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a b s t r a c t 

We present a hierarchical empirical Bayesian framework for testing hypotheses about neurotransmitters’ concer- 
tation as empirical prior for synaptic physiology using ultra-high field magnetic resonance spectroscopy (7T-MRS) 
and magnetoencephalography data (MEG). A first level dynamic causal modelling of cortical microcircuits is used 
to infer the connectivity parameters of a generative model of individuals’ neurophysiological observations. At the 
second level, individuals’ 7T-MRS estimates of regional neurotransmitter concentration supply empirical priors 
on synaptic connectivity. We compare the group-wise evidence for alternative empirical priors, defined by mono- 
tonic functions of spectroscopic estimates, on subsets of synaptic connections. For efficiency and reproducibility, 
we used Bayesian model reduction (BMR), parametric empirical Bayes and variational Bayesian inversion. In par- 
ticular, we used Bayesian model reduction to compare alternative model evidence of how spectroscopic neuro- 
transmitter measures inform estimates of synaptic connectivity. This identifies the subset of synaptic connections 
that are influenced by individual differences in neurotransmitter levels, as measured by 7T-MRS. We demonstrate 
the method using resting-state MEG (i.e., task-free recording) and 7T-MRS data from healthy adults. Our results 
confirm the hypotheses that GABA concentration influences local recurrent inhibitory intrinsic connectivity in 
deep and superficial cortical layers, while glutamate influences the excitatory connections between superficial 
and deep layers and connections from superficial to inhibitory interneurons. Using within-subject split-sampling 
of the MEG dataset (i.e., validation by means of a held-out dataset), we show that model comparison for hy- 
pothesis testing can be highly reliable. The method is suitable for applications with magnetoencephalography or 
electroencephalography, and is well-suited to reveal the mechanisms of neurological and psychiatric disorders, 
including responses to psychopharmacological interventions. 
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. Introduction 

This paper introduces an empirical Bayesian methodology for in-
erring synaptic physiology from human, in vivo neurophysiological
ecordings and in vivo measurements of neurochemicals, including neu-
otransmitters. It is an example of a broader class of enriched dynamic
ausal models (DCMs), informed by multimodal data that can incor-
orate neurochemistry, molecular pathology or selective loss of neu-
onal sub-populations and their synapses. Magnetic resonance spec-
roscopy (MRS) can be used to estimate individual differences in key
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eurochemical concentrations in local brain regions ( Blüml and Pani-
rahy, 2012 ). It has been used to quantify neurochemical changes in
eurological and neuropsychiatric disorders, such as Alzheimer’s dis-
ase ( Wang et al., 2015 ), frontotemporal lobar degeneration-related
yndromes ( Murley et al., 2020 ; Murley et al., 2022 ), and schizophre-
ia ( Jelen et al., 2018 ; Cohen et al., 2015 ; Duarte and Xin, 2019 ), as
ell as normal ageing ( Boumezbeur et al., 2010 ). Such spectroscopy

an be predictive of task performance and the response to pharma-
ological interventions ( Chowdhury et al., 2012 ; Stagg et al., 2011 ;
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dams et al., 2021 ). Differences in neurotransmitter levels influence
ynaptic transmission, which in turn affects the generators of magneto-
nd electro-encephalographic signals (M/EEG). 

Here, we characterise the relationship between physiology and
eurotransmitter levels, using a hierarchical Bayesian approach
 Friston et al., 2016 ). We present a method for specifying and compar-
ng the evidence for hierarchical models (using parametric empirical
ayes) that encode the effect of neurotransmitter levels (as measured
ith MRS) as empirical priors on different combinations of synaptic pa-

ameters in a neural mass model of MEG recordings. Our approach com-
lements previous studies, where correlational analysis has been used
o investigate relationships between spectroscopy measures and electro-
hysiology ( Rideaux, 2021 ; Steel et al., 2020 ; Kober et al., 2001 ). We
nvisage that our method may be useful for characterising the synaptic
eficits in several neuropsychiatric conditions (e.g., ( Adams et al., 2021 ;
imongi et al., 2021 )). 

MRS is a non-invasive neuroimaging modality used to estimate bio-
hemical concentrations, including the neurotransmitters glutamate and
amma-aminobutyric acid (GABA) ( McColgan et al., 2020 ; Stagg and
othman, 2013 ). Glutamatergic neurotransmission mechanisms include
elease, reuptake into astrocytes, conversion to glutamine then gluta-
ate, and vesicular repacking ( Gruetter et al., 2001 ; Pellerin et al.,
007 ; van der Graaf, 2010 ). In contrast, GABA cycling is predominantly
euronal where, following a release phase, there is presynaptic GABA
euptake and vesicular repackaging ( Gruetter et al., 2001 ). The major-
ty of GABA and glutamate is intracellular ( Myers et al., 2014 ), but total
ABA and glutamate concentrations correlate with neurophysiological

eatures such as gamma oscillatory power and corticospinal excitability
 Lally et al., 2014 ; Greenhouse et al., 2017 ). 

In what follows, we show that neurotransmitter levels can be used
s prior constraints on the estimation of effective synaptic connectivity,
n biophysically informed models of cortical function. For example, glu-
amate and GABA concentrations are expected a priori to influence the
ynamics of excitatory amino-3 ‑hydroxy-5-methyl-4-isoxazolepropionic
cid (AMPA) receptors and inhibitory GABAergic receptors respectively
 Rideaux, 2020 ; Gruetter et al., 2001 ). The aim of the current work was
o compare the evidence for alternate hypotheses regarding the relation-
hips between glutamate/GABA concentrations and synaptic connectiv-
ty, quantified using non-invasive MRS recordings and M/EEG data, re-
pectively. 

The first step in establishing this relationship is to infer synap-
ic parameters from neurophysiological observations. Since Hodgkin
nd Huxley ( Hodgkin and Huxley, 1952 ), there have been many ap-
roaches to examine micro-, meso ‑ and macroscale brain dynamics
ith many options for model identification ( Nelson and Rinzel, 1998 ;
teyn-Ross and Steyn-Ross, 2010 ; Robinson et al., 2003 ; Terry et al.,
022 ; Jirsa et al., 2014 ; Deco et al., 2008 ; Ramezanian-Panahi et al.,
022 ). DCMs build directly on the modelling framework established
y Hodgkin and Huxley. Hodgkin and Huxley initially proposed a lin-
ar dynamical system model to explain the relation between conduc-
ance dynamics and ion current dynamics. However, they refined their
odel by inclusion of nonlinear dynamics, having considered balanc-

ng complexity with accuracy in a way that remains highly relevant
o DCM ( Nelson and Rinzel, 1998 ). The hypothesis testing machinery
n DCM —enabling inferences on the posterior distributions of neuronal
odel parameters —balances model complexity and accuracy in genera-

ive (i.e., forward) models of neuroimaging data. The open source plat-
orm of DCM allows researchers from diverse disciplines to formulate
ypotheses and test them within a fairly standard framework. As dis-
ussed by ( Moran et al., 2013 ) DCM can be applied for a wide range of
odels, from the mesoscale and mean field modelling ( Marreiros et al.,
015 ; Marreiros et al., 2009 ; Marreiros et al., 2010 ; Shine et al., 2021 ;
ilbert et al., 2016 ) to macroscale population dynamics such as COVID-
9 transmission ( Friston et al., 2022 ; Friston et al., 2020 ). Here, we fo-
us on the use of DCM to characterise mesoscale neural dynamics. The
esoscale granularity, afforded by mean field approximations, increases
2 
he marginal likelihood of DCMs (i.e., with high accuracy and relatively
ow model complexity). 

We use dynamic causal modelling to invert a canonical microcir-
uit model of resting state MEG data in healthy adults ( Friston et al.,
012 ; Friston et al., 2003 ). This entails the variational Bayesian in-
ersion of biologically-informed forward models of neurophysiologi-
al observations, under the Laplace assumption ; i.e., assuming Gaus-
ian posterior probabilities over unknown parameters ( Zeidman et al.,
022 ; Friston et al., 2007 ). In DCM, gradient optimisation of varia-
ional free energy is used for approximating the posterior probability
ensity over unknown model parameters, and the model evidence (i.e.
arginal likelihood) ( Friston et al., 2007 ; Friston et al., 2008 ). The free

nergy provides a lower bound on log-model evidence, which repre-
ents the model accuracy adjusted for complexity. Model evidence as-
ociated with alternate hypotheses —about the underlying generators
f data —are compared using Bayesian model reduction (BMR). This
dentifies the most likely explanation for the empirical data ( Kass and
aftery, 1995 ; Friston and Penny, 2011 ). Crucially, BMR enables the
omputationally efficient evaluation of posteriors and model evidence
nder a reduced prior; i.e., a model specified in terms of new prior con-
traints ( Friston et al., 2018 ; Friston and Penny, 2011 ). We estimate the
arameters and evidence for a full model of a given dataset and then use
MR to evaluate posteriors and model evidences under alternative priors
 Friston et al., 2018 ; Friston and Penny, 2011 ; Friston et al., 2019 ). At
he second (e.g., group) level, hierarchical or parametric empirical Bayes
PEB) allows one to include empirical priors of interest ( Friston et al.,
015 ; Friston et al., 2016 ). Usually, second level models apply priors
hat are conserved over multiple participants. This means the first level
orresponds to a within-subject analysis, while the second level is a
etween-subject or group analysis (using subject specific posterior es-
imates as inferred by the first level). The combined hierarchical model
an then be assessed in terms of its evidence, and subjected to BMR to
est different hypothesis at the within-subject or between-subject level.
ote that this hierarchical Bayesian approach —to optimise generative
odels of neurophysiology, via minimisation of free energy —is not sim-
ly correlation or “fitting ” data to a model. The free energy provides a
ound on model evidence (a.k.a., marginal likelihood) that incorporates
odel complexity. Maximising evidence therefore protects against poor

eneralisation (cf. “over-fitting ”) at first and second levels. Although
ayesian statistics do not feature frequentist type II errors, there is a
onceptual analogue in the precision of the data, such that underpow-
red studies lack sufficient precision to evince differences in model ev-
dence. Practically, insufficient or noisy data reduces the differences in
he evidence for one model relative to another; meaning that one could
ot make a definitive inference about which is the better model given
he data to hand. 

In DCM, the prior mean and covariance of unknown parameters
re specified to accommodate physiological interpretability and model
tability, respectively. Effectively, (informative) priors provide con-
traints that enable the inversion of otherwise over-parameterised mod-
ls ( Friston et al., 2003 ). Using DCM, differences amongst individuals
or groups) can be characterised in terms of post hoc associations be-
ween connectivity parameters and clinical, pathological or cognitive
easure of interest, or by differential model evidence, or conditional
ensities over models’ probabilities ( Adams et al., 2021 ; Stephan et al.,
009 ; Rae et al., 2016 ; Passamonti et al., 2012 ). However, a more princi-
led Bayesian methodology is to incorporate between-subject variables
s priors on the generative model of brain physiology. Bayesian model
eduction and group-DCM can then be used to test whether such (em-
irical) priors increase model evidence compared to conventional (or
eakly informative) priors. The source of empirical priors could be de-
ographics (e.g. age), the burden of neuropathology (e.g. from PET

canning), or multi-modal measure (e.g. MRS). In this study, the DCM
at the first and group levels) leverages the spectroscopy information to
mpose constraints on synaptic physiology and assess their ‘goodness’
n terms of model evidence. If the embedding of empirical priors into a
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Fig. 1. Dynamic causal modelling (DCM) can 
be informed by physiological or pathophys- 
iological measures. DCM is the variational 
Bayesian inversion of mesoscale biologically- 
informed models given neuroimaging data: 
e.g., MEG. Given some data, DCM infers un- 
known synaptic parameters under a given 
(physically plausible) model and estimates the 
evidence for that model. The DCM parameter 
estimates can be informed by empirical pri- 
ors; here, based on neurotransmitter concen- 
tration, as measured by magnetic resonance 
spectroscopy. Neurotransmitter concentration 
is proposed to inform the synaptic efficacy in 
the neural mass model that, in turn, gener- 
ates electromagnetic signals. The comparison 
of such empirical priors — in terms of model 

evidence — extends Bayesian inferences about aspects of brain physiology which cannot be otherwise captured by non-invasive functional neuroimaging. The effect 
of the neurotransmitter concentration might manifest on one or more classes of synaptic connections in the cortical microcircuit. By specifying which parameters are 
subject to empirical priors, one can then compare ensuing models to identify which kinds of synaptic connections are modulated by neurotransmitter concentrations. 
The MRS traces and heatmap are from ( Murley et al., 2020 ) with permission. . Brain icon by Gloria Maggioli from thenounproject.com, CC BY 3. 
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(  

e  

s  
CM leads to higher model evidence, one can infer the importance of
he measured process in the generation of observed neurophysiology.

e use MRS data, noting that GABA and glutamate changes are associ-
ted with many neurological conditions. 

In this paper, we compare the evidence for different hypotheses
bout the association between MRS estimates of neurotransmitter con-
entration and synaptic function. See Fig. 1 for an overview of the
ethod. For a given set of connections, we use a hierarchical optimi-

ation (a greedy search followed by a constrained optimisation) to iden-
ify the (linear or nonlinear) function of the MRS estimates —imposing
rior constraints —that maximises model evidence at the group level. We
hen use model reduction to determine which subsets of synaptic param-
ters are sensitive to individual differences in neurotransmitter concen-
ration. This approach complements previous work by ( Stephan et al.,
009 ; Sokolov et al., 2019 ) who used diffusion-weighted imaging trac-
ography as empirical priors on connectivity parameters that are in-
erred from functional magnetic resonance imaging time series. How-
ver, unlike previous work, we do not assume a one-to-one relation be-
ween MRS measures and connections in the generative model. Rather,
e seek evidence to find which synaptic connections are informed by

he empirical measures. 
This work complements Stephan et al. (2009) contribution in which

natomical DTI data were used to furnish empirical priors in single-
ubject DCMs. In the current paper, empirical MRS measures do not
irectly inform the first-level DCM priors; in contrast they are used as

covariates’ in the second-level design matrix of PEB (group DCM) that
arameterise alternative relationships between MRS values and subsets
f first-level DCM parameters. This, in turn, allows one to evaluate and
ompare the model evidence of the group DCM, and identify the most
ikely relationship between MRS values and synaptic parameters. The
nsuing neurochemistry-enriched DCM is performed in steps: after first-
evel DCM inversion of individual data, the resulting estimates are, ef-
ectively, used as input to group DCMs (using PEB) and re-estimated
nder random-effect constraints (here, using MRS data) on a subset
f synaptic connections. This re-estimation uses the same calculus as
ayesian model reduction. c.f., the Savage-Dickey ratio ( Friston and
enny, 2011 ), where the objective is to improve the free energy bound
n the hierarchical model with first and second levels. We then evaluate
he model evidence of PEB models where their ‘covariates’ are trans-
ormed MRS data for 2 N -1 combinations of N synaptic connections. We
ystematically evaluate which sets of synaptic parameters are informed
y empirical MRS data (over all types and all combinations) and com-
are model evidence to select the likely connections that are evidently
onstrained by (a function of) MRS data. Note the MRS data furnish
mpirical priors, and not correlated with synaptic estimates per se. 
(  

3 
In the following sections, we describe the multi-modal dataset (MEG
nd 7T-MRS) and the first-level DCM used to fit cross-spectral density
ata features. We then describe the second (group) level PEB model
f the mapping between neurotransmitter concentration and synaptic
hysiology. We present the results of first-level and group-level DCMs,
sing MRS data as empirical priors. Finally, we discuss the potential
pplications and limitations of the method. A glossary and definitions
f acronyms and variables used in this paper are provided in Tables 1-4 .

. Material and methods 

.1. Participants 

Eleven healthy adults (age 63–77 years, five women) participated af-
er providing written informed consent. The study had ethical approval
rom the Cambridge 2 Research Ethics Committee. They were free from
eurological or major psychiatric disorders and took no regular medica-
ion. Each participant underwent 7T MRI and MRS ( Murley et al., 2020 )
nd task free resting-state MEG data, on separate days. 

.2. 7T MRS data 

Ultra-high field magnetic resonance data were acquired using a
iemens Terra scanner at the Wolfson Brain Imaging Centre using short-
cho semi-LASER sequence (repetition time/echo time = 5000/26 ms,
4 repetitions ( Deelchand et al., 2015 )), and VAPOR water suppression
alibration ( Gruetter and Tkáč, 2000 ). A 2 cm isotropic cubic voxel was
ocated over the right inferior frontal gyrus (RIFG). The MRS voxel was
laced using conventional anatomical landmarks by the same operator
AGM) prior to each scan. Anatomical variants (such as absent diagonal
ranches of the Sylvian fissure) could in principle affect voxel placement
ccuracy. However, there was a very close overlap of the prefrontal MRS
oxels across individuals ( Fig. 1 of ( Murley et al., 2020 )). Details of the
oxel placement and MRS quality assurance metrics are provided with
pen access in Murley et al. (2020) . 

The details of the MRS processing have been reported previously in
 Murley et al., 2020 ; Murley et al., 2022 ). In brief, the spectra were
re-processed to remove effects of eddy currents and frequency/phase
hifts using MRspa (Dinesh Deelchand, University of Minnesota, www.
mrr.umn.edu/downloads/mrspa). The LCModel method (Version 6.2–
) was used to quantify glutamate and GABA between 0.5 and 4.2 ppm
 Provencher, 1993 ). A MP2RAGE sequence (repetition time = 4300 ms,
cho time = 1.99 ms, resolution = 99 ms, bandwidth = 250 Hz/px, voxel
ize = 0.75 mm 

3 , field of view = 240,240,157 mm, acceleration factor
 A >> P ) = 3, flip-angle = 5/6 and inversion times = 840/2370 ms) was
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Table 1 

Acronyms. 

Acronyms Description 

AMPA 𝛼-amino-3 ‑hydroxy-5-methyl-4-isoxazolepropionic acid 
BMR Bayesian model reduction 
CMM Conductance mesoscopic model 
DCM Dynamic causal modelling 
DCM for CSD Dynamic causal modelling for cross spectral density 
FT Fourier transform 

fMRI Functional magnetic resonance imaging 
[.] Expectation operator 
GABA Gamma-aminobutyric acid 
GLN Glutamine 
GLU Glutamate 
MEG Magnetoencephalography 
MRS Magnetic resonance spectroscopy 
NMDA N-methyl- D -aspartate receptors 
PEB Parametric empirical Bayes 
Odd/Even PSD Power spectral density that was derived from odd or even trails in MEG data 
RIFG Right inferior frontal gyrus 
SP,SS,Inh,DP Superficial pyramidal cells, spiny stellate excitatory neurons, interneurons, deep pyramidal cells 
𝑋 Design matrix of second level model ( Eq. (6) ) with dimensions 𝑛 × 𝑟 ( 𝑛 subject and 𝑟 covariates) 
𝜃(1) Vector of inferred parameters at first level DCM over all subjects with dimensions 𝑛𝑝 × 1 ( 𝑛 number of subjects and 𝑝 number of inferred parameters in 

each DCM 

𝜃(2) Second level parameters with dimensions 𝑟 × 1 ( 𝑟 number of covariates) 
Γ𝜑 Scalar function of MRS data which is parametrised with a vector of parameters 𝜑 
𝜙1 Vector of inferred parameters at first level DCM from all subjects that are influenced by MRS data. 
Π(2) Precision matrix at the second level with dimensions 𝑝 × 𝑝 ( 𝑝 number of parameters at the first level) 

a  

v  

 

T  

m  

u  

l  

s  

d  

a  

v  

w  

v  

t  

t  

M

2

 

fi  

i  

m  

s  

r  

t  

c  

s  

p
 

(  

b  

t  

h  

[  

t  

m  

r  

1  

t
 

s  

s  

a  

n  

(  

(  

o  

t  

o

2

M

 

i  

S  

S  

r  

m  

i  

e
 

(  

2  

a  

p  

i
 

(  

b  

p  

I  

𝑉  
cquired for co-registration and segmentation, using SPM12 for partial
olume correction, from fractions of grey matter, white matter and CSF.

The MRS voxel size was constant across participants (2 cm isotropic).
his voxel will contain varying partial tissue volumes, and derive from
arginally different brain regions amongst individuals. However, we
sed a MRS sequence with outer voxel suppression pulses to optimise
ocalisation and used regression analysis to correct for variation in age,
ex and partial volume before modelling (see ( Murley et al., 2020 ) for
etails). We used rigorous localisation standards, together with a gener-
lised linear model to remove the effect of age, sex and correct for partial
olume effects (grey matter fraction for GABA, and the grey matter and
hite matter fraction for Glutamate). The residual glutamate and GABA
alues were used for subsequent analysis ( Murley et al., 2020 ). Note
hat ultra-high field MRS (7T-MRS) can better distinguish between glu-
amate from within the Glx “peak ”, and GABA, compared to high field
RS (3T-MRS). 

.3. MEG data 

Resting state MEG data were collected during two recordings, each of
ve minute duration, on a different day to the MRS, with eyes closed us-

ng an Elekta Vector View system with 204 planar gradiometers and 102
agnetometers. MEG data were recorded continuously with 1000 Hz

ampling rate. Participants’ horizontal and vertical eye movements were
ecorded using bipolar electro-oculogram and electro-cardiogram elec-
rodes. Five head position indicator coils were placed on an electroen-
ephalography cap to track the head position. Three fiducial points (na-
ion, left and right pre-auricular) and a minimum of 100 head shape
oints were digitised using Polhemus digitization. 

The data were pre-processed using the Elekta Neuromag toolbox
Elekta Oy), with MaxFilter v2.2.12 for detection and interpolation of
ad sensors, and signal space separation to remove external noise from
he data and correct for head movement correction. The data were then
igh-pass filtered at 1 Hz, stop-band filtered around [22 to 24] Hz and
47 to 51] Hz and divided into epochs of one second duration. We used
he Field trip Toolbox ( Oostenveld et al., 2011 ) for detection and re-
oval of eye movement artefacts and discontinuities. Fieldtrip artefacts

ejections entails Z-transforming of band-pass filtered data (between [2
4 
5] Hz), averaging the ensuing signals over the channels, thresholding
he accumulated Z-score and removing artefacts. 

We applied empirical Bayesian inversion in SPM12 for source inver-
ion and extraction of the RIFG source time series for subsequent analy-
es ( Litvak et al., 2011 ). We concatenated the data of the two recordings
nd then divided the source data into two sets, one comprising the odd
umbered epochs (‘odd data’) and one with the even numbered epochs
‘even data’) for each participant to assess the reliability of the results
 Litvak et al., 2015 ). We separately averaged power spectral responses
f the odd and even datasets. The two power spectral densities (referred
o as Odd PSDs and Even PSDs) are used as the data features in the DCM
f cross-spectral density. 

.4. First level analysis using dynamic causal modelling of resting states 

EG data 

To infer the neurophysiological parameters generating observed rest-
ng state MEG data, we used DCM for cross spectral density (CSD) in
PM12 ( Friston et al., 2012 ; Moran et al., 2007 ; Moran et al., 2011 ).
pectral features in the resting state MEG were used to infer synpatic pa-
ameters of a biophysically-informed neural mass model, together with
odel evidence. DCM for CSD assumes that recorded electrophysiolog-

cal oscillations are due to finite responses of neuronal dynamics, under
ndogenous random fluctuations ( Basar et al., 2012 ; Haken, 1977 ). 

We used a conductance based neural mass model as shown in Fig. 2
known as “CMM_NMDA ” model in SPM12) ( Moran, 2015 ; Moran et al.,
013 ; Shaw et al., 2017 ). The conductance based model represents the
ctvity of cortical columns based on the interactions of four neuronal
opulations: excitatory spiny stellate cells, superfical pyramidal cells,
nhibitory interneurons, and deep pryramidal cells as shown in Fig. 2 . 

Each population is represented by a Morris–Lecar model
 Moran et al., 2013 ). The dynamic of each population is governed
y stochastic differential equations that emulate the dynamics of
re/post-synaptic potentials, firing rates and membrane conductances.
n a typical neruonal population, the dynamics of membrain potentials,
 , and conductances of an ion channel, 𝑔 , are govered by the following
∗ 
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Fig. 2. The conductance based neural model. Panel (a) shows 
a cartoon of a cortical column which generates electrical brain 
activity that can be captured by neuroimaging modalities such 
as MEG. Panel (b) illustrates the mesoscale model which is di- 
vided into three layers where superficial (sp) and deep pyra- 
midal (dp) cells are in the top and bottom layers, respectively, 
excitatory interneurons (spiny stellate cells, ss) are located in 
layer four, and inhibitory interneurons are distributed across 
all layers and are modelled using one population that inter- 
acts with all other populations. In addition, each population is 
equipped with a self-inhibition which assures dynamical sta- 
bility around a stable fixed point. Panel (c) illustrates the pop- 
ulation model, each neuronal population is governed by the 
Morris-Lecar model. This model explains the dynamics of dif- 
ferent ion currents: NMDA, AMPA and GABA and passive ion 
current and membrane capacitance as explained in Eq. (1) . 
Brain, Resistor, capacitor and voltage icons by Michael Senkow 

from thenounproject.com, CC BY 3. 
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quations: 

𝑑𝑉 

𝑑𝑡 
= 

1 
𝐶 

[ 𝑔 𝐿 
(
𝑉 𝐿 − 𝑉 

)
+ 𝑔 𝐴𝑀𝑃𝐴 

(
𝑉 𝐴𝑀𝑃𝐴 − 𝑉 

)
+ 𝑔 𝐺𝐴𝐵𝐴 

(
𝑉 𝐺𝐴𝐵𝐴 − 𝑉 

)
+ 𝑔 𝑁 𝑀 𝐷𝐴 𝑚 ( 𝑉 ) 

(
𝑉 𝑁 𝑀 𝐷𝐴 − 𝑉 

)
] + 𝑢, 

𝑑 𝑔 ∗ 
𝑑𝑡 

= 

1 
𝜏∗ 

(∑
𝑘 = 𝑠𝑝, 𝑖𝑛ℎ, 𝑑𝑝,𝑠𝑠 

𝐻 𝑘 𝜎𝑘 − 𝑔 ∗ 

)
+ 𝑢, 

= 

[
𝐿 𝑐 , 𝐴𝑀𝑃 𝐴, 𝐺𝐴𝐵𝐴, 𝑁𝑀𝐷𝐴 

]
(1) 

In Eq. (1) , C is the membrane capacitance, u is random endogenous
uctuation, 𝐿 𝑐 is passive leak current where its conductance is constant,
 ∗ is conductance associated with ion channels/receptors with time con-
tant 𝜏∗ , 𝑉 𝐴𝑀 𝑃𝐴,𝐺𝐴𝐵𝐴,𝐿, 𝑁 𝑀 𝐷𝐴 are the reversal equilibrium potentials of
he ion channels. The 𝑚 ( 𝑉 ) in Eq. (1) represents the actvity-dependent
agnesium channels which is given by 𝑚 ( 𝑉 ) = 

1 
1+0 . 2 𝑒𝑥𝑝 ( − 𝛼𝑁 𝑀 𝐷𝐴 𝑉 ) 

. The

erm 𝜎𝑘 in Eq. (1) is the non-negative afferent presynaptic firing from
opulation 𝑘 , which is scaled by afferent intrinsic connectvity 𝐻 𝑘 . 

The scaled presynaptic firing rates are a proxy for neurotransmitter
evels measured by MRS. Therefore, we hypothesise a relation between
he MRS glutamate and GABA measures and excitatory and inhibitory
 𝑘 connections, which scale presynaptic actvity. In other words, the
RS glutamate and GABA can be used as empirical priors on excita-

ory/inhibitory connections in the generative model. 
Mathematically the temporal dynamics of the conductance based

odel can be written in the canonical form of a dynamical system as
ollows ( Friston et al., 2012 ): 

̇  = 𝑓 ( 𝑥, 𝜃) + 𝑢 ( 𝜃) (2)

Where 𝜃 denotes a vector of all unknown parameters (i.e., 𝐻 𝑘 , 𝜏𝑘 ), 𝑥 is
he state of neuronal populations in the model, 𝑓 ( 𝑥, 𝜃) is a function that
s the concatenated version of the right hand sides of Eq. (1) —over all
opulations —and 𝑢 represent endogenous fluctuations, conventionally
odelled by (structured) pink noise. The noise in Eq. (2) has a cross-

pectrum 𝑔 𝑢 ( 𝜔, 𝜃) = 𝐹 𝑇 ( [ 𝑢 ( 𝑡 ) , 𝑢 ( 𝑡 − 𝜏) ] ) (Fourier transform is denoted by
 𝑇 and  is the expectation operator). 

One can approximate the dynamics of Eq. (2) with the (first order)
inearised model 𝑥̇ = ( ∇ 𝑥 ∗ 𝑓 𝜃) 𝑥 + 𝑢 ( ∇ 𝑥 ∗ denotes the Jacobian at 𝑥 ∗ ) with
he spectral response: 

 ( 𝜔, 𝜃) = 𝐹 𝑇 
(
exp 𝜏 ⋅ ∇ 𝑥 𝑓 ( 𝑥, 𝜃) 

)
(3)

Given the spectral response of the system, the generative model of
euronal activity, 𝑔 𝑥 ( 𝜔 ) , can be calculated as follows: 

 𝑥 ( 𝜔 ) = 𝐾 ( 𝜔, 𝜃) ⋅ 𝑔 𝑢 ( 𝜔, 𝜃) ⋅𝐾 ( 𝜔, 𝜃) 𝑇 + 𝑔 𝑜 ( 𝜔, 𝜃) (4)

T  

5 
In Eq. (4) , 𝑔 𝑜 ( 𝜔, 𝜃) represents the spectrum of the observation noise,
hich is a sum of common and source specific noise. The spectral re-

ponse in sensor space can also be generated by inclusion of a forward
lectromagnetic model into Eq. (4) , which is denoted by 𝐿. 𝑀( 𝜔 ) ( 𝐿 is
he gain and 𝑀 is the head model), as follows: 

 𝑦 ( 𝜔 ) = 𝐿. 𝑀 ( 𝜔 ) ⋅ 𝑔 𝑥 ( 𝜔, 𝜃) ⋅𝑀 

𝑇 ( 𝜔 ) .𝐿 

𝑇 + 𝜖 (5)

In Eq. (5) , 𝑔 𝑦 ( 𝜔 ) is the cross spectra of the MEG data and 𝜖 ∼ 𝑁( 0 , 𝜎)
s a random effect (with unkown covariance). Because we perform the
CM analysis in source space, the forward electromagnetic model in

his case just applies a scaling parameter. In the DCM, we do not pre-
efine which neuronal population(s) contribute to MEG data. Instead,
e estimated the degree to which each population (e.g. superficial, deep
yramidal or inhibitory population) contributed to the generation of the
EG data -see ( Pereira et al., 2021 ) for details specific to conductance

ased models. Recently clinical and interventional applications support
his approach ( Adams et al., 2021 ; Shaw et al., 2021 ; Gilbert et al., 2016 ;
ymmonds et al., 2018 ). 

The unkown parameters in the DCM are specified as log-scale val-
es. This means that the parameter vector in DCM is a random variable,
hich is given by 𝜃 = 𝜃0 exp ( ̂𝜃) . Here, 𝜃0 is a biologically informed scal-

ng for the parameter and 𝜃̂ is a random variable, with prior normal den-
ity 𝜃̂0 ∼ 𝑁( 0 , 

∑
𝜃) of zero mean and covariance 

∑
𝜃 . This expresses the

elief about the range over which parameters can vary. Note that scale
arameters of this sort cannot be less than zero; for example, distances
nd lengths or rate and time constants or precisions and variances. 

.5. Second level analysis: group DCMs informed by empirical priors 

In many translational neuroscience studies, the goal is to test hy-
otheses at the group level, where subject-specific information is given
y summary statistics. In PEB, this subject-specific information is the
osterior over key model parameters at the first level ( Zeidman et al.,
019a ; Zeidman et al., 2019b ; Friston et al., 2015 ; Friston et al., 2016 ).
t the second level the objective is to test whether synaptic connections
epend on between subject variables, such as age, disease-severity, ge-
etics, diffusion tensor imaging and MRS ( Friston et al., 2016 ). In other
ords, PEB seeks to explain intersubject variability on one or more first

evel model parameters. 
Mathematically, we denote a vector of model parameters at the first

evel DCM, over all participants, by a column vector 𝜃(1) (superscript
1 ′ denotes the first level analysis) with dimension 𝑛𝑝 × 1 ( 𝑛 number
f participants and 𝑝 is the number of parameters for each participant).
hen the generative model of the group is given by ( Friston et al., 2016 ):
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Table 2 

Glossary of variables and expressions in conductance-based mesoscale model. 

Variable Description 

𝑢 Exogenous input (scalar) to membrane equation and conductance equation in each population. 
𝑉 Mean depolarisation of a neuronal population. It is a scalar variable per each population. 
𝜎( 𝑣 ) The neuronal firing rate (scalar function) – a sigmoid squashing function of depolarisation 
𝐿 Lead field vector mapping from (neuronal) states to measured (electrophysiological) responses 
𝑔 𝑥 ( 𝜔 ) , 𝑔 𝑜 ( 𝜔 ) , 𝑔 𝑦 ( 𝜔 ) Spectral density of (neuronal) state fluctuations, observation noise and measurement, respectively. These are vector valued functions. 
∇ 𝑥 𝑓 System Jacobian or derivative of system flow with respect to (neuronal) states (matrix valued function). 
𝑘 ( 𝑡 ) = 𝐹𝑇 [ 𝐾( 𝜔 ) ] First order kernel mapping from inputs to responses; c.f., an impulse response function of time. This is the Fourier transform of the transfer function. 
𝐾( 𝜔 ) = 𝐹𝑇 [ 𝑘 ( 𝑡 ) ] Transfer function of frequency, modulating the power of endogenous neuronal fluctuations to produce a (cross spectral density) response. This is the Fourier 

transform of the kernel. 

Table 3 

Parameters of the neuronal model (see also Eq. (1) and Fig. 2 ). 

Description Parameterisation Prior 

𝜏 Rate constant of ion channels exp ( 𝜃𝜏 ) ⋅ 𝜏𝜏 = [ 256 , 128 , 16 , 32 ] 𝑝 ( 𝜃𝜏 ) = 𝑁( 0 , 1∕16 ) 
C Membrane capacitance exp ( 𝜃𝑐 ) ⋅ 𝐶𝐶 = [ 128 128 256 32]/1000 𝑝 ( 𝜃𝑐 ) = 𝑁( 0 , 1∕16 ) 

𝐻 Intrinsic connections exp ( 𝜃𝐻 ) ⋅𝐻 = 
⎡ ⎢ ⎢ ⎣ 

8 0 2 0 
4 8 8 0 

0 0 32 128 

⎤ ⎥ ⎥ ⎦ 𝑝 ( 𝜃𝐻𝑎 ) = 𝑁( 0 , 1∕32 ) 
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𝑦 ( 𝑖 ) = 𝐻 𝜃𝑖, 1 
(
𝑥 ( 𝑖 ) 

)
+ 𝜖( 𝑖 ) , 𝑖 = 1 , .., 𝑛 

( 1 ) = ( 𝑋 ⊗ 𝐼 ) 𝜃( 2 ) + 𝜖( 2 ) , 𝜃( 1 ) = 

[
𝜃𝑖, 1 , … , 𝜃𝑖,𝑛 

]
(6) 

The first line of Eq. (6) is the collective generative models of first
evel DCMs over the 𝑛 subjects neuroimaging data ( 𝑦 denotes to generic
ata features in time or frequency domain, and 𝐻 denotes an operator
hat links the activity of mesoscale model-generated by hidden subject
pecific hidden states 𝑥 ( 𝑖 ) -to relevant data features). The second line is
he random effects model of parameters that impose constraint on the
rst level parameters conventionally through empirical prior. In the sec-
nd line of Eq. (6) (aka random effect model of first level synaptic con-
ections), 𝑋 ∈ 𝑅 

𝑛 ×𝑟 is the design matrix with 𝑟 ≥ 1 covariant (the first
egressor of 𝑋 is always equal to one and reflects the group mean) and
 column vector 𝜃(2) (superscript ‘2 ′ denotes the second level) contains
he second level parameters. The symbol ⊗ is the Kronecker product
nd 𝐼 is the 𝑝 × 𝑝 identity matrix. The random effects have a Gaussian
istribution 𝜖(2) ∼ 𝑁( 0 , Π(2) ) (where Π(2) is precision matrix or inverse
f the covariance). The precision matrix is parameterised with a single
hyper-precision) parameter, 𝛾, as follows ( Friston et al., 2016 ): 

( 2 ) = 𝐼 𝑆 ⊗
(
𝑄 0 + 𝑒 − 𝛾 𝑄 1 

)
(7)

In Eq. (7) , 𝑄 0 ∈ 𝑅 

𝑝 ×𝑝 is the lower bound on the precision, defined
ith a small positive value). The (hyper)parameter, 𝛾, scales a precision
atrix 𝑄 1 ∈ 𝑅 

𝑝 ×𝑝 , which is (by default) 16 times the prior precision of
he group mean ( Zeidman et al., 2019b ): this hyperprior ensures that
andom effects are small in relation to prior uncertainty about the pa-
ameter in question. 

The critical question is whether an alternative prior increases or de-
reases model evidence ( Friston et al., 2016 ). This is an optimisation
roblem, where the objective function is the free energy of the PEB
odel. Inversion of the hierarchical model is computationally expen-

ive if all parameters of the first level need to be inferred every time the
econd level parameters change ( Raman et al., 2016 ). However, BMR
an be used to re-evaluate first level posteriors under updated second
evel parameters ( Friston et al., 2016 ; Litvak et al., 2015 ). This signifi-
antly improves the efficiency of the inversion for PEB models. 

.6. Investigating relation between MRS and synaptic connections 

.6.1. Problem setting 

We test whether excitatory and inhibitory synaptic connections de-
end on (i.e., are functions of) glutamate and GABA measures, respec-
6 
ively. We used PEB to specify and compare the evidence for different
unctions of MRS measures, as illustrated in Fig. 3 . 

To identify which synaptic parameters were sensitive to neurotrans-
itter levels, we grouped the inferred synaptic connections into ex-

itatory and inhibitory subsets. In detail, for the 𝑙 𝑒𝑥 ( 𝑙 𝐼𝑛ℎ ) excitatory
inhibitory) connections in the neural mass model, we define 2 𝑙 𝑒𝑥 − 1
 2 𝑙 𝐼𝑛ℎ − 1 ) different possible combinations. The ensuing subsets of the
onnections (over all participants) are considered as the dependent vari-
ble of the PEB model (i.e., the right-hand side of the second line in
q. (6) ). This model encodes a hypothesis about the relationship be-
ween some (subset) connections, 𝜙(1) = { 𝜙𝑖 } 𝑘 𝑖 =1 and a particular func-
ion of MRS data: Γ𝜑 ( 𝑀𝑅𝑆 ) (where Γ is a smooth and monotonic func-
ion with unknown parameters, 𝜑 ). The generative model of PEB can be
e-written as follows: 

𝑦 ( 𝑖 ) = 𝐻 𝜃𝑖, 1 
(
𝑥 ( 𝑖 ) 

)
+ 𝜖( 𝑖 ) , 𝑖 = 1 , .., 𝑛 

( 1 ) = 

([
1 Γ𝜑 ( MRS ) 

]
⊗ 𝐼 

)
𝜙( 2 ) + 𝜖( 2 ) , 𝜙( 1 ) ⊆ 𝜃( 1 ) = 

[
𝜃𝑖, 1 , … , 𝜃𝑖,𝑛 

]
(8) 

In the second line of Eq. (8) , there are two sets of unknowns that
eed to be inferred; namely, (i) the subset of connections 𝜙( 1 , 2 ) (super-
cript 1 and 2 denotes to first and second level parameters, respectively)
nd (ii ) the function or map Γ𝜑 ( 𝑀𝑅𝑆 ) . These unknowns are the hyper-
arameters in Eq. (6) . To find optimal hyperparameters, we recursively
elect subsets of synaptic connections and estimate the MRS function pa-
ameters, such that the model evidence in Eq. (6) is maximised. In other
ords, for any combination of synaptic parameters, we seek the MRS-

nformed PEB model with the highest evidence, using BMR. This allows
s to identify the most likely solution (in terms of model evidence) from
he model space tested (a set of potential monotonic relationships), to
dentify which set of synaptic parameters are informed by MRS data. 

To assess the reproducibility of the results, given M/EEG data from
 given cohort under matched conditions, we separately tested the rela-
ionship between inferred synaptic parameters and MRS by splitting the
EG data into odd and even numbered epochs (odd data and even data

ased validation by means of a held-out dataset). The ensuing procedure
s shown in Fig. 4 . 

.7. Functional form of the empirical MRS priors 

The functional form of the MRS mapping is not known a priori . We
herefore limit the search space over the MRS transformations to contin-
ous and monotonic polynomial maps and sigmoid nonlinear functions,
hich cover a wide range of linear and nonlinear forms. The class of
olynomials provides an approximation ( Bishop, 2006 ) to any nonlin-
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Fig. 3. MRS informed group DCM for MEG. This graphic illustrates a group DCM (aka PEB model) inversion using MRS data as empirical priors. First level DCM 

(left side of panel) infers synaptic physiology from each participants’ data. A function of MRS glutamate (GLU) or GABA measures (bottom panel) are considered 
as empirical priors for certain parameters in the group DCM (right panel). Bayesian model reduction evaluates the effect of empirical priors and evaluates the 
model evidence for the group DCM. The objective is to find the optimal function of MRS measures —that inform synaptic parameters in the CMM-NMDA model —by 
maximising PEB model evidence. Image credit for the MRI scanner icon by Grant Fisher, TN from thenounproject.com, CC BY 3. 

Fig. 4. Reproducibility-check procedure. The 
MEG data for each participant is divided into 
two separate datasets, ‘odd data’ and ‘even 
data’. DCM for MEG is used to infer synaptic pa- 
rameters for each. A post hoc correlation anal- 
ysis is used to test agreement between the en- 
suing estimates. Parameter estimates that are 
consistent over the datasets are considered for 
further analysis. We perform the group-level in- 
version informed by MRS data for odd and even 
datasets on the selected parameters and explore 
which sets of connections are best informed by 
a function of MRS data. Finally, we compare 
the outcome of the PEB inversion and check 
the consistency of the results between the odd 
data and even data. MRI scanner icon by Grant 
Fisher, TN from thenounproject.com, CC BY 3. 
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ar monotonic form ( Spivak, 2020 ): 

𝜑 ( 𝑀𝑅𝑆 ) = 

𝑛 ∑
𝑖 =1 

𝜑 𝑖 ( 𝑀𝑅𝑆 ) 𝑖 (9)

Here, 𝜑 𝑖 are 𝑛 unknown hyperparameters that need to be inferred
y finding the values that maximise model evidence. This class of
unctions express different nonlinear relations including saturations
 Stephan et al., 2009 ; Stefanovski et al., 2019 ), 𝑛 = 1 implies a linear
ransformation of the MRS data. 

Animal experiments suggest that changes in GABA and glutamate
oncentrations are related to neuronal responses via a sigmoid relation-
hip ( Benardete and Kriegstein, 2002 ; Dyke et al., 2017 ; Chebib et al.,
009 ). The general form of a sigmoid nonlinearity can be parameterised
7 
s follows: 

𝜑 ( 𝑀𝑅𝑆 ) = 

1 
1 + exp 

(
− 𝜑 1 

(
𝑀𝑅𝑆 − 𝜑 2 

)) (10) 

Here, the unknown hyperparameters 𝜑 1 , 𝜑 2 are the slope and thresh-
ld parameters of the sigmoid transformation, respectively. 

.8. Hyperparameter estimation 

To estimate unknown hyperparameters, we first sorted the MRS mea-
ures from small to large values, which defined an interval of the real
ine (called the domain of the MRS data). We then examined the varia-
ion of the parameters under the MRS transformation. In the case of the
olynomial form, we checked the monotonicity of the transformation.
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Fig. 5. First level DCM results. Panel (a) shows predicted vs observed MEG data for odd and even data from a single participant. This panel shows that DCM can 
explain the spectral dynamics of each dataset well. Inversion results of the rest of the subjects are provided in the supplementary material, Fig. 12. Panel (b) shows 
the correlation between free energies of odd and even datasets over participants (points in the plot). This correlation shows a moderately good level of agreement 
between the odd and even data across all participants. Panel (c) illustrates correlations between inferred synaptic connection between odd and even epochs. The 
inhibitory connections are shown in red and excitatory connections are shown in black. 
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Table 4 

Parameterisation of MRS GABA (variable g) and glutamate (variable s) trans- 
forms. 

Functional description Parameter range 

Γ𝜑 ( 𝑔) = 
1 

1+ exp ( −30 exp ( 𝜑 1 )( 𝑔− exp ( −5 ) exp ( 𝜑 2 ) )) 
𝜑 1 × 𝜑 2 = [ −2 ∶ 0 . 1 ∶ 2] × [−1 ∶ 0 . 1 ∶ 3 ] 

Γ𝜑 ( 𝑔) = 𝜑 1 𝑔 + 𝜑 2 𝑔 2 𝜑 1 × 𝜑 2 = [ −10 ∶ . 5 ∶ 10] × [−10 ∶ . 5 ∶ 10 ] 
Γ𝜑 ( 𝑠 ) = 

1 
1+ exp ( −10 exp ( 𝜑 1 )( 𝑠 − exp ( −1 ) exp ( 𝜑 2 ) )) 

𝜑 1 × 𝜑 2 = [ −5 ∶ . 1 ∶ 5] × [−4 ∶ . 1 ∶ 0 ] 
Γ𝜑 ( 𝑠 ) = 𝜑 1 𝑠 + 𝜑 2 𝑠 2 𝜑 1 × 𝜑 2 = [ −10 ∶ . 5 ∶ 10] × [−10 ∶ . 5 ∶ 10 ] 
ore formally, we denoted the space of monotonic functions by ℵ , and
efined the function γ over the ordered domain set of the MRS data to
dentify the range for the variation of the parameters in the polynomial
unction. This function has the following properties: 

∶ [ min ( 𝑀𝑅𝑆 ) , max ( 𝑀𝑅𝑆 ) ] → 𝑅 

γ𝜑 ( . ) ∈ ℵ , 𝜑 ∈
[
min 

(
𝜑 1 

)
∶ Δ𝜑 1 

∶ max 
(
𝜑 1 

)]
×… ×

[
min 

(
𝜑 𝑛 

)
∶ Δ𝜑 𝑛 

∶

𝜑 ( 𝑀𝑅𝑆 ) = Γ𝜑 ( 𝑀𝑅𝑆 ) 

Each parameter in the 𝛾 map, 𝜑 𝑖 , varies with resolution (or step-
ize) Δ𝜑 𝑖 

. Note that γ𝜑 and Γ𝜑 have the same functional forms but with
ontinuous and discretised domains. Having established the appropri-
te ranges (see Table 4 ), we used a hierarchical scheme to estimate the
arameters of the map, Γ𝜑 ( 𝑀𝑅𝑆 ) . For each set of synaptic connections,
e calculated the model evidence —using BMR —for different values of

he hyperparameters over the interval [ min ( 𝜑 1 ) ∶ Δ𝜑 1 
∶ max ( 𝜑 1 ) ] × … ×

 min ( 𝜑 𝑛 ) ∶ Δ𝜑 𝑛 
∶ max ( 𝜑 𝑛 ) ] . This constitutes an exhaustive grid search.

his was followed by a constrained Newtonian search, within the neigh-
ourhood of the selected grid point, to identify the precise value of
he hyperparameters that maximised model evidence. We repeated this
yperparameter optimisation over all possible subsets of the synaptic
onnections and selected the combinations with the greatest model ev-
dence. 

. Results 

.1. DCM for MEG 

The spectral activity from both datasets per participant (even and
dd data) are used as the data features for DCM for cross spectral density
o infer the parameters of the conductance based canonical microcircuit.
he predicted and observed data are provided in the supplementary ma-
erial Figure 12. Over all subjects, the mean variance of observed CSDs
xplained by the predicted CSD was 98%. The comparison of predicted
nd observed spectral data shows that the synaptic parameter estimates
an replicate the spectral patterns of both even and odd data; with an
xample shown in Fig. 5 (see the supplementary material for the re-
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(
𝜑 𝑛 

)]
(11) 

aining comparisons). The correlation between the single-subject free
nergies associated with DCM inversions of odd/even PSD data is shown
n Fig. 5 . 

To confirm the predictive validity of DCM, we calculated the cor-
elation between the inferred synaptic parameters from odd and even
SDs data sets: see Fig. 5 . Most parameters were estimated reliably
 Fig. 5 ). There were exceptions, such as the excitatory connections of
he deep pyramidal and inhibitory connections and superficial pyrami-
al cells and inhibitory cells. The low correlation between estimates of
ome parameters is not surprising for complex nonlinear models with
onditional dependencies amongst parameter estimates ( Litvak et al.,
019 ). It implies that different combinations of synaptic parameters
ay generate similar physiological data. This means hypotheses may

herefore be better tested in terms of model comparison, rather than
ocussing on maximum, a posteriori parameter estimates of single pa-
ameters ( Rowe et al., 2010 ). In the following section, we use the reli-
ble connections —with a correlation of greater than one half —to ex-
mine the effect of neurotransmitter concentrations as measured by
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Fig. 6. Correlation analysis, comparing the 
free energy of the PEB model over all subsets 
of self-inhibitory connections and all sigmoid 
transformations of GABA in odd and even data. 
This plot shows that the PEB approach con- 
sistently estimates the marginal likelihood of 
models in even and odd data. (b) The probabil- 
ity of different PEB models over model space. 
Both results show the same maximum. Due to 
having a large model space, the probability of 
models and the effect sizes (free energy) are 
small (this is known as model dilution). 
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.2. Associations between synaptic parameters and MRS measures 

The most likely relationship between the synaptic parameters and
eurotransmitter levels was identified through the hyperparameter op-
imisation. 

.3. MRS-GABA data as an empirical prior on inhibitory synaptic 

arameters 

MRS GABA could be evaluated as an empirical prior constraint
n 127 combinations of inhibitory connections (2 7 –1, combinations of
even inhibitory connections in the conductance based canonical mi-
rocircuit model). As each combination might be constrained by empir-
cal MRS GABA priors, Bayesian model reduction can be used to assess
hich of the 127 combinations and linear/nonlinear transformations
f MRS GABA measures maximise model evidence. Alternatively, one
an group certain synaptic parameters based on their common features
self-inhibition vs inter-regional connections or superficial vs deep con-
ections), to identify the winning model ‘family’ for each subgroup of
onnections. 

We grouped the inhibitory connections into four self-connections
nd three inter-lamina connections. By grouping the parameters in this
ay, we ask whether MRS GABA influences recurrent intra-laminar con-
ectivity, or inhibition between layered populations. We assess the ev-
dence for GABA effects, as mediated through second order polynomial
nd sigmoid transformations of the MRS measures. We systematically
aried the hyperparameters of the sigmoid function for each subset of
elf-inhibitory synaptic connections and compared the resulting model
vidence. 

Fig. 6 shows the consistency of the resulting free energy over odd and
ven epoch datasets. The correlation plot between the free energies of
dd and even data models shows that the ranking of model evidence is
onsistent, where each ‘model’ is a hypothesis about how MRS data sup-
lies prior constraints on synaptic parameters. Such agreement is an im-
ortant validation of hypothesis testing, based on selecting models with
he greatest evidence. Using PEB to make inferences at the between-
ubject level inherits this validity. The high reliability suggests that both
roup inversions converge to the same (global) minima. For each subset
f self-inhibitory connections, the sigmoid MRS GABA hyperpriors max-
mised the model evidence. The winning models for each subset were
hen examined to determine which MRS mapping is most likely for each
ubset of self-inhibitory connections. As shown in Fig. 7 , priors using a
9 
igmoid transformation of GABA concentration provided the most likely
ccount of inter-subject variation in synaptic connectivity; specifically,
he recurrent connections or self-inhibition of superficial and deep pyra-
idal cells. 

We repeated the same procedure with inter-laminar (i.e., intrinsic,
etween population) connections. The results are shown in Figs. 8 and
 . MRS GABA provided an informative empirical prior for all inhibitory
onnections. The MRS transforms for odd and even datasets differ, but
re similar in their functional form. 

We repeated this procedure using a second order polynomial (the
rst order polynomial is contained within this model space) as the func-
ional form (see supplementary material). We then compared the evi-
ence of the winning models in each analysis; namely, the evidence for
he mapping between (sigmoid MRS, self-inhibition), (sigmoid MRS, in-
er regions), (polynomial MRS, self-inhibition) and (polynomial MRS,
nter regions), as shown in Fig. 10 . The results suggest that the sigmoid
ransformation is the most likely functional form to explain inter-subject
ariability in the inhibitory recurrent (self) connections in superficial
nd deep layers. 

.4. MRS glutamate data as an empirical prior for excitatory synaptic 

arameters 

We performed the proposed analysis to identify the relationship be-
ween glutamate concentration and excitatory synaptic connections. We
onsidered different combinations of the excitatory connections over
igmoid and second order polynomial functional forms of the relation-
hip between MRS and synaptic parameters. The correlations of models’
ree energy over odd and even data is shown in Fig. 11 . The winning
odel over the complete search space confirms that MRS glutamate is

inked to excitatory connections from superficial to deep layers and su-
erficial to inhibitory interneurons (model 3). 

The results of comparing a polynomial form and sigmoid transforma-
ion of MRS-glutamate measures indicate that a sigmoid transformation
s overwhelmingly more likely (specifically, a sigmoid transformation
f MRS glutamate measures informs the excitatory connections between
eep and superficial layers, with posterior probability near unity). 

. Discussion 

We present a framework for specifying and comparing hypotheses of
he relationship between synaptic physiology and neurotransmitter lev-
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Fig. 7. (a) The relative free energy of each 
subset of the self-inhibitory connections. (b) 
the probability of each model. The most likely 
“winning ” model is 6 in which a prior of the 
sigmoid transformation of MRS GABA informs 
connections self-inhibition of superficial and 
deep pyramidal cells. Please see Fig. 2 for the 
definitions of the connections specified within 
each model. 

Fig. 8. (a) This panel shows a correlation analysis between the 
free energy from the PEB model that encodes the relationship 
between all possible inter-regional inhibitory synaptic connec- 
tions and all possible forms of sigmoid transformation of the 
MRS-GABA. These results suggests that the PEB approach reli- 
ably estimates model evidence in even and odd data. (b) The 
probability of different PEB models over model space. The 
maxima in the probability plots are not consistent due to the 
fact that there are two different MRS transformations with the 
greatest evidence for the odd and even data. The maximum 

probability in each plot is associated with the same combina- 
tion of inhibitory connections. 

Fig. 9. (a) The relative free energy for each subset of inter-laminar inhibitory connections for an optimal transformation is shown (b) The probability of each subset of 
synaptic connections is illustrated. The winning model identifies that a sigmoid transformation of MRS-GABA measures is likely to inform all inter-laminar inhibitory 
connections. Please see Fig. 2 for the definitions of the connections specified within each model. 

10 
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Fig. 10. Comparing the probability of sigmoid and second 
order models that encode the mapping from MRS GABA to 
self- inhibitory connections (model 2, 4) and interlaminar in- 
hibitory connections (model 1,3). The comparison indicates 
the second model is most likely: a sigmoid transformation of 
MRS GABA informs the recurrent or self-inhibition of deep and 
superficial populations. 

Fig. 11. (a) Correlation analysis between the free energy of the PEB model for odd and even data. This plot shows that the PEB approach consistently evaluates 
model evidence in even and odd data. (b) Free energy and probability of models for the odd and even data are illustrated. Model 1 includes effects on excitatory 
connections from superficial to deep layers, model 2 considers excitatory connections from superficial excitatory populations to inhibitory interneurons, and model 3 
includes both. (c) The MRS measured glutamate that gives the maximum evidence for the odd and even data. Although, there are two MRS functions that maximise 
model evidence for the odd and even data, both maps suggest similar nonlinear thresholding of glutamate measures provide plausible empirical priors. Please see 
Fig. 2 for the definitions of the connections specified within each model. 
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ls, based on a combination of resting-state MEG and MRS. This enables
ne to specify and compare the effect of biomarkers of inter-subject vari-
tion as informative priors on synaptic parameters in a time efficient and
ayes-optimal manner. The method is applicable to generative models of
voked and resting- state time series, recorded by magnetoencephalog-
aphy, electroencephalography or functional magnetic resonance imag-
ng techniques. In principle, the individual differences specified here by
RS could be replaced by other imaging modalities, or regional neu-

opathology assays. 
We illustrate how the method can be used to test, non-invasively, hy-

otheses about the relationship between synaptic physiology and neuro-
ransmitter concentrations in humans. This goes beyond the correlation
etween M/EEG data features and MRS estimates of neurotransmitter
oncentration ( McColgan et al., 2020 ), in using formal, generative mod-
ls of the neurophysiological observations. It is computationally effi-
ient, using first level DCM once and re-evaluating the DCM parameters
nd model evidence analytically using Bayesian model reduction. The
odel evidence is thereby compared between models with and without

he MRS priors, in contrast to the reinversion of the DCMs for alternative
riors ( Stephan et al., 2009 ). 

We provide evidence that a non-linear transform of the MRS GABA
easures offers the best explanation for inter-subject variability in in-
ibitory recurrent (i.e., self) connectivity of superficial and deep neu-
onal populations. In addition, a sigmoid transform of the MRS gluta-
11 
ate provides the best explanation of inter-subject variations in exci-
atory connections from superficial to deep layers. The identification
f a sigmoid form for the MRS transform is interesting, because ex-
erimental changes of GABA and glutamate concentrations exhibit a
igmoid relationship to neuronal responses, though postsynaptic gains
 Benardete and Kriegstein, 2002 ; Dyke et al., 2017 ; Chebib et al., 2009 ).
he relationship between superficial and deep layer connectivity is espe-
ially relevant to studies of neuropsychiatric and neurological disorders
ith abnormalities in GABA and glutamate, e.g., schizophrenia, move-
ent disorders and dementia ( Adams et al., 2021 ; Murley et al., 2020 ;
urley et al., 2022 ). Using MRS data as an empirical prior on the synap-

ic connections may provide valuable information about the impact of
europathology on synaptic function and the response to treatment. 

There are several limitations to this study. We focus on the relation-
hip between neurochemical concentrations and synaptic physiology in
ne cortical region. The choice of the right inferior frontal gyrus was
otivated by our interest in frontal lobe function and its impairment in

rontotemporal lobar degeneration ( Eliasova et al., 2014 ; Hughes et al.,
015 ; Murley et al., 2020 ; Murley et al., 2022 ) and other neuropsy-
hiatric disorders. However, the method can be applied to multiple
egions. For instance, one could combine neurophysiology and spec-
roscopy from principal nodes in the default mode or salience networks;
nd test whether MRS data at different regions are associated with ex-
rinsic (between-source) and intrinsic (within-source) connections. Such
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n approach could test whether local neurotransmitter concentrations in
ne source influence the activity and connectivity of other sources. The
patial resolution of MRS data is limited. The average neurotransmit-
er concentrations are captured over multiple cortical columns. Here,
he GABA estimate is used as a marker of between-subject differences
n neurotransmitters for the lateral frontal cortex. We assume that the
oxel-wise estimate approximates the neurochemical concentrations in
he neurophysiological source used to extract time series for DCM in-
ersion, noting that the source lies within the MRS voxel ( Murley et al.,
020 ). 

Our study size was modest, although similar to ( Stephan et al., 2009 ),
here a related method for DCM is described. A larger sample size

ould widen the intersubject distribution, and facilitate the inversion
f the hierarchical models ( Kerkhoff and Nussbeck, 2019 ). However,
he Bayes factors indicate that our study had sufficient precision (suffi-
ient ’power’ by analogy to frequentist testing) to support the inferences
ade. Although we draw inferences about the role of GABA and gluta-
ate on neurophysiological function, and synaptic connectivity specif-

cally, we do not, in this study, perturb such functions through psy-
hopharmacological challenges. The combination of the current analysis
ith GABAergic or glutamatergic interventions could be used to iden-

ify baseline dependent effects of drug interventions, as in ( Adams et al.,
021 ) within a simpler and integrated Bayesian modelling procedure. 

In this paper, we demonstrate a proof of principle for leveraging
eurotransmitter levels in neuronal modelling through a hierarchical
ayesian approach. The use of PEB well-suited for neurochemistry-
nriched DCM, as it addresses whether models with weakly-informative
riors or models with empirical priors on parameters lead to higher
odel evidence (with an implicit penalty for model complexity). We

llustrate how this method could be used to test (non-invasively) alter-
ative hypotheses about the association (in terms of empirical prior) be-
ween synaptic physiology and neurotransmitter concentrations in hu-
ans. GABA and glutamate priors increase model evidence when ap-
lied to inhibitory and excitatory synapses connectivity respectively.
he data splitting was useful for establishing the reliability of model
omparison and parameter estimation, when applied to separate data
cquired from the same subjects under matched conditions (odd-versus
ven trials- aka validation by means of a held-out dataset). Other forms
f validation could be considered, including predictive validation by
rug intervention (e.g., by a GABA-ergic drug) or post-mortem biochem-
stry. Note that we focussed here on glutamate and GABA priors for
ynaptic connections, because of the clear predictions related to excita-
ory and inhibitory synaptic function respectively, and that we do not
ecommend arbitrary or non-plausible priors ( Friston et al., 2013 ). 

We performed a greedy search over the MRS map’s parameter space
sing a fine resolution, which may have contributed to the smooth
hanges in Free energies in Figs. 6 to 10 . In other words, it may be
ossible to reach the optimal solution even with coarser discretisation
f the search space. A further potential limitation to our modelling is the
ack of knowledge about MRS data variability in the control cohort. In
ddition, non-simultaneous multimodal data acquisition raises the ques-
ion of non-stationarity, or within-subject variance, as a potential con-
ound. A crucial issue is whether the variance within-subject between-
ssessments is large or small compared to between-subject variance. Sev-
ral studies suggest that under no-task or easy-task conditions, MRS has
xcellent test-retest reliability ( Wiehler et al., 2022 ; Prinsen et al., 2017 ;
erpstra et al., 2016 ; Gawne et al., 2020 ). Variation in GABA or gluta-
ate levels between MRS and the MEG recording would (for classical

tatistics) increase type II error (i.e., reduce power) or (for Bayesian
tatistics) reduce precision and the ability to draw definitive inferences
rom model comparison. 

In conclusion, we propose that dynamic causal models of neuro-
hysiology can be explicitly informed by priors based on measures
f individual differences in neurochemistry, molecular pathology or
ell/synapse specific loss. The enrichment of DCMs by such markers
f inter-subject variability has many potential applications, exploiting
12 
he computational efficiencies of parametric empirical Bayesian meth-
ds and Bayesian Model Reduction with hierarchical inversion of indi-
idual and group-level models of functional imaging data. 
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