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Abstract: Grading of gliomas is a piece of critical information related to prognosis and survival. Clas-
sifying glioma grade by semantic radiological features is subjective, requires multiple MRI sequences,
is quite complex and clinically demanding, and can very often result in erroneous radiological di-
agnosis. We used a radiomics approach with machine learning classifiers to determine the grade of
gliomas. Eighty-three patients with histopathologically proven gliomas underwent MRI of the brain.
Whenever available, immunohistochemistry was additionally used to augment the histopathological
diagnosis. Segmentation was performed manually on the T2W MR sequence using the TexRad
texture analysis softwareTM, Version 3.10. Forty-two radiomics features, which included first-order
features and shape features, were derived and compared between high-grade and low-grade gliomas.
Features were selected by recursive feature elimination using a random forest algorithm method. The
classification performance of the models was measured using accuracy, precision, recall, f1 score, and
area under the curve (AUC) of the receiver operating characteristic curve. A 10-fold cross-validation
was adopted to separate the training and the test data. The selected features were used to build five
classifier models: support vector machine, random forest, gradient boost, naive Bayes, and AdaBoost
classifiers. The random forest model performed the best, achieving an AUC of 0.81, an accuracy of
0.83, f1 score of 0.88, a recall of 0.93, and a precision of 0.85 for the test cohort. The results suggest
that machine-learning-based radiomics features extracted from multiparametric MRI images can
provide a non-invasive method for predicting glioma grades preoperatively. In the present study, we
extracted the radiomics features from a single cross-sectional image of the T2W MRI sequence and
utilized these features to build a fairly robust model to classify low-grade gliomas from high-grade
gliomas (grade 4 gliomas).

Keywords: glioma grade; radiomics; machine learning; classifiers

1. Introduction

Glioma is a broad term for primary brain tumors classified according to their presumed
cell of origin [1]. The World Health Organization (WHO) has used histological grades to
classify gliomas, ranging from grade I tumors with minimal proliferative capacity and a
clinically benign course to aggressive grade IV tumors [2]. Despite accounting for less than
2% of all newly diagnosed cancers, gliomas are associated with significant morbidity and
mortality [3,4]. Grade 4 gliomas, especially IDH wild grade 4 astrocytomas, are the most
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fatal, accounting for 70–75% of all gliomas with a median overall survival of 12 to 15 months
and a 2-year overall survival of only about 30% [5,6].

Biologically gliomas are extremely heterogeneous tumors. The only way to discern the
heterogeneity in gliomas is by studying the morphology of the resected tumor specimen,
which sometimes may result in erroneous diagnosis even in the hands of expert pathologists.
Imaging the brain is critical in brain tumor management because it allows for definitive
diagnosis, tumor classification, management, and follow-up. MRI is the gold standard
imaging approach for evaluating brain tumors [7]. Use of pre-operative MRI is a step toward
using non-invasive techniques for characterizing and classifying gliomas. Additionally,
different sequences of pre-operative MRI also assist the neurosurgeon in planning surgical
resections. T1-weighted (T1W), T2-weighted (T2W), fluid-attenuated inversion recovery
(FLAIR), T2W gradient echo, and post-contrast T1W images are the typically used MRI
sequences [8]. Several adjunct imaging techniques, including diffusion-weighted imaging
(DWI), perfusion-weighted imaging (PWI), and magnetic resonance spectroscopy (MRS),
play an essential role in differentiating the various grades of tumors [9,10]. However,
there still exists a gap in our knowledge regarding the utility of imaging to identify the
highest-grade portions of gliomas on the local scale.

Heterogeneity is a well-known biological characteristic of tumor tissues. A significant
tumor heterogeneity indicates unfavorable biology, an aggressive clinical course, and an
unsatisfactory treatment response [11]. Deep learning and radiomics are two pillars of
computational tumor image analysis [12]. Radiomics might be particularly useful for
non-invasive glioma grading since it employs a voxel-by-voxel technique to turn sparse
imaging data into big data (histogram, texture, and transformed features) [13,14].

Texture analysis, an emerging field of radiomics, is gaining popularity as a method for
detecting heterogeneity from conventional tumor images obtained in day-to-day clinical
practice [15]. Texture characteristics inside the tumor objectively capture intratumoral
heterogeneity utilizing very advanced software techniques. It has shown potential in
predicting pathologic features, response to therapy, and prognosis in various tumor types,
including colorectal, head, neck, esophageal, lung, and renal cell carcinoma [16–18].

Differentiating between low- grade glioma (grade 2/3) and high-grade gliomas (grade
4) in brain tumors is critical for treatment and prognosis, since the degree of aggressiveness
and infiltrative characteristics considerably impact the therapeutic strategy and prognosis.
The spectrum of glioma grades is widespread with no clear distinction between low-grade
gliomas vis à vis high-grade gliomas. Contemporarily, differentiating low-grade gliomas
from high-grade gliomas has been based on the semantic radiological features that are
discerned by the radiologist. This, however, may have some degree of subjectivity, as it
depends on the experience of the radiologist and is inter-observer dependent. The wide
spectrum of glioma grades and the subjectivity in differentiating these grades using preop-
erative MR-based radiologic features may have an overall impact on optimizing therapeutic
decisions and prognosticating these tumors in day-to-day clinical practice. Using machine
learning classifiers to model the radiomics features extracted from radiological images
(MRI) is independent of inter-observer variation and can objectively classify low-grade
gliomas (LGG—grades 2/3 gliomas) from high-grade gliomas (HGG—grade 4 astrocy-
toma). In radiomics-based glioma classification, machine learning methods such as support
vector machines, random forest classifiers, etc., apart from deep neural networks are fre-
quently employed to distinguish high-grade gliomas from low-grade ones. It is essential to
emphasize, however, that this is an area of ongoing study, and further studies are required
to prove the therapeutic value of this approach.

In this study, we applied robust machine learning classifiers to model the extracted
radiomics features from a single sequence of magnetic resonance imaging (T2WMRI) of
glioma patients to study whether the grade of glioma can be determined non-invasively.
Our goal was to classify the WHO pathologic grade of the gliomas based on the radiomics
features obtained from the imaging data. We sought to explore the accuracy of tumor
radiomics using various machine learning classifiers in predicting the glioma grades on
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a T2-weighted MRI to demonstrate the effectiveness of these features using established
performance metrics on the classification of each glioma’s histopathological grade and
to use this approach as a robust imaging biomarker to guide therapeutic decisions as a
prelude to possible clinical implementation in the future. The novelty of our approach was
exemplified by extracting radiomics features from a single cross-sectional image of the T2W
MRI sequence. These features were used to develop a robust machine learning model to
differentiate LGG from HGG. This approach, once validated in a larger cohort, will have
implications in day-to-day clinical practice in high-throughput tertiary care cancer centers.
Additionally, we used five ML classifiers and compared their effectiveness using various
diagnostic metrics to classify the grade of gliomas.

The novelty of the present study is that we extracted the radiomics features from
a single cross-sectional image of the T2W MRI sequence and utilized these features to
build a fairly robust model to classify low-grade gliomas from high-grade gliomas (Grade
4 gliomas) using five different machine learning classifiers in the test cohort. Secondly,
isocitrate dehydrogenase (IDH) mutation analysis by immunohistochemistry was used in
64% patients for reclassifying the gliomas into low-grade and grade 4 astrocytomas.

2. Review of Literature

Gliomas are tumors of glial origin affecting the brain and spinal cord. According to
World Health Organization (WHO) classification, gliomas are categorized into low- and
high-grade based on the histopathology [2]. However, the wide spectrum of gliomas makes
it difficult for even a pathologist to classify them correctly, often relying on molecular assays.
Despite evolving imaging technology, non-invasive accurate prediction of glioma grade,
survival, molecular status, and treatment response remains difficult. Biopsies continue to
be the gold standard for histologic and genetic categorization, but they are invasive and
expensive [19]. Machine learning (ML) and its offshoot, deep learning (DL), are prominent
areas of artificial intelligence (AI). Rapid advancements in computing and imaging have
significantly increased the potential for AI to influence neuroradiology diagnostics [20].

The development of radiomics, which extracts data from pictures by translating them
into features measuring tumor characteristics, has accelerated the use of ML approaches
to imaging, including radiomics-based analysis of brain tumors [21] In a study by Cho
et al., five radiomics feature characteristics for glioma grading and three classifiers demon-
strated an average AUC of 0.94 for training groups and 0.90 for test groups [22]. In several
studies, the ML-based approach predicted glioma grades and expression levels of mul-
tiple pathologic biomarkers with good accuracy and stability [23]. Classifiers based on
radiomics features have also shown benefits for predicting low-grades [24]. Although
ML glioma grade prediction systems are becoming more widespread, they have yet to be
implemented in routine clinical practice. With ongoing progress in computational pro-
cessing, MR imaging texture analysis might become a powerful clinical tool for routine
oncologic imaging.

Historically, the majority of radiomics-based ML and DL studies utilized image
datasets from open sources collected across multiple institutions with heterogenous proto-
cols and image quality. However, algorithms have been developed to reduce the hetero-
geneity to a certain extent in these datasets [20,22,25]. Radiomics models developed on
these datasets may perform well in training and testing. Nevertheless, the results may not
be reproducible in the real-world clinical practice, where images, imaging protocols and
tumor presentations are heterogeneous. Therefore, the present study utilized image sets of
a particular sequence (T2W) from a single institute to train the dataset.

3. Materials and Methods

Following approval from the Institutional Ethics Committee, 83 patients with histolog-
ically proven gliomas were included in this retrospective study. All patients underwent
MRI to delineate the disease extent and treatment planning. T2-weighted MRI sequences
were utilized for radiomics analysis. The MRI DICOM scans (Digital Imaging and Commu-
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nications in Medicine) were obtained and pushed to the planning workstation, where the
commercially available Texture Analysis research software TexRAD®, Version 3.10 (Feed-
back Medical Ltd., Cambridge, UK, www.fbkmed.com) was used for tumor delineation
and radiomics feature extraction. The glioma dataset had a total of 83 data points (patients)
in two groups, namely low-grade gliomas (LGG or grades 2/3 gliomas) and high-grade
gliomas (HGG or grade 4 astrocytoma), with 27 and 56 patients, respectively.

3.1. Inclusion and Exclusion criteria
3.1.1. Inclusion Criteria

Age > 18 yrs;
Patients with histopathological diagnosis of glioma (wherever possible, immunohisto-

chemistry of IDH was performed to augment the diagnosis);
Pre-operative MR images of the brain in DICOM format.

3.1.2. Exclusion Criteria

Patients who did not have a histopathological diagnosis;
Patients whose preoperative DICOM MR images were not retrievable;
Patients who had multifocal/multicentric tumors in the brain on imaging.

3.2. The Overall Radiomic Workflow of the Study

Figure 1 The radiomics pipeline represents the overall workflow of the study.
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Figure 1. Workflow of image acquisition, segmentation, radiomics feature extraction, feature reduc-
tion, and building of the model by machine learning classifiers.

3.3. Magnetic Resonance Image Acquisition Protocol

Image acquisition protocol: Magnetic resonance imaging sequences of 83 patients were
obtained at our institution using Ingenia 1.5T MRI—Philips™, Amsterdam, The Netherlands
and GE Signa 3T M.R.I—General Electric™, Boston, MA, USA with a pre-fixed standard
scanning protocol for brain tumor imaging. Patients were duly counseled before imaging.
A 16-channel head coil was used. Axial T1 contrast (T1C) and T2W images were obtained

www.fbkmed.com


J. Pers. Med. 2023, 13, 920 5 of 17

from the vertex to the skull base, encompassing the whole brain. For contrast-enhanced
T1W images, the rate of contrast injected was 3–4 mL/second and the total contrast injected
was 0.1 mL/mmol/kg of bodyweight. These sequences were archived in the institutional
Picture Archival and Communication System (PACS) and were exported to the radiomics
(texture) analysis software (TexRAD™). The radiological features on the T2W MR images
were evaluated and discerned by an experienced neuro-radiologist, TexRAD software was
used for segmentation, and the texture features were extracted on the TexRad™ console. The
acquisition protocol on the two MRI machines is described in Table 1.

Table 1. T2W Magnetic resonance imaging acquisition parameters for gliomas.

MRI Machine Sequence FOV (cm) Matrix NEX Slice Thickness (mm):
Slice Gap (mm) TR TE

GE Signa 3T Axial T2W 24 320 × 224 1 5:1.5 4080 90

Philips Ingenia 1.5T Axial T2W 23 (AP)
18.5 (RL) 448 × 304 2 5:1 6000 107

3.4. MR Image Pre-Processing, Segmentation (ROI Generation)

Magnetic resonance imaging of the brain was acquired on two different MRI machines
(1.5 Tesla Phillips™ and 3 Tesla General Electric™). The acquisition details of the MR images
for the brain imaging protocol for both machines are explicitly described in Table 1. The
resultant imaging protocol results in some imaging heterogeneity. Therefore, before seg-
mentation and ROI delineation, image pre-processing was performed using the Laplacian
of Gaussian (LOG) bandpass filters to remove the background noise (Gaussian filter) and
to enhance the tumor edges (Laplacian filter). This allowed for the extraction of specific
structures corresponding to the filter width. Spatial scale filters (SSF) used filtration values
of 0, 2, 3, 4, 5, and 6 mm in width (radius), representing the increasingly coarser level of
texture scales for first-order statistics. The use of a filtration algorithm before radiomics feature
extraction helps in nullifying some of the effects of heterogeneous acquisition protocols and
improves the robustness of the feature selection by removing the features affected by MR
noise and imaging heterogeneity. Tumor segmentation and region of interest (ROI) delineation
were performed using the semiautomated segmentation tool function of the software. Each
ROI was drawn on the slice through the largest diameter of the target lesion around the
peripheral margin. Air, streak artifacts, and dense calcifications were excluded from the ROI.
However, tumor hemorrhage and necrosis if present were included within the ROI. The ROI
contours and segmentation were separately verified by a neuro-oncologist with 10 years of
experience and a neuroradiologist with 10 years of experience. The segmentation was verified
by them individually, and any discrepancy was resolved by a consensus. For analysis, the
final contours, as verified by the neuroradiologist, were considered.

3.5. MR Radiomics Feature Extraction (First-Order Texture Features and Shape Features)

The radiomics features were extracted from the segmented images using proprietary
texture analysis research software (TexRAD™ Research Version 3.10, TexRAD Ltd., Cam-
bridge, UK). The variables consisted of first-order texture features and shape (topographic)
features. The first-order texture features are based on average pixel value. Intensity his-
togram analysis. They relate to gray-level frequency distribution within the region of
interest, obtained from the histogram of pixel intensities. It is dependent on a single pixel
value within the ROI rather than its interaction with neighboring pixels. The formulae for
the extracted texture features are represented in Table 2. Shape features are extracted by
three-dimensional surface rendering. These features include the descriptors of the three-
dimensional size and shape of the ROI. Shape features are independent of the gray-level
intensity distribution in the ROI. The shape features are calculated from the non-derived
image (original image) and mask. The formulae for the extracted shape features are repre-
sented in Table 2. In the present study, each data point has 42 variables (features) extracted
from the segmented images of the T2-weighted MRI sequences. Thirty-six first-order fea-



J. Pers. Med. 2023, 13, 920 6 of 17

tures were extracted using various spatially scaled filters (0, 2, 3, 4, and 6), and six shape
(topographic) features were extracted without applying filters. All radiomics features
were compared between high-grade gliomas (grade 4 astrocytoma) and low-grade gliomas
(LGGs or grades 2/3 gliomas). Figure 2 shows the texture and shape (topographic) feature
data of representative patient samples of LGG and HGG).

Table 2. Radiomics features extracted from T2W MR images.

1st Order Texture Feature Formulae Remarks

Mean Mean = 1
Np

Np

∑
i=1

X(i)
Mean represents the average gray-level intensity
within the ROI.

Standard deviation SD =

√
1

Np

Np

∑
i=1

(
X(i)− X)2

SD represents variation from mean gray-level
value; SD is small if image is homogenous.

Skewness skewness = µ3
σ3 =

1
Np ∑

Np
i=1(X(i)−X)3(√

1
Np ∑

Np
i=1(X(i)−X)2

)3

Skewness is the symmetry of intensity values in an
image (ROI). It is zero if the histogram is
symmetrical.

Entropy Entropy =
Np

∑
i=1

p(i)log2(p(i) + ε)

Entropy represents irregularity or randomness of
intensity value distribution in the ROI.Here, ε is an
arbitrarily small positive number (≈2.2 × 10−16).

Kurtosis Kurtosis = µ4
σ4 =

1
Np ∑

Np
i=1(X(i)−X)4(

1
Np ∑

Np
i=1(X(i)−X)2

)4
Kurtosis is an indication of histogram flatness.

Shape Feature Formulae Remarks

Elongation Elongation =

√
λminor
λmajor

Elongation shows the relationship between the two
largest principal components in the ROI shape.
λmajor and λminor are the lengths of the largest and
second largest principal component axes. The
values range between 1 (where the cross-section
through the first and second largest principal
moments is circle-like (non-elongated)) and 0
(where the object is a maximally elongated).

Area Apixel =
Nv
∑

k=1
Ak

The surface area of the ROI A pixel is
approximated by multiplying the number of pixels
in the ROI by the surface area of a single pixel Ak.

Sphericity
Sphericity = 2

√
πA
P

where
A = πr2

Sphericity is the ratio of the perimeter of the tumor
region to the perimeter of a circle with the same
surface area as the tumor region and therefore a
measure of the roundness of the shape of the
tumor region relative to a circle.

Short axis Short axis = 4
√

λminor

This feature yields the second largest axis length of
the ROI-enclosing ellipsoid and is calculated using
the largest principal component λminor.

Long Axis Long axis = 4
√

λmajor

This feature yields the largest axis length of the
ROI-enclosing ellipsoid and is calculated using the
largest principal component λmajor.

Perimeter

Pi =
√

(a i − bi)
2

where

P =
N f

∑
i=1

Pi

ai and bi are vertices of the ith line in the
perimeter mesh. Total perimeter is then
obtained by taking the sum of all calculated
sub-areas

3.6. Data Normalization

Data normalization is a necessary step, as it gives equal weight to each variable,
ensuring that no single variable steers the model performance in a direction because
they are big numbers. Here, the min–max normalization (rescaling) technique is used to
normalize the entire dataset. The general formula of min–max Z normalization for the
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range (0, 1) is given as x = (x − min(x))/(max(x) − min(x)). Here, x is the original value,
and x is the normalized value.
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3.7. Feature Reduction (Selection): Recursive Feature Elimination Method

Feature reduction or selection is a process used to minimize the number of parameters
in a dataset while preserving as much variance as possible in the original dataset. This is
performed before training the machine learning model, as it is a crucial step and avoids
data overfitting, eliminates background noise by removing unnecessary attributes, iden-
tifies the most critical attributes responsible for the endpoint, reduces training time and
computational resources, and improves the model’s overall performance.

Many feature classification algorithms have been developed for dimensionality re-
duction based on a wrapper and filtration approach as a precursor to model development.
These algorithms include the least absolute shrinkage and selection operator (LASSO),
leave-one-out cross-validation (LOOCV), the correlation-based feature selection algorithm,
and the Recursive Feature Elimination (RFE) method. RFE is the most popular feature
selection method, as it is easy to configure, flexible to use, and effective at selecting those
features in a training dataset that are most relevant in predicting the target variable (end-
point). Moreover, this algorithm is a wrapper-type algorithm that can wrap around any
ML model to produce the best feature set that gives the highest performance. By using the
RFE method, features are initially ranked, and candidate subsets are generated. It removes
the weakest feature (or features) until the specified number of features is reached, and
then it refits the model. It determines which of the significant univariate variables were
independent predictors of the endpoint of interest (i.e., class difference). Through this
process, a list of accuracy values corresponding to each subset is produced. It is possible to
establish a ranking of feature relevance that reflects their contribution to categorization.

Using the RFE method with classification algorithms, data dimensionality can be
reduced significantly, resulting in increased processing efficiency. Hence, we used this
method for radiomics feature selection in the present study.

In the present study, recursive feature removal with a random forest classifier was
used (RF-RFE). By eliminating the least significant features, the RF model was trained
and validated iteratively in the RF-FFE. After each cycle, the feature subset and model
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accuracy were kept. The feature subset with the best model accuracy was then chosen.
Using the recursive feature elimination method, we selected six optimal features. The
selected features included two topographic features (long axis and area) and four first-order
texture features (skewness from an unfiltered image, MPP from a medium-filtered image,
and mean and standard deviation from coarse-filtered images).

3.8. Training and Testing of Models

A 10-fold internal cross-validation was used on the training data. Here, the training
data were split into ten subsets, one reserved for testing and the model being trained on
the other nine subsets. This was then iterated ten times. These data were used to train five
classification models: Random Forest Classifier (RFC), Support Vector Machine classifier
(SVM), Gradient Boosting Classifier (GBC), Naive Bayes Classifier (NBC), and Ada-Boost
Classifier (ABC). The models’ accuracy, sensitivity, and specificity were calculated from the
confusion matrix. The area under the receiver operating curve (AUC) was also calculated,
and the curve was plotted for all models. The most important features were identified
using the random forest classifier, which is an ensemble machine learning algorithm of
several individual decision trees that uses bootstrap aggregation or bagging. The data are
sampled numerous times by RF, which then creates a unique prediction model for each
sample. By combining the results of all the models, RF calculates the true mean value of
the model. All of the models predict the individual outcome, and the ensemble outcome
value of all the models is presented. Each tree gives a class prediction, and then, the class
with the highest number of votes becomes the predicted result of the random forest model.

A support vector machine (SVM) builds a classifier to create a decision boundary
between two classes of data known as a hyperplane. This hyperplane is orientated in
the closest data points from each of the data classes, and these closest points are called
support vectors. SVM is very useful, and it enables us to model higher-dimensional,
non-linear models.

Gradient Boost classifiers are a family of machine learning algorithms that pool to-
gether several weak learning models to produce a robust predictive model. When perform-
ing gradient boosting, decision trees are typically used. The loss function or the difference
between the actual and predicted classes is generally minimized by gradient-boosting
classification methods using a logarithmic loss function.

The Naive Bayes classifier is a probabilistic graphical model for describing information
about an uncertain domain where each node relates to a random variable and each edge reflects
the conditional probability for the relevant random variables. The Bayes theorem is condition-
ally dependent on the structure of a collection of random variables selected in the model.

Ada-boost is an ensemble prediction algorithm. It combines various classifiers to improve
the classifier accuracy. Ada-boost selects a training subset randomly. It iteratively trains the
AdaBoost machine learning model by selecting the training set based on the accuracy of the
prior training. It assigns a higher weightage to erroneously/incorrectly classified observations
with a higher possibility of being classified in the subsequent iteration. Additionally, weight is
applied to the trained classifier in each iteration based on how accurate it is. More weight will
be given to the more accurate classifier. Until the maximum number of estimators is attained
or the full training set accurately fits, the cycle is repeated.

3.9. Model Construction, Validation, and Performance of the Binary Classification Model

Model validation was performed by cross-validation. This is a method that exam-
ines the research model to achieve better residuals. We applied stratified ten-fold cross-
validation and used a resampling method that uses different portions of the data to test and
train a model on various iterations. Various prediction algorithms (Random Forest, Support
Vector, Gradient Boosting, Naive Bayes, Ada-Boost) were used to predict responses using
10-fold validation, and they were studied compared with the ROC curve and AUC. Patient
demographics were performed using SPSS v. 21.0. (IBM SPSS Statistics for Windows, v.
21.0, Armonk, NY, USA). Descriptive statistics were expressed as numbers and percentages
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for categorical variables and mean ± standard deviation or median (interquartile range)
for continuous variables.

The prediction model assessment matrix was calculated using the following formulas:

Accuracy = ((TP + TN)/(TP + TN + FP + FN)) (1)

Precision = (TP/(TP + FP)) = PPV (2)

Recall = (TP/(TP + FN)) (3)

F1 = (2 × ((Precision × Recall)/(Precision + Recall)) (4)

where, TP: true positives; FP: false positives; TN: true negatives; PPV: positive predictive
value; FN: false negative; AUC: area under the curve; AUC of ROC; y-axis: true positive
rate; x-axis: false positive rate

3.10. Baseline Demographics, Tumor, and Treatment Characteristics of the Study Cohort

The median age of the cohort was 50 years, with a higher male preponderance. The
KPS was ≥80 in 75% of the patients. The most common site of the primary tumor was the
frontal (39.8%), followed by temporal (34.9%), parietal (20.5%), and occipital regions (4.8%).
Gross tumor resection was achieved in 39.8% of the patients, and the resection was subtotal
in about 37.3%. The most common grade of the tumor was grade 4 (67.5%), followed by
grades 2 (16.9%) and 3 (15.7%). After surgery, patients received adjuvant RT with a median
dose of 59.4 Gy in 33 fractions. Table 3 shows the demographics of all patients in the study.

Table 3. Demographics and tumor and treatment characteristics (n = 83).

Patient Characteristics Frequency (%)

Age (in years)

Median (interquartile range) 50 (38–61)

Sex

Male 51 (61.4%)
Female 32 (38.6%)

Karnofsky performance status

≥80 62 (74.7%)
<80 21 (25.3%)

Site

Frontal 33 (39.8%)
Parietal 17 (20.5%)
Temporal 29 (34.9%)
Occipital 4(4.8%)

Surgery

Gross total resection 33 (39.8%)
Near total resection 16 (19.3%)
Subtotal resection 31 (37.3%)
Patient Characteristics Frequency (%)

Biopsy only 3 (3.6 %)

Grade

Low-grade gliomas (glioma grades 2/3) 27 (32.6%)
High-grade glioma or grade 4 astrocytoma 56 (67.5%)

IDH status

IDH + ve (mutant) 19
IDH − ve (Wildtype) 331
IDH Uninterpretable 30
IDH unavailable *

Median dose of radiotherapy 59.4 Gy
* IDH: isocitrate dehydrogenase; IDH was not available, as the biopsy material was degraded; hence, IHC could
not be performed on the tissue samples.
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4. Results
4.1. Selected Features for Model Development

The top six features from the recursive feature elimination using a random forest
algorithm were chosen as significant radiomics features for the endpoint of interest (i.e.,
class difference). The six most stable radiomics features were selected from the recursive
feature elimination method and were used for model building using various machine
learning tools with a 10-fold stratified cross-validation strategy. The selected features
included two topographic features (long axis and area) and four first-order texture features
(skewness from unfiltered image, MPP from medium filtered image, and mean and standard
deviation from coarse filtered images). The top feature that was most valuable was the
shape (topographic) feature’s long axis. The next most efficacious features were the first-
order texture features characteristic of the intra-tumoral area.

4.2. Test Performance Measures Using Various Machine Learning Classifiers

The performance of the five classifiers using ten-fold cross-validation is shown in
Table 4. Of the five classifier models, the random forest model was found to be the most
stable and performed better than the other four classifier models for all the performance
metrics in differentiating the grades of gliomas. The RF classifier achieved a predictive
performance (AUC: 0.81, accuracy: 0.83, precision: 0.85, recall: 0.93, f1 score 0.88) for the
test cohorts. The support vector machine classifier (SVM) also performed well with an
AUC of 0.82, accuracy of 0.82, and precision of 0.85; however, the recall metric and f1 scores
were slightly lower than the RF classifier (recall: 0.91 and f1 score: 0.87). The performance
of the other three classifiers (GBC, NBC and ABC) was inferior, with an AUC and accuracy
of <0.80. Table 4 shows the prediction model performance for differentiating low- and
high-grade gliomas using different performance metrics. Figure 3A–E show the ROCs for
the five classifiers in the test cohort. Figure 4A–E show the confusion matrixes for the five
classifiers in the test cohort. Within each matrix, the horizontal row represents the actual
ground true class, while each column represents the predicted class. The main diagonal
shown in light blue represents the number of data points that were classified correctly.

Table 4. Prediction model performance from selected radiomics features for classifying low-grade
gliomas form GBM.

Algorithm/
Model Validation

Class Probability

Accuracy

Performance Metrics

0
Low-Grade
(Grade-2/3)

1
High-Grade
(Grade 4 As-
trocytoma)

The Area
under the

Curve
(AUC)

Precision Recall F1 Score

Random Forest
Classifier 10-fold cross validation 0.80 0.90 0.83 ± 0.16 0.81 ± 0.19 0.85 ± 0.13 0.93 ± 0.12 0.88 ± 0.11

Support vector
Machine
Classifier

10-fold cross validation 0.62 0.79 0.82 ± 0.14 0.82 ± 0.21 0.85 ± 0.13 0.91 ± 0.10 0.87 ± 0.09

Gradient boost
Classifier 10-fold cross validation 0.96 0.98 0.71 ± 0.09 0.70 ± 0.17 0.80 ± 0.10 0.79 ± 0.13 0.78 ± 0.08

Naïve Bayes
Classifier 10-fold cross validation 0.58 0.72 0.66 ± 0.18 0.71 ± 0.23 0.78 ± 0.06 0.72 ± 0.17 0.73 ± 0.14

Ada boost
Classifier 10-fold cross validation 0.57 0.74 0.74 ± 0.19 0.75 ± 0.19 0.76 ± 0.09 0.79 ± 0.19 0.73 ± 0.13

Each performance value was calculated by averaging the results of the ten-fold cross-validation. HGG (grade 4
astrocytoma): class probability 1; low-grade glioma (grades 2/3 glioma): class probability 0.
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Figure 3. (A) Random forest classifier (RFC) model, (B) support vector classifier (SVC) model,
(C) gradient boosting classifier (GBC) model, (D) naive Bayes classifier (NBC) model, (E) AdaBoost
classifier (ABC) model.
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Figure 4. (A–E) Confusion matrix calculated from various machine learning algorithms for classifying
low-grade gliomas (grades 2/3 gliomas) and HGG (grade 4 astrocytoma). (A) Confusion Matrix of
Random Forest Classifier, (B) Support Vector Machine, (C) Gradient Boost Classifier, (D) Naive Bayes
Classifier, (E) Adaboost Classifier. Within each matrix, the matrix row represents the instances in the
actual ground true class, while each column represents the instances in the predicted class. The main
diagonal shown in light blue represents the number of data points that were classified correctly.

The area under the curve (AUC) was calculated from various machine learning al-
gorithms for classifying low-grade gliomas (grades 2/3) and high-grade gliomas (grade
4 astrocytoma).

5. Discussion

Brain tumors are frequently heterogeneous, with diverse histopathologic features
making it challenging to estimate the grade of the tumors [26]. Gliomas may exhibit a
range of traits, including both low- and high-grade characteristics. Currently, the reference
standard for defining brain neoplasms is based on histopathologic examination following
surgical biopsy or resection, although this has drawbacks such as sampling errors and
interpretation uncertainty [27,28]. Radiomics has emerged as a powerful tool to quantify
the characteristics of tumors in a non-invasive manner and can be utilized to differentiate
between low- and high-grade gliomas. However, the radiomics approach may result in
high-dimensional data that would be difficult to interpret.

A machine learning approach using radiomics features can be used to compute high-
dimensional features from in vivo imaging modalities, which in turn were used to differen-
tiate between high-grade glioma (GBM) and low-grade gliomas in this study. Our study
used five classifiers to distinguish between low-grade and high-grade gliomas. Among
all algorithms, the random forest classifier performed the best, with an AUC of 0.81, an
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accuracy of 0.83, a precision of 0.85, a recall of 0.93, and an f1 score of 0.88 for the test cohorts
(Table 4). The results of our study have been corroborated by a group from South Korea who
tested three different classifiers (RFC, SVM, and logistic regression) using 468 radiomics
features extracted from multi-modal MRI imaging (T1-weighted, T1-contrast enhanced,
T2-weighted, and FLAIR images). This study also showed the RFC classifier as the best
and most stable performer compared to SVM and logistic regression in differentiating
high-grade gliomas from low-grade gliomas. The averaged-out AUC for all three classifiers
was 0.9030, while the AUC of RFC was 0.92, which was much higher than our study. The
study by Cho et al. had a large cohort size of 285 patients (HGG: 210 and LGG: 75). On the
contrary, the cohort size in our study was only 83 patients (HGG: 56 and LGG: 27).

Multiple other studies have attempted to differentiate HGG from LGG, albeit using
different approaches. In a study by Zacharaki et al., 98 patients with brain tumors included
metastases, meningiomas, and gliomas; the highest accuracy was noted for metastasis
(91.7%) and low-grade gliomas (90.9%). The classification accuracy was less for GBM,
where it was noted that 29.4% were classified as grade 3 and 29.4% as metastasis. This
study achieved an accuracy of 0.878 and an AUC of 0.896 using SVM-based recursive
feature elimination (SVM-RFE) with leave-one-out cross-validation (LOOCV). The leave-
one-out cross-validation approach in the above study may have led to overfitting, resulting
in erroneous interpretation. Studies have demonstrated that SVM-based categorization of
texture patterns is a promising method for establishing objective and quantitative evalua-
tions for brain tumors [29]. In contrast to Zacharaki’s study, which adopted an SVM-RFE
with LOOCV approach for feature selection and an SVM classifier in discriminating HGGs
from LGGs, we utilized recursive feature elimination using a random forest algorithm for
feature reduction and five different machine learning classifiers with a stratified 10-fold
cross-validation approach to reduce overfitting.

MRI sequences using relative cerebral blood volume (rCBV) measurements and
metabolite ratios from proton MR spectroscopy have been used to distinguish between
HGG and LGG with a sensitivity of 0.950 and a specificity of 0.575 [30]. Togao et al.
utilized intravoxel incoherent motion (IVIM) MR imaging in 45 patients and attained a
sensitivity of 0.96, specificity of 0.81, and AUC of 0.95 with conventional image-processing
techniques [31].

We found six significant and stable radiomics features through ten-fold cross-validation.
Two shape features (area and long axis) and four first-order texture features were selected
and used to build the model for discriminating HGG from LGG performed consistently.
Glioma shape is a well-known factor associated with malignancy, as irregular tumor shape
is often associated with tumor aggressiveness and poor prognosis [32]. We found that
the shape features of the tumor on T2W MR images were important in determining the
glioma grades. Apart from shape features, tumor heterogeneity is an important predictor
for prognosticating a disease, which can be quantified by texture features. In our study, we
found that the four first-order texture features were important in classifying glioma grades.
Other radiomics studies have shown features such as GLCM to correlate various clinical
endpoints in various tumors [33–37].

Different techniques of machine learning applied to various imaging modalities have
been studied for glioma grading. We applied five different types of ML classifiers (RFC,
SVM, naive Bayes, AdaBoost, and gradient boost) to differentiate glioma grade as a binary
classification problem (LGG vs. HGG). In our study cohort, we found that RFC and SVM
classifiers performed the best for classifying LGG and HGG using various diagnostic
metrics with an accuracy of 0.83 and 0.82 and AUC of 0.81 and 0.82, respectively (Table 4)
On one end of the spectrum, simple statistical tools such as logistic regression have been
used to classify gliomas with reasonable accuracy of 93%, a sensitivity of 97%, a negative
predictive value of 99%, and an AUC of 0.94 [38], while on the other end of the spectrum,
complex and sophisticated ML tools such as RFC and SVM have been used not only for
predicting glioma grades but also for prognosticating the disease. Logistic regression is
a too simplistic model and suffers from overfitting, especially in high-dimensional data,
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which is a norm in radiomics studies. On the contrary, ML tools such as SVM and RFC are
more adept at handling high-dimensional data, which is usually the norm in radiomics
studies. SVM classifiers have been used to classify gliomas on resting-state functional
MRI images, although these MR sequences are seldom used in clinical practice [39]. SVM
classifiers have been used with reasonable accuracy (AUC: 0.987) for diagnosing low-grade
vs. high-grade and grade 3 vs. 4 gliomas [40]. A group from South Korea used multiple
sequences of MRI and extracted radiomics features from the Brain Tumor Segmentation
2017 Challenge. LR, RFC, and SVM machine learning algorithms were used in the analysis
to model radiomics features for classifying HGG from LGG in a cohort of 285 patients after
splitting the data into training and test cohorts [22]. Five significant radiomics features
were selected for the machine learning classifiers, and the three classifiers showed an
average AUC of 0.94 for the training cohorts and 0.90 (logistic regression 0.90, support
vector machine 0.88, and random forest 0.92) for the test cohorts in the above study. The
findings of our study corroborated the results obtained by Cho et al. [22]. We observed that
both RFC and SVM ML tools performed relatively well in differentiating LGG from HGG
for the various diagnostic metrics (Table 4). In contrast to Cho’s study, we used five ML
algorithms with 10-fold internal cross-validation to model the radiomics features obtained
only from a single T2W MRI sequence. Using a single MR sequence reduces cost and time;
moreover, it can be scalable for clinical implementation once we validate our observations
in a larger cohort of patients, which is a work in progress.

Evolution in deep learning (DL) algorithms such as convoluted neural networks
(CNN), has led to their use classifying diseases, predicting treatment response, and prog-
nostication of disease [41]. DL approaches have shown promise in tumor grading and
diagnostics and prognostication of disease [42–45]. Deep learning algorithms augment tra-
ditional neural networks by adding hidden layers to network architectures between input
and output layers while modeling more complex and nonlinear situations. The advantage
of the DL approach is that it does not require human intervention to specify a set of features
a priori but can implicitly learn the features relevant to the given problem and thus can be
effective for radiomics research. However, another side of the DL approach is that these
algorithms are extensively data-hungry and require large datasets to train and validate
compared to conventional machine learning classifiers, which require limited imaging
datasets. Additionally, issues arise while fine-tuning hyperparameters. Although these
issues are challenging to deal with, we feel that DL approaches would give more robust
and meaningful results once trained and validated on large datasets. Our future endeavor
is to develop an image bio-banking system that will feed a large number of image datasets
for training the DL algorithm to classify LGG from HGG with a high degree of accuracy.

Our study has a few limitations. Being a retrospective study, patient image datasets for
developing the radiomics model were obtained from 2014 to 2016, when molecular studies
(IDH) were being introduced in our institute. Hence, we could obtain the IDH mutation
status in only 64% (53/83) of patients. Therefore, the gliomas were reclassified based on
histomorphology and IDH status, while in 36% of patients, gliomas were classified based
only on histomorphological features. This was mainly because the tissue material was
extensivelydegraded to perform any IDH studies. Secondly, we had only limited imaging
datasets; therefore, we could not perform an external validation of the results. However,
we tried to reduce overfitting of the data by an internal 10-fold stratified cross-validation
technique. However, we presume that this may hinder the applicability of our approach to
a new dataset. Additionally, there was a class imbalance between two classes (HGG: 56 and
LGG: 27) that could skew the results. The relatively small sample size of our study also
limited the use of deep learning algorithms, which are data-hungry and require a massive
number of image datasets, which would not have been possible without the pooling of
image data from multiple institutions, which in itself could have introduced a confounding
factor of image heterogeneity, as different institutions have different imaging protocols,
resulting in variability and generalization gaps in the predictive model. Regardless of the
heterogeneity in MR acquisition parameters, we were able to achieve a relatively fair bit of
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accuracy in developing a reasonably robust model, suggesting that this would consequently
have a clinical implication if validated in a large cohort of patients in real-world clinical
practice. Additionally, the current methodology of using internal cross-validation has the
limitation of inflating the performance metrics. However, with a limited sample size, we
thought that the internal 10-fold cross-validation would be the best strategy for model
development. One of the strengths of the study was that the reproducibility of the ROI was
verified by an experienced neuroradiologist blinded to the results of the subgrouping. The
model developed in the current study is planned to be tested on an independent validation
cohort and subsequently on a more extensive imaging database.

6. Summary and Conclusions

Machine-learning-based radiomics approaches can provide a simple and non-invasive
method for predicting glioma grades preoperatively on MRI, with favorable predictive
accuracy and stability. ML tools are increasingly being used to not only predict the grade
of glioma but also prognosticate gliomas. These tools are increasingly used in brain
tumor research but require extensive validation studies for their incorporation in clinics for
making therapeutic decisions. Apart from validation studies, some of the impediments to
the clinical translation of ML are the low reporting quality in glioma grade prediction and
lack of reproducibility. Currently, efforts are focusing on creating uniformity in reporting
guidelines and radiomics quality scores, which would provide the opportunity for the
implementation of radiomics-based ML algorithms for clinical implementation.

In the present study, we selected the six most stable radiomics features (four texture
features and two topographic features as obtained from the recursive feature elimination
(RFE) algorithm, and we used these features to build a robust model using five different
machine learning classifiers to model the radiomics features for differentiating low-grade
gliomas (grades 2/3) from grade 4 astrocytomas. Our study showed that both the random
forest and support vector machine classifiers were the most accurate in predicting the grade
of glioma, with an accuracy of 83% and 82% and an AUC of 0.88 and 0.87, respectively.
Although both models had the same precision (85%) in classifying LGG from HGG, the
performance of the random forest model was better than the support vector machine in
terms of recall (93% vs. 91%). The performance of the other three classifiers, namely
AdaBoost, gradient boost, and naive Bayes, was inferior (accuracy: 66–74% and 70–74%).
We acknowledge that the results of the present study are based on a limited dataset. We
plan to use a larger image dataset to reduce the bias of oversampling of a minor class to
balance the sample ratio and to include an external validation set. The results of the study,
once validated on an external dataset, will be used to scale up for clinical research.
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