
Cardiovascular Magnetic Resonance Parametric Mapping Techniques: Clinical 

Applications and Limitations  

Eleni Nakou, MD, PhD1, Rishi Patel, MD2, Marianna Fontana, MD, PhD2, Chiara 

Bucciarelli-Ducci, MD, PhD3

1 Bristol Heart Institute, University Hospitals Bristol and Weston NHS Trust and University of 

Bristol. Bristol, United Kingdom 

2 National Amyloid Centre, Royal Free Hospital, Department of Medicine, University College 

London, London, UK

3 Royal Brompton and Harefield Clinical Partnership, Guys and St Thomas NHS Trust and King’s 

College, London, SW3 6NP 

Disclosures:  CBD is the chief executive officer (CEO) of the Society for Cardiovascular 

Magnetic Resonance (SCMR); CBD received speakers fees from Circle Cardiovascular Imaging  

Eleni Nakou, Email: EleniSNakou@yahoo.gr 

Rishi Patel, Email: rishipatel@nhs.net 

Marianna Fontana, Email: m.fontana@ucl.ac.uk 

Chiara Bucciarelli-Ducci, Email: c.bucciarelli-ducci@bristol.ac.uk

mailto:EleniSNakou@yahoo.gr
mailto:c.bucciarelli-ducci@bristol.ac.uk


Corresponding author: 

Chiara Bucciarelli-Ducci, MD, PhD, FRCP, FESC, FACC 

Address for correspondence: 

Royal Brompton and Harefield Clinical Partnership  

Guys and St Thomas NHS Trust and King’s College  

London, SW3 6NP 

United Kingdom  

Email: c.bucciarelli-ducci@nhs.net

mailto:c.bucciarelli-ducci@nhs.net


Abstract 

Purpose of the review: Parametric mapping represents a significant innovation 

in cardiovascular magnetic resonance (CMR) tissue characterisation, allowing 

the quantification of myocardial changes based on changes on T1, T2 and T2* 

relaxation times and extracellular volume (ECV). Its clinical use is rapidly 

expanding but it requires availability of dedicated equipment as well as 

expertise in image acquisition and analysis. This review focuses on the principles 

of CMR parametric mapping, its current clinical applications, important 

limitations, as well as future directions of this technique in cardiovascular 

medicine.

Recent Findings: There is increasing evidence that CMR parametric mapping 

techniques provide accurate diagnostic and prognostic tools that can be applied 

to and support the clinical management of patients with a range of 

cardiovascular disease. 

Summary: The unique capability of CMR myocardial tissue characterisation in 

cardiovascular diseases has further expanded by the introduction of parametric 

mapping.  Its use in clinical practice presents opportunities but has also 

limitations.   
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Introduction 

Cardiac Magnetic Resonance (CMR) imaging holds a unique position in providing 

non-invasive myocardial tissue characterization both with and without contrast. 

Changes in myocardial tissue properties utilising non-contrast T1 and T2-

weighted imaging techniques are widely used for the assessment of myocardial 

inflammation and oedema. Coupled with the late gadolinium enhancement 

(LGE) technique, myocardial scar or fibrosis can be subsequently visualised 

following the administration of gadolinium-based contrast agents (GBCAs), 

which accumulate in the extra-cellular compartment of diseased tissue. 

However, these techniques can only identify florid focal myocardial 

abnormalities.  

CMR parametric mapping offers a more contemporary technique which utilises 

relaxometry to permit both visualization and quantification of the disease 

process, independent of whether myocardial disease is focal or diffuse. The 

Heart Failure Association (HFA) of the European Society of Cardiology has 

recently recognized CMR parametric mapping as an important diagnostic tool in 

the evaluation of heart failure patients1. T1 and T2 mapping quantification has 

also been included in the updated guidelines for the diagnosis of myocarditis 

using CMR2. This review focused on the clinical indications and applications of 

CMR parametric mapping, outlining the basic principles and potential pitfalls of 

such techniques. 



A.  T1 Mapping

A1. General principles and technique  

T1 is a parameter describing the longitudinal" or "spin-lattice" recovery of 

magnetization after the excitation of protons by a radiofrequency pulse. In this 

technique, multiple T1-weighted images are acquired during recovery time and 

T1 values are derived by fitting the acquired signals to an exponential recovery 

curve. Finally, T1 pixel maps are generated, and every pixel corresponds to a 

specific T1 value, thus quantifying the myocardial tissue T1 property3.   

The CMR sequences used for the acquisition of T1 mapping are based on 

inversion-recovery, saturation-recovery or hybrid approaches3,4. The most 

commonly used techniques are the Modified Look-Locker Inversion Recovery 

(MOLLI)5, the shortened Modified Look-Locker Inversion recovery (ShMOLLI)6, 

and a saturation recovery single-shot acquisition (SASHA)7. Combined saturation 

and inversion recovery sequences for improved visualization of myocardial 

characteristics in patients with arrhythmia showed promising results, but 

further investigations are required for their validation8.  

A2. Native T1 mapping  

The native T1, or non-contrast myocardial T1, refers to T1 relaxation time of 

myocardium without the administration of GBCAs. Native T1 values are sensitive 

to the magnetic resonance field strength with longer T1 measurements being 



measured using 3T field strength compared to 1.5T. T1 relaxation time is also 

influenced by the sequence design parameters such as flip angle, matrix size and  

slice profile3,9,10. Additionally, physiologic factors such as  heart rate, sex and 

body temperature impact on the normal T1 values3,11,12. Female sex is associated 

with higher native T1 measurements compared to males13,14, but the exact 

effect of age on T1 parameters remains inconclusive with several studies 

showing conflicting results13,15-17.  

A2.1 Clinical applications  

The main advantage of native T1 mapping is that it reflects focal and diffuse 

myocardial disease involving both the intracellular and interstitial 

compartments without the need for administration of GBCAs. Native T1 values 

are increased with myocardial water content, enabling the detection of both 

acute pathologies, including myocardial oedema or inflammation, but also other 

processes such as fibrosis or myocardial infiltration by fat, amyloid, or iron.  

Myocardial T1 values are increased in acute myocardial infarction (MI)18,19, acute 

myocarditis20,21 or stress (Takotsubo) cardiomyopathy and provides an essential 

tool in the evaluation of chest pain syndromes in clinical practice22. Native T1 

mapping can determine the myocardial areas most at risk following an acute 

MI19, with one study demonstrating good correlation of T1 mapping with Tc99m-



sestamibi single photon emission tomography (SPECT) in the assessment of at-

risk myocardial territories23.  

Although endomyocardial biopsy (EMB) remains the gold standard for the 

diagnosis of acute myocarditis, its limited use in routine clinical practice arises 

from its low diagnostic accuracy and the periprocedural risks associated with 

this invasive approach24. CMR is a validated, non-invasive diagnostic technique 

which has decreased the use of EMB in a proportion of patients. The Lake Louise 

Criteria (LCC) were initially established in 2009 utilising specific CMR techniques 

including T2-weighted sequences, early and late gadolinium enhancement 

sequences (EGE and LGE respectively)  and thresholds aiming at standardising 

image analysis and interpretation25. Based on recent advances of T1 and T2 

mapping 26 a recent iteration of the LCC support the use of CMR relaxometry 

among the diagnostic criteria2. Considering that persistent myocardial oedema 

following the acute phase of myocarditis is associated with progression to 

dilated cardiomyopathy and subsequent poorer prognosis, the improved 

diagnostic accuracy offered by T1 mapping may also be of prognostic value in 

this context27.   

T1 mapping also plays an important role in detecting chronic ischemic processes. 

T1 values are higher in chronic ischemic scar compared to remote myocardium 

and higher in acute vs chronic infarction due to expansion of the interstitial 



space due to myocardial oedema28,29. However, in cases of lipomatous 

metaplasia of myocardial infarction, native T1 values might be low depending 

on the percentage of fat disposition within the scarred/infarcted area30.  Native 

T1 mapping could help differentiate between viable and non-viable myocardium 

in chronic myocardial infarction (sensitivity 88% and specificity 88% with a T1 

threshold of 1085 ms) and acute myocardial infarction (79% sensitivity and 79% 

specificity with a T1 threshold of 1110 ms)31. The presence of microvascular 

obstruction (MVO) in the acute phase creates some challenges in the use of 

native T1 mapping in the discriminating viable vs non-viable myocardium, as 

areas of MVO display low native T1 mapping leading to a pseudonormal range 

of native T1 values (average of low values in MVO area and high values in 

infarcted area)31.  

T1 quantification can detect diffuse myocardial fibrosis, but also subtle 

myocardial abnormalities that can be detected in the early phase of 

cardiomyopathic processes such as dilated (DCM) and hypertrophic 

cardiomyopathies (HCM) 11,32. Diffuse myocardial fibrosis detected by increased 

native T1 values in patients with aortic stenosis has been correlated with the 

collagen volume fraction by EMB33. Native T1 values can be also used for the 

detection of subclinical myocardial disease in patients with rheumatoid arthritis 

and systemic lupus erythematosus34,35. Native T1 imaging also provides 



improved risk stratification and prognostic value, being shown to predict overall 

mortality in non-ischemic DCM, hospitalization due to heart failure and heart 

transplantation36,37.  

T1 mapping plays a critical role in the diagnosis of infiltrative diseases, where 

the accumulation of pathological proteins within the interstitial or intracellular 

compartment changes the myocardial T1 properties. Native T1 values are 

typically shortened by fat and iron deposition. Anderson-Fabry disease is a rare 

X-linked lysosomal storage disorder, where glycosphingolipids are accumulating 

within myocardial cells due to genetic deficiencies of the enzyme alpha-

galactosidase A, resulting in left ventricular hypertrophy (LVH) and ultimately 

fibrosis38. Here, native T1 is low in response to sphingolipid accumulation. Such 

accumulation can be seen in 40% - 50% of patients without the presence of LVH, 

highlighting T1 mapping as a robust diagnostic technique at an early stage in its 

pathogenesis, before the development of the LVH phenotype39. Early diagnosis 

has important clinical implications as prompt initiation of enzyme replacement 

therapy is associated with better clinical outcomes40. It should be noted that T1 

values may increase during the disease course, becoming pseudonormalized or 

elevated depending on the development of fibrosis. Sado et al demonstrated 

normal or elevated T1 values in the inferolateral wall, which corresponded with 



the presence or absence of LGE, suggesting that native T1 quantification should 

be performed in remote myocardium41.  

The typical diffuse infiltration of the interstitial space by pathologic amyloid 

proteins in both light-chain (AL) and transthyretin (ATTR) amyloidosis results in 

markedly elevated native T1 measurements with AL demonstrating higher 

values42,43. Importantly, T1 mapping may have a higher sensitivity in detecting 

early disease compared to conventional T1-weighted sequences42. 

Furthermore, native T1 mapping can be applied in the identification of iron 

overload cardiomyopathy, with up to 32% of cases having a low native T1 but 

normal T2* values44. The identification of iron overload cardiomyopathy has 

major clinical implications as it triggers the initiation of chelation therapy, a 

therapy that improves survival45. However, the different diagnostic accuracy of 

T1 mapping over the conventional T2* quantifications in these patients require 

further evaluation.  

A3. Post-contrast T1 mapping and extra-cellular volume mapping (ECV) 

Post-contrast T1 mapping refers to T1 quantification after the administration of 

GBCAs, which generally shortens T1 relaxation time. Post-contrast T1 mapping 

depends on various factors such as GBCA dose, glomerular filtration rate, 

acquisition time post-GBCA, body composition and haematocrit3. Notably, post-

contrast T1 values in isolation were found not to correlate with histological 



collagen volume fraction and as a consequence, post-contrast T1 values are used 

in association with the native T1 values to derive extracellular volume (ECV)46. 

The expansion of the ECV which is comprised of interstitial and intravascular 

spaces is a common pathophysiological mechanism of many myocardial 

pathologies, which plays an important role in LV remodelling and has been a 

therapeutic target in many trials47-50. ECV can be calculated using the myocardial 

T1 and blood T1 values pre- and post-GBCA administration alongside the 

haematocrit3,11. It represents the contrast uptake in the extracellular space 

relative to the blood assuming equilibration of GBCA between extravascular 

interstitial fluid and intravascular plasma: 

ECV= [ (1/T1myopostGd-1/T1myopreGd):(1/T1bloodpostGd-1/T1bloodpreGd)]*(1-Haematocrit) 

The dynamic equilibrium of the contrast distribution between blood and tissue 

can be achieved by imaging 15 minutes after administration of an intravenous 

bolus of contrast, although for recently infarcted myocardium a more prolonged 

acquisition time may be required3,46,51. Haematocrit should be measured at the 

time of the CMR or within 24 hours. Alternatively, synthetic haematocrit can be 

derived from the longitudinal relaxation rate of blood (R1 = 1/T1blood) without the 

need of blood sampling; this should be calibrated for the specific T1 mapping 

technique52. Contrary to the post-contrast T1 mapping values, ECV values are 

reproducible when performed using the same techniques and platforms53,54 and 



there is good correlation between ECV quantification with histological collagen 

volume fraction46.  

Much like native T1 mapping, studies have highlighted women having higher 

ECV values compared to males13,14 and likewise, the data on the effect of age on 

ECV measurements remain inconclusive13,15,16.  

A3.1. Clinical applications 

ECV values are increased in all cardiac conditions accompanied by expansion of 

extracellular space, whether this is the interstitial or intravascular space or both. 

As a result, elevated ECV measurements have been reported in myocardial 

oedema (increased interstitial water content), infiltrative diseases (amyloidosis), 

fibrosis (focal or diffuse) and in vasodilator stress perfusion imaging as a result 

of expansion of the intravascular compartment due to subsequent coronary 

vasodilation55.  

It is established that cardiac extracellular matrix (ECM) can lead to ventricular 

remodelling subsequently resulting in heart failure56. Indeed, ECV values have 

been strongly associated with diastolic dysfunction in patients with HF with 

preserved EF (HFpEF)57. Notably, ECV measurements were a stronger predictor 

of mortality and heart failure-related hospitalizations when compared to LGE in 

diabetic patients, suggesting that ECV could be a potential therapeutic target in 

this or similar cohorts58.  



Furthermore, ECV values are significantly higher in patients with HCM compared 

with patients with hypertensive heart disease; however, there is evidence that 

native T1 mapping is a stronger discriminator between the HCM and 

hypertensive heart disease than ECV, LV wall thickness and indexed LV mass59. 

Differentiating physiological LVH in athletes from pathological HCM is a frequent 

clinical dilemma with obvious clinical implications. ECV is a promising imaging 

biomarker in differentiating athletic remodelling from pathologic hypertrophy. 

In an athlete’s heart, lower ECV values are observed secondary to relatively 

higher cardiomyocyte volumes. Comparably, patients with HCM exhibit 

increased ECV values due to myocardial disarray and extracellular matrix 

expansion60.  

ECV mapping also plays important role in identifying occult myocardial 

involvement in autoimmune diseases and can play a crucial role in disease 

monitoring over time61. There is evidence that native T1 and ECV values are 

elevated in ANCA-associated vasculitis independent of LGE, implying the role of 

T1 and ECV mapping as a diagnostic tool in the assessment of these patients62. 

In patients with systemic sclerosis, both native T1 and ECV values are 

significantly elevated and associated with disease activity and severity, 

highlighting its potential contributions for emerging therapeutics63.   



Among infiltrative disorders, cardiac amyloid is associated with significantly 

higher ECV than any other cardiomyopathy due to the marked extra-cellular 

amyloid infiltration64. ECV in cardiac amyloidosis can be used in diagnosis, to 

guide and monitor therapies and predict prognosis65-67.  ECV values in Anderson-

Fabry disease have been reported to be similar to healthy controls68 given that 

accumulation of glycosphingolipids is intracellular and that the extracellular 

spaces are relatively spared prior to the progression to the fibrotic stage.  

Figure 1 compares native T1 mapping and corresponding LGE imaging in a range 

of cardiomyopathic processes including infarction, inflammatory and infiltrative 

diseases. 

A5. Challenges and Pitfalls 

Although the CMR relaxometry techniques have developed into new clinical 

tools ready for primetime, several factors have restricted the widespread 

implementation of T1 quantification in clinical practice. These include 

standardization of acquisition protocols, needs of local normal range values, 

departmental-specific T1 sequences, patients’ heart rate, room temperatures 

and contrast protocol used3,11. Regular testing of technique stability over time is 

highly recommended in order to maintain consistency in the data acquired over 

time. Parameters that can affect the precision of ECV quantification are faster 



contrast clearance and the incomplete equilibrium of GBCA between interstitial 

fluid and intravascular plasma46,53, 55. 

 Despite the presence of motion correction (MOCO) algorithms, parametric 

error maps should be recorded in all patients as a quality control measure prior 

to interpretating the T1 data3. In order to avoid misinterpretation of ECV data3, 

the pre- and post-contrast T1 maps should match in slice parameters, cardiac 

phase and slice position. Slice position can certainly affect T1 quantification with 

higher values noted towards the apex compared with the basal and mid-cavity 

ventricle due to the pronounced partial volume effect at the apical level. 

Similarly, partial voluming of blood or fat can result in major imprecisions in T1 

and ECV values, especially in thin-walled structures such as the right ventricular 

(RV) free wall or areas of thinned chronic myocardial scar.  Additionally, the 

lateral wall can present lower ECV values reflecting off-resonance effects and 

reduced signal-to-noise ratio in this wall, rather than reflecting myocardial 

pathology69. The use of very small targeted ROIs (e.g. < 40 mm2) should be 

avoided during the image analysis as it will affect the precision of the 

quantification.  

B. T2 mapping  

B1. General principles and technique  

T2 or spin-spin relaxation time is the MR constant governing the diphase of 

transverse magnetization following MR excitation55.  Many different T2 mapping 



techniques have been described including single-shot balanced steady-state 

free precession (bSSFP) sequences with different T2 preparation times, 

gradient70 and spin echo (GraSE) or fast spin echo (FSE)-based pulse 

sequences71,72. Recent consensus statements recommend the use of T2-

prepared bSSFP or gradient echo pulse sequences with a minimum of three T2-

weighted images11. Comparably to T1 relaxation times, native T2 times vary 

according to multiple factors, including field strength and the specific sequence 

used. T2 mapping techniques based on SSFP read-out, result in higher T2 values 

compared with fast low-angle shot (FLASH) read-out whilst offering more signal-

to-noise and less image artifact71,73,74. T2 measurements are higher at 3T 

compared to 1.5T70,75. While there is some evidence that females have higher T2 

values compared to men76,77, there remains conflicting data on the impact of age 

on T2 measurements17,76,77.   

B2. Clinical Applications 

Similar to T1 values, myocardial T2 values represent a composite signal of both 

the intracellular and extracellular spaces. T2 values are typically higher in the 

presence of increased water content such as myocardial oedema, inflammation 

and acute infarction. T2 mapping overcomes some of the known limitations of 

conventional T2-weighted sequences including incomplete blood suppression 

and variations in myocardial signal intensity caused by phased array coils. This 



allows T2 mapping to accurately detect oedema in acute myocardial infarction78, 

both in acutely damaged myocardial tissue and in the myocardium at risk, both 

of which display greater T2 values compared to remote myocardium79.  Likewise, 

another study highlighted the superior diagnostic accuracy of T2 mapping when 

compared to standard LCC for the diagnosis of EMB-proven acute myocarditis80. 

T2 mapping holds an important role in establishing a CMR diagnosis of 

myocarditis80-82 such that T2 quantification has since been included in the 

revised LCC for the diagnosis of myocarditis2,26. T2 mapping is highly sensitive 

and specific in identifying areas of myocarditis (94% and 97% respectively) 

beyond the detection of wall motion abnormalities or late gadolinium  

enhancement81. In patients with active myocarditis presenting with recent-

onset heart failure and reduced LV function, T2 mapping exhibits superiority to 

native T1 and ECV mapping in confirming myocardial changes consistent with 

myocarditis82.  

T2 quantification plays an important role in the diagnosis of sarcoidosis with 

higher specificity compared to Fluorine-18 fluorodeoxyglucose positron 

emission tomography computed tomography ([18F] FDG-PET CT) (76.9% versus 

38.5 %)83,84. In particular, a retrospective study of 50 consecutive subjects with 

histologically proven sarcoidosis found 41% of patients without LGE exhibited 

T2 abnormalities suggesting an ‘occult hot phase’ of sarcoidosis preceding 



myocardial fibrosis85. This has important clinical implications, such that T2 

mapping could guide early initialisation of steroids or immunosuppressive 

therapy, potentially preventing the deterioration of ventricular function and 

scar formation86.  

T2 mapping can facilitate the diagnosis of Takotsubo cardiomyopathy87 in which 

increased T2 values are in keeping with the presence of myocardial oedema in 

corresponding  areas of regional wall motion abnormalities.87,88

Another significant clinical application of T2 mapping is the detection of acute 

cardiac allograft rejection, which is a predictor of survival during the highest risk 

period of the immediate 12 months following heart transplantation89,90. Acute 

transplant rejection is characterized by complex processes precipitating an 

inflammatory response with concomitant myocardial oedema. Increased T2 

values corelated with biopsy-determined grades of acute transplant rejection90. 

Moreover, elevated T2 values normalize after response to immunosuppression 

therapy highlighting the role of T2 mapping to measure treatment response 

following resolution of myocardial oedema91. However, further evidence is 

warranted to confirm that T2 mapping can effectively guide the selective use of 

endomyocardial biopsy in the setting of transplant rejection in clinical practice.  

Finally, an emerging clinical application of T2 mapping is the early diagnosis of 

chemotherapy-induced cardiotoxicity preceding the deterioration of LV 



function. Myocardial oedema detected by T2 mapping in women treated with 

anthracyclines ± trastuzumab for breath cancer correlated with the 

deterioration of LV systolic function at follow-up92. Experimental animal studies 

demonstrated that increases in T2 relaxation time were the earliest marker of 

cardiotoxicity before alterations of LV function were detected following 

anthracyclines use93. Crucially, this study noted that the early discontinuation of 

doxorubicin following the identification of prolonged T2 relaxation time, 

prevented the progress to myocardial dysfunction and resulted in T2 

normalization93. 

Figure 2 compares T2 mapping and corresponding LGE imaging in a range of 

cardiomyopathic processes to normal myocardium. 

B3. Challenges and pitfalls 

The limitations of the T1 mapping technique are also applicable to T2 mapping. 

Indeed, defining normal ranges to differential health and disease is pivotal for 

the interpretation on T2 data11. Furthermore, T2 mapping techniques are highly 

dependent on heart rate. To avoid imprecision in T2 quantification associated 

with higher heart rates, an increased sampling interval is required to allow 

complete T1 recovery55,94. More clinical diagnostic and prognostic data is 

required to consolidate the role of T2 mapping in clinical practice.  

C. T2* mapping 



C1. General principles and technique 

T2* relaxation time represents the inherent decay of transverse magnetisation 

caused by a combination of spin-spin relaxation (T2) and magnetic field 

inhomogeneity (T2)55,94. This technique uses series of T2*-weighted images with 

different echo times (TEs) to assess signal decay and produce a single T2* value, 

creating a T2* map. Gradient echo (GRE) sequences which do not include a 

refocusing pulse to correct dephasing due to magnetic field inhomogeneity are 

used in T2* mapping technique55,94. 

C2. Clinical applications 

Iron and oxygen are typical molecules that induce local magnetic field 

inhomogeneity which shorten T2*, affording its use for the detection of iron 

loading. A normal mean T2* value > 40ms has been widely reported in healthy 

volunteers, whilst T2* values < 20ms are suggestive of iron overload 

cardiomyopathy94-96. Cardiac siderosis is the most common mechanism of death 

in patients with thalassaemia major but liver iron loading does not correlate with 

cardiac iron overload96. Furthermore, the onset of ventricular dysfunction is 

usually late in the natural history of the disease such that the early detection of 

the ‘occult’ stage of disease provided by T2* imaging is crucial to guide early 

initiation of chelation therapy and monitor treatment response 97,98.  



T2* mapping techniques can also be used to assess the presence and extent of 

intramyocardial haemorrhage which can cause magnetic field inhomogeneities 

secondary to by-products of haemoglobin degradation. T2* imaging was found 

to be superior to T2 imaging in the detection of acute reperfusion myocardial 

hemorrhage99. The identification of intramyocardial haemorrhage following 

acutely reperfused ST-Elevation Myocardial Infarction (STEMI) has important 

clinical implications, as it is associated with increased major adverse 

cardiovascular events at 6 months after the acute event100. 

Table 1 summarizes the changes in T1, ECV, T2 and T2* relaxation times in 

different cardiac pathologies, emphasizing the clinical utility of parametric 

mapping. 

C3. Challenges and pitfalls 

In iron overload cardiomyopathy, T2* measurements should be performed in 

the intraventricular septum to avoid susceptibility artifacts in the lateral walls. 

Similarly, signal contamination from the epicardial vessels at the LV and RV 

insertion points could also lead to errors in T2* measurements. In line with the  

other parametric techniques, cardiac and respiratory motion artifacts during 

image acquisition can affect image quality and subsequent T2* quantification.  

Conclusion 



Parametric mapping of myocardium is an emerging technique with the unique 

property of quantifying myocardial abnormalities at the early stage of disease 

compared to conventional CMR imaging. There is increasing evidence for the 

clinical utility of CMR mapping in diagnosis and prognostication for a range of 

cardiac conditions. Although clinicians need to also be aware of their limitations 

and potential pitfalls, CMR relaxometry techniques are here to stay and to be 

increasingly used in routine clinical practice.  
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Figure Legends 

Figure 1. Native T1 mapping (top row) and late gadolinium enhancement (LGE) 

imaging (bottom row) in a range of cardiomyopathic processes. A1-A2: 

Increased native T1 values in the mid inferior (1418 msec, normal range 1000 ± 

50 msec) and inferoseptum (1214 msec, normal range 1000 ± 50 msec) with 

analogous LGE in a patient with inferior wall myocardial infarction. B1-B2: 

Reduced native T1 measurements measured in the mid septum (812 msec, 

normal range 1000 ± 50 msec) in a patient with Anderson-Fabry disease, 

increased values (1277 msec, normal range 1000 ± 50 msec) in the mid 

inferolateral wall, matching the area of LGE (myocardial fibrosis). C1-C2: Native 

T1 mapping and LGE sequence in a patient with acute lymphoblastic leukaemia. 

Increased native T1 measurements in the inferoseptum (1256 - 1320 msec, 

normal range 1000 ± 50 msec) and mid anterolateral (1227 msec, normal range 

1000 ± 50 msec) walls and large nodular areas with lack of contrast penetration, 

representing myocardial infiltration without vascularity (cancerous tissue). D1-

D2: Diffuse increased native T1 values (1180 - 1340 msec, normal range 1000 ± 

50 msec) and extensive diffuse LGE in a patient with cardiac amyloidosis.  

MI: myocardial infarction 



Figure 2. T2 mapping (top row) and late gadolinium enhancement (LGE) imaging 

(bottom row) in a range of acute cardiac pathologies. A1-A2: Normal T2 values 

(48 - 50 msec, normal range 52 ± 4 msec) and LGE imaging in a normal patient. 

B1-B2: Elevated T2 values in the mid inferoseptum (66 msec, normal range 52 ± 

4 msec) and mid anterolateral (67 msec, normal range 52 ± 4 msec) segments 

extending to apical septum (78 msec, normal range 52 ± 4 msec) and apical 

lateral (62 msec, normal range 52 ± 4 msec) segments in a patient with acute 

myocarditis. LGE imaging showing diffuse patchy epicardial and mid-wall late 

myocardial enhancement of the anterolateral wall from base to apex and of the 

mid to apical septum. C1-C2: Increased T2 values in the basal inferoseptum (89 

msec, normal range 52 ± 4 msec) and inferior (96 msec, normal range 52 ± 4 

msec) walls with matching transmural LGE in a patient with acute inferior 

myocardial infarction. D1-D2: Extensive increased T2 values in the mid-cavity 

septum and anterior walls (66 -75 msec, normal range 52 ± 4 msec) with an area 

of low T2 values (45-48 msec, normal range 52 ± 4 msec) in these segments in a 

patient with large acute anterior myocardial infarction. Microvascular 

obstruction (MVO) can be appreciated in the area of low T2 values. LGE imaging 

confirmed the evidence of MVO.  

MI: myocardial infarction 




	T2* mapping techniques can also be used to assess the presence and extent of intramyocardial haemorrhage which can cause magnetic field inhomogeneities secondary to by-products of haemoglobin degradation. T2* imaging was found to be superior to T2 ima...
	Table 1 summarizes the changes in T1, ECV, T2 and T2* relaxation times in different cardiac pathologies, emphasizing the clinical utility of parametric mapping.
	C3. Challenges and pitfalls
	In iron overload cardiomyopathy, T2* measurements should be performed in the intraventricular septum to avoid susceptibility artifacts in the lateral walls. Similarly, signal contamination from the epicardial vessels at the LV and RV insertion points ...
	Conclusion
	Figure 1. Native T1 mapping (top row) and late gadolinium enhancement (LGE) imaging (bottom row) in a range of cardiomyopathic processes. A1-A2: Increased native T1 values in the mid inferior (1418 msec, normal range 1000 ± 50 msec) and inferoseptum (...
	MI: myocardial infarction
	MI: myocardial infarction

