Qdne/4;
then (5.41) implies that if

D,0Qé ;
0 <e < min (227 Ynin (5.45)
then
1 ~
_min 0(x) — ¥ > 2 min (D;Qéne, ¥,) forallx’ € Vp,. (5.46)
i=1,...m

Step 5. Conclusion.
Combining the result of Step 3 (5.26) and the result of Step 4 (5.45)—(5.46), we see that if

0§e§mm< 0 D10on wmin),

= > €05 >
12C,Cy 8D; 4G,
then

00) > L and  min 0G0 — vyl = min(

DIQ‘Sn6 wmin
- 12 i=1,...m ’

2 A ) forallx' € V) \ W.
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‘We then let
D, 06 :
€ = ¢, := min 10 O ,Wmm,eo , (5.47)
8D; " 12C,Cy 4G,
so that
D,$ . D,$ 1 :
min [900) — gyl > 02 x min (2120 Yimin ) oy (2122 L Ymin €0}
i=1,....m 4 4Q¢, 8D; " 12C,C;” 4QC," Q
forall X' e X~/D \ W,
where, by (5.44) and (5.25)
vol (Vp \ W) = (674 — 107%) vol (B(0, €))).
Points (i) and (iii) in Condition 5.9 then hold with
Vpi=Vp\ W, ey = (674 = 1079) vol (B(0, ))),
gy = Loanin (2127 2 Vmin (5.48)
a3 T 8D, ' 12C,C; 4G, ) '
and
c := 0% x min (D](Sn wmi”) X min (DI(ST7 ~1 Vinin €0 ) . (5.49)
ray4 4 4Q¢, 8D; " 12C,C;° 40C," Q°

Since Q, C,, C3, D and D5 (defined by (5.24) and (5.32)) all depend continuously on y,,, and y,,. depends
continuously on R, ¢y, 1, Cray 3, and cp,y 4 depend continuously on R. The constant ¢, 5 depends on
Cray.3: Cray4 Lirr> @nd I'p, and thus also depends continuously on R. O

Before proving Lemma 5.11, we prove the following simple lemma.

LEMMA 5.14 If I, p = dB(0, R), then the emanating rays from I, hit I, p directly with an angle to the
normal 6 satisfying § < R~

Proof. Since £2_ C B(0, 1), any ray starting from §2_ hits I p = dB(0, R) with an angle to the normal
0 satisfying tan® < 1/R. Since 6 < tan 6, the result follows. O

Proof of Lemma 5.11. We first observe that Point (iv)’ follows from the same argument used to prove
Lemma 5.14; this implies that ¢, 5 = ¢sR with ¢5 independent of R.
The fact that ¢, » is independent of R follows from the proof of Lemma 5.10; see (5.20). By direct

calculation from the definitions (5.24), (5.32), using the fact that y,,(x') = vVR? — |x/|? 4+ ¢ where c is a
constant, we obtain that

Q~R',C ~1,C,~R", C;~R2, and thus D, ~ 1, D; ~ R2.
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Using these asymptotics in (5.47), (5.48) and (5.49), we find that Cray,1 is independent of R and ¢

R~ (observe that the first minimum in (5.49) ~ 1 and the second minimum ~ R).

These arguments from the proof of Lemma 5.10 also show that ¢, 4 ~ R~!, but we now show that
in fact ¢, 4 ~ 1 for R sufficiently large. By Lemma 5.14, all the rays from V, hit I, p with angles
< 1/R. Therefore, if R > 2/ then |6 — 1//j| > Ynin/2 for all j. O

ray,3 ~

min>

REMARK 5.15 (Lemma 5.11 when M = N = 0). Recall that when M = N = 0, then m,,;;y,
inspecting the proof of Lemma 5.11, we see that the result then holds with ¢,y 4 = O and Ry = 1.

= O’
Proof of Lemma 5.12. For0 < § < 1,let¥ = {0,v,...,¥,,} and
Ve2(8) := 1x™ e IY°, © n(x™) exists andlrpneikrbl ‘(n(xo"), ‘i—zl) — w‘ > 8] )

We now claim that there exists , < 1 such that V°(8)) is nonempty. Indeed, first observe that the map

{xe IY® : n(x)exists} > R givenby x— (n(x), chc_l) = <n(x), %>

is continuous. The only way for this map to be constant is for I;2° to be a sphere centred at the origin,
and this is ruled out by assumption. Since I}, z/R — I7° in C%1, I is Lipschitz, and the set {x €
I2° : n(x) exists} has full (d — 1) dimensional (i.e., surface) measure. Therefore, the image of the map
contains an interval, and the claim follows. We note for later that V3°(8,) is open in I72°

Let x3° € VE°(8,). By Lemma 5.7, there exists x, € I3 such that

il
N, () = 573
¢ re
see Fig. 10. For x’ € I, let x; € I, x denote the point where the ray emanating from x’ first hits I, p;
we use later the fact that this definition implies that

(f)r =% _ X
|0p)r =21 1]

(5.50)

The neighbourhood V}, in Condition 5.9 will be I, N B(0, €) for € sufficiently small, independent of
R, and this ensures that Point (i) holds with ¢, ; independent of R. Let € > 0 be small enough so that

I'p NB(xy,€) C T, BL ““; this ensures that Point (ii) holds with Cray,» independent of R.
We now show that Point (iii) of Condition 5.9 holds with Cray3 and Cray,4 independent of R. Let
Wee C I'° be defined by

/
W = lim % ¥ e FDmB(xg,e)]; (5.51)

t€ R—o0

this limit exists Wi, is the limit of subsets of I3, z/R and I}, z/R — I'7° as R — oo. We claim that

it is sufficient to prove that Wi C V°(§) for € sufficiently small (independent of R). This shows

tr,e
the analogue of Point (iii) in Condition 5.9 with [T,  replaced by I77°; i.e., that the emanating rays
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Fi1G. 10. The points and rays used in the proof of Lemma 5.12.

from points in V), hit I';?° directly with an angle 6 to the normal satisfying (5.16) with ¢,y 3 and ¢y, 4
independent of R. Point (iii) for I7, » with R sufficiently large then follows since Wi, is the limit of
subsets of I}, r/R, and I}, g/R — I7° as R — oo.

We now claim that to prove that W, C Vi2°(8) for € sufficiently small (independent of R) it is
sufficient to show that x8° € Wt;'?e for all € > 0. Indeed, if this is the case then N, _, Wt‘fe = {x8° }. Then,
since (i) Vi° () is open in I77° and contains xg°, and (i) W, € Wgo, for €, < ¢, there exists €y > 0
such that WS, C V2°(8,) for all € < €.

We now show that x° € W, for all € > 0. We do this by showing that (xy)g, /R, — xg° for a
sequence R; — 00, and then the result follows from (5.51). Observe that the inclusions (1.18) imply
that [x| < MR, for any x' € I, and thus (x()g/R is bounded as R — oo. Therefore, there exists a

sequence R, — oo and y € I'?° such that (xj)g /R, — v, and thus also

(xé))Rk y
——— —> — asR, — oo. (5.52)
CANEEY
By simple geometry, as R — oo,
o)k _ (p)r — X 0

_ +OoR™ = 20 4 or™
EARECAEEA ] ’
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by (5.50). Comparing this to (5.52), and using the uniqueness of the limit, we see that y/[y| = xg°/Ix3°|.
Since I° is convex, and thus star-shaped, y = x8° , and the proof that x8° € W{f6 forall e > Ois
complete; this completes the proof that Point (iii) of Condition 5.9 holds with ¢, 3 and ¢ 4 independent
of R.

Finally, we show that Point (iv) of Condition 5.9 holds for R sufficiently large with Crays = ¢5R with
5 > 0 independent of R. Since £2_ C B(0, 1) and 2 satisfies the inclusions (1.18), after hitting Iy g
a ray must travel a distance ~ R before hitting Ij,. Therefore, we only need to show that, after hitting
I g aray must travel a distance ~ R before hitting I, , again. Since I, p/R tends to a limitas R — o0,
this result follows if the rays first hit I3,  with angle to the normal 6 satisfying |6 — /2| > ¢ > 0, with
¢ independent of R, which is the case because £2_ C B(0, 1) and £2; satisfies the inclusions (1.18). [

Proof of Lemma 5.13. The overall plan is to select a ray emanating from 7, that returns to B(0, 1)
after mu}jtiple reflections from the sides of the hypercube [—%, g]d. We do this by identifying R¢ with
[—%, g] by reflection through the lines

R
(x)j:§+nR forn € Z and
J=1,....d

(where (x) j denotes the jth component of the vector x € R?); under this identification the corners of
the hypercube correspond to the points (R/2 + RZ)?. Since I, g coincides with the boundary of the
hypercube [—R/2, R/2]¢ only at distance more than € from the corners, we need to make sure that the
selected ray avoids these neighbourhoods of the corners; hence the requirement that € < €,(£2_) in the
statement of the result. We highlight that the constant C in the bound then depends only on the dynamics
of the rays, and hence is independent of €.

Step 0: Preliminary notation and results. This argument involves three domains, and three associated

flows. The first domain is £25, with associated generalized bicharacteristic flow ¢, (as defined in § 2.3).

..o d, — . . ..
The second domain is £2, := [—g, %] \ £2x_, and we denote the generalized bicharacteristic flow on

§R by @,. The third domain is the hypercube [—g, g]d, and we denote the generalized bicharacteristic

R R}4 [7%%]51
flow on [—-5, %] by ¢ .

By the definition (5.9) of R, if both x” and y’ are in the illuminated part of I, (i.e., a - n(x’) < 0),
then there exists C > 0 (depending on the Lipschitz constant of n) such that

1R, = R,001 = Colx' =1, (5.53)

i.e., R, is Lipschitz.
We record for later use that, since 2_ C B(0,1) and R > 4,

. R R R
dist{ I'p, 0y | —=, = >_——1>
2°2 2

Finally, let D be a nonempty, uniformly-convex open subset of FD+ ““ in which n(x’) - a < 0 (such a

NS

(5.54)

D exists, since Lemma 5.7 implies that I ['; “N{n(x) - a < 0} is not everywhere flat). Shrinking D if
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necessary, we can assume that
there exists O < v < lsuchthat v < |n(x)-a| <1 —v forallx’ € D; (5.55)

this implies that the first assumption of Lemma 5.8 holds with C = D. The neighbourhood V, we
construct will be a subset of D. J
) ; . L R R
Step 1: Bounding the distance between projections of the flow on [—7, 7] .

For (x;,§,) € S*B(0,1),j = 1,2, since ¢’ (x,,§,) = x; + 216,
d d
TRagF (61, 61) — a0l (0,8 = by =yl + 2118 — . (5.56)

We now show that the same inequality holds for the flow on [—g, %]d; i.e., that for (x;, &) € S*B(0, 1),
j= 19 29

-5.4]° -5.4]°
TTRAPy (x1,8)) — TRae; (02,5))| = Ix; — x| + 2115, — &, (5.57)
_rr)? [_E r)¢
To prove (5.57), we compare |71Rd<pt a2 (x1,&)) — TRaey e (x2,$2)| with |71Rd<p}{{d(x1,§1) —
R R d
ango}Rd (x5, 52)| by using the relationship between the two flows <p,[_7’§] and (p}Rd.

First, observe that, since

d _Eﬁd
2°2

R R
202
TTRd Pt (xl’ 51) — TRd %t (xz, 52)

R RV¢
< diam | -2, > | = VR,
< 1am|: > 2] Vd

we can assume that
X, — x| + 2t1&, — &,| < VdR.

Therefore, there exists £ = (£;,---€,) € Z¢and t = (¢,--- ,1,) € {—1,0, 1}% such that

d d
TRa@y (X1, §)) € ([—§,’§] +£R),
R R14 (558)
23]

TR 0F (5,8,) € ([— Fe+ L)R) :

i.e., after time ¢, the free-space rays from (x;,&;) and (x,,%,) are either in the same hypercube or in
adjacent hypercubes. We use the following notation for the components of (led (,6),j=1,2:

d
TRaor (&) = (g, .2)) e RY (5.59)
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[-44]

[k
S

Now, observe that by (5.58) and the relationship between ¢, and <led,

d

d(xpfl) = (par(¢) (g} — £4R) .- -+ ,par(€y) (z{ — £,R)),

[SlE]
(Sl
—

)

TTRd Pt

_RR
TTRd Py ’ 2] (xz,fz) = (par(el + ll) (Zé - (Z1 + ll)R) PR ,par(ﬂd + Ld) (z‘{ - (Ed + ld)R)),
(5.60)
where
© 1 if £ is even,
ar(f) :=
P —1if £is odd.
Leti e {1,---,d}. We first assume that (; = 1; then
|par(¢) (] — ¢,R) — par(¢; + 1)) (zh — (¢; + 1)R)| = | (¢} — ¢R) + (<4 — &R) —=R|.  (5.61)

Sincet =1,z —¢;R € [-%, 8], 2 — ¢,R € [£, 8], and hence z} > z}. Now, because zj — £,R < R/2,
(& —GR) + (b — R) — R < (b — &R) — (2} — £R) =2 — 2} = | — 2] (5.62)
Similarly, since z, — ¢;R > R/2,
— (@ —GR) — (& — LiR) + R < (& — 6iR) — (&) — iR) =2 — 21 = |¢) — 2. (5.63)
Then, combining (5.61), (5.62) and (5.63), we have that, fori € {1,--- ,d} with¢; = 1,
]par(ﬁj)(z’i — 4;R) = par(¢; + 1) (zh — (¢ + )R] < [2) — . (5.64)

If ;; = —1, the proof of (5.64) follows in a very similar way; if ¢; = 0, it is straightforward to check that
(5.64) holds with equality. Hence, (5.64) holds for any i € {1,-- - ,d}. Recalling the notation (5.59), we
therefore obtain from (5.60) and (5.64) that

d d

_RR _R R
2°2 2°2

d d
TTRAPs (x1,&1) —”Rdfﬂr[ ] (xp,6)| = ‘”RM/’;R (1.8 — TRa) (5.6,

and (5.57) follows from (5.56).
Step 2: Selecting a periodic ray. Let § be the finite set of unit vectors forming an angle belonging to
¥ to one of the elements (+e;); ;4 Where (¢;);-;, denote the unit vectors in cartesian coordinates.

With D as in Step 0, 23,(D) contains a nonempty open subset of S%1 by Lemma 5.7, and therefore
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contains a vector of the form

s p))
Soz(pl—pd, pi€Z and £, ¢35
p|
(since vectors of this form are degse in 8?71, Let x6 € D be such that %a(x(’)) = §,.
We identify R? with [—%, Ig] as described above. Then, given any q,,...,q, € Z,
(xl, N ,xd) + 2R(q1’ e ’qd) = (xl, N ,xd); (565)

the factor of two is because one reflection changes the parity.

d
_RR
The trajectory starting from (x;, £)) and evolving according to the flow <pt[ : 2] can be identified

with the trajectory in R?

(p]’-”apd)’

xp + 2t&) = x( + 2t o
p

therefore, by (5.65), the former trajectory is periodic, with period at most R|p|. Thus, there exists t > 0
R R

d
such that %[—5,7] € B(0,11/8); let T(R) be the infimum of such ts. Therefore,
T(R) < Rlpl, (5.66)

and

., 11
Tga (Prr) (40-50)) € 9B (0’ —) : (5.67)

8
]d

]
S

Since §2_ C B(0, 1), the flows @, and ¢; - acting on (x6, &) agree up to (at least) time T(R); i.e.,

Nl
(Sl

B

d
B0 E) = o ] ()£, forall 0 <t < T(R). (5.68)

d
R R
. Y —2:2 . . d
Furthermore, since &, ¢ §, the flows ¢, and ¢; : 2] acting on (xb, &y) never hit 8( [—Ig, g] ) at an
angle belonging to V.
Finally, observe that a length R of a ray can be reflected at most twice. Therefore, since the length
R R
[—7’7

d
of ¢; ] (x(), &y) fort € [0, T(R)] is at most 2R|p|, if M := [4|p|], then the number of reflections of
this ray for ¢ € [0, T(R)], N(R), is bounded by M, i.e.,

N(R) = [4]pl1. (5.69)
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Step 3: The neighbourhood Vi, on I'y,. The neighbourhood V, = V5 (R) is chosen later in the proof
as a subset of

5
Vi(R) :=T},NB (x(), El) (5.70)
where §; > 0 (independent of R) is small enough so that, for all R > 1,

Vi(R) C D,
forallx’ € V{(R), [n(¥)-a|l> %|n(x6) -al, (5.71)
forall x’ € V(R), mingg |R, () —f| > 3 min;z & — .

Since the neighbourhood V), will be a subset of V,(R), the second condition in (5.71) implies that Part
(ii) of Condition 5.9 holds with Cray2 = |n(x6) - al|/2, which is positive since x’o € D, and the third
condition in (5.71) implies that Part (iii) of Condition 5.9 holds with ¢, 3 > 0.

By (5.57), the fact that §, = SRa(xé)), (5.53) and (5.66), we have, for any X' € V,(R) and any
0<tr<TR

[ g g]d [_g,g]d / / / / / /
TTRAPy (x0 &) — TRa®; R, 0N | = g — X+ 2T (R) R, (xg) — R, (X)),

< (1+2RIpICy) Ixg — X1,
< (1+2IpICy) RIxy — X|. (5.72)

Therefore, if §; < (16(1 + 2C0|p|))_1, then

d d
_RR _RR 1
wt[ 4] (xz),so)—nwt[ 4] o, R,(@))| < — (5.73)

— 16

for all X’ € V|(R) and for all 0 < ¢ < T(R). Combining (5.73), (5.67) and (5.68), we have

mza (Prey (¥ &) € B( )\B( ) for all ¥’ € V,(R); (5.74)
and
147
GWR,) =g (R, () forallX' € V,(R) and forall 0 < 1 < T(R). (5.75)

Step 4: Avoiding the corners. Under the identification of [ 7 2] with R?, the corners of the
hypersquare correspond to (R/2 + RZ)?. Given x' € V| (R), each point on the ray x' + 2t (x’) for
0 < r < T(R) has a corner that is closest; we let O, (x") denote the subset of these corners that are a
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94 J. GALKOWSKI ET AL.

distance < o away. More precisely,
0, @) :=1g9¢€ R/2+ RZ)d . there exists 0 < ¢t < T such that
dist (¥ + 2R, (x'), (R/2 + RZ)?) = dist (¥ + 21R,(x),q) < & }

We then order the elements of Q,, (x') with the closest first; i.e., Q,(x) = {g; X)), ..., D) (x')} with
dist(x’, ¢;) nondecreasing with i.
We now prove that if §; < (4(1 4 2|p|C;)))~", then

Q1/4(x’) C Ql/z(x{)) forallx’ € V|(R). (5.76)
To prove this, observe that, for 0 < ¢t < T(R), by (5.66) and (5.53) (in a similar way to as in (5.72)),
dist (x" + 2iR,(x), xo 4+ 2R, (x()) < Ix' — x| + 211R, (&) — R, ()1,
< (1 +2IpICy) RIX' — x| < 8; (1 +2[pICy)

if x¥' € V{(R). Therefore, if §; < (4(1 + 2|p|C0))_1, the distance between the rays is < 1/4.If ¢; €
0 /4(x’) then, since R > 1, g, is at most distance 1/2 away from a point on the ray x;, + 219, (x;), and

thus g; € Qy 5 (x).
It turns out that we will not need to restrict §; further in the proof; we therefore set

1

Spim ————————— 5.77
1631 + 26, 1p)) .77

and observe that this satisfies the requirements imposed on 8, earlier in the proof (to ensure that (5.73)
and (5.76) hold).

We now select one set of corners to work with for all x’ € V| (R). Let 0 := 0, /2(x6) =(q1,---qp)-
By (5.76),

(R/2+RZ)\ Q) C (R/2+RZ)?\ Q),4(x)) forallx' € V,(R),
so that

dist (' + 2R, (X)), (R/2+ RZ)? \ Q) > 1/4 forall X' € V,(R). (5.78)

Furthermore, since R > 4, the number of corners within distance 1/2 of the ray is less than or equal to
the number of reflections, i.e.,

m < N(R). (5.79)

We now iteratively construct x; € V| (R), i = 1,...,m, such that the ray x; + 2%, (x}) for 0 < t <
T(R) is at least a distance n; from (g, ...,q;) where n; > 0,i =0, ..., m, are defined below (see (5.86))
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 95

and, in particular, have the property thatn; > n;,,,i = 0,...m—1. Givenx;, if dist (x]4+2:9R,,(x})), ¢, |) >

Miy1> We setx; ;| := x;. Otherwise, first observe that, for 0 < ¢ < R/16,

dist (x’ + Zti)%a(x/),qiﬂ) >R/8>1/2, (5.80)
by (5.54) and the fact that R > 4; we can therefore restrict attention to ¢ > R/16. Let A; > 0, to be fixed

later. We first assume that there exists x; +1 € Vi(R) so that, with Cg, the constant associated to D by
Lemma 5.8,

W —xjl=2x and |R,(xl ) —R,()| = Cxrris (5.81)

we later use Lemma 5.8 to show that such an X, 41 exists once the value of A; has been fixed. By,
respectively, the triangle inequality, the convexity of V| (R) C D, (5.81), and the fact that we are dealing
with the case that dist(x] 4 2£R,,(x)), ¢;,.{) < 1,1, we have that, for R/16 <t < T(R),
dist (¥ + 2R, (), g;4p) = dist (¥ + 2R, (), ,), X} 4+ 2R, (x)) — dist (x] + 2R, (x)), g;41)
> dist (¥} + 20R,(x, ). X + 20R,(x) — dist (] + 2R, (), g,11)»
= 2t|9‘ia(x:~+1) — %a(x§)| — dist (x; + Zt%a(xg), qi+1)’

> 2tCp i — Ny 1

CyxR
z %)‘i — Miy1- (5.82)
Having bounded the distance from the ray to g; 11, WE now bound the distance to q; forj=0,...,i By,

respectively, the triangle inequality, (5.53), and (5.66), forj =0,...,iand 0 <t < T(R),
dist (¥} + 2R, (), qj) > dist (x; + 2R, (x)), qj) — dist (¥}, + 2R, (1), X} + 2R, (x))
>n; — (14 21Cy) &' — xj],
>0, — R(1+2CyIpl) A;- (5.83)

The two inequalities (5.82) and (5.83) imply that if n; and 5, | satisfy

16m;1 10— N

- , (5.84)
Cor (1+2ClpDh

and A; is defined by

s 160, mi—niyy

i = : (5.85)

then

dist (x}, | +20R, (X 1), g;41) = miyq  forallR/16 <1< T(R)
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96 J. GALKOWSKI ET AL.
and
dist (x4 2:R, (x4 ), q;) = nq forj=0,...,i, andforall 0 <1 < T(R).
This last two inequalities, combined with (5.80), imply that
dist (x| + 2ti)%a(x,-+l),qj) >y, forj=0,...,i+1, andforall0 <t < T(R)

as required. We observe for use later that (5.84) implies that

N = i sothat 7, :=n 1
i+1 — j+— 10
: L+ 2 (1+2Glpl) / L+ 2% (1+2Glp|

j
)) . j=0,....m. (5.86)

Since the value of A; > 0 has been fixed by (5.85), it remains to show that there exists x; 11 €EVIR)
satisfying (5.81). We now use the freedom we have in choosing 7, to ensure that the can use Lemma 5.8
to construct such an x; - Recall that we chose D so that the assumptions of Lemma 5.8 hold; let oy be
the associated constant. We impose the condition that

m—1 5 16 m—2 1 J 5

E A‘<min(—1a) ie., ny— E ( )<min(—l4a)
j = PRt il il 0 16 = s 0 )

= 2R Cy 1+ T (1 + 2C0|p|) 2

j=1
(5.87)

where we have used the definitions of Xj (5.85) and 1 (5.86) and the fact that R > 4. Observe that (5.87)
is a condition that 7, is sufficiently small (recall that §; has been fixed by (5.77)).

The rationale behind imposing (5.87) is as follows; recalling the definition of V,(R) (5.70), we see
that Zj”;_ol A; < 8,/2 implies that x; € V| (R) fori = 1,...,m. The first inequality in (5.87) implies that

J
A; < g, forall 7, and, since V| (R) C D (by (5.71)),

OB(x,A)ND # ¢ and 9Bx;,1;) NID = .
These relations combined with (5.55) imply that the assumptions of Lemma 5.8 are satisfied with D = C.
This lemma therefore implies that there exists xg 41 € D satisfying (5.81), foralli =1,...,m.

In summary, we have proved that the ray x/, + 19R,(x],), 0 < ¢t < T(R), is a distance at least n,, from
any of the corners ¢, ..., q,,, and a distance at least 1/4 from any of the other corners by (5.78).

Let Ni4ppl] be defined by the second equation in (5.86) with j = [4|p|] and with 5, fixed to satisfy
(5.87). By (5.79) and (5.69), m < N(R) < [4|pl|] so that n,, > Nraipl- Therefore, with

1 1
€0 -= 5 M\ Mapp1- g )

the ray x, + R, (x,,), 0 <t < T(R) is a distance at least 2¢, > 0 from any corner. By (5.86) and (5.87),
Nraiph (and hence ¢) depends on C,,, Cy, ¢, and |p|, and hence only on I7,.
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 97

Step 5: Putting everything together. By combining the results of Step 4 with the results (5.74) and
(5.75) of Step 3, we have

_RR
2°2

d
an S = ol ) forall0 <1 < TQR)
dist (a,(;a SR, ), (B +RZ)d) > 2¢, forall0<r<T(R), and (5.88)

23 21
mza (B (K &) € B(0, 2 \B (0,21)

We now define the neighbourhood V;, (the neighbourhood of rays in the statement of the lemma) as a
neighbourhood of x;n. Indeed, we let
, 6
Vp=1IpNB X 2

with § > 0 chosen sufﬁciently small; if 6 > 0 is independent of R, then this implies that vol(Vj) >
Cray.1 /R~ for some Cray,1 > 0 independent of R; i.e., that Point (i) of Condition 5.9 holds.

We first choose § > 0 sufficiently small so that V, C V;(R); since §; (5.77) is independent of R, §
can be chosen to be independent of R. As discussed below (5.71), the inclusion Vp, C V;(R) ensures that
Points (ii) and (iii) of Condition 5.9 hold.

Point (iv) in the statement of the result will follow if we can show that, for all x’ € Vb,

_R
2>

@,(x,,, R, (x,,) = ¢ ] ', R,(x)) forall0 <t <T(R),
dist (go,(x R, (1)), (§ RZ) ) > 60 forall0 <t <T(R), and (5.39)

47
o Prn @ 60) € B0, )\ B(0. )

[T+

Indeed, the second property in (5.89) (missing the corners) implies that all three flows are the same when
applied to (x,,, R, (x,,)) for0 <t < T(R),i.e.,

_rr)?
2°2

@,(x,, R, (x,,) = @,(x,,, R, (x,)) = ¢ (X, R,(x)) forall0 <7 <T(R).

We now obtain (5.89) from (5.88). By (5.57), (5.53) and (5.66) (in a similar way to as in (5.72)), for
any X’ € V(R) andany 0 <t < T(R),

_rR]"
2°2

TR0t (K Ry () — TRa; < (14+2Cylpl) RIX,, —

so that (5.89) follows as long as

6 < min ! s ‘o .
32 (1 + C0|p|) (1 + 2C0|p|)
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98 J. GALKOWSKI ET AL.

Since § > 0 is independent of R, Point (i) of Condition 5.9 holds with ¢ ray, 1

independent of R, and the proof is complete.

ray,l = cray’l/R, with

5.8 Bounding below the reflection coefficient (2.48) for rays satisfying Condition 5.9

In the follow result, we use the subscripts D and tr on H to denote the hyperbolic set on I'y, and I g,
respectively.

LeEMMA 5.16 (Lower bound on the reflection coefficient for general I, z). Let V. C H,,. Given (¥',£’) €
Vi let

tr>
0, &) :==sin"" (I€],) € [0,7/2); (5.90)

observe that 0 is well-defined since r(x’, ') := 1 — |$/|§ > 0on H,.
Let {wj};';“l‘"“h be defined be (5.17). Suppose that

0 >c; and min |0 — Vil = ¢y, (5.91)
j=1,...m

and NV and D satisfy Assumption 1.4 with either M = N or M = N + 1. Then there exists C,,; =
C.ef(M,N) > 0 such that

N)—o(D
ﬁU( ) 0( ) >Crefmin(|03|2mmd’ |C4|mmun) onV,

Vo) +o ()| = o

We make three remarks.

*  The rationale behind the definition of 6 (5.90) is that later we apply it to sets V,. whose elements
are of the form 7, (x,&) where (x,§) € S*(TR‘J (so that |€] = 1). In this case, 6 is the angle the
I, R

vector § makes with the normal to I, g.

*  We have denoted the constants in (5.91) by ¢3 and ¢, since we later apply this lemma with ¢; =
Cray,?a and Cy = Cray,4'

*  We highlight that C,; only depends on M and N, and not on I, .

Proof of Lemma 5.16. By Assumption 1.4,

oM)W, ENVr(x &) —o(D)X.&) =q(I&';)\/1 — &2 — p(IE']). (5.93)

Since A and D satisfy Assumption 1.4 with either M = N or M = N+ 1, Part (a) of Lemma 4.4 implies
that there exists C; = C;(M,N) > 0 such that |/ro (N) + o (D)| > C, on V,,.
By the definitions in § 1.3 of p(2), q(t), m,g, {tj}mVaniSh and m there exists C, = C,(M,N) > 0

=1 mult>
such that

Mmult
|q(t)«/1—t—p(t)|ZClmin(|t|m°“‘, ~ min |t—tj|) ) for all ¢ € [0, 1]. (5.94)

=1,....,Myanish
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Since sinx > 2x/7 for x € [0,7/2] and there exists C; = C,(Y;,,) > 0 such that [sin? 6 — sin® ;| >
G160 — 1// | forj=1,. the inequalities in (5.91) imply that

My anish>
2 2(2 ? 2
/ . /
|$ |g z (63) (;) and jzlf-rii'ganish ||§ |g B tj} Z CZC4‘
The bound (5.92) then follows from combining these bounds with (5.93) and (5.94). U

5.9 Proof of Theorem 1.6 (the qualitative lower bound)

Similar to above, we use the subscripts D and tr on A (and subsets of it) to denote the hyperbolic set on
I'p and I g, respectively; we use analogous notation for boundary measures.

Proof of Theorem 1.6. By Part (i) of Corollary 5.4, we only need to show that «(Z) > 0. We now follow
the steps outlined in § 5.3; seeking a contradiction, we assume that £ (Z) = 0. The inequality (2.44) from
Point (ii) of Corollary 2.17 implies that u}} = 0. Therefore, (2.26) implies that

MODUt - V r(x/9 %-/) 1)d,D

and Lemma 2.20 therefore gives that
Ut = 2/r(x', &) dvol(x') ® SS,Z(QT(X/))b. (5.95)

Given M and N, let {; }mv"‘““h be defined by (5.17); i.e., {¥; }mv‘"‘“h is the set of nonzero angles at which
the reflection coefﬁ01ent (2.48) vanishes. Let the set Vp, C Iy, be given by Lemma 5.10; i.e., the
rays emanating from V/, are nontangent to I, and hit [, p directly and at angles bounded away from

0,91, Yy, ) Lt

vanish

VD = {(x/, (aT(x/))b) s .x/ € VD} C HD

By (5.95), pf’m(VD) > (. Therefore, using the equality (2.42) from Point (i) of Corollary 2.17 and the
fact that r > O on H,

V) V) = 2vrug) (Vp) > 0, (5.96)

where

Vi 1= U TR (‘pt"“‘(q) (P™(@)) C Hyo

q<Vp

where 1°% and p®" are defined in (2.38) and (2.37), respectively, and 7 g €quals 7y, restricted to

TEFRR"; observe that sup 7€V °%(g) < oo since Iy g 1s (strictly) convex.
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Corollary 2.19 then implies that

VroW\N) — o (D)

2 in
o) +o(D) QVr™ V),

QP (V) =

where we have used the fact that |0 (N)| > 0 on V,, by Corollary 4.5.

Since the rays emanating from Vj, hit I, , directly and at angles bounded away from {0, ¥, ..., ¥},
Lemma 5.16 implies that (2/ru®)(V,) > C(2/ru'")(V,) for C > 0. Combining this inequality with
(5.96), we have (2./ru°") (V) > 0. By the inequality (2.43) in Point (ii) of Corollary 2.17, u(Z) > 0,
which is the desired contradiction.

Finally, the fact that C in Theorem 1.8 depends continuously on I, p follows from the fact that
Crayj»J = 1,...,4, depend continuously on I », and C, ¢ in Lemma 5.16 is independent of I g. O

5.10 Proof of the lower bounds in Theorem 1.7, Theorem 1.8, Theorem 1.9, Theorem 1.10, and
Theorem 1.11

Recall from Corollary 5.4 that to prove the lower bounds in Theorems 1.7, 1.8, 1.10 and 1.11, we only
need to bound p(Z) and /,L(I N SE(O 3 /2)) below; the following lemma provides the necessary lower
bounds.

LEMMA 5.17 (i) Suppose Condition 5.9 holds for R > R, with ¢, , independent of R and ¢, 5 > ¢sR
with ¢5 > 0 independent of R. Then, there exists C > 0 such that, for all R > R,
. 2
n@) = CR(mln (|Cray,3 |2mmd’ |Cray,4|mmun)) Cray,1- (5.97)

(ii) If, in addition, there exists N, > 1 such that, for the interior billiard flow in £2j, these rays are
reflected on I p N, times, without being reflected on Iy, in between, and after their N, sth reflection
all of these rays intersect B(0,3/2) \ B(0,5/4) without being reflected before, then

W(T N Sh03/R?) = C(min (e300, ey 4"™1))Crag.r- (5.98)

Proof of (i). As in the proof of Theorem 1.6, we argue by contradiction and follow the steps in § 5.3.
Suppose that Condition 5.9 holds for R > R, but, for any € > 0, there exists R > R, such that

. iy 2
1(Z) < €R(min (|cgyy 317, |egyql™")) (5.99)

Cray,l‘
Let
Vp i={ (¥, (apw))’) € T Iy, X' € Vp} C Hp,. (5.100)

‘We now claim that

w(T) > (%)R(2ﬁui“)(VD) forall R > 1. (5.101)
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Indeed, Part (ii) of Corollary 2.17 implies that

W(Z) = dist(Fy g, 2) V™ (Vp).

and then to prove (5.101) we only need to show that
) 1)
dist(I g, $2_) > (]l_/l) R. (5.102)
Let § = dist(£2_, dB(0, 1)). Then, since ﬁR D B(O,M~'R)UB(0,1)and 2_ c B(0,1),ifR > M,

dist(Fy g, 2_) > (M—lR 1+ 3) = (M—l - (1R+5)) R> (%) R

and then (5.102) follows for R > M. On the other hand, if R < M, then

. )
dlst(Ftr’R,Q_) > 4§ > (A_l) R,

and then (5.102) follows for R < M.
Combining (5.99) and (5.101), we have

. M . 2
Q™ (V) < ég(mln (ICraya ™", 1crayal™™")) " Cray.1- (5.103)

‘We now use Lemmas 2.12 and 2.20 to obtain a lower bound on ,uout(VD). The two equations in (2.25)
imply that

1 .
uo = rv, + Zin ™ pin (5.104)

(see (2.32)). By Lemma 2.20 and Part (i) of Condition 5.9,

v;(Vp) = vol(Vp) > ¢ (5.105)

ray,l*
By the assumption that Condition 5.9 holds (with ¢, , independent of R), [n(x) - a| > ¢,y > O on
Vj. By the definitions of Vj, (5.100) and r(x’, ") (1.7), r(/, (aT(X,))b = |n(x') - a| for ¥’ € Vp), and
thus r > ¢,y > 0 on Vp. Combining (5.104) with (5.105) and (5.103), and using the facts that v, is

nonnegative and ¢y, 3, Cray 4 < /2, we have

@V (Vp) = 2rv,(Vp) — @Y™ (V)

M /7 \ maxmord Mmult)
= 2\/ cray,2 RV cray,2 - 6? (E) Cray,l‘
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It
C ) 2 max (2nord ,Mmult)
e < ;‘y’zﬂ—l (;) (5.106)

(observe that, since ¢, » is assumed independent of R, this upper bound on ¢ is independent of R), then

(Zﬁuom)(VD) = Cray,2 Cray,1-

We now use Corollary 2.17 to propagate this lower bound on Iy, to a lower bound on /7, ¢. Indeed, Part
(i) of Corollary 2.17 then implies that

QYT (V) = QYT (Vp) 2 Crays Cray 1 (5.107)

where

Ve 1= U ek (‘/’t*’“‘(q) (™ (@)) C Hy,
q<Vp

where ° and p®" are defined in (2.38) and (2.37), respectively, and g €quals 7y, restricted to
Ty R
’Combining Corollary 2.19, Lemma 5.16, and Point (iii) of Condition 5.9, we have

Jrio(N) — o (D) |?

out _
wE V) = | N o (D)

. . 9
/Lm(Vtr) z (Cref min (|Cray,3|2mord’ |Cray,4|mmun)) Mm(vtr)' (5.108)

Finally, using Part (ii) of Corollary 2.17 with Point (iv) of Condition 5.9, and then using (5.108) and
(5.107), we have,
(@) = TR 2Vru®™)(Vy) = 5 R 2Vru®™) (Vy)

_ , )
> Ts R (Cropmint (|Cpay3/270%, Terayq ™)) (5.109)

Cray,2 cray,l .
We now restrict € so that, in addition to satisfying (5.106), € satisfies

€ < Cs (Cref)2 Cray,Z

(observe that, since C5 and c,, , are assumed independent of R, this upper bound is independent of R).
Thus, € can be chosen sufficiently small (independent of R) such that (5.109) contradicts (5.99), which
is the desired contradiction.

Proof of (ii). If the assumption of (ii) holds, then our contradiction argument also assumes that for all
€ > 0 there exists R > R, such that

. 2
n(@n 52(0,3/2)Rd) = E(mln (|Cray,3|2m0rd’ |cray,4|mmun)) Cray,1- (5.110)

€202 JaqWBAON g0 U0 Jasn dieys suuayied Aq 001 92//8S0PBIP/WNUBWI/EE0L 0 | /I0p/a|0Ie-aoueApe/eulewl/woo dnoolwapese//:sdjy Wol) papeojumod
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Applying Part (i) of Corollary 2.17 N,; — 1 more times and using (5.108), we construct V1, .. ., VQ’ ©C
T*T, g, satisfying
. 1 .
Vo=V VM) = @V (V)
. ] 5 , ‘
V) (Vi) = (Crepmin (I 317, Tegyal ™))" @V/ru™) (Vi) (5.111)

and so that for any g € Vt];/ ref | {gole (p"“t(q))} ~o intersects B(0, %) \ B(O, %) before hitting 17, or I, .
Therefore, by (5.111) and (5.107) B

. 2Nref
V") (V) = (Crepmin (I 37", Ieryal™™)) ™ Cray 2 Cray.1- (5.112)

Finally, since any ray entering B(0, %) \ B(O0, %) spends a time at least %(% - %) = % in this annulus, Part
(ii) of Corollary 2.17 implies that

v

1
d Nre
1(Z N Sp03/2\805/4R?) g(z“/; 1 (V™)

1
5

v

. 2Nret
o T (1327, gy ql™1)) e (5.113)

ray,2 Cray,l ’
where we have used (5.112). Therefore, if

€< (Cref)ZNrefcray,2’
then (5.113) contradicts (5.110), which is the desired contradiction. (Observe that, similar to in Part (i),
the upper bound on € is independent of R since ¢, , and C are independent of R.) g

Proof of the lower bounds in Theorems 1.7, 1.8, 1.10 and 1.11. The lower bounds will follow from
combining Corollary 5.4, Lemma 5.17, and the ray constructions in Lemmas 5.10-5.13.

For Theorem 1.8 (for generic I, g), Lemma 5.12 implies that the assumptions of Part (i) of Lemma
5.17 are satisfied with ¢, 1, €1y 3, Cray 4 Independent of R, and R, sufficiently large; the required lower
bound (5.4) on @ (Z) then follows by inserting this (lack of) R-dependence into (5.97).

For the lower bound in Theorem 1.7 (for I, = 9B(0, R)), Lemma 5.11 implies that the assumptions
of Part (i) of Lemma 5.17 are satisfied with ¢, , 5,4 independent of R, ¢,y 3 = ¢3/R with ¢5 >
0 independent of R, and R, sufficiently large. The required lower bound (5.3) w(Z) then follows by
inserting these R-dependences into (5.97), and observing that, for R sufficiently large,

G

2Mord 5.114
R ( )

: 2
min (|cray,3| mord’ |Cray,4|mmun) =

For Theorem 1.10 (i.e., the local error for Ftr,R = 0B(0,R)), Point (iv)’ in Lemma 5.11 implies
that the assumptions of Part (ii) of Lemma 5.17 are satisfied N = 1 and R, sufficiently large. The
required lower bound on w(Z N 52(0,3 /Z)Rd) (5.5) then follows from (5.98) using (5.114) and the fact
that ¢,y ; is independent of R. The fact that the result holds with R, = 2 when M = N = 0 follows from
Remark 5.15.
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104 J. GALKOWSKI ET AL.

Finally, for Theorem 1.11 (i.e., the local error for the hypercube), Lemma 5.13 implies that the
assumptions of Part (ii) of Lemma 5.17 are satisfied with ¢, 3, ¢,y 4 independent of R, ¢, | =€ /R
withc; independent of R, and R, = 4. The required lower bound on u(Z ﬁS;(O,3 2 R9) (5.6) then follows

from (5.98) by inserting these R-dependences. 0

6. Proof of the trace bounds (Theorem 4.1)
6.1 Strategy of the proof

To illustrate some of the main ideas, consider the BVP (4.1) with N' = D = I, M compact, and the
boundary condition imposed on the whole of M, i.e.,

—WA—Du=hf inM
( Ju=hf in ©.1)
hD,u —u=g onl =M.
In the notation of Theorem 4.1, we have my; = my; = 0, and the bounds (4.7) and (4.8) in the case
£; = 0 are that
||“||L2(r) + ”thM”Lz(F) <C (||”||L2(M) + |lf||L2(M) + ||g||L2(F)) (6.2)
and
lallgr agy < € (lll2any + 2 1 2y + gl z2r)- 6.3)

We now show how to obtain these bounds; pairing the PDE in (6.1) with u# and integrating by parts,
we have

WV ull o = 1l Fa g = B AFs w2y = hilull oy + R (g2 (6.4)

Taking the imaginary part of (6.4), we find that

2y < Mg 7oy + W72 00 + Nll32 0 - (6.5)
L2(IN) L2(IN) L2(M) L2(M)
Taking the real part of (6.4) and adding 2||u||i2 on t© both sides of the resulting equation, we find that
5 2 n? 1
lalizp iy = 5 1l + 5 W Z2ny + 5 1320y + 5 18152y (6.6)

Combining the inequality (6.5) with the boundary condition in (6.1), we obtain the first result (6.2). Then,
using (6.5) in (6.6), we obtain the second result (6.3).

The proof of Theorem 4.1 follows similar steps; indeed, the two main ingredients are (i) bounds on the
traces in terms of the data and H }ll norms of u, and (ii) a bound the H }ll norm of u in term of the traces and
the data. The bound in (ii) is obtained by considering %t ((—h>A ¢ — Du, u);2y and integrating by parts,
similar to above, with the inequality (6.19) the generalization of the inequality (6.6). The bounds in (i) are
obtained by considering ¥ ((—thg —Du, u) 12y similar to above, but also 3¢ (—thg —Du, hD,u) 2
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LOCAL ABSORBING BOUNDARY CONDITIONS ON FIXED DOMAINS 105

(with Lemma 2.6 above considering a general commutator, and Lemma 6.1 specializing to the case of a
normal derivative).

The additional complications for the bounds in (i) are because we need to consider the cases where
D and N are both elliptic (Lemma 6.2), where D is small and A elliptic (Lemma 6.3), and where D is
elliptic and V' small (Lemma 6.4), These three cases are considered in § 6.2, and then in § 6.3 we show
that, under the assumptions (4.3)—(4.5), the bounds in these three cases cover all of T*I".

6.2 A priori estimates

We begin by proving some a-priori estimates for (4.1). As usual, we work near I" where M is locally
given by x; > 0, as in § 2.3. We repeatedly use the integration by parts result in Lemma 2.6.

LEmMA 6.1 If u solves (4.1), then, for all € > 0 and for all ¢,

1D, wll gty < CUIl gy + 1l g gy + € U gy + €10l )

Proof. Let x € C°((—28,28);[0,1]) with x = 1 on [—8, 8]. Let
. 20 _ 1 h, 20
Bl(x, th/) = X(xl)<th/) and Bo(x, th/) = EthlBl = ZX (x1)<th/> .

Then (2.11) holds, and B satisfies the assumption of Lemma 2.6; since By, _o = 0, (2.12) implies that

%([P, Blu, u) 2y + %S(Pu, Bu) 2y = (h(Byay — ayB)hD, u,u) 2y
+ (B (R — hag)u, u) 2y + (ByhDy u, hDy u) 2y (6.7)
Now, observe that
[P, B] = h(B,(hD,,)* + B,hD,, + Byy),
where
B, € C°((8,28); w2 (I})), By € C°((5,28); w*TI(IN)), By e C((—28,28); w*2(I)).
In particular, by boundary elliptic regularity, we have
” [P, B]“”H;;(M) = Csh(”P“”H;;*”(M) + ||u||HZ+2€(M))’

Therefore,

)(B, (1= Ryu, )2 1y + (ByhD u, D, ) ‘

2 2 —1 2 2
< Chllullyg gy + Clluly )+ Ce I + el
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106 J. GALKOWSKI ET AL.

and hence

2
Hj, (M)

2

2 2
D <
7 xl“”Hﬁ = C”u”H£+1 H/i(M)'

+ Clluly gy, + Ce™ I I5 + elul

(D)
0

REMARK. When ¢ = 0 the bound in Lemma 6.1 is valid for Lipschitz domains and goes back to Necas;
see (Necas, 1967, §5.1.2), (McLean, 2000, Theorem 4.24 (i)).

We now show a bound where D and N are both elliptic.
LEMMA 6.2 Suppose that WF} (E) C EI(D) N ElLl(N). Then for any B’ € 0 with

WF,(E) N WFy (Id—B') = 9, WF,(B) C EIl(NV) NEI(D)
there exist C > 0 and Ay > 0 such that forany € > 0,0 < h < A,

|Eullesmo ) + NERDy ull yesm )

S C(||u|| 2/Z+m1;—mo+1 + ”u”LZ(M) + ”f” 2£+ml;—m0—l + ”f”Lz(M))
H

Hy, (M) A M)
+ €(||B/u||H£+mo(m +IB'hD, u||Hﬁ+m1(m) +Ce 1B gy
+0 (% (Il sy + WDyl oy + gl ) ) -
Proof. Let By € lI/e(’(l“,-) self-adjoint with WF (by(x', hD,,)) C WF} (E). Let B’ € lIIO(Fi) with
WF, (E) C Ell(B) ¢ WF,(B') C ELl(N) NEL(D).
We can assume without loss of generality that B’ is microlocally the identity in a neighbourhood of

WEF, (E). Next, let B; = 0 and N1 and D! denote microlocal inverses for A/ and D on WEF(B).
Then, by Lemma 2.6,

(BohD, u, w2y + (haByu, w2y + (Bou, hD,, w2
< 12(f, Bu) 2 agy | + B {IP, Bluy ) 2 a5 |-
First, note that
[P, B] = h(B\hD,, + B,),
where

B, € C°((8,28); w0 (I)), B, € C°((=28,28); wh T (Iy).
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In particular, by boundary elliptic regularity, for all s € R,
1P Bl o) < th(HPuHH;HOfl(M) o ol v o + ||u||L2(M)).
Therefore,

\ (BOhDX| u, M)LZ(F,) + (haBou, M)LZ(F,) + (Bou, th] M)LZ([‘[) |

SC(llfH -t llull g +||u||L2<M)+IU‘IIL2<M))(IIuII L+l +||u||L2(M))'
2 z M) 2 M)

Hy = (M) H), 3

Now, using (4.1),

(BohDDy, 00021y = (BN~ (D g3t 2y + O (W (Wl ) + KDl v, )

and
_ —1 2 2
(Boits hD,, )12y = (Bouts N~ (Du+ g0) 21y + o(hoo (||u||Hh,N(m + |hD,, ””H,:Nm)))‘
In particular, letting B € w° with WF} (B,)) C Ell(B),

(LD By + By ' Dl )2 |

<CUIAL -+ I lzan + lul s+ lullzgn ) el wn + lull 2
H,2 M) H, 2 M) H, 2 M)

+OMB Uy +elBul? e, + Ce BN tymmy-mg
H,? (I) H, * ) H, * ()

0 2 2 2
01 (1 )+ WD ]+ 0y ))-

Now, choose by(x', hD,,) € W™ ~M0+2 self adjoint (i.e., £, = m; — m + 2¢) such that By, is elliptic on
WF}, (E). Then, since D and N have real-valued symbols and —\/~!D is elliptic on WFy,(E),

—R(BN "Du,u) > C|lEul?,, .. — ChIBul* ., - 0(h°°)||u||[21h,N

HL(T) 00 M)’
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108 J. GALKOWSKI ET AL.

and

||EM||§_1£ < C ”f” my—my+20—1 + ”f”LZ(M) + ||M” my—mg+20+1 + ||u||L2(M)
" H, * ) H, * )

X ”M” my—mqy+20+1 +||u||L2(M)
H, *

+OMWB'U? ., pgine  +e€llBull?
H * @)

+ O (1l v gy + WD}y + 1817w, ) ) (6.8)

-1 2
Hp + B ey

Let E' € w9 with
WF} (E) N WFy, (Id —E') = ¢, WF,(E') C EIl(B") N EILW) N EI(D).

By (6.8),

”E MHHZ(F) (”M”2 m)—my+20+1 + ||u||i2(M) + C(”f”2 my—mgy+2€—1 + ”f”IZ‘Z(M)))
2
(M)

H, M) H,

+ Ce YB'g,|?

O |B'u)|? 20— sn B o
+ O IBUP s, -+ €NBul? Ipmoq

H, * ()

0 2
S Gl (S T N Ry P s )

HLT)

Let N'~! denote a microlocal inverse for N on WF} (B'). Then,

EhD u=EN~'(~DE'u+B'g)) + 0(h°°||u||H;N(m)H£z,

SO

/ /
VDl gy < CHE wltomm -+ 1Bl yt-m + O( Nl )

In particular,
2 2 2 2 2
”Ethlu”H( = C(”M“ mo—my+2¢+1 + ”“||L2(M) + “f” my—mq+2£—1 + |lf||L2(M))
h H, 2 M) H, 2 (M)

+ OMWBUI? 2ingm, -+ €lIB'RD, u]
H, * ()

00 2 2
+ O (11, v )+ WDl + 81 v )

-1 2
Hz(r)‘f‘ce ||Bg,|| k =
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We now consider D small and A elliptic:
LEMMA 6.3 Let K € T*I. Then for all n > 0 there is §; > 0 and C > 0 such that for all 0 < § < §,
E € ¥ with
WF,(E) C KNELW) N {lo(D)| < §(&)™} n{IRK, &) > n}, (6.9)
and B’ € ¥ with
WF,(E) N WFy (Id —B') = ¢, WEF} (B) C EIINV) N {lo(D)| < §(5)™},

there is iy > 0 small enough such that forall0 < h < hyand0 <€ < 1

VEulem pyy + IERD ull gt

/ —1 /
< C(e+ MIBul yeom ) + Ce™ + DIB Gl

+ C”M” l+ml+mo+l + CE_l ”f” H_mlerO—l + ”f”Lz(M) + CE”””H}{(M)
H, 2 (M) H, M

+0 (h°° (||u||H;N(m + IADy wlyn sy + ||g||H;N(m)) : (6.10)

Moreover, if my < m; + 1 (6.10) holds with K = T*TI;

Proof. Throughout the proof, we take b, (x', hD,,) self-adjoint with b, € w2*+mo=D if ) <y + 1
and b; € WP otherwise. We assume that

WF(E) C Ell(b, (¥, hD,)) C WFy (b, (', hD,)) C EI(N) N {[o(D)] < 8(£)"}.

AsinLemma 6.1, let x € C2°((—26,26); [0, 1]) with x = 1 on [-4, 8]. Let
1
B, (x,hD ) := x(x))b;(x',hD,) and Bo(x/,th,) = EthlBl' (6.11)

Then (2.11) holds, and B satisfies the assumption of Lemma 2.6; since By| =0 = 0, (2.12) implies that
(6.7) holds.

Since A is elliptic on WF), B, there exists N ~! € ¥~ a microlocal inverse for A" on WFy, (B');
that is, for any B with WF} (B) C {B' = 1d},

BhD, u=BN " (DB'u+ B'g) + 0(h™®)y-wg + O(h™)y it + O(h™)y-ohD, u. (6.12)
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and hence, using the fact that we are working with compactly microlocalized operators on I” to see that
all Hj(I';) norms are equivalent up to 2°° remainders, we have

|(B\Ru, u) 2y + (ByhD, u, hD, u) 2|
< CHNB U oy, + CHIB Gl ey [ih™ (P Bl w) 200y + 23(F. Bu) 2 |
o+ 01 (1, vy + WD ]+ v y))- (6.13)
Now, observe that
[P, B] = h(B,(hD,,)* + B;hD,, + By),

where

B, € C°((8,28); w*tm=(r)),  B) € C((5.26); w**Hm0=I(ny),
By € C°((—28,28); w2ktmo) (),

In particular, by boundary elliptic regularity as before, we have

+ ||U||L2(M)),

)

P Blelgapy < CohNPul st o

+ u my
l IIH;+2(k+ 0
so by (6.12) and (6.13),

<BIRM, M)LZ(F[) + <BIN71DM,N71DM>L2([".)’

/N2 -1 /o112

2 -1 2 2 2
+ C”M” £+’"1+’2"O+1 o + CG (”f” e+m1+m0—1 + |V||L2(M)) + CEHMHH}I(M)

2
H, H, M)

o+ 01 (11, v,y + WD ]+ 81 ) (6.14)
If my > m; + 1, we assume that b; € S°°™'P. Therefore, for all (m, m;)

B\R+ N'D)*BN~ID e w2ttmo),

for our choice of B;. Next, since D is elliptic on {R = 0}, for any K C T*I’; compact, there exists 5, > 0
small enough such that

inf {<s/>—2||o(N “ID). NP+ RW.&)| where [o(D)(,£)] < 8,(E")™. (¥.&) € K} > cg > 0.
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Moreover, if my < m; + 1, then there is 5, > 0 small enough such that
inf {(€) 2]l W' DI, €)1 + R0, 6)| where [o(D)(W, 60| < (6™, (.8 € I} = e > 0.

In particular, since R is real-valued, there is B € Y 2k+mo—1) gelf adjoint, elliptic on WF}, (E), such that

o(B\R+ NT'DY*BINTID) (¢, &) > c(g/y2ktmo), (,&") € WF,(E).
In particular, then the sharp Garding inequality (Zworski, 2012, Theorem 9.11) gives

2 —1 * —1 2
By < CUBR+ N1 D)) BN Dtz )+ CHIBUI ) 4+ O]

h

2
H,N(1)
and we obtain from (6.14),

2 /o2 —1 /12
1Bl im ) < €€+ IBUI com )+ O+ DIBSly

2 -1 2 2 2
+ CIIMIIHHm1+;nO+1 - + Ce (Ilfll eyt + IlfIILz(M)) + Cellull gy

h Hy, (M)

O (10l gy + WDl + 1815w ) )
Next, we write, as above,
EhD, u = EN~YDEu+E'g) + O(h®) -8 + O(h™) y—sott + O(h™) y—chD, u
to obtain

IERD, ull? ...,
R T )

/ /
< CIEul yram y + CUE8l iy
o0
+ (1 (Wl gy + 1Dyl oy + 18121 ) )

and this finishes the proof. (]
Finally, we consider the case D elliptic and N small.

LEMMA 6.4 Forall K € T*Fi, there is §; > 0 and C > O such that forall 0 < § < 4y, E € w0 with
WEF(E) C KNEID) N{lo(\)| < 8¢€)™}, (6.15)
and B’ € ¥ with

WFL(E)N\WF, (I —B) =%,  WF,(B) C EI(D) N {lo(\)] < §(5)™},
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there is iy > 0 small enough such that have for0 < h < hgand 0 < € < 1,
VERDtltsm o+ Vsl omo,

< CEIB'ADy lyem 1y + C€ B gllug 1y

+Clull ymemgrr  +CeT WAL memost A+ W N2y )+ Cellull gt
H 2w 2 h

A H, M)
0 (% (Il oy + 1Dyl sy + 18l ) ) - (6.16)
Moreover, if m; + 1 < my, then (6.16) holds with K = T*T.

Proof. Throughout the proof, we take b, (x', hD,,) self-adjoint with b, € w2*+m0) if jp, 4+ 1 < m; and
b, € WP otherwise. We assume that

WF(E) C Ell(b,(¥',hD,))) C WFy,(b; (', hDy)) C EI(D) N {lo (N < §(£)™ }.

Let B and B, be defined by (6.11).
Since D is elliptic on WF} (B’), there exists D~! € =m0 3 microlocal inverse for D on WFy (B);
that is, for any B with WF (B) C {B’ = Id},

Bu=—BD~'(NhD, B'u — B'g) + O(h*®)y g + Oh®)y it + O(h®) g hD,u.  (6.17)

Arguing as in the proof of Lemma 6.3, we obtain the analogue of (6.14) with B € g 2ktm) (), namely

|(B,RD™'N'hD, u,D~'N'hD,, u) (B\hD, u,hD, u)

2y T 2y |

/ 2 —1 /o112
< Cle+ MBI oy o+ !+ DIBEIG

2 —1 2 2 2
+ C”u” [+ml+z10+l + Ce (”f“ Z+ml+l211071 + ”f”LZ(M)) + Ce ”M”H/ln M)
H, ) H, o0

0 2 2 2
O (10l gy + WDl ) + 1815w ) )
If my < m; + 1, we assume that b; € S°°™P. Therefore, for all (m, m,)
(D7'N)*B,(1 = RD™'N + B, e w2+

for our choice of B;. Now, any K C T*I'; compact, there is §; > 0 small enough such that

inf {|1 + oML EVRE,E)| where Jo (V)X E)] < 8,(&")™, (,&) € K} > cg > 0.
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Moreover, if my < m; + 1, then there is 5, > 0 small enough such that

inf {|1 + oML ENRE,E| where |0 (M), E)] < 8,(&")™, (,&) € T*r,.} >c>0.

Therefore, choosing B; with non-negative symbol such that B is elliptic on WF}, (E), we have
Ro (D7'WN)*B\RD'N +B)) (¥, > ¢,  (,&) e WF(E).
In particular,
LA(I})

IERD,, u||2:+ml = C(((D™'N)*B,RD™'N + B, ) kD, u, hD, u)

+ ChIIB/MIIiIHml_% + O(h)||hD,, ul|

h

2
HN Ty
Therefore,

2 / 2 —1 / 12
IIEthlullH;?m1 ay = C(e +h)|IB'hD,, ”Hfﬁ’”l " +C +DIB gllHﬁ(m

2 -1 2 2
+ C”M” H>m1+r2rlo+1 + CG (”f” z+n11+12710—1 + ”f”LZ(M))
H, ™) H, )

2 0o 2 2 2
o Cellulyy gy, + O (K (Wl sy + DI v+ 817, ) )
Then, using (6.17) again the second claim follows. (]

6.3 Proof of Theorem 4.1

Throughout this section we assume that (4.2) holds. In particular, the union of the elliptic sets for A ;
and A| ; covers T*I; and Ay;; is elliptic on $*I7;.

Proof. We start by briefly considering the conditions (4.3)—(4.5) separately. Suppose first that (4.3)
holds. Then, fixing §, > 0, such that Lemmas 6.3 and 6.4 with K = T*T; hold, there exist E, € 1Y
satisfying (6.9) and E; € o satisfying (6.15) (both with K = T*TI7) such that

{o (D) = 0} C EI(E), {o(NV) =0} C EI(E)), T*T; C EIl(Ey) UEI(E)).
Next, if (4.4) holds, there exists K, € T* I} such that
K, UENIN) D T*T;.

Fixing 8, > 0, such that Lemma 6.3 holds with K = T*Fi and 6.4 holds with K = K,, there exist
Ey e w0 satisfying (6.9) with K = T*I; and E| € WP satisfying (6.15) with K = K, such that

{o(D) =0} CEI(E,), {o(N)=0}CEIE,), T, CEI(E,)UEIE)).
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Finally, if (4.5) holds, there exists K3 C T*I such that
K, UEN(D) D T*T,.

Fixing 8, > 0, such that Lemma 6.3 holds with K = K; and 6.4 holds with K = T*T}, there exist
Ey € w°o™P satisfying (6.9) with K = K; and E;| € w0 satisfying (6.15) with K = T* I such that

{o0(D) =0} CEI(E,), {o(N)=0}CEIE,), TT,CEIE)UEIE)).

In particular, in all cases, there exist hy > 0, Ey, E|, E, € w0 such that for 0 < h < hy, the estimates
of Lemma 6.3 hold for EjE,, those for (6.4) hold for ETE;, and those of Lemma 6.2 hold for EJE,
such that

T*I', C BEI(Ey) U EI(E,) U EII(E,).

Therefore, by Lemma 6.3
||E3E0M||H£+mo + ||ESEOhD)C] M||H£+ml

< C(e + Wllul yem ) + CE + Dllgllyg

+Cllull ommgrr  +CeT LW msmomt W2y |+ Cellullgan
H, NG H, 2w

0 (% (Il gy + 1Dyl sy + 18l ) ) -
Similarly, by Lemma 6.4
”ETEIM||H]€+"'O + ”ETE] thlM”Hﬁ+m1

< CellhD || evm, .+ Ce gl e
Y PO 0 ()

+C||M|| l+m1+m0+l +C€_1 ”_f” e+m1+mo—1 +”f||L2(M) +C6””‘”H,1(M)
A NG)) H, M

+0 (hoo (||u||Hh-N(m + IAD, ull vy + ||g||Hh_Nm))) .
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Finally, using Lemma 6.2,

S C(”M” 22+m12+m0+1 + ||”||L2(M) + ”f” 2Z+mlz+m071 + ”f”LZ(M))
H

H, (M) h @D
-1
te (||u||H5+mo(m + I1ADy el <m) e gl

0 (% (Wl sy + WDy, gy gy + 18l ) ) -

Since
T*I; C Ell (EJEy + E{E, + E3E,),
we have all together

bl omo - WDl

< C{ llull g MMt + ||”||L2(M) + 'EHMHH},(M) + £l ktm+mp—1 + ”f”LZ(M)
H, I M H, * ™
—1
e (Il gy + Dl yeim )+ Ce gl (6.18)

Finally, observe that

R(—h> Au,u) 2 4p) = ””‘V””iZ(M) +th<h3vu’ U)2(ry)-
i

Letting ¥ € ¥ °™P with D elliptic on WFy, () and A elliptic on supp WF}, (Id —v), we have

190020, 1) 2y | = (sm ((hDvu,lpu)Lz(m +((1d —y)hD,u, u)Lz(m) ‘
— ‘E}ii ((hDvu, ~Y D WAD,u = 9))2 ) +(Ad =N (g + Do), u)Lz(m) ‘

00 2 2
+ 0 )(Ilulth_N(m + Ilth“”H,;N(r,-))

2 —1 2 2 2
< CHIRD il + 1 N8I s g+ I g1 Bl .

I 2
H, )
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Therefore, for any s,
1 5
2 214112 2

2 2 2 2 2
+C(Zh 1Dl gy + B ] 22511 +||gi||Hhmwm)). (6.19)

2
! H, )
Using this in (6.18) and taking
_M<g,<l_w’ s;=—,—m, . (6.20)
2 — 1 — 2 2 1 l N

we obtain
; il evemos oy + WDyl i
< Cllull 2 + Ce ™" + e fll 2 )

-1
+ Z € ”g”H;i’(Fl) -+ C€(||u||Hfl+'710’i(1"i) + “hDXl u||H£+ml’i(n))
1

+ 20 | HIAD oy + il mase (- 6, "L )
; H, i)

Shrinking € such that Ce < 1/2 and taking A small enough such that Ch, < %, the proof is complete
since the inequality (4.6) (i.e., the first inequality in (6.20)) implies that the terms on the right can be
absorbed into the left.

The final inequality in Theorem 4.1 follows from combining the result of Lemma 6.1 (with £ = —s)
with (4.8). O
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Appendix A. Semiclassical pseudodifferential operators and notation

We review the notation and definitions for semiclassical pseudodifferential operators on R¢ and refer the
reader to Appendix E in Dyatlov & Zworski (2019) and Chapter 14 in Zworski (2012) for details of how
to adapt these definitions to manifolds.
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Before we introduce these objects, we recall the notion of semiclassical Sobolev spaces H}; these
are the standard Sobolev spaces H® with a norm weighted with 4. We say that u € Hj, RY) if

1E) Fu@ @l < oo, where (€)= (1 + )7 and F () := /]R L) ay

is the semiclassical Fourier transform.
We next introduce the notion of symbols. We say that a € C>°(T*R?) is a symbol of order m if

|020L a(x.£)| < CoplE)™,

and write a € S"(T*RY). Throughout this section we fix x, € C°(R) to be identically 1 near 0. We
then say that an operator A : C2° (RY) — D'(R?) is a semiclassical pseudodifferential operator of order
m, and write A € lP’”(Rd), if A can be written as

1 i
i) = g /R d /R (e, £) (b — yDu) dyd +E, (A1)

where a € S"(T*R?) and E = O(h*°) g -, where an operator E = O(h®) -« if for all N > 0 there
exists Cy > 0 such that

N
”E”H;N(Rd)—)H;:](Rd) = CNh .

We also define

o= (", S = ()8 = Jum, 5=
m m m

m

We say that a € S©™P if a € §7° and a is compactly supported, and we say that A € @w™P if
A € ¥~% and can be written in the form (A.1) with a € S°°™P. We use the notation a(x, hD,) for the
operator A in (A.1) with E = 0.

We recall that there exists a map

o, W™ — §"/hs"]
called the principal symbol map and such that the sequence
O
0 — hsmt Bhigm & gmpem=1 _, g
is exact where Op,,(a) = a(x, hD). Moreover,
0(AB) =0 (A)o (B), o(A*) =5 (A), o(—ih"'[A,B]) = {0 (A),0 (B)}, (A.2)

where {-, -} denotes the Poisson bracket; see Proposition E.17 in Dyatlov & Zworski (2019).

A.1  Wavefront sets and elliptic sets

To introduce a notion of wavefront set that respects both decay in /4 as well as smoothing properties of
pseudodifferential operators, we introduce the set

T*R4 := T*RY U (RY x $971),

where LI denotes disjoint union and we view R? x §9~! as the ‘sphere at infinity’ in each cotangent fiber

(see also Dyatlov & Zworski, 2019, §E.1.3, for a more systematic approach where T*R is introduced as
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the fiber-radial compactification of 7*R¢). We endow T*R¢ with the usual topology near points (xg,&p) €
T*R? and define a system of neighbourhoods of a point (xg,&p) € R? x $91 to be

é—>—§0| <e}

L {(x,g) R x ST x—xyl < e £ —&| < e}.

U, = [08) € TR Ix—xgl < 8] > €,

We now say that a point (xy,&,) € T*R9 is not in the wavefront set of an operator A € ¥™, and
write (xy,&,) ¢ WF},(A), if there exists a neighbourhood U of (x,, &;) such that A can be written as in
(A.1) with

sup 099 a(x.§)(6)V] < Copyh.
x,E)eU

We define the elliptic set of a pseudodifferential operator A € ™ as follows. We say that (x,, ;) €

T*R4 is in the elliptic set of A, and write (xp,&p) € Ell(A), if there exists a neighbourhood U of (x,, &)
such that A can be written as in (A.1) with

inf : - > 0.
(x’lgeUla(x E)E) "z >

Next, we define the wavefront of a family of distributions u;,, depending on h. We say that u, is
tempered if for all x € C° (RY) there exists N > 0 such that
”Xu”Hh_N < Q.
For a tempered family of functions, u, we say that (xy,&;) € T*R? is not in the wavefront set of u,

and write (xo,£,) ¢ WF), (1) if there exists A € W0 with (x,,£,) € Ell(A) such that for all N there is
Cy > 0 such that

lAuy Iy < Cyh™.

A.2  Bounds for pseudodifferential operators
We next review some bounds for pseudodifferential operators acting on Sobolev spaces.

LEmMA Al. (Dyatlov & Zworski, 2019, Propositions E.19 and E.24) (Zworski, 2012, Theorem 8.10)
Suppose that A € ¥™. Then,

”A””HZ < C”””Hfl*’”'
Moreover, if A = a(x, hD) € WO, then there exists C > 0 such that
1
Al ;2_, ;2 < supla| + Ch2.

Finally, we recall the elliptic parametrix construction (see e.g., Dyatlov & Zworski, 2019,
Proposition E.32).

LEmMMA A2. Suppose that A € ™ and B € ¥ with WF} (A) C Ell(B). Then there exist E|,E, €
ymi—M guch that

A = ElB + O(hoo)q/—oo, A = BE2 + O(hoo)lp—oo
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A.3  Tangential pseudodifferential operators

It will sometimes be convenient to have families of pseudodifferential operators, depending on one
of the position variables. In this case, as in § 2.3, we write x = (xl,x’) € RY and & = (SI,E’) for
the corresponding dual variables. We then consider families A € C° (le ; El/’"(Rd_l)), that is, smooth
functions in x; valued in pseudodifferential operators of order m and write A = a(x, hD,,) for some
ae CX(I ; S"(RITN).

X1°?
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